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have boen illustrated. An example 18 worked out to demonstrate the application of the
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CHAPTER 1

INTRODUCTION

From the fracture mechanics standpoint, fatigue failure
of a metallic component results from the propagation of a
dominant crack to its critical size. Hence, the crack propa-
gation analysis is one of the major tasks in the design and
life prediction of fatigue-critical structures, such as air-
frames, gas turbine engine components, and helicopter struc-
tures, just to mention a few. Durability and damage tolerance
are two major design requirements for aircraft structures,
in which the prediction of fatigue crack growth damage accumu-
lation is one of the most important tasks [Refs. 1-6].

Experimental test results indicate that the fatigue
crack propagation involves considerable statistical varia-
bility. Such a variability should be taken into account
appropriately in the analysis and design of fatigue-critical
components. As a result, probabilistic approaches to deal
with the fatigue crack propagation have received considerable
attention recently, and some statistical models have been
proposed in the literature [e.g., Refs. 7-28].

Unfortunately, the statistical variability of the crack
growth rate seems to vary with respect to many parameters,

such as materials, amounts of load transfer in fastener holes,

types of specimens, magnitude of constant amplitude loads,
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types of spectrum loadings, ranges of crack size, environ-
mental conditions, etc. For instance, the crack growth rate
dispersion for specimens under constant amplitude loadings
differs from that under spectrum loadings. The variability
in crack growth damage accumulation for fastener hole speci-
mens with natural cracks (starting from time to crack ini-
tiation) differs also from that of preflawed specimens. For
practical analysis and design purposes, test results as close
to the service loading environments as possible are highly
desirable, and the statistical model should be established
based on the correlation with test data thus obtained.

From the standpoint of practical applications, any sto-
chastic model for the fatigue crack propagation should be as
simple as possible while maintaining a reasonable accuracy for
the prediction of the fatigue crack growth damage accumulation.
The purposes of this report are as follows: (i) to investigate
and examine simple stochastic models proposed in the literature
for practical applications, (ii) to propose several new
stochastic crack propagation models and to demonstrate
their wvalidity by correlating with extensive experimental
test results, (iii) to recommend a most appropriate stochastic
model for practical applications in aircraft structures, (iv)
to investigate factors affecting the accuracy of stochastic
crack propagation analysis, including the data processing
procedures for obtaining the crack growth rate data and the
number of fractographic data points for each specimen, (v) to

apply the recommended stochastic crack growth model to
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possible durability analysis of aircraft structures, and
(vi) to investigate possible applications to probabilistic
damage tolerance analysis as well as the fatigue reliability
analysis of non-redundant structural components under
scheduled inspection and repair maintenance.

On the basis of fracture mechanics, the stochastic crack
propagation model should be built upon the crack growth rate
descriptions. Hence the fracture mechanics parameters and

the model statistics should be estimated from available crack

growth rate data. Base-line crack growth rate data are ob-

tained from the measurements of crack size versus cycle (or §
flight hour) using various data reduction methods, such as i
the direct secant, modified secant, and 5, 7 and 9 point in- é
cremental polynomial methods. Unfortunately, different data g
processing procedures result in different statistical disper- i
sion for the crack growth rate data [e.g., 29-36). Further- %
more, bias in determining the crack growth rate parameters )

; STV

using the derived crack growth rate data may be induced by

A ey

unequal number of data points associated with each test

specimen. As a result, the effects of the data processing

procedure and the number of data points (measurements) for

o

each specimen on the overall probabilistic prediction of w
X

crack growth damage accumulation are investigated. 2
Metallic airframes contain thousands of fastener holes E

>

o

which are susceptible to fatigue cracking in service. The

o ST

.
-

accumulation of relatively small fatiqgue cracks in fastener

holes (e.g., 6.03" - 0.05") must be accounted for in the
’ .
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design of aircraft structures to assure that the structure
will be durable and can be economically maintained [2,4 and
5]. In this report an initial fatigue quality (IFQ) model,
based on stochastic crack growth and the equivalent initial
flaw size (EIFS) concept, is described and evaluated for the
durability analysis of relatively small fatigue cracks in
fastener holes (e.g. g 0.10"). Procedures and concepts are -
also described and evaluated for optimizing the equivalent
initial flaw size (EIFS) distribution parameters based on
pooled EIFS results. Fatigue crack growth results for 7475~
T7351 aluminum fastener holes under fighter and bomber load
spectra are used to evaluate the proposed IFQ model and model
calibration procedures. The cumulative distribution of crack
size at any given time and the cumulative distribution of the
time~-to-crack initiation (TTCI) at any given crack size are
predicted using the derived EIFS distribution and a stochas-
tic crack growth approach. Predictions compared well with
actual test results in the small crack size region. The
methods described are promising for durability analysis appli-
cation.

Based on a stochastic crack propagation model and the
distribution of the equivalent initial flaw size (EIFS), a
fatigue reliability anaivsis methodology is presented for
non-redundant structural components under scheduled inspec- g
tion and repair maintenance in service. Emphasis is placed
on the airframe components in which fastener holes are cri-

tical locations. The significant effect of the nondestruc-
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tive evalusition (NDE) system as well as the scheduled inspec-
tion maintenance on the fatigue reliability of structural
components is illustrated. A numerical example for the crack
praopagation in fastener holes of a F-16 lower wing skin is
presented to demonstrate the application of the developed
analysis methodology.

In Chapter 2 the validity and practicality of simple
stochastic crack growth models proposed in the literature
are investigated using extensive fatigue crack growth data
of fastener hole specimens. While the general lognormal
random process model has been proposed in the literature
[Refs. 16-21,25-26], the method of analysis has not been
established, and its advantage has not been demonstrated by
experimental test results. These tasks are accomplished in
Chapter 2. 1In Chapter 3, several new stochastic models
using the second moment approximation approach are proposed,
investigated, and verified by experimental test results

using fastener hole specimens. In Chapter 4 stochastic

™

crack growth behavior in center-cracked specimens are in-

Y

R

vestigated using various models studied in Chapters 2 and 3.

et
7

In Chapter 5 the effect of data processing procedures and

o
the required numbexr of fractographic readings for each ;g
specimen on the stochastic crack growth analysis results i
are investigated. Chapter 6 presents the applications of a kﬁ
recommended stochastic crack growth model to durability éﬁ
'.:4

analysis. Iu Chapter 7, possible applications of a recom=-

mended stochastic crack growth model to the fatigue




reliability analysis of structural components under scheduled
inspection and repair maintenance are presented. Conclusions

and recommendations are made in Chapter 8,
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CHAPTER 2

STOCHASTIC MODELS FOR FATIGUE CRACK PROPAGATION

2.1 stochastic Crack Propagation Model

Various fatigue crack growth rate functions have been pro-
posed in the literature [e.g., Refs. 37-42]. These functions
can be represented by a general form

da(t)
dt

= L(AK,Km x,R,S,a) (1)

a

in which L (AX,K R,S,a) = a non-negative function, t = time

max
or cycle, a(t) = crack size at t, AK = stress intensity factor
range, Kmax = maximum stress intensity factor, R = stress
ratio, and S = maximum stress level in the loading spectrum.
Some commonly used crack growth rate functions, such as
Paris-Erdogan model [41], Forman model [42], and hyperbolic

sine model [16,25-26), are given in the following

da(t) _ _ n

- L = C(AK) (2)
da(t) _ c(Ak)™

g =L -= (1-R)K, - AK )
diﬁf) =1 = 10**{Clsinh[C2(logAK + C3)] + C4} (4)

in which #** represents the exponent and the arguments of L

have been omitted for brevity. In the above equation, C, n,
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Cl' Cas C3 and C4 are constants to be determined from base-
line crack propagation data.

For crack propagation in fastener holes under spectrum
loading, the following crack growth rate equation proposed

recently appears to be reasonable [Refs. 6,43-47],

da (t) _ b
T L = Qa (t) (5)

in which Q = CSSY: Cq b and Yy are constants depending
on the characteristics of the spectrum loading and the mate-
rials of fastener specimens.

The crack growth rate models described above are deter-
ministic in nature. 1In order to take into account the sta-
tistical variability of the crack growth rate, Eg. (1)
is randomized as follows [Refs. 16-211,

da(t)
dt

= X(t)L(AK,Km

ax,R,S,a) | (6)

in which the additional factor X(t) is a non-negative sta-
tionary stochastic process with a median value equal to unity.
Thus, the deterministic crack growth rate function given by
Eq. (1) represents the median crack growth rate behavior,

and the random process X(t) [Refs. 16-21] accounts for the
statistical variability of the crack growth rate.

To take into account the statistical variability of
fatigue crack growth damage accumulation, Bogdanoff and Kozin
[e.g., Refs. 10-13] have proposed that the crack size a(t)
is a discrete Markov chain. Such a stochastic process, how-
ever, is based on the crack size a(t) rather than the crack

growth rate da(t)/dt. Based on the stochastic crack growth
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rate model given by Eq. (6), Lin and Yang proposed that X(t)
followed a continuous Markov process [e.g., Refs. 18-20]. Fur-
ther, Yang et al. considered a special case in which X(t)=X is
a random variable for fastener hole specimens under spectrum
loadings [Refs. 21-26].

2.2 Fatigue Crack Growth Data in Fastener Holes

To show the statistical variability of the crack growth
damage accumulation, crack propagation time histories for five
data sets are shown in Figs, 1—5*. These test results were
obtained from fractographic data of 7475-T7351 aluminum fas-
tener hole specimens subjected to spectrum lcadings. The first
two data sets shown in Figs. 1-2 are referred to as WPB and
XWPB, respectively, in which the letters W, P and B indicate
that the specimens are drilled with a Winslow Spacematic drill
(W), using a proper drilling technique (P), and subjected to a
given B~1 bomber load spectrum (B). The additional symbol X
associated with the XWPB data set denotes the fasteners having
a 15% load transfer, whereas the WPB fasteners transfer no
load. Specimens for both data sets from Ref. 48 had a width

2.50 inches. BAll fastener holes were not intentionally
lawecd so that natural fatigue cracks were obtained and the
time-to-crack initiation varied from one specimen to another
[see Refs. 44-48].

The fractographic data have been censored to include
only those corner cracks propagating from 0.004 inch to 0.04
inche for the WPB data set and from 0.004 inch to 0.07 inch

for the XWPB data set. This censoring procedure is necessary

*
Fiqures and tables are located in the back of the report.
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to normalize the data to zero life at 0,004 inch, and to ob-

+ain homogeneous data sets as shown in Figs. 1=-2. The resul-
ting WPB and XWPB data sets include 16 and 22 specimens, |
respectively. 1

Fastener hole specimens used in Ref. 48 were toO narrow
to acquire fatigue crack growth data, without significant edge }
effects included, for large fatigue cracks. "o generate frac-
tographic data for crack growth damage accumulation in the
large crack size region, General Dynamics/Fort Worth Division
recently fatigue tested eight dog-bone specimens of 7475-T7351
aluminum with a 3.0 inch width and a 0.375 inch thickness in
the test section. These tests were conducted to acquire natural
fatigue cracks in fastener holes greater than 0.60 inch. Each
specimen contained a €.25 inch nominal diameter straight-
bore center hole with a NAS6204 (0.25 inch diameter) steel
protruding head bolt installed with a "finger-tight" nut. All
fastener holes were drilled with a modified spaéematic drill
without deburring holes [see Ref. 28].

Four specimens were tested under a fighter spectrum,
referred to as the WWPF data set and four other specimens were
tested under a B-1 bomber spectrum, referred to as the WWPB
data set; the first letter W refers to a wide (i.e., 3.0
inch) specimen. Fastener holes were not intentionally pre-
flawed so that natural fatigue cracks could be obtained. The
fractographic data for each specimen in the WWPB and WWPF

data sets were normalized to a zero life at crack sizes of

0.008 inch and 0.017 inch , respectively, to obtain




homogeneous crack growth data bases, in which each specimen
starts with the same initial crack size. The normalized
crack growth results for the two data sets are presented

in Figs. 3 and 4.

Recently, 10 dog-bone specimens (7075-T7651 aluminum)
were fatigue tested in a 3.5% NaCl solution using a fighter
spectrum (hi-lo 400 hour block). Tests and fractographic
results were documented in Ref. 49. Test specimens were
2 inches wide and 0.3 inch thick in the test section and
included a center hole (open with a nominal diameter of
7/16 inch). All fastener holes were polished to obtain
at least 8 microinches finish in the bore of the hole to
minimize the effects of initial hole quality variation.

An environmental chamber containing 3.5% NaCl solution was
mounted on the test specimen. All spectrum fatigue tests

were run continuously until specimen failure or to a specified
time. Servo-controlled hydraulically actuated load frames
were used. Two different loading frequencies were used;

fast = 8,000 flight hours per 2 days and s}aw = 8,.00

flight hours per 16 days. A fractographic evaluatio. of the
largest fatigue crack for each specimen was performed to
determine the crack growth behavior in terms of crack size
versus flight hours.

Fastener holes were not intentionally preflawed in any
of the 10 specimens so that natural fatigue cracks could
be obtained, and the time~-to-crack-initiation varied from

one specimen to another. The fractographic data for each




specimen were normalized to.-a zero life at a crack length of
0.01 inch to obtain a homogeneous crack growth data base in
which each specimen starts with the same initial crack size.
The normalized crack growth results, presented in Fig. 5,
are referred to as the CWPF data set. It is observed
that the statistical dispersion of the crack growth damage
accumulation is very large; a typical phenomenon of
corrosion—-fatigue cracking in fastener holes.

For detailed descriptions of the geometries of test
specimens, loading spectra, fractographic readings of
crack sizes, crack geometries, etc., refer to References
6, 44-47 for the WPB and XWPB data sets, to Reference
28 for the WWPF and WWPB data sets, and to Reference 49

for the CWPF data set.

2.3 Lognormal Crack Growth Rate Model and Analysis Procedures

Since X(t) should be non-negative, it was proposed
to be a stationary lognormal random process by Yang,
et al. [Refs. 16-21]. The validity of the proposed log-
normal random process will be verified later. The lognormal
random process, X(t), is defined by the fact that it's
logarithm is a normal (or Gaussian) random process, i.e.,

Z(t) is a normal random proccess, where

Z(t) = log X(t) (7)

12




The stationary normal random process Z(t) is defined by :he
mean value M, and the autocorrelation function Rzz(T). The

autocorrelation function between Z(t) and Z(t+t) is given by
Rzz(T) = B[2(t)Z(t+T1)] (8)

in which E[ ] is the ensemble average of the bracketed

quantity. Because the process Z(t) is stationary, the auto-

correlation function Rzz(r) depends only on the time difference Tt.
The Fourier transform of the autocorrelation function,

denoted by ¢zz(w), is referred to as the power spectral

denSity, [eogo ? 50"51] ’

= Ty

_a [
'bzz(w) = 35 j Rzz('r)e (9)

- 00

in which i = /=1 and v = frequency in radians per second.

The mean value, s of Z2(t) is equal to the logarithm
of the median value, X, of X(t). Since the median value X
of X(t) is equal to unity, the mean value u, of Z(t) is

equal to zero, i.e., v, = log X = 0.0. Hence 2(t) is a

' stationary normal random process with zero mean, and it is

completely defined by the autocorrelation function Rzz(r).

,
“n

The standard deviation o, is a special case of RZZ(T), in

o

. t£

13

which ©t = 0, i.e.,
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o_ = V/R__1{0) (10)

Consider the fatigue crack propagation in fastener holes
subjected to spectrum loading, such that Eq. (5) applies,
i.e.,

da(t)

b
3¢ - = X(t)Qa~(t) (11)

Taking the logarithm of both sides of Eq. (l11), one obtains

Y =bU +q + Z(t) (12)
in which
Y = log diﬁf) r U= log a(t) ¢+ g = 1log Q (13)

The relationship between the log crack growth rate, Y =
log[da(t)/dt], and the log crack size, U = logla(t)], for
the test results shown in Figs. 1 to 5, are obtained herein
using the 5 point incremental polynomial method [e.g., 36,69]).
The results are presented in Figs. 6 to 10 by dots. 1In
Figs. 6 to 10 note that the test results scatter around a
straight line, indicating the validity of Egs. (5) and (11).
Crack growth rate data have also been derived from
Figs. 1 to 5 using the modified secant method (7,8]. How-
ever, the modified secant method is not recommended, because
it introduces larger statistical dispersion of the crack
growth rate than the five point incremental polynomial
method. This will be discussed later. It is important to
emphasize that the statistical dispersion of the crack growth

rate data depends not only on the inherent material crack

14
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resistant variability but is also influenced significantly by
the following factors; (i) the data reduction procedure used,
such as the secant method, the method of incremental polyno-
mial, etc., and (ii) the statistical error in crack size
measurements as well as the crack size measurement interval.
The results of such investigations along with other relevant
factors will be presented later.

