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PREFACE
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Naval Research, Arlington, Virginia, served as the Program Technical

Monitor.
Work reported in this document was performed by members of the
Composite Materials Research Group within the Mechanical Engineering
Department at the University of Wyoming. Mr. D. E. Walrath and Dr. D. F.
] Adams served as Co-Principal Investigators. Also contributing to this
research effort were Messrs. J. M. Mahishi, R. L. Westberg, and G. J.
Aust, graduate students in Mechanical Engineering, and K. M. Bauer, B.
D. Brownlee, D. K. McCarthy, G. V., Morrison, C. E. Wyers, B. R. Miller,

and R. W. Wakelee, undergraduate students in Mechanical Engineering.
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SECTION 1

INTRODUCTION

1.1 Previous Experimental Efforts

An Office of Naval Research contract to study carbon-carbon
materials was initiated at the University of Wyoming in August 1977,
Work performed as part of this contract, prior to the present report,
was primarily experimental, as reported in References [1-3].

Early emphasis was on the measurement of bulk mechanical properties
of a specific three-dimensional cartesian weave carbon-carbon billet
[1). This billet, No. 2696, was fabricated by Fiber Materials Inc. (FMI)
from HM-3000 PAN based graphite fibers and Ashland 240 pitch resin. Test hf‘

methods were developed to measure uniaxial tensile, uniaxial *‘#

compressive, and shear properties including both strengths and elastic
moduli. Acoustic emission monitoring was also performed in order to
estimate damage onset within the test specimens. A scanning electron

microscope was used to examine failed specimens in an effort to identify

§

i specific damage mechanisms. ‘2{
. During a second phase of experimental testing, similar tests were -
p: conducted to measure the mechanical properties of three-dimensional ﬁig
1 cylindrical weave carbon-carbon materials [2]. Sections from two ?;' s
X cylindrical weave billets were examined. The first billet section was a -
' 60° arc taken from FMI Billet No. 2208, fabricated from Hercules HM “ay
j‘ graphite fibers and Ashland A240 pitch. The second billet segment was a
¥ complete ring section from General Electric (GE) Billet No. C4X Pl1-2, *::5
, fabricated from HM graphite fibers and Allied CP277-15V coal tar pitch. fj_"_i
] An attempt to measure residual stresses in the complete ring segment ;@

indicated that 1little or no residual stress was present. Uniaxial

tension and compression tests were conducted in all three principal

AT s

material directions, i.e., the axial, radial, and circumferential TR
directions. Shear tests in three of the six shear planes were also
] performed. f;i:;‘f
‘ ) A third experimental effort was primarily concerned with studying ‘ $
: the axial tensile response of cylindrical-weave carbon-carbon [3]. '
Because the tensile properties of carbon-carbon are typically dominated

SN
by the fiber bundle properties, emphasis was placed on measuring the Q'_*
~
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axial tensile properties of single fiber bundles extracted from FMI
Billet No. 2208. Results from these single bundle tests were quite
scattered, but generally the tensile moduli were higher and tensile
strengths were lower than expected, based on rule-of-mixtures
predictions and constituent fiber properties. Further axial compression
and circumferential tension tests were also performed on the
cylindrically woven GE Billet No. C4X P1-2.

1.2 Summary of Present Work

three-dimensionally reinforced carbon-carbon composite material in order
to better understand previously obtained experimental results. Analysis
of carbon-carbon materials may be conducted at three geometric levels,
typically referred to as micromechanics, minimechanics, and

macromechanics .y Micromechanics models are concerned with the behavior of

N\

individual constituents within a composite material, e.g., single fibers
and the surrounding matrix within a single fiber bundle. Minimechanics
models are concerned with the interactions between fiber bundles and
interactions with the matrix pockets present in multi-dimensional woven
constructions. Usually minimechanics models study the smallest repeating
volume element present in the material, a unit cell. Macromechanics or
structural models deal with the largest geometric scale, an entire part
or billet. Analyses at the structural scale are usually forced to ignore
the details of unit cell construction, for economic or computational
reasons. Thus the billet is usually assumed to be homogeneous, although
anisotropic.

As part of this investigation, the available 1literature was
reviewed in an effort to obtain as much information as possible on
constituent (fiber and matrix) material properties as well as bulk
carbon-carbon material properties. Published analytical approaches to
modeling carbon-carbon composites were also examined. This literature
review is included as Section 2 of the present report.

A generalized plane strain finite element analysis was used to
conduct the micromechanics portion of this analytical study. Numerical
micromechanics modeling techniques were used to obtain estimates of
carbon-carbon unidirectional fiber bundle material properties for later

use in the minimechanics unit cell analysis. This micromechanics finite
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element analysis includes the effects of temperature-dependent nonlinear
constituent material behavior. The analysis also includes a capability
to model damage initiation and propagation in order to estimate stress-
strain behavior and strength of carbon-carbon fiber bundles. The
generalized plane strain finite element micromechanics analysis and
associated computer implementation are described further in Section 3.
Material properties of carbon-carbon fiber bundles predicted using this
micromechanics analysis are summarized in Section 4.

With the predicted fiber bundle properties as input, 2 full
three-dimensional finite element analysis was used to perform the unit
cell minimechanics analysis. The three-dimensional analysis also
includes capabilities for modeling temperature dependent nonlinear
material behavior as well as damage initiation and propagation. This
analysis and computer implementation are described in Section 3.
Predicted bulk material properties for a rectangular weave carbon-carbon
material, results of the three-dimensional minimechanics analysis, are
discussed in Section 5.

Overall, the capabilities of these analyses to predict
carbon-carbon composite material properties has been demonstrated. An
advantage of the numerical techniques used here is the ability to
predict the complete nonlinear stress-strain behavior of the bulk
composite material. Further refinement of the computer programs
implementing these analyses will continue. The choice of appropriate
constitutive relationships for nonlinear orthotropic materials is also
an area warranting further study. Conclusions of this present study,
including a summary of present limitations and suggestions for further

work, are discussed in Section 6.
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SECTION 2

PRIOR ANALYTICAL MODELS

2.1 Background

An early paper describing the development history of carbon-carbon
materials up to that time was published by Schmidt in 1972 [4].
According to Schmidt, carbon-carbon materials originated in the late
1950's, probably by accident. During an experiment to determine the

fiber volume content of an oxide fabric/phenolic composite, a laboratory

- e

technician at the Chance Vought Corp. inadvertently covered the heated

crucible. The phenolic matrix was not completely vaporized at high
1 temperature, resulting in a "reduced resin 1laminate” which had
relatively high strength. The advantages of carbon-carbon were, and
still are, an ability to retain useful mechanical properties at high
temperature, and resistance to thermal stress and thermal shock. Schmidt
also supplied at that time a list of 162 related references, not keyed
h . to the paper.

Because carbon-carbon materials remain useful at highly elevated
temperatures, many applications for this material have been for
components of reentry vehicle and rocket nozzle designs. Thus, much of

; the funding for carbon-carbon research has been supplied by the
Department of Defense, primarily the Navy and the Air Force. While much
of thas funded research has been for applications, 1i.e., hardware
oriented, more fundamental studies of material behavior have also been

1 conducted.

| Available literature on the subject of carbon would occupy a small
library of its own. Even by restricting the subject to carbon fibers and

carbon-carbon composite materials, the number of available papers and

3 reports 1is still quite large, even with recent restrictions on
; publication of such research. Carbon-carbon materials research may be

broadly (and with much overlap) grouped into four areas: processing,
z characterization, analytical modeling, and hardware. Processing studies
3 ) are concerned with the production of high quality, consistent carbon-

carbon billets., Many of these studies tend to be empirical in nature,
involved with the effects of various processing parameters on final

production material. Closely related to the processing studies are the

L e e
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characterization studies. Characterization programs are concerned with

' measuring the material behavior under a variety of loading and :

' environmental conditions. Topics of these characterization programs . —
include test method development as well as material property response. Zﬁf

3 Obviously, the processing and characterization studies are closely . f%

3 related; many research programs contain elements of both. Analytical ﬁg

modeling programs are concerned with developing mathematical models to
s describe the thermo-mechanical behavior of carbon-carbon composite

materials. As analytical modeling is the subject of this present report,

W these studies were of most immediate interest. Finally, those programs

grouped as hardware studies involve the design, fabrication, and

performance of a specific hardware component, e.g., a reentry vehicle i;%
nose tip. These studies are more application oriented. ﬁti
: It was the purpose of the present research program to attempt to ;?i
. analytically model  three-dimensionally reinforced carbon-carbon K
. composite materials in order to improve understanding of the behavior ;%Q
} governing the thermomechanical performance of the composite. Therefore, ;&J
i previous analytical material modeling studies were of immediate interest ) § 2
to this work, and are briefly reviewed in this present section. Material =

3 characterization studies were also very important to the present work, ) >
-, providing input data for the models developed here as well as data for t'
i correlation tests of the model. The characterization studies used to *Ex

provide constituent material properties are described in more detail in

> Section 4. While processing effects are of great importance in %;
i determining the final properties of a carbon-carbon composite, modeling ;;ﬁ
3 of the processing environment was beyond the scope of the present ‘fz
A investigation. Finally, the present research was concerned with modeling iﬁ’
the thermomechanical response of the carbon-carbon composite material :f
: itself, rather than the design of a specific hardware component. Thus §§3
: specific hardware oriented studies are not summarized here. §$
. 2.2 Levels of Analysis —
N Analytical modeling of realistic carbon-carbon materials is a very ﬂf
' challenging task. Carbon-carbon composites are heterogeneous on a large - 7@3
d scale when compared to many other materials. Carbon-carbon composites g:&
| exhibit inelastic behavior, possess irregular phase geometries, and - ?;;
N sustain cracking damage during fabrication. The matrix material may be ;ﬂg
) .h‘u',i'
» N
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highly oriented in various regions and contains nonuniformly distributed

cracks and voids. Finally, the constituent material properties are

. difficult to measure experimentally and may differ radically between
: in-situ composite properties and bulk material response. »:T
1 R Despite these difficulties, various modeling approaches have been :a;',

attempted, with subsequent increases in the level of understanding of
the material behavior. These analytical efforts may be loosely grouped
into three classes based on the scale of the attempted model. The first

class, usually called micromechanics in the literature, deals with the

-~ A

interactions between individual Ffibers and between fibers and the

surrounding matrix material. A major difficulty in analyzing

carbon-carbon materials at this 1level is a lack of sufficient

AT
.. constituent material properties data in order to conduct such an tl\
: analysis. In-situ material properties at the micromechanics level are ‘3‘
A experimentally very difficult (and therefore expensive) to measure,
; particularly over the temperature ranges encountered by carbon-carbon ::
j' composites during fabrication and use. Furthermore, voids and cracks :%-:
o larger than several fiber diameters may be present. Broken or twisted ;“"
Y fibers may also occur. These difficulties aside, micromechanics P
) approaches are useful in estimating the response of wunidirectional _,.
carbon-carbon materials. A micromechanics analysis may be used to E-”‘i'
A predict effects of processing on composite properties as well as the :
' effect of poor (or good) interface bonding between fiber and matrix. The ‘
. thermomechanical response predicted by a micromechanics analysis may e
then be used to generate a set of consistent thermomechanical properties t‘§
for unidirectional carbon-carbon fiber bundles for use in a second level ‘E
. minimechanics analysis.
3 At the minimechanics level, an analysis 1is performed on the .=
3 smallest repeating geometric volume element within the composite :fg-:
3 material, termed a unit cell. The level of abstraction is such that r::-“.
x individual fibers are not explicitly modeled. Instead, the interactions A
between fiber bundles and matrix material, as well as fiber bundle-fiber Y
3 - bundle interactions, are of interest. Constituent material behavior at -::::"
: this scale is still very difficult to measure experimentally. However, 3::
A . one source of material properties information is a micromechanics »
analysis, as previously discussed. \.P
4 RN
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A third level of analysis is at the macromechanics or structural s
scale. At the structural level an actual part or structure is modeled,
subjected to in service loads and environmental conditions. At this -
level it 1is not possible to include unit cell geometry nor individual
constituent behavior. At the structural 1level, the carbon-carbon .

material is treated as a homogeneous anisotropic solid. Mechanical

g e

properties at this scale are more easily measured. However, deriving an
appropriate constitutive relation capable of describing the complex ?i
material behavior at this level is difficult. Experimental character-

ol
.
2,

ization is used to provide material properties data, although testing is f?

o g AP
[ T Q¥ S

time consuming and of course requires that the actual composite first be —
~ fabricated. N,
_; 2.3 Micromechanics Analysis Eﬁ
. Early attempts to model carbon-carbon composites began separately :
- at the micromechanics and macromechanics levels. Investigators studying
18 the material response of carbon-carbon composites as a material system
N approached the problem from the micromechanics viewpoint. Rule-of- éfé

mixtures techniques were used by Butler, et al. [S5] to examine the role ‘

of fiber-matrix and matrix-matrix interfaces affecting the properties of

unidirectional carbon-carbon composites. Attempts to correlate strengths G,

SO

I}‘
using the rule-of-mixture approach were unsuccessful. A similar approach E&

14
was used by Perry, et al. ([6], who also studied unidirectional ‘S

carbon-carbon materials.
Evangelides (7] examined the influence of "microstructural factors" tg

that influence failure of carbon-carbon. In particular, orientation of

=8 & 3B
e Y

. the matrix material was identified as an important influence on the bulk g%
- Young’'s modulus of the composite. Observations of this oriented matrix -
N "sheath" were presented, as well as rule-of-mixtures predictions for its %ﬂ
z: influence on composite properties. A statistical model for composite 5;
ﬁ strength, including the influence of bent fibers and a wavy sheath, was ;\3
developed. Analytical predictions of stress-strain behavior in —

v unidirectional carbon-carbon composites were also shown. Limited

R

correlations of analytical predictions with experimental data did

. N
' N

. indicate good agreement. 3

To further study processing induced stresses and strains, - >

; Evangelides, et al. used the SAAS III finite element program to model Q;‘

- .::}
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unidirectional carbon-carbon composites [8]. Possible combinations of

fiber, bulk matrix, and sheath were investigated. Predicted stress

- levels were high due to the assumption of fiber-matrix interface _
integrity. However, the influence of temperature changes on internal R
. stress states was demonstrated. Furthermore, the type of matrix was e

shown to have significant influence on stress levels within the

composite.

An analysis of fiber bundle strength was performed by Evans and

i

Adler [9], who used a thermodynamics and mechanics approach to analyze

"kinking" or fiber bundle micro-buckling in carbon-carbon composites.

s
ik '{"‘v“[‘ D

NPT

Observations of this kinking in a three-dimensional carbon-carbon were

e

presented. These authors found the matrix yield strength and fiber

i 947

iy

fracture strength to be the most important parameters influencing fiber

3
’ d

bundle failure in this kinking mode. No comparisons of their analytical

S
-

results with experimental data were presented.

A model incorporating interfacial friction between fiber and matrix

2]

was presented by Jortner [10]. The effect of frictional load transfer on

A
e

strength and thermal expansion was shown. The effect of fiber bundle

I

rotation during shear loading was also examined.
s Micromechanics approaches are most often used for modeling stress

states and damage mechanisms in unidirectional composites. As applied to

: three-dimensionally reinforced carbon-carbon materials, these analyses

are useful for predicting the behavior of a fiber bundle within the

multi-dimensionally woven material. However, most micromechanics bvj
» analyses do not correctly model the response of multi-dimensionally '
", woven carbon-carbon composites. Many investigators have made use of ,aéz
micromechanics analyses to provide input material properties to a second —
X level minimechanics analyses. k:"
2.4 Minimechanics Analyses L
k 2.4.1 Materials Science Corporation - DCAP “;"
: During the middle and late 1970's, investigators at the Materials i
v, Science Corporation (MSC) developed a combined micromechanics/ ‘
minimechanics analysis to model three-dimensionally reinforced carbon- )

carbon composite materials [11-13]). Their minimechanics model used a

- carbon-carbon unit cell divided into five subregions. Three of the
subregions corresponded to the three unidirectional fiber bundle o

I
A
N
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composites oriented parallel to the principal material axes. The
remaining two subregions represented the two interstitial carbon matrix
pockets. This minimechanics model admitted line . elastic constituent v
properties which were functions of temperature. A fiber bundle subregion

within the unit cell was considered to consist of transversely isotropic -
fibers and matrix material which could contain oriented cylindrical

‘ voids. The interstitial matrix regions were orthotropic and could —
contain dispersed spherical voids. Finally, the contact or interface

areas between the subregions could be weakened or partially failed, ? ;

resulting in a degraded load transfer capability across that interface.

Properties for each subregion were calculated based on properties -
of the constituents making up that subregion, using a micromechanics
approach. Fiber bundle subregions consisted of transversely isotropic

fibers and transversely isotropic matrix. The matrix within a fiber

bundle was transversely isotropic due to the presence of cylindrical
: voids. First, a set of thermoelastic properties was calculated for the
| isotropic matrix material based on an assumed void volume fraction. This
! set of matrix thermoelastic properties was then combined with the fiber
properties to calculate a set of thermoelastic properties for the fiber -
bundle. Thus the calculation of the fiber bundle subregion properties :

: was performed using a micromechanics approach.

