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OBSERVATIONS ON THZ SYNERGISTIC INTERACTIONS OF
AQUEQUS OXIDIZERS AND ULTRAVIOLET RADIATION FOR
’ DECONTAMINATION APPLICATIONS

INTRODUCTION

Military operations can be compromised by contact with
Chemical Warfare (CW) and/or Biological wWarfare (BW) agents/
toxins. Maintenance of mission effectiveness may require rapid
decontamination (decon) of the personnel, equipment, and
operational area. Decon becomes especially important if the
extended use of protective equipment and/or enclasures hinders
rapid response to changing conditions.

Decon can be passive or active. A passive decon approach
allows contamination to weather away through natural processes
such as atmospheric flow/wind, rainfall, solar irradiation, etc.
However, time constraints usually dictate the need for more
active decon measures, ‘such as the washdown of contaminated
surfaces with water, or water containing chemically active
additives. Historically, the additive of choice for active
decon has been hypochlorite, since agqueous hypochlorite can both
oxidize and hydrolyze CW agents. Hypcchlorite is also effective
against BW toxins/spores (Hoffman and Spiner, 1962; 2irin, et
al., 1965, Flelding, et al., 1967, 1968; Biock and Davis, 1978).
Thus, agueous hypochlorite washdown exhibits a broad spectrum
decon efficacy. However, the use of aqueous hypochlorite as a
simple wasndown may not fully utilize all the characteristics

and advantages of its chemistry,

Molecules of many oxygen containing anions (e.g., peroxygen
anions and hypochlorite) strongly absord ultraviolet (UV)
radiation (see Figure l1). On UV irradiation of aqueous solu-
tions of these species, transient, energetic, and reactive
intermediates such as chlorine atoms, and singlet and tripiet
oxygen (Ogata and Takagi, 1981) are formed., Ogata, et al.
(1979), and Nakamura and Ogata (1571) have reported rapid photo-
oxidation of certain aliphatic acids and alkylbenzene sulfonic
azjds to carbon dioxide and water using UV irradiation and

! agzusous hypochlorite. Thus, the synergistic effect of high
energy, high flux UV irradiation on oxygen-containing anions
such as hypochlorite could potentially be used to rapidly
destroy organic compounds such as certain CW agents and 3W
toxins which may not directly absorb UV radiation. Note that GA
{Tabun), GB3 (Sarin), and GD (Soman) are essentially :ransparent
above about 220 nm, and that VX, L (Lawisite), and KD (sulfur
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mustard) are only slightly more opaque at wavelengths greater
than .220 nm. The commonly used simulant dimethyl methyl
phosphonate, DMMP, 13 alsc essentially transparent to OV
radlation. Agent cross sections range from 10-21 to 10-17,
depending on wavalength (Rewick, et al., 19856). Therefore, one
. cannot expect destructicn of agent by exposure to UV irradiation
alone: there is insufficient sorbtion of UV radiation to cause
significant destruction of chemical bonds in the agents.
However, in a decon context, UV irradiation of aqueous oxidizer
solutions offers both the proven chemical, and the previously
unexploited photochemical, neutralization of CW/BW materials,

This report summarizes the results of a feasibility invest-
igation to demonstrate whether decon operations could benefit
from the synergistic effects of UV irradiation and an oxygen .
containing anionic species such as aqueous hypochlorite or per-~
oxide. In this preliminary investigation, selected simulants
for CW agents (e.g. quinine sulfate, and malathion) were reacted
in aqueous oxidizer solutions with and without UV irradiation.
Paster destruction of the simulants in the agueous media
containing irradiated oxidizer indicates the synergism approach
to be a promising decon method. (See also Ogata and Takagi,
1981; Nadezhdin and Dunford, 1579; Mill and Gould, 1879).

EXPERIMENTAL

Two test sequences were utilized in this study. The first
group of experiments used quinine sulfate as a simulant for CW
agents, and the second group employed malathion. 1In both cases,
aliquots of agueocus solutions of the simulant with and without
added oxidizer were exposed to low fluxes of UV(B) radiation.
This OV band (280-320 nm) is a component of solar radiation
reaching the earth's surfacs (Figure 2), and was seliected for
this rsason. The exnerimental controls wers aliguots of
solutions cecntaining both simulant and oxidizer not exposed *n
OV{B). The disappearance of the simulant with time was ’
monitored using fluorometry for gquinine sulfate and high
prassure liquid chromatography (HPFLC) for malathion,

Quinine Sulfate Studies
Matsrials

The first group of experiments used quinine sulfate
[(CygH99N7 09)9-H9504] (Fisher) as the simulant, and aqueous
sodium nypochlorite (NaoCl, 5% (w/v) solution. nominal,
standardized by lodometric titration before usa, Fisher) as the
oxidizer., A stock solution of quinine sulfate (100 pom w/w dry
powder in distillad water, ~2 x 10~9M) was stored in a brown
glass bottie. Test aliquots were taken from this stock.
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Method