Since 2 (t) at time (or cycle) t is a normal random
variable, it follows from Eq. (12) that the log crack growth
rate Y = loglda(t)/dt] is also a normal random variable,

conditional on a given crack size a(t). The mean value, y_,

y
and standard deviation, oy, of Y are given by
= bU + 14
My q (14)
oy =0, (15)

The crack growth rate parameters b and Q, as well as the
standard deviation, O, of Z(t), conditional on the crack
size a(t), can be obtained from the test results of the crack
growth rate versus the crack size using Eq. (12) and the
linear regression analysis [Refs. 17,21]. With the crack
growth rate data shown as dots in Figs. 6 to 10, the method
of linear regression is employed to estimate b, Q and o,-

The results are presented in Table 1. Also displayed in

Figs. 6-10 as straight lines are the mean values of the crack

growth rate Uy given by Eq. (14). Since Y and Z are normal

random variables, and Eq. (l2) is linear, the linear regres-




sion analysis is identical to the method of least-squares or

the method of maximum likelihood. : -
To show the validity of the lognormal crack growth rate ?
model, i.e., X(t) is a stationary lognormal random process

with a median of unity, it is necessary to demonstrate that Z (%) -

follows the normal distribution with zero mean, i.e., (;7’ L
%

Fz(t)(z) = pla(t) < z] = ¢(z/oz) (16) 7

in which ¢( ) is the standardized normal distribution func- is,
tion and o, has been estimated in Table 1. g

Sample values of Z(t), denoted by zj,‘are computed from

the sample values of Y and U, denoted by (yj,uj), using L

Eq. (12)
2y = ¥y - buj - q for j=1,2,...,n (17) i;;:
where b and q have been estimated by the linear regression §:
analysis in Table 1 and n is the total number of test data. o
Sample data, zj (jfl,Z,...,n), associated with Figs. ;%

6-10 are computed from Eq. (17) and plotted on the normal :;
probability paper in Figs. 11-15, where the sample values, ff
zj, are arranged in an ascending order, viz, z2; Sz, 2 . » é_
< 2z,. The distribution function corresponding to 25 is ) é:
j/(n+l). Hence, on the normal probability paper zj is :E
plottedagainst¢"l[j/(n+l)] with ¢-1( ) being the inverse ,f
standardized normal distribution function. A straight line g.
shown in Figs. 11-15 denotes the normal distribution for 2 .:
with ¢, being given in Table 1. It is observed that the E‘
ik

16 .




sample values of 2 scatter around the straight line, indicating

that the normal distribution is very reasonable.
Kolmogorov-Smirnov tests for goodness-of-fit [52,53] were

performed to determine the observed K-S statistics. The

results show that the normal distribution is acceptable at

least at a 20% level of significance for all data sets, in-

dicating an excellent fit for the normal distribution.

The crack growth rate da(t)/dt follows the lognormal

;
'y

E
i

distribution, and the coefficient of variation, denoted by V,

oy

¥

)
el

N

is related to o, through the following relation

vV =

(5,2n10) 2 1/2 )
[e - ] (18)

The coefficient of variation, V, of the crack growth rate

for WPB, XWPB, WWPF, WWPB and CWPF data sets are also shown

Experimental study of the measurement of crack propaga-

in Table 1. E
!

tion at microscopic level indicates that the fatigue crack o

propagates successively creating striations randomly spaced. L

A

It is suggested that the spacing of such striations is

somehow related to the rate of crack propagation. Consider-

v o o YT

able statistical dispersion of the spacing of striations has
been observed [Ref. 27]. Moreover, the striation spacings

are correlated and its correlation decays as the distance in
space increases [Ref. 27]. Thus, it is reasonable to assume

that the autocorrelation function RZZ(T) of the normal random

el " el ol Sh PN

process Z(t) is an exponentially decaying function of the time

difference, 1, i.e.,
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R, (1) = oi e~Eltl (19)

in which £-1 is the measure of the correlation distance for
2(t). |
The power spectral density ¢zz(m) corresponding to Eq.
(19) is obtained as
w

-1 2 _-g|t| _-iwt _ 2 2
¢zz(w) = 37 J OZ e e dt = m Gz (20)

-0

Both the autocorrelation function and the power spectral
density of Z(t) given by Egs. (19) and (20) are shown in
Fig. 16 for two values of £ I,

Within the class of random process Z(t) or X(t), two
extreme cases should be considered, because of mathematical
simplicity. At one extreme when £-+x, the autocorrelation

function becomes a Dirac delta function,

2
Rzz(T) = ozﬁ(r) (21)

indicating that the random process Z(t) or X(t) is totally
uncorrelated at any two time instants. Such a random process

is referred to as the white noise process.

At another extreme as £+0, the autocorrelation function

Rzz(r) becomes a constant, i.e.,

2
Rzz(t) = 0, (22)

indicating that the random process Z(t) or X(t) is totally
correlated at any two time instants. Hence Z(t) or X(t)

becomes a random variable, and the crack propagation model

is referred to as the lognormal random variable model.




In reality, the_stochastic behavior of crack propagation lies
between the two extreme cases described above.

Although the general lognormal random process model for
X(t) was proposed by Yang, et al. [Refs. 16-21], the analysis
and verification of the model using available data sets were
not carried out, because they found that the random variable
model is adequate for the fastener hole specimens subjgcted to
bomber or fighter loading spectra. In this réport, the

analysis of the general lognormal random process model is

performed using the method of Monte Carlo simulation. Further,

the correlation studies between such a model and the test

results are also conducted.

2.4 Lognormal Random Process Model

In the prediction of fatigue crack growth damage accumu-
lation in fastener holes, two statistical distributions are
most important: The distribution of the crack size a(t) at
any service time t, and the distribution of service life to
reach anygivehcrack size, including the critical crack size.

Integrating Eq. (11) from zero to t, one obtains

a
a(t) = 0 (23)

(1 - cQagA(t)Jl/C

in which a, = a(0) is the initial crack size and

c=b-1 (24)
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t
At) = [ X (1)dt (25)

0

When X(t) is either a lognormal random process or a log-
normal white noise, the distribution function of the crack
size, a(t), at any service time t is not amenable to analytical
solution. As a result, the method of Monte Carlo simulation
is used herein. The stationary Gaussian random process
Z(t) = log X(t), Eq. (7), can be simulated using the following

expression [e.g., Refs. 54-55]
M i(wkt+¢k)
Z(t) = /28w Re{ ] /4%, _Tw, ) w) e (26)
k=1

in which Re{ } represents the real part of the complex quantity
in the bracket, and ¢k (k=1,2,...,M) are statistically in-
dependent and identically distributed random variables with

the uniform distribution in 19,271}, i.e.,

£, (x) = %# for 0 < x < 27
(27)
= 0 elsewhere

where f¢ (x) is the probability density function of the ran-
k
dom variable ¢k (k=1,2,...,M). 1In Eg. (26), the power spectral

density ¢Zz(w) forw> 0 is evaluated at an equally spaced

interval Aw with w kaw > 0,

k=
The well-known Fast Fourier Transform (FFT) techniqgue

can be applied by letting
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Wy = kAw ' t = jAt and AwAt = 27 /M (28)

such that Eq. (26) becomes [54,55]

i¢ ijk 2n/M
k] o= } (29)

M
z2(jAt) = V28w Re{ ) [/IE;;TEKGT e
k=1

Thus, when applying the FFT technique, the stationary Gaussian
randoa process Z(t) is evaluated at equally spaced discrete
time points tj = jAt for j=1,2,...,M. The total number of
sample points, M, must be an integer power of 2 based on the
FFT algorithm.

Sanple functions of the crack size a(t) versus the
service time t can be simulated conveniently using the effi-
cient FFT technique. The Monte Carlo simulation procedures

are summarized in the following:

(i) simulate a sample function, say the jth sample

function, of stationary Gaussian random process

i

e

Zj(t) using Fq. (29) and the FFT techrique.

v

-

- e

(ii) Compute the corresponding sample function of the

stationary lognormal random process xj(t)

<Y g
N "‘j‘ Y )

Xi(t) = (10)**Zj(t) (30)

N

(iii) Compute the sample function Aj(t) as a function

P e E P B LRt

of time t using Eq. (25), i.e.,

t
Aj(t) = L) xj(r)dt (31)
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{iv)

(v)

(vi)

(vii)

Compute the sample function of the crack size
aj(t) as a function of time t using Eq. (23),
i.e.,

a

0
a,(t) = — : (32)
j [1- coagAj (£)11/¢

Repeat procedures (i) to (iv) for N times, i.e.,
j=1,2,...,N, to obtain N sample functions of the
crack size a(t) as a function of the service time
t.

Sample values of the random time, T(al), to reach
any specific crack size a is obtained from sample
functions a(t) versus t by drawin. “orizontal
line through the crack size a(t) = a, The gimu-
lated distribution function of T(al) is established
from the sample values thus obtained.

Ssample values of the crack size a(t) at any ser-
vice time 1 is obtained from sample functions of
a(t) versus t by drawing a vertical line through

t = 1, and the distribution function of a{1) i=

established from the corresponding sample values.

Lognormal White Noise Model

As described previously, the stationary Gaussian random

process Z(t) is a Gaussian white noise when its autocorre-

lation function is a Dirac delta function given by Egq. (21).

The corresponding power spectral density ¢zz(w) is constant,

i.e.,

22




R, (1) = 026(1) ; o, () = 0§/2w (33)

With the constant power spectral density as well as the

values of b, Q, and o_ given in Table 1, sample functions of

z
the crack growth damage accumulation a(t) for WPB and XWPB
fastener holes are simulated and presented in Figs. 17-18,

The folliowing conclusions are derived from a comparison
between the simulation results, Figs. 17-18, and the experimen-
tal test data given in Figs. 1-2, (i) The Gaussian white
noise model correlates very well with the experimental data
only for the mean (average) crack growth behavior, and (ii)
the model introduces very little statistically dispersion for
the crack growth damage accumulation. As a result, the Gaussian
white noise model is unconservative and unrealistic for en-
gineering applications. No further study will be made of this
model.

It is interesting to note that Virkler, Hillberry and
Goel [Refs. 7 - 8] have undertaken simulation studies of
fatigue crack propagation , which amount to the white noise
assumption, although the method of Monte Carlo simulation
they used is different from what is described above. They
also arrived at the same conclusions [Refs. 7 -8]. The fact
that the white noise model results in a small statistical
dispersion for the crack growth damage accumulation can be

shown in the following.

Equation (25) can be written as follows:

23




A(nat) = rf X(jAt) At (34)
j=1

Being a Gaussian white noise, %2(jAt) and Z(kAt) are statis-
tically independent for j # k. Hence, X(jAt) = (10)**Z(jAt)
and X(kAt) = (10)»*2(kAt) are also statistically indepen- :
dent. It follows from Eq. (34) that A(nAt) is the sum of
independent random variables X(jat) (j3=1,2,...,n),in which
each random variable has an identical median value (unity)
and standard deviation. By virtue of the central limit
theorem, the statistical dispersion of A(t) diminishes as n
increases, and hence A(t) approaches to the mean value. Then,
it follows from Eq. (23) that the statistical dispersion of

the crack growth damage accumulation a(t) is extremely

small.

2.6 Lognormal Random Variable Model

For the other extreme case in which £+0, the lognormal
random process X(t), or the normal random process 2(t),
is completely correlated at any two time instantgs. Under
this circumstance, the lognormal random process X(t) becomes
a lognormal random variable X,and the normal random process

Z(t) becomes a normal random variable Z, i.e., ‘
X(t) = X ' Z(t) = 2 (35)
where

z2 = log X (36)
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Such a model is referred to as the lognormal random variable model

and it has been investigated in Refs. 16, 17, 21, 25 and 26.
For the lognormal random variable model, the statisti-
cal distribution of the crack growth damage accumulation can

be derived analytically as follows.

Equation (11) is now simplified as

da(t) _ b

and the integration of Eg. (37) yields

)

[1-XcQta

a(t) = o) l/C (38)

0]
in which ag = a(0) is the initial crack size and ¢ = b - 1 is
given by Eq. (24).

Let zY be the y percentile of the normal random variable

Z. Then, it follows from Eg. (16) that
Y$ = P2 >ZY] =1 - ¢[zy/oz] (39)
or, conversely,

_ -1
z, = 0, 070 (1 - Y8) (40)

in which d)-l( ) is the inverse standardized normal distribu-

tion function.

The y percentile of the random variable X, denoted by xY,

follows from Eg. (36) as

x = (100 Y (41)
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and the vy percentile of the crack size, aY(t), at t flight

hours follows from Egs. (38) and (41) as

29
(42) '
[1--chQt:ag]1/c -

ay (t) =

Various y percentiles of the crack size aY(t) versus
flight hours t have been computed from Egs. (39)-(42), using

the parameter values given in Table 1 for the WPB, XWPB,

WWPF, WWPB and CWPF data sets. The results are presented in .
Figs. 19-23 in which the initial crack sizes, ag = a(0), for
each data set are, respectively,0.004, 0,004, 0.017, 0.008 %

and 0.01 inch. For example, the curve associated with y

e -

Ao
~

-

= 10 in these figures indicates that the probability is 10%

o e

..

that a specimen randomly chosen will have a crack growing

) T

faster than that shown by the curve. Another inter-

pretation is that on the average 10% of the total specimens

X

will have a crack growing faster than that indicated by the

10% curve, when the total number of specimens is large.

TN

Thus, the distribution function of the crack size, a(t),

as a function of sexrvice life t (flight hours) has been

TRy

established by Eqs. (39)-(42) and shown in Figs. 19-23. On

S

the basis of the lognormal random variable model, the dis-

‘ "

tribution of the crack size at any service time t, and the 2;
distribution of service life to reach any specific crack ’ 'ﬁ.
size, including the critical crack size, can be derived ﬁ.
analytically as follows: :
The distribution function of the lognormal random %
variable X is given by g
3
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Fx(x) = P{X < x] = ¢[log x/cz] (43)

in which o, has been obtained from the linear regression
analysis of the crack growth rate data shown in Table 1 for
various data sets.

The distribution function of the crack size, a(t), at
any service life, t, can be obtained from that of X given by
Eg. (43) through the transformation of Eq. (38). The results

are given as follows:

-C ~C
0 X

a
log| 4—--—
Pla(t) <x] = @ cQt (44)

(¢}
2

Fa(t)(x) =
Let T(al) be a random variable denoting the time to reach

any given crack size aj. Then T(al) can be obtained from

Eq. (38) by setting a(t) = a, and t = T(al), respectively,

i.e.,

_ 1 -c _ _.-C
T(al) = So%X [a0 a ] (45)

Thus, the distribution of T(al) can be obtained from that of
X given by Egqg. (43) through the transformation of Eq. (45).

The results can be expressed as follows:

_ =1 -aflo9 n
FT(al) (1) = P[T(a;) <1] = 1 ¢<——%;—) (46)
where
_ 1 -c _ _-C
n = gor lag a;"] (47)
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In the.durability analysis, the extent of cracking in a
structural component can be measured by the probability that
a crack size may exceed any specific value 31 at any point in
time T, referred to as the probability of crack exceedance.
The probability of crack exceedance, denoted by p(x;,1), is
the complement of the distribution function of the crack size .
a(t), i.e.,

p(xl,T) = P[a(r)>xll =1-F )(xl)

-c -c
ag ~ X )

log(
1-9 QT

g
2z

al(r

(48)

in which Eq. (44) has been used.

It is observed from Eqs. (44) and (48) that the distri-
bution functions of the crack size at any given number of
flight hours and the time to reach any specific crack size,
as well as the probability of crack exceedance derived above,
require only the crack growth rate parameters b and Q as well
as the model statistics o, They are determined from the
linear regression analysis of the crack growth rate data

presented in Table 1.

2,7 Correlation With Experimental Results

2.7.1 Lognormal Random Variable Model

Based on the lognormal random variable model, the

distribution of the crack size, a(t), as a function of flight
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hours, t, can be expressed in terms of various Yy percentiles.
The results for WPB, XWPB, WWPF, WWPB, and CWPF fastener
holes are shown in Figs. 19-23, respectively. A visual com-
parison between Figs. 1-5 and 19-23 indicates agood corre-
lation between experimental results and the lognormal random
variable model.