Specific micromechanics techniques wused in the MSC analysis

followed procedures developed by Hashin and Rosen for estimating upper

i and lower bounds on composite material properties [l4). Effects of ‘z:i:g
cylindrical voids within the fiber bundle matrix material were discussed z
in Reference [11]. However, no further discussion of voids in the bundle :5::.
matrix material was included in later reports [12,13], nor was any -
mention made of measured or assumed void volume values. Averaged with- :
grain and across-grain material properties for ATJ-S graphite were used f‘_f::
in the numerical computations. Thus, it is not clear that porosity in 'h;
fiber bundle matrix material was actually included in the results of e
References [11-13]. The effect of this porosity was probably small when “:
compared to other damage processes occurring within the carbon-carbon - 3
unit cell, and was subsequently neglected. ﬁ:r

It has been shown that the carbon matrix material within fiber . e
bundles may become oriented during fabrication of the carbon-carbon ;.
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material [7]). One technique for modeling this orientation is to increase

the fiber volume content of the fiber bundle. The MSC analysis allowed
- for varying combinations of fiber-matrix-void volume content in the
fiber bundle subregions and different matrix-void combinations {n the
. interstitial matrix subregions.
The effect of cracking within a unit cell model was also included
in the analysis. Cracks were modeled as planes of weakness occurring at —_—
interfaces between the various subregions as well as within the

interstitial matrix subregions. The effect of these cracks was included

in the form of a load transfer efficiency parameter, i.e., the ability “
to transfer some proportion of loading across a degraded interface. -
Cracking in the classical fracture mechanics sense was not included. o)

Analytical techniques used to solve the MSC model included a e

i combination of approaches. The micromechanics models were solved as
boundary value problems in which the internal details of material —
structure were included. The minimechanics model used a combination of a
, self-consistent approach and variational principles. In all of these X
; analyses, material properties were assumed to be linear elastic and LRy
temperature-dependent. h—

The MSC analysis summarized in Reference ([12], contained two

4 parameters which had the effect of tailoring the analysis to fit

experimental data. These parameters were the sheath content and the unit

cell efficiency parameter. With appropriate choices of these two values,

. excellent agreement was obtained between analytically predicted and ‘;:
' experimentally measured thermoelastic properties for three-dimensionally gu
.: reinforced carbon-carbon. As was pointed out in Reference [12]), similar ;!
values for sheath content and unit cell efficiency were applicable to -
: several different three-dimensional carbon-carbon composite material ?3
X systems. 'uj
3 The addition of various failure criterion for strength prediction ;‘5
K
- within the MSC models was described in Reference [12). Primary failure

= mechanisms were identified, based on stress states within the unit cell. . ;;3.
L For various loading conditions the most probable failure modes were fzg‘
¥ O
analyzed for their effect on the material failure surface. %,:::
. For uniaxial tension, the tensile strength was assumed to be -
fiber-dominated, therefore transverse fiber bundles and interstitial ';
o
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matrix played only a secondary role in determining a composite strength.
The occurrence of extensive interfacial cracking resulted in 1low
composite Poisson’s ratios. Thus the contribution of subregions other
than the fiber bundles in the direction of loading to the tensile
! strength was argued to be mnegligible. Hence, the composite tensile
strength used in the analysis was dominated and predicted by failure of
the impregnated fiber bundle lying in the direction of tensile loading.

Failure of the impregnated fiber bundle could occur by two
principal mechanisms, both due to the existence of flaws along an
individual fiber length. If the bundle failed by an accumulation of
scattered fiber breaks, the mode of failure was by the "cumulative
weakening" mode. However, if the stress concentrations due to local
fiber breakage became large, a crack could propagate transversely across
the bundle causing failure. This was termed the "fiber break
propagation” mode.

Based upon the idea that the actual mode of failure was dependent
upon the matrix properties, the mode of failure for impregnated bundles
used in the analysis was the cumulative weakening mode. Failure of fiber
bundles at high temperatures (above 4000°F) was modeled by plastic flow
in the direction of loading, called "limit" behavior. The oriented or
"sheath" matrix strongly influenced the Young’s modulus of the fiber
bundle. However, the sheath in actual carbon-carbon fiber bundles is
likely to be discontinuous, and was neglected in tensile strength
predictions.

Like tensile failure, compressive failure can occur by several
different mechanisms, including fiber or matrix fracture, fiber buckling
in shear or extension, or complete macrobuckling of the impregnated yarn
bundle. Based upon the mode of failure with the lowest corresponding
compressive strength, shear mode buckling of the impregnated fiber
bundle was 1included as the compressive failure mechanism for
temperatures below 4000°F. Plastic 1limit failure was the modeled
compressive failure mechanism above 4000°F.

Shear stress-strain response in carbon-carbon materials {is
nonlinear. Failures occur at the fiber bundle-fiber bundle and the fiber
bundle-matrix interface regions. An overall composite shear strength is

dependent on the interfacial shear strength and the degree of interface
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slippage. Linear shear stress-shear strain behavior limited by the shear

yield strength was assumed in the MSC analysis.

For the modeled failure mechanisme, equations werc developed in
Reference [12] which allowed the computation of composite ultimate
. strengths given constituent material properties and geometric data.

Effects of combined loading were explored in Reference [12] to determine
the influence of multiaxial stress states on the failure envelope. Based
on this investigation, a failure envelope in stress space for
three-dimensional carbon-carbon composites was developed and
incorporated into the MSC minimechanics analysis.
Overall, the MSC analysis, implemented as a computer program named
DCAP, is probably the most versatile and useful predictive tool for
f modeling three-dimensional carbon-carbon composite materials developed
to date. This model incorporated the necessary micromechanics detail
into a minimechanics unit cell geometry in order to predict global or
effective thermomechanical properties for bulk three-dimensional carbon-
; carbon. These estimates included values for stiffnesses as well as for
k strengths. Results computed using this model indicated good agreement
‘ with experimental data [12,13] and were used for evaluation purposes on
materials with actual hardware applications [15,16]. The model was
limited in that it was linear elastic, while some loading modes,
particularly shear, produce distinctly nonlinear material behavior.
Also, the wunit cell efficiency and the sheath content had to be
. evaluated by correlation with experimental data on bulk three-
\ dimensional carbon-carbon materials.
2.4.2 Science Applications Inc. - APIC
A second major effort to analytically predict material properties

for three-dimensionally woven carbon-carbon was conducted by Science

S

Applications, Inc. (SAI), results of which were summarized in References

‘:
X

.

#

W {17-19]. This comprehensive analytical and experimental effort was

S

called Analytical Processing for Improved Composites (APIC). A basic
premise of the study was that processing parameters control the final
thermomechanical properties of a three-dimensional carbon-carbon
material. Thus models were developed to predict the influence of the
. entire processing environment on final material properties. In a

separate task, model composites were tested in order to measure the
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material properties of the conscituent fiber bundles and matrix forming
the unit cell.

The analytical effort was divided into two parts, a process

environment model and a mechanical model [18]. The primary purpose of
the process environment model was to predict the pressure and
temperature present in the processing vessel. Once the environment was
determined, the mechanical model predicted displacements, strains and
stresses. Given a stress state, a failure analysis was performed to

determine the possibility and extent of any damage that occurred. These

analyses were repeated incrementally until an entire process had been
modeled.

The process environment model was composed of four computer
programs. The largest and most important computer code was a two-
dimensional finite element analysis of the time-dependent primary
variables, i.e., pressure, temperature, and gas volume fraction. A
second computer program predicted the three-dimensional thermal and
diffusion properties. A third computer program performed a degree of
graphitization analysis by evaluating the graphite layer spacing
achieved compared to a theoretically possible spacing. Finally, a
graphics postprocessor provided contour and section plots of the primary
variables at prescribed time points.

The mechanical model was centered around a computer program called
MIPAC (MIcromechanics Processing Analysis Code). This program modeled
the progressive mechanical damage occurring during processing and
predicted the modified composite properties resulting from this damage.
This analysis, on the scale of the composite unit cell, was a mini-
mechanics analysis. The computer program was a three-dimensional finite
element analysis incorporating features to accurately model interfacial
behavior. The analysis used three-dimensional 27 node brick elements
with three degrees of freedom per node for a total of 81 degrees of
freedom per element. Nodes were located at the 8 corners, 12 mid-edges,
6 mid-faces and the centroid of the element. A quadratic shape function
was employed along with generally anisotropic material properties.

Structural configuration, damage effects, and material properties

of the constituents were defined by input to MIPAC. Plastic strain or

displacement fields resulting from shrinkage, swelling or externally
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applied loads were permitted. The program output included elemental !
displacements and forces, system displacements and forces, and ‘ ’
mechanical strains and stresses. : -—

Element formulation was based upon standard variational principles
[18]. Displacement compatibility was altered to model possible complex ;.
interfacial failure and sliding between interfaces. The mathematical
methodology for these compatibility conditions was described in detail -_
in Reference [17]. m

The entire APIC analysis was conducted on three geometric scales, c"{f
from a micromechanics approach, to a minimechanics unit cell, to a f {
macromechanics analysis of a complete carbon-carbon billet. The first
level of abstraction used in the analysis was at the constitutive level,
to provide properties data for use at the unit cell level. If stresses *'
in the unit cell model were severe, a failure analysis was performed at

the constitutive or micromechanics level and the resulting corrected
constitutive properties were returned to the unit cell model.

The minimechanics unit cell was the main focus of the mechanical

model, for it is here that constituent interaction occurred due to

processing effects or service conditions. Behavior of the unit cell was

dependent upon the boundary conditions stipulated at the billet level 1"‘*“
and constituent properties predicted by the micromechanics model. The .éi;

&5
process environment model was used to generate temperature and pressure g’

information. Failure was simulated in the MIPAC program by a change in
connectivity of the system. Healing of failed interfaces was possible

through recovery of interfacial strength.

The final level of analysis was a macromechanics model of the

billet used to determine a general state of stress and overall billet

deformation. The strain response of the billet was imposed on unit cell o)
models at various positions within the billet. Internal pressure and ':.;;
temperature conditions were obtained from the process environment model. s;‘:;}
The billet was treated as a homogeneous continuum with properties that IS

varied from point to point, as obtained from the minimechanics unit cell k
models, g

Interaction between the billet level and unit cell level was on a
real time basis when necessary. However, this coupling was minimized by

interpolating between widely spaced time steps during essentially y_,\.
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elastic material response and backtracing to points where inelastic
response had begun to occur if nonlinear behavior was encountered. After
location of an intermediate time point at which inelastic behavior had :
begun, coupling between unit cell level and billet level was performed
at time increments designated by the analyst. Accuracy of the solution -
was thus a function of the time steps taken.
Recommendations to improve carbon-carbon processing were made in
Reference [19]). Property predictions for various processing environments
were also included. However, little correlation between analytically
predicted properties and experimental data was presented, even though

extensive experiments were performed on a model carbon-carbon material,

summarized in Reference [17].

The APIC analysis was a very versatile but complex approach.

\

3

.

Y Emphasis was on predicting the processing environment and subsequent

i effects on material properties. It appeared that this analysis was very
time consuming to use, and was not verified by comparison to

k; experimental data. However, understanding the effects of process

: environment on final carbon-carbon material properties was enhanced by

Y this work.

2.4.3 Analysis of Anomalies

The minimechanics analyses approaches previously discussed did not

normally consider anomalous regions within a carbon-carbon material.
Such regions contain flaws in the material, e.g., distortions of the
weave, density gradients, and microcracking. Anomalies such as these
have been carefully catalogued and described by Jortner [20]. Jortner
also modeled these anomalies and conducted experiments to verify his
models [21]. His work resulted in the development and use of three
computer programs, BOUND, KSLANT, and WAVETEC, designed to predict
thermomechanical properties and failure for three-dimensional carbon-
carbon composite materials containing reinforcement distortions.

The BOUND computer program was used to calculate estimates for
elastic constants, thermal expansion coefficients, and thermal
conductivities by use of bounding techniques. Like the MSC DCAP program

described earlier, BOUND used a degradation factor to model weak or

partially failed interfaces within a unit cell. This analysis could .
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model unit cells with nonorthogonal fiber bundles oriented in as many as

seven directions.

N The KSLANT computer program was written as a specialized analysis
to calculate thermal conductivities. It included a mechanism designed to
. modify the yarn volume of the unit cell based on distortions caused by
"slanting" of one fiber bundle.
The WAVETEC computer program was Qsed to predict the
thermomechanical properties and thermal conductivities for materials
containing wrinkles or waves. Two types of distortion were examined,
rotation of an ideal orthogonal orthotropic unit cell, and unit cells
containing slanted fiber bundles.
Experiments conducted on three carbon-carbon materials to measure ;ﬁsi
compression Young’'s moduli and thermal expansion coefficients were :ii
compared with WAVETEC predictions ([21]. Considerable scatter was E?z
apparent in the thermal expansion results. Even so, predicted and =
measured thermal expansion coefficients did not follow similar trends. ;\hf
Predictions of Young’s moduli were in reasonable agreement with E;’
. experimental data. ‘;,
2.5 Macromechanics or Structural Analyses ==
’ A goal of any of the previously discussed minimechanics analyses Fi%
was to predict the bulk thermomechanical behavior of the carbon-carbon 'gk
material. These material properties could then be provided to a macro- ?;k
mechanics or structural analysis as a consistent set of homogeneous —
anisotropic material data. ;ni:
At the structural scale, entire components of carbon-carbon are 5;
modeled. Thus, it is not wusually feasible to include the detail of %%g:
micromechanics or minimechanics modeling. This is not to say that such -
' detail cannot be included. Investigators have in the past, conducted b
' analyses at all three levels, using results at one level to refine input éﬂ:
: to a different level of analysis. Problem solution became a step-by-step fﬂ&
process, proceeding from micromechanics to  minimechanics to el
macromechanics. The macromechanics stress-strain state was then imposed AN
on the minimechanics model to identify possible failure modes and };i
material property changes. ¥
. Early investigators, lacking or not believing in micromechanics and et
1 minimechanies analyses, modeled carbon-carbon as a homogeneous ;??‘
: f.»}-ﬂi
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anisotropic material. Because some applications for three-dimensionally
woven carbon-carbon materisls were as replacements for pyrolytic
graphite, these analysts made use of the structural analysis tools
(often finite element programs) already available to them. Constitutive
material models were altered to use appropriate properties for the
three-dimensional carbon-carbon. One such example is the work by Pardoen
[22,23]. Pardoen used an approximate technique to modify the polar
coordinate constitutive relations of an existing axisymmetric finite
element analysis (SAAS III) in order to accommodate a rectangularly
orthotropic material. Accuracy of the approximation was verified by
modeling a rotating orthotropic disk and a thermally loaded orthotropic
disk, for which analytical solutions were known. In Reference [23], the
modifications to an asymmetric stress analysis of axisymmetric solids
(ASAAS) in order to model an ansiotropic material were presented.

Geiler also used a modified ASAAS computer code to account for
nonradially orthotropic material behavior [24]. Geiler wused this
modified computer program to analyze a pressurized ring and a ring
subjected to a radial temperature distribution. Kotlensky [25] analyzed
carbon-carbon substrates for throat inserts of solid propellant rocket
nozzles using a one-dimensional thermal stress analysis and the Stress
Analysis of Axisymmetric Solids (SAAS III) finite element computer
program. His work resulted in specifications for candidate substrate
materials using different fabrication techniques.

In the above mentioned macromechanics analyses, material properties
were presumed to be linearly elastic. The models provided reasonable
estimates of the stress states present. Strength or failure predictions
were not attempted in these macromechanics models.

Jones attempted to model the nonlinear material behavior of
three-dimensionally reinforced carbon-carbon composites [26] using a
constitutive relation developed earlier for use with ATJ-S graphite
[27-29]. The constitutive model was based on a deformation theory of
orthotropic plasticity and allowed for differing nonlinear stress-strain
responses for different stress components. Varying Poisson’s ratios were
also admissible, allowing for modeling of a "biaxial softening"
phenomenon due to microcracking. This constitutive relation permitted

finite plastic volume changes, differing from the usual restriction in
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plasticity theories of no plastic volume change. Material properties
were related to the multiaxial state of stress and strain by the strain
energy. An interaction procedure is used to simultaneously satisfy the
nonlinear stress-strain relations and the material property versus
energy equations. In Reference [28], Jones and Nelson extended this
model to initial loading of graphite under mixed tension and compression
using the same fundamental procedure for calculation of the basic
material properties. The model was extended to thermal loading of
nonhomogeneous bodies of graphite in Reference [29]. The model was
adapted for carbon-carbon composites in Reference [26], and compared to
experimental data with good agreement.

Although Jones, et al. [26-28] addressed the nonlinear aspects of
graphite and carbon-carbon, they did not attempt to predict damage onset
and eventual failure.

Stanton and Kipp used a similar approach in their models of
two-dimensional woven carbon-carbon involute structures [30,31]. 1In
their work, the material model of Batdorf [32] was incorporated into a
finite element analysis of involute cones. Verification of their model
was demonstrated by comparison with tests on coupons, cylinders, and
cones fabricated specifically for correlation purposes. These authors
concluded that two-dimensionally woven carbon-carbon was quite different
in behavior from three-dimensional materials. The thrust of this present
research was to model three-dimensionally woven carbon-carbon materials.
However, useful insight to carbon-carbon material behavior was provided
by References [30,31].

A recent study of yield and failure in three-dimensional carbon-
carbons was performed by Pollock and Sun [33]. These authors conducted
off-axis tension and compression tests on two different three-
dimensional carbon-carbon materials. The Tsai-Hill and Tsai-Wu failure
criteria were used to evaluate yield strength versus fiber bundle angle
in the off-axis tests. Generally nonlinear stress-strain response was
described by a single equation using a form suggested by Ramberg and
Osgood [34]. This effective stress-strain behavior, as well as the yield
and failure criteria were then used in two-dimensional linear elastic

and 1inelastic finite element models to study tensile specimens

containing holes.
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Pollock and Sun’s results confirmed some of the results of Waeber
and Hagen, who discussed failure theories as applied to carbon-carbon
{35]. Both macromechanics and micromechanics failure theories were
investigated, including limitations of each. Waeber and Hagen noted that
macromechanics or phenomenological theories required large data bases

for accurate characterization, that had to be updated each time

processing variations changed material properties. Micromechanics
theories, on the other hand, were exceedingly complex if general enough
to handle various material designs and processing techniques.
Mathematical formulations for some of the failure theories were
presented, with emphasis placed on the macromechanics phenomenological
approaches.

In a following report, Waeber and Hagen applied the Wu-Tsai failure
criterion to a three-dimensional orthogonal weave carbon-carbon
composite [36]. After simplifications, a second order tensor polynomial
failure surface was obtained. They concluded that with the state of
characterization of carbon-carbons at that time, the additional
complexity of the Tsai-Wu criterion added little increased ability to
carbon-carbon composite failure prediction.