Aliguots (5.0 mL each, volumetric pipette) of quinine
sulfate solution were dispensed into a series of 6 cm diameter
Pyrex petri dishes., This test configuration provided a fluid
layer approximately 1 mm deep, and was chosen to simulate the
film present when a decon fluid is applied to a surface. The
quinine sulfate solutions were then divided into four groups:
two groups containing only guinine sulfate solution as the
control, and two containing the quinine sulfate with added
hypochlorite (100 uL, Eppendorf pipette, to give 5.0 mL of
solution 2 x 10-4M in quinine sulfate, and approximately
1 x 10-2M in hypochlorite). One set each of the control and
test solutions were retained in the dark, and a similar set was
exposed to a UV radiation source. The radiation source was a 48
watt General Electric fluorescent tube with a high output of
Uv(B)(280~320 nm). The samples were irradiated approximately 20
cm from the tube for 5 or 10 minutes. For comparison, the
bright noon sun provides l-2 Sunburn Units (SU) depending on the
angle of incidence and other factors. UV(B) flux on the test
samples was monitored with a Solar Light Company Model SSI 10944
light meter, filtered to respond tc UOV(B). Radiation flux was
measured in SU, a non-dimensional parameter. The amount of
quinine sulfate in the various solutions was monitored
fluorometrically as a function of time.

Measursment of puinine Sulfate

The fluorescence from the quinine sulfate solutions was
measured with an American Instruments Model J4-7439 fluorometer
[excitation with a blue ¢S 5-60 filter {400 nm), emission was
monitcored through a red Cs 2-64 filter (700 nm)]. The measured
fluorescence from the sampled aliquot was recorded, and repcrted
as a relative measure of quinine sulfate in solution. At the
low concentration of quinine in the test sclution, fluorescence
is linear with concentration (Ewing, 1969). .

Since the pH of 2 x 10-4 quinine suifate in water is 4.8,
but the pH of a test quinine sulfate plus 100 ul concentrated
hypochlorite solution is ~8.5, all test reacticns and control
conditions were adjusted co pH ~8.6 with aqueous sodium
hydroxide as needed. Furthermore, the fluorescence of quinine
sulfate solutions is pHE dependent, with maximal fluorescence at
DH 2-3 (see Table 1). Therefore, the pH of all samples,
controls, and tests was lowered to pH =] just prior to the
fluorescence measurements. All pH determinations were with a
Fisher Model 355 pH meter, equipped with a Fisher combination pH

. electrode.
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Malathion Tésts

Materials

The second group of experiments utilized s-(1,2~-dicarbethoxy-
ethyl) 0,0-dimethyldithiophosphate (malathion, CjgH}90gPS3,
Foxboro Analabs) as the simulant, and various oxidizers in
aqueous solution (see Table 2). The malathion test solutions
were prepared by adding malathion stock solution (30 mg
malathion in 10 mL acetonitrile) to 25 mL of a pH 7 phosphate
buffer, giving a final malathion concentration of ~0.6 x 10-3 M
in the test solutions. The concentrations of the oxid!zers are
reported in Table 2. Approximately 10 mL of these various
soiutions were placed in petri dishes for testing., Reaction
conditions, glassware, radiation source, and procedures wers
essentially identical to those in the tasts using quinine
sulfate., Irradiated samples were covered with quartz disks to
leasen evaporation of the solutions during the irradiation
porticn of the test sequence. Quartz is transparent to UV
radiation. o

Meas . rement of Malathion

FPolative concentrations of malathion in the test solutions
were mconltored using high pressure liquid chromatography (HPLC).
The HPLI system consisted of a Beckman Model 110A pump, a Waters
Model U6K injector, a FPisher Resolvex Cjg reverse phase column,
and a Waters Model 440 UV detector filtered to 254 nm. The
mobile phase for the malathion measursment3 was 75% methanol/25%
water (v/v) and the flow rate was 1 mL/min. Prior to use, the
mobile phase was degassed by stirring under vacuum. The
injection sample size was 25ulL (Hamilton variable syringe).

