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PREFACE

This final technical report summarizes work conducted as part of

ONR Contract No. N00014-77-C-0503, Work Unit NR 039-149, (University of

Wyoming Project No. 5-33106). Dr. L. H. Peebles, Jr. of the Office of

Naval Research, Arlington, Virginia, served as the Program Technical

Monitor.

Work reported in this document was performed by members of the

Composite Materials Research Group within the Mechanical Engineering

Department at the University of Wyoming. Mr. D. E. Walrath and Dr. D. F.

Adams served as Co-Principal Investigators. Also contributing to this

research effort were Messrs. J. M. Mahishi, R. L. Westberg, and G. J.

Aust, graduate students in Mechanical Engineering, and K. M. Bauer, B.

D. Brownlee, D. K. McCarthy, G. V. Morrison, C. E. Wyers, B. R. Miller,

and R. W. Wakelee, undergraduate students in Mechanical Engineering.
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SECTION 1

INTRODUCTION

1.1 Previous Experimental Efforts

An Office of Naval Research contract to study carbon-carbon

materials was initiated at the University of Wyoming in August 1977.

Work performed as part of this contract, prior to the present report,

was primarily experimental, as reported in References (1-3].

Early emphasis was on the measurement of bulk mechanical properties

of a specific three-dimensional cartesian weave carbon-carbon billet

[1]. This billet, No. 2696, was fabricated by Fiber Materials Inc. (FMI)

from HM-3000 PAN based graphite fibers and Ashland 240 pitch resin. Test

methods were developed to measure uniaxial tensile, uniaxial

compressive, and shear properties including both strengths and elastic

moduli. Acoustic emission monitoring was also performed in order to

estimate damage onset within the test specimens. A scanning electron

microscope was used to examine failed specimens in an effort to identify

specific damage mechanisms.

During a second phase of experimental testing, similar tests were

conducted to measure the mechanical properties of three-dimensional

cylindrical weave carbon-carbon materials [2]. Sections from two

cylindrical weave billets were examined. The first billet section was a

60" arc taken from FMI Billet No. 2208, fabricated from Hercules HM

graphite fibers and Ashland A240 pitch. The second billet segment was a

complete ring section from General Electric (GE) Billet No. C4X P1-2,

fabricated from HM graphite fibers and Allied CP277-15V coal tar pitch.

An attempt to measure residual stresses in the complete ring segment

indicated that little or no residual stress was present. Uniaxial

tension and compression tests were conducted in all three principal

material directions, i.e., the axial, radial, and circumferential

directions. Shear tests in three of the six shear planes were also

performed.

A third experimental effort was primarily concerned with studying

the axial tensile response of cylindrical-weave carbon-carbon [3].

Because the tensile properties of carbon-carbon are typically dominated

by the fiber bundle properties, emphasis was placed on measuring the
%y



axial tensile properties of single fiber bundles extracted from PHI

Billet No. 2208. Results from these single bundle tests yere quite

scattered, but generally the tensile moduli were higher and tensile

strengths were lower than expected, based on rule-of-mixtures

predictions and constituent fiber properties. Further axial compression

and circumferential tension tests were also performed on the

cylindrically woven GE Billet No. C4X P1-2.

1.2 Summary of Present Work

The objective of the present work was to analytically model a

three-dimensionally reinforced carbon-carbon composite material in order

to better understand previously obtained experimental results. Analysis

of carbon-carbon materials may be conducted at three geometric levels,

typically referred to as micromechanics, minimechanics, and

macromechanics.>Micromechanics models are concerned with the behavior of

-individual constituents within a composite material, e.g., single fibers

and the surrounding matrix within a single fiber bundle. Minimechanics

models are concerned with the interactions between fiber bundles and

interactions with the matrix pockets present in multi-dimensLonal woven

constructions. Usually minimechanics models study the smallest repeating

volume element present in the material, a unit cell. Macromechanics or

structural models deal with the largest geometric scale, an entire part

or billet. Analyses at the structural scale are usually forced to ignore

the details of unit cell construction, for economic or computational

reasons. Thus the billet is usually assumed to be homogeneous, although

anisotropic.

As part of this investigation, the available literature was

reviewed in an effort to obtain as much information as possible on

constituent (fiber and matrix) material properties as well as bulk

carbon-carbon material properties. Published analytical approaches to

modeling carbon-carbon composites were also examined. This literature

review is included as Section 2 of the present report.

A generalized plane strain finite element analysis was used to

conduct the micromechanics portion of this analytical study. Numerical

micromechanics modeling techniques were used to obtain estimates of

carbon-carbon unidirectional fiber bundle material properties for later

use in the minimechanics unit cell analysis. This micromechanics finite

2
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element analysis includes the effects of temperature-dependent nonlinear

constituent material behavior. The analysis also includes a capability

to model damage initiation and propagation in order to estimate stress-

strain behavior and strength of carbon-carbon fiber bundles. The

generalized plane strain finite element micromechanics analysis and

associated computer implementation are described further in Section 3.

Material properties of carbon-carbon fiber bundles predicted using this

micromechanics analysis are summarized in Section 4.

With the predicted fiber bundle properties as input, - full

three-dimensional finite element analysis was used to perform the unit

cell minimechanics analysis. The three-dimensional analysis also

includes capabilities for modeling temperature dependent nonlinear

material behavior as well as damage initiation and propagation. This

analysis and computer implementation are described in Section 3.

Predicted bulk material properties for a rectangular weave carbon-carbon

material, results of the three-dimensional minimechanics analysis, are

discussed in Section 5.

Overall, the capabilities of these analyses to predict

carbon-carbon composite material properties has been demonstrated. An

advantage of the numerical techniques used here is the ability to

predict the complete nonlinear stress-strain behavior of the bulk

composite material. Further refinement of the computer programs

implementing these analyses will continue. The choice of appropriate

constitutive relationships for nonlinear orthotropic materials is also

an area warranting further study. Conclusions of this present study,

including a summary of present limitations and suggestions for further

work, are discussed in Section 6.

6 %
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SECTION 2

PRIOR ANALYTICAL MODELS

2.1 Background

An early paper describing the development history of carbon-carbon

materials up to that time was published by Schmidt in 1972 [4].

According to Schmidt, carbon-carbon materials originated in the late

1950's, probably by accident. During an experiment to determine the

fiber volume content of an oxide fabric/phenolic composite, a laboratory

technician at the Chance Vought Corp. inadvertently covered the heated

crucible. The phenolic matrix was not completely vaporized at high

temperature, resulting in a "reduced resin laminate" which had

relatively high strength. The advantages of carbon-carbon were, and

still are, an ability to retain useful mechanical properties at high

temperature, and resistance to thermal stress and thermal shock. Schmidt

also supplied at that time a list of 162 related references, not keyed

to the paper.

Because carbon-carbon materials remain useful at highly elevated

temperatures, many applications for this material have been for

components of reentry vehicle and rocket nozzle designs. Thus, much of

the funding for carbon-carbon research has been supplied by the

Department of Defense, primarily the Navy and the Air Force. While much

of this funded research has been for applications, i.e., hardware

oriented, more fundamental studies of material behavior have also been

conducted.

Available literature on the subject of carbon would occupy a small

library of its own. Even by restricting the subject to carbon fibers and

carbon-carbon composite materials, the number of available papers and

reports is still quite large, even with recent restrictions on

publication of such research. Carbon-carbon materials research may be

broadly (and with much overlap) grouped into four areas: processing,

characterization, analytical modeling, and hardware. Processing studies

are concerned with the production of high quality, consistent carbon-

carbon billets. Many of these studies tend to be empirical in nature,

involved with the effects of various processing parameters on final

production material. Closely related to the processing studies are the

Y . . 10



characterization studies. Characterization programs are concerned with

measuring the material behavior under a variety of loading and

environmental conditions. Topics of these characterization programs

include test method development as well as material property response.

Obviously, the processing and characterization studies are closely

related; many research programs contain elements of both. Analytical

modeling programs are concerned with developing mathematical models to

describe the thermo-mechanical behavior of carbon-carbon composite

materials. As analytical modeling is the subject of this present report,

these studies were of most immediate interest. Finally, those programs

grouped as hardware studies involve the design, fabrication, and

performance of a specific hardware component, e.g., a reentry vehicle

nose tip. These studies are more application oriented.

It was the purpose of the present research program to attempt to

analytically model three-dimensionally reinforced carbon-carbon

composite materials in order to improve understanding of the behavior

*, governing the thermomechanical performance of the composite. Therefore,

"* previous analytical material modeling studies were of immediate interest

to this work, and are briefly reviewed in this present section. Material

characterization studies were also very important to the present work,

providing input data for the models developed here as well as data for

correlation tests of the model. The characterization studies used to

provide constituent material properties are described in more detail in

Section 4. While processing effects are of great importance in

determining the final properties of a carbon-carbon composite, modeling

of the processing environment was beyond the scope of the present

investigation. Finally, the present research was concerned with modeling

the thermomechanical response of the carbon-carbon composite material

itself, rather than the design of a specific hardware component. Thus

specific hardware oriented studies are not summarized here.

2.2 Levels of Analysis

Analytical modeling of realistic carbon-carbon materials is a very

challenging task. Carbon-carbon composites are heterogeneous on a large

scale when compared to many other materials. Carbon-carbon composites

exhibit inelastic behavior, possess irregular phase geometries, and

sustain cracking damage during fabrication. The matrix material may be

6
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highly oriented in various regions and contains nonuniformly distributed

cracks and voids. Finally, the constituent material properties are

difficult to measure experimentally and may differ radically between

in-situ composite properties and bulk material response.

Despite these difficulties, various modeling approaches have been

attempted, with subsequent increases in the level of understanding of

the material behavior. These analytical efforts may be loosely grouped

into three classes based on the scale of the attempted model. The first

class, usually called micromechanics in the literature, deals with the

interactions between individual fibers and between fibers and the

surrounding matrix material. A major difficulty in analyzing

carbon-carbon materials at this level is a lack of sufficient

constituent material properties data in order to conduct such an

analysis. In-situ material properties at the micromechanics level are

experimentally very difficult (and therefore expensive) to measure,

particularly over the temperature ranges encountered by carbon-carbon

composites during fabrication and use. Furthermore, voids and cracks

larger than several fiber diameters may be present. Broken or twisted

fibers may also occur. These difficulties aside, micromechanics

approaches are useful in estimating the response of unidirectional

carbon-carbon materials. A micromechanics analysis may be used to

predict effects of processing on composite properties as well as the

effect of poor (or good) interface bonding between fiber and matrix. The

thermomechanical response predicted by a micromechanics analysis may

then be used to generate a set of consistent thermomechanical properties

for unidirectional carbon-carbon fiber bundles for use in a second level

minimechanics analysis.

At the minimechanics level, an analysis is performed on the

smallest repeating geometric volume element within the composite

material, termed a unit cell. The level of abstraction is such that

individual fibers are not explicitly modeled. Instead, the interactions

between fiber bundles and matrix material, as well as fiber bundle-fiber

bundle interactions, are of interest. Constituent material behavior at

this scale is still very difficult to measure experimentally. However, %

one source of material properties information is a micromechanics

analysis, as previously discussed.

7 ~1
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A third level of analysis is at the macromechanics or structural

scale. At the structural level an actual part or structure is modeled,

subjected to in service loads and environmental conditions. At this

level it is not possible to include unit cell geometry nor individual

constituent behavior. At the structural level, the carbon-carbon

material is treated as a homogeneous anisotropic solid. Mechanical

properties at this scale are more easily measured. However, deriving an

appropriate constitutive relation capable of describing the complex

material behavior at this level is difficult. Experimental character-

ization is used to provide material properties data, although testing is

time consuming and of course requires that the actual composite first be

fabricated.

2.3 Micromechanics Analysis

Early attempts to model carbon-carbon composites began separately

at the micromechanics and macromechanics levels. Investigators studying

the material response of carbon-carbon composites as a material system

approached the problem from the micromechanics viewpoint. Rule-of-

mixtures techniques were used by Butler, et al. [5] to examine the role

of fiber-matrix and matrix-matrix interfaces affecting the properties of

unidirectional carbon-carbon composites. Attempts to correlate strengths

using the rule-of-mixture approach were unsuccessful. A similar approach

was used by Perry, et al. [6], who also studied unidirectional

carbon-carbon materials.

Evangelides (7] examined the influence of "microstructural factors"

that influence failure of carbon-carbon. In particular, orientation of

the matrix material was identified as an important influence on the bulk

Young's modulus of the composite. Observations of this oriented matrix
"sheath" were presented, as well as rule-of-mixtures predictions for its

influence on composite properties. A statistical model for composite

strength, including the influence of bent fibers and a wavy sheath, was

developed. Analytical predictions of stress-strain behavior in

unidirectional carbon-carbon composites were also shown. Limited

correlations of analytical predictions with experimental data did

indicate good agreement.

To further study processing induced stresses and strains,

Evangelides, et al. used the SAAS III finite element program to model

8
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unidirectional carbon-carbon composites [8]. Possible combinations of

fiber, bulk matrix, and sheath were investigated. Predicted stress

levels were high due to the assumption of fiber-matrix interface

integrity. However, the influence of temperature changes on internal

stress states was demonstrated. Furthermore, the type of matrix was

shown to have significant influence on stress levels within the

composite.

An analysis of fiber bundle strength was performed by Evans and

Adler [9], who used a thermodynamics and mechanics approach to analyze

"kinking" or fiber bundle micro-buckling in carbon-carbon composites.

Observations of this kinking in a three-dimensional carbon-carbon were

presented. These authors found the matrix yield strength and fiber

fracture strength to be the most important parameters influencing fiber
bundle failure in this kinking mode. No comparisons of their analytical

results with experimental data were presented.

A model incorporating interfacial friction between fiber and matrix

was presented by Jortner [10]. The effect of frictional load transfer on

strength and thermal expansion was shown. The effect of fiber bundle

rotation during shear loading was also examined.

Hicromechanics approaches are most often used for modeling stress

states and damage mechanisms in unidirectional composites. As applied to

three-dimensionally reinforced carbon-carbon materials, these analyses

are useful for predicting the behavior of a fiber bundle within the

multi-dimensionally woven material. However, most micromechanics

analyses do not correctly model the response of multi-dimensionally

woven carbon-carbon composites. Many investigators have made use of

micromechanics analyses to provide input material properties to a second

level minimechanics analyses.

2.4 Minimechanics Analyses

2.4.1 Materials Science Corvoration - DCAP

During the middle and late 1970's, investigators at the Materials

Science Corporation (MSC) developed a combined micromechanics/

minimechanics analysis to model three-dimensionally reinforced carbon-

carbon composite materials [11-13]. Their minimechanics model used a

carbon-carbon unit cell divided into five subregions. Three of the

subregions corresponded to the three unidirectional fiber bundle

- .44, 9
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composites oriented parallel to the principal material axes. The

remaining two subregions represented the two interstitial carbon matrix

pockets. This minimechanics model admitted line .. elastic constituent

properties which were functions of temperature. A fiber bundle subregion

within the unit cell was considered to consist of transversely isotropic

fibers and matrix material which could contain oriented cylindrical

voids. The interstitial matrix regions were orthotropic and could

contain dispersed spherical voids. Finally, the contact or interface

areas between the subregions could be weakened or partially failed,

resulting in a degraded load transfer capability across that interface.

Properties for each subregion were calculated based on properties

of the constituents making up that subregion, using a micromechanics

approach. Fiber bundle subregions consisted of transversely isotropic

fibers and transversely isotropic matrix. The matrix within a fiber

bundle was transversely isotropic due to the presence of cylindrical

voids. First, a set of thermoelastic properties was calculated for the

isotropic matrix material based on an assumed void volume fraction. This

set of matrix thermoelastic properties was then combined with the fiber

properties to calculate a set of thermoelastic properties for the fiber

bundle. Thus the calculation of the fiber bundle subregion properties

was performed using a micromechanics approach.

Specific micromechanics techniques used in the MSC analysis

followed procedures developed by Hashin and Rosen for estimating upper

and lower bounds on composite material properties [14]. Effects of

cylindrical voids within the fiber bundle matrix material were discussed

in Reference [11]. However, no further discussion of voids in the bundle

matrix material was included in later reports [12,13], nor was any

mention made of measured or assumed void volume values. Averaged with-

grain and across-grain material properties for ATJ-S graphite were used

in the numerical computations. Thus, it is not clear that porosity in

fiber bundle matrix material was actually included in the results of

References [11-13]. The effect of this porosity was probably small when

compared to other damage processes occurring within the carbon-carbon

unit cell, and was subsequently neglected.

It has been shown that the carbon matrix material within fiber

bundles may become oriented during fabrication of the carbon-carbon

10
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material [7]. One technique for modeling this orientation is to increase

the fiber volume content of the fiber bundle. The MSC analysis allowed

for varying combinations of fiber-matrix-void volume content in the

fiber bundle subregions and different matrix-void combinations in the

interstitial matrix subregions.

The effect of cracking within a unit cell model was also included

in the analysis. Cracks were modeled as planes of weakness occurring at

interfaces between the various subregions as well as within the

interstitial matrix subregions. The effect of these cracks was included

in the form of a load transfer efficiency parameter, i.e., the ability

to transfer some proportion of loading across a degraded interface.

Cracking in the classical fracture mechanics sense was not included.