2.6 Summary

From the preceding paragraphs, one can sense the complexities
involved in modeling carbon-carbon materials. The various analyses
previously discussed approached the problem from different geometric
scales and included (or excluded) many different material factors. It is
clear that three-dimensionally reinforced carbon-carbon materials can be
modeled using combined micromechanics/minimechanics approaches, perhaps
best demonstrated by investigators at Materials Science Corporation
[11-13] with their DCAP computer program. The significance of processing
parameters on final material performance was exhaustively modeled by
investigators at Science Applications, Inc. [17-19]. Jortner
demonstrated the influence of defects in modeling these materials [10,
20]. Finally, Jones ([26-29], Pardoen {[22], Pollock {33], and others
showed that three-dimensional carbon-carbon materials could be analyzed
for structural applications as 1long as sufficient materials

characterization data were available.
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An attempt has been made in this section to briefly summarize the
previous analytical approaches to modeling carbon-carbon. The intent was
to provide some representation of these previous modeling efforts as
background for describing the modeling approach used in the present

research.
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SECTION 3

DESCRIPTION OF THE ANALYSES

3.1 Objective

The objective of the present research, as stated earlier, was to
develop a combined micromechanics/minimechanics analysis to model
three-dimensional orthogonal weave carbon-carbon materials. The overall
approach was similar to the previously discussed work by Materials
Science Corporation [11-13] in that a micromechanics analysis was used
to predict fiber bundle constitutive properties for wuse in a
minimechanics unit cell model. The overall goal of these analyses was to
predict bulk carbon-carbon material properties, thermomechanical stress-
strain behavior, and damage progression. The present approach differed
from the MSC work in that finite element methods were used to perform
both the micromechanics and the minimechanics analyses. Use of these
methods permitted inclusion of nonlinear temperature-dependent inelastic
material properties in modeling the complex geometries present in
carbon-carbon. Both finite element computer programs described in
subsequent paragraphs contain schemes for modeling damage initiation and
propagation.

Processing effects on final material properties were included in
the micromechanics analysis in the sense that cooldown from a final
graphitization temperature was modeled. Thus the effects of thermal
residual stress-induced cracking on fiber bundle properties were
included. No attempt was made in this present research to model an
actual material processing environment prior to the final elevated
fabrication temperature. It was entirely feasible to model the effects
of geometric anomalies, similar to the spirit of Jortner's work [20].
However, to limit the overall program scope, analysis of anomalous weave
geometries was not included in the present work.

Both the micromechanics and the unit cell minimechanics analysis
were performed with finite element computer programs developed and
written by the Composite Materials Research Group (CMRG) at the
University of Wyoming. These computer programs were developed as part of
this present research effort, and other externally and internally

sponsored research. The micromechanics analysis is a two-dimensional
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generalized plane strain finite element computer program, specifically
written for analyzing wunidirectional, continuous fiber composite
materials. The unit cell minimechanics analysis model is a full three-
dimensional finite element computer program. Specific capabilities and

features of both computer programs are discussed in subsequent

paragraphs.
3.2 Generalized Plane Strain Finite Element Micyomechanics Analysis

The micromechanics analysis used in this present research employs
the finite element method to predict the thermomechanical behavior of
continuous wunidirectional fiber-reinforced composite materials. The
finite element method is selected because it can be readily applied to
complex geometries as represented by a fiber embedded in a matrix
material, as illustrated in Figure 1. Various packing geometries for
fibers within the matrix may be assumed. A square packing array has been
demonstrated to provide good correlation with experimental data [37].
Via symmetry arguments, the region of interest to be modeled may be
reduced from that shown in Figure 1, to the region shown in Figure 2, a
quadrant of one fiber and the surrounding matrix material.

It is assumed that displacements may occur in all three coordinate
directions. Specifically, each displacement is dependent on the 2 and 3
coordinate directions (see Figures 1 and 2) and the displacement in the
l-direction (fiber direction) has an additional linear dependence in the
l-direction. Including 2 and 3 dependence of the displacements in the
fiber coordinate direction allows a form of axial (longitudinal) shear
deformation corresponding to generalized plane strain [38,39].
Therefore, although the analysis is basically two-dimensional, five
components of directly applied stress can be modeled, specifically
0y, 05, 03, T35, and r,;,. Biaxial tension and compression normal
stresses may be applied in the 2 and 3 directions to simulate a r,,
applied shear stress loading as well.

If the wunidirectional composite material is assumed to be
transversely isotropic in the 2-3 plane, it is then possible to predict
the mechanical properties of the composite with four applied stress
loading cases. These four cases, o0,, 0, = 0,5, 7,, = 7,3, and r,, are
illustrated in Figure 3. The o,, 0,, and r,, stresses shown in Figures

3a, 3b and 3c can be applied directly. Transverse shear stress, r,,, is
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Figure 1. Unidirectional Fiber-Reinforced Composite Material with a
Square Fiber Packing Array.
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. Figure 2. Quarter Fiber Micromechanics Model.
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Figure 3. Micromechanics Applied Loads for Unidirectional Composite
Stress-Strain Characterization.
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simulated by applying biaxial normal stresses in which the stress j%é

components are equal in magnitude and opposite in sign, as shown in Eéé

° Figure 3d. The induced 7,, shear stress is A
o

. 1,5 = 22 é oy 9 - é-a) -0 (1) ;;;

The 7,, shear stress produced in this manner is not rigorously correct
in that the shear stress is parallel to a line at 45° from the material

2 or 3 coordinate axes, as shown in Figure 4. Thus, the r,, shear is

actually being applied to a composite material with the fiber packing
array shown in Figure 4 rather than the fiber packing array shown in .
Figures 1 and 2. However, the difference in predicted composite material

properties has been shown to be small, [37]. Therefore, the difference

Ty T v

was neglected in this work.
This generalized plane strain finite element micromechanics
analysis permits orthotropic or isotropic constitutive material K ﬁ

behavior, which may be temperature- and/or moisture-dependent. These L3

features of the analysis were described in References [40,41). Ortho-
tropic materials are assumed to be linearly elastic. Isotropic materials
are assumed to be elastoplastic, obeying an octahedral shear stress

yield criterion with plastic strains following a Prandtl-Reuss flow

rule. Loads (including changes in temperature or moisture content) are

applied incrementally, and material behavior is calculated using a

ki

=
oo
2
g o E

4

tangent modulus method.

R

Nonlinear octahedral stress-strain constitutive behavior is entered b
into the analysis in a form first suggested by Richard and Blacklock i:;
[l‘2], i..E., ié
Ee i?ﬁ
o= E¢n,1/n by,
J) §o
[+ 151 i
o
1 :‘*G\
where € = strain 2) (A
. Hin
; E = initial modulus bk
p N
n = curvature parameter
o, - asymptotic stress oo
o‘l
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Figure 4. Transverse Shear Stress Applied as Biaxial Normal Stress *
Loading of a Unidirectional Composite Material with a MEAS
Square Fiber Packing Array.
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Three parameters, E, n, and 9, describe the nonlinear stress-strain
response for a material at a particular temperature. These three
. parameters themselves may be functions of temperature (and moisture).
Thus the complete isothermal stress-strain description of a material is
contained within one equation. A more detailed discussion of this
analysis along with citations of the appropriate 1literature, was
presented in Reference [40]. Representation of the specific constituent
material properties used in this present work is described in Section 4.
) Damage initiation and propagation are modeled within the analysis
by use of a "failed element" technique described by Adams, et al. in

References [43-48]. When an element in an area of high stress exhausts

its ability to bear additional stress, as determined by an appropriate
failure criterion, it fails. It is assumed that a "crack" has thus
formed and has the dimensions of the failed element. This approximation
has two implications, the most important of which is that a finite
amount of material is removed from the system, which in an actual
material is not the case. The second implication is that the crack is
not likely to close up on itself in subsequent loading due to its
exaggerated width. These effects can be minimized to a practical degree
by making the finite element grid very fine and uniform in areas of
. anticipated crack initiation.

p An element cannot simply be deleted from the finite element mesh
. when it reaches its ultimate stress. Force equilibrium at every node
point in the mesh must be maintained. Thus at element failure, node
point loads equal in magnitude and opposite in direction to the element
stress equivalent node point loads must be applied. The failed element
material properties are also set to zero, or near zero to avoid
nulﬁerical singularities, such that the element makes no further
contribution to the global stiffness matrix.

) In the present analysis, element failure can occur as defined by

one of four installed failure criteria, viz., maximum normal stress,
' maximum shear stress, maximum octahedral shear stress and strain, and a
. Tsai-Hill failure criterion. Obviously not all criteria are appropriate

for all materials. Furthermore, selection of the appropriate faflure

. criterion can significantly affect the predicted composite material
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stress-strain response. Specific failure criteria used in this present
analysis are discussed in Section 4.

Although loading increments are kept small once element stresses
near their ultimate values, it is unlikely that an element will fail
exactly at the maximum value of an applied load increment. The applied
load increment will probably be greater than the load necessary to just
cause failure in any given element. For this reason, when an element
failure is detected, the load increment is automatically scaled back to
the point of first element failure. The appropriate element or elements

e "failed", by applying equal and opposite node forces and by reducing
the element stiffness values. The analysis then recalculates the stress
state. Remaining elements are checked to ensure the redistribution of
stresses has not caused additional elements to fail. When no further
element failures are detected, loading proceeds with the next increment.
Thus, incremental loading of the model, incorporating appropriate
failure criteria for determining element strength, and a scheme for
"failing" elements and redistributing the stresses, constitutes the
damage progression and crack propagation portion of this finite element
micromechanics analysis. Catastrophic failure is assumed to occur when a
crack has divided the finite element model into two separate segments.

The present version of this finite element micromechanics analysis
is implemented in a computer program called WYO2D, written by Cilensek
[49]. The analytical features briefly summarized here are incorporated
into a finite element computer program designed around an architecture
similar to that used by Hinton and Owen [50]. Loading increments are
defined in one input file. Finite element mesh information is input as a
second file. Constituent material properties data are included as
subroutines in the computer program.The main controlling program reads a
loading increment from an input file and calls subroutines to assemble
the global load vector and stiffness matrices. A reduced integration or
frontal solution technique is used to find the displacement field for
the current loading increment. A separate set of subroutines then
calculates the stress state, checks for element failure to model crack
initiation and propagation, and performs the necessary global 1load
vector and stiffness matrix reassembly and re-solution. The crack

propagation subroutines continue to automatically recalculate stresses
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and monitor crack propagation until a crack becomes stable or the entire
model fails. Once a crack becomes stable, control is returned to the
. main computer program to read the next loading increment. Thus, each
load step in this analysis is treated as a separate problem requiring

solution of the entire model. The size of a typical micromechanics model

is normally less than 3000 degrees of freedom. However, during a given
loading simulation, that model may be solved 30-40 times, depending on
the number of loading increments and crack propagation iterations.

Three different two-dimensional finite element meshes were used for
this present micromechanics analysis. Each mesh was composed of constant
strain triangular elements. All three meshes modeled composite materials
containing a 60 percent fiber volume fraction. The first mesh, shown in
Figure 5, is a coarse model used to predict stress fields from which the
composite elastic constants and thermal expansion coefficients may be
calculated. This mesh contains only 113 nodes and 192 elements. It is
not suitable for conducting crack propagation studies as a single
element represents a significant portion of the model. However, problems
analyzed with this mesh can be solved very quickly for initial estimates
of stress states and composite material properties.

The finite element mesh shown in Figure 6 is composed of 384 nodes
and 704 elements. Because these elements are much smaller relative to
the size of the entire finite element model, failure of one element is
much more representative of the microcracks occurring in real composite
materials. Note that there are three distinct regions, i.e., the fiber,

the matrix, and the interface in the mesh shown as Figure 6. For the

carbon-carbon micromechanics model, the fiber was assumed to be linear

elastic orthotropic carbon fiber and the matrix was assumed to be

5: isotropic carbon. The interface was assumed to be perfectly bonded.
3? Therefore the interface zone in Figure 6 1s isotropic matrix material.
Qﬁ This model will be referred to as the isotropic carbon matrix model
‘ throughout the remainder of this report.

3% In order to model the effects of an oriented matrix sheath, the
EQ interface region of Figure 6 was extended and enlarged for the mesh
'4; shown in Figure 7. The axial sheath model shown in Figure 7 is composed

of 417 nodes and 768 elements, including 384 elements in the sheath

e X

region. The sheath was assumed to consist of transversely isotropic
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Figure 5. Quarter Fiber Finite Element Micromechanics Mesh Used for

Initial Stress State and Composite Material Property
Estimates.
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carbon oriented parallel to the axial or fiber direction. Thus it was
directly analogous to a micromechanics model of greater fiber volume.
However, strength values assumed for the interface region had a
significant effect on the predicted carbon-carbon fiber bundle
properties because these values controlled crack propagation in the
model. Discussion of the constituent material properties used in this
present work is presented in Section 4 of this report along with the
results of the micromechanics analysis.

The carbon-carbon composite fiber bundles modeled in this present
micromechanics work were assumed to be globally transversely isotropic.
Thus it was necessary to simulate four types of mechanical 1loading
previously shown in Figure 3, in order to describe thermomechanical
response of these composite fiber bundles. The mechanical loads
represented longitudinal tension (o,), transverse tension (o,),
longitudinal shear (r,,), and transverse shear (r,,). Prior to
initiating mechanical loading increments, temperature increments were
used to simulate cooldown from the final processing temperature.
Simulation of specimen reheating to a desired temperature was then
performed as necessary. Thus, the stress-strain response of a uni-
directional composite material was predicted, due to any of the four
types of applied stress in any selected hygrothermal environment,
including effects of processing-induced thermal residual stresses and
cracks. For composite materials possessing sensitivity to absorbed
moisture, moisture increments may also be included. However, moisture
loading increments were not used in this present analysis as moisture
does not influence the strain state in carbon-carbon composites.

Predicted stress-strain response including elastic coefficients,
thermal expansion coefficients, and strengths for wunidirectional
carbon-carbon fiber bundles were then wused as 1input for the
three-dimensional minimechanics finite element analysis. Input
constituent material properties and results of the micromechanics
analysis are summarized in Section 4.

3.3 Three Dimensional Finite Element Minimechanics Unit Cell Analysis

A three-dimensional finite element analysis was used to perform the
minimechanics unit cell analysis presented in this report. The computer

program implementing this analysis, called WYO3D, was written at the
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University of Wyoming as part of this present research effort. The
finite element program contains many of the f. ‘tures present in the
generalized plane strain analysis described previously. These features,
extended to three-dimensional analysis, include temperature dependent
elastoplastic material properties, incremental loading, and crack
initiation and propagation schemes.

The carbon-carbon unit cell model used to perform the minimechanics
analysis for this present program is shown in Figure 8. This unit cell
is composed of three orthogonal fiber bundles oriented in the x-, y-,
and z-coordinate directions. The z-direction fiber bundle is 2.5 times
larger than the x- or y-fiber bundles, to model the construction of
Fiber Materials, Inc. Billet No. 2696 tested during an earlier phase of
this present research effort [1]. The unit cell dimensions for this
billet are also shown in Figure 8.

A finite element mesh used to represent the unit cell model of
Figure 8 is shown in Figure 9. This mesh is composed of 425 nodes and 64
elements. These elements are 20-node quadratic isoparametric brick
elements. Nodes are positioned at the 8 corners and 12 mid-edges of each
element. A higher order element was used in this three-dimensional model
in order to obtain better estimates of the local stress state within the
material model. Crack propagation takes place via a node division

technique, rather than a failed element technique as was used in the

generalized plane strain micromechanics analysis. Therefore, modeling

detail does not require a large number of elements.

Elastoplastic stress-strain behavior can only be modeled for
isotropic materials using the generalized plane strain micromechanics
analysis described previously. In the three-dimensional finite element
analysis, elastoplastic behavior is extended to anisotropic materials as
well.

Details of the analysis have been described elsewhere [51,52];
therefore a detailed explanation will not be repeated here. This
three-dimensional analysis method uses an "effective stress-effective
strain" constitutive relation to represent inelastic behavior in an
anisotropic region. A quadratic form in the six components of stress,

similar to Hill's yield condition [53], is chosen in the form
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2f(aij) = F(o, - 03)2 + G(o3 - 04)2 + H(oy, - 0,)2 (3)

where F, G, H, L, M, and N are parameters characteristic of the current
state of anisotropy. In the present study, these parameters of
anisotropy are allowed to vary with changes in temperature. Inelastic
stress-strain behavior need not be only plastic deformation but can also
represent permanent deformation due to microcracking.

The form of Eq. (3) is valid only when the principal axes of
anisotropy are taken to be the axes of reference; otherwise the stress
components must be transformed. The functional dependence of the
parameters of anisotropy on temperature (and moisture, if necessary)
follows directly when the yield stresses are expressed a. functions of
temperature (and/or moisture content).

The obvious association, implied by the term “"work-hardening,"
between the work used to produce plastic flow and the hardening created,
suggests a hypothesis that the degree of hardening is a function only of
the total plastic work, and is otherwise independent of the strain path.
In order for plastic work to be performed, the state of stress must be
on the yield surface, i.e., the stress state must also satisfy the
condition given by Eq. (3). To enforce this constraint, the Lagrange
multiplier d\ is used [54].