Using Egs. (46)-~(47) the distribution functions for the
random number of flight hours to reach various crack sizes
al are shown in Figs. 24-28 as solid curves for different
fastener holes (a1 = 0.01, 0.02 and 0.04 inch for WPB fas-
tener holes; a; = 0.008, 0.025, and 0.07 inch for XWPB
fastener holes; a; = 0.05, 0.15 and 0.51 inch for WWPF fas-
tener holes; a, = 0.025, 0.1 and 0.57 inch for WWPB fastener
holes; a; = 0.04, 0.08 and 0.35 inch for CWPF fastener
holes). The corresponding experimental results obtained
from Figs. 1-5 are plotted in Figs. 24-28 as circles. Fig-
ures 24-28 demonstrate a good correlation between the log-
normal random variable model (solid curves) and experimental
results.

The plot for the probability of crack exceedance is
referred to as the crack exceedance curve. The crack ex-
ceedance curves based on the statistical model, Eq. (48),
for various fastener holes at different service times
(flight hours) are shwon in Figs. 29-33 as solid curves.
Also shown in these figures as circles are the corresponding
test results obtained from Figs. 1-5. Again, the correlation
between the lognormal random variable model and the test
results is very good.
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In computing the crack growth rate data, da/dt, from

e TS

-
>3

the fractographic results, various data processing procedures

e

can be used. These include the secant method, the modified

x‘-
<
‘]-
5-5 i

secant method, and the 3, 5, 7 and 9 peoint incremental poly-

nomial methods [Refs. 7,8,29,34-36]. For the statistical

analysis of crack propagation, the incremental polynomial

method is considered superior to the secant or modified ‘
secant 'aethod, because the latter introduces additional dis-

persion into the crack growth rate data. Both the direct

segant and modified secant methods have been employed in the

théoretical model; however, the correlation with the ex-

perimental results is not as good as that presented above.

Further investigation will be made in later chapters.

‘The number of crack growth data measuraments during ex-
permental tests, i.e., the crack size a(t) versus the flight
hour t, usually is not equal for each specimen. Frequently,
more data points are measured for specimens with slower crack
growth rates than those with faster crack growth rates. Conse-
quently, more crack growth rate data associated with the slow
crack growth specimens would have been used in the regression
analysis to determine the crack crowth rate parameters b and
Q. As a result, the estimated parameter values of b and
Q tend to be biased to the slow crack growth damage
accumulation. This clearly violates the statistical implica-
tion that each specimen is statistically independent with the
same weight. To compensate for such an error, interpolations

have been conducted for fast crack growth specimens and
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additional crack growth rate data points have been added
artificially so that the number of crack growth rate data
points for each specimen is roughly the same. This approach
eliminates the estimation bias for the crack growth rate
parameters. This aspect will be discussed further in the

. following chapters.

2.7.2 General Lognormal Random Process Model

When X(t) is a stationary lognormal random pro-
cess with a median value. of unity, the process zZ(t) =
log X(t) is a stationary normal (Gaussian) random process
with zero mean and an autocorrelation function Rzz(T) given
by Eq. (19) or a power spectral density ¢zz(m) given by Eq.
(20). With such a stochastic model, the statistical distri-
bution of the crack growth damage accumulation is not amenable
to analytical solution. Hence, the method of Monte Carlo
simulation has been employed, and the simulation procedures

have been described previously.

s

For any general random process model, an additional para-

L

meter appearing in the autocorrelation function should be
estimated from the experimental test results. For instance,
the parameter E-l in Egs. (19) and (20), which is a measure
> of the correlation distance, referred to as the correlation
parameter, should be estimated. Estimating such a

correlation parameter is quite involved and may require many

[ARANY. - PAAAE

sample functions of the test results. Since the objective

herein is to investigate the ability of the proposed stochastic
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model in describing the statistical fatigue crack propagation
behavior, no effort is made to establish analysis procedures

for the determination of such a parameter.
-1

Different values of the correlation parameter, § —,

were used and the corresponding simulation results were ex-

amined. As expected, the statistical scatter of the crack .
growth damage accumulation increases as the correlation para-
meter, E—l, increases and vice versa. A value for the cor-
relation parameter, S-l, that results in a good correlation
with the experimental test results is chosen to demonstrate

the validity of the lognormal random process model.

The best parameter value, 5—1, associated with each data
set is shown in Table 2. Using the Monte Carlo simulation
procedures developed and described previously, and using
the power spectral density given by Eq. (20), sample functions
of the crack size a(t) versus the flight hour t have been
simulated, and some of these results are presented in Figs.
34-38. Although over 150 sample functions of a(t) have been
simulated for each case, only the first 50 sample functions are
depicted in these figures so that each figure will not be too
crowded. The total number of simulated sample functions for
each data set is given in Table 2. In the simulation process
using a FPT technique that is very efficient, the total number
of discrete points, M, for each sample function of a(t) is
2,048 with At = 60 flight hours except the CWPF data set in

which At = 20 flight hours (see Table 2.)
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It is observed that the simulated sample functions of
the crack growth damage accumulation a(t) presented in Figs.
34-38 closely resemble those of the experimental test results
given in Figs. 1-5. The simulation results for the distribu-
tion function, FT(al)(t)' of the random time, T(al), to reach
some specific crack sizes are presented in Figs., 39-43 as
solid curves (empirical distribution) for various data sets.
Also shown in these figures as stars are the experimental
test results obtained from Figs. 1-5. The prcbabilities of
crack exceedance at some specific service times are displayed
in Figs. 44-48 as solid curves, whereas the corresponding
test results for différent fastener holes obtained from Figs.
1-5 are shown as stars. Figures 39 to 48 show that the cor-

relation between the lognormal random process model and the

experimental results is excellent.
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CHAPTER 3

SETZOND MOMENT APPROXIMATION “

The most important statistics for a random variable such
as the crack size a(t), are a few lowest cumulants. Frequently,
the distribution function of a random variable is not amen-
able to analytical solution, but a few lowest cumulants
of such a random variable can be obtained easily. In
this case, the distribution may be approximated by
a particular function with an acceptable level of
accuracy when the few lowest cumulants are incorporated in
the particular distribution. Since the first two cumulants,

i.e., the mean value and standard deviation, of the crack

size a(t) at any service life t can be determined analytically,

]

‘¢
»

»

>

the distribution function of aft) will be .itted by different

T v

functions. Several possible distribution functions will be

AL

studied from which a most suitable one may be chosen for a(t).

v,
1a.

This approach is referred to as the second moment approximation.

*
P L

Again, the crack propagation in fastener holes is con-

LS

sidered such that the following crack growth rate equation

o e

holds, ;
:

datt) - x(t)n(a) = X(t)QaP(t) (49) 3

dt :

in which X(t) is a stationary lognormal random process and é
34 '
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L(a) = Qa°(t) . (50)

3.1 Cumulant - Neglect Closure

A random process, say W(t), can be described by its log-
characteristic functional which has a series expansion as

follows [Ref. 20]:

tn E{explilo(t)W(t)dt]} = ife(t)nllw(t)]dt

2
pY

A
b
1 JIJB(tl)e(tz)e(t3)K3[W(tl)'w(tz)'W(t3)]
. dtldtzdt3 F oveeve (51)

where E{ } = an ensemble average, i = v=1, «_[ ] = nth
cumulant of n random variables, each integratior extends
over the entire domain on which W(t) is defined, and 6 (t)
belongs to a set of functions for which all the integrals

on the right-hand side exist and the series converges. It
can be shown that the first cumulant is equal to the mean
and the second and third cumulants are equal to the second
and third central moments, respectively. In the special
case 06 (t) = zejG(t-tj) where ej are constants, a log-
characteristic functional becomes a log-characteristic func-
tion. 1In general, the number of terms in Eg. (51) is infinite,
in which case an approximation is obtained when the series

is truncated, or when cumulants higher than a given order are
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set to zero. This general scheme is called the curwulant-

neglect closure. However, retaining only the first cuinulant

is trivial since it reduces to the deterministic description

W(t) = E[W(t)]). The special case of Gaussian closure is

equivalent to'neélecting the third and higher cumulants and .
allowing the random process to assume any value in (~«,»),

Now, Eq. (49) can be simplified by a change of variable
[Ref. 20]:

w(t) = (52)

a(t) dv
I L(v)

i)

in which a; = a(0) is the initial crack size. Then Egq. (49)

becomes

P Qd i B

= X(t) (53)

>

aw(t)
dat

%7

N

1f Fa(t)(x) and Fw(t)(x) denote the distribution func-

tionc of a(t) and W(t), respectively, then it follows from

Eq. (52) that they are related through

ST v s
e L o

.

Fa(t)(x) = Fw[y(x)]

(54) i
¥ dv «“Q -
y(x) = J Iy (ao - x )/cQ T
a -
0 . t?
Hence, the distribution of a(t) can be derived once the dis- %2
tribution function of W(t) is obtained. ’ f;
iy
Integration of Eq. (53) from 0 to t yields i3
t
Wity = I X(t)dr (55)
O ,'o:..
i
g
3¢
E.
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It is obvious from Eq. (55) that W(t) is a stationary random
process, representing the integration of a stationary log-
normal rapdom process.

While the distribution function of W(t) is difficult to
obtain,'the cumulants of W(t) can be derived from that of
X{t) through the following relation

t t2

1
a0 (E)) Wity) oo we)] = [ ey [ Tar, L.
0 0

t

n
J Kn[X(Tl) 'X(Tz);s-¢,X(Tn)]dTn (56)
1]

The first cumulant Kl[W(t)] is the mean value given by

t
ny = EW(t)] = L E[(X(1)]dt = Uyt (57)

in which Uy is the mean value of the stationary lognormal
random process X(t).
The second cumulant K2[W(tl),w(t2)] at the same time

instant t1=t2=t is the variance E[{W(t)-uw}zl = o% given by

2 t[t
on = | LBt () -ug i ey

it
JO JO cov[X(Tl),X(rz)]d'rldr2 (58)

From the physical standpoint, the covariance function,

cov[x(rl),X(Tz)], of the crack growth rate should decrease

.....................................
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as the diffetence between two time instants Ty and T,
iucreases. Thus, an exponentially decaying function
is propoéed herein

-Cit,~1,]|
coviX(1,),X(1,)] = cf( e 1 2 (59)

1

in which Iy is the standard deviation of X(t), and ¢ — is

a constant, that is a measure of the correlation distance.
As c-1+0, the correlation distance approaches zero signifying
a white noise process for X(t). The solution for the white
white noise process, presented in the previous chapter,
is shown to be unreasonable. On the other hand, as c-l
+o X(t) is completely correlated and hence it is a random
variable. The solution for the random variable model has
been presented previously.

Substituting Eg. (59) into Eq. (58) and carrying out

the integration, one obtains

Oy = V2 (ox/c)[e-ct + It - 1]1/2 (60)

Thus, the mean value Hy and standard deviation Ow of the

stétionary random process W(t) are expressed in terms of the *
mean value, Uy the standard deviation, Oy and the correla-
tion parameter ¢ of the lognormal random process X(t), see
Egqs. (57) and (60). Botn My and Oy €an be determined from

experimental test results as follows.

Taking the logarithm of both sides of Eq. (49), one

obtains




Y = bU + g + Z2(t) (61)

in which
) Y = log 9%%§l ’ U = log a(t) , q= log Q (62)
. 2(t) = log X{(t) ' (63)

where 2(t) is a stationary Gaussian (or normal) random pro-
cess with zero mean, i.e., U, = 0, and standard deviation
0,. The crack growth rate parameters b and Q as well as the
standard deviation 0,4 Of Z(t) can be determined from the base-
line crack growth rate data using Eq. (61) and the linear
regression analysis as described previously.

From the properties of lognormal random variable, the
mean value, Myr and standard deviation, Oyr of X(t) are

related to g and 0, in the following [e.g., Refs. 52,53)

hy = exp[%— (ozﬂ,nlo)z] (64)

o (65)

[ (0,4n10) 2 ]1/2

x = ux e -

in which the property that By = 0 has been used.
Substituting Egs. (64) and (65) into Eqs. (57) and (60),

one obtains the mean value, s and standard deviation, e

of the stationary random process W(t) as follows

My = t exp[% (ozznlO)z] (66)




2
ot ., 121/2 (0,2n10)2 7172
o, = Y2le > trt=1) exp[%—(ozﬂ,nlmz] [e z -1]

W Z
(67)
The coefficient of variation of W(t), denoted by \/ is
given by .
' 2
- - ﬁ(e-ct.{.;t -1) 172 (Uzﬁ.nlO) ]1/2 .
Vi = w/v = 33 e -1 (68)

3.2 Gaussian Closure Approximation

As mentioned before, the log-characteristic ‘unction of
the random process W(t) can be expressed by an infinite
series involving all the cumulants as shown in Eq. (51).

An approximation can be made by a truncation of the series
or by setting all cumulants higher than a given order to
zero. This general scheme is referred to as the cumulant-
neglect closure [Ref. 20].

A special case of the cumulant-neglect closure is called
Gaussian closure, assuming that W(t) is a Gaussian (normal)
random variable, which is equivalent to neglecting the third
and higher order cumulants, and allowing W(t) to take values

in (-»,») [Ref. 20].

kY

With the Gaussian closure approximation, the distribu- . 2;

tion function, Fw(t)(x) = P[W(t) < x], of W(t) is given by E
I

X=Hy ?

FW(t) (x) = ¢ -—O_;J- ; -0 < X < ® (69) ’

in which Ui and 0y are given by Egs. (66) and (67), respec-

O

.

tively. The relation between the crack size a(t) and W(t)

‘l_

=
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is obtained by substituting'Eq.'(SO) into Eq. (52) and carry-

ing out the integration; with the results

W(t) = (Qc) tagS.- a™ (1)} (70)

: in which ¢ = b = 1./
Hence, the distribution function of the crack size a(t)
at any service life t can be obtained from that of W(t)

given by Eq. (54) as follows:

1

-1, -c -c
Fa(t)(x) = FW(t)[(Qc) (ao - X _)1

1 C

(Qc) “(az® - xC) - .
= & 0 LJ : =w<xX<® (71)

‘w

in which Eq. (69) has been used.

Equation (71) admits ali values for the crack size a(t),
including those values smaller than a,. To compensate the
error thus introduced, the crack size should be restricted
only to those values larger than ag, denoted by a*(t). The
distributimn function of the crack size a*(t) can be obtained

‘ through the normalization process as follows;

Fau(g) (¥) = Pla*(t)<x] = 1-Pla*(t)>x] = 1-Pla{t)>x|a(t)>a,]

_Plaw)oxd oy o tFae

=1 Pla(E)>a,] I=F, (¢) (@)




_fam® Fag @

(72)

Substitution of Eq. (71) into Eq. (72) yields

-1, -c -c -
. x) = lo (Qc) (ao -x ) My s _l:ﬂ
a*(t) Ow ow
-u
W
1l - o — (73)
-G e

Such a normalized distribution, Fa*(t)(X)’ is nearly equal

b
v
o

to the unnormalized one, )(x), except for very small t.

Fa(t

From an application point of view, the probability dis-
tribution Qf fatique life (or crack propagation life) is also
of great interest. Let T(al) be the random'time at which a
given crack size a; is reached. Since the event {T(a;} < t}
is the same as the event {a(t)>al}, the distribution func-

tion of T(a,), denoted by F (t), can be computed as
1 T(al)

follows

() =1 - NEW (74)

Fy (a) Far(t

in which the normalization procedure is used. Without

normalization, one obtains

FT(al)(t) =1 - Fa(t)(al) (75)

The probability that a crack size will exceed Xy at

any service time 1, referred to as the probability of crack
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exceedance, is given by

p(xl,1)==P[a*(1)>x1] =1 - Fa*(T)(xl) (76)

in which Fa*(r)(xl) is given by Eq. (73) with t and x being

replaced by T and Xq s respectively.

3.3 Weibull Appro.imation

The distribution function of the crack size a(t) has
been derived from that of W(t) in Eq. {54). While the
distribution of W(t) is unknown, the mean value Y and stan-
dard deviation Ow have been obtained in Egs. (66) and (67).
Moreover it is obvious from Eq. (52) that W(t) is a non-
negative random variable, since L(a) in Eq. (50) is a non-
negative function of the crack size a. Thus, various
distribution functions which are defined in the positive
domain, such as Weibull, lognormal, gamma, etc., will be
investigated for approximating that of W(t).

Instead of truncating the third and higher order cumu-
lants, the distribution of W(t) is approximated herein by the
Weibull distribution. Note that the higher order cumulants
of the Weibull random variable are not zero. Consequently,

the Weibull approximation implies that the higher order

cumulants of W(t) are approximated by those of the Weibull.

X
A

o g
A

Then, the distribution function of W(t) is given by

e

——
%

(x) =1 ~ exp{—(x/e)a} ; x >0 (77)

-

Fue)
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—ra

in which a and B are the shape parameter and scale parameter,
respectively. Both a and B are related to the mean value,

My’ and coefficient of variation, V.