Analytical techniques used to solve the MSC model included a

combination of approaches. The micromechanics models were solved as

boundary value problems in which the internal details of material

structure were included. The minimechanics model used a combination of a

self-consistent approach and variational principles. In all of these

analyses, material properties were assumed to be linear elastic and

temperature-dependent.

The MSC analysis summarized in Reference [12], contained two

parameters which had the effect of tailoring the analysis to fit

experimental data. These parameters were the sheath content and the unit

cell efficiency parameter. With appropriate choices of these two values,

excellent agreement was obtained between analytically predicted and

experimentally measured thermoelastic properties for three-dimensionally

reinforced carbon-carbon. As was pointed out in Reference [12], similar

values for sheath content and unit cell efficiency were applicable to

several different three-dimensional carbon-carbon composite material

systems.

The addition of various failure criterion for strength prediction

within the MSC models was described in Reference [12]. Primary failure

mechanisms were identified, based on stress states within the unit cell.

For various loading conditions the most probable failure modes were

analyzed for their effect on the material failure surface.

For uniaxial tension, the tensile strength was assumed to be

fiber-dominated, therefore transverse fiber bundles and interstitial

11

i,• •.•• • • , I•o ° " '_'• ,'_" " "* "•". " * .,•, o *• .• .. w.•• .•-••••• '•••"• ,.



matrix played only a secondary role in determining a composite strength.

The occurrence of extensive interfacial cracking resulted in low

composite Poisson's ratios. Thus the contribution of subregions other

than the fiber bundles in the direction of loading to the tensile

strength was argued to be negligible. Hence, the composite tensile

strength used in the analysis was dominated and predicted by failure of

the impregnated fiber bundle lying in the direction of tensile loading.

Failure of the impregnated fiber bundle could occur by two

principal mechanisms, both due to the existence of flaws along an

individual fiber length. If the bundle failed by an accumulation of

scattered fiber breaks, the mode of failure was by the "cumulative

weakening" mode. However, if the stress concentrations due to local

fiber breakage became large, a crack could propagate transversely across

the bundle causing failure. This was termed the "fiber break

propagation" mode.

Based upon the idea that the actual mode of failure was dependent

upon the matrix properties, the mode of failure for impregnated bundles

used in the analysis was the cumulative weakening mode. Failure of fiber

bundles at high temperatures (above 4000°F) was modeled by plastic flow

in the direction of loading, called "limit" behavior. The oriented or

"sheath" matrix strongly influenced the Young's modulus of the fiber

bundle. However, the sheath in actual carbon-carbon fiber bundles is

likely to be discontinuous, and was neglected in tensile strength

predictions.

Like tensile failure, compressive failure can occur by several

different mechanisms, including fiber or matrix fracture, fiber buckling

in shear or extension, or complete macrobuckling of the impregnated yarn

bundle. Based upon the mode of failure with the lowest corresponding

compressive strength, shear mode buckling of the impregnated fiber

bundle was included as the compressive failure mechanism for

temperatures below 4000*F. Plastic limit failure was the modeled

compressive failure mechanism above 4000°F.

Shear stress-straLn response in carbon-carbon materials is

nonlinear. Failures occur at the fiber bundle-fLber bundle and the fiber

bundle-matrLx interface regions. An overall composite shear strength is

dependent on the interfacial shear strength and the degree of interface

12
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slippage. Linear shear stress-shear strain behavior limited by the shear

yield strength was assumed in the MSC analysis.

For the modeled failure mechanisms, equations werce developed in

Reference 112] which allowed the computation of composite ultimate

strengths given constituent material properties and geometric data.

Effects of combined loading were explored in Reference [12) to determine

the influence of multiaxial stress states on the failure envelope. Based

on this investigation, a failure envelope in stress space for

three-dimensional carbon-carbon composites was developed and

incorporated into the MSC minimechanics analysis.

Overall, the MSC analysis, implemented as a computer program named

DCAP, is probably the most versatile and useful predictive tool for

modeling three-dimensional carbon-carbon composite materials developed

to date. This model incorporated the necessary micromechanics detail

into a minimechanics unit cell geometry in order to predict global or

effective thermomechanical properties for bulk three-dimensional carbon-

carbon. These estimates included values for stiffnesses as well as for

strengths. Results computed using this model indicated good agreement

with experimental data [12,13] and were used for evaluation purposes on

materials with actual hardware applications [15,16]. The model was

limited in that it was linear elastic, while some loading modes,

particularly shear, produce distinctly nonlinear material behavior.

Also, the unit cell efficiency and the sheath content had to be

evaluated by correlation with experimental data on bulk three-

dimensional carbon-carbon materials.

2.4.2 Science Applications Inc. - APIC

A second major effort to analytically predict material properties

for three-dimensionally woven carbon-carbon was conducted by Science

Applications, Inc. (SAI), results of which were summarized in References

[17-19]. This comprehensive analytical and experimental effort was

called Analytical Processing for Improved Composites (APIC). A basic

premise of the study was that processing parameters control the final

thermomechanical properties of a three-dimensional carbon-carbon

material. Thus models were developed to predict the influence of the

entire processing environment on final material properties. In a

separate task, model composites were tested in order to measure the
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material properties of the constituent fiber bundles and matrix forming

the unit cell.

The analytical effort was divided into two parts, a process

environment model and a mechanical model [18]. The primary purpose of

the process environment model was to predict the pressure and

temperature present in the processing vessel. Once the environment was

determined, the mechanical model predicted displacements, strains and

stresses. Given a stress state, a failure analysis was performed to

determine the possibility and extent of any damage that occurred. These

analyses were repeated incrementally until an entire process had been

modeled.

The process environment model was composed of four computer

programs. The largest and most important computer code was a two-

dimensional finite element analysis of the time-dependent primary

variables, i.e., pressure, temperature, and gas volume fraction. A

second computer program predicted the three-dimensional thermal and

diffusion properties. A third computer program performed a degree of

graphitization analysis by evaluating the graphite layer spacing

achieved compared to a theoretically possible spacing. Finally, a

graphics postprocessor provided contour and section plots of the primary

variables at prescribed time points.

The mechanical model was centered around a computer program called

MIPAC (MIcromechanics Processing Analysis Code). This program modeled

the progressive mechanical damage occurring during processing and

predicted the modified composite properties resulting from this damage.

This analysis, on the scale of the composite unit cell, was a mini-

mechanics analysis. The computer program was a three-dimensional finite

element analysis incorporating features to accurately model Interfacial

behavior. The analysis used three-dimensional 27 node brick elements

with three degrees of freedom per node for a total of 81 degrees of

freedom per element. Nodes were located at the 8 corners, 12 mid-edges,

6 mid-faces and the centroid of the element. A quadratic shape function

was employed along with generally anisotropic material properties.

Structural configuration, damage effects, and material properties

of the constituents were defined by input to MIPAC. Plastic strain or

displacement fields resulting from shrinkage, swelling or externally
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applied loads were permitted. The program output included elemental

displacements and forces, system displacements and forces, and

mechanical strains and stresses.

Element formulation was based upon standard variational principles

[18]. Displacement compatibility was altered to model possible complex

interfacial failure and sliding between interfaces. The mathematical

methodology for these compatibility conditions was described in detail

in Reference [17].

The entire APIC analysis was conducted on three geometric scales,

from a micromechanics approach, to a minimechanics unit cell, to a

macromechanics analysis of a complete carbon-carbon billet. The first

level of abstraction used in the analysis was at the constitutive level,

to provide properties data for use at the unit cell level. If stresses

in the unit cell model were severe, a failure analysis was performed at

the constitutive or micromechanics level and the resulting corrected

constitutive properties were returned to the unit cell model.

The minimechanics unit cell was the main focus of the mechanical

model, for it is here that constituent interaction occurred due to

processing effects or service conditions. Behavior of the unit cell was

dependent upon the boundary conditions stipulated at the billet level

and constituent properties predicted by the micromechaiiics model. The

process environment model was used to generate temperature and pressure

information. Failure was simulated in the MIPAC program by a change in

connectivity of the system. Healing of failed interfaces was possible

through recovery of interfacial strength.

The final level of analysis was a macromechanics model of the

billet used to determine a general state of stress and overall billet

deformation. The strain response of the billet was imposed on unit cell

models at various positions within the billet. Internal pressure and

temperature conditions were obtained from the process environment model.

The billet was treated as a homogeneous continuum with properties that

varied from point to point, as obtained from the minimechanics unit cell

models.

Interaction between the billet level and unit cell level was on a

real time basis when necessary. However, this coupling was minimized by

interpolating between widely spaced time steps during essentially
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elastic material response and backtracing to points where inelastic

response had begun to occur if nonlinear behavior was encountered. After

location of an intermediate time point at which inelastic behavior had

begun, coupling between unit cell level and billet level was performed

at time increments designated by the analyst. Accuracy of the solution

was thus a function of the time steps taken.

Recommendations to improve carbon-carbon processing were made in

Reference [19]. Property predictions for various processing environments

were also included. However, little correlation between analytically

predicted properties and experimental data was presented, even though

extensive experiments were performed on a model carbon-carbon material,
summarized in Reference [17].

The APIC analysis was a very versatile but complex approach.

Emphasis was on predicting the processing environment and subsequent

effects on material properties. It appeared that this analysis was very

time consuming to use, and was not verified by comparison to

experimental data. However, understanding the effects of process

environment on final carbon-carbon material properties was enhanced by

this work.

2.4.3 Analysis of Anomalies

The minimechanics analyses approaches previously discussed did not

normally consider anomalous regions within a carbon-carbon material.

Such regions contain flaws in the material, e.g., distortions of the

weave, density gradients, and microcracking. Anomalies such as these

have been carefully catalogued and described by Jortner (20]. Jortner

also modeled these anomalies and conducted experiments to verify his

models [21]. His work resulted in the development and use of three

computer programs, BOUND, KSLANT, and WAVETEC, designed to predict

thermomechanical properties and failure for three-dimensional carbon-

carbon composite materials containing reinforcement distortions.

The BOUND computer program was used to calculate estimates for

elastic constants, thermal expansion coefficients, and thermal

conductivities by use of bounding techniques. Like the MSC DCAP program

described earlier, BOUND used a degradation factor to model weak or

partially failed interfaces within a unit cell. This analysis could
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model unit cells with nonorthogonal fiber bundles oriented in as many as

seven directions.

The KSLANT computer program was written as a specialized analysis

to calculate thermal conductivities. It included a mechanism designed to

modify the yarn volume of the unit cell based on distortions caused by

"slanting" of one fiber bundle.

The WAVETEC computer program was used to predict the

thermomechanical properties and thermal conductivities for materials

containing wrinkles or waves. Two types of distortion were examined,

rotation of an ideal orthogonal orthotropic unit cell, and unit cells

containing slanted fiber bundles.

Experiments conducted on three carbon-carbon materials to measure

compression Young's moduli and thermal expansion coefficients were

compared with WAVETEC predictions [21]. Considerable scatter was

apparent in the thermal expansion results. Even so, predicted and

measured thermal expansion coefficients did not follow similar trends.

Predictions of Young's moduli were in reasonable agreement with

experimental data.

2.5 Kacromechanics or Structural Analyses

A goal of any of the previously discussed minimechanics analyses

was to predict the bulk thermomechanical behavior of the carbon-carbon

material. These material properties could then be provided to a macro-

mechanics or structural analysis as a consistent set of homogeneous

anisotropic material data.

At the structural scale, entire components of carbon-carbon are

modeled. Thus, it is not usually feasible to include the detail of

micromechanics or minimechanics modeling. This is not to say that such

detail cannot be included. Investigators have in the past, conducted

analyses at all three levels, using results at one level to refine input

to a different level of analysis. Problem solution became a step-by-step

process, proceeding from micromechanics to minimechanics to

macromechanics. The macromechanics stress-strain state was then imposed

on the minimechanics model to identify possible failure modes and %

material property changes.

Early investigators, lacking or not believing in micromechanics and

minimechanics analyses, modeled carbon-carbon as a homogeneous
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anisotropic material. Because some applications for three-dimensionally

woven carbon-carbon materials were as replacements for pyrolytic

graphite, these analysts made use of the structural analysis tools

(often finite element programs) already available to them. Constitutive

material models were altered to use appropriate properties for the

three-dimensional carbon-carbon. One such example is the work by Pardoen

[22,23]. Pardoen used an approximate technique to modify the polar

coordinate constitutive relations of an existing axisymmetric finite

element analysis (SAAS III) in order to accommodate a rectangularly

orthotropic material. Accuracy of the approximation was verified by

modeling a rotating orthotropic disk and a thermally loaded orthotropic

disk, for which analytical solutions were known. In Reference [23], the

modifications to an asymmetric stress analysis of axisymmetric solids

(ASAAS) in order to model an ansiotropic material were presented.

Geiler also used a modified ASAAS computer code to account for

nonradially orthotropic material behavior [24]. Geiler used this

modified computer program to analyze a pressurized ring and a ring

subjected to a radial temperature distribution. Kotlensky (25] analyzed

carbon-carbon substrates for throat inserts of solid propellant rocket

nozzles using a one-dimensional thermal stress analysis and the Stress

Analysis of Axisymmetric Solids (SAAS III) finite element computer

program. His work resulted in specifications for candidate substrate

materials using different fabrication techniques.

In the above mentioned macromechanics analyses, material properties

were presumed to be linearly elastic. The models provided reasonable

estimates of the stress states present. Strength or failure predictions

were not attempted in these macromechanics models.

Jones attempted to model the nonlinear material behavior of

three-dimensionally reinforced carbon-carbon composites [26] using a

constitutive relation developed earlier for use with ATJ-S graphite

[27-29]. The constitutive model was based on a deformation theory of

orthotropic plasticity and allowed for differing nonlinear stress-strain

responses for different stress components. Varying Poisson's ratios were

also admissible, allowing for modeling of a "biaxial softening"

phenomenon due to microcracking. This constitutive relation permitted

finite plastic volume changes, differing from the usual restriction in

4%
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plasticity theories of no plastic volume change. Material properties

were related to the multiaxial state of stress and strain by the strain

energy. An interaction procedure is used to simultaneously satisfy the

nonlinear stress-strain relations and the material property versus

energy equations. In Reference [28], Jones and Nelson extended this

model to initial loading of graphite under mixed tension and compression

using the same fundamental procedure for calculation of the basic

material properties. The model was extended to thermal loading of

nonhomogeneous bodies of graphite in Reference [29]. The model was

adapted for carbon-carbon composites in Reference [26], and compared to

experimental data with good agreement.

Although Jones, et al. [26-28] addressed the nonlinear aspects of

graphite and carbon-carbon, they did not attempt to predict damage onset

and eventual failure.

Stanton and Kipp used a similar approach in their models of

two-dimensional woven carbon-carbon involute structures [30,31]. In

their work, the material model of Batdorf [32] was incorporated into a

finite element analysis of involute cones. Verification of their model

was demonstrated by comparison with tests on coupons, cylinders, and

cones fabricated specifically for correlation purposes. These authors

concluded that two-dimensionally woven carbon-carbon was quite different

in behavior from three-dimensional materials. The thrust of this present

research was to model three-dimensionally woven carbon-carbon materials.

However, useful insight to carbon-carbon material behavior was provided
"by References [30,31].

A recent study of yield and failure in three-dimensional carbon-

carbons was performed by Pollock and Sun [33]. These authors conducted

off-axis tension and compression tests on two different three-

dimensional carbon-carbon materials. The Tsai-Hill and Tsai-Wu failure

criteria were used to evaluate yield strength versus fiber bundle angle

in the off-axis tests. Generally nonlinear stress-strain response was

described by a single equation using a form suggested by Ramberg and

Osgood [34]. This effective stress-strain behavior, as well as the yield

and failure criteria were then used in two-dimensional linear elastic

and inelastic finite element models to study tensile specimens
containing holes.
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Pollock and Sun's results confirmed some of the results of Waeber

and Hagen, who discussed failure theories as applied to carbon-carbon

[35]. Both macromechanics and micromechanics failure theories were

investigated, including limitations of each. Waeber and Hagen noted that

macromechanics or phenomenological theories required large data bases

for accurate characterization, that had to be updated each time

processing variations changed material properties. Micromechanics

theories, on the other hand, were exceedingly complex if general enough

to handle various material designs and processing techniques.

Mathematical formulations for some of the failure theories were

presented, with emphasis placed on the macromechanics phenomenological

approaches.

In a following report, Waeber and Hagen applied the Wu-Tsai failure

criterion to a three-dimensional orthogonal weave carbon-carbon

composite [36]. After simplifications, a second order tensor polynomial

failure surface was obtained. They concluded that with the state of

characterization of carbon-carbons at that time, the additional

complexity of the Tsai-Wu criterion added little increased ability to

carbon-carbon composite failure prediction.

2.6 Summary

From the preceding paragraphs, one can sense the complexities

involved in modeling carbon-carbon materials. The various analyses

previously discussed approached the problem from different geometric

scales and included (or excluded) many different material factors. It is

clear that three-dimensionally reinforced carbon-carbon materials can be

modeled using combined micromechanics/minimechanics approaches, perhaps

best demonstrated by investigators at Materials Science Corporation

[11-13] with their DCAP computer program. The significance of processing

parameters on final material performance was exhaustively modeled by

investigators at Science Applications, Inc. [17-19]. Jortner

demonstrated the influence of defects in modeling these materials [10,

20]. Finally, Jones [26-29], Pardoen (22], Pollock [33], and others

showed that three-dimensional carbon-carbon materials could be analyzed

for structural applications as long as sufficient materials

characterization data were available.
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An attempt has been made in this section to briefly summarize the

previous analytical approaches to modeling carbon-carbon. The intent was

to provide some representation of these previous modeling efforts as

background for describing the modeling approach used in the present

research.