Relating the six parameters of anisotropy to the strain history is
a complicated problem. It can be simplified, however, by the assumption
that the yield stresses must increase in proportion with strain
hardening. This assumption is justified by the fact that the directions
of anisotropy in fibrous composites remain effectively the same during
deformation. By analogy with the von Mises criterion for isotropic
materials, Hill [51) suggested that if there is a functional relation
between the equivalent stress o and the work W, there must be one
between o and the effective (or equivalent) strain increment de. This is
the analogue of the equivalent stress-equivalent strain curve for
isotropic materials, the area under which is equal to the work per unit

volume. These equations are of the form
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2Lr23 + 2Mr2, + 2Nr?%,

[F(Uz -~ 03)%2 + G(o; - 0,)%2 + H(o; - 0,)% (4)

F+G+H

F+G+H

and
- _2 4[F(Gde, - Hdey)2 + G(Hde, - Fde )2 + H(Fde, - Gde,)?2
d=3 EF re H)] [ (FG + GH + HF)?
+ 2(dy,3)2 + 2(dy;4)2 + 2(d‘712)2]‘i (5
L M N

If an effective stress-effective ©plastic strain curve 1is then

constructed, the slope of such a curve at any point will be

H' = — (6)
Continuing in this manner, as described in [51], yields the desired

form for the stress-strain relation, i.e.,

(do) = (CF] (de) 7)
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For an orthotropic material, i.e., a material with three planes of

symmetry,

* * *
€110, + €0, + Cy50,

< s T

* * *
C1201 + Cpp0; + Cp504
* * *
C1301 + C330; + G330,
*
(a) = 26,4723
i *
20,77, (11)

*
2C5712

A s A

-t

To apply this method of analysis to fiber-reinforced composites,

the material properties in the 1l-, 2-, and 3- directions are obtained

from the previously described micromechanics analysis in this research.
If the material is transversely isotropic as in the present work, the

properties in the 2- and 3-directions are equal. For mathematical

CAAA, &

consistency with the formulation, a relationship between the effective
stress and the effective strain is required. Furthermore, the dependence
! of the material properties on temperature (moisture) is required if
4 hygrothermal loadings are to be studied, and the actual material
response under varying conditions of environment is to be considered.
Since the shape of an effective stress-effective strain curve is
similar to a uniaxial tensile or shear stress-strain curve, an equation
similar to the Richard-Blacklock form shown as Eq. (2) was written,

i R L S— (12)

E—n
[+ |25 )
[+4

[o]

where o is the effective stress and ¢ is the effective strain, as

-

defined previously. The two independent parameters 30 and n, together

R)
3
!
»

)}
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with the third parameter E, which is the initial slope of the curve,
were selected to best fit the data.

By fitting Eq. (12) to effective stress-effective strain curves
obtained for different temperatures, a functional relationship of the
parameters E, 30, and n in temperature was established. In a similar
manner, functional relationships were also found for all other material
properties.

The generalized plane strain micromechanics analysis was used to
predict stress-strain response for longitudinal tension, transverse
tension, longitudinal shear and transverse shear 1loadings at room
temperature, 815°C, and 1649°C. The anisotropy parameters F, G, H, L, M

and N were calculated as in Reference (51], i.e.,

2!‘-14-]'-1

(2 (D2 ()2

2= —2 41 1 (13)

(N2 (N2 (a))?

el .1 1

(D2 (ePN?  (aY)?

dwWe—L | - —1 g1

(r]a)? (ria)? (r{2)?

where a{ and r{ are "yield" stresses with respect to the material
coordinate axes. Ideally the four curves, representing each of the four

different types of 1loading, should merge into one effective
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stress-effective strain curve with the proper selection of the it;ﬁ
anisotropy parameters in Eq. (12). Numerical results generated by the %ﬁg

generalized plane strain micromechanics analysis, converted to effective }: L

stress-effective strain form, are discussed in Section 5 of this report. —
Damage initiation and propagation in this three-dimensional Qﬁ%;

minimechanics analysis was modeled by use of a node separation technique ‘.‘ﬁ
as opposed to the failed element approach used in the generalized plane tii
strain micromechanics analysis. As in the generalized plane strain e

analysis, incremental steps were used to apply thermal or mechanical {t:i
e

3
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loads. During each load increment the stress state within the model was

computed. By use of an appropriate failure criterion, the condition of

each node was determined. For the present minimechanics analysis, a
maximum stress failure criterion was used. If a node was determined to
have failed, the plane of failure was then determined. A new node was
created at the same position as the previous node and the connectivity
arrays were altered to divide the elements on either side of the failure
plane. This process is shown for four elements in Figure 10. Friction
due to sliding at the failure plane was not included in the analysis,
nor was there a capability for modeling crack closure. These are
important considerations and are being studied for future modifications
to this finite element analysis computer program.
3.4 Summary of Modeling Procedure

Modeling of the bulk thermomechanical behavior for a three-
dimensional cartesian-weave carbon-carbon was accomplished by the
following steps:

1) Appropriate constituent material properties for use in the
generalized plane strain micromechanics analysis WYO2D were
chosen. These properties included elastic coefficients,
thermal expansion coefficients, and stress strain behavior for
the fiber, matrix, and sheath constituents.

2) Thermomechanical properties of the fiber bundles under
appropriately chosen environmental and loading conditions were
calculated. Effects which were modeled included variations in
fiber volume content, presence of an oriented sheath, and
parametric variations of constituent material properties.

3) A set of micromechanics calculated fiber bundle material
properties as well as material properties for the bulk carbon
matrix were used in the three-dimensional unit cell mini-
mechanics analysis to predict the material properties for a
three-dimensional orthogonal carbon-carbon material.

Constituent material properties and micromechanics results are presented
in Section 4 of this report. Results of the unit cell minimechanics

analysis are included in Section 5.
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Figure 10.
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SECTION 4 K
MICROMECHANICS ANALYSIS
4.1 Constituent Properties
A major difficulty in conducting this micromechanics and mini-
mechanics modeling of carbon-carbon materials was determining consistent
sets of constituent material properties for use in the analyses. For ok
example, tests to measure the axial strength and stiffness of individual ¥
graphite fibers have been performed and data were available in the g,ﬁ
literature, but transverse properties for these same fibers have not e
been directly measured. Both sets of properties were needed for the :T:
micromechanics analysis. For this analysis, it was necessary to rely on ﬁg;
the use of limited existing information, plus educated estimates for | E§{
those fiber properties which have not been measured. Big
Matrix constituent material properties were more easily obtained. )
For organic matrix composites it is possible to find or measure all of f
the pertinent material properties. Indeed properties for a large number ?ﬂ‘
of different polymer matrix systems have been measured at the University :
of Wyoming (55-57] in order to perform similar micromechanics modeling :—
studies. However, measuring the properties of a carbon matrix poses g‘
additional difficulties, First, carbon can exist in different forms, "t:
with bulk material properties ranging from isotropic to highly oriented b by

anisotropic. Second, the temperature range of interest for carbon is
much greater than for many other materials. This makes characterization

over the temperature range of use more difficult, The number of

';
Py

NPT
NFR LT

laboratories capable of routinely making such measurements is f i

!

correspondingly smaller. Finally, micromechanical behavior, particularly

the strength of carbon as a matrix material, is probably quite different ‘3

from the bulk behavior of carbon as measured by tests on ATJ-S graphite. o

For purposes of this present research, the most complete documented kﬁ‘

set of constituent material property values available was obtained from T

References [11-13]. The investigators at Materials Science Corporation d,

assembled a set of thermoelastic data for Hercules HM fibers and carbon i t

matrix, the latter based on properties measured for ATJ-S graphite. "_;

: Where possible, values used in this present work were taken from ‘.‘

experimental data. When experimental data were not available, best :::EE\
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estimates were used. During this present research an extensive effort
was made to find the best available sets of experimentally verified
constituent material properties. Overall, it was difficult to improve
upon the values used by the MSC investigators [11-13]. Therefore, many
of the constituent material property values used in this present
research correspond to those used in the MSC work. Where possible,
original references for the MSC data were examined. Other sources of
information were also found in subsequently available literature.

Thermomechanical properties for Hercules HM fibers vsed in the
present numerical calculations are listed in Table 1. Axial modulus
values at room temperature were taken from manufacturer’'s reported data
[58], extrapolated to higher temperatures using trends similar to those
reported in Reference [12]. Shear moduli and Poisson’s ratio values were
obtained directly from Reference [13]. The original experimental work
was presented in Reference [59]. Axial strengths were assumed to be the
same as reported for Thornal 50 fibers in Reference [12].

For use in the WYO2D pgeneralized plane strain micromechanics
analysis, these material values were converted to polynomial equations
in temperature using regression techniques. Resulting functions are of
the form

2 3

lT + C2T + C3T

where P is a specific material property of interest, T is the

P=C +C
o

temperature, and the Ci are regression coefficients. Equations defining

the Hercules HM fiber longitudinal tensile modulus E transverse

11’

12’
Poisson’s ratio Y19 and transverse Poisson’s ratio v,y are plotted as

tensile modulus E22, longitudinal shear modulus G longitudinal

functions of temperature in Figures 11 through 14, respectively.

Longitudinal tensile strengths S?i are plotted in Figure 15. Values from

Table 1 used to find the regression coefficients are also plotted in the
appropriate figures marked with triangles. As can be seen in Figures 11
through 15, the polynomial equations describe the assumed input data
values well.

Thermal expansion data for the HM carbon fiber are listed in Table
2, taken from Reference [13]. Longitudinal thermal expansion data were
originally from Reference [59]. The MSC {investigators estimated

transverse thermal expansion behavior. Thermal strain values listed in
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TABLE 2

Thermal Expansion Properties for Hercules HM Carbon Fibers [13]

Temperature Thermal Strain Thermal Expansion
°c Coefficient
‘11 €22 *11 %22
-3 -3

(10”3 (1073 (1078 /+¢) (10°%/°c)
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Table 2 are plotted as functions of temperature in Figures 16 and 17. As :::::

was done for the stif‘fness coefficients, polynomials in temperature were l'::‘:

regression fit to the strain data and are plotted as solid curves in . el

Figures 16 and 17. The first derivatives of these polynomials represent 150

functions describing the thermal expansion coefficients @, and @yps . :.S%

plotted as functions of temperature in Figures 18 and 19, with selected l.:,‘{:‘

values listed in Table 2. e

As can be seen in Figure 19, the assumed transverse thermal :g\:i“

expansion coefficient at 1000°C is approximately 13.2 x 10-6/°C A“"

Marciniak and Rozploch [60] reported measured transverse thermal §'}

expansion coefficients for carbon fibers ranging from 22 to 34 x 10-6/°C "‘

at 1000°C . These investigators used a transmission election microscope ,:

with a furnace stage to measure radial dimensional changes of a PAN :{_&

precurser based carbon fiber. Thus, the assumed HM carbon fiber ¥ g

transverse thermal expansion coefficient plotted in Figure 19 agrees
reasonably well with these experimentally measured values. The authors
of Reference [60] reported major difficulties in making their

measurements due to the fibers having noncircular cross sections, which

also tended to twist on heating.
In the present generalized plane strain micromechanics analysis, T

fiber material properties were assumed to be linearly elastic and

transversely isotropic. Only axial fiber failure was permitted. %

Transverse failure of the wunidirectional carbon-carbon composite was -

assumed to occur within the matrix material. Therefore, fiber failure A

was defined by a maximum longitudinal stress failure criterion.

Regression coefficients used to define the polynomial functions of

temperature for each of the Hercules HM carbon fiber material properties
are listed in Table 3, ’
Material properties for carbon as a matrix in carbon-carbon ,'.\:

composites have usually been derived from test data on bulk ATJ-S (%

graphite. Two sources of information on ATJ-§ were reports by Jortner s

. [61]) and Starret, et al. [62]. Investigators at MSC [11-13]) derived sets .

. of elastic properties and strength estimates from data reported in . :;:,‘
Reference [62) by averaging "with-grain" and "cross-grain" results. A i
complete set of estimated thermomechanical elastic data based on . XA
Reference [62] was available in Reference ({13], and with some .,
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TABLE

Thermomechanical Properties for Hercules HM Carbon Fiber
as Functions of Temperature (°C)

3

2 3 4
- Property = Co + cl'r + C2T + C3T + ca'r
Property Co C1 C2 C3 Ca
7 3 0 -3 -7
E,, (psi) 5.18x10"  7.35x10°  -6.69 x 10 1.04 x 10 4,76 x 10
E,, (psi) 1.51x 109 -1.67x102  4.29x10! -6.95x10° -.3.22 x 108
G, (psi) 2.10 x 10° -2.70 x 102 6.46x10°t -1.18x10%  .4.18 x 1078
» 260 x 100} 1.70x 1077 -8.37x10% 8.55x 10 .1.75 x 10°% X
[y
Vo 3.59x 1000 3.18x107° -9.58x10% 7.88x101t .1.56 x 107}
ays oyl 7.99x1077 176 x107° 471 x 1013 1.38 x 10716 .
ay, |01 7.73x10°° 972 x 1007 6.21x102 2,07 x 20710 .
st, (psi)  2.71x 10°  -7.25x 10! 8.13x103 1.38x 1077 .
55
"’?2’2 -"-'C*?Z'? 3"7"‘" «" '"'?':3 SRR BN AN A SATAAE

‘k;i‘.« "h ) l‘.

'-

» &% .iv.

\¢$ A PN

" J
AN

N" \.‘ \c



3 J.‘ -

e -
I |ERE

modification, was adopted for use in this present work. However, neither
the generalized plane strain micromechanics analysis nor the present

three-dimensional minimechanics analysis was limited by an assumption of -

e

]

linear elastic material behavior. Stress-strain behavior reported in

R

Reference [62] was definitely nonlinear, especially at elevated .

EWCIEWL R
N Y T

- e,

temperatures. Therefore, it was necessary to define the complete

R

-

¥

stress-strain response for the carbon matrix as well as defining its
elastic properties.

The twisted, wrinkled ribbon-like structure of the matrix in a e
carbon-carbon fiber bundle is not isotropic in localized regions around T
individual carbon fibers. Indeed, the degree of anisotropy in pyrolytic
graphite may be as high as 022/C33 = 30 or higher [63]. However, it was

assumed that the overall micromechanical behavior of the matrix could be f%
approximated as isotropic due to the random orientation of the aligned %E

structure. Near the fibers, this oriented matrix phase is more aligned,

forming a sheath, as observed by Evangelides [7,8], Zimmer [64,65] and RS
many others. Indeed, Zimmer has agactually tried to control the g{

- B
orientation of this sheath by processing material in the presence of a “

magnetic field [66]. While Zimmer’s procedure did not appear to produce -

significant improvements in overall fiber bundle material performance, ) gx?
it is an interesting concept. e

A final concern in defining constituent material properties was gg
obtaining an estimate for the strength of the matrix phase at the e
micromechanics scale. Most materials, particularly brittle materials, gg
exhibit far greater strengths when tested as small whiskers than when Eé
tested in bulk form. At a micromechanics level, the carbon matrix %ﬁ
strength is probably greater than strengths obtained from measurements -
on bulk ATJ-S material. Matrix strength at a micromechanics scale 1is ;&
still at best only an "educated engineering judgment." Ezr

Sets of 1isotropic carbon matrix material data, from which ?;l
properties as functions of temperature were derived, are listed in Table —
4. These data were taken from Reference [13], based on experiments “g
reported in Reference [62]. Polynomial functions in temperature, . ;ks
regression fit to these numbers, are plotted in Figures 20 through 23. 5?

As with the HM fiber thermal strain data reported earlier, a polynomial . e
equation describing isotropic graphite thermal strain behavior, plotted

56
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TABLE 4 -

Material Properties for the Carbon Matrix
* Derived from ATJ-S Graphite Properties [13,62]

Thermal
Thermal Expansion
Strain Coefficient

€

Temperature Tensile Modulus Poisson’'s
o) E Ratio
(GPa) (Msi) v

0’3 o0

24

538
. 1093
» 1649

2204

2760

9.1

9.4
10.1
11.4
10.3

6.0

1.32
1.36
1.46
1.66
1.50

0.87

0.11
0.12
0.13
0.14
0.15

0.17

0.0
1.5
3.8
6.2

9.4

2.2 5
3.6 -
4.3 :
s i

6.4 o

13.7 9.5
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Figure 21. Poisson's Ratio v as a Function of Temperature
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in Figure 22, was differentiated to obtain the thermal expansion '

' coefficient a as a function of temperature, plotted in Figure 23,
As discussed in Section 3, nonlinear stress-strain behavior is -

described in the micromechanics and minimechanics analyses by means of a

three-parameter exponential Richard-Blacklock equation; the form was -
previously shown as Eq. (2). With-grain tensile stress strain plots

taken from Reference [62] were digitized and plotted in Figure 24 with —_

e the Richard-Blacklock description for that data. Stress-strain curves

kg

for room temperature, 1093°C, 1649°C and 2204°C are plotted in Figure

24, The three Richard-Blacklock parameters, ER’ n and Ty used to
represent stress-strain plot shown in Figure 24, as well as the ultimate -
t strain values were in turn regression fit to polynomial functions of
temperature and plotted in Figures 25 through 28. These functions were Yoo
s then used to describe stress-strain behavior for the carbon matrix at ’"’
b any temperature, as plotted in Figure 29 for four specific temperatures. i
It should be noted in Figures 20, 24 and 29 that carbon becomes both 5‘.“
:; stronger and stiffer at elevated temperatures, a trend opposite that of
t most other engineering materials. xl
B Multiaxial stress-states within the matrix were modeled by use of -
an octahedral shear stress-octahedral shear strain constitutive i »
3 relation. This relation is based on energy principles and works very i
well for modeling metal matrix and polymer matrix composite materials. é“
It has been argued that energy methods based constitutive models do not
work well for modeling carbon or carbon-carbon composites [30-32]. Yet "‘;
the work of Pollock [33] appears to model carbon-carbon mechanical
L behavior quite well using principles based on energy methods. Other AN
- models for behavior of carbon under multiaxial stress states were =
. available, e.g., that of Batdorf [32], and could be used in modeling
such as attempted in this program. g'::
J In the MSC work and [11-13] averaged with-grain and across-grain ; \
) ATJ-S Graphite tensile strength values were used. With-grain tensile
strength values were wused in the present research, based on an :
assumption that the matrix should be stronger at the micromechanical R
3 scale as opposed to bulk ATJ-S measured strengths. Tensile strength data .
at various temperatures, taken from References [62,67), are listed in . b
f Table 5. Shear strength estimates from Reference [13] were also used. ;::::
[l
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Figure 25. Richard-Blacklock Parameter E, as a Function of Temperature

for the Carbon Matrix. R

]lﬁ'llllllll[llllTllll'l

L

_15_,_._-——6

Illl[‘[1llll—ll|ll|lll

lll_LlllLlllJJlllJlll_lll

(I I A A A I I N A A I
95 10 1S 20

TEMPERATURE <E+©3 DEG C >

OT1II

()
n
‘n

Figure 26. Richard-Blacklock Parameter n as a Function of Temperature
for the Carbon Matrix,

Ry
"-Q.x
i e U4

AN
AN og

HSNQB‘ﬁjthzﬁjsjrgsf\‘c“\*u
.
vhy

VONCRLAY A OV I QN



;&'\.‘?.\1\‘, SSTRTE TR AT T R AR & by Sl Ml oAt 2 T ™ et W o 3 " " e < .
T " e I A ugte EaTadenCcat o n S 2 3 T
o
] r a
3 e
4
[N

. 112 I B O B B L N L N L B N O L B

-~ 19

RICHARD-BLACKLOCK SIGNOTCMPAD
%
77
1 ' B
«l
RICHARD-BLACKLOCK SIGNOTCKSID

- - S

o (;

- - e

- “;

o I ITEN I (ARSI N N AT SN AN N AN A A AN O AN S A A ") :’
X es 10 15 20 25 s

TEMPERATLRE (E+@?2 DEG C O

- Figure 27. Richard-Blacklock Parameter o as a Function of Temperature
o
for the Carbon Matrix.