W’ of W(t) through the

following [Ref. 53]

_ 2, _ .2 1.]1/2 1 .
Vg = [T(l + 0‘) (1 + a)] //F(l + =) (78)
oy = BI(L + 3 (79)
W o
in which I'( ) is the gamma function. Thus, the shape para-
meter o is determined from Eq. (78) and then the scale
parameter 8 is computed from Eq. (79).

The distribution function of the crack size a(t) is
obtained from that of W(t) given by Eq. (77) through the
transformation of Eq. (70); with the results

-1 _ ~c __~C o .
Foqp) (¥) = 1-exp{-l(ay” -x ")/cQBl™} ;3 x2a, (80)
The distribution function of the propagacion life,
T(al), to reach any given crack size a; is equal to
l - Fa(t) (al)l lne.]
- - -c _ _~C o

FT(al)(t) exp{~1(a, x )/cQBl} (81)
and the probability of crack exceedance is given by

p(xy,1) =1 - Fa(T)(xl) (82)

It is important to note that both the distribution

functions of a(t) and T(al), given by Egs. (80)-(81), as well
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as the probability of crack exceedance, Eq. (82), are implicit
functions of the service life t. This is because o and B are
funciions of Vi and Uy See Egs. (78)~-(79), that in turn are

functions of t as given by Egs. (66)~-(68).

3.4 Lognormal Approximation

With the lognormal approximation, the distribution func-

tion of W(t) is expressed as

log x -~ p
Py ey (X) =9 W), xzo0 (83)
9109w -
in which ulogw and ologw are the mean valu=z and standard

deviation of logW, which are related to Uy and Vg in the

following [e.g., Refs., 52-53]

_ 2,.1/2
Orogw = 1n (L + V2112 /n10 (84)
il 85
ulogw = 4n ?I:;g;i77 4nlo (85)

where My and Vi are given by Eqs. (66) and (68), respectively.
Thus, the distribution functions of the crack size a(t)

at any service time t and the propagation life, T(al), to

reach any given crack size a; can be derived through Egs.

(54) and (B83) as follows

-C -c
10g(aO X 7) - logQc ulogw

Fa(t)(x) =9¢ : X>ag (86)

0logW

45

"g;"‘.“ .

TR

MY

-
r

R
LI ]

o |



and
The crack exceedance probability p(xl,T) is obtained from
Eg. (82) where Fa(t)(xl) is given by Eq. (86) with t and x

being replaced by T and X4 respectively.

3.5 Gamma Approximation

With the gamma approximation, the distribution func-

tion of W(t) is expressed as

Fw(t)(x) = y{(n,Ax)/T(n) (88)

in which y(n,Ax) is the incomplete gamma function, and T (n)

is the complete garma function given by

AX
Y(n,Ax) = f y"l 7Y gy (89)
0
T (- S e = I LR dy (90)
' 0
The -~ 7, 7 and A are related to the mean value,
Mg’ and coe ~f variation, VW' as follows [Ref. 53]:
n = l/V2 (91)
W
A = 1/(Viu) (92)
Wr'w
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where My and Vy are expressed in terms of O, and ¢ and t in
Egqs. (66) and (68), respectively.
The distribution function of the crack size a(t) at any

service time is obtained as

1l

Fu(e) (0 = YIn,A(e@) ™ (ag®

- -Cc
(ag” = x 7)I/T(m) ; x> a, (93)

and the distribution function of the propagation 1ife,T(a1),

to reach any given crack size ay is given by

FT(al)(t) =1 - Fa(t)(al) (94)
The probability of crack exceedance can be obtained from Eq.
(82) in which Fa(r)(xl) is given by Eq. (93) with t and x

being replaced by 1 and X respectively.

3.6 Correlation Between Second Moment Approximations and

Experimental Results

Unlike the general lognormal random process model in
which the correlation parameter E-l is a measure of the
correlation distance for the Gaussian random process Z(t),

1

the correlation parameter f - in the present case is a

measure of the correlation distance for the lognormal random

process X(t). Again, no effort is made to establish pro-

cedures for determining c-l from experimental results.

1

Hence, an appropriate value of ¢ — that results in the best

correlation with the experimental results is chosen by

scanning different values of c-l. It is found that within

et
.
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the same data set, the parameter value c-l providing the
best correlation varies slightly among various approximations.

1 for rach approximation

As a result, a suitable value of ¢
in each data set is shown in Table 3.
With the parameter values, b, Q, and Oy given in Table 1

! given in Table 3, the distribution

as well as the value of [
function, FT(al)(t), for the random time T(al) to reach any
specific crack size a., has been derived in Egqs. (74), (81),
(87) and (94) for various approximations. The results for
different fastener holes are presented in Figs. 49(a) to
53(a) as dotted and solid curves for Weibull and gamma
approximations, respectively. With Gaussian closure and
lognormal approximations, the results are presented in Figs.
4% (b)-53(b), respectively, by dotted and solid curves. Also
shown in these figures as circles are the experimental results
obtained from Figs. 1-5., Furthermore, based on various
approximations the corresponding probabilities of crack
exceedance, p(xl,T), at any specific service life, 1, are
depicted in Figs. 54-58 as dotted and solid curves. The
corresponding experimental results obtained from Figures
1-5 are shown in these figures as circles,

Figures 49 to 58 demonstrate that the correlations
between all the second moment approximations and the experi-

mental data are very satisfactory.
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CHAPTER 4

FATIGUE CRACK PROPAGATION IN CENTER-CRACKED SPECIMENS

So far, emphasis has been placed on the crack growth
damage accumulation in fastener holes subjected to spectrﬁm
loadings, which is the main subject of this report. It
should be emphésized that the statistical model for the
fatigve crack propagation given in Egqg. (6) is quite gen-
eral and it ¢an be applied to other materials, crack
geometries, fatigue loading, and environments. The log-
normal random variable model has been recently applied to
supar-alloys used in jet engine components, such as IN100,
Titanium, Waspaloy, etc., in high temperature environments
[Refs. 26-27]). All the test data studied in Refs. 16, 26~

27 were obtained using compact tension. specimens under

either constant-amplitude or spectrum loadings. The log-

normal random variable model was shown to be quite reasonable

for constant amplitude cyclic loadings. Likewise, it was

demonstrated that the statistical model can be used to P

ﬁ

X FS

predict the fatigue crack propagation under spectrum loading
. using the base~line constant-amplitude test results

[Refs. 26~-27].

pATes
".lj

¥

A literature survey has been made to investigate avail-

'-V{.

able fatigue crack propagation data. Unfortunately, most of

Ralle

the test results do not have enough replicates for a meaning-

-
A

ful statistical analysis as well as model varification, except
49
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one data set generated in Refs. 7 and 8. This data set,
consisting of crack grﬁwth damage accumulation in the large
crack size region, will be studied in this chapter.

Crack propagation experimental results of sixty-four
(64) center-cracked specimens, made of 2024-T3 aluminum and
subjected to a constant amplitude cyclic loading, wefe re-
ported in Refs. 7 and 8. The time histories of half crack
length, a(t), plotted against the number of cycles, t, are
shown in Fig. 59 [after Ref. 7 ]. The initiai half crack
length of each specimen was 9 mm and the tests were texr-
minated when each half crack length reached 49.8 mm. The
maximum cyclic load was 5.2 kips (23.35 kN) and the stress
ratio was 0.2. Data for the crack growth rate, da/dt, versus
the stress intensity range, AK, were obtained from the test
results using the seven point incremental polynomial method.

The results were shown as dots in Refs. 7 and 8.

4.1 Synergistic Sine Hyperbolic Crack Growth Rate Function

The log crack growth rate data is not linearly related
to the log stress intensity range, AK. As a result, the
following synergistic sine hyperbolic function was shown to

be very reasonable for the crack growth rate [Refs. 16, 25

and 261,

C,sinh([C, (logAK + C,) ]1+C
dalt) - (10) 1 2 3 (95)

in which a(t) is the half crack length, AK is the stress

intensity range, Cl is a material constant, and Cor C3 and
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C, are parameters. Based on Eq. (6), the randomized form
for Eq. (95) is given by

C,s8inh(C, (logAK + C,) 14+C
da(t) _ 1 2 3 4
i X(t) (10) (96)

in which X(t) is a stationary lcqnormal random process with
A .
a median value of unity. '

Taking logarithms on both sides of Eg. (96) one obtains

da(t)

Y = log 3E

= Clsinhicz(logAK-+C3)]+C4+z(t) (97)

where Y = log(da(t)/dt] is the log crack growth rate and
Z(t) = log X(t) (98)

is a stationary Gaussian (normal) random process with zero
mean and standard deviation Oge
The stress intensity range, AK, for the center-cracked

specimen is given by

AK = % /7a(t)secna (€) /] (99)

in which AP = load range = 4.16 kips, B = thickness of

specimen = 0.1 inch, and w = width of specimen = 6.0 inch.
The log crack growth rate data versus log AK were given
in Refs. 7 and 8 . From these data, the method of maximum
likelihood can be applied to estimate the parameters Cys Cq
Cyr and the standard deviation o, as described in detail in
Refs., 25-26; with the results,C2=3.4477, C3 = -1.3902, C4 =

-4.5348 and 0, = 0.0823., The material constant Cl for aluminum
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is 0.5, i.e., Cl = 0,5, The autocorrelation function. Rzz(T)
and the power spectral density ¢zz(m) of the stationary
Gaussian random process 2Z(t) are given by Egs. (19) and (20),

respectively.

4.2 Logncrmal Random Process Model and Correlation With .

Experimental Results

For the Gaussian white noise model, Monte Carlo simula-
tions have been conducted in Refs, 7 and 8 as well as in
the present study. The simulation results are shown in Fig.
60. Similar to Fig. 7, the Gaussian white noise model
results in very little statistical dispersion for the crack
growth damage accumulation, and hence it is not a valid
model.

At the other extreme, the lognormal random variable model,
i.e., X(t) = X and 2(t) = 2 = log X is applied as follows.
The Y percentile of the log crack growth rate YY(AK'Ci)’

(i=1,2,3,4) follows from Eq. (97) as

YY(AK'Ci) = Clsinh[cz(logAK-+C3)]+C4+z {(100)

Y

in which zy is the y percentile of Z given by Eg. (40). The

Y percentile of the crack growth rate becomes

[da(t)]
aE |,

Then, the ¥ percentile of the crack size after t cycles,

,H
s
“—

(10)**Yy(AK,Ci) (

denoted by aY(t), is computed by numerically integrating




the Y percentile crack growth rate, yielding

m
ay(t) = a, + jﬁl Aaj(y) {102)
= da(t)
Aaj (‘Y) [T].YAtj (103)

in which ao = a(0) is the initial crack size and

t= ] At (104)

The cycle-by-cycle numerical integration given by Egs.
(102)-(103) is deterministic and straightforward. Hence,
o&jv&rying the value of the Y percentile, one obtains from '
‘a cyclé-by-cycle integration a set of érack growth curves
a(t), i.e., the crack size versus the number of cycles for
each y value. The results were shown in Ref. 26, in which
a much larger statistical dispersion than the experimental
~r28ults was observed.
| - .kfter constructing a series of crack growth damage accu-
muiatipp curves a.(t) for many values of Y, one can establish

(1) thé_distribution function F )(t) of the number of load

T(a

1
cycles T(al) to reach any crack size a, by drawing a hori-
zontai line through as and (ii) the distribution function

(x) of the crack size a(t) at any number of load cycles

Fa(t)
t by drawing a vertical line through t. Then, the probability
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of crack exceedance is obtained as p(x ) =1 -

1+7T Fa(r)(xl)'

The distribution functions for the random number of load
cycles T(al) to reach half crack lengths a; = 21 and 49.8 mm
are presented in Figs. 6l(a)-61l(b) as solid curves, whereas th=
probability of crack exceedance at t=150,000 cycles is dis-
played as a solid curve in Fig. 62. The corresponding ex-
perimental results obtained from Fig. 59 are shown in these
figures as circles. It is observed from Figs. 61-62 that
the lognormal random variable model is too conservative in
such a situation.

For the lognormal random process model, sample functions
of the normal random process Z(t) and the lognormal random pro-
cess X(t) have been simulated using the Fast Fourier transform
(FFT) technique previously described. Then, the corre~
sponding sample function of the crack size, a(t), versus the
number of load cycles, t, can be obtained from Eq. (96) using a
cycle-by~cycle numerical integration procedure. The correlation
parameter E_l is chosen to be 9,524 cycles and the simulation
results of a(t) versus t are presented in Fig. 63. A compari-
son between Figs. 59 and 63 indicates that the simulated
sample functions resemble closely those of the experimental
results.

The simulated distribution functions for the number of load
cycles to reach some specific half crack lengths and the pro-
bability of crack exceedance at t=150,000 cycles are presented
in Figs. 64 and 65 as solid curves. Also shown in these
figures as circles are the experimental results obtained

from Fig. 59. It is observed from Figs. 64 and 65 that
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the correlation between the lognormal random process model and

the experimental results is very satisfactory.

4.3 Second Moment Approximation-

The mean value, y_,and standard deviation,ox,of the

X
stationary lognormal random process X(t) are related to the-

standard deviation o, of the normal random process Z(t)

through Egs. (64) and (65) as follows

(0,2n10)° 1/2
o, = u,le - (1085)

-e

uy = exp[%—(ozﬂ,nlo)z]

The covariance function of the lognormal random process X(t)
is given by Eq. (59), whereas the mean value, Hege standard

deviation, Teq? and coefficient of variation, Vi

random process W(t) are given by Egs. (66) to (68) in terms

, of the

of o, and . The random process W(t) is defined by Eq. (52)

as (
a(t)
W(t) = I E%%T (106)
20

in which it follows from Egs. (95) and (96) that

L(v) = 10**{Clsinh[C2(logAK +C3)1 + c4} (107)

where AK = AK(v) is given by Eq. (99) with a(t) being re-

placed by v, i.e.,

AK = %% /ivsec [7v /W] (108)




The distribution function of the crack size, a(t), after
any number of load cycles, t, can be derived from that of W(t)

through the transformation of Eq. (106) as follows

in which Fw(t)[y(x)] is the distribution function of W(t)

evaluated at y(x) where

_ X av
y(x) = vy (110)
a9

Hence, it follows from Egs. (109) and (110) that

F (x) = F Ix dv (111)
a(t) wey | T

20
in which L(v) is given by Egs. (107) and (108).
The probability of crack exceedance p(xl,t), i.e., the

probability that a(1) will exceed any crack size Xy is given

by

X
1
= av
p(xl,‘r) =1 - FW(T) I m (112)
a
0

Let T(al) be the random number of locad cycles when the

\ .
=70

crack size a(t) reaches a specific value aj. Since the event

AW

SRR

{a(t)>al} is the same as the event {T(al)gﬁ} , the distribution

a

function of T(al) is given by
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Fr(a) (8 =1 = Faqey (ay) (113)

where Fa(t)(al) is given by Eg. (111l) in which x is replaced

by a,.

4.4 Gaussian Closure, Weibull, Gamma and Lognormal

Approximations

Various approximations presented in Chapter 3, i.e.,
Gaussian closure approximation, Weibull approximation, log-
normal approximation and gamma approximation, will be
studied in the following.

(i) Por the Gaussian closure approximation, the dis-

tribution of W(t) is assumed to be Gaussian given
by Eq. (69) and the truncated distribution function,

Fa*(t)(x)' of the crack size a(t) is given by

Eq. (72)
F (x)~-F_ .., (apy)
) l - F (. )

a(t) ' 0

in which %
dv_ _
L{v) Wy

(x) = 8| -9 (115)
F X) =
a(t) o

where Egs. (111) and (69) have been used, and

Fa(t)(ao) = ¢(-uw/0w) (116)
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The distribution function of the rardom number of
load cycles to reach any given crack size a,. is

given by Eq. (74), i.e.,

Fria)) (8) = 1 = Fan(ey (ay) (117)

where Fa*’t)(al) is given by Egs. (114)-(116)
with x being replaced by a,.