2.
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SECTION 3

DESCRIPTION OF THE ANALYSES

3.1 Objective

The objective of the present research, as stated earlier, was to

develop a combined micromechanics/minimechanics analysis to model

three-dimensional orthogonal weave carbon-carbon materials. The overall

approach was similar to the previously discussed work by Materials

Science Corporation [11-13] in that a micromechanics anblysis was used

to predict fiber bundle constitutive properties for use in a

minimechanics unit cell model. The overall goal of these analyses was to

predict bulk carbon-carbon material properties, thermomechanical stress-

strain behavior, and damage progression. The present approach differed

from the MSC work in that finite element methods were used to perform

both the micromechanics and the minimechanics analyses. Use of these

methods permitted inclusion of nonlinear temperature-dependent inelastic

material properties in modeling the complex geometries present in

carbon-carbon. Both finite element computer programs described in

subsequent paragraphs contain schemes for modeling damage initiation and

propagation.

Processing effects on final material properties were included in

the micromechanics analysis in the sense that cooldown from a final

graphitization temperature was modeled. Thus the effects of thermal

residual stress-induced cracking on fiber bundle properties were

included. No attempt was made in this present research to model an

actual material processing environment prior to the final elevated

fabrication temperature. It was entirely feasible to model the effects

of geometric anomalies, similar to the spirit of Jortner's work [20].

However, to limit the overall program scope, analysis of anomalous weave

geometries was not included in the present work.

Both the micromechanics and the unit cell minimechanics analysis

were performed with finite element computer programs developed and

writton by the Composite Materials Research Group (CMRG) at the

University of Wyoming. These computer programs were developed as part of

this present research effort, and other externally and internally

sponsored research. The micromechanics analysis is a two-dimensional
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generalized plane strain finite element computer program, specifically

written for analyzing unidirectional, continuous fiber composite

materials. The unit cell minimechanics analysis model is a full three-

dimensional finite element computer program. Specific capabilities and

features of both computer programs are discussed in subsequent

paragraphs.

3.2 Generalized Plane Strain Finite Element Micromechanics Analysis

The micromechanics analysis used in this present research employs

the finite element method to predict the thermomechanical behavior of

continuous unidirectional fiber-reinforced composite materials. The

finite element method is selected because it can be readily applied to

complex geometries as represented by a fiber embedded in a matrix

material, as illustrated in Figure 1. Various packing geometries for

fibers within the matrix may be assumed. A square packing array has been

demonstrated to provide good correlation with experimental data (37].
Via symmetry arguments, the region of interest to be modeled may be

reduced from that shown in Figure 1, to the region shown in Figure 2, a

quadrant of one fiber and the surrounding matrix material.

It is assumed that displacements may occur in all three coordinate

directions. Specifically, each displacement is dependent on the 2 and 3

coordinate directions (see Figures I and 2) and the displacement in the

1-direction (fiber direction) has an additional linear dependence in the

1-direction. Including 2 and 3 dependence of the displacements in the

fiber coordinate direction allows a form of axial (longitudinal) shear

deformation corresponding to generalized plane strain [38,39].

Therefore, although the analysis is basically two-dimensional, five

components of directly applied stress can be modeled, specifically

all 2, 03, T1 2 , and .13. Biaxial tension and compression normal

stresses may be applied in the 2 and 3 directions to simulate a T23

applied shear stress loading as well.

If the unidirectional composite material is assumed to be

transversely isotropic in the 2-3 plane, it is then possible to predict

the mechanical properties of the composite with four applied stress

loading cases. These four cases, al, a2 - 03, T12 - 1, and T23 are

illustrated in Figure 3. The a,, 02, and T12 stresses shown in Figures

3a, 3b and 3c can be applied directly. Transverse shear stress, T23, is
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Figure I. Unidirectional Fiber-Reinforced Composite Material with a

Square Fiber Packing Array.

t3

P2

Figure 2. Quarter Fiber Micromechanics Model.

'5W,

i%

"%" ",..9-.9



13

2r

a) lonpitudinal tension b) transverse tension

a =23

c) longitudinal shear d) transverse shear

Figure 3. Micromechanics Applied Loads for Unidirectional Composite
Stress-Strain Characterization.
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simulated by applying biaxial normal stresses in which the stress

components are equal in magnitude and opposite in sign, as shown in

Figure 3d. The induced 723 shear stress is

a2 - o0 o - (-a)
r23 - 2 2 o (1)

The r23 shear stress produced in this manner is not rigorously correct

in that the shear stress is parallel to a line at 45* from the material

2 or 3 coordinate axes, as shown in Figure 4. Thus, the V23 shear is

actually being applied to a composite material with the fiber packing

array shown in Figure 4 rather than the fiber packing array shown in

Figures 1 and 2. However, the difference in predicted composite material

properties has been shown to be small, (37]. Therefore, the difference

was neglected in this work.

This generalized plane strain finite element micromechanics

analysis permits orthotropic or isotropic constitutive material

behavior, which may be temperature- and/or moisture-dependent. These

features of the analysis were described in References (40,41]. Ortho-

tropic materials are assumed to be linearly elastic. Isotropic materials

are assumed to be elastoplastic, obeying an octahedral shear stress

yield criterion with plastic strains following a Prandtl-Reuss flow

rule. Loads (including changes in temperature or moisture content) are

applied incrementally, and material behavior is calculated using a

tangent modulus method.

Nonlinear octahedral stress-strain constitutive behavior is entered

into the analysis in a form first suggested by Richard and Blacklock

[42], i.e.,

Ee

[1 + I;-In/

E - initial modulus

n - curvature parameter

o0 - asymptotic stress
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Figure 4. Transverse Shear Stress Applied as Biaxial Normal Stress r
Loading of a Unidirectional Composite Material with a V

Square Fiber Packing Array.
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Three parameters, E, n, and ao° describe the nonlinear stress-strain

response for a material at a particular temperature. These three

parameters themselves may be functions of temperature (and moisture).

Thus the complete isothermal stress-strain description of a material is

contained within one equation. A more detailed discussion of this

analysis along with citations of the appropriate literature, was

presented in Reference [40]. Representation of the specific constituent

material properties used in this present work is described in Section 4.

Damage initiation and propagation are modeled within the analysis

by use of a "failed element" technique described by Adams, et al. in

References (43-48]. When an element in an area of high stress exhausts

its ability to bear additional stress, as determined by an appropriate

failure criterion, it fails. It is assumed that a "crack" has thus

formed and has the dimensions of the failed element. This approximation

has two implications, the most important of which is that a finite

amount of material is removed from the system, which in an actual

material is not the case. The second implication is that the crack is

not likely to close up on itself in subsequent loading due to its

exaggerated width. These effects can be minimized to a practical degree

by making the finite element grid very fine and uniform in areas of

anticipated crack initiation.

An element cannot simply be deleted from the finite element mesh

when it reaches its ultimate stress. Force equilibrium at every node

point in the mesh must be maintained. Thus at element failure, node

point loads equal in magnitude and opposite in direction to the element

stress equivalent node point loads must be applied. The failed element

material properties are also set to zero, or near zero to avoid

numerical singularities, such that the element makes no further

contribution to the global stiffness matrix.

In the present analysis, element failure can occur as defined by

one of four installed failure criteria, viz., maximum normal stress,

maximum shear stress, maximum octahedral shear stress and strain, and a

Tsai-Hill failure criterion. Obviously not all criteria are appropriate

for all materials. Furthermore, selection of the appropriate failure

criterion can significantly affect the predicted composite material
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stress-strain response. Specific failure criteria used in this present

analysis are discussed in Section 4.

Although loading increments are kept small once element stresses

near their ultimate values, it is unlikely that an element will fail

exactly at the maximum value of an applied load increment. The applied

load increment will probably be greater than the load necessary to just

cause failure in any given element. For this reason, when an element

failure is detected, the load increment is automatically scaled back to

the point of first element failure. The appropriate element or elements

are "failed", by applying equal and opposite node forces and by reducing

the element stiffness values. The analysis then recalculates the stress

state. Remaining elements are checked to ensure the redistribution of

stresses has not caused additional elements to fail. When no further

element failures are detected, loading proceeds with the next increment.

Thus, incremental loading of the model, incorporating appropriate

failure criteria for determining element strength, and a scheme for

"failing" elements and redistributing the stresses, constitutes the

damage progression and crack propagation portion of this finite element

micromechanics analysis. Catastrophic failure is assumed to occur when a

crack has divided the finite element model into two separate segments.

The present version of this finite element micromechanics analysis

is implemented in a computer program called WYO2D, written by Cilensek

[49]. The analytical features briefly summarized here are incorporated

into a finite element computer program designed around an architecture

similar to that used by Hinton and Owen [50]. Loading increments are

defined in one input file. Finite element mesh information is input as a

second file. Constituent material properties data are included as

subroutines in the computer program.The main controlling program reads a

loading increment from an input file and calls subroutines to assemble

the global load vector and stiffness matrices. A reduced integration or

frontal solution technique is used to find the displacement field for

the current loading increment. A separate set of subroutines then

calculates the stress state, checks for element failure to model crack

initiation and propagation, and performs the necessary global load

vector and stiffness matrix reassembly and re-solution. The crack

propagation subroutines continue to automatically recalculate stresses

30 -



and monitor crack propagation until a crack becomes stable or the entire

model fails. Once a crack becomes stable, control is returned to the

main computer program to read the next loading increment. Thus, each

load step in this analysis is treated as a separate problem requiring

solution of the entire model. The size of a typical micromechanics model

is normally less than 3000 degrees of freedom. However, during a given

loading simulation, that model may be solved 30-40 times, depending on

the number of loading increments and crack propagation iterations.

Three different two-dimensional finite element meshes were used for

this present micromechanics analysis. Each mesh was composed of constant I!
strain triangular elements. All three meshes modeled composite materials

containing a 60 percent fiber volume fraction. The first mesh, shown in

Figure 5, is a coarse model used to predict stress fields from which the

composite elastic constants and thermal expansion coefficients may be

calculated. This mesh contains only 113 nodes and 192 elements. It is

not suitable for conducting crack propagation studies as a single

element represents a significant portion of the model. However, problems

analyzed with this mesh can be solved very quickly for initial estimates

of stress states and composite material properties.

"The finite element mesh shown in Figure 6 is composed of 384 nodes

and 704 elements. Because these elements are much smaller relative to

"." the size of the entire finite element model, failure of one element is

much more representative of the microcracks occurring in real composite

materials. Note that there are three distinct regions, i.e., the fiber,

the matrix, and the interface in the mesh shown as Figure 6. For the

carbon-carbon micromechanics model, the fiber was assumed to be linear
elastic orthotropic carbon fiber and the matrix was assumed to be

isotropic carbon. The interface was assumed to be perfectly bonded.

Therefore the interface zone in Figure 6 is isotropic matrix material.

This model will be referred to as the isotropic carbon matrix model

throughout the remainder of this report.

In order to model the effects of an oriented matrix sheath, the

interface region of Figure 6 was extended and enlarged for the mesh

shown in Figure 7. The axial sheath model shown in Figure 7 is composedI of 417 nodes and 768 elements, including 384 elements in the sheath

region. The sheath was assumed to consist of transversely isotropic
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Figure 5. Quarter Fiber Finite Element Micromechanics Mesh Used for
Initial Stress State and Composite Material Property
Estimates.
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Figure 6. Finite Element Mesh Used for the Isotropic Carbon
Matrix Micromechanics Model.
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Figure 7. Finite Element Mesh Used for the 
Axial Sheath

Micromechaflics Model.
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carbon oriented parallel to the axial or fiber direction. Thus it was

directly analogous to a micromechanics model of greater fiber volume.

However, strength values assumed for the interface region had a

significant effect on the predicted carbon-carbon fiber bundle

properties because these values controlled crack propagation in the

model. Discussion of the constituent material properties used in this

present work is presented in Section 4 of this report along with the

results of the micromechanics analysis.

The carbon-carbon composite fiber bundles modeled in this present

micromechanics work were assumed to be globally transversely isotropic.

Thus it was necessary to simulate four types of mechanical loading

previously shown in Figure 3, in order to describe thermomechanical

response of these composite fiber bundles. The mechanical loads

represented longitudinal tension (a), transverse tension (02),

longitudinal shear (T 1 2 ), and transverse shear (T23). Prior to

initiating mechanical loading increments, temperature increments were

used to simulate cooldown from the final processing temperature.

Simulation of specimen reheating to a desired temperature was then

performed as necessary. Thus, the stress-strain response of a uni-

directional composite material was predicted, due to any of the four

types of applied stress in any selected hygrothermal environment,

including effects of processing-induced thermal residual stresses and

cracks. For composite materials possessing sensitivity to absorbed

moisture, moisture increments may also be included. However, moisture

loading increments were not used in this present analysis as moisture

does not influence the strain state in carbon-carbon composites.

Predicted stress-strain response including elastic coefficients,

thermal expansion coefficients, and strengths for unidirectional

carbon-carbon fiber bundles were then used as input for the

three-dimensional minimechanics finite element analysis. Input b

constituent material properties and results of the micromechanics

analysis are summarized in Section 4.

3.3 Three Dimensional Finite Element Minimechanics Unit Cell Analysis

A three-dimensional finite element analysis was used to perform the

minimechanics unit cell analysis presented in this report. The computer

program implementing this analysis, called WYO3D, was written at the
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University of Wyoming as part of this present research effort. The

finite element program contains many of the f, tures present in the

generalized plane strain analysis described previously. These features,

extended to three-dimensional analysis, include temperature dependent

elastoplastic material properties, incremental loading, and crack

initiation and propagation schemes.

The carbon-carbon unit cell model used to perform the minimechanics

analysis for this present program is shown in Figure 8. This unit cell

is composed of three orthogonal fiber bundles oriented in the x-, y-,

and z-coordinate directions. The z-direction fiber bundle is 2.5 times H
larger than the x- or y-fiber bundles, to model the construction of

Fiber Materials, Inc. Billet No. 2696 tested during an earlier phase of

this present research effort [1]. The unit cell dimensions for this

billet are also shown in Figure 8.

A finite element mesh used to represent the unit cell model of

Figure 8 is shown in Figure 9. This mesh is composed of 425 nodes and 64

elements. These elements are 20-node quadratic isoparametric brick

elements. Nodes are positioned at the 8 corners and 12 mid-edges of each

element. A higher order element was used in this three-dimensional model

in order to obtain better estimates of the local stress state within the

material model. Crack propagation takes place via a node division

technique, rather than a failed element technique as was used in the

generalized plane strain micromechanics analysis. Therefore, modeling

detail does not require a large number of elements.

Elastoplastic stress-strain behavior can only be modeled for

isotropic materials using the generalized plane strain micromechanics

analysis described previously. In the three-dimensional finite element

analysis, elastoplastic behavior is extended to anisotropic materials as

well.

Details of the analysis have been described elsewhere [51,52];

therefore a detailed explanation will not be repeated here. This

three-dimensional analysis method uses an "effective stress-effective

strain" constitutive relation to represent inelastic behavior in an

anisotropic region. A quadratic form in the six components of stress,

similar to Hill's yield condition [53], is chosen in the form
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Figure 8. Three-Dimensional Cartesian Weave Carbon-Carbon Unit
* Cell. (Representative of FMI Billet No. 2696).
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Figure 9. Minimechanics Unit Cell Finite Element Mesh.
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2f(oj) - F(a 2 - a 3 )2 + G(a 3 - 0i)2 + H(al V7)
2  (3)

+ 2L T•3 + 2M r13 + 2N r,2 - 1

where F, G, H, L, M, and N are parameters characteristic of the current

state of anisotropy. In the present study, these parameters of

anisotropy are allowed to vary with changes in temperature. Inelastic

stress-strain behavior need not be only plastic deformation but can also

represent permanent deformation due to microcracking.

The form of Eq. (3) is valid only when the principal axes of

anisotropy are taken to be the axes of reference; otherwise the stress

components must be transformed. The functional dependence of the

parameters of anisotropy on temperature (and moisture, if necessary)

follows directly when the yield stresses are expressed a:. functions of

temperature (and/or moisture content).

The obvious association, implied by the term "work-hardening,"

between the work used to produce plastic flow and the hardening created,

suggests a hypothesis that the degree of hardening is a function only of

the total plastic work, and is otherwise independent of the strain path.

In order for plastic work to be performed, the state of stress must be

on the yield surface, i.e., the stress state must also satisfy the

condition given by Eq. (3). To enforce this constraint, the Lagrange

multiplier dA is used [54].