15 Y_IIIIIITITIIIrrFIIIITIT1

-1
- i:ui

L
.

Rt
3

|
DN £t
4 ~5{:“

&

Lo

-

BT T
o5

i
ee lllllllllllll]ll,l41l4]4L114ﬂ

"] @S 1.0 18 2.0 25
TEMPERATURE (E+@3 DEG C O

Figure 28. Ultimate Strain #1t45 a Function of Temperature for W
the Carbon Matrix. he

63 Xt

w r_ LA

R e L T T e L e A I o n e T e S
- T A R e NN s = \-)\‘\"\ o0t
&mmnﬁ&mmu L‘-}'iuL&i R A S R R R R R i R A




----- AR R SRl b 4 Q3 Nt S bt o s i e & 1 o

PR S i - i M et 2ty §

75 — T T T [T T T T | T T T 1
- TEMPERATURE C(DEG. ©CD _
- O 21
. O 815 7
A 1649 |
-+ 2203
~ S0 I— — A
< i H
¢ | %
v/ r_ A\
) 75
w — — 5 ®
v n o
% - %
eSS
0 / S NN N N NN TN TN R T SN NN N S 0
0.0 8.5 1.0 1.5

STRAIN (PERCENTDS

Figure 29. Richard-Blacklock Representation of Isotropic Carbon
Tensile Stress-Strain Behavior at Various Temperatures.

....... ne e ea e
I I ISR AT T T e
A SRR L ORI P A WA S SR




TABLE 5

Strength Values for the Carbon Matrix,
Derived from ATJ-S Graphite Strengths

.
Tensile Strength (67] Shear Strgggth [62] ‘
Temperature (With-Grain) S .
°C (MPa) (ksi) (GPa) (ksi) -
¥ 24 38.6 5.60 20.1 2.92 ,f
! 772 41.4 6.00 .
815 17.8 2.58 o
i)

) 1056 46.2 6.70
: 1602 50.0 7.25

1649 17.1 2.48

éﬁ?@v'cygiwf

2136 63.7 9.24

7,

2204 21.7 3.15

Jez

2482 ' 24.8 3.60

5.,
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, These values are plotted as functions of temperature in Figures 30 and :’
: 31 for the tensile and shear strengths respectively. ,“
! Material properties for matrix carbon were also described by sets * e
N of polynomial equations in temperature. The polynomial coefficients o
. describing the carbon matrix material properties are listed in Table 6. .

‘ Properties of the oriented sheath material were assumed to be the

same as the properties of the carbon fiber except that the sheath —
longitudinal strength was arbitrarily assumed to be one-half that of the ;“:?fi,
fiber. The transverse sheath strength was assumed to be the same as the ot

matrix carbon. These sheath properties, along with the carbon matrix and 0

rc".‘

HM fiber properties were initially defined for use in the generalized —

v

plane strain micromechanics analysis to predict properties for ;’g

undirectional carbon-carbon fiber bundles.

4.2 Micromechanics Predicted Thermal Residual Stresses

Carbon-carbon materials experience temperature changes on the order

%‘

=»
e
A

o
-
\

5%

of 2000 to 3000°C during fabrication and use. Modeling of the complete

h fabrication processing history was beyond the scope of the present ) ,;é{:
" research program. However, due to the large temperature changes that b
' occur during fabrication, it was necessary to include the effects of -
B thermally induced strains. Therefore, an attempt was made to model the i »{:

temperature change experienced by the carbon-carbon material during

I W e

P,

cooldown from the final processing temperature.

An initial stress-free temperature of 2204°C was assumed.

Temperature increments of -50°C were used in the initial micromechanics

) analysis of the isotropic carbon matrix model. This model, previously

'y shown in Figure 6 of Section 3, contained no sheath material. The
interface region was assumed to consist of isotropic carbon.

b Model status plots at four temperatures during the incremental

cooling are shown in Figure 32. At 2104°C, shown as Figure 32a, stresses

b, in the matrix are such that elements in the region of closest fiber

- spacing are behaving inelastically. In Figure 32 these elements appear

J gray, marked with diagonal hatching. At 2004°C most of the matrix

; elements are inelastic, as shown in Figure 32b. At 1904°C, Figure 32c, .

- all of the matrix is predicted to be inelastic by the micromechanics

’ analysis. At 1754°C, matrix elements begin to fail, shown as black in .

N Figure 32d. The first elements fail in the regions of closest fiber ;’
N
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: TABLE 6 -
3 *
g Thermomechanical Properties of the Carbon Matrix =
as Functions of Temperature (°C) ‘ -
e 2 3 4
; Property Co + ClT + 02'1‘ + C3T + C4T ] ;{
'J'. “"
»h: Property C0 Cl 02 C3 CA
v 6 2 1 5 8 :
o E (psi) 1.33x10 -1.50 x 10 3.71 x 10 -5.27 x 10~ -3.04 x 10° b
) #t
¥ v - . - . t‘
b v 1.10x 1000 1.30x10° 1.63x10°% -1.33x10'! 318 x 10715 u
[ H R
e o)l 2.14x10% 3.83x107 -2.60x 1012 7.90 x 10716 . _
¥ 6 2 2 5 S
Ep (psi) 1.75 x 10 2.38 x 10 8.60 x 10° -8.30 x 10~ ¢,
; - - 0¥
2 n 1.51 x 10°  -1.54 x 10°*  1.06 x 10”’ . . W
& '{i
o, (psi) 8.37x10° -3.22x10° 8.45x103 -3.02x10° - N
- et 88 x 107>  5.82x 100 -9.01 x 10°?  3.46 x 10712 . ﬁé
¥
< . . I
: sutpsi)  3.38 x 103 4 99 x 20 .8.00 x 107*  5.07 x 107’ : i
sYS(psi) 2.91 x 10°  6.95 x 10°% -2.44 x 1077 1.55 x 10°° . i
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spacing, at the lower right and upper left corners of Figure 32d.
Failure in this specific analysis was defined by a maximum octahedral
shear stress failure criterion. Subsequent redistribution of element
stresses causes additional elements to fail, propagating two cracks
within the matrix around the fiber-matrix interface region. The two
cracks meet at the 45° diagonal, separating the model into two separate
pieces. This defines total failure of the model as it is incapable of
sustaining transverse tension or shear 1loading. Thus the model
experienced an abrupt, catastrophic failure due to a temperature
b excursion of only -450°C
! This abrupt catastrophic failure of the matrix was caused by large
thermally-induced stresses resulting from a large mismatch between the
fiber transverse thermal expansion coefficient and the matrix thermal
3 expansion coefficient. Referring to Figures 19 and 23 shown previously,
it can be seen that the assumed transverse thermal expansion coefficient
for the HM fiber was approximately three times the matrix thermal
expansion coefficient at all temperatures. Temperature decreases in the

$
! model caused the fiber to shrink more rapidly in the radial direction
A

than the matrix, inducing tensile stresses at the fiber-matrix

he
vl
K

X interface. When these stresses exceeded the strength of the matrix

LB ey
R

carbon, failure occurred. As is shown in Figure 32, this fafilure takes

=
"

place as cracks initiating and propagating at the fiber-matrix

<

4+

interface.

) It 1is possible to extract intact fiber bundles from
d three-dimensionally woven carbon-carbon materials; they do have some
4 residual strength at room temperature. Thus, there must be an
inconsistency in the model as initially defined here.

Four possibilities are suggested. First, the model may actually be
"stress-free" at a lower temperature than first assumed. Second, some
stress relieving mechanism present in the actual material may not be
included in the micromechanics model, e.g. viscoelastic behavior. Third,
high stresses may indeed be present but the assumed constitutive
strength values are too low, or the choice of failure criterion is -
incorrect. Finally, the assumed material properties, particularly the
thermal expansion coefficient values, may be incorrect and the assumed .

mismatch is too large.
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The “stress-free" temperature is an assumed initial state for any
micromechanics analysis which includes processing-induced thermal
stresses. Most linear elastic micromechanics analyses assume a stress-
free temperature that is lower than the final processing temperature.
These analyses assume that the thermally-induced strains caused by
cooling from the final processing temperature to the "stress free"
temperature produce no thermally-induced stress due to 1inelastic
material behavior. Thus, these types of micromechanics analysis are
actually assuming elastic-perfectly plastic material behavior. The value
used as a "stress-free” temperature then becomes one of the selectable
parameters of the analysis, to be chosen by "engineering judgment,"
i.e., by what works best.

The generalized plane strain finite element micromechanics analysis
used in this present work 1is capable of modeling the actual
stress-strain behavior of the constituent materials throughout the
entire applicable temperature range. Therefore, use of the final
processing temperature as a starting point for the analysis was
appropriate. Selection of a lower initial temperature only resulted in
calculation of lower estimates for fabrication-induced thermal residual
stresses than might actually be present in the real material. If the
present micromechanics model totally failed while cooling from 2204°C
then it also fails if cooled from any higher initial temperature.

In a second set of computer calculations, the initial (supposedly
stress free) temperature was arbitrarily lowered by 50 percent to
1100°C. Even using this much lower initial temperature, cooling towards
room temperature resulted in total failure of the model. Referring back
to the constituent material properties plotted previously in Figures 11
through 14 and 20 through 24, it can be seen that both constituents
retain significant stiffness even at 2204°C. Therefore, the composite
could not be stress-free at 1100°C due only to inelastic deformations of
the constituents. Referring to the work at MSC [13], it was found that
thermal residual stresses were not modeled. These authors reasoned that
carbon-carbon materials are essentially stress-free at room temperature,
and therefore began their analysis at that point. The presence of cracks
was included in their minimechanics model by use of degraded interfaces

within the unit cell, as discussed in Section 2. Thus, the mismatch




i between matrix and fiber transverse thermal expansion coefficients did
not affect their micromechanics model because processing temperature .
excursions were not included. : ‘ -

It was apparent from this initial modeling attempt that a problem
existed. If the modeled thermal expansion mismatch was correct, then the - B
large induced stresses had to be relieved by some mechanism, or the
micromechanics strength of matrix carbon had to be far greater than the -

J strength of bulk ATJ-S graphite. Inelastic deformation alone did not

a provide sufficient stress relief for the model to survive an entire

processing temperature excursion. The modeled stress-strain behavior of

the matrix material, shown in Figure 29, was based on experimental data

- [62], which did exhibit some nonlinearity. However, ATJ-S is far from §§“';
' being an elastic-perfectly plastic material. f i
3 A second possible mechanism producing relief of fabrication-induced 3\’5
thermal stresses 1is viscoelastic behavior of the constituents. :
Viscoelastic behavior in carbon-carbon has been examined by Feldman
, [68,69] and by Quan, et al. [70]. These investigators found evidence h!
‘ that significant viscoelastic deformation (creep) occurred in graphite ’ l
‘ fibers at elevated temperatures, particularly above 2500°C. However, at —
lower temperatures, viscoelastic deformation was minimal. Thus, it is ) t
) likely that time-dependent stress relaxation accounts for appreciable %i
reduction of fabrication-induced thermal residual stresses only at ?lﬁ

highly elevated temperatures. However, if significant wviscoelastic }
behavior takes place only at highly elevated temperatures, one method of ;:Q
! modeling this effect is to again use a lower "stress-free" initial t
. temperature. Stresses are then assumed to be relieved by time-dependent
- material behavior at temperatures above this stress-free temperature. As =
was already discussed, however, an assumed 1initial "stress free" ,_'
temperature as low as 1100°C still resulted in total failure of the ‘E'»
micromechanics model during cooling. It is unlikely that significant 4 ‘l
short term viscoelastic behavior takes place in carbon-carbon at —
temperatures below 1100°C :\
: A third possibility to account for the discrepancy between modeled : S-
‘ and real carbon-carbon material behavior is an inaccuracy in the assumed E
’ matrix strengths, coupled with a poor choice of failure criterion. The . e
isotropic carbon matrix strength values used in the present analysis are ;';::
A
&
72 UM
AN, T A AT AT AL AN SNt A" :#\
R e A T A Y R




0
! b
|
! plotted in Figures 30 and 31. These plotted values actually tend to be é‘
optimistic for ATJ-S graphite as they represent across-grain strengths ":--;_fi

* rather than the averaged across- and with-grain strengths as used in —
Reference [13]). However, one may argue that these are strengths of :i,';

- "bulk" carbon and do not accurately reflect the potential constituent :';:g':,,
matrix material strength at the micromechanics scale. “:‘,

It is useful at this point to examine the stress state within the -

] isotropic carbon matrix prior to the onset of failure. Figure 33 :‘\:f,;‘
; presents eight quantities plotted for the isotropic carbon matrix region :ﬁg

) around an individual HM carbon fiber. The quantities plotted in Figure
' 33 are for a state of stress existing in the matrix after the uni-
directional carbon-carbon composite has been cooled from 2204°C to N
1804°C. A total of eight increments of -50°C have been applied, gé.
t\

)\

representing a total temperature change of -400°C. Constituent material

PPN A

properties were adjusted at the beginning of each increment to include -

3 variations in constituent material properties with temperature. Only

temperature increments have been applied at this point, no external, E .

R mechanically-induced stresses are present. Contour lines shown in Figure f';:

33 are as output by the micromechanics analysis and have not been —

: smoothed for presentation. i "‘

‘ Figure 33a is a contour plot of the octahedral shear stress E
N distribution in the matrix. Contour lines have not been plotted for the

fiber although they are available from the analysis. As can be seen in =

Figure 33a, the stress distribution is symmetrical about the 45° t':

diagonal as would be expected from the assumption of a square fiber ':

packing array. The octahedral shear stress is greatest in the region of t’.'

closet fiber spacings, i.e., along the horizontal and vertical axes.

4 There the octahedral shear stress is 25.7 MPa (3.73 ksi), which is very r\

near the 25.8 MPa (3.74 ksi) assumed octahedral shear strength of the z‘.

A matrix at 1804°C. A key to the contour labels, giving stress values, is ;“»

s printed above each plot in Figure 33. Along the 45° diagonal, the -

; direction of greatest fiber spacing, the stress 1is 1lowest. The "

: octahedral shear stress is of special interest as this is the criterion &

e for yield in this elastoplastic micromechanics analysis formulation. :

- Maximum octahedral shear stress (distortional energy) 1is also one ”:'
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possible failure criterion, and was used to define matrix failure in the "o
results of Figure 33. :‘ffti
Figure 33b is a contour plot of the octahedral shear strain. These .

contours follow trends similar to the octahedral shear stresses plotted
in Figure 33a. However, the relationship between octahedral shear stress .

and octahedral shear strain is not linear.

The maximum (most positive), intermediate, and minimum (most

g ";

Vi

negative) principal stresses are plotted in Figures 33c, 33d, and 33e,

N
a3
¥

respectively. Since a temperature change alone will not induce

longitudinal shear, the maximum and minimum principal stresses are in E

)
the plane of the plot and the intermediate principal stress is .
perpendicular to the plane of the plot. In general this is not true if ‘p

longitudinal shear stress is present. The largest principal stresses

again tend to occur in regions of closest fiber spacing. The maximum

»
”

P

tensile principal stress, shown in Figure 33c, is 18.9 MPa (2.74 ksi),

well below the 54.7 Mpa (7.93 ksi) assumed normal tensile strength at (’“q
1804°C . f‘;g‘
Maximum shear stress contours are plotted in Figure 33f. Again due ?f”*
to the absence of longitudinal shear stress in this loading case, the —
maximum shear stresses plotted in Figure 33f occur in the plane of the ) {
plot. The maximum shear stress present is 30.0 MPa (4.35 ksi), again E-.’
located in the region of closest fiber spacing. It will be noted that ;2:
this value is greater than the assumed matrix shear strength at 1804°C an
as plotted in Figure 31. However, as the octahedral shear strengths are "‘
derived from tensile data, and a maximum shear stress failure criterion :';;_
is not being used, no element failures occur. Otherwise, cracking would :“;
have taken place prior to this state in the thermal cooldown during -
s final processing of this carbon-carbon fiber bundle. :'
¥ Frequently it is the normal or shear stress at the fiber-matrix '.:‘::5‘
’ interface which reaches a critical value first, and initiates failure of :,:f
the composite. Figure 33g is a plot of the thermally-induced normal
stress distribution around the fiber-matrix interface. Values plotted ‘_
outside the interface indicate tensile normal stress (as is the case for - :‘_;«.
‘ all values plotted in Figure 33g). Values plotted inside the interface it
' would indicate negative interface normal stresses. As can be seen in . o
E Figure 33c, the interface 1is subjected to tensile stress everywhere
' Nt
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because the fiber transverse thermal expansion coefficient is greater

than that of the matrix. Thus on cooling, the fiber tends to pull away

from the matrix. The normal stress distribution is not uniform around

the interface, again due to the assumed packing array. The maximum

- tensile normal stress at the interface is 18.8 MPa (2.72 ksi), in the
region of closest fiber spacing.