(ii) In the case of Weibull apnroximation, both the
distribution functions Fa(t)(x) and FT(al)(t) can
be obtained from Egs. (77) and (110)-(113) as
follows:

X av 1o
Fa(g) (X) =1-expl- J m/ﬁ i X>ay (118)
20 i
a av 7caL
FT(al) (t) = expi{-~- J i‘—m B (119)
ag A
in which a and 8 are obtained from Egs. (78) and
(79) in terms of V, and .
(iii) For the lognormal approximation, the distribution

functions of a(t) and T(al) can easily be obtained

from Eqs. (83), (110)-(113) as follows:
X
dv
légjao L (V) ulogw
F (x) = @ ;7  x>a (120)
a(t) Ologw =0
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2
dv
1091 L{v) ulogw

0 (121)

c1ogw

in which LIPS and © are given by Eqs. (84)

gW logW

. and (85).
(iv) For the gamma approximation, the distribution
functions of both a(t) and T(al) can easily be
obtained from Egs. (88) and (1105-(113) in the

following
X
Fa(t)(X)=’Y(f'AJ E%%T)//P(n) (122)
29
a
1 dv

)

in which v( ) and T'( ) are the incomplete and com-
plete gamma functions, respectively, and n and 2
are given by Egqs. (91) and (92) in terms of Vy

and Uyge

The probability of crack exceedance p(xl,T) is given by

- p(xl.r) =1 - Fa(r)(xl) (124)

in which Fa(r)(xl) is given by Egs. (122), (120) and (118) for
the gamma, lognormal and Weibull approximations, respectively.

For the Gaussian closure approximation, however, Fa(r)(xl)

Fa*(T)(xl) is given by Eq. (114).
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4.5 Correlation With Experimental Results

In addition to the crack propagation parameter values Cl'
C2, C3, C4 and the model statistics o, obtained éreviously,

1

the correlation parameter 7 — is needed. In the present study,

a value of c-l is selected which gives a good correlation with
the experimental results. With ;-l = 15,380 cycles, the distri-
bution functions for the random number of load cycles to reach
half crack lengths 13, 21 and 49.8 mm are presented in Fig.
66. The results of Weibull and gamma approximations are

shown in Fig. 66 (a) by dashed and solid curves, respectively.
The results of Gaussian closure and lognormal approximations
are presented in Fig. 66(b), respectively, by dashed and solid
curves. Also shown in Fig. 66 as circles are the experimental
test results obtained from Fig. 59 for comparison. The proba-
bility of crack exceedance based on various approximations

are depicted in Fig. 67 as solid and dashed curves. The
corresponding experimental results obtained from Fig. 59 are
shown in the figures as circles, Figures 66 and 67 show that

the correlations between various second moment approximations

and the experimental results are very satisfactory.
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CHAPTEPF. 5

FACTORS AFFECTING STCCHASTIC PREDICTION OF
FATIGUE CRACK PROPAGATION

5.1 Fatigue Crack Growth Analysis Procedures

In the deterministic crack growth analysis, the
following procedures in four steps are used: (i) Experi-
mental results for the crack size, a(t), versus cycles
t (or £flight hours), are measured. These test results are
referred to as the primary data. (ii) The crack growth
rate data are derived from the primary data in terms of AK,
log AK or log a({t), etc. using various data processing
procedures. (iii) An appropriate crack growth rate function,
L, is chosen and best-fitted to the derived crack growth
rate data to estimate the pertinent parameters. (iv) The
crack growth rate function and the associated parameters
obtained are used to predict the crack growth damage accu-
mulation under different loading conditions either analyti-
cally or numerically. A schematic illustration of the
deterministic crack growth analysis is shown in Fig. 69.

In the case of probabilistic analysis, primary data
of many replicate specimens are needed. In addition, the
statistical variability of crack growth data should be
determined. Then, the statistical distribution of the

crack growth damage accumulation ~an be predicted. The

analysis procedures have been described in the previous chapters.
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From the deterministic analysis standpoint, various
kinds of error may be introduced in the sequential steps
of fatigue crack growth analysis described above. For
instance, measurement errors in primary datua for the
crack size, a(t), may result from the instrumentation pre-~ *
cision and sensitivity. The measurement error may be mani-
fested by other factors, such as the incremental measurement
interval, Aa [e.g., Refs. 31-33].

In the second step above, various data processing proce-
dures may be employed, "~ -~luding the direct secant and modified
secant methods, as well as the methods of 3, 5, 7 and 9 point
incremental polynomial. However, each procedure results in
different crack growth rate data. In the third step, bias in
determining the crack growth rate parameters may be induced
by the number of data points associated with each test speci-
men. Finally, prediction errors may be introduced by the
crack growth rate function used. From the standpoint of
stochastic crack growth analysis, the statistical varia-
bility of the crack growth damage accumulation is very
important, yet it may be influenced by various factors
described above. As a result, the problems mentioned above
should be investigated.

In this chapter, only the following two subjects will
be studied: (1) possible bias in estimating the crack

growth rate parameters due to unequal number of fracto-

graphic data (readings) for each test specimen, and (2) the

o

) ',"

effect of data processing procedure on the accuracy of the

PR AA I
%

b

62




stochastic crack propagation prediction. Various factors
affecting the stochastic crack growth analysis will be

reported elsewhere.

5.2 Equal Number of Data Points for Each Test Specimen

Since fatigue crack propagation involves consider-
able statistical variability, some specimens may have
short fatigue lives while others may have longer lives.
Therefore, more crack size measurements (readings) may
be taken for slow crack growth specimens than for fast
ones. This is particularly true for the fractographic
readings of fastener holes where fatigue tests are conducted
on specimens without an intentional preflaw. In fact, all
thke fractographic data sets investigated in this report do
not have an equal number of data points for each specimen.

When such primary data are processed and the resulting
crack growth rate data are pooled together for the linear
regression analysis, see Figs. 5-10, the estimated crack
propagation parameters, such as b and Q, are . ased to the
slow crack growth rate side. This is because more data points
are usually measured for the slow crack growth specimens.
Ag such, it clearly violates the statistical premise that
each specimen (a sample) is of equal weight. Consequently,
the resulting statistical fatigue crack propagation pre-
dictions are biased toward the unconservative side, i.e.,

the stochastic model tends to predict a longer propagation

life or smaller crack size. .
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T0 circun. ent such an error due to an unequal number
of measurements for each specimen, additional data points
for the primary data, i.e., a(t) versus t, can be added
artificially to the fast crack growth specimens. The idea
is to equalize the number of data points for each specimen.
In.most cases the artificial points can be determined by
interpolation. However circumstances may arise where
additional data points are needed outside the region of
available primary data, and extrapolation procedures may
not be satisfactory. 1In this case, it is suggested that
the primary data for a particular specimen be best~fitted
using the crack propagation model. Then the additional data
points outside the available primary data region are obtained
from the model.

To demonstrate such a crucial point, consider the CWPF
data set. Crack growth rate data derived directly from the
fractographic readings using the five point incremental
poclynomial method are used to estimate the crack propagation
parameters b and Q, as well as the standard deviation of
the log crack growth rate, Oy The results are presented in
Table 4. Also shown in the table are the corresponding
values from Table 1 in which additional data points have
been added artificially to those specimens with fast crack
growth rates to equalize the number of a(t) versus t data
points, Based on the lognormal random variable model, the
distribution functions for the random time to reach some

specific crack sizes are shown in Fig. 28 as dashed curves,
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Also shown ih the figure as solid curves are the corre-
sponding results with added data points. The circles shown
in the figure are the experimental results. As expected,
the dashed curves are biased toward slow crack growth and
hence their correlations with the experimental results are

not as good as the solid curves.

5.3 Data Processing Procedures

As described in the previous chapters, the fatigue
crack growth rate parameters as well as the statistics of
the stochastic model are determined from the crack growth
rate data. The former represents the median crack growth
behavior that can be used for deterministic crack propa-
gation analysis. The latter is influenced exclusively by
the statistical variability of the crack growth rate data.
Since, however, the crack growth rate data are derived from
the primary data, their median behaviér and'statistical
dispersion are affected by several important factors;

(i) The inherent variability of the crack growth

resistance in materials,

(ii) The variability of fatigue lcadings and

environments,
{(iii) Measurement errors in the primary data,

(iv) The incremental measurement interval Aa in the

primary data, and

(v) The data processing procedures in deriving the

crack growth rate data from the primary data.
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The purpose of establishir.g the stochastic fatigue
crack growth model is to account for (i) and (ii) above,
although the consideration of loading and environmental
variabilities is beycnd the scope of the present study.
Hence, the influence by factors (iii), (iv) and ({(v) should
be minimized.

Various data processing procedures, including the
direct secant method, modified secant method, and 3, 5, 7
and 9 point incremental polynomial methods, have been pro-
posed in the literature [Refs. 8,29,34-36,69]. All the data
sets studied in this report, including the center-cracked
specimens, have been analyzed using each data processing
technique. The statistical variability of the crack growth
rate data varies depending on the data processing method
used. It is found that the secant method introduces a much
larger additional statisticél dispersion for the crack growth
rate data than any of the incremental polynomial methods.
This is not surprising beczuse¢ the incremental polynomial
method tends to smooth out the data. The induced undesir-
able statistical variability of the crack growth rate data
reduces slightly as more points are used in the incremental
polynomial, such as 9 or 7 points. While it may be desirable
to use the 7 or 9 point incremental polynomial method, the
limited amount of data available may inhibit its application.
As a result, the five point incremental polynomial method

appears to be quite reasonable.
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Again, the CWPF data set is considered for illustra-
tive purposes. With the application of the modified secant
method, the estimated parameters b and Q, the standard
deviation, Gy and the coefficient of variation, V, of the

, crack growth rate are shown in Table 4 for comparison.
Based on the lognormal random variable model and the modi-
fied secant method, the distribution functions of the random
time to reach some specific crack sizes are displayed in
Fig. 28 as dotted curves. It is observed from Fig. 28 that
the modified secant method introduces a larger statistical
dispersion and hence its correlation with the experimental
tests results (circles)‘is not as good as the five point
incremental polynomial method (solid curves). Similar be-
haviors have been observed in all other data sets. Finally,
poorer correlation is obtained using the direct secant
method than the modified secant method. It is concluded
that, for the stochastic crack growth analysis, the method
of five point incremental polynomial is superior to both

the direct secant and modified secant methods.
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CHAPTER 6

A STOCHASTIC INITIAL FATIGUE QUALITY MODEL
FOR FASTENER HOLES AND DURABILITY ANALYSIS

6.1 Introduction

Metallic airframes contain thousands of fastener holes
which are susceptible to fatigue cracking in service. The
accumulation of relatively small fatigue cracks in fastener
holes (e.g., 0.03" - 0.05") must be accounted for in the
design of aircraft structures to assure that the structures
will be durable and can be economically maintained [2-5].

A durability analysis methodology has recently been
developed for quantifying the extent of fatigue damage in
fastener holes as a function of time and applicable design
variables (6,43-47). This methodology is based on the frac-
ture mechanics philosophy, combining a probabilistic format
with a deterministic crack growth approach. The initial
fatigue quality (IFQ) of fastener holes is treated as a
random variable and is represented by an equivalent initial
flaw size (EIFS) distribution. The existing durability
analysis methodology has been demonstrated for making crack
exceedance predictions in the small crack size region (e.g.,
<0.10") for full-scale aircraft structure under both fighter

and bomber load spectra [6,45-47,64].

68

.............

‘“
~
“!
.
-
o

-

AR |

K. »



Further research is now being conducted [66] to: (1)
extend the present durability analysis methodology to the
large crack size recion (e.g., >0.10"), (2) refine the
methods for determining a generic EIFS distribution, (3)
develop procedures for optimizing the equivalent initial
flaw size distribution (EIFSD) parameters, and (4) develop
a better understanding of the effects of crack growth rate
dispersion on the EIFS distribution and on the accuracy of
crack exceedance predictions in both the small and large
crack size regions.

In the current durability analysis methodology (6,60,
64,44), the EIFS is determined by back-extrapolating avail-
able fractographic results [e.g., 48] to time zero using a
single deterministic crack growth equation, referred to as

the EIFS master curve,
da(t)/dt = Qfa(t)]®P (125)

in which da(t)/dt = crack growth rate, a(t) = crack size at
any time t and Q and b are empirical constants which are
dependent upon the load spectrum and other design para-
meters.

The crack growth rate, however, involves statistical

variability, which is not accounted for in back-~extrapola-

tion. Hence, the statistical distribution of EIFS thus

-

o
g
1
€

established contains the statistical dispersion of the crack

X

growth rate in the very small crack size region. This

approach is quite reasonable if the resulting EIFS distri-
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bution is employed to predict the statistical crack growth
damage accumulation in service using a deterministi: service
crack growth master curve in the small crack size region.
This has been demonstrated in Refs. 6, 44, 60 and 64. The
main advantage of such an approach is that the durability
analysis procedure can be simplified mathematically.

Another possible approach is to obtain the EiFS values
by back-extrapolating available fractographic results stoch-
astically. Thus, the statistical dispersion of the crack
growth rate in the small crack size region is filtered out,
and the resulting EIFS distribution represents the true
initial fatigue quality (IFQ). Such an EIFS distribution
will have a smaller dispersion than that obtained using a
deterministic EIFS crack growth master curve. This EIFS
model is referred to as the stochastic-based initial fatigue
guality model. 1In predicting the statistical crack growth
damage accumulation in service using the stochastic-based
EIFS model, however, the stochastic crack growth rate
equation should be used. As a result, the feasibility of
such a stochastic approach depends essentially on the
establishment of a reasonable but simple stochastic crack
propagation model.

The objectives of this chapter are to: (1) develop the
durability analysis methodology using the stochastic-based
IFQ model, and (2) evaluate proposed EIFS data pooling
methods and procedures for optimizing the EIFS distribution

parameters.

70

g Ernnhrrd

A
BTN



Analytical expressions are derived for the cumulative
distributions of the time to initiate a crack of any size,
and ‘he crack size at any service life. These expressions
are based on a stochastic transformation of the cumulative
distribution of EIFS and the theorem of total probability.
Actual crack propagation results for two fractographic data
sets (7475-T7351 aluminum fastener hole specimens; fighter
and bomber load spectra) in the small crack size region are
used in the investigation [48]. A correlation study is per-
formed to compare the resulﬁs of the stochastic-based IFQ
model with actual fractographic results. Very reasonable
correlations were obtainéd. The proposed procedures for

IFS data pooling and for optimizing the EIFS distribution

parameters are promising for future durability analysis

applications.

6.2 BApplication of Lognormal Random Variable Model

The investigation of various stochastic crack growth
rate models presented in the previous chapters is aimed at
possible applications to durability and damage tolerance
analyses as well as the inspection and repair maintenance
problems. From the standpoint of practical applications,
the lognormal random variable model appears to be most ap-
propriate because of the following reasons: (i) It is the
simplest mathematical model for which the analytical solu-
tion is possible for many problems. Likewise, it can easily
be understood by engineers. (ii) The correlation with crack

propagation data in fastener holes is very reasconable, and
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the model always results in a slight conservative prediction.
(111) The model does not need the correlation parameter for
the crack growth rate, thus eliminating the requirement for
extensive test results. A few crack propagation parameters
and the model statistics can be estimated from a limited
amount of base-line test results, which is usually the case
in practical applications. (iv) The model can be extended ’
easily to incorporate other statistical uncertainties invol-
ved in the crack growth damage accumulation. This includes
the statistical variability of stress intensity factor,
applied stresses, crack modeling, etc., as will be descri-
bed later [e.g., Refs. 22-24]. As a result, the lognormal
random variable model will be used in the following two
chapters.

The lognormal random variable model for fastener holes

under fighter or bomber load spectra is given by Eq. (37) as
da(t)/dt = xqfa(£)1P (126)

in which X is a lognormal random variable with a median of
1.0, Such a model has been demonstrated to be very reason-
able, and it simplifies the stochastic crack growth analysis
significantly.

Taking the logarithm of both sides of Eq. (126) yields

Y =DbU+qgq+ 2 (127)
where
Y = log da(t)/dt ' U = log a(t)
(128)
g = log Q ' z = log X
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Since X is a lognormal random variable with a median of
1.0, it follows from Eqg. (128) that 2 = log X is a normal
random variable with zero mean and standard deviation o,
The crack growth rate parameters b and Q as well as the
standard deviation, Oy of Z can be estimated from the log
crack growth rate, loglda(t)/dt] = ¥, versus log crack
length, log a(t) = U, data, denoted by (Yi,Ui) for i =1, 2,
...,n, using Eq. (127) and the linear regression analysis.
Since Eq. (127) is linear, the results obtained from the
method of linear regression are identical to those of the
method of least-squares or the method of maximum likelihood.