Relating the six parameters of anisotropy to the strain history is

a complicated problem. It can be simplified, however, by the assumption

that the yield stresses must increase in proportion with strain

hardening. This assumption is justified by the fact that the directions

of anisotropy in fibrous composites remain effectively the same during

deformation. By analogy with the von Mises criterion for isotropic

materials, Hill [51] suggested that if there is a functional relation

between the equivalent stress o and the work W, there must be one

between a and the effective (or equivalent) strain increment dE. This is

the analogue of the equivalent stress-equivalent strain curve for

isotropic materials, the area under which is equal to the work per unit

volume. These equations are of the form
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+ 3 2 H

3 [ F(a, - a,)2 + G(u 1 - oa)2 + H(a - a)2(4"=2L F+G+H (4)

+2Lj,• + 2Mr• + 2Nrz,1
+ +G+H J

and

d F + G + 1)1 h[F(Gde,- HdE,) 2 + G(Hde, - Fde 1 ) 2 + H(Fde, - Gde=) 2

3 L -(FG + GH + HF) 2

+ 2(d7y,) 2 + 2(d71 1)
2 

+ 2(d71 2) 2]½ (5)L + M + N• I5

If an effective stress-effective plastic strain curve is then

constructed, the slope of such a curve at any point will be

H' = • (6)
dcp

Continuing in this manner, as described in [511, yields the desired

form for the stress-strain relation, i.e.,

ip

{da) - (CP] (de) (7)
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where

11 1,1 C1 J- Aa -~ --LAi - -A-
B B B B B

A2 A A_ AA A_ A _•

B B B B B

C3 3 B B B B

(8)

(CP] - Symmetric C4 B " B B

55 B B
C66 -

B

is the plastic stiffness matrix, and
4- * * *

-o2 H' + Ala* + A2 o2  + A3o 3

(9)

+ 2A 4 2r 3 + 2A5 r 1 3 + 2A 6 7 1 2

where the A (i - 1, .... 6) are elements of the (A) vector, and

i
a, [H(al - U2) + G(al - 3)]/(F + C + H)

a2 - [F(o 2 - a3) + H(o 2 - ol)]/(F + G + H)

a3 - [C(oa3 - oa) + F(o 3 - oz)I/(F + C + H) (10)

T23- L?2 3/(F + G + H)

13- MHr1 3 /(F + G + H)

*
r12 Nrl 2 /(F + C + H)
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For an orthotropic material, i.e., a material with three planes of

symmetry,

C1101 + C 1 2 a 2 + C 1 3 a 3

C1 2u1 + C2 2 0 2 + C2303

C 1 3 a 1 + C2 3 a 2 + C3 3o 3

(A) - 2C 4 4T 2 3

2C 5W 1 3 (11)

2C6 •712

To apply this method of analysis to fiber-reinforced composites,

the material properties in the 1-, 2-, and 3- directions are obtained

from the previously described micromechanics analysis in this research.

If the material is transversely isotropic as in the present work, the

properties in the 2- and 3-directions are equal. For mathematical

consistency with the formulation, a relationship between the effective

stress and the effective strain is required. Furthermore, the dependence

of the material properties on temperature (moisture) is required if

hygrothermal loadings are to be studied, and the actual material

response under varying conditions of envirounent is to be considered.

Since the shape of an effective stress-effective strain curve is

"similar to a uniaxial tensile or shear stress-strain curve, an equation

similar to the Richard-Blacklock form shown as Eq. (2) was written,

i (12)

(1 +

0

where a is the effective stress and e is the effective strain, as

defined previously. The two independent parameters a and n, together
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with the third parameter E, which is the initial slope of the curve,

were selected to best fit the data.

By fitting Eq. (12) to effective stress-effective strain curves

obtained for different temperatures, a functional relationship of the

parameters E, oo, and n in temperature was established. In a similar

manner, functional relationships were also found for all other material

properties.

The generalized plane strain micromechanics analysis was used to

predict stress-strain response for longitudinal tension, transverse

tension, longitudinal shear and transverse shear loadings at room

temperature, 815°C, and 1649°C. The anisotropy parameters F, G, H, L, M

and N were calculated as in Reference [51], i.e.,

2F- 1 + 1 - 1

2 1 1
2G - 1 y + 1 (or1(13)

(aY')2 (aY)2  (Y) 2
3H 1 a2

23 13 122L - 1- 2M - , 2N 1

where y and rY are "yield" stresses with respect to the material
coordinate axes. Ideally the four curves, representing each of the four

different types of loading, should merge into one effective

stress-effective strain curve with the proper selection of the

anisotropy parameters in Eq. (12). Numerical results generated by the

generalized plane strain micromechanics analysis, converted to effective

stress-effective strain form, are discussed in Section 5 of this report.

Damage initiation and propagation in this three-dimensional

minimechanics analysis was modeled by use of a node separation technique

as opposed to the failed element approach used in the generalized plane

strain micromechanics analysis. As in the generalized plane strain

analysis, incremental steps were used to apply thermal or mechanical
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loads. During each load increment the stress state within the model was

computed. By use of an appropriate failure criterion, the condition of

each node was determined. For the present minimechanics analysis, a

maximum stress failure criterion was used. If a node was determined to

have failed, the plane of failure was then determined. A new node was

created at the same position as the previous node and the connectivity

arrays were altered to divide the elements on either side of the failure

plane. This process is shown for four elements in Figure 10. Friction

due to sliding at the failure plane was not included in the analysis,

nor was there a capability for modeling crack closure. These are

important considerations and are being studied for future modifications

to this finite element analysis computer program.

3.4 Summary of Modeling Procedure

Modeling of the bulk thermomechanical behavior for a three-

dimensional cartesian-weave carbon-carbon was accomplished by the

following steps:

1) Appropriate constituent material properties for use in the

generalized plane strain micromechanics analysis WYO2D were

chosen. These properties included elastic coefficients,

thermal expansion coefficients, and stress strain behavior for

the fiber, matrix, and sheath constituents.

2) Thermomechanical properties of the fiber bundles under

appropriately chosen environmental and loading conditions were

calculated. Effects which were modeled included variations in

fiber volume content, presence of an oriented sheath, and

parametric variations of constituent material properties.

3) A set of micromechanics calculated fiber bundle material

properties as well as material properties for the bulk carbon

matrix were used in the three-dimensional unit cell mini-

mechanics analysis to predict the material properties for a

three-dimensional orthogonal carbon-carbon material.

Constituent material properties and micromechanics results are presented

in Section 4 of this report. Results of the unit cell minimechanics

analysis are included in Section 5.
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Figure 10. Crack Propagation by a Node Separation Technique.
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SECTION 4

MICROMECHANICS ANALYSIS

4.1 Constituent Properties

A major difficulty in conducting this micromechanics and mini-

mechanics modeling of carbon-carbon materials was determining consistent

sets of constituent material properties for use in the analyses. For

example, tests to measure the axial strength and stiffness of individual

graphite fibers have been performed and data were available in the

literature, but transverse properties for these same fibers have not

been directly measured. Both sets of properties were needed for the

micromechanics analysis. For this analysis, it was necessary to rely on

the use of limited existing information, plus educated estimates for

those fiber properties which have not been measured.

Matrix constituent material properties were more easily obtained.

For organic matrix composites it is possible to find or measure all of

the pertinent material properties. Indeed properties for a large number

of different polymer matrix systems have been measured at the University

of Wyoming [55-57] in order to perform similar micromechanics modeling

"studies. However, measuring the properties of a carbon matrix poses

additional difficulties. First, carbon can exist in different forms,

with bulk material properties ranging from isotropic to highly oriented

anisotropic. Second, the temperature range of interest for carbon is

much greater than for many other materials. This makes characterization

over the temperature range of use more difficult. The number of

laboratories capable of routinely making such measurements is

correspondingly smaller. Finally, micromechanical behavior, particularly

the strength of carbon as a matrix material, is probably quite different

from the bulk behavior of carbon as measured by tests on ATJ-S graphite.

For purposes of this present research, the most complete documented

set of constituent material property values available was obtained from

References [11-13]. The investigators at Materials Science Corporation

assembled a set of thermoelastic data for Hercules HM fibers and carbon

matrix, the latter based on properties measured for ATJ-S graphite.

Where possible, values used in this present work were taken from

experimental data. When experimental data were not available, best



estimates were used. During this present research an extensive effort

was made to find the best available sets of experimentally verified

constituent material properties. Overall, it was difficult to improve

upon the values used by the MSC investigators [11-13]. Therefore, many

of the constituent material property values used in this present

research correspond to those used in the MSC work. Where possible,

original references for the MSC data were examined. Other sources of

information were also found in subsequently available literature.

Thermomechanical properties for Hercules HM fibers t'-ed in the

present numerical calculations are listed in Table 1. Axial modulus

values at room temperature were taken from manufacturer's reported data

[58], extrapolated to higher temperatures using trends similar to those

reported in Reference [12]. Shear moduli and Poisson's ratio values were

obtained directly from Reference [13]. The original experimental work

was presented in Reference [59]. Axial strengths were assumed to be the

same as reported for Thornal 50 fibers in Reference [12].

For use in the WYO2D generalized plane strain micromechanics

analysis, these material values were converted to polynomial equations

in temperature using regression techniques. Resulting functions are of

the form

P- C T CT+ CT 2 + C3
1 2 3

where P is a specific material property of interest, T is the

temperature, and the Ci are regression coefficients. Equations defining

the Hercules HM fiber longitudinal tensile modulus E1i, transverse

tensile modulus E2 2 , longitudinal shear modulus C12 , longitudinal

Poisson's ratio L, 12 and transverse Poisson's ratio v 23 are plotted as

functions of temperature in Figures 11 through 14, respectively.

Longitudinal tensile strengths SII are plotted in Figure 15. Values from

Table I used to find the regression coefficients are also plotted in the

appropriate figures marked with triangles. As can be seen in Figures 11

through 15, the polynomial equations describe the assumed input data

values well.

Thermal expansion data for the HM carbon fiber are listed in Table

2, taken from Reference [13]. Longitudinal thermal expansion data were

originally from Reference [59]. The MSC investigators estimated

transverse thermal expansion behavior. Thermal strain values listed in
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TEMPERATt.E (E-W DEG C)

Figure 11. Longitudinal Tensile Modulus E as a Function of
Temperature for Hercules 11M Cairon Fiber.
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Figure 12. Transverse Tensile Modulus E 22as a Function of

Temperature for Hercules 111 Car22 Fiber.
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Figure 13. Longitudinal Shear Modulus G 1 as a Function of
Temperature for Hercules HM ' 2 Carbon Fiber.
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Figure 14. Longit-idinal and Transverse Poisson's Ratios v and

V23 as Functions of Temperature for HerculesHd Carbon

Fiber.
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Figure 15. Longitudinal Tensile Strength S as a Function of
Temperature for Hercules HMCarbon Fiber.
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TABLE 2

Thermal Expansion Properties for Hercules HM Carbon Fibers [13]

Temperature Thermal Strain Thermal Expansion
0 C Coefficient

•i 22 a11 a 22

(10. ) (10. ) (106 /.C) (106 /oC)

24 0.00 0.0 -0.76 7.9

538 -0.19 5.0 0.03 11.4

1093 0.05 12.2 0.74 13.5

1649 0.63 20.0 1.43 16.0

2204 1.66 30.3 2.25 20.9

2760 3.29 44.2 3.34 30.4

=..
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Table 2 are plotted as functions of temperature in Figures 16 and 17. As

was done for the stiffness coefficients, polynomials in temperature were

regression fit to the strain data and are plotted as solid curves in

Figures 16 and 17. The first derivatives of these polynomials represent

functions describing the thermal expansion coefficients a I1 and a2 2 '

plotted as functions of temperature in Figures 18 and 19, with selected

values listed in Table 2.

As can be seen in Figure 19, the assumed transverse thermal

expansion coefficient at 1000°C is approximately 13.2 x 10" 6/*C.

Marciniak and Rozploch [60] reported measured transverse thermal

expansion coefficients for carbon fibers ranging from 22 to 34 x 106 /°C

at 1000°C . These investigators used a transmission election microscope

with a furnace stage to measure radial dimensional changes of a PAN

precurser based carbon fiber. Thus, the assumed HM carbon fiber

transverse thermal expansion coefficient plotted in Figure 19 agrees

reasonably well with these experimentally measured values. The authors

of Reference (60] reported major difficulties in making their

measurements due to the fibers having noncircular cross sections, which

also tended to twist on heating.

In the present generalized plane strain micromechanics analysis,

fiber material properties were assumed to be linearly elastic and

transversely isotropic. Only axial fiber failure was permitted.

Transverse failure of the unidirectional carbon-carbon composite was

assumed to occur within the matrix material. Therefore, fiber failure
was defined by a maximum longitudinal stress failure criterion.

Regression coefficients used to define the polynomial functions of

temperature for each of the Hercules HM carbon fiber material properties

are listed in Table 3.

Material properties for carbon as a matrix in carbon-carbon

composites have usually been derived from test data on bulk ATJ-S

graphite. Two sources of information on ATJ-S were reports by Jortner

[61] and Starret, et al. [62]. Investigators at MSC [11-13] derived sets

of elastic properties and strength estimates from data reported in

Reference [62] by averaging "with-grain" and "cross-grain" results. A

complete set of estimated thermomechanical elastic data based on

Reference [62] was available in Reference [13], and with some
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Figure 16. Longitudinal Thermal Strain as a Function of Temperature
for Hercules HM Carbon Fiber.
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Figure 17. Transverse Thermal Strain as a Function of Temperature
for Hercules HM Carbon Fiber.
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Figure 18. Longitudinal Thermal Expansion Coefficient a as a
Function of Temperature for Hercules HM Carbon Fiber.
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Fgr 19. Transverse Thermal Expansion Coefficient a¢2 as a"

Function of Temperature for Hercules HMCarl'o-n Fiber.•
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TABLE 3

Thermomechanical Properties for Hercules HiK Carbon Fiber

as Functions of Temperature (*C)

Prprt- + C 1T + C 2 T2 + C 3 T3 + C4 T4 "
Property- +C CT+ CTo

Property CO C C2 C3  C4

E 1 (psi) 5.18 x 107 7.35 x 103 -6.69 x 100 1.04 x 10"3 -4.74 x 10"7

E2 2 (psi) 1.51 x 10 6 -1.67 x 102 4.29 x 1"1 -6.95 x 10-5 -3.22 x 10- 8

G12 (psi) 2.10 x 106 -2.70 x 102 6.46 x 101 -1.18 x 10"4 -4.18 x 10-8

* 12 2.60 x 10"1 1.70 x 10 -8.37 x 10"8 8.55 x 10"11 -1.75 x 10"14

*23 3.59 x 10-1 3.18 x 10 -9.58 x 10-8 7.88 x 10"11 -1.56 x 10-14

a11 (C)- -7.99 x 10-7 1.76 x 10-9 -4.71 x 10"13 1.38 x 10"16

a 2 2 ( 0 C)"1 7.73 x 10- 6  9.72 x 10-9 -6.21 x 10"12 2.07 x 10"15

S1 l (psi) 2.71 x 105 -7.25 x 101 8.13 x 10-3 1.38 x 10-5
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modification, was adopted for use in this present work. However, neither

the generalized plane strain micromechanics analysis nor the present

three-dimensional minimechanics analysis was limited by an assumption of

linear elastic material behavior. Stress-strain behavior reported in

Reference [62] was definitely nonlinear, especially at elevated

temperatures. Therefore, it was necessary to define the complete

stress-strain response for the carbon matrix as well as defining its

elastic properties.

The twisted, wrinkled ribbon-like structure of the matrix in a

carbon-carbon fiber bundle is not isotropic in localized regions around

individual carbon fibers. Indeed, the degree of anisotropy in pyrolytic

graphite may be as high as C22/C33 - 30 or higher [63]. However, it was

assumed that the overall micromechanical behavior of the matrix could be

approximated as isotropic due to the random orientation of the aligned

structure. Near the fibers, this oriented matrix phase is more aligned,

forming a sheath, as observed by Evangelides [7,8], Zimmer [64,65] and

many others. Indeed, Zimmer has octually tried to control the

orientation of this sheath by processing material in the presence of a

magnetic field [66]. While Zimmer's procedure did not appear to produce

significant improvements in overall fiber bundle material performance,

it is an interesting concept.

A final concern in defining constituent material properties was
obtaining an estimate for the strength of the matrix phase at the

micromechanics scale. Most materials, particularly brittle materials,

exhibit far greater strengths when tested as small whiskers than when

tested in bulk form. At a micromechanics level, the carbon matrix

strength is probably greater than strengths obtained from measurements

on bulk ATJ-S material. Matrix strength at a micromechanics scale is

still at best only an "educated engineering judgment."

Sets of isotropic carbon matrix material data, from which

properties as functions of temperature were derived, are listed in Table

4. These data were taken from Reference (13], based on experiments

reported in Reference [62]. Polynomial functions in temperature,

regression fit to these numbers, are plotted in Figures 20 through 23.

As with the HM fiber thermal strain data reported earlier, a polynomial

equation describing isotropic graphite thermal strain behavior, plotted
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TABLE 4

Material Properties for the Carbon Matrix
Derived from ATJ-S Graphite Properties [13,62]

Thermal
Temperature Tensile Modulus Poisson's Thermal Expansion

(°C) E Ratio Strain Coefficient
(GPa) (Msi) v CT a

(10 3) (10"6/-C)

24 9.1 1.32 0.11 0.0 2.2

538 9.4 1.36 0.12 1.5 3.6

1093 10.1 1.46 0.13 3.8 4.3

1649 11.4 1.66 0.14 6.2 4.9

2204 10.3 1.50 0.15 9.4 6.4

2760 6.0 0.87 0.17 13.7 9.5
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Figure 20. Tensile Modulus E as a Function of Temperature for
the Carbon Matrix.
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Figure 21. Poisson's Ratio v as a Function of Temperature
for the Carbon Matrix.
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Figure 22. Thermal Strain T as a Function of Temperature for
the Carbon Matrix.
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Figure 23. Thermal Expansion Coefficient a as a Function of
Temperature for the Carbon Matrix.
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in Figure 22, was differentiated to obtain the thermal expansion

coefficient a as a function of temperature, plotted in Figure 23.