The interface shear stress distribution is shown in Figure 33h. The

interface shear stress is near zero at the horizontal, vertical and 45°

diagonal axes of symmetry. A sign change (change in shear stress

direction) is not reflected in the plot since interface shear stresses
do not generally lie in the plane of the plot (due to the presence of
longitudinal shear stress). The maximum shear stress along the fiber
matrix interface is 11.1 MPa (1.61 ksi).

As indicated in the plots of Figure 33, the matrix stresses are
quite high relative to the matrix strengths after a temperature
excursion of only 40C°C. This temperature change is small relative to
the total temperature change experienced by the material during cooling
from the final fabrication temperature. An octahedral shear stress
failure criterion was used to predict the cracking of Figure 33 where
the composite failed at 1754°C. As is shown in Figure 33, the maximum
normal stress present in the matrix is less than the assumed ultimate
tensile strength of 54.7 MPa (7.93 ksi) at 1804°C. For brittle
materials, a maximum normal stress criterion may be a more appropriate
choice of failure criterion. In a second computer simulation, the
thermal cooldown was again modeled, beginning at 2204°C and cooling in
increments of -50°C. For this second modeling of the isotropic carbon

matrix finite element mesh, a maximum normal stress failure criterion

was selected. For this thermal cooling case, all results prior to first
- element failure were exactly the same as for the first thermal cooling

case as only the matrix failure criterion was different. Crack

initiation and total failure of the model took place at 804°C after a

total temperature change of 1400°C. The crack propagation pattern was

NASND

the same as that plotted for the maximum octahedral shear stress failure

criterion case in Figure 32,

A XL

”i The stress state in the model at 854°C, just prior to the increment
?3 in which faflure occurs, is shown in Figure 34. As in Figure 33, all
l::‘
ﬂ}
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Figure 34. Stress-Strain State of the Isotropic Carbon Matrix Model
at 854°C, Maximum Normal Stress Failure Criterion,
Thermal Loading.
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Figure 34 (continued). Stress-Strain State of the Isotropic Carbon gﬁl
Matrix Model at 854°C, Maximum Normal Stress Failure 1y
. Criterion, Thermal Loading. i”
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eight available sets of information are plotted in Figure 34. 1In
particular, note the octahedral shear stress contour values plotted in
Figure 34a. The maximum octahedral shear stress is 37.6 MPa (5.45 ksi),
well above the assumed octahedral shear ultimate strength of 20.3 MPa
(2.95 ksi) at 854°C. However, as the maximum normal stress failure
criterion was used rather than the octahedral shear failure criterion,
no failures took place. The maximum normal stress contours, plotted in
Figure 34c, indicate a maximum normal stress of 37.9 MPa (5.50 ksi),
again located in the region of closest fiber spacing. This stress is
approximately 90 percent of the matrix tensile strength at 804°C. Thus,
during the next cooling increment, matrix elements began to fail. As in
the previous thermal cooling case, stress redistribution following
failure of an element caused additional elements to fail. This resulted
in cracks propagating along the fiber-matrix interface, leading to total
failure of the model.

Although use of the two different failure criteria resulted in
total model failure at two different temperatures, the net result was
that the modeled carbon-carbon wunidirectional fiber bundle did not
survive thermally-induced residual processing stresses using the assumed
constituent material properties. Thus, if these indicated high thermal

residual stresses were actually present in the fiber bundles, the

assumed strength allowables had to be too low. Unfortunately, no data in

the literature supported using larger strength allowables, based on
examinations of test data for ATJ-S graphite and other carbons
(61,62,67,71,72].

Unidirectional carbon-carbon fiber bundles can be fabricated and
cooled to room temperature. If inelastic or viscoelastic material
behavior does not relieve the thermally-induced residual stresses, then
the assumed mismatch in thermal expansion coefficients between fiber and
matrix must be too large. Matrix thermal expansion data taken from
Reference [13] were derived from measurements reported in Reference [62]
for ATJ-S graphite. These data and the corresponding thermal expansior
coefficient were plotted versus temperature in Figures 22 and 23. As was
stated previously in this present report, assumed fiber transverse
thermal expansion coefficient data also showed fair agreement with very

limited experimental radial thermal strain measurements (13,60].
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However, fiber transverse thermal expansion coefficients are not easily &%
measured over the temperature ranges used in this analysis. The values
used in Reference [13] and in this analysis for fiber transverse thermal —_

expansion coefficient were educated guesses. Therefore there is

considerable room for adjustment.

The thermal expansion mismatch ratio 022/am between the transverse

fiber thermal expansion coefficient and the isotropic carbon matrix

thermal expansion coefficient as plotted in Figures 19 and 23 is

approximately three. Parametric variations of this mismatch ratio showed iz.:
that the isotropic carbon matrix model could survive the fabrication i:";
temperature excursion if the ratio was reduced to approximately two. —
This was done by arbitrarily reducing the transverse fiber thermal Eﬁh
expansion coefficient. The matrix thermal expansion coefficient could t'f
also have been increased or both values could have been changed. \i

E

Model status plots for a simulated cooling of the isotropic carbon

s
s
e

| iy s

matrix model are shown in Figure 35. A stress free temperature of 2204°C

L

was again assumed. Cooling increments of -50°C were also used. At 2154°C

TS,

all matrix elements are still within the elastic range, as shown in

Figure 35a. At 1954°C many of the matrix elements are predicted to be
inelastic, as noted by the shaded regions. At 1854°C, Figure 35¢, all
matrix eleinents are inelastic. The first element failures, marked by
black in Figure 35d, occur at 104°C. Elements in the highly stressed
regions of closest fiber spacing fail and cracks begiﬁ to propagate
around the fiber-matrix interface. No further cracking occurs in the
final two temperature increments during cooling to room temperature.

The model was, at this point, providing answers which corresponded

to real world unidirectional carbon-carbon composite material behavior
in that the model has survived the fabrication temperature excursion.

These materials experience microcracking during fabrication, but

obviously they can be fabricated. Thermal residual stresses are induced §j
during fabrication of real carbon-carbon materials and may be quite -—
high. These stresses are relieved by a combination of inelastic material i,
) deformation and microcracking. In order to complete the micromechanics ::‘
analysis of carbon-carbon fiber bundles material behavior, all further
- computations were performed using a reduced a22/am thermal expansion

coefficient mismatch ratio, i.e., a ratio of two. Mechanical loads were :':::
:::,,?
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Figure 35. Crack Propagation in the Isotropic Carbon Matrix Model E}ﬁ
Due to Residual Thermal Stresses, azzlam s 2,
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then applied in order to predict the thermomechanical response of the
carbon-carbon fiber bundles.
4.3 Isotropic Carbon Ma omec cs Mod esults

The purpose of this micromechanics analysis was to provide
estimates of carbon-carbon fiber bundle stress-strain behavior for use
in the three-dimensional minimechanics model. As discussed in Section 3,
four types of loading were separately applied to the micromechanics
model following completion of the cooldown temperature excursion. These
loadings simulated longitudinal tension, transverse tension,
longitudinal shear, and transverse shear stresses. The same mechanical
loads were simulated at other temperatures by first applying temperature
increments to reheat the model prior to application of mechanical
loading increments. Mechanical stress-strain behavior of the
carbon-carbon fiber bundles was modeled in this present work for three
temperatures, viz, room temperature, 815°C, and 1649°C. In all cases,
simulated loading increments were applied to the models to achieve
ultimate failure. |

Longitudinal tension stress-strain curves are plotted for the
isotropic carbon matrix model in Figure 36. All three stress-strain
plots are linear. The room temperature plot, marked with squares,
indicates an elastic tensile modulus of 218 GPa (31.6 Msi). The plotted
symbols mark actual stress-strain values as calculated by the
micromechanics computer program for each increment of mechanical
loading. At 815°C the calculated tensile modulus is 225 GPa (32.7 Msi)
for the plot marked with circles in Figure 36. This modulus is slightly
greater than the estimated room temperature tensile modulus, reflecting
the assumed increase in fiber tensile modulus with increasing
temperature, previously shown in Figure 11. As the composite
longitudinal tensile modulus is a fiber dominated property, it is to be
expected that it will vary with temperature in the same manner as the
input constituent fiber tensile modulus. The third stress-strain plot at
1649°C, marked with triangles in Figure 36, indicates a tensile modulus
of 198 GPa (28.7 Msi), again following a trend with temperature similar
to the fiber tensile modulus,

The micromechanics predictions of cracking patterns reflect the

known conclusion that longitudinal tensile behavior is fiber-dominated.
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Isotropic Carbon Matrix Model. . ‘

84

Vg WS
o~

iy R Al o «"v{ SRS e PI" oty

o “_m.:t ‘J "‘E’K_l‘.t.‘ R LY

$,%

'?}Y” o

J ;‘A ey e

I DS 'y““}.&
'..\' 8, ’*

x\gk \»



[ ponep el g N FHEL MR S TR M at v 3 p: e o 1 g g LT S o o K S N G g ke Pruing f e P R Y e E s b s B ¥ - L e B g R G w2

Four model status plots are shown in Figure 37, for four levels of {:L_
applied 1longitudinal tension. Figure 37a shows the model after h'
- application of the first longitudinal tension loading increment. The —
cracking pattern at the end of the thermal cooldown was plotted in the j{:“;
. previously discussed Figure 35. gt

At an applied stress of 263 MPa (38.2 ksi), additional cracking

takes place at the fiber-matrix interface as shown in Figure 37a. At 400 -
' MPa (58.0 ksi) substantial cracking occurs, as shown in Figure 37b. When Séé:;
the applied tensile stress reaches approximately 689 MPa (100 ksi), ‘zg
Figure 37c¢, the matrix has failed and does not contribute to the model é%

longitudinal stiffness. At 1.11 GPa (161 ksi) the fiber and thus the
entire model catastrophically fails. As discussed earlier in Section 3, '("
i the fiber failure criterion used in this analysis was a maximum f !.
h longitudinal tensile stress failure criterion. A statistics-based ':-
criterion was not used, but could be added to the computer program. -—
Crack pattern plots for the 815°C and 1649°C longitudinal tension §
. simulations were very similar to those shown in Figure 37 for room §'
k. temperature loading. Therefore these plots have not been included in £
: this report. —
i ' Predicted transverse tension stress-strain response of the %’:
isotropic carbon matrix fiber bundle model is shown in Figure 38. The %;&
! transverse tension stress-strain behavior of the modeled fiber bundle is §§}
definitely nonlinear. At room temperature, the initial transverse pe
tensile modulus is 5.30 GPa (0.77 Msi). This transverse modulus is &
approximately the same at 815°C, 5.2 GPa (0.76 Msi) and increases }W
; slightly to 6 GPa (0.88 ksi) at 1649°C.
The nonlinear appearance of these plots is due in part to nonlinear -
. constituent matrix stress-strain behavior. Transverse properties of }-“
, unidirectional composites are more influenced by the matrix than are the t}
f composite longitudinal properties. However, a substantial portion of the :"
: nonlinear stress-strain behavior shown in Figure 38 is due to further
‘ cracking of the matrix. Four model status plots for room temperature 3{3
:;_ : transverse loading are shown in Figure 39. Transverse tension loading ?
f; causes further matrix cracking during the first loading increment, as %t

- illustrated in Figure 39a at a stress level of 4.6 MPa (0.66 ksi). Thus,

additional permanent damage, producing nonlinear stress-strain behavior,
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Figure 39, Crack Propagation in the Isotropic Carbon Matrix Due to
Transverse Tension Loading at Room Temperature.
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has taken place at a low stress level. As the transverse tensile stress

increases, further cracking takes place, as shown in Figure 39b for a

* stress of 8.7 MPa (1.26 ksi), and in Figure 39c for a stress of 11.0 MPa
(1.60 ksi). At a stress of 15.7 MPa (2.27 ksi), the cracks join, Figure ':::T:
39d, separating the model into two pieces, indicating failure of the EE::E
carbon-carbon fiber bundle. Model status plots for the other two ‘:’:::E'
elevated test temperatures were virtually the same, with cracks -
occurring at slightly different stress levels. The nonlinear character :f‘
E of the stress-strain plots shown in Figure 38 is primarily due to damage ‘P;',_}:i
! propagation in the model rather than inelastic constituent material ,::
deformation.
Transverse tensile strength for this isotropic matrix carbon-carbon
model increases with increasing temperature, as is apparent in Figure :;";
38. Two factors cause this effect. First, the constituent isotropic ;:::
carbon matrix strength was assumed to increase slightly with —~
| temperature, as was plotted in Figure 30. Second, elevated temperatures Ij::
b . tended to relieve part of the thermal residual stress induced during :S;
fabrication. A combination of these two factors produced the apparent t‘j
increase in transverse tensile strength of the wunidirectional -
carbon-carbon fiber bundle. '.‘;
Longitudinal shear stress-strain curves at room temperature, 815°C, “{..
and 1649°C are plotted for the isotropic carbon model in Figure 40. ;géz
Stress-strain behavior at any of the three temperatures is linear to a
"yield" point where the slope of the curve abruptly changes. As can be :
y seen in the room temperature model status plots of Figure 41, this '%
. abrupt slope change is due to damage propagation in the model. Some Ltf .
minimal crack extension takes place at 1.5 MPa (220 psi), shown in
Figure 4la, and again at 2.3 MPa (340 psi), shown in Figure 41b. At 3.4 N
MPa (490 psi), the fiber-matrix interface cracks join, resulting in {}:
failure of the modeled composite, as shown in Figure 4lc. Results for ";-
the 815°C and 1649°C longitudinal shear loading cases were very similar. -~
However, at 815°C and 1649°C the final crack extension takes place over _
- two increments instead of just one increment, resulting in the apparent Eg\{
"plastic” deformation shown Figure 41. Note that the longitudinal shear ’:‘
. stress levels are relatively low. These modeled carbon-carbon fiber !
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bundles have very little shear strength as compared to other composite
materials.

Transverse shear stress-strain plots are shown in Figure 42, with T e
associated room temperature model status plots shown in Figure 43.
Nonlinear stress-strain behavior is evident in all three curves plotted -
in Figure 42. Transverse shear strength tends to increase with
increasing temperature due to relaxation of the thermal residual -
stresses with elevated temperature. This tends to delay matrix crack
propagation until higher applied mechanical stress levels are achieved.

As shown in Figure 43a, crack propagation takes place vlrchally
i throughout the loading history. Elements progressively fail, as shown in -
Figures 43a, 43b, and 43c for transverse shear stress levels of 3.3 MPa “
(0.48 ksi), 5.4 MPa (0.79 ksi) and 6.6 MPa (0.95 ksi), respectively.

: This cracking results in the nonlinear appearance of the room ?5*

temperature transverse shear stress-strain plot shown in Figure 42, -

Thermal expansion coefficients were calculated by applying
temperature increments rather than mechanical loading increments. Note,
this was a reheating of the model which had already been cooled from the
final processing temperature. Thus, the modeled thermal expansion
included effects of processing-induced thermal residual stress cracks. 8
The longitudinal thermal strains resulting from this reheating are
plotted in Figure 44. As can be seen in Figure 44, the model initially

contracts due to a temperature increase, but then expands with
increasing temperature. Thermal strains were regression fit with a i@;
1 parabolic equation in temperature. Differentiation of this equation ifﬂ
results in a longitudinal thermal expansion coefficient that is linear ii?
in temperature, as plotted in Figure 45. -
; Transverse thermal strain and thermal expansion coefficient are Qgﬁ
; plotted in Figures 46 and 47, respectively. Again, a parabolic equation fﬁé
in temperature was used to represent the thermal strain response, ‘ﬁél
resulting in a transverse thermal expansion coefficient that wvaries -—
. linearly with temperature. &é&
Elastic properties, thermal expansion coefficients, and strengths . %%ﬂ
predicted for the isotropic carbon matrix model are listed in Table 7. §§a
Values are listed for all three transverse material constants, i.e., the . B
: transverse tensile modulus E22, Poisson's ratio Vogr and shear modulus %%é
A ‘““
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Carbon Matrix Model.
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623. These constants are not independent if the unidirectional composite
is globally transversely isotropic. The presence of cracks does disrupt
that assumption, however. As can be seen in Table 7, the three constants *
do tend to obey the transverse isotropy assumption for all three modeled
temperatures. These constants listed in Table 7 were used to define .
carbon-carbon fiber bundle properties used in the minimechanics model
discussed in Section 5 of this report. -
4.4 Axial Sheath Micromechanics Model Results

During processing of carbon-carbon composite materials, an oriented
sheath of carbon matrix typically forms around individual fibers within K
the fiber bundle. This sheath tends to orient its stiffer material "f
direction parallel to the fiber, in effect producing a composite with a i

larger volume fraction of fiber. In order to model this sheath material

TV

with the micromechanics analysis, the finite element mesh previously
“ shown as Figure 7 in Section 3 was used.

The sheath region was modeled as a separate constituent material.

For this axial sheath analysis; sheath properties were assumed to be the

same as those of the fiber, with two exceptions. First, the longitudinal

strength of the sheath was arbitrarily assumed to be 50 percent that of
the longitudinal fiber strength. In-plane (plane of transverse isotropy)

strengths of the sheath were assumed to be the same as the matrix Ry

strengths. A Tsai-Hill (73] failure criterion was used to define

failures in the sheath. The matrix region was again assumed to be

isotropic.

A fiber volume fraction of 60 percent was also used in this axial N
sheath model, the same fiber volume fraction as was used in the
i isotropic carbon matrix model. The sheath region occupied 16 percent of
the volume, leaving a matrix volume content of 24 percent.