Expressions for b, ¢ and o, are given by

nzuiyi-(zui)(zyi)

b = X
2 2

niuf - (U)) N
IY. - bLU 34
= 10" ; I St 1 §
Q=10"; A = - (129) %
LIY, - (q-bu,)1? %3
o = 1 1 J ‘:ti
2 n-1 Qﬁ

t

wa

o,

W

in which n = number of samples (i.e., ¢rack growth rate data)
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and the other terms have been previously defined.
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6.3 Stochastic Crack Growth Analysis

A

Expressions are derived for predicting the cumulative

T
'y
2, Ve

distributions of crack size at any giver: time t and of TTCI 6§
for any given crack size a;. Essential elements of the )
stochastic crack growth approach are described in Fig. 69 :ﬁ-
‘-

A

and details are provided later. ;:
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6.3.1 Equivalent Initial Flaw Size (EIFS) Concept

An equivalent initial falw size (EIFS) is a hypo-
thetical initial falw assumed to exist in a structural detail
which characterizes the equivalent effect of actual flaws
produced by the manufacturing process. Such flaws must be

consistently defined so that the EIFSs for different fracto-

graphic specimens are on the same baseline. EIFSs are defined
by back-extrapolating suitable fractographic results to time
zero (Fig. 69, Frame A). The objective is to define a sta-
tistical distribution of EIFS and then to verify that the
derived distribution will provide reasonable predictions for
the cumulative distributions of TTCI and a(t) (Fig. 69, Frame

D and Fig. 70).

6.3.2 Analysis Procedures

1. EIFS is a random variable and each individual value
is determined by back-extrapolating fractographic
results for each individual crack (or specimen).

2. The population of EIFSs is fitted by a suitable
cumulative distribution, denoted as Fa(o)(x) (Fig.

69, Frame B).

3. A stochastic crack growth law, such as Eq. (126),
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which accounts for the statistical dispersion of

W
LN

the crack growth rate (Fig. 69, Frame C), provides - !!
Te

the basis for growing flaws backward and forward. :;{
&

)

4, A stochastic transformation of Fa(o)(x) is made

using the crack growth law, Eq. (126), to obtain
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expressions for the cumulative distributions of

crack size, )(x), and of TTCI, FT(a )(t),
1

Fa(t
Fig. 70.

6.3.3 Crack Size-Time Relationships

Two different crack size-time relationships can
be obtained by integrating Eg. (126), considering b = 1 and
b#1l, from t = 0 to any time t. The resulting expressions

for b =1 and b # 1 are shown in Egs. (130) and (131), respec-

tively,
al{t) = a(0)exp[XQt] : b =1 (130)
a(e) = {[a(0)1™C-cotx}™YC , bg1 (131)

where, a(t) = crack size at any time t, a(0) = crack size at

t

0 (EIFS), Q = crack growth rate constant, ¢ = b - 1, and

X

lognormal random variable with median of 1.0

6.3.4 Cumulative Distribution of EIFS

Various distribution functions defirad in the
positive domain may be used tc fit the EIFS values, such as
the Weibull, lognormal, beta, etc. The following distribu-
tion function, which is derived based on the three-parameter
Weibull distribution for TTCI and the deterministic crack

growth law of Eq. (125) with b = 1, will be used herein;
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fla

o

2n(x /%) "
fa(oy (X) = expy- b

1.0

(132)

it
v

»

in which Fa(O)(x) = Pla(0) < x] is the cumulative distribu-~
tion of EIFS, indicating the probability that the EIFS, a(0), ]

will be smaller or equal to a value x. In Eq. (132), X, ©

upperbound of EIFS and o and ¢ are two empirical constants

{6]. 1In the original derivation of Eq. (132) in Ref. 6, thé ‘;2

notation "QB" was used instead of "¢". To distinguish be- gg

tween the deterministic and stochasticl crack growth appro- i

N aches, the notation "¢" is used herein. The expression z%
: given by Egq. (132) is considered to be reasonable for the :§
I distribution of the stochastic-based FIFS. a
| 3

: 6.3.5 Cumulative Distribution of Crack Size §
i The conditional distribution function of the crack ﬁ
3 size a(t), denoted by Fa(t)(xlz) = Pla(t)<x|X=2], given that ;E
f the lognormal random variable X takes a value z, can be %
; obtained from Eq. (132) through a transformation of Eqgs. (130) é
; and (131) for b = 1 and b # 1, respectively. Then, the uncon- p
é ditional cumulative distribution of crack size a(t), Fa(t)(x) . g
X = Pla(t)<x], is obtained from the conditional one, Fz(t)(xlz), i

using the theorem of total probability. The results for

-
v a4

.
L)
. . .
Fa(t)(x) are shown in Egs. (133) and (134) for b = 1 and b # 1, %
it
_ "
respectively. s
3
'i
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o Qzt + En(xu/x) @
Fa(t) (x) = f exp{ - 3 }fx(z)dz : {133)
o :

for b=1
o rcﬂ’,nxu+ ln(xc+cQtz) &
. Fa(t) (x) = I exp 'l T fx(z)dz : (134)
0
for b#¥1

In Egs. (133) and (134), fx(z) is the lognormal prokability

density function of X given by

2
) fx(z) = dog e exp {-]2; (Eaﬁ_ﬁ) {135)
N 2 ZOZ z oy
v ke
le

in which o, is the standard deviation of the normal random

variable Z = log X given in Eq. (128).

6.3.6 Cumulative Distribution of TTCI

Let T(al) be the random time to initiate a crack

e IPESYWSTS RV

«F 1 ¥ & A L AKX

size a,. Then, the distribution of T(a,), denoted by F 1 {t)
1 1 T(al)

= P[T(al)it] , can be derived from that of a(t) as

oy
o A

L LAl

follows. Since the event {T(al)_<_t} is the same as the event

{a(t) >al} , one has

. Fra,) (£) =1 - F oy, (ap) (136)

S T

-
A& T AN

Substituting Egs. (133) and (134) into Eq. (136), one obtains

¥ r

.

for b =1 and b # 1, respectively,
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® ta4-zn(xu/a1) @
FT(al)(t) = ] - J exp\ - fx(z)dz : (137)

¢
0
for b=1
L) cﬂ.nxu + R.n(a;:. + cQtz) o
FT(al)(t) = 1 - [ exp{ - ) fx(z)dz : “
0 (138)
for b#1l

in which fx(z) is given by Eq. (135).
Equations (133)-(134) and (137)~-(138) are not amenable
to analytical integrations. However, these equations can

easily be solved by a straight-forward numerical integration.

6.4 Determination of EIFS Distribution Parameters

Procedures are described and discussed for d2lermining

EIFS values based on the stochastic crack growth approach "

N
and fractographic data. EIFS pooling concepts and justifi- g?
cation are considered and procedures are described for opti- 3
mizing the EIFS distribution parameters in Eg. (132), i.e., i%
Xy & and ¢. For krevity, the discussion is limited to the E%

N

b = 1 case.

6.4.] Stochastic~-Based EIFS

Y

A
r

W
-t

EIFS values are determined hy back-extrapolating

L]

suitable fractographic data based on fatigue cracking re- '

sults in fastener holes without intentional initial flaws.

A A

b

X

a

Such data are currently available for both straight~bore

S

~ K.

and countersunk fastener holes (e.g., 48,65].
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When the deterministic crack growth approach is used
[6,67,68] to determine EIFSs, the same EIFS master curve
is used to back-extrapolate to time zero for each fatigue
crack in the fractographic data set. In this case the
statistical dispersion of the crack growth rate is included
in the resulting EIFS values.

When the crack growth rate is treated as a stochastic
process, such as Eq. (126), the fractographic results should
be back-extrapolated to time zero using the applicable crack
growth records for a given fractographic sample (specimen).

A stochastic-based EIFS value is obtained for each fracto-
graphic sample in the data set. 1In this case, the statis-
tical dispersion of the crack growth rate is reflected in the
random variable X and hence it is filtered out from the EIFS.
A stochastic-based EIFS value can be obtained for a

given fractographic sample, say jth specimen, based on

aj(O) = aj(t)exp[-ijt] (139)

in which xj is the jth sample value of the lognormal random
variable X, and aj(O) and aj(t) are the corresponding jth
sample values of EIFS and the crack size at time t, respec-
tively.
Using the least squares criterion, one obtains the
expression for aj(O),
[Zlnaj(tiH(Zti) - (Zti)[Z(ti)lnaiiFi)]

a,(0) = exp
J NEt2

2
R (Zti)
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in which aj(ti) = crack size of jth specimen at time ti and N
= number of [aj(ti),ti] pairs for the jth fractographic sam-
ple. Thus, using Eq. (140), aj(O) can be determined directly
from [aj(tiLti] pairs without computing the XjQ value in Eq.
(139).
It has been shown that the range of the fractographic
crack size used affects the EIFS values [64). Therefore, *
EIFS values should be determined using fractographic results
in the same crack size range. For example, the upper and
lower bounds of the crack size range is denoted by a, and a,

as shown in Fig. 69, Frame A.

6.4.2 EIFS Pooling Concepts

For practical durability analysis, an EIFS distri-
bution is needed to represent the initial fatigue quality
variation of the fastener holes. 1Ideally, such a distribution
can be determined for a given material, fastener hole type

(e.g., straight-bore or countersunk) and drilling procedure

from fractographic results reflecting different test vari-

-

.

e

ables (e.g., stress level, % bolt load transfer and load ij
"-

1

spectra). The resulting EIFS distribution can be used to E

perform durability analyses for other conditions. In other
words, an EIFS distribution (EIFSD), based on different
fractographic results, is sought which is suitable for a
broad range of durability analysis applications (e.g., dif-

ferent stress levels, % bolt load transfer and load spectra).

One way to justify using a given equivalent initial flaw

- s 2 poo UL S UL S
L L] b L
J-_.B-' f!'.'.'.‘.‘.'

size distribution (EIFSD) for a general durability analysis

et
8
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4 is to define the EIFSD parameters using pooled EIFS values
y obtained from different fractographic data sets. For ex- N
ample, fractographic results are available for the same

material, fastener hole type/fit and drilling procedure for D

i different stress levels, % bolt load transfer and load A
e, spectra [48,65]. If compatible EIFSs can be determined for >
) different fractographic data sets, then the EIFSs can be S,

pooled to determine the EIFSD parameters. Pooling the EIFSs
is very desirable because this increases the sample size and

therefore the confidence in the EIFSD parameters. Also,

el Rl At

since different fractographic data sets are used to determine

the EIFSD parameters, it forces the derived EIFSD to cover a

gf wider range of variables. gg
- _ 8
6.4.3 Optimization of EIFS Distribution Parameters tﬁ

2 Once the EIFSs have been determined for selected %:
i fractographic data sets, they can be pooled and the para- §.
) meters X, @y and ¢ can be optimized to "best fit" the pooled R
EIFSs to the theoretical cumulative distribution, Fa(o)(x), ?ﬁ

; shown in Eq. (132). The optimization procedure described Ef
T below is intended for Eq. (132) but the same ideas can be 'j'
é applied to other Fa(O)(x) distributions. g,'
i In Eq. (132), xu,defines the EIFS upper bound limit, %“
. i.e., the maximum initial flaw size in Fa(O)(x)' A value of %.

K x, = 0.03" is assumed to be a reasonable upper bound limit ;;
4 for the EIFSD. This limit is arbitrarily based on the 'G
| typical economical repair limit for fastener holes [6,43,67, ”
3 68]. Another reason for limiting X, to <0.03" is to é}
3

8l




eliminate the probability of exceeding a crack size of 0.03"
at time zero. This is equivalent to assuming that no fasten-
er hole will have an initial flaw size >0.03". If a larger
X, limit is used, then the probability of exceeding an ini-
tial flaw size of 0.03" will not be zero, which implies that
some fastener holes could have an initial flaw size greater
than the economical repir limit before the structure enters
into service.

The EIFSD parameters X,0 O and ¢ in Eq. (132) are opti-

mized using the following iterative procedure.

1. Assume a value of x : largest EIFS < x, < 0.03".

2. Compute o and ¢ by least-squares fitting the pooled r

- -
-

O VR D e M

EIFSs to Fa(o)(x) given in Eq. (132). Equation (132) is

transformed into the following linear least-squares fit form,
W =aV + B (141)

where

=,
M

: 4n {-ana(O)(x)}; Vv = 1n{£n(xu/x)}

(142)
B = -alng

VOSSN e S

Let X (i=1,2,...,N) be the ith smallest EI¥S gsample value

with N being the pooled sample size of EIFS values. The

T T QRN Ty

Ltetal el

distribution function corresponding to Xy is given by
Fa(c)(xi) = i/(N+1). Then the parameters o and ¢ in Eq.
(141) can be determined using the following least-squares

fit equations,

ate " s TVET "4
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* = 2 N (143)

NEV.W, - (ZV.) (IW,) arV, - IW,
_ i'i J.zrl ;¢=exp( i 1)
NZVi —(ZVi)

where Vi and wi are the sample values of V and W associated

with Xy and Fa(O)(xi)' respectively, as defined in Egq. (142).

3. Compute the goodness-of-fit of the established
Fa(o)(x) for the given x , a and ¢. The standard error and
Kolmogorov-Smirnov statistics (K-S value) are two reasonable
measures of goodness-of-fit tests. The standard error,
denoted by Op s is expressed as

]2 1/2

o]

k
_ z[ﬁ?I"Fa(O)(xk’

E 5 (144)

in which all the EIFS sample values are arranged in an ascend-
ing order (xl,xz,...,xk,...,xN), k = rank of EIFS value and

N = total No. of pooled EIFS samples.

Let SN(x) be the empirical distribution of the EIFS

values defined as follows; SN(x) = 0 for x <Xyi SN(x) = k/N

for x, <x<x. .47 Sy(x) =1 for x>x,. Then, the K-S statis-
tics, denoted by Dmax, is the maximum absolute difference
between the empirical distribution SN(x) and the theoretical

Fa(o)(x) values given by

_ Mmaxi
Dmax = x SN(x) - Fa(O)(x) (145)

4, Steps 1-3 are repeated to minimize the standard

error OE and K-S value Dmax'

83

T ete s e e "

W e e e e e T A e e T e L
DR MR L I P A 5 S I I S

. . et L L S S T P e R -
A T T - - .

R et s
-t -, ~ 5
IR P I P S A

......
LR S



6.4.4 Determination and Normalization of Forward Crack

Growth Rate Parameters

The statistical distribution of the crack growth
damage in service, such as Fa(t)(x) and FT(al)(t) given by
Egqs. (133)-(138), is derived using the EIFS distribution,
Fa(O)(x)' and the forward stochastic crack growth rate
equation, Eq. (126). The parameters b, Q and o, appearing
in Eq. (126) have been obtained in Eq. (129) wben the frac-
tographic data for the applicable service environment are
available. When the fractographic results are not available,
however, these parameters should be determined from the
general crack growth computer program. This subject will be
discussed in ancther document.

When pooled EIFS results are used to determine Xgr @ and
¢ in Eq. (132), the Q value for a given fractographic data
set should be normalized to the same baseline as the EIFSD.

This is needed to assure that Fa(t)(x) and F )(t) predic~

T(al
tions for a given data set are consistent with the basis for

the EIFSD.

Let (xu'a’¢)data set and Qdata set be, respectively,
the EIFSD parameters and the forward crack growth rate para-
meter using a given fractographic data set alone (without
pooling procedures). Then, the normalized Q values for such

a given data set, denoted by édata set’ in the forward crack

growth analysis is suggested to be
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A ®pooled
Q = 228 (Q ) (146)
Data Set ¢Data Set Data Set

Thus, when pooled EIFS results are used, the Q value appear-
ing in Egs. (133)-(138) for a given fractographic data set
should be replaced Ly Qdata set” This approach will be

illustrated in the following correlation study.

6.5 Correlation With Test Results

Fatigue crack growth results are available for fatigue
cracking in fastener holes without the presence of inten-
tional initial flaws [e.g., 48)]. Two fractographic data sets
from Ref. 48 will be used to evaluate: (1) the stochastic-
based IFQ model developed, (2) the proposed EIFS data pooling
procedure, (3) the procedure for optimizing the EIFSD para-
meters and (4) the effectiveness of the derived EIFSD and
stochastic crack growth approach for making Fa(t)(x) and

FT(a )(t) predictions. The distribution of the crack size,
1

Fa(t)(x)' will be considered at two different service times
and that of TTCI, FT(a )(t), will be considered at crack

1
sizes a, = 0.03", 0.05" and 0.10". Predicted results will

be compared with actual fractographic data.

6.5.1 Fractographic Data Sets

Two fractographic data sets, identified as "WPF"
and "WPB", reflect 7475-T7351 aluminum, replicate dog-bone
specimens with a 1/4" diameter straight-bore, centered hole

containing an unloaded protruding head steel bolt (NAS6204)
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with a clearance fit. The "WPF" and "WPB" data sets were
fatigue tested in alab. air environment using a fighter
spectrum and bomber spectrum, respectively. A maximum gross
section stress of 34 ksi was selected for each spectrum. The
test specimens were fatigue tested without intentional flaws
in the fastener hole and natural fatigue cracks were allowed
to occur. Following the fatigue test, the largest fatigue )
crack in each fastener hole was evaluated fractographically.
Fiactographic results (i.e., a(t) versus t records) were pre-
sented in Ref. 48. The number of fatigue cracks used in this
invstigation is 33 for the WPF data set and 32 for the WPB

data set.