As discussed in Section 3, nonlinear stress-strain behavior is

described in the micromechanics and minimechanics analyses by means of a

three-parameter exponential Richard-Blacklock equation; the form was

previously shown as Eq. (2). With-grain tensile stress strain plots

taken from Reference [62] were digitized and plotted in Figure 24 with

the Richard-Blacklock description for that data. Stress-strain curves

for room temperature, 1093°C, 1649*C and 2204°C are plotted in Figure

24. The three Richard-Blacklock parameters, ER, n and ., used to

represent stress-strain plot shown in Figure 24, as well as the ultimate

strain values were in turn regression fit to polynomial functions of

temperature and plotted in Figures 25 through 28. These functions were

then used to describe stress-strain behavior for the carbon matrix at

any temperature, as plotted in Figure 29 for four specific temperatures.

It should be noted in Figures 20, 24 and 29 that carbon becomes both

stronger and stiffer at elevated temperatures, a trend opposite that of

most other engineering materials.

Multiaxial stress-states within the matrix were modeled by use of

an octahedral shear stress-octahedral shear strain constitutive

relation. This relation is based on energy principles and works very

well for modeling metal matrix and polymer matrix composite materials.

It has been argued that energy methods based constitutive models do not

work well for modeling carbon or carbon-carbon composites [30-32]. Yet

the work of Pollock [33] appears to model carbon-carbon mechanical

behavior quite well using principles based on energy methods. Other

models for behavior of carbon under multiaxial stress states were

available, e.g., that of Batdorf [32], and could be used in modeling

such as attempted in this program.

In the MSC work and [11-13] averaged with-grain and across-grain

ATJ-S Graphite tensile strength values were used. With-grain tensile

strength values were used in the present research, based on an

assumption that the matrix should be stronger at the micromechanical

scale as opposed to bulk ATJ-S measured strengths. Tensile strength data

at various temperatures, taken from References [62,67], are listed in

Table 5. Shear strength estimates from Reference [13] were also used.
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Figure 24. Tensile Stress-Strain Behavior for the Carbon Matrix

(ATJ-S Graphite With-Grain Data [58]).
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Figure 27. Richard-Blacklock Parameter a as a Function of Temperature
for the Carbon Matrix.
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TABLE 5

Strength Values for the Carbon Matrix,
Derived from ATJ-S Graphite Strengths

Tensile Strength [67] Shear Strength [62]
Temperature (With-Grain) Sus

°C (MPa) (ksi) (GPa) (ksi)

24 38.6 5.60 20.1 2.92

772 41.4 6.00

815 17.8 2.58

1056 46.2 6.70

1602 50.0 7.25

1649 17.1 2.48

2136 63.7 9.24

2204 21.7 3.15

2482 24.8 3.60
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These values are plotted as functions of temperature in Figures 30 and

31 for the tensile and shear strengths respectively.

Material properties for matrix carbon were also described by sets

of polynomial equations in temperature. The polynomial coefficients

describing the carbon matrix material properties are listed in Table 6.

Properties of the oriented sheath material were assumed to be the

same as the properties of the carbon fiber except that the sheath

longitudinal strength was arbitrarily assumed to be one-half that of the

fiber. The transverse sheath strength was assumed to be the same as the

matrix carbon. These sheath properties, along with the carbon matrix and

HM fiber properties were initially defined for use in the generalized

plane strain micromechanics analysis to predict properties for

undirectional carbon-carbon fiber bundles.

4.2 Hicromechanics Predicted Thermal Residual Stresses

Carbon-carbon materials experience temperature changes on the order

of 2000 to 3000°C during fabrication and use. Modeling of the complete

fabrication processing history was beyond the scope of the present

research program. However, due to the large temperature changes that

occur during fabrication, it was necessary to include the effects of

* thermally induced strains. Therefore, an attempt was made to model the

temperature change experienced by the carbon-carbon material during

cooldown from the final processing temperature.

An initial stress-free temperature of 2204°C was assumed.

Temperature increments of -50°C were used in the initial micromechanics

analysis of the isotropic carbon matrix model. This model, previously

shown in Figure 6 of Section 3, contained no sheath material. The

interface region was assumed to consist of isotropic carbon.

Model status plots at four temperatures during the incremental

cooling are shown in Figure 32. At 2104°C, shown as Figure 32a, stresses

in the matrix are such that elements in the region of closest fiber

spacing are behaving inelastically. In Figure 32 these elements appear

gray, marked with diagonal hatching. At 2004°C most of the matrix

elements are inelastic, as shown in Figure 32b. At 1904°C, Figure 32c,

all of the matrix is predicted to be inelastic by the micromechanics

analysis. At 1754*C, matrix elements begin to fail, shown as black in

Figure 32d. The first elements fail in the regions of closest fiber
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Figure 30. With-Grain Tensile Strength Sut as a Function of
Temperature for the Carbon Matrix.
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TABLE 6

Thermomechanical Properties of the Carbon Matrix
as Functions of Temperature (°C)

Property - C + CTT 2 + C3T3 4+ C4

Property C0 C1 C2 C3 C4

E (psi) 1.33 x 106 -1.50 x 102 3.71 x 10-I -5.27 x 10. -3.04 x 10.8

v1.10 x 10" 1.30 x 10.5 1.63 x 108 -1.33 x 10" 3.18 x 10"15

a (C)" 2.14 x 10"6 3.83 x 10.9 -2.60 x 10-12 7.90 x 10"16

ER (psi) 1.75 x 106 2.38 x 102 8.60 x 10. 2  -8.30 x 10.5

n 1.51 x 10 -1.54 x 10.4 1.06 x 10"7-

a (psi) 8.37 x 103 -3.22 x 100 8.45 x 10-3 -3.02 x 10"6

t 4.88 x 10- 3  5.82 x I0"6 -9.01 x 10-9 3.46 10-12
sut(psi) 5.58 x 103 1.09 X 00 -8.00 x 10"4 5.07 x 10 -7

SUS(psi) 2.91 x 103 6.95 x 10"1 -2.44 x 10.3 1.55 x 10 6
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spacing, at the lower right and upper left corners of Figure 32d.

Failure in this specific analysis was defined by a maximum octahedral

shear stress failure criterion. Subsequent redistribution of element

stresses causes additional elements to fail, propagating two cracks

within the matrix around the fiber-matrix interface region. The two

cracks meet at the 45' diagonal, separating the model into two separate

pieces. This defines total failure of the model as it is incapable of

sustaining transverse tension or shear loading. Thus the model

experienced an abrupt, catastrophic failure due to a temperature

excursion of only -450°C.

This abrupt catastrophic failure of the matrix was caused by large

thermally-induced stresses resulting from a large mismatch between the

fiber transverse thermal expansion coefficient and the matrix thermal

expansion coefficient. Referring to Figures 19 and 23 shown previously,

it can be seen that the assumed transverse thermal expansion coefficient

for the HM fiber was approximately three times the matrix thermal

expansion coefficient at all temperatures. Temperature decreases in the

model caused the fiber to shrink more rapidly in the radial direction

than the matrix, inducing tensile stresses at the fiber-matrix

interface. When these stresses exceeded the strength of the matrix

carbon, failure occurred. As is shown in Figure 32, this failure takes

place as cracks initiating and propagating at the fiber-matrix

interface.

"It is possible to extract intact fiber bundles from

three-dimensionally woven carbon-carbon materials; they do have some

"residual strength at room temperature. Thus, there must be an

inconsistency in the model as initially defined here.

Four possibilities are suggested. First, the model may actually be
"stress-free" at a lower temperature than first assumed. Second, some

stress relieving mechanism present in the actual material may not be

included in the micromechanics model, e.g. viscoelastic behavior. Third,

high stresses may indeed be present but the assumed constitutive

strength values are too low, or the choice of failure criterion is

incorrect. Finally, the assumed material properties, particularly the

thermal expansion coefficient values, may be incorrect and the assumed

mismatch is too large.
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The "stress-free" temperature is an assumed initial state for any

micromechanics analysis which includes processing-induced thermal

stresses. Most linear elastic micromechanics analyses assume a stress-

free temperature that is lower than the final processing temperature.

These analyses assume that the thermally-induced strains caused by

cooling from the final processing temperature to the "stress free"

temperature produce no thermally-induced stress due to inelastic

material behavior. Thus, these types of micromechanics analysis are

actually assuming elastic-perfectly plastic material behavior. The value

used as a "stress-free" temperature then becomes one of the selectable

parameters of the analysis, to be chosen by "engineering judgment,"

i.e., by what works best.

The generalized plane strain finite element micromechanics analysis

used in this present work is capable of modeling the actual

stress-strain behavior of the constituent materials throughout the

entire applicable temperature range. Therefore, use of the final

processing temperature as a starting point for the analysis was

appropriate. Selection of a lower initial temperature only resulted in

calculation of lower estimates for fabrication-induced thermal residual

stresses than might actually be present in the real material. If the

present micromechanics model totally failed while cooling from 2204*C,

then it also fails if cooled from any higher initial temperature.
4

In a second set of computer calculations, the initial (supposedly

stress free) temperature was arbitrarily lowered by 50 percent to

llO0°C. Even using this much lower initial temperature, cooling towards

room temperature resulted in total failure of the model. Referring back

to the constituent material properties plotted previously in Figures 11

I through 14 and 20 through 24, it can be seen that both constituents
*retain significant stiffness even at 22040C. Therefore, the composite

could not be stress-free at 100°C due only to inelastic deformations of

the constituents. Referring to the work at MSC [13], it was found that

thermal residual stresses were not modeled. These authors reasoned that

carbon-carbon materials are essentially stress-free at room temperature,

and therefore began their analysis at that point. The presence of cracks

was included in their minimechanics model by use of degraded interfaces

i within the unit cell, as discussed in Section 2. Thus, the mismatch
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between matrix and fiber transverse thermal expansion coefficients did

not affect their micromechanics model because processing temperature

excursions were not included.

It was apparent from this initial modeling attempt that a problem

existed. If the modeled thermal expansion mismatch was correct, then the

large induced stresses had to be relieved by some mechanism, or the

micromechanics strength of matrix carbon had to be far greater than the

strength of bulk ATJ-S graphite. Inelastic deformation alone did not

provide sufficient stress relief for the model to survive an entire

processing temperature excursion. The modeled stress-strain behavior of

the matrix material, shown in Figure 29, was based on experimental data

[62], which did exhibit some nonlinearity. However, ATJ-S is far from

being an elastic-perfectly plastic material.

A second possible mechanism producing relief of fabrication-induced

thermal stresses is viscoelastic behavior of the constituents.

Viscoelastic behavior in carbon-carbon has been examined by Feldman

[68,69] and by Quan, et al. [70]. These investigators found evidence

that significant viscoelastic deformation (creep) occurred in graphite

fibers at elevated temperatures, particularly above 2500°C. However, at

lower temperatures, viscoelastic deformation was minimal. Thus, it is

likely that time-dependent stress relaxation accounts for appreciable

reduction of fabrication-induced thermal residual stresses only at

highly elevated temperatures. However, if significant viscoelastic

behavior takes place only at highly elevated temperatures, one method of

modeling this effect is to again use a lower "stress-free" initial

temperature. Stresses are then assumed to be relieved by time-dependent

material behavior at temperatures above this stress-free temperature. As

was already discussed, however, an assumed initial "stress free"

temperature as low as 1lO0°C still resulted in total failure of the

micromechanics model during cooling. It is unlikely that significant

short term viscoelastic behavior takes place in carbon-carbon at

temperatures below 1100°C.

A third possibility to account for the discrepancy between modeled

and real carbon-carbon material behavior is an inaccuracy in the assumed

matrix strengths, coupled with a poor choice of failure criterion. The

isotropic carbon matrix strength values used in the present analysis are
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plotted in Figures 30 and 31. These plotted values actually tend to be

optimistic for ATJ-S graphite as they represent across-grain strengths

rather than the averaged across- and with-grain strengths as used in

Reference [13]. However, one may argue that these are strengths of

"bulk" carbon and do not accurately reflect the potential constituent

matrix material strength at the micromechanics scale.

It is useful at this point to examine the stress state within the

isotropic carbon matrix prior to the onset of failure. Figure 33

presents eight quantities plotted for the isotropic carbon matrix region

around an individual HM carbon fiber. The quantities plotted in Figure

33 are for a state of stress existing in the matrix after the uni-

directional carbon-carbon composite has been cooled from 2204"C to

18040C. A total of eight increments of -50°C have been applied,

representing a total temperature change of -400°C. Constituent material

properties were adjusted at the beginning of each increment to include

variations in constituent material properties with temperature. Only

temperature increments have been applied at this point, no external,

mechanically-induced stresses are present. Contour lines shown in Figure

33 are as output by the micromechanics analysis and have not been

smoothed for presentation.

Figure 33a is a contour plot of the octahedral shear stress

distribution in the matrix. Contour lines have not been plotted for the

fiber although they are available from the analysis. As can be seen in

Figure 33a, the stress distribution is symmetrical about the 450

diagonal as would be expected from the assumption of a square fiber

packing array. The octahedral shear stress is greatest in the region of

closet fiber spacings, i.e., along the horizontal and vertical axes.

There the octahedral shear stress is 25.7 MPa (3.73 ksi), which is very

near the 25.8 MPa (3.74 ksi) assumed octahedral shear strength of the -..

matrix at 1804°C. A key to the contour labels, giving stress values, is

printed above each plot in Figure 33. Along the 45° diagonal, the

direction of greatest fiber spacing, the stress is lowest. The

octahedral shear stress is of special interest as this is the criterion

for yield in this elastoplastic micromechanics analysis formulation.

Maximum octahedral shear stress (distortional energy) is also one
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possible failure criterion, and was used to define matrix failure in the

results of Figure 33.

Figure 33b is a contour plot of the octahedral shear strain. These

contours follow trends similar to the octahedral shear stresses plotted

in Figure 33a. However, the relationship between octahedral shear stress

and octahedral shear strain is not linear.

The maximum (most positive), intermediate, and minimum (most

negative) principal stresses are plotted in Figures 33c, 33d, and 33e,

respectively. Since a temperature change alone will not induce

longitudinal shear, the maximum and minimum principal stresses are in

the plane of the plot and the intermediate principal stress is

perpendicular to the plane of the plot. In general this is not true if

longitudinal shear stress is present. The largest principal stresses

again tend to occur in regions of closest fiber spacing. The maximum

tensile principal stress, shown in Figure 33c, is 18.9 MPa (2.74 ksi),

well below the 54.7 Mpa (7.93 ksi) assumed normal tensile strength at

1804°C.

Maximum shear stress contours are plotted in Figure 33f. Again due

to the absence of longitudinal shear stress in this loading case, the

maximum shear stresses plotted in Figure 33f occur in the plane of the

plot. The maximum shear stress present is 30.0 MPa (4.35 ksi), again

located in the region of closest fiber spacing. It will be noted that

this value is greater than the assumed matrix shear strength at 18040C,

as plotted in Figure 31. However, as the octahedral shear strengths are

derived from tensile data, and a maximum shear stress failure criterion

is not being used, no element failures occur. Otherwise, cracking would

have taken place prior to this state in the thermal cooldown during

final processing of this carbon-carbon fiber bundle.
Frequently it is the normal or shear stress at the fiber-matrix

interface which reaches a critical value first, and initiates failure of

the composite. Figure 33g is a plot of the thermally-induced normal

stress distribution around the fiber-matrix interface. Values plotted
outside the interface indicate tensile normal stress (as is the case for

all values plotted in Figure 33g). Values plotted inside the interface

would indicate negative interface normal stresses. As can be seen in

Figure 33c, the interface is subjected to tensile stress everywhere
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because the fiber transverse thermal expansion coefficient is greater

than that of the matrix. Thus on cooling, the fiber tends to pull away

from the matrix. The normal stress distribution is not uniform around

the interface, again due to the assumed packing array. The maximum

tensile normal stress at the interface is 18.8 MPa (2.72 ksi), in the

region of closest fiber spacing.

The interface shear stress distribution is shown in Figure 33h. The

interface shear stress is near zero at the horizontal, vertical and 45°

diagonal axes of symmetry. A sign change (change in shear stress

direction) is not reflected in the plot since interface shear stresses

do not generally lie in the plane of the plot (due to the presence of

longitudinal shear stress). The maximum shear stress along the fiber

matrix interface is 11.1 MPa (1.61 ksi).

As indicated in the plots of Figure 33, the matrix stresses are

quite high relative to the matrix strengths after a temperature

excursion of only 40C°C. This temperature change is small relative to

the total temperature change experienced by the material during cooling

from the final fabrication temperature. An octahedral shear stress

failure criterion was used to predict the cracking of Figure 33 where

the composite failed at 1754°C. As is shown in Figure 33, the maximum

normal stress present in the matrix is less than the assumed ultimate

tensile strength of 54.7 MPa (7.93 ksi) at 1804°C. For brittle

materials, a maximum normal stress criterion may be a more appropriate

choice of failure criterion. In a second computer simulation, the

thermal cooldown was again modeled, beginning at 2204°C and cooling in

increments of -50°C. For this second modeling of the isotropic carbon

matrix finite element mesh, a maximum normal stress failure criterion

was selected. For this thermal cooling case, all results prior to first

element failure were exactly the same as for the first thermal cooling

case as only the matrix failure criterion was different. Crack

initiation and total failure of the model took place at 804°C after a

total temperature change of 1400°C. The crack propagation pattern was

the same as that plotted for the maximum octahedral shear stress failure

criterion case in Figure 32.