Thermal residual stresses were also included in this model, using
an initial stress-free temperature of 2204°C and cooling increments of
H 50°C. Model status plots during cooling are shown in Figure 48.
Inelastic material behavior occurs in the matrix material at 2004°C, as
shown in Figure 48a. The entire matrix has undergone inelastic

deformation at 1904°C, as shown in Figure 48b. Cracks begin to form in

the matrix material near the axial sheath-matrix interface at 204°C, as . .

shown in Figure 48c, resulting in the final room temperature state of HﬁE‘

hj ;
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Figure 48. Crack Propagation in the Axial Sheath Model Due to Thermal
Residual Stresses, a22/am = 2,0,
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the model shown in Figure 48d. Although cracks are present at room
temperature, the model is not divided into two separate regions.
Therefore, mechanical loads may still be applied. The same mechanical . -
stresses, i.e., longitudinal tension, transverse tension, longitudinal
shear, and transverse shear were applied to this model. Modeled
environments were room temperature, 815°C, and 1649°C.

Longitudinal stress-strain plots for the axial sheath model are _

shown in Figure 49. The stress-strain behavior shown in Figure 49 is not

linear; there is a point on each curve at which the curve abruptly »
changes slope. The initial elastic modulus of the room temperature $
curve, marked with squares, is 274 GPa (39.7 Msi), decreasing at —_—
approximately 765 MPa (111 ksi) to a value of 272 GPa (39.4 Msi). The o
slope change is due to failure of the axial sheath, as can be seen in ?:iz
the model status plots shown in Figure 50. Figure 50a shows the model at yq

an applied longitudinal tensile stress of 400 MPa (58 ksi). Some matrix
cracking is present. At 641 MPa (93 ksi), further cracking of the matrix
takes place, as shown in Figure 50b. Essentially all of the matrix has
failed. However, failure of the matrix produces no apparent stiffness
reduction in the room temperature stress-strain plot of Figure 49. At -_
; 765 MPa (111 ksi), the sheath totally fails, as shown in Figure 50c, -

reducing the apparent stiffness of the modeled carbon-carbon fiber

bundle and producing the slope change of the plot in Figure 49. At 1.14
GPa (165 ksi) the entire model fails abruptly when the fiber fails, as

shown in Figure 50d. ﬁ::‘i,:

Transverse tension stress-strain behavior is also nonlinear, as ﬁ?
shown in Figure 51. Final failure of the model takes place due to %f
cracking in the matrix material, as shown for the room temperature P

loading case in Figure 52. A small number of sheath elements also fail
near the 45° diagonal of the model, as indicated in Figures 52c and 52d.

A
.’ .

Longitudinal shear stress-strain plots are shown in Figure 53. The

s

E

corresponding crack propagation plots for the room temperature
environment are shown in Figure 54. As can be seen in Figure 54,
considerable cracking takes place in the sheath near the 45° diagonal of
the model. The 45° diagonal 1is the region in which fibers are farthest

| 2NENT
ALY

apart for the assumed square fiber packing array.
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Figure 49. Longitudinal Tension Stress-Strain Response for the
Axial Sheath Model.
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Crack Propagation in the Axial Sheath Model Due to Longitudinal

Shear Loading at Room Temperature.
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Results for transverse shear loading of the axial sheath model are

shown in Figures 55 and 56. Again, cracking takes place in the matrix
regions near the horizontal and vertical axes of the model, but the
sheath fails near the 45° diagonal, as shown in Figure 56.

Thermal strains and thermal expansion coefficients are plotted for
the axial sheath model in Figures 57 through 60. As was done for the
isotropic matrix model, parabolic polynomials in temperature were
regression fit to the thermal strain data, Figures 57 and 59. The linear
derivatives thus represent the thermal expansion coefficients 2, and
ay, plotted in Figures 58 and 60, respectively.

Predicted properties for the axial sheath model are tabulated in
Table 8. Trends with temperatur.: are similar to the trends predicted
with the isotropic carbon matrix model, listed previously in Table 7.

Comparing results between Tables 7 and 8, it can be seen that the
longitudinal stiffness of the axial sheath model is higher at all
temperatures than corresponding values predicted with the {isotropic
carbon matrix model. This {is to be expected due to the added
longitudinal stiffness of the sheath. Transverse tensile and
longitudinal shear moduli of the axial sheath model are also higher. The
transverse shear moduli for the axial sheath model and the isotropic
carbon matrix model are similar.

Predicted longitudinal tensile strengths are the same for both
models. As this strength is dominated by the strength of the fiber, this
result 1is also expected. Transverse tensile strengths and shear
strengths for the axial sheath model are greater than those predicted
for the isotropic carbon matrix model.

Thermal expansion results from the two models are also similar, as
can be seen by comparing Figures 57 through 60 for the axial sheath
model and Figures 44 through 47 for the isotropic carbon matrix model.

Some limited experimental results were available to compare with
the fiber bundle predicted properties presented here. As summarized in a
previous report (3], single axial fiber bundles were extracted from FMI
Billet No. 2208 and tested in tension. Measured tensile moduli values
were quite scattered, but were consistently greater than calculated
"rule-of -mixture" values for carbon-carbon fiber bundle composites with

no sheath. Thus, the stiffening effect of the sheath was again
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Figure 55. Transverse Shear Stress-Strain Response for the Axial Sheath
Model.
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demonstrated. The average longitudinal tensile modulus for fiber bundles
tested during previous years of this present research was 287 GPa (41.6
- Msi), with values ranging from a low of 179 GPa (25.9 Msi) to a high of —
400 GPa (58.0 Msi). The 287 GPa (41.6 Msi) measured tensile modulus
compares favorably with the room temperature 274 GPa (39.7 Msi)

predicted tensile modulus using the axial sheath model. Unfortunately,

transverse and shear test data for these fiber bundles were not —_—

available. Thus, longitudinal tension results were the only comparisons %&}
¥ available for this present analytical work. raa
‘ Properties listed in Tables 7 and 8, along with stress-strain plots '

shown in this present section of the report were used to define the
) fiber bundle material properties wused in the three-dimensional ‘iﬁ;;a
3 minimechanics analysis. The minimechanics analysis data preparation and *rf
\ results are described in Sectiom 5. ‘:P*’;:
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SECTION 5

MINIMECHANICS UNIT CELL ANALYSIS

5.1 Effective Material Properties
inelastic material behavior is described within the

three-dimensional finite element analysis by use of an effective
stress-effective strain relation, previously described in Eqs. (4) and
(5). The anisotropy parameters F, G, H, L, M, and N are calculated from
3 Eq. (13) based on six "yield" stress values. The implication of this
type of constitutive relation is that the six uniaxial stress-strain
relations (four for a transversely isotropic material) can be described
by a single effective stress-effective strain equation with proper

choices for the anisotropy parameters. A discrepancy in this present

e M g

minimechanics unit cell analysis was that the four micromechanics
generated stress-strain relations could not be represented by a single
effective stress-effective strain equation.

Micromechanics generated room temperature stress-strain data for
the no-sheath fiber bundle model are plotted as effective stress versus
effective strain in Figures 61 and 62. Figure 62 shows the initial
portions of the curves plotted in Figure 61 on expanded scales. As can
be easily seen in Figures 61 and 62, the four stress-strain plots
k representing longitudinal tension, transverse tension, longitudinal

shear, and transverse shear do not merge into a single effective

stress-effective strain plot. By appropriate selection of the "yield"
; strengths and therefore the anisotropy parameters, the initial slopes of
the curves can be merged into one plot, as shown in Figure 62. However,
variations in the anisotropy parameters do not change the basic shape of
an individual stress-strain plot. Thus, the linear longitudinal tension
plot remains linear. Nonlinear transverse tension, longitudinal shear,
g and transverse shear stress-strain plots remain nonlinear. It can be
argued that an effective stress-effective strain constitutive relation
should fail because nonlinearity exhibited by the stress-strain curves
for individual loading modes occurs due to cracking. There is a need for
further study of appropriate constitutive relations for all types of

composite materials, as well as for carbon-carbon,
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Figure 61. Effective Stress Versus Effective-Strain Plots for the
Isotropic Carbon Matrix Fiber Bundle Model at Room

Temperature.
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Strain Plots for the Isotropic Carbon Matrix Fiber Bundle
Model at Room Temperature.




In the present analysis it was still possible to include the

irifluence of nonlinear stress-strain behavior via an effective
stress-effective strain constitutive relation. Fiber bundles in the unit -
cell minimechanics model, were oriented parallel to the x, y, and z -
coordinate directions, as previously shown in Figure 8. When the unit -
R cell was subjected to a particular type of uniaxial applied stress, the

stress state in an individual fiber bundle was dominated by one stress —
! component. For example, when the unit cell model was subjected to an
applied normal stress 9 the x-fiber bundle were primarily loaded in

longitudinal tension. The y-fiber bundle and z-fiber bundle are

primarily subjected to transverse tension. In order to include at least

s partial estimates of nonlinear fiber bundle behavior, two effective el
stress-effective strain equations were used to model fiber bundle ;',:
{ constitutive behavior in the present analysis. One equation modeled Vo

axial response of the fiber bundle and one equation modeled transverse E’-*

tension and shear  Dbehavior. Effective stress-effective strain ;:'
y constitutive plots used to represent the isotropic carbon matrix fiber .,
' bundle model, the fiber bundle with no sheath material, are shown in ;
) Figure 63. LR
: ) Similar behavior is exhibited in results from the axial sheath NN

fiber bundle micromechanics model, as plotted in Figures 64 and 65. ;:-?
‘ Figure 65 shows initial portions of the plots shown in Figure 64 plotted ;;;"
' on expanded scales. Again the four modeled loading cases could not be
L, represented by a single effective stress-effective strain plot. [:?
z Longitudinal tension stress-strain results for the axial sheath model ;%:g
X are nonlinear, as shown in Figure 64, due to failure of the sheath ’4’

material. However, effective stress-effective strain representation
' still requires use of two separate constitutive relations as is done for fghs
‘ the isotropic carbon matrix fiber bundle. Effective stress-effective s'}
y strain plots defining longitudinal and transverse behavior of the axial g'
‘ sheath fiber bundles are shown by the room temperature case in Figure .

66. N

Y

Similar plots were constructed for the elevated temperature data

generated using the micromechanics analysis. As the results were similar

o
TR,
iy

. to the room temperature plots, the elevated temperature effective -

:: stress-effective strain plots were not included here. As for the room :‘3:.':‘
)
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Effective Stress-Effective Strain Plots Used to Define

Constitutive Behavior for the Isotropic Carbon Matrix

Fiber Bundle at Room Temperature.
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Figure 66. Effective Stress-Effective Strain Plots Used to Define
Constitutive Behavior for the Axial Sheath Fiber Bundle
at Room Temperature.
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temperature results, representation of the effective stress-effective

strain constitutive relations required two separate equations depending

- on the type of loading present. Stress values used to compute the

anisotropy parameters defining effective stress-effective strain

- behavior at the three modeled temperatures are listed in Table 9 for

both fiber bundle models. Note that shear values listed in Table 9 are

greater than corresponding shear strengths listed in Tables 7 and 8.

o However, use of the predicted shear strength values produces no

correlation of effective stress-effective strain behavior between the
various loading modes.

Analytical weakness in modeling nonlinear fiber bundle

! stress-strain behavior pertains only to the nonlinear portions of ‘

- constitutive behavior. Linear elastic functions in the three-dimensional ,%'

finite element analysis worked well. An attempt was made to include

nonlinear orthotropic material behavior into this minimechanics unit

g cell analysis, in order to include effects of microcracking within the };
3 fiber bundles. g_
; . &
% Elastic constants calculated with the micromechanics analysis, g

listed in Table 7 and 8, were regression fit to polynomial functions of
temperature in the same manner as constituent properties were entered
into the generalized plane strain micromechanics analysis. Regression

coefficients for the fiber bundle properties used in the present unit

A A

cell analysis are listed in Tables 10 and 11 for the no-sheath and axial
sheath fiber bundle models, respectively. Two different sets of

Richard-Blacklock parameters "yield" stress values are shown in Tables

a’s e

10 and 11. The two sets of data represent two different effective
stress-effective strain constitutive relations. The parameters marked as
axial define the axial stress dominated effective constitutive relation.
Parameters marked as transverse define transverse tension and shear LY

dominated effective constitutive behavior. Stress values from Tables 10

[ " D I b B

and 11 were used to calculate the anisotropy p amecters via equation
s (13).

Material properties written as polynomial equations in temperature

in Table 10 and 11 define the fiber bundle properties used. Isotropic

- carbon material properties listed in Table 6 were used to represent

carbon material within the unit cell interstitial matrix pockets.
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) li?;"‘
l TABLE 10 s
e
Thermomechanical Properties of the Isotropic Carbon Matrix Fiber ':
- Bundle Model as Functions of Temperature (°C)
E' Property = G, + C;T + 02T2 . '
@
1
3 Hft
) Property CO C1 C2
: £, (psi) 3.15 x 107 4.56 x 10° . 3.80 x 10° :dﬁ
. .2
E,, = Ey3  (PSi) 7.72 % 10° -9.29 x 10 9.61 x 1072 3
Vip = Vi3 2.11 x 107! -6.28 x 107> 4.49 x 1078 —
s 2.23 x 107! -1.65 x 1074 7.66 x 1078
p Gy, = Gy3 (psi) 6.41 x 10° -5.45 x 102 2.46 x 107}
a1 ("c-1) -6.64 x 1077 1.27 x 10°° 3
: ay; (°c1) 3.85 x 10°° 2.33 x 1077 3
Axial Properties
6 3 1
i Eq (psi) 1.32 x 10 1.08 x 10 -3.83 x 10
p n 1.00 x 10 . ]
; 1.00 x 10°
i 9, (psi) . X - -
s, 5.00 x 10" -
S 3 0 -4 :
1 S, =S,  (psi) 8.45 x 10 2.24 x 10 -4.24 x 10 :
k 3
: S,, = S,5 (psi) 4.00 x 10° -1.94 x 107} 5.57 x 107° :
A h I
S, (psi) 3.59 x 10° 4.55 x 1071 5.88 x 107> N
Transverse Properties
y Eq (psi) 1.32 x 10° 1.08 x 10° -3.83 x 107} %!
[ St
; n 2.00 x 10° -
3 0 4 33
2 o (psi) 4.92 x 10 3.87 x 10 -1.11 x 10 2
oS
' s, (psi) 1.53 x 10° -9.95 x 1072 2.90 x 10°° R
A
: S, =S, (psi) 1.68 x 10° 2.84 x 10° -7.86 x 107% -
¢ 2SS
: S, = S;5 (psi) 4.00 x 10° 1.63 x 10° 1.08 x 107 5
E S, 4 (psi) 2.38 x 10° 1.03 x 102 -4.10 x 1072 o




TABLE 11 pe
: Thermomechanical Properties of the Axial Sheath Fiber Bundle Model o
as Functions of Temperature (°C) " ’:
Property = Cy + C;T + czrz _ 2%
Property CO Cl C2 “
E,, (psi) 3.96 x 107 5.81 x 10° -4.84 x 10°
! E,, = Eg5 (psi) 1.11 x 10° 3.55 x 10 7.80 x 1072
' vz = Vis 2.31 x 107} -4.98 x 107° 4.45 x 1078
Va3 2.44 x 1071 -2.03 x 104 9.21 x 1078 h
G, = Gis (psi) 7.79 x 10° 2.14 x 10 4.97 x 1072 1
@y (°c'1)y -7.01 x 107’ 1.31 x 1077 . ,;
°, (°c-1)  4.69 x 10°° 2.26 x 10”7 ; o
: A
’ Axial Properties :
, E (psi)  2.10 x 10° 9.68 x 102 -3.30 x 1071 o
4 nR 3.0 x 100 E
(psi) 6.98 x 10° 9.68 -2.78 x 10°% o
s, (psi) 5.00 x 10° - - ,'
3 S, =S, (psi) 9.47 x 10° 1.29 -3.71 x 107 G
S,, = S13 (psi) 5.0 x 10° . . .
S, (psi)  3.49 x 10° 3.22 x 1071 -9.27 x 1076 o
Transverse Properties "
Er (psi) 2.10 x 10° 9.68 x 10° -3.30 x 107} -
’ n 2.0 x 100 - - E
{ %0 (psi) 7.92 x 10° 3.87 x 10° -1.11 x 107 } !
; s, (psi) 1.63 x 10° -5.58 x 10 2.60 x 1072 o
S, =~ S, (psi) 4.76 x 10° 6.63 x 107} -2.06 x 107% L
; Sy, = Sy (psi)  4.76 x 107 6.63 x 107! -2.06 x 107 A
S13 (psi) 9.28 x 107 1.05 2.60 x 1072 ;:;
) s
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5.2 Thermal Residual Stresses

An attempt was made in this analysis to model cracking within the
unit cell due to processing-induced thermal residual stresses. During
cooling, cracks developed at the interfaces between fiber bundles and at
the interfaces between fiber bundles and the interstitial carbon matrix
pockets. As cooling continued, these cracks extended, relieving a
portion of the thermal residual stresses. The extent of such cracking
has been studied in detail by Batdorf, et al. [74]. Recall that
investigators at Materials Science Corporation included the effect of
these c¢racks by use of a "unit cell efficiency" parameter which
described the extent of such cracking [11-13].

It was hoped that the analysis used in this present work would be
able to predict the extent of interfacial cracking. A unit cell
efficiency parameter could then have been predicted, rather than back
calculated from test data. Some minimal testing would still have been
necessary to verify results, of course.

Unfortunately, the three-dimensional finite element analysis was,
unable to completely model cracking in the present unit cell modéls. The
unit cell model used in this work, previously shown in Figure 9, was
relatively coarse in terms of the number of finite elements. The entire
unit cell was represented by 425 nodes and only 64 elements. In regions
of large stress gradients, a small number of elements made accurate
representation of the stress state difficult. By using higher order
elements, quadratic elements in this analysis, the accuracy of the
analysis was improved. A more finely divided unit cell model would be
desirable. However, the size of problem defined by the model of Figure 9
approached the maximum problem size which could be solved.

The computer program used in this analysis could only model crack
propagation for one or two increments beyond crack initiation. Crack
propagation by node division appeared to work correctly. However, after
cracking at a few separated nodes in the unit cell models, problem
solution become unstable and the analysis produced erroneous results.
Difficulties were encountered in redistributing nodal forces during
crack propagation in order to maintain equilibrium. Failure at a node in
the coarse models required redistribution of larger force components.