6.5.2 EIFS pParameters

EIFSs for each fatigue crack in the WPF and WPB
data sets were computed using Eq. (140) and the fractographic
results in the crack size range from 0.01" to 0.05". The

ranked EIFSs for the WPF and WPB data sets are summarized in

’
CTEES T AT T R M T L T TR L T T Y R R N R o R o i R T

Table 5 in an ascending order of crack size.

&

EIFSD parameters X, @ and ¢ were determined using the

EIFS values for the WPF, WPB and combined WPF and WPB data

SCEIY S S

sets. Different values were assumed for X, and the corre-

Lala)
L % .

sponding o, ¢, standard error o_, and Dma (K-8) values were

E X -

| determined using Egs. (142)-(145), respectively. The results i
are sunmarized in Table 6. .

.

)

6.5.3 Goodness-of-Fit Plots N

| EIFSD parameters based on X, = 0.03" were used to !
make predictions for Fa(t)(x) and FT(al)(t) based on Egs. (133) ﬁ

: 86 N

.t THER




and (137), respectively. The upper bound value of xu==0.03“

wag used because the standard error, Ope and the K-S value,

D ax’ "indicators" for the EIFSD goodness-of-fit shown in

Table 6 were smaller than those values for xu‘<0.03".

NP S
<, 0 W Ny

The forward crack growth parameter Q in Egs. (126),

1]
M

(133) and (137) and the standard deviation of the crack

growth rate, O,s were estimated for esach data set {(i.e., ;i
WPF and WPB) using the applicable log da(t)/dt versus log a(t) §§
data and Eq. (129) with b = 1, Crack growth rates, da(t)/dt, !
were determined for each fatigue crack in each fractographic §§
data set based on the 5-point incremental polynomial method ?S
[69]. A typical plot of log da(t)/dt versus log a(t) is \

shown in Fig. 71 for the WPF data set. %

s

Normalized Q values, denoted by 6, were determined for
each data set using Eq. (146) for individual and pooled EIFS

data sets with the following results: Q= 2.708x10_4 (WPF)

and § = 1.272x10”%4

(WPB) . Results of Q, ﬁ and o, are sum-
marized in Table 7.

With the durability analysis approach using the sto-
chastic -based EIFS model describhed above and the parameters

presented in Table 7 for the six cases considered, the dis-

PR SRR (AR | S

tributions of the crack size at any service life, Fa(t)(x),
and the TTCI at any crack size can be predicted theoretically,
using Egqs. (133) and (137), respectively.

The cumulative distribution of crack size at two differ-

ent service times (WPF at 9,200 and 14,800 flight hours, and

R DAL N

WPB at 29,109 and 35,438 flight hours) are plotted in Figs.




72-77 as a solid curve for the theoretical predictions. The
experimental results are also plotted in these figures
using selected symbols, For example, in Fig. 72 the results
fcr £ =0, 9,200 and 14,800 flight hours are denoted by an
open circle, a star and a square, respectively. 1In Figs. 73
and 74, an open circle and a solid circle denote the EIFS
values at t = 0 for the WPF and WPB data sets, respect'vely.

Plots fo theoretical predictions of the cumulative dis-
tribution of TTCI at c¢rack sizes 0.03", 0105" and 0.1" are
shown as solid curves in Figs. 78-80 and Figs. 81-83 for the
WPF and WPB data sets, respectively. The correspuading ranked
TTCI test results are displayed in these figures as a circle,
star and square, respectively. Symbols for the WPF data set
are open and those for the WPB data set are solid.

The following observations are based on ¥igs. 72-77:

1. The theoretical predictions for Fa(t)(x) generally
fit the overall test results better when the EIFSs for &
given cdata set are sued (e.g., see Fig. 72 and 75).

2. When the EIFSD parameters are based on the pooled

EIFSs for the WPF and WPB data sets, the theoretical pre-
dictions for Fa(t)(x) for a given data set generally cor-

relate better with the ranked experimental results when the FJ
crack growth parameter Q is normalized using Egq. (146). For

example, compare the plots shown in Figs. 73 and 74 and Figs.

RS

76 and 77 for the WPF and WPB data sets, respectively. ﬁ:

A "
. 3. The upper tail of Fa(t)(x) (i.e., largest crack '%
I sizes) is of most interest for durability analysis. For all E

1]
AL T




the cases considered herein the theoretical predictions for
crack exceedance (i.e., p(i,t) = l'Fa(r)(xl» in the upper
tail generally fit the ranked experimental results very well.

In Fig. 76 the theoretical predictions for F )(x) for the

a(t
WPB data set are conservative in the upper tail (i.e., the
predicted crack exceedance is larger than the ranked test
results), In this case, the Q value is not normalized. The
goodness-of-fit improves significantly when Q is normalized.
4, It is interesting to note that reasonable Fa(t)(x)
predictions are obtained for crack sizes larger than the

fractographic crack size range used to determine the EIFSD

parameters (i.e., 0.01"-0.05"). This is encouraging.

The following observations are based on Figs. 78-83.

1. The lower tail (i.e., smallest TTCIs) of the TTCI
cumulative distribution, FT(al)(t)' is generally the area of
most interest for durability analysis. As shown in Figs.

78-83, the theoretical predictions for F )(t) correlate

T(al
very well with the ranked experimental results.

2. The overall tit is generally improved when Q is
normalized. For example, compare results for Fig. 79 and 80
and Fig. 82 and 83 for the WPF and WPB data sets, respec-
tively.

3. Reasonable FT(a
WPB data sets are obtained in the lower tail for a

)(t) predictions for the WPF and
: 1= 0.10",
see Figs. 80 and 83. Thus, reasonable FT(al)(t) predictions
are obtained for a crack size outside the fractographic

crack size range us::d to define the EIFSD parameters.

89

(RS

S

AT

L vt A
.
il

XX O

XN

3t JOARARRNE




LA TRE e Fat o F s P e T BT 5.k RT PRV, Rt RS Bt Ba To Rat Far Rat doa ] For Bt T WICIRE P BN WV Wt VRS SV at St A nF avh ont o f ol 2R el at) WL P W W W WL T

6.6 Conclusions for Stochastic IFQ Model for Durability

Analysis

Expressions have been developed for predicting the cumu-
lative distribution of crack size at any given time, and the
cumulative distribution of times to reach any given crack

size using the stochastic-based EIFS model. These expres- .

sions, based on a stochastic crack growth approach, have

been evaluated for the durability analysis of fastener holes

s

in the small crack size region (e.g., <0.10"). The analy-

SEn

tical expressions for Fa(t)(x) and FT(al)(t) are derived

%

based on a stochastic transformation of the theoretical

EIFSD. EIFS data pooling concepts and procedures for opti-

oo pORR L

mizing the distribution parameters have been presented and

evaluated.

Theoretical predictions for Fa(t)(x) and FT(al)(t) &
compared reasonably well with ranked experimental results 0
when both the WPF and WPB data sets were considered separ-
ately. Overall fits based on pooled EIFS values for both
WPF and WPB data sets were improved when the normalized

crack growth parameters were used. EIFS distributions based

o e e e

on normalized crack growth results need to be investigated

further for a wide range of practical durability analysis

situations. '
The upper tail of the EIFSD is of most interest for

durability analysis because the large initial flaws are

more apt to cause crack exceedance problems than the smaller

o RS S AN N
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90

RUCPA L. (NN




&)

initial flaw sizes. The EIFSD can be force-fitted to the
upper tail of the EIFS population. This may provide an even
better fit of the EIFSD to the tail area of most interest
(70]. This aspect needs to be investigated further.

The EIFS pooling concepts and procedures for optimizing
EIFS distribution parameters are promising for determining a
reasonable EIFSD for practical durability analyses. Further
research is needed to determine the EIFSD parameters based
on pooled EIFSs for several fractographic data sets and to
evaluate the accuracy and limits of the durability analysis
predictions in the small crack size region (e.g., <0.10").

A parallel investigation to the one described herein
has been performed using the deterministic crack growth
approach [66]. The results of this investigation will be
reported in the future. Based on the results for the sto-
chastic and deterministic crack growth approaches, it is
concluded that either approach is satisfactory for the dura-
bility analysis of aluminum alloys in the small crack size
region. However, since the deterministic crack growth ap-
proach is mathematically simpler, this approach is recom-
mended for use in the small crack size region. Further
research is needed to show that the deterministic crack
growth approach is also satisfactory for other alloys in the
amall crack size region. Also, the deterministic and sto-
chastic crack growth approaches need to be investigated for
durability analysis applications in the large crack size

region,
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CHAPTER 7
FATIGUE RELIABILITY OF STRUCTURAL COMPONENTS UNDER
SCHEDULED INSPECTION AND REPAIR MAINTENANCE
Fatigue cracking is one of the most important damage
modes in aircraft structures. To prevent catastrophic fail-
ure, fatigue-critical components, such as wings, fuselages,
gas turbine engine disks, etc., are usually subjected to
scheduled inspection or proof test maintenance. In order
to establish an optimal inspection and repair or proof test
maintenance in terms of, for instance, minimum life-cycle~

cost criteria, the effect of scheduled maintenance on the

component reliability should be determined [Refs. 22-24,43,

r
z.
£

71 -78). In such a reliability analysis, however, many quanti-

A
EA

R

ties involving statistical variabilities should be considered,
for instance, the initial fatigue quality, crack propagation
rate, service loading spectra, nondestructive evaluation

(NDE) systems, etc.
Under scheduled inspection and repair maintenance in

-~ -
- AL
e v 4. A

service, a fatigue reliability analysis methodcelogy is

presented for non-redundant fatigue-critical airframe com- :
ponents, in which fastener holes are critical locations. ’ E
Various statistical variables mentioned above have been Eﬁ
taken into account. The fatigue reliability is shown to be Eﬁ
influenced significantly by the scheduled inspection main- Ei
tenance as well as the capability of the NDE system employed. éﬁ
')

2
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Both the fatigue reliability in service and the average
number of fastener holes to be repaired are presented in
this chapter. These are important inputs for the life-
cycle-cost analysis of airframe structures. A numerical
example for the crack propagation in fastener holes of an
F-16 lower wing skin has been worked out to demonstrate the

application of the analysis methodology.

7.1 Formulation

For simplicity of presentation, service inspection main-
tenance is assumed to be periodic with the inspection inter-
val, t, as shown in Fig. 84. A fastener hole is repaired
when a crack is detected. After repair, the fatigue quality
is assumed to be renewed, in the sense that the crack size
distribution is identical to that of the new fastener hole.

One important quantity in the fatigue reliability
analysis is the initial fatigue quality (IFQ) that defines
the initial manufactured state of a structural detail or
component prior to service. For aluminum alloys used in
airframe structures, it has been shown in Chapter 6 that
the initial fatigue quality can be represented by the equi-
valent initial flaw size (EIFS). The equivalent initial flaw
size is determined by back extrapolation of fractographic
data obtained from laboratory tests.

The cumulative distribution, (x) =pPla(0)<x], of the

Fa(0)
EIFS, a(0), is suggested to have the following form in

Chapter 6:
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en(x /x)]"
Fa(O)(x) =exp)-|—g — P 0<x<x

= 1.0

(147)
X>X

in which X, is the upper bound, and a and ¢ are parameters.
After the distribution of the EIFS is defined, the entire
fatigue process can be described by the stable crack propa-
gation until fracture.

The lognormal random variable model for the crack growth
rate is employed for predicting the statistical crack growth

damage accumulation,

da(t)
dt

= xgla(t)1P (148)

in which X is a random variable introduced to take into
account various contributions to the crack growth rate

variability in service. It is expressed as

v

X = H,H,S (149)

172

in which Hl' H2 and S are random variables denoting the con-
tributions to the statistical wvariability of the crack
growth rate from various sources. Hl represents the material
crack growth resistance variability, H, represents the crack
geometry variability or stress intensity factor variability,
and S represents the variability of service loading spectrum
with respect to the nominal design loading spectrum, and v

is a cunstant [Refs. 6,22-23].
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All the random variables Hl' H2 and S are assumed to
follow the lognormal distribution with a median of 1.0. Then,
it follows from Egq. (149) that X is a lognormal random

variable with a median of 1.0. Hence,
%z = log X (150)

is a normal random variable with a mean value u, = 0 and

standard deviation o, given by

2 2

g = [o + 0 + v2 2,172

Hz os] (151)

in which Oy.+ Oy and o, are the standard deviations of
1 2
Hl’ H2 and S, respectively.
Since X is a lognormal random variable with a median of
1.0, the distribution function Fy(z) = P[X<z] is given by
Fy(z) = ¢(l€ﬂ-£) (152)

Oz

in which o, is the standard deviation of Z = log X given
by Eq. (151), and the corresponding probability density

function of X, denoted by fx(z), is given by

2
£,.(2) = dog e oup {_ %[l%g_i] } ;  0<z (153)
mZo z
z

Current nondestructive evaluation (NDE) systems are not
capable of repeatedly producing correct indications when
applied to fl-ws of the same length. As a result, the pro-
bability of detection (POD) for all cracks of a given length

has been used in the literature to define the capability of
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a particular NDE system in a given environment.
The probability of detection (or POD curve) of an NDE

system can be expressed as

_ - _exp(a* + B*fna) .
FD(a) = POD(a) = T +expla* + B*Inal ’ 0<a (154)

in which FD(a) = POD(a) is the probability of detecting the
crack size "a", and a* and g* are constants. Equation (154) v
is referred to as the log odd function [e.g., Refs. 79-80]}.
Let a, be the critical crack size at which failure of
a non-redundant structured component occurs. Without the
inspection and repair maintenance, the probability of failure

in any service time interval (0,T), denoted by p(T), can

L 4
W N TR FTA A e ety TRy Ty T W o o S S N § N e I ST R R o SN WS SR R b S G ey

be obtained from Eq. (138) of Chapter 6 by replacirg ay and
t by a, and T, respectively, as follows
® clnx1-+1n(ag-+cQTz) * v
p(T) = 1-—[ exp{- u S fx(z)dz (155) i

0

With the implementation of scheduled inspection and
repair maintenance procedures, the structural reliability
depends on the NDE capability and the frequency of inspec-
tion (or service inspection interval t1). The solution is

derived in the following.

7.1.1 1In the First Service Interval (0,1)

LR DR P . o UEN st aar ke B # v oen aln il P G R o yie

The crack size a(t) at the end of the first service

~

. . . . . . b
interval prior to inspection maintenance is related to EIFS, 7
a(0), through the integration of Eq. (148) from t = 0 to T, !
L

-

S

b

'!

4
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a(t) = a(0) (156)

{1 - aC(O)cQTx]I]E

in which ¢ = b -1 and both a(0) and X are random variables.
. Let fa(T)(x|z) be the conditional probability density

function of the crack size a(t) given X = z. Then,

fa(T)(xlz) can be obtained from the distribution of a(0)

given by Eq. (147) through the transformation of Eg. (156);
with the result

fa(T)(xlz) = fa(o)[Y(x;r,z)]J(x;T,z) (157)
in which
Y(x;1,2) = X (158)
(1 + xccQTz)l/E
1l
J(x:T1,2) = (159)
’ (l-i-xccQ'rz)l/ﬁc +1
The unconditional probability density function of a(t) is e

obtained from the conditional one using the theorem of

8 A
LY W0

t— l.'
b

total probability,

T

a(r)(X) = L) fa(o)[Y(x;r,z)]J(x;T,z)fx(z)dz (160)

X, (S A

in which the probability density function of the lognormal

K

random variable X,denoted by fy(z), is given by Eg. (153),

_'..‘-
4 & o

and fa(O)(x) is the probability density function of EIFS, i%
a(0), obtained from Eq. (147) as fa(ﬂ) (x) = dFa(O) (x) /dx, E
i.e., :E
o

o
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o fn(x /%) a=-1 wn (x /x) &
fa(O)(X) x| expy~|l—% — po0<x<x,

0 ; X>X

(161)

u

The probability of failure in the first service interval
(0,17) for one fastener hole, denoted by p(l), is the pro-
bability that the crack size a(t) will be greater than the

critical crack size a s i.e.,

!

p(l) = Jac fa('t) (x)dx (162)

in which fa(T)(x) is obtained in Eg. (160). It is mentioned
that the probability of failure, p(l), in the first service
interval can also be computed from Eq. (155) in which T is
replaced by T.