The stress state in the model at 854°C, just prior to the increment

in which failure occurs, is shown in Figure 34. As in Figure 33, all
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eight available sets of information are plotted in Figure 34. In

particular, note the octahedral shear stress contour values plotted in

Figure 34a. The maximum octahedral shear stress is 37.6 MPa (5.45 ksi),

well above the assumed octahedral shear ultimate strength of 20.3 MPa

(2.95 ksi) at 854°C. However, as the maximum normal stress failure

criterion was used rather than the octahedral shear failure criterion,

no failures took place. The maximum normal stress contours, plotted in I

Figure 34c, indicate a maximum normal stress of 37.9 MPa (5.50 ksi),

again located in the region of closest fiber spacing. This stress is

approximately 90 percent of the matrix tensile strength at 804°C. Thus,

during the next cooling increment, matrix elements began to fail. As in i

the previous thermal cooling case, stress redistribution following

failure of an element caused additional elements to fail. This resulted

in cracks propagating along the fiber-matrix interface, leading to total

failure of the model.

Although use of the two different failure criteria resulted in

total model failure at two different temperatures, the net result was

that the modeled carbon-carbon unidirectional fiber bundle did not

survive thermally-induced residual processing stresses using the assumed

", constituent material properties. Thus, if these indicated high thermal
r,
' residual stresses were actually present in the fiber bundles, the

", assumed strength allowables had to be too low. Unfortunately, no data in
P.
" the literature supported using larger strength allowables, based on

-• examinations of test data for ATJ-S graphite and other carbons

[61,62,67,71,72].

Unidirectional carbon-carbon fiber bundles can be fabricated and

cooled to room temperature• If inelastic or viscoelastic material

behavior does not relieve the thermally-induced residual stresses, then

the assumed mismatch in thermal expansion coefficients between fiber and

matrix must be too large. Matrix thermal expansion data taken from

Reference [13] were derived from measurements reported in Reference [62]

for ATJ-S graphite. These data and the corresponding thermal expansior

coefficient were plotted versus temperature in Figures 22 and 23. As was

stated previously in this present report, assumed fiber transverse

thermal expansion coefficient data also showed fair agreement with very

limited experimental radial thermal strain measurements [13,60].•,,•[•I

I
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However, fiber transverse thermal expansion coefficients are not easily

measured over the temperature ranges used in this analysis. The values

used in Reference [13] and in this analysis for fiber transverse thermal

expansion coefficient were educated guesses. Therefore there is

considerable room for adjustment.

The thermal expansion mismatch ratio a2 2 /am between the transverse

fiber thermal expansion coefficient and the isotropic carbon matrix

thermal expansion coefficient as plotted in Figures 19 and 23 is

approximately three. Parametric variations of this mismatch ratio showed

that the isotropic carbon matrix model could survive the fabrication

temperature excursion if the ratio was reduced to approximately two.

This was done by arbitrarily reducing the transverse fiber thermal

expansion coefficient. The matrix thermal expansion coefficient could

also have been increased or both values could have been changed.

Model status plots for a simulated cooling of the isotropic carbon

matrix model are shown in Figure 35. A stress free temperature of 2204*C

was again assumed. Cooling increments of -50*C were also used. At 2154°C

all matrix elements are still within the elastic range, as shown in

Figure 35a. At 1954*C many of the matrix elements are predicted to be

inelastic, as noted by the shaded regions. At 1854°C, Figure 35c, all

matrix elements are inelastic. The first element failures, marked by

black in Figure 35d, occur at 104°C. Elements in the highly stressed

regions of closest fiber spacing fail and cracks begin to propagate

around the fiber-matrix interface. No further cracking occurs in the

final two temperature increments during cooling to room temperature.

The model was, at this point, providing answers which corresponded

to real world unidirectional carbon-carbon composite material behavior

in that the model has survived the fabrication temperature excursion.

These materials experience microcracking during fabrication, but

obviously they can be fabricated. Thermal residual stresses are induced

duong fabrication of real carbon-carbon materials and may be quite

high. These stresses are relieved by a combination of inelastic material

deformation and microcracking. In order to complete the micromechanics

analysis of carbon-carbon fiber bundles material behavior, all further

computations were performed using a reduced a 2 2/am thermal expansion

coefficient mismatch ratio, i.e., a ratio of two. Mechanical loads were
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a) Temperature=21540C b) Temperature=19540C

c) Temperature=1854*C d) Temperature=104*C

Figure 35. Crack Propagation in the Isotropic Carbon Matrix Model
Due to Residual Thermal Stresses, at 22/a 2.
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then applied in order to predict the thermomechanical response of the

carbon-carbon fiber bundles.

4.3 Isotropic Carbon Matrix Micromechanics Model Results

The purpose of this micromechanics analysis was to provide

estimates of carbon-carbon fiber bundle stress-strain behavior for use

in the three-dimensional minimechanics model. As discussed in Section 3,

four types of loading were separately applied to the micromechanics

model following completion of the cooldown temperature excursion. These

loadings simulated longitudinal tension, transverse tension,

longitudinal shear, and transverse shear stresses. The same mechanical

loads were simulated at other temperatures by first applying temperature

increments to reheat the model prior to application of mechanical

loading increments. Mechanical stress-strain behavior of the

carbon-carbon fiber bundles was modeled in this present work for three

temperatures, viz, room temperature, 815°C, and 1649°C. In all cases,

simulated loading increments were applied to the models to achieve

ultimate failure.

Longitudinal tension stress-strain curves are plotted for the

isotropic carbon matrix model in Figure 36. All three stress-strain

plots are linear. The room temperature plot, marked with squares,

indicates an elastic tensile modulus of 218 GPa (31.6 Msi). The plotted

symbols mark actual stress-strain values as calculated by the

micromechanics computer program for each increment of mechanical

loading. At 815*C the calculated tensile modulus is 225 GPa (32.7 Msi)

for the plot marked with circles in Figure 36. This modulus is slightly

greater than the estimated room temperature tensile modulus, reflecting

the assumed increase in fiber tensile modulus with increasing

temperature, previously shown in Figure 11. As the composite

longitudinal tensile modulus is a fiber dominated property, it is to be

expected that it will vary with temperature in the same manner as the

input constituent fiber tensile modulus. The third stress-strain plot at

1649*C, marked with triangles in Figure 36, indicates a tensile modulus

of 198 GPa (28.7 Msi), again following a trend with temperature similar

to the fiber tensile modulus.

The micromechanics predictions of cracking patterns reflect the

known conclusion that longitudinal tensile behavior is fiber-dominated.
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Figure 36. Longitudinal Tension Stress-Strain Response for the
Isotropic Carbon Matrix Model.
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Four model status plots are shown in Figure 37, for four levels of

applied longitudinal tension. Figure 37a shows the model after

application of the first longitudinal tension loading increment. The

cracking pattern at the end of the thermal cooldown was plotted in the

previously discussed Figure 35.

At an applied stress of 263 MPa (38.2 ksi), additional cracking

takes place at the fiber-matrix interface as shown in Figure 37a. At 400

!Pa (58.0 ksi) substantial cracking occurs, as shown in Figure 37b. When

the applied tensile stress reaches approximately 689 MPa (100 ksi),

Figure 37c, the matrix has failed and does not contribute to the model

longitudinal stiffness. At 1.11 GPa (161 ksi) the fiber and thus the

entire model catastrophically fails. As discussed earlier in Section 3,

the fiber failure criterion used in this analysis was a maximum

longitudinal tensile stress failure criterion. A statistics-based

criterion was not used, but could be added to the computer program.

Crack pattern plots for the 8150C and 16490C longitudinal tension

simulations were very similar to those shown in Figure 37 for room

temperature loading. Therefore these plots have not been included in

this report.

Predicted transverse tension stress-strain response of the

isotropic carbon matrix fiber bundle model is shown in Figure 38. The

transverse tension stress-strain behavior of the modeled fiber bundle is

definitely nonlinear. At room temperature, the initial transverse

tensile modulus is 5.30 GPa (0.77 Msi). This transverse modulus is

approximately the same at 815°C, 5.2 GPa (0.76 Msi) and increases

slightly to 6 GPa (0.88 ksi) at 1649°C.

The nonlinear appearance of these plots is due in part to nonlinear

constituent matrix stress-strain behavior. Transverse properties of

unidirectional composites are more influenced by the matrix than are the

composite longitudinal properties. However, a substantial portion of the

nonlinear stress-strain behavior shown in Figure 38 is due to further

cracking of the matrix. Four model status plots for room temperature

transverse loading are shown in Figure 39. Transverse tension loading

causes further matrix cracking during the first loading increment, as

illustrated in Figure 39a at a stress level of 4.6 MPa (0.66 ksi). Thus,

additional permanent damage, producing nonlinear stress-strain behavior,
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Figure 38. Transverse Tension Stress-Strain Response for the
Isotropic Carbon Matrix Model.

87

%..- ,..-

°-• •i~]• • •" " " '. • ''• •" '-'•."... ,• ,,w" - ,• "'""","",,"'-'-' " '. -,. " " "•J'"o " ".- •" • • "-".' •• "t'••'•-'•.* I•, ",4



RP - 20. OW. C "M - S .01 NIOWN D. - 2 11.0N1. - 2 UP - 21. a. C ~- US 5 64110N. - 4 11.01ND - 4
so- .U6I No "V .UUI= 67- .U0 I= 42- ."M am - 16I=I 141 .0 NU '.0 6S6 wi- .0I=
on- .0IC am - .0 In
DAME 138611 AN WUf RNM 886418E O. aifi neons am WE Rjew &Dlem~ am O
FARM 8.9M1 £W .'nam ozone RDMAE

a) Stress =4.6 HPa (0.66 ksi) b) Stress =8.7 MPa (1.26 ksi)

FJM~ 88611 0bW. OW "N noU w 8803M gm
VP U- 21 WCm HM m- mu X Z110ND - 6 O ND1. - 6 Mr- 21.00EC wn- .40 INMO4! - 7 11M N - 7

SON- 1WI9SX ?(V- EMin 62- .091= $42 - "UIn W - 2.Vi = V1 - .0I 2- .09 OM 42 - .846M
OU l- W KSI 642- .60 I
ULFM BIIC AX41 - UI R..6TJeM 8841 Ow Bj=1 8.8641 at OmE RftMl 881 in a
FAIR' 8.L09MA7 RC FAIRM 88648 /a W-

0) Stress - 11.0 MPa (1.60 ksi) d) Stress =15.6 MPa (2.27 ksi)

Figure 39. Crack Propagation in the Isotropic Carbon Matrix Due to
Transverse Tension Loading at Room Temperature.

88
%,.



has taken place at a low stress level. As the transverse tensile stress

increases, further cracking takes place, as shown in Figure 39b for a

stress of 8.7 MPa (1.26 ksi), and in Figure 39c for a stress of 11.0 MPa

(1.60 ksi). At a stress of 15.7 MPa (2.27 ksi), the cracks join, Figure

39d, separating the model into two pieces, indicating failure of the

carbon-carbon fiber bundle. Model status plots for the other two

elevated test temperatures were virtually the same, with cracks

occurring at slightly different stress levels. The nonlinear character

of the stress-strain plots shown in Figure 38 is primarily due to damage

propagation in the model rather than inelastic constituent material

deformation.

Transverse tensile strength for this isotropic matrix carbon-carbon

model increases with increasing temperature, as is apparent in Figure

38. Two factors cause this effect. First, the constituent isotropic

carbon matrix strength was assumed to increase slightly with

temperature, as was plotted in Figure 30. Second, elevated temperatures

tended to relieve part of the thermal residual stress induced during

fabrication. A combination of these two factors produced the apparent ,

increase in transverse tensile strength of the unidirectional

carbon-carbon fiber bundle.

Longitudinal shear stress-strain curves at room temperature, 815°C,

and 1649°C are plotted for the isotropic carbon model in Figure 40.

Stress-strain behavior at any of the three temperatures is linear to a

"yield" point where the slope of the curve abruptly changes. As can be

seen in the room temperature model status plots of Figure 41, this

abrupt slope change is due to damage propagation in the model. Some

minimal crack extension takes place at 1.5 MPa (220 psi), shown in

Figure 41a, and again at 2.3 MPa (340 psi), shown in Figure 41b. At 3.4

MPa (490 psi), the fiber-matrix interface cracks join, resulting in

failure of the modeled composite, as shown in Figure 41c. Results for

the 8150C and 1649°C longitudinal shear loading cases were very similar.

However, at 815°C and 1649°C the final crack extension takes place over

two increments instead of just one increment, resulting in the apparent

"plastic" deformation shown Figure 41. Note that the longitudinal shear

stress levels are relatively low. These modeled carbon-carbon fiber
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Figure 40. Longitudinal Shear Stress-Strain Response for the P'

Isotropic Carbon Matrix Model.

%K1

90

% % N.• ,b' '..'%!".".• ','..'° .".',,.. ,'• .,.'.* '.,' " ,.,,., ,"... ,• ,r,.,,..-,, .•,• ., .-.. .o ._•..._•_.•.. - -,- .- . •- . • ., .,,!;%••TK. • •'.'.,• ,v; .'• .. •.....'• ,'. ... 1_. . ." .... ".. .. "." %, ,.' "'.-, • ," " ,, , ,". , . ,"',.".', '% ,% "- ",•% .."•% .%• " " ", ., ' ,,y ,I'L



"IUU- 21. CO. C W - ., X BOEHMNTD. - 2 P-O ND. - 2 UIM- 21.. C H - .40 9 B1O0. - 2 RIN"D. - 3
WO - .60IN a - .09a a - .fI I =z - .I I *a - .40 vI 9 - .tIS! In - .0 I= If - .03 I=
s - Jvo 1w ff- .04 w
ELIP EU3MAEI WNUE Rio=ELEI SMEl GA sinamaDSA %=~ RLAF KaM M

[4.

[..

a) Stress = 1.5 MPa (0.22 ksi) b) 2.3 MPa (0.34 ksi)

WV - 21. M.C I W - .0 X 3N• WTI - 4 R.1THD. - 4
a*- NU myf - .6*31 0' - .Alot S'f - .Now

c) 3.4 MPa (0.49 ksi)

Figure 41. Crack Propagation in the Isotropic Carbon Matrix

Model Due to Longitudinal Shear Loading at Room Temperature.
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bundles have very little shear strength as compared to other composite

materials.

Transverse shear stress-strain plots are shown in Figure 42. with

associated room temperature model status plots shown in Figure 43.

Nonlinear stress-strain behavior is evident in all three curves plotted

in Figure 42. Transverse shear strength tends to increase with

increasing temperature due to relaxation of the thermal residual

stresses with elevated temperature. This tends to delay matrix crack

propagation until higher applied mechanical stress levels are achieved.

As shown in Figure 43a, crack propagation takes place virtually

throughout the loading history. Elements progressively fail, as shown in

Figures 43a, 43b, and 43c for transverse shear stress levels of 3.3 MPa

(0.48 ksi), 5.4 HPa (0.79 ksi) and 6.6 MPa (0.95 ksi), respectively.

This cracking results in the nonlinear appearance of the room

temperature transverse shear stress-strain plot shown in Figure 42.

Thermal expansion coefficients were calculated by applying

temperature increments rather than mechanical loading increments. Note,

this was a reheating of the model which had already been cooled from the

final processing temperature. Thus, the modeled thermal expansion

included effects of processing-induced thermal residual stress cracks.

The longitudinal thermal strains resulting from this reheating are

plotted in Figure 44. As can be seen in Figure 44, the model initially

contracts due to a temperature increase, but then expands with

increasing temperature. Thermal strains were regression fit with a

parabolic equation in temperature. Differentiation of this equation

results in a longitudinal thermal expansion coefficient that is linear

in temperature, as plotted in Figure 45.

Transverse thermal strain and thermal expansion coefficient are

plotted in Figures 46 and 47, respectively. Again, a parabolic equation

in temperature was used to represent the thermal strain response,

resulting in a transverse thermal expansion coefficient that varies

linearly with temperature.

Elastic properties, thermal expansion coefficients, and strengths

predicted for the isotropic carbon matrix model are listed in Table 7.

Values are listed for all three transverse material constants, i.e., the

transverse tensile modulus E2 2 , Poisson's ratio P 2 3 , and shear modulus
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Figure 42. Transverse Shear Stress-Strain Response for the Isotropic
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G2 3 . These constants are not independent if the unidirectional composite

is globally transversely isotropic. The presence of cracks does disrupt

that assumption, however. As can be seen in Table 7, the three constants

do tend to obey the transverse isotropy assumption for all three modeled

temperatures. These constants listed in Table 7 were used to define

carbon-carbon fiber bundle properties used in the minimechanics model

discussed in Section 5 of this report.

4.4 Axial Sheath Micromechanics Model Results

During processing of carbon-carbon composite materials, an oriented

sheath of carbon matrix typically forms around individual fibers within

the fiber bundle. This sheath tends to orient its stiffer material

direction parallel to the fiber, in effect producing a composite with a

larger volume fraction of fiber. In order to model this sheath material

with the micromechanics analysis, the finite element mesh previously

shown as Figure 7 in Section 3 was used.

The sheath region was modeled as a separate constituent material.