RESULTS AND DISCUSSION -
Quinine Sulfate

?luorescence data for the quinine sulfate test solutions
ara presentad in Table 3., It 13 clear that with hypochlorite
and OV(3) irradiation, flucrsscence of the test solutions is
less than those not exposed to OV(3). This difference in
fluorescence i3 directly related to the disappearance of quinine
in the irradiated hypochlorite bearing solutions. The quinine -

NS r‘

; could be par+tially, or totally, oxidized by hypochlorite/UV(B)
tgy interaction. A partial oxidation of quinine (see Figure 3)
k}{ could involve the vinyl group carton-carbon double hond in the
o molecule. Such an attack could yield an alcohol, glycol, or
Koot serhaps a carboxylic acid. A more complete oxidative attack on
;g; the quinine c¢ould prcduce 2 host of molecular fragments, carbon
yjﬁ dioxide, and reslated products., The limited scope of thnis study
:xp precluded identification o7 such reaction products.
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l(alathion

Malathion, as in the case of quinine, underwent an
accelerated attack with oxidizer plus UV irradiation for all
oxidizers except sodium percarbonate (see Figure 5-a). The
relevant pseudo-first order rate constants for these
interactions are listed in Table 4, and one sees oxidation rates

. two to five times faster with UV irradiation of the oxidizer

" system than without (see section on "analysis of Data for
Malathion," for detail). This rate enhancement, it must be
emphasized, is at very low UV flux, a flux which roughly
corresponds to the amount of UV radiation available on a bright,
sunny day. With higher UV flux, the monitored reaction may
proceed much more rapidly. This posesibility should be examined
in more detail. Note, however, that malathion reacted rapidly
with sodium percarbonate with or without added UV irradiation.

The rate constants in Table 4 indicate that, to a first approxi-
mation, malathion reacted with hydrogen peroxide and sodium
perborate at the same rate, with or without UV irradiation.
Similarly, the reactions of malathion with sodium
peroxydisulfate and with sodium percarbonate in the presence of
UV irradiation exhibited comparable, but faster reactior rate
constants. The observed enhancement with these latier species
may be due to a different molecularcoupling mechanism by which
the OV radlation is transferred to the malathion substrate, It
would pbe useful to examine in more detail the actual mechanism
by which the peroxide oxidizers interact destructively with the
UV radiation, and the =ubstrate.

It is postulated that the destruction of malathion could
involve conversion to malaoxon (R. Landolt, pers. comm., 198%5),
with the double bonded sulfur to phosphorous being replaced by a
double bonded oxygen to phosphorous (see FPigure 3). If the
oxidative attack on malathion stopped at malaoxon, it should be
possible to detect this product by HPLC. However, when
maiathion interacted with hypochlorite, no peaks other than
hypochlorite and malathion were ever recorded on the
chromatograms from the pre-~-and post-irradiation solutions.
Further, note from rFigure 4 that the hypochlorite signals in the
two traces have not changed appreciably in size or shape. This
fact suggests that the hypochlorite might be acting
catalytically by transferring UV energy to the malathion, but
not itself being consumed. If the UV-hypochlorite synergism is

E: catalytic, then a decon utilizing this approach would prove
H: effective with no or minimum —onsumption of nhypochlorite.
o‘:.:-j
aﬁ CONCLUSIONS

b ¥

The experiments described in this feasiblity study indicate
agqueous hypochlorite and UV(B) radiation appear to interact
synergistically in the destruction of certain organic compounds.
Neither agueous gquinine sulfate nor malathion was consumed by
exposure to either UV(3) radiation or aguecus cxidizer alone.
However, both test compounds weres decomposecd rapidly when
axposed to the synergistic effects of UV(3) irradiation of the
oxidizer solution.
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RECOMMENDATIONS

The concept of synergistic oxidative attack on organic
compounds by UV radiation combined with aqueous oxidizer needs
to be further developed for decon applications. Required are
studies which:

1) Examine the observed synergism between UV aznd the
aqueous oxidizers under optimal conditions. OV flux,
wavelength, and band pass, as well as oxidizer concentration
will affect overall efficacy of UV/oxidizer decon, and must be
investigated. A most efficient oxidizer for use with UV
irradiation needs to be identified.

2) Extend the observations concerning synergistic
destructive attack on aqueous quinine sulfate and malathion to
other challenges of interest. Appropriate simulants for CW
agents such as 2-chloroethyl ethyl sulfide (CEES, a mustard
simulant), dimethyl methyl phosphonate (DMMP, a G-agent
simulant), and diisopropyl fluorophosphate (DFP, alsoc a G-agent
simulant), and simulants for BW toxins/spores are of vital
importance and should be examined.  Ultimately, the observations
reportad here, and to be obtained in further studies, must be
confirmed with live agents and biological toxins.

3) Investigate the possibility that synergistic
UV/oxidizer decon may be catalytic. 1If the process 1is
catalytic, then small amounts of oxidizer could serve to decon
large surface aresas, with decon being limited only by the amount
of UV irradiaticn applied to the system.