A fastener hole is repaired when a crack is detected
during the inspection maintenance. The probability of
repairing a fastener hole (or the probability of detecting
a crack in the fastener hole), during the first inspection

maintenance at 1, denoted by G(l), is given by

a
G(1l) = Ioc £, (¢) (X Fp(x)dx (163)

in which FD(x) is the probability of detecting a crack size
X given by Eq. (154).

After the first inspection maintenance at 1, the pro-
bability density of the crack size a(r+) is modified, because

of possible repair,

a8
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£, (ot (X)) = GILE, o) (1) +FR(x)E, () (%) 3 x<a (164)

alt o]

in which the first term is contributed by the renewal popula-
tion (repaired fastener hole) with probability G(1l) and Fs(x)
is the probability of not detecting (missing) a crack of

size x during inspection,

* = -
FD(x) =1 FD(x) (165)

where FD(x) is give by Eq. (154).

The corresponding conditional probability density
function of the crack size after inspection, a(r+), under
the condition that X = 2z, denoted by fa(T+)(x|z), can be

shown, using Eqs. (157) and (164), as follows,

£a(eh) (x]z) = G(L£, (g (%) +F;(x) £.00) (Y(x;1,2)]0(x;1,2)

(166)

7.1.2 In the Second Service Interval (t,2T)

The crack size a(2t) at the end of the second service
interval 2t for the original population (fastener holes
without being repaired at 1) is related to a(0) through

Eq. (156) with 1 being replaced by 27,

a(2t) = a(0) (167)
[1 - a(0)cQ2rx]1/¢

The conditional probability density function of a(2T1)

given ¥ = z, denoted by fa(zT)(x|z), is contributed by two
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populations; the original population (fastener holes) that
is not repaired at 1, and the fastener holes repaired at T,
referred to as the renewal population, with probability

G(l), see Eq. (163). Through the transformation of random
variables, the results can be obtained from Eq. (166) by

the following replacements, x*Y(x;1,z), Y(x;t,2)+Y(x;21,2),
J(x;t,2)+J(x;2T1,2), fa(o)(x)+fa(0)[Y(x;T,z)]J(x;T,z); with

the result
fa(zT)(XFZ) = G(l)fa(o)[Y(x;r,z)]J(x;T,z) + F;[Y(X;T,z)]
-fa(o)[Y(x;ZT,z)]J(x;ZT,z) (168)

in which an additional condition is imposed on F;, i.e.,

F;(Y) =0 for Y >a,. In Eq. (168), Y(x;1,2) is the crack

size at Tt which grows to x at 2t. Therefore, if Y(x;1,2)
is greater than ags the component would have failed in the
previous service interval already. The unconditional pro-
bability density function is given by

_Q0

fa(ZT)(X) = J FS[Y(X7T'Z)]fa(o)[Y(X?ZTrZ)]J(x;ZT,z)

4

-fx(z)dz-+G(l)J

ofa(o)[Y(x;r,z)]J(x;‘r,z)fx(z)dz

(169)

The probability of failure in the second service inter-
val (1,2t} for a fastener hole is equal to the probability

that a(2t) is greater than the critical crack size agr i.e.,

p(2) = [ £, (27) (X)X (170)
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and the probability that a fastener hole will be repaired
at 2t is given by

a

c
G(2) = I fa(21)(x)FD(x)dx (171)
0

. 7.1.3 In the nth Service Interval [(n-1l)rt,nt]

Owing to crack propagaticn, the crack size and its

probability density in a fastener hole increase as a function

of service time. Meanwhile, the probability density is also

subjected to modifications during each inspection and repair

<

maintenance. Following a similar procedure described above,

the probability density function of the crack size, a(nrt),

k

5y

i

at nt right before the nth inspection maintenance, can be

e
()

L T
Y

obtained in a recurrent form,

fa(n‘r) (x) = [0 fa(n'l') (x|z)fx(z)dz (172)

where f )(xlz) is the conditional probability density

a(nrt
of a(nt), under the condition that X = z,

n-1
£aing) X12) = mleB[Y(X;mT.z)] £, 0y (¥ (x0T, 2) ]
n-1 _
J(x;nt,z) + | G(n-k)K,  ; for n=2,3,...
k=1
‘ (173)

in which the first term is contributed by the original popula-
tion iriroduced at ¢t = 0 (i.e., fastener hole without being

repairad), and the second summation term is contributed

¢S P NS RO DO S, L LSS ST
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by the renewal populations (repaired fastener holes) intro-
duced at n-~kth inspection maintenance (k=1,2,...,n-1l).

In Eq. (173), G(n-k) is the probability of repairing
a fastener hole at (n-k)t (i.e., at n-kth inspection

maincenance), and

k-1
A, = mélF;;[sz(x;m,z)l £, (0) [Y(x7kT,2) 13 (x:kT,2) (174)

in which Y(x;mt,2) and J(x;kt,z) are given by Egs. (158)

and (159) with 1 being replaced by mt and k1, respectively,

i.e.,
Y (x;mt,2) = X (175)
. o1+ x"ch'rz)l/c
. J(xikt,z) = T (176)
: (1 + x cQktz)
| k=1
It should be mentioned that in Eg. (174, | FolY(x;mt,2)]
m=1

=1for k = 1 and FB[Y] = 0 for Y:>ac.
The probability of failure in the nth service interval

[(n-1)T,nt], denoted by p(n), is obtained as

p(n) = J fa(nT)(x)dx ; for n=2,3,... (177)
a
c

and the probability of repairing a fastener hole, G(n), during

the nth inspection maintenance is given by

a
G(n) = J ¢ fa(nT)(x)FD(x)dx ; for n=2,3,... (178)
0
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Equations (172)-(178) are the recurrent solutions for n =
2,3,..., where the solutions for n = 1 are given by Egs.
(160)-(163).

The cumulative probability of failure for a fastener
hole in n service intervals (0,nt), denoted by P(nt), is

given by

P(nt) =1 -
3

(1 - p(3)] (179)

n= s
=

When the fatigue-critical component consists of M fastener
holes and the component will fail if one or more fasteners
fail, then the cumulative probability of failure of the
entire component in the service interval (0,nt), denoted by

PM(nT),is given by

Py(pt) =1 - 101 - P(nt)]" (180)

When the stress level in each fastener hole is not
identical, the probability of failure in each fastener hole
varies. 1In such a case, the cumulative probability of
failure in (0,nt) for the mth fastener hole, denoted by
p(nt,m), can be obtained in a similar manner, e.g., Eq.
(179) . Then, the cumulative probability of failure of the

. entire component consisting of M fastener holes is obtained

as

M
PM(nr) =1 - 0 ([l - P(nt,m] (181)
m=1
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7.2 Demonstrative Example

Fatigue crack growth damage accumulation in fastener
holes of a F~16 lower wing skin shown in Fig. 85 is con-
sidered. Extensive investigations indicate that the initial
fatigue quality of aluminum fastener holes can be repre-
sented by the distribution of the equivalent initial flaw
size (EIFS).

The distribution function of EIFS for countersunk
fastener holes in lower wing skins subjected to F-16 load
spectra is given by Eq. (147) with o = 1,823, X, = 0.03 in.
and ¢ = 1.928 [Ref. 6]. The lower wing skin is divided
into ten (10) stress regions, Fig. 85. In each stress
region, the maximum stress level in each fastener hole is
approximately identical. The stress region No. 7 near the
cut-out is subjected to the highest maximum stress level of
32.4 ksi (223.5 MPa) in the F=-16 400 hour spectrum [Ref. 6].
This stress region containing eight (8) fastener holes is
assumed to ka safety critical. The crack propagation para-
meters in this stress region are found to be Q = l.3504x10'4,

b = 1.01, Eq. (148). The coefficient of variation of the

X Z
= 0.1276. One design life for the a.rcraft is 8,000 flight

crack growth rate is V_, = 30% and hence o, = /2n(1+vi)/lnlo

hours, and the reliability of such a critical stress region
up to two life times, i.e., 16,000 flight hours, will be

investigated. The critical crack size a, is assumed to be

0.2 inch,




Fastener holes are repaired when cracks are detecled.
Hence, the cost of repair depends on the size of the detected
crack. When the crack size in fastener holes is smaller
than 0.03 inches to 0.05 inchés, depending on the location of
the fastener holes, repair can be made by reaming the fastener
hole to the next hole size. This is the most economic repair
procedure. When the crack size is larger, a retrofit repair
procedure may be needed, in which case the cost of repair is

much higher.

Assuming that the crack size is divided into r regions,
i.e., (O,al), (al,az),...,(ar_l,ar), and the cost of repairing
a crack in each region varies. Then, the probability of re-
pairing a crack in the kth region during the nth inspection

maintenance, denoted by G(n;k), is obtained as [Ref., 81]

ak
G(n;k) = J fa(nT)(X)FD(x)dx : for n=1,2,...

a
k-1 (182)

in which fa(nt)(X) is given by Egs. (160) and (172), and
‘p(x) is given by Eq. (154). It follows from Eq. (178)
that the probability of repairing a crack of any size,
G(n), during the nth inspection maintenance is

G(n) =
k

G(n;k) (183)

e

1

It should be noted that G(n) can also be interpreted

as the average percentage of fastener holes to be repaired




during the nth inspection maintenance. For simplicity of’ f&,

. .S;, :
presentation, only the results of G(n) will be presented 2
in this example. gl

The probability of failure depends on the inspection ‘%Q‘
interval t and the capability of the NDE system emplcyed. Four €
(4) probability of detection (POD) curves shown in Fig. 86

*
G will be considered. The parameter values of o* and B

appearing in Eq. (154) for these four POD curves are as %;
follows: (i) o = 55.28 and 8* = 16.4 for the No. 1 POD :.
curve, (ii) o* = 66.6 and B* = 23.4 for the No. 2 POD curve, \
' (1ii) o* = 28.94 and % = 11.73 for the No. 3 POD curve, i
: and (iv) o* = 13.44 and g* = 3.95 for the No. 4 POD curve. AJ'L
E Without inspection maintenance, the cumulative pro- E;;
: babilities of failure for one hole and for the entire stress g§ 
" region containing eight fastener holes are plotted as a :f
E solid curve and a dashed curve, respectively, in Fig. 87. §§
i These curves are designated by zero. It is observed that :5;
3 the probability of failure increases drastically as the EE
E service life increases, a typical fatigue failure mode. g;
Under periodic inspection maintenance using the No. 1 k
POD curve shown in Fig. 86, the cumulative probabilities f%;
of failure for one hole and for the entire stress region &?
are computed and displayed in Fig. 87 as solid curves and . e »
! dashed curves, respectively. The numerical value designated (??.
, for each curve in the figure denotes the number of inspec- ES;”
tion maintenances in 16,000 flight hours. For instance, 'A‘“
the curve designated by 1 indicates the cumulative failure E}
Y
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probability with an inspection interval of 8,000 flight

hours (1 inspection in 16,000 flight hours). It is observed
from Fig. 87 that the probability of failure is reduced
drastically as the number of inspection maintenances
increases.

The average percentage of fastener holes to be repaired
during each inspection maintenance, as well as the total
average percentage of fastener holes to be repaired in
16,000 flight hours are presented in Table 8. From féble 8

the total average percentage of fastener holes to be re-

paired increases as the number of inspection maintenances

)

Fons

Plraient

increases. This trend has been expected since higher

component reliability is achieved through higher percentage

’ of repairs.,

Suppose the capability of the NDE system is represented

I [
l by No. 2 POD curve as shown in Fig. 86. The cumulative

PO o 09 ab i st ar. sl . 0 1 b .edrenl

probabilities of failure under various number of inspection

maintenances are presented in Fig. 88. The average per-
centage of fastener holes to be repzired i~ shown in
Table §. Since the capability of the No. 2 POD curve is not

: as good as that of the No. 1 POD curve, the cumulative

P W OR AW ™ 5 (EEEEEEer S e

probability of failure shown in Fig. 88 is higher than that

Rl
.
—REREE P

displayed in Fig. B7. However, the average percentage of

- N W

repair is lower using the No. 2 POD curve.
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Both No. 1 and No. 2 POD curves are narrow-banded,
indicating that the NDE system involves less uncertainty
in crack detection. Now consider the No. 3 and No. 4 POD
curves, respectively, for the NDE system. Since these POD
curves are wide-banded, the NDE system involves considerable
statistical uncertainty in crack detections. By use of the
No. 3 POD curve, the cumulative probabilities of failure
are displayed in Fig. 89; The average percentage of fastener
holes to be repaired during each inspection maintenance and
the total average peréentage of fastener holes to be repaired
in 16,000 flight hours are shown in Table 8. The results
using the No. 4 POD curve are presented in Fig. 90 and
Table 8. Again, the inspection maintenance is capable of
significantly reducing the probability of failure for
components in service.

A comparison between the results obtained using the
No. 2 POD curve (narrow-banded) and the No. 4 POD curve
(wide-banded) indicates that although the No. 4 POD curve
is capable of detecting a smaller crack with a 50% pro-
bability, it has a higher probability of missing large
cracks, and hence the probability of failure is higher.
Likewise, many small cracks may be detected by the No. 4
POD curve, leading to an unnecessary repair. It is ob-
served from Table 8 and Figs. 87 to 90 that the narrow-
banded POD curve is superior to the wide-banded POD curve
in terms of the probability of failure and the average

percentage of fastener holes to be repaired.
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7.3 Conclusion

A method has been developed for the fatigue reliability
analysis of some types of airframe structures under scheduled
inspection and repair maintenance. It is shown that the
scheduled inspection maintenance can be used to drastically
reduce the fatigue failure probability. The significant
effect of the NDE system on the component reliability is
also demonstrated. The analysis methodology presented may

be applied to the probabilistic damage tolerance analysis

in the future.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

Various stochastic models for fatique crack propagation
under either constant amplitude or spectrum loadings have
been investigated. These models are based on the assumption
that the crack growth rate is a lognormal random process,
including the general lognormal random process, lognormal
white noise process, lognormal random,variable and second
moment approximations, such as Weibull, gamma, lognormal and
Gaussian closure approximations. It is shown in this report
that (i) the white noise process is definitely not a valid
model for fatigue crack propagation, and (ii) all other
stochastic models considered correlate very well with the
experimental results of fastener hole specimens.

In the development of stochastic crack propagation
models, the main contribution of this report are given in
the following: (i) Although the concept of the general
lognormal ranrndom process model has been proposed in the
literature by Yang et al. [Refs. 16-21,25-26], the analysis
procedures have not been worked out and the advantage of the
model has not been demonstrated by experimental results. In
this report a method of analysis for the general lognormal

random process model has been developed using the Monte Carlo
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simulation approach, and a correlation study for such a model
with extensive test results has been conducted, (ii) the
accuracy of the lognormal random variable model has been im-
proved herein using an equal number of data points for each
specimen and the incremental polynomial method for deriving
the crack-growth rate data, and {iii) various second moment
approximations are new models proposed and verified by exper-
imental data in this report.

Experimental data used for the correlation study with
various stochastic models include fastener hole specimens
under fighter or bomber spectrum loadings and center-cracked
specimens under constant amplitude loads. The fastener hole
specimens consist of WPB, XWPB, WWPF, WWPB and CWPF data
sets. Basically, the WPB and the XWPB data sets involve
fatigue crack propagation in the very small crack size region,
whereas the WWPF and WWPB data sets cover the entire crack
size region, i.e., from the very small cracks to large cracks.
The CWPF data set involves crack propagation in a salt water

corrosive environment. Therefore, the data sets for the fas-

tener hole specimens used in the present study cover adequately

different loading conditions, environments, load transfers

L
s

and crack size range. It should be emphasized that, unlike

. the center-cracked specimens, the fastener hole specimen are

rE

not intentionally preflawed, i.e., the specimen starts with ;3
the crack initiation stage. '
The general lognormal random process model is not amenable -

to the analytical close-form solution. A method of analysis 53
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is developed using the Monte Carlo simulation approach., The
model is demonstrated to be very flexible and it correlates
excellently with all the experimental data considered. The
second moment approximation models are new models proposed
in this report. The analysis procedures for these new models
are quite simple and their correlations with all the te?tgv .
results are very satisfactory. This indicates that as iong
as the first two central moments of the crack size distri-
bution can be estimated reasonably well, the model will have
very good correlation with the experimental test results,
with the possible exception of the tail portion of the dis-
tribution as will be discussed later.

The lognormal random variable model is a special case
of the lognormal random process model, in which the correla-
tion distance is infinity. As a result, it is always con-

servative in predicting the crack growth damage accumulation,

in the sense that the statistical dispersion based on