For this axial sheath analysis; sheath properties were assumed to be the

same as those of the fiber, with two exceptions. First, the longitudinal

strength of the sheath was arbitrarily assumed to be 50 percent that of

the longitudinal fiber strength. In-plane (plane of transverse isotropy)

strengths of the sheath were assumed to be the same as the matrix

strengths. A Tsai-Hill (73] failure criterion was used to define

failures in the sheath. The matrix region was again assumed to be

isotropic.

A fiber volume fraction of 60 percent was also used in this axial

sheath model, the same fiber volume fraction as was used in the

isotropic carbon matrix model. The sheath region occupied 16 percent of

the volume, leaving a matrix volume content of 24 percent.

Thermal residual stresses were also included in this model, using

an initial stress-free temperature of 2204°C and cooling increments of

50°C. Model status plots during cooling are shown in Figure 48.

Inelastic material behavior occurs in the matrix material at 2004°C, as

shown in Figure 48a. The entire matrix has undergone inelastic

deformation at 1904°C, as shown in Figure 48b. Cracks begin to form in

the matrix material near the axial sheath-matrix interface at 204°C, as

shown in Figure 48c, resulting in the final room temperature state of
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the model shown in Figure 48d. Although cracks are present at room

temperature, the model is not divided into two separate regions.

Therefore, mechanical loads may still be applied. The same mechanical

stresses, i.e., longitudinal tension, transverse tension, longitudinal

shear, and transverse shear were applied to this model. Modeled

environments were room temperature, 815*C, and 1649"C.

Longitudinal stress-strain plots for the axial sheath model are

shown in Figure 49. The stress-strain behavior shown in Figure 49 is not

linear; there is a point on each curve at which the curve abruptly

changes slope. The initial elastic modulus of the room temperature

curve, marked with squares, is 274 GPa (39.7 Msi), decreasing at

approximately 765 MPa (111 ksi) to a value of 272 GPa (39.4 Msi). The

slope change is due to failure of the axial sheath, as can be seen in

the model status plots shown in Figure 50. Figure 50a shows the model at

an applied longitudinal tensile stress of 400 MPa (58 ksi). Some matrix

cracking is present. At 641 MPa (93 ksi), further cracking of the matrix

takes place, as shown in Figure 50b. Essentially all of the matrix has

failed. However, failure of the matrix produces no apparent stiffness

reduction in the room temperature stress-strain plot of Figure 49. At

765 MPa (111 ksi), the sheath totally fails, as shown in Figure 50c,

reducing the apparent stiffness of the modeled carbon-carbon fiber

bundle and producing the slope change of the plot in Figure 49. At 1.14

GPa (165 ksi) the entire model fails abruptly when the fiber fails, as

shown in Figure 50d.

Transverse tension stress-strain behavior is also nonlinear, as

shown in Figure 51. Final failure of the model takes place due to

cracking in the matrix material, as shown for the room temperature

loading case in Figure 52. A small number of sheath elements also fail

near the 45° diagonal of the model, as indicated in Figures 52c and 52d.

Longitudinal shear stress-strain plots are shown in Figure 53. The

corresponding crack propagation plots for the room temperature

environment are shown in Figure 54. As can be seen in Figure 54,

considerable cracking takes place in the sheath near the 45° diagonal of

the model. The 450 diagonal is the region in which fibers are farthest

apart for the assumed square fiber packing array.
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Figure 51. Transverse Tension Stress-Strain Response for the

Axial Sheath Model.
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Figure 54. Crack Propagation in the Axial Sheath Model Due to Longitudinal
Shear Loading at Room Temperature.
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Results for transverse shear loading of the axial sheath model are

shown in Figures 55 and 56. Again, cracking takes place in the matrix

regions near the horizontal and vertical axes of the model, but the

sheath fails near the 45" diagonal, as shown in Figure 56.

Thermal strains and thermal expansion coefficients are plotted for

the axial sheath model in Figures 57 through 60. As was done for the

isotropic matrix model, parabolic polynomials in temperature were

regression fit to the thermal strain data, Figures 57 and 59. The linear

derivatives thus represent the thermal expansion coefficients all and

a22 plotted in Figures 58 and 60, respectively.

Predicted properties for the axial sheath model are tabulated in

Table 8. Trends with temperatur.: are similar to the trends predicted

with the isotropic carbon matrix model, listed previously in Table 7.

Comparing results between Tables 7 and 8, it can be seen that the

longitudinal stiffness of the axial sheath model is higher at all

temperatures than corresponding values predicted with the isotropic

carbon matrix model. This is to be expected due to the added

longitudinal stiffness of the sheath. Transverse tensile and

longitudinal shear moduli of the axial sheath model are also higher. The

transverse shear moduli for the axial sheath model and the isotropic

carbon matrix model are similar.

Predicted longitudinal tensile strengths are the same for both

models. As this strength is dominated by the strength of the fiber, this

result is also expected. Transverse tensile strengths and shear

strengths for the axial sheath model are greater than those predicted

for the isotropic carbon matrix model.

Thermal expansion results from the two models are also similar, as

can be seen by comparing Figures 57 through 60 for the axial sheath

model and Figures 44 through 47 for the isotropic carbon matrix model.

Some limited experimental results were available to compare with

the fiber bundle predicted properties presented here. As summarized in a

previous report [3], single axial fiber bundles were extracted from FMI

Billet No. 2208 and tested in tension. Measured tensile moduli values

were quite scattered, but were consistently greater than calculated

"rule-of-mixture" values for carbon-carbon fiber bundle composites with

no sheath. Thus, the stiffening effect of the sheath was again
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Figure 55. Transverse Shear Stress-Strain Response for the Axial Sheath
Model.
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demonstrated. The average longitudinal tensile modulus for fiber bundles

tested during previous years of this present research was 287 GPa (41.6

Hsi), with values ranging from a low of 179 GPa (25.9 Hsi) to a high of

400 GPa (58.0 Hsi). The 287 GPa (41.6 Msi) measured tensile modulus

compares favorably with the room temperature 274 GPa (39.7 Hsi)

predicted tensile modulus using the axial sheath model. Unfortunately,

transverse and shear test data for these fiber bundles were not

available. Thus, longitudinal tension results were the only comparisons

available for this present analytical work.

Properties listed in Tables 7 and 8, along with stress-strain plots

shown in this present section of the report were used to define the

fiber bundle material properties used in the three-dimensional

minimechanics analysis. The minimechanics analysis data preparation and

results are described in Section 5.

N
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SECTION 5

MINIMECHANICS UNIT CELL ANALYSIS

5.1 Effective Material Properties

inelastic material behavior is described within the

three-dimensional finite element analysis by use of an effective

stress-effective strain relation, previously described in Eqs. (4) and

(5). The anisotropy parameters F, G, H, L, M, and N are calculated from

Eq. (13) based on six "yield" stress values. The implication of this

type of constitutive relation is that the six uniaxial stress-strain

relations (four for a transversely isotropic material) can be described

by a single effective stress-effective strain equation with proper

choices for the anisotropy parameters. A discrepancy in this present

minimechanics unit cell analysis was that the four micromechanics

generated stress-strain relations could not be represented by a single

effective stress-effective strain equation.

Micromechanics generated room temperature stress-strain data for

the no-sheath fiber bundle model are plotted as effective stress versus

effective strain in Figures 61 and 62. Figure 62 shows the initial

portions of the curves plotted in Figure 61 on expanded scales. As can

be easily seen in Figures 61 and 62, the four stress-strain plots

representing longitudinal tension, transverse tension, longitudinal

shear, and transverse shear do not merge into a single effective

stress-effective strain plot. By appropriate selection of the "yield"

strengths and therefore the anisotropy parameters, the initial slopes of

the curves can be merged into one plot, as shown in Figure 62. However,

variations in the anisotropy parameters do not change the basic shape of

an individual stress-strain plot. Thus, the linear longitudinal tension

plot remains linear. Nonlinear transverse tension, longitudinal shear,

and transverse shear stress-strain plots remain nonlinear. It can be

argued that an effective stress-effective strain constitutive relation

should fail because nonlinearity exhibited by the stress-strain curves

for individual loading modes occurs due to cracking. There is a need for

further study of appropriate constitutive relations for all types of

composite materials, as well as for carbon-carbon.
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Figure 61. Effective Stress Versus Effective-Strain Plots for the
Isotropic Carbon Matrix Fiber Bundle Model at Room
Temperature.
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Figure 62. Initial Portions o0 Ole Effective Stress Versus Effective

Strain Plots for the Isotropic Carbon Matrix Fiber Bundle
Model at Room Temperature.
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In the present analysis it was still possible to include the

influence of nonlinear stress-strain behavior via an effective

stress-effective strain constitutive relation. Fiber bundles in the unit

cell minimechanics model, were oriented parallel to the x, y, and z

coordinate directions, as previously shown in Figure 8. When the unit

cell was subjected to a particular type of uniaxial applied stress, the

stress state in an individual fiber bundle was dominated by one stress

component. For example, when the unit cell model was subjected to an

applied normal stress a x, the x-fiber bundle were primarily loaded in

longitudinal tension. The y-fiber bundle and z-fiber bundle are

primarily subjected to transverse tension. In order to include at least

partial estimates of nonlinear fiber bundle behavior, two effective
stress-effective strain equations were used to model fiber bundle

constitutive behavior in the present analysis. One equation modeled

axial response of the fiber bundle and one equation modeled transverse

tension and shear behavior. Effective stress-effective strain

constitutive plots used to represent the isotropic carbon matrix fiber

bundle model, the fiber bundle with no sheath material, are shown in

Figure 63.

Similar behavior is exhibited in results from the axial sheath %

fiber bundle micromechanics model, as plotted in Figures 64 and 65.

Figure 65 shows initial portions of the plots shown in Figure 64 plotted

on expanded scales. Again the four modeled loading cases could not be

represented by a single effective stress-effective strain plot.

Longitudinal tension stress-strain results for the axial sheath model

are nonlinear, as shown in Figure 64, due to failure of the sheath

material. However, effective stress-effective strain representation

still requires use of two separate constitutive relations as is done for

the isotropic carbon matrix fiber bundle. Effective stress-effective

strain plots defining longitudinal and transverse behavior of the axial

sheath fiber bundles are shown by the room temperature case in Figure

66.

Similar plots were constructed for the elevated temperature data

generated using the micromechanics analysis. As the results were similar

to the room temperature plots, the elevated temperature effective

stress-effective strain plots were not included here. As for the room
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Figure 63. Effective Stress-Effective strain Plots Used to Define
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Fiber Bundle at Ro~om Temperature.

118

&N,"', :L



I~I~ 50
S300 -

S200
2S5

e0-

e.0e 1. 2.0 3.0 4.0

"STRAIN (PERCENT)

Figure 64. Effective Stress-Effective Strain Plots for the Axial

Sheath Fiber Bundle Model at Room Temperature.
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Figure 65. Initial Portions of the Effective Stress-Effective Strain

Plots for the Axial Sheath Fiber Bundle Model at Room
Temperature.
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temperature results, representation of the effective stress-effective

strain constitutive relations required two separate equations depending

on the type of loading present. Stress values used to compute the

anisotropy parameters defining effective stress-effective strain

behavior at the three modeled temperatures are listed in Table 9 for

both fiber bundle models. Note that shear values listed in Table 9 are

greater than corresponding shear strengths listed in Tables 7 and 8.

However, use of the predicted shear strength values produces no

correlation of effective stress-effective strain behavior between the

various loading modes.

Analytical weakness in modeling nonlinear fiber bundle

stress-strain behavior pertains only to the nonlinear portions of

constitutive behavior. Linear elastic functions in the three-dimensional

finite element analysis worked well. An attempt was made to include

nonlinear orthotropic material behavior into this minimechanics unit

cell analysis, in order to include effects of microcracking within the

fiber bundles.

Elastic constants calculated with the micromechanics analysis,

listed in Table 7 and 8, were regression fit to polynomial functions of

temperature in the same manner as constituent properties were entered

into the generalized plane strain micromechanics analysis. Regression

coefficients for the fiber bundle properties used in the present unit

cell analysis are listed in Tables 10 and 11 for the no-sheath and axial

sheath fiber bundle models, respectively. Two different sets of

Richard-Blacklock parameters "yield" stress values are shown in Tables

10 and 11. The two sets of data represent two different effective

stress-effective strain constitutive relations. The parameters marked as

axial define the axial stress dominated effective constitutive relation.

Parameters marked as transverse define transverse tension and shear

dominated effective constitutive behavior. Stress values from Tables 10

and 11 were used to calculate the anisotropy p amcters via equation

(13).

Material properties written as polynomial equations in temperature

in Table 10 and 11 define the fiber bundle properties used. Isotropic

carbon material properties listed in Table 6 were used to represent
carbon material within the unit cell interstitial matrix pockets,
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TABLE 10

Thermomechanical Properties of the Isotropic Carbon Matrix Fiber
Bundle Model as Functions of Temperature (°C)

Property - C0 + ClT + C2T 2

Property C0  C 1 C2

E1 1  (psi) 3.15 x 10 7  4.56 x 103 3.80 x 100

E2 2 - E3 3 (psi) 7.72 x 10 5  -9.29 x 10 9.61 x 10-2

V 1 2 - V13 2.11 x 10-1 -6.28 x 10"5 4.49 x 10' 8

v23 2.23 x 10"1 -1.65 x 10.4 7.66 x 10'8

G12 - G1 3 (psi) 6.41 x 105 -5.45 x 10 2  2.46 x 10"I

al (°C 1 ) -6.64 x 10' 7  1.27 x 10.9

C 2 2  (OC'1) 3.85 x 10i 6  2.33 x 10.9

Axial Properties

ER (psi) 1.32 x 10 6 1.08 x 103 -3.83 x 10"I

n 1.00 x 10

a 0 (psi) 1.00 x 105

$, 5.00 x 104

S2 = S3 (psi) 8.45 x 103 2.24 x 10 -4.24 x 10'4

S12 S13 (psi) 4.00 x 103 -1.94 x 10"1 5.57 x 10-6

S2 3  (psi) 3.59 x 103 4.55 x 10"1 5.88 x 10"5

Transverse Properties

ER (psi) 1.32 x 106 1.08 x 103 -3.83 x 10"1

n 2.00 x 100

C (psi) 4.92 x 103 3.87 x 100 -1.11 x i0"4

S, (psi) 1.53 x 103 -9.95 x 102 2.90 x 10-5

S2 =S3 (psi) 1.68 x 103 2.84 x 100 -7.84 x 10'4

S$ (psi) 4.00 x 10 1.63 x 100 1.08 x 10

S2 3  (psi) 2.38 x 105 1.03 x 102 -4.10 x 102
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TABLE 11

Thermomechanical Properties of the Axial Sheath Fiber Bundle Model
as Functions of Temperature (*C)

Property = C + C T + C2T2

Property C0  C1  C2

Ell (psi) 3.96 x 107 5.81 x 103 -4.84 x 100

E22 - E3 3 (psi) 1.11 x 106  3.55 x 10 7.80 x 102

v1z = V1 3  2.31 x 10"1 -4.98 x 10"5 4.45 x 10-a

V23 2.44 x 10"I -2.03 x 10-4 9.21 x 10.8

G12 - G1 3 (psi) 7.79 x 105 2.14 x 10 4.97 x 10o2

C11 (*C- 1 ) -7.01 x 10.7 1.31 x 10.9

a I
22 (C- 1) 4.69 x 10-6 2.26 x 10'9

Axial Properties

E (psi) 2.10 x 106 9.68 x 102 -3.30 x 16 1i0

n 3.0 X 100

o (psi) 6.98 x 10 4  9.68 -2.78 x 10.4

S1  (psi) 5.00 x 10o5

S2 - S3  (psi) 9.47 x 103  1.29 -3.71 x 10.5

S12 - S13 (psi) 5.0 x 103

S23 (psi) 3.49 x 10 3  3.22 x 10i1 -9.27 x 10.6

Transverse Properties

ER (psi) 2.10 x 106 9.68 x 102 -3.30 x 10-1

n 2.0 x 100

0 0 (psi) 7.92 x 103 3.87 x 100 -1.11 x l0.4

S1  (psi) 1.63 x 105 -5.58 x 10 2.60 x 10-2

S2 - S3  (psi) 4.76 x 102 6.63 x 10"1 -2.06 x 10.4

S12 - S13 (psi) 4.76 x 102 6.63 x 10' -2.06 x 10- 4.

S23 (psi) 9.28 x 102 1.05 2.60 x 10.2 2
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5.2 Thermal Residual Stresses

An attempt was made in this analysis to model cracking within the

unit cell due to processing-induced thermal residual stresses. During

cooling, cracks developed at the interfaces between fiber bundles and at

the interfaces between fiber bundles and the interstitial carbon matrix

pockets. As cooling continued, these cracks extended, relieving a

portion of the thermal residual stresses. The extent of such cracking

has been studied in detail by Batdorf, et al. [74]. Recall that

investigators at Materials Science Corporation included the effect of

these cracks by use of a "unit cell efficiency" parameter which

described the extent of such cracking [11-13].

It was hoped that the analysis used in this present work would be

able to predict the extent of interfacial cracking. A unit cell

efficiency parameter could then have been predicted, rather than back

calculated from test data. Some minimal testing would still have been

necessary to verify results, of course.

Unfortunately, the three-dimensional finite element analysis was,

unable to completely model cracking in the present unit cell models. The

unit cell model used in this work, previously shown in Figure 9, was

relatively coarse in terms of the number of finite elements. The entire

unit cell was represented by 425 nodes and only 64 elements. In regions

of large stress gradients, a small number of elements made accurate

representation of the stress state difficult. By using higher order

elements, quadratic elements in this analysis, the accuracy of the p

analysis was improved. A more finely divided unit cell model would be

desirable. However, the size of problem defined by the model of Figure 9

approached the maximum problem size which could be solved.