Further phases of the project could include, but not be
limited to, the design of appropriate ultraviolet radiation
sources for use with hypochlorite decon. Such sources could
range from hand-held, battery overated units for effective
spot-decon, as at passageways or cockplts, to larger banks of UV
sources, allowing the rapid, mor=s effactive decon of exterior
surfaces such as bulkheads, work stations, or supply storage
areas, The availability of commercial UV units should be
explored and selecred units tested,

ANALYSIS OF DATA FOR MALATHION

.
="

, The pseudo-first order rate constants ra orted in Table 4,
and the grepnical rasults presented in rigurns 5-3 wers
generated in the following manner, using data frcom Table 'S. Let
the initial concentration of malathion be cg in any test system.
At any time ":%" afiter the start of a particular test, one can
determine a malathion concentraticen in the test solution; this
concentration is ¢. In some cases, ¢ m Cj, tut in general
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< < ¢cp, @especially for the irradiated systams. If one plots 1n
</eg vs. £, the slope, k, of this line is the rate constant feor
the re=ﬁ*icn. Therefore, X = la(c/cg)/t, with X in units of

§% raciprocal time, days~=~, in this case,
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Table 1 - Quinine* Fluorescence 23 a Function of pH

DH Fluorescence
2.20 . 16.6 .
2.27 16.5
2.45 ' 16.0
2.71 15.5
3.07 14.6
4.80 ‘ 0.35
5.00 0.22
5.57 0.08
6.50 0.004
6.73 0.003
7.07 0.002
7.36 0.001
7.59 ~a
8.04 i ~0
8.44 ~0

*Quinine sulfate is 100 ppm or 1 x 10-2M. For quinine,
PK; = 8.52; pKy = 4.13 ,

Table 2 - Oxidizers Used in This Study

Concentration
Oxidizer, formula, source . F.W. , used in tasc,N
Sodium Hypochlorite, NaoCl 74.5 0.01
Fisher (5% soclution)
Hydrogen Peroxide, H;03 34.0 0.102
Fisher (30% solution)
Sodium Peroxydisulfate, Na;550g 238.0 0.075
ol Alfa , .
. Sodium Perborate, NaBO3-4H0 153.8 ' 0.047
’ H Alfa . v
&
o Sodium Percarbonate, 2Na;C0O3-3H309 3i4.0 '0.083
gﬂ Burlington '
ﬁ: Sources:
<Is Fisher Scientific Company, Fairlawn, NJ
PQ Alfa Products, Danvers, MA
¥ 8urlington Chemical Company, Burlington, NH
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Table 3 -~ Synergistic Effect of UV and HOCl on Quinine Sulfate

Pluorescence’Data for Quinine sSulfate Tests

no ov-38

with Ov-B, 1 SU

S min.

1.3» £ 0.2

0.43 2 0.07 0.45

© 10 min.
1.75 = 0.2

(£ 4

0.06

*all fluorescence data are averages of three separate runs.

Table 4 - Pseudo First-Order Rate Constants for Interaction
of Malathion and Selected Oxidizers

A. Malathion
Malathion

3. Malathion
Malathion

C. Malathion
Malathion

D. Malathion
Malathion

£. Malathion
Malathion

System

only

.
-

+
+

v

hydrogsn peroxide
peroxide + OV

peroxydisulfates
peroxydisulfate + UV

perhorate
perborate + OV

percarbonate
percarbonate + UV

k, in days-l

0.027
g.013

0.9l
1.64

0.61
5.0
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Table 5 ~ Data for Malathion/Oxidizer/UV Synergism Studies

Time (davs) Concentration¥®

A. Mslathion only

600
0 620
9 650
9 610
b 630
0 590

B. Malathion + hydrogen peroxide

0 570
0.9 43C
1.9 270
2.9 130
4.1 " 50
5.9 n.d.*

C. Malathion + peroxydisulfate

490
300
130
. 120
50
10

Ve~ OO
.« .
0~ 00 ® O

D. Malarhion + perborace

560
460
260
130
40
n.d.

nm s~ 00
O O v

E. Malathion + percarbonats

530
n.d. .

-~ OO

.8
.9

Time (davs) Concencracion®

+ UV irradiation

0 605

1.0 610

2.1 620

3.0 590

4.2 590

6.0 580
+ UV irradiacion

0 570

1.0 100

2.1 n.d.
+ UV irradiation

] 490

0.9 4

2.0 n.d.
+ OV irradiation

0 360

0.9 220

2.0 n.d.

-+ UV irradiarion

-0 o

.9
.9

530
.10
' ‘ ) n.d.

*Concentration is the .umber of micromoles contained in a 25 ul injection of
test soiution withdrawn from the bulk sample (iU mL) held in pecrri dishes

eirher with ur without UV irradiation.

n.d. = pnot detected.
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