For these brittle materials, 1large redistribution forces produced
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unstable crack extension and failure of the entire model. A finely
divided model loaded in small incremental steps would be much more
desirable than a coarse model loaded with large stress increments. Work
is currently underway to make the three-dimensional finite element
computer program more efficient in order to alleviate size and
computation time restrictions.

Given limitations on problem size and computation time, it was not
possible to calculate a unit cell efficiency parameter by modeling
damage progression. Preliminary results indicated that extensive
interfacial damage occurred due to fabrication-induced thermal residual
stresses. This interfacial damage resulted in an essentially stress-free
unit cell after temperature changes of only a few hundred degrees.
Therefore, unit cell analysis for this present work was assumed to begin
at a stress-free state for all modeled temperatures.

5.3 Thermoelastic Property Prediction

Elastic coefficients and stress-strain behavior for two carbon-
carbon unit cell models were predicted by simulating oy and o, tensile
normal stress loadings as well as Tz and fxy shear stress loadings. The
same finite element mesh, previously shown in Figure 9, was used for
both models. Only fiber bundle properties varied. Thus, three-
dimensionally reinforced carbon-carbon unit cell properties were
predicted using fiber bundles modeled with no oriented sheath around
individual filaments, and for fiber bundles containing an oriented
sheath material. As was done in the micromechanics analysis, mechanical
loads were simulated at room temperature, 815°C and 1649°C.

Tensile normal stress-strain plots for the no sheath fiber bundle
unit cell model are shown in Figures 67 and 68 for %% and o, applied
stresses, respectively. Elevated temperature does not significantly
affect stress-strain behavior of the no-sheath unit cell model for
either o, or o, applied stress. Young's modulus in the x-direction is 42
GPa (6.1 Msi) at room temperature, 49 GPa (7.1 Msi) at 815°C, and 40 GPa
(5.8 Msi) at 1649°C. Tensile moduli tend to increase with increasing
temperature, then decrease at yet higher temperatures. This behavior is
similar to that predicted for the x-direction fiber bundles themselves.
Because x-direction stiffness is dominated by the x-direction fiber

bundle, it is to be expected that such similar trends occur.
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Elastic tensile moduli for the z-direction also increase, then
decrease with progressively elevated temperatures. Tensile moduli in the
z-direction for this no-sheath unit cell model are 100 GPa (14.5 Msi) at
room temperature, 102 GPa (14.9 Msi) at 815°C, and 92 GPa (13.3 Msi) at
1649°C. Stiffness in the z-direction is dominated by the z-fiber bundle.
Elastic moduli in the z-direction are approximately 2.3 times greater
than x-direction elastic moduli, reflecting a higher proportion of
graphite filaments oriented in the z-direction of the unit cell. In the
actual FMI Billet No. 2696 modeled here, the ratio of z-oriented
graphite filaments to =x-oriented graphite filaments is 15000/6000, or
2.5/1.

Stress-strain plots for 9. loading shown in Figure 67 are nonlinear
but could be described as bilinear. Stress-strain plots for o, loading
shown in Figure 68 are linear. This difference in shape between plots
for the two applied stresses results from modeled nonlinearity in
transverse constituent fiber bundle properties. For an x-direction
applied stress, the z-fiber bundles were subjected to transverse tension
and shear stresses. These transverse fiber bundles contributed to the
stiffness of the unit cell until a "yield stress" for the most critical
stress component was attained. At that point the analysis treated this
transverse fiber bundle as an inelastic material obeying the transverse
effective stress-effective strain relation shown in Figure 63,
Transverse fiber bundles ceased to contribute to the stiffness of the
unit cell, undergoing large increases in strain for only small increases
in stress. Thus the =x-direction fiber bundle had to withstand a
proportionally larger share of the increasing applied stress with little
load bearing contribution from transverse fiber bundles or interstitial
matrix pockets. Recall that nonlinearity of the transverse fiber bundle
properties was primarily caused by microcracking within the fiber
bundles as predicted by the generalized plane strain micromechanics
analysis. Therefore, even though the node separation technique was not
currently being used to model gross damage propagation in the unit cell,
damage occurring within constituent materials was included.
Stress-strain behavior in the 2z-direction 1is 1linear because

transverse fiber bundles (the x- and y-fiber bundles) did not attain
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stress values in excess of their respective yield strengths. Thus no J

changes in slope are apparent in the stress-strain plots of Figure 68. W

Shear stress versus shear strain plots for the model are shown in —
, Figures 69 and 70 for Tz and fxy applied shear stresses, respectively.
Shear moduli tend to decrease as temperature increases from room
temperature to 815°C. The ze shear moduli for shear stress-shear strain
curves plotted in Figure 69 are 4.0 GPa (0.58 Msi) at room temperature
and 2.8 GPa (0.41 Msi) at 815°C. The G shear modulus at 1649°C et
increases to 3.2 GPa (0.46 ksi). This trend of decreasing then
increasing shear modulus with increasing temperature reflects the shear A

stiffness behavior predicted for the no sheath fiber bundles as well as

for the isotropic carbon matrix material. Shear stiffnesses for 7xy ﬁj %
applied stress exhibit similar behavior with temperature as do the ze ﬁ?ﬁ
: shear moduli. At room temperature the Gx shear modulus is 3.6 GPa (0.52 :{5
Msi), decreasing to 2.8 GPa (0.41 Msi) at 815°C, then increasing to 3.2 ot
. GPa (0.47 Msi) at 1649°C. §E§
’ Elastic properties for the material tests simulated in Figures 67 g%g
through 69 are listed in Table 12. Poisson’s ratios were calculated from Doy
strains predicted during modeling of o, and 9, normal tensile applied Qéi
stresses. Note that the Poisson’s ratio values listed in Table 12 are }nﬁ
quite low as compared to other engineering materials. These low lateral “{?
contractions reflect high lateral stiffnesses due to three-dimensional ;
reinforcement of the wunit cell and poor 1load transfer between e
constituent parts of the unit cell. fTﬁ
Tensile stress-strain predictions for the axial sheath unit cell 3;;
model are plotted in Figures 71 and 72. Only small differences due to b
elevated temperature are apparent in the % plots shown in Figure 71 or i
the o, plots shown in Figure 72. Both the o and o, stress-strain plots ‘gg
exhibit nonlinear material behavior. This is due to modeled nonlinearity Qﬁ‘
of transverse tensile and shear behavior for transverse oriented fiber 3&
bundles. However, o, stress-strain results also show an effect due to S
failure of the axial sheath, which was included as nonlinear behavior in *t‘
the axial sheath fiber bundle tensile response, as previously shown in E;.
Figure 66. », s
- Shear stress-shear strain plots for Tz and 7xy applied stress are g
. shown for the axial sheath unit cell model in Figures 73 and 74. Shear Ez;
! e
: o
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moduli for both applied shear stresses tend to increase with increasing
temperature, as reflected in Figures 73 and 74.

Elastic coefficients predicted for the carbon-carbon unit cell
using axial sheath fiber bundle properties are listed in Table 13,

Poisson’s ratio values are again quite low, similar to the no-sheath

unit cell results.

5.4 Comparison of Predicted Properties

Room temperature o and o, normal stress-strain results for the

no-sheath and axial sheath carbon-carbon unit cell models are plotted
together in Figures 75 and 76. The curves marked with squares show
results using the no-sheath fiber bundle properties, 1i.e., a fiber
bundle containing only isotropic carbon as a matrix material. The curves
marked with circles show results using the axial sheath fiber bundle
properties. As can be seen in Figure 75, the axial sheath material is
initially stiffer than the material containing no oriented sheath, as
would be expected. The predicted no-sheath unit cell tensile modulus E

is 42 GPa (6.1 Msi), and 53 GPa (7.7 Msi) for the axial sheath model, as
listed in Tables 12 and 13. The greater tensile modulus of the axial
sheath unit cell is due to the stiffening effect of sheath material
oriented in the =x-direction of the unit cell. Note the sharp slope

change in the axial sheath model stress-strain curve which takes place

g s itres Do el
RJ =) e
i o

A AN AR

when the x-direction sheath material fails. In the no sheath case, slope

gl

changes are more gradual because stiffness changes (cracking) in the y-

-

and z-direction fiber bundles occur less abruptly. These transverse

A

property changes also have less influence on the overall unit cell
stress-strain response. Both stress-strain curves shown in Figure 75

become relatively flat at approximately 137 MPa (20 ksi), with the

1w

1

no-sheath material reaching a slightly greater stress than the axial

e

el
A «'h

sheath material. From the shapes of the curves it can be seen that an

¥

Kt et

x-direction ultimate tensile strength estimate for either carbon-carbon

unit cell model must on the order of 137 MPa (20 ksi).

Ty

Room temperatures tensile tests performed on FMI Billet No. 2696

< *ﬁ',
NS

PP Y W s

s

during previous years of this research study showed an average
x-direction strength of 128 GPa (18.5 ksi) and an x-direction elastic
modulus of 47 GPa (6.8 Msi) [2]. Results shown in Tables 12 and 13 and
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in Figure 75 compare favorably with the measurements reported in
Reference [2].

- A comparison of predicted room temperature o, tensile stress-strain
behavior for unit cells using the two different fiber bundles is shown
in Figure 76. As for the x-direction tensile stress results, the axial
sheath unit cell model is axially stiffer than the no-sheath model,
i.e., 125 GPa (18.2 Msi) as compared to 100 GPa (14.5 Msi). A major
difference in results obtained for the two models is that the no-sheath
curve is linear and the curve predicted using fiber bundles with an

axially oriented sheath is nonlinear. For the no sheath case, transverse

fiber bundles and interstitial matrix regions are not stressed beyond
their respective "yield" values, therefore no nonlinear material
behavior is exhibited. The linear elastic no sheath z-direction fiber

bundle totally dominates o, tensile stress-strain behavior. For the

axial sheath unit cell model, stress-strain behavior is also dominated

B by the z-direction fiber bundle. However, longitudinal stress-strain "
L} . J
! response of axial sheath fiber bundles is nonlinear (bilinear) due to :a
3 failure of the sheath. 4
‘ )

The average tensile modulus in the z-direction measured during

% |

(- X

previous experimental work was 123 GPa (17.8 Msi) and the average

strength was 163 MPa (23.6 ksi) [2]. This measured tensile modulus most

closely corresponds to the 125 GPa (18.2 Msi) room temperature

a> s 8 8 B 8 4

z-direction tensile modulus predicted for the axial sheath unit cell

Py

model. At approximately 207 GPa (30 ksi), the axial sheath model results

show larger inelastic strains, flattening the curve plotted in Figure I:i
. 76. An ultimate strength for this model must then also be approximately E{
207 GPa (30 ksi), which compares reasonably well with the 163 GPa (23.6 -

- ksi) average measured z-direction tensile strength reported in Reference ,,...':
. (21. E\‘;
: Room temperature Tz amd T shear stress-shear strain results are rt:
plotted for the no-sheath and axial sheath unit cell models in Figures o>
77 and 78, respectively. For both applied shear stress loadings, the *Q
: axial sheath model 1is slightly stiffer than the no-sheath model, "#
: although the results are quite similar. '.‘::f
. Both unit cell models predicted shear moduli that were somewhat ot
greater than shear moduli measured during previous experimental work. ;

3
3 R
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Shear stiffnesses ze of 4.0 GPa (0.58 Msi) and 4.5 GPa (0.65 Msi) were
predicted for the no-sheath and axial sheath unit cell models,

- respectively. Room temperature ny predicted shear moduli were 3.6 GPa
(0.52 Msi) and 3.8 GPa (0.55 Msi), as listed in Tables 12 and 13. :;Q
by
Average shear moduli reported in References [2,3] as measured with the 'ti'-"

Iosipescu shear test method were 2.2 GPa (0.32 Msi) for ze and 2.6 GPa oo
(0.38 Msi) for ny. Average shear strengths of 16 MPa (2.3 ksi) and 15

MPa (2.2 ksi) for Tz and Tyz applied stresses were also reported. %(}3

Shear behavior of carbon-carbon materials is dominated by cracking }’.{f

J which occurs at the various interfaces within the carbon-carbon unit :?:.
| cell. Because these interfaces were assumed to be initially intact in Lad
the present analysis, predicted shear stiffnesses tended to be greater ;&&:

than actual measured values, An attempt to model interface damage in !

this present work was unsuccessful, for reasons previously described. ';:;:"

Steps are currently being taken to improve interfacial damage

propagation modeling. \)
5
It was possible to use the present analysis to estimate damage ti

’

initiation within the carbon-carbon unit cell. Crack initiation

%

|

functions within the computer program worked well. Difficulties existed
in the automated crack propagation portions of the program. By use of

interactive graphics, a carbon-carbon unit cell model can be "taken

i ive Pt
) ﬂ"
. A A

apart", as shown in Figure 79, and stresses at the various constituent
p g

interfaces examined. In Figure 79a, a unit cell corresponding to the 4

, original model of Figure 8 is shown. An x-direction fiber bundle is ,_:‘
, separated from the unit cell. The model is then rotated to permit E:i
- viewing of the x-direction fiber bundle interface surfaces, as shown in ‘
Figure 79b. All portions of the unit cell except the x-direction fiber —

) bundle are then erased. This interactive graphics software is called
PATRAN, marketed by PDA Engineering, Santa Ana, California. y

Shear stress contours are plotted on the internal surfaces of this 3 :

: no-sheath x-direction fiber bundle in Figure 80. These fxy shear stress doinn

contours have been normalized by dividing by the ;xy applied shear

stress value. As can be seen in Figure 80, shear stresses are relatively

o

uniform within the unit cell. The maximum shear stress contour shown is

. only 10 percent greater than the applied shear stress. Therefore,
overall material shear strength is basically governed by the shear ,‘E\‘
MY
»
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strengths of the component parts of the unit cell. Fiber bundle shear

strengths predicted using the micromechanics analysis ranged from 3 MPa
(0.5 ksi) to 12 MPa (1.8 ksi). These values were in good agreement with
measured shear strengths reported in References [2,3]). Because crack
propagation did not function properly in the present computer program,
post interface shear failure loading of the models was not attempted.
Therefore, additional shear load bearing capability due to reorientation
of fiber bundles was not included in the analysis.

Overall, the three-dimensional unit cell analysis predicted tensile
elastic constants very well, and did an adequate job of predicting
elastic shear constants. This finite element. analysis differed from
linearly elastic analyses in that it was capable of modeling inelastic
material behavior and could therefore predict the entire stress-strain
response of any modeled composite material for any modeled loading or
environment,

The importance of including the presence of oriented matrix
material within graphite fiber bundles was again demonstrated. This
oriented sheath material is responsible for increased stiffness in the
composite. It also contributes to the nonlinear (bimodular) tensile
behavior exhibited by carbon-carbon. The fiber bundle-fiber bundle and
fiber bundle-interstitial matrix pocket interfaces were also again shown
to be important. Unfortunately, computational difficulties made adequate
modeling of these interfaces impossible. Presently planned improvements
of the computer program, coupled with advances in the size and speed of

computer hardware, will make modeling damage propagation feasible.
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SECTION 6

SUMMARY AND CONCLUSIONS

The objective of this research program was to develop a combined
micromechanics and minimechanics analysis to predict the
thermomechanical material properties and stress-strain behavior for
three-dimensionally woven carbon-carbon composite materials. A
generalized plane strain finite element micromechanics analysis was

successfully used to predict thermomechanical behavior of unidirectional

f carbon-carbon fiber bundles. Two different fiber bundle models were

analyzed to determine the influence on fiber bundle properties of an

;. axially oriented orthotropic matrix sheath surrounding individual "é;
! graphite fibers. This analysis included the influence of nonlinear, Sy
k temperature-dependent material behavior. Results also included the 8.
effects of microcracking damage progression within the fiber bundles. .

p Two sets of fiber bundle properties were then used to predict uniaxial :
. tensile and shear properties for a three-dimensional cartesian-weave : g"

' carbon-carbon composite. Predicted material properties were compared 'ﬁf(
X with room temperature expérimental data generated during previous years _

P, of this research. ?";,
The presence of an oriented axial sheath around individual graphite A5

filaments within fiber bundles was again shown to be an important factor
influencing the bulk material response of carbon-carbon composites. This
axial sheath provided increased fiber bundle stiffness, thereby

increasing the predicted bulk stiffness of the carbon-carbon unit cell.

S ',',..& ;

LN

Tensile failure of the sheath also contributed to predicted nonlinear

- '!‘

stress-strain behavior in the woven carbon-carbon material.

Damage propagation was also shown to strongly influence mechanical

g v
.

K A PR o
ot

. properties. At the micromechanics scale, damage propagation was
responsible for a major portion of the predicted nonlinear stress-strain 13.’

) behavior, especially in shear. Unfortunately, computational problems -
L3 T

prevented complete damage propagation modeling during the unit cell ;e:?ﬁ

.~ t

. analysis. Crack initiation models did demonstrate the importance of :ev.,,*
‘ including this behavior in any analysis of carbon-carbon. With presently i
- continuing improvements to the computer program, such crack propagation )
: modeling will be feasible. 5.'5
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One difficulty encountered during this present investigation was a

lack of constituent material properties data. Properties for bulk ATJ-S

graphite were used to estimate matrix carbon material behavior. It is

unlikely that matrix carbon within carbon-carbon fiber bundleshas the ;t”
same properties at this micromechanics scale as bulk ATJ-S. However, - :$!
direct determination of in-situ micromechanical matrix carbon properties e
is difficult. j_
Overall, the objectives of this program were attained. Many Q%%
problems still exist with regard to modeling carbon-carbon materials. &g”
However, the analytical tools developed here are equally applicable to g&ﬁ
the study of many other composite materials, including polymer matrix L
and ceramic matrix composite materials. Although the present research AN
program is concluded, work to further refine the analytical techniques Sﬁf
developed during the program is continuing. Analytical and experimental (;7
efforts to further explore inelastic comstitutive behavior of composite =
* materials will continue also. zﬁ?
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