The computer program used in this analysis could only model crack

propagation for one or two increments beyond crack initiation. Crack

propagation by node division appeared to work correctly. However, after

cracking at a few separated nodes in the unit cell models, problem

solution become unstable and the analysis produced erroneous results.

Difficulties were encountered in redistributing nodal forces during

crack propagation in order to maintain equilibrium. Failure at a node in

the coarse models required redistribution of larger force components.

For these brittle materials, large redistribution forces produced
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unstable crack extension and failure of the entire model. A finely

divided model loaded in small incremental steps would be much more

desirable than a coarse model loaded with large stress increments. Work

is currently underway to make the three-dimensional finite element

computer program more efficient in order to alleviate size and

computation time restrictions.

Given limitations on problem size and computation time, it was not

possible to calculate a unit cell efficiency parameter by modeling

damage progression. Preliminary results indicated that extensive

interfacial damage occurred due to fabrication-induced thermal residual

stresses. This interfacial damage resulted in an essentially stress-free

unit cell after temperature changes of only a few hundred degrees.

Therefore, unit cell analysis for this present work was assumed to begin

at a stress-free state for all modeled temperatures.

5.3 Thermoelastic Property Predictions

Elastic coefficients and stress-strain behavior for two carbon-

carbon unit cell models were predicted by simulating ax and az tensile

normal stress loadings as well as rxz and r shear stress loadings. Thexz xy

same finite element mesh, previously shown in Figure 9, was used for

both models. Only fiber bundle properties varied. Thus, three-

dimensionally reinforced carbon-carbon unit cell properties were

predicted using fiber bundles modeled with no oriented sheath around

individual filaments, and for fiber bundles containing an oriented

sheath material. As was done in the micromechanics analysis, mechanical

loads were simulated at room temperature, 815"C and 1649°C.

Tensile normal stress-strain plots for the no sheath fiber bundle

unit cell model are shown in Figures 67 and 68 for ax and oz applied

stresses, respectively. Elevated temperature does not significantly

affect stress-strain behavior of the no-sheath unit cell model for

either ax or ao applied stress. Young's modulus in the x-direction is 42

GPa (6.1 Msi) at room temperature, 49 GPa (7.1 Msi) at 815°C, and 40 GPa

(5.8 Msi) at 16490 C. Tensile moduli tend to increase with increasing

temperature, then decrease at yet higher temperatures. This behavior is

similar to that predicted for the x-direction fiber bundles themselves.

Because x-direction stiffness is dominated by the x-direction fiber

bundle, it is to be expected that such similar trends occur.
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Elastic tensile moduli for the z-direction also increase, then

decrease with progressively elevated temperatures. Tensile moduli in the

z-direction for this no-sheath unit cell model are 100 GPa (14.5 Msi) at

room temperature, 102 GPa (14.9 Msi) at 815*C, and 92 GPa (13.3 Msi) at

1649°C. Stiffness in the z-direction is dominated by the z-fiber bundle.

Elastic moduli in the z-direction are approximately 2.3 times greater

than x-direction elastic moduli, reflecting a higher proportion of

graphite filaments oriented in the z-direction of the unit cell. In the

actual FMI Billet No. 2696 modeled here, the ratio of z-oriented

graphite filaments to x-oriented graphite filaments is 15000/6000, or

2.5/1.

Stress-strain plots for ax loading shown in Figure 67 are nonlinear

but could be described as bilinear. Stress-strain plots for a loading

shown in Figure 68 are linear. This difference in shape between plots

foL the two applied stresses results from modeled nonlinearity in

transverse constituent fiber bundle properties. For an x-direction

applied stress, the z-fiber bundles were subjected to transverse tension -

and shear stresses. These transverse fiber bundles contributed to the

stiffness of the unit cell until a "yield stress" for the most critical

stress component was attained. At that point the analysis treated this

transverse fiber bundle as an inelastic material obeying the transverse

effective stress-effective strain relation shown in Figure 63.

Transverse fiber bundles ceased to contribute to the stiffness of the

unit cell, undergoing large increases in strain for only small increases

in stress. Thus the x-direction fiber bundle had to withstand a

proportionally larger share of the increasing applied stress with little

load bearing contribution from transverse fiber bundles or interstitial

matrix pockets. Recall that nonlinearity of the transverse fiber bundle

properties was primarily caused by microcracking within the fiber

bundles as predicted by the generalized plane strain micromechanics

analysis. Therefore, even though the node separation technique was not

currently being used to model gross damage propagation in the unit cell,

damage occurring within constituent materials was included.

Stress-strain behavior in the z-direction is linear because

transverse fiber bundles (the x- and y-fiber bundles) did not attain
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stress values in excess of their respective yield strengths. Thus no

changes in slope are apparent in the stress-strain plots of Figure 68.

Shear stress versus shear strain plots for the model are shown in

Figures 69 and 70 for rxz and rxy applied shear stresses, respectively.

Shear moduli tend to decrease as temperature increases from room

temperature to 815°C. The G shear moduli for shear stress-shear strainxz

curves plotted in Figure 69 are 4.0 GPa (0.58 Msi) at room temperature

and 2.8 GPa (0.41 Msi) at 815°C. The G shear modulus at 1649°C

increases to 3.2 GPa (0.46 ksi). This trend of decreasing then

increasing shear modulus with increasing temperature reflects the shear

stiffness behavior predicted for the no sheath fiber bundles as well as

for the isotropic carbon matrix material. Shear stiffnesses for 7

applied stress exhibit similar behavior with temperature as do the Gxz

shear moduli. At room temperature the G shear modulus is 3.6 GPa (0.52xy

Msi), decreasing to 2.8 GPa (0.41 Msi) at 815°C, then increasing to 3.2

GPa (0.47 Msi) at 1649'C.

Elastic properties for the material tests simulated in Figures 67

through 69 are listed in Table 12. Poisson's ratios were calculated from

strains predicted during modeling of a and a normal tensile appliedx z

stresses. Note that the Poisson's ratio values listed in Table 12 are

quite low as compared to other engineering materials. These low lateral

contractions reflect high lateral stiffnesses due to three-dimensional

reinforcement of the unit cell and poor load transfer between

constituent parts of the unit cell.

Tensile stress-strain predictions for the axial sheath unit cell

model are plotted in Figures 71 and 72. Only small differences due to

elevated temperature are apparent in the a plots shown in Figure 71 orx

the a plots shown in Figure 72. Both the ax and ao stress-strain plots

exhibit nonlinear material behavior. This is due to modeled nonlinearity

of transverse tensile and shear behavior for transverse oriented fiber

bundles. However, a stress-strain results also show an effect due to

failure of the axial sheath, which was included as nonlinear behavior in

the axial sheath fiber bundle tensile response, as previously shown in

Figure 66.

Shear stress-shear strain plots for rxz and r applied stress arexz xy

shown for the axial sheath unit cell model in Figures 73 and 74. Shear
12
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moduli for both applied shear stresses tend to increase with increasing

temperature, as reflected in Figures 73 and 74.

Elastic coefficients predicted for the carbon-carbon unit cell

using axial sheath fiber bundle properties are listed in Table 13.

Poisson's ratio values are again quite low, similar to the no-sheath

unit cell results.

5.4 Comparison of Predicted Progerties

Room temperature o and a normal stress-strain results for the

no-sheath and axial sheath carbon-carbon unit cell models are plotted

together in Figures 75 and 76. The curves marked with squares show

results using the no-sheath fiber bundle properties, i.e., a fiber

bundle containing only isotropic carbon as a matrix material. The curves

marked with circles show results using the axial sheath fiber bundle

properties. As can be seen in Figure 75, the axial sheath material is

initially stiffer than the material containing no oriented sheath, as

would be expected. The predicted no-sheath unit cell tensile modulus EX

is 42 GPa (6.1 Msi), and 53 GPa (7.7 Msi) for the axial sheath model, as

listed in Tables 12 and 13. The greater tensile modulus of the axial

sheath unit cell is due to the stiffening effect of sheath material

oriented in the x-direction of the unit cell. Note the sharp slope

change in the axial sheath model stress-strain curve which takes place

when the x-direction sheath material fails. In the no sheath case, slope

changes are more gradual because stiffness changes (cracking) in the y-

and z-direction fiber bundles occur less abruptly. These transverse

property changes also have less influence on the overall unit cell

stress-strain response. Both stress-strain curves shown in Figure 75

become relatively flat at approximately 137 MPa (20 ksi), with the

no-sheath material reaching a slightly greater stress than the axial

sheath material. From the shapes of the curves it can be seen that an

x-direction ultimate tensile strength estimate for either carbon-carbon

unit cell model must on the order of 137 MPa (20 ksi).

Room temperatures tensile tests performed on FMI Billet No. 2696

during previous years of this research study showed an average

x-direction strength of 128 GPa (18.5 ksi) and an x-direction elastic

modulus of 47 GPa (6.8 Msi) [2]. Results shown in Tables 12 and 13 and
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in Figure 75 compare favorably with the measurements reported in

Reference [2).

A comparison of predicted room temperature a tensile stress-strain

behavior for unit cells using the two different fiber bundles is shown

in Figure 76. As for the x-direction tensile stress results, the axial

sheath unit cell model is axially stiffer than the no-sheath model,

i.e., 125 GPa (18.2 Msi) as compared to 100 GPa (14.5 Msi). A major

difference in results obtained for the two models is that the no-sheath

curve is linear and the curve predicted using fiber bundles with an

axially oriented sheath is nonlinear. For the no sheath case, transverse

fiber bundles and interstitial matrix regions are not stressed beyond

their respective "yield" values, therefore no nonlinear material

behavior is exhibited. The linear elastic no sheath z-direction fiber

bundle totally dominates az tensile stress-strain behavior. For the

axial sheath unit cell model, stress-strain behavior is also dominated

by the z-direction fiber bundle. However, longitudinal stress-strain

response of axial sheath fiber bundles is nonlinear (bilinear) due to

failure of the sheath.

The average tensile modulus in the z-direction measured during

previous experimental work was 123 GPa (17.8 Msi) and the average

strength was 163 MPa (23.6 ksi) [2]. This measured tensile modulus most

closely corresponds to the 125 GPa (18.2 Msi) room temperature

z-direction tensile modulus predicted for the axial sheath unit cell

model. At approximately 207 GPa (30 ksi), the axial sheath model results

show larger inelastic strains, flattening the curve plotted in Figure

76. An ultimate strength for this model must then also be approximately

207 GPa (30 ksi), which compares reasonably well with the 163 GPa (23.6

ksi) average measured z-direction tensile strength reported in Reference

[21.

Room temperature r amd r shear stress-shear strain results are
plotted for the no-sheath and axial sheath unit cell models in Figures

77 and 78, respectively. For both applied shear stress loadings, the

axial sheath model is slightly stiffer than the no-sheath model,

although the results are quite similar.

Both unit cell models predicted shear moduli that were somewhat

greater than shear moduli measured during previous experimental work.
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Shear stiffnesses G of 4.0 GPa (0.58 Msi) and 4.5 GPa (0.65 Msi) werexz

predicted for the no-sheath and axial sheath unit cell models,

respectively. Room temperature G predicted shear moduli were 3.6 GPaxy
(0.52 Msi) and 3.8 GPa (0.55 Msi), as listed in Tables 12 and 13.

Average shear moduli reported in References [2,3] as measured with the

Iosipescu shear test method were 2.2 GPa (0.32 Msi) for G and 2.6 GPa

(0.38 Msi) for G xy. Average shear strengths of 16 MPa (2.3 ksi) and 15

MPa (2.2 ksi) for r and r applied stresses were also reported.xz yz
Shear behavior of carbon-carbon materials is dominated by cracking

which occurs at the various interfaces within the carbon-carbon unit

cell. Because these interfaces were assumed to be initially intact in

the present analysis, predicted shear stiffnesses tended to be greater

than actual measured values. An attempt to model interface damage in

this present work was unsuccessful, for reasons previously described.

Steps are currently being taken to improve interfacial damage

propagation modeling.

It was possible to use the present analysis to estimate damage

initiation within the carbon-carbon unit cell. Crack initiation

functions within the computer program worked well. Difficulties existed

in the automated crack propagation portions of the program. By use of

interactive graphics, a carbon-carbon unit cell model can be "taken

apart", as shown in Figure 79, and stresses at the various constituent

interfaces examined. In Figure 79a, a unit cell corresponding to the

original model of Figure 8 is shown. An x-direction fiber bundle is

separated from the unit cell. The model is then rotated to permit

* viewing of the x-direction fiber bundle interface surfaces, as shown in

Figure 79b. All portions of the unit cell except the x-direction fiber

bundle are then erased. This interactive graphics software is called

PATRAN, marketed by PDA Engineering, Santa Ana, California.

Shear stress contours are plotted on the internal surfaces of this

no-sheath x-direction fiber bundle in Figure 80. These r shear stress
xy

contours have been normalized by dividing by the rxy applied shear

stress value. As can be seen in Figure 80, shear stresses are relatively

uniform within the unit cell. The maximum shear stress contour shown is

only 10 percent greater than the applied shear stress. Therefore,

overall material shear strength is basically governed by the shear

139



z-fiber bundle Sy -fiber bundle

matri x-fiber bundle

a) Fiber Bundle Separated

y-fiber bundl

x-fiber bundle

matrix

x,-f iber bundle

b) Model Rotated to View Internal Surfaces
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strengths of the component parts of the unit cell. Fiber bundle shear

strengths predicted using the micromechanics analysis ranged from 3 MPa

(0.5 ksi) to 12 MPa (1.8 ksi). These values were in good agreement with

measured shear strengths reported in References [2,3]. Because crack

propagation did not function properly in the present computer program,

post interface shear failure loading of the models was not attempted.

Therefore, additional shear load bearing capability due to reorientation

of fiber bundles was not included in the analysis.

Overall, the three-dimensional unit cell analysis predicted tensile

elastic constants very well, and did an adequate job of predicting

elastic shear constants. This finite element analysis differed from

linearly elastic analyses in that it was capable of modeling inelastic

material behavior and could therefore predict the entire stress-strain

response of any modeled composite material for any modeled loading or

environment.

The importance of including the presence of oriented matrix

material within graphite fiber bundles was again demonstrated. This

oriented sheath material is responsible for increased stiffness in the

composite. It also contributes to the nonlinear (bimodular) tensile

behavior exhibited by carbon-carbon. The fiber bundle-fiber bundle and

fiber bundle-interstitial matrix pocket interfaces were also again shown

to be important. Unfortunately, computational difficulties made adequate

modeling of these interfaces impossible. Presently planned improvements

of the computer program, coupled with advances in the size and speed of
computer hardware, will make modeling damage propagation feasible.
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SECTION 6

SUMMARY AND CONCLUSIONS

The objective of this research program was to develop a combined

micromechanics and minimechanics analysis to predict the

thermomechanical material properties and stress-strain behavior for

three-dimensionally woven carbon-carbon composite materials. A

generalized plane strain finite element micromechanics analysis was

successfully used to predict thermomechanical behavior of unidirectional

carbon-carbon fiber bundles. Two different fiber bundle models were

analyzed to determine the influence on fiber bundle properties of an

axially oriented orthotropic matrix sheath surrounding individual

graphite fibers. This analysis included the influence of nonlinear,

temperature-dependent material behavior. Results also included the

effects of microcracking damage progression within the fiber bundles.

Two sets of fiber bundle properties were then used to predict uniaxial

tensile and shear properties for a three-dimensional cartesian-weave

carbon-carbon composite. Predicted material properties were compared

with room temperature experimental data generated during previous years

of this research.

The presence of an oriented axial sheath around individual graphite

filaments within fiber bundles was again shown to be an important factor

influencing the bulk material response of carbon-carbon composites. This

axial sheath provided increased fiber bundle stiffness, thereby

increasing the predicted bulk stiffness of the carbon-carbon unit cell.

Tensile failure of the sheath also contributed to predicted nonlinear

stress-strain behavior in the woven carbon-carbon material.

Damage propagation was also shown to strongly influence mechanical
properties. At the micromechanics scale, damage propagation was

responsible for a major portion of the predicted nonlinear stress-strain

behavior, especially in shear. Unfortunately, computational problems

prevented complete damage propagation modeling during the unit cell

analysis. Crack initiation models did demonstrate the importance of

including this behavior in any analysis of carbon-carbon. With presently

continuing improvements to the computer program, such crack propagation

modeling will be feasible.
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One difficulty encountered during this present investigation was a

lack of constituent material properties data. Properties for bulk ATJ-S

graphite were used to estimate matrix carbon material behavior. It is

unlikely that matrix carbon within carbon-carbon fiber bundleshas the

same properties at this micromechanics scale as bulk ATJ-S. However,

direct determination of in-situ micromechanical matrix carbon properties

is difficult.

Overall, the objectives of this program were attained. Many

problems still exist with regard to modeling carbon-carbon materials.

However, the analytical tools developed here are equally applicable to

the study of many other composite materials, including polymer matrix

and ceramic matrix composite materials. Although the present research

program is concluded, work to further refine the analytical techniques

developed during the program is continuing. Analytical and experimental

efforts to further explore inelastic constitutive behavior of composite

materials will continue also.

2'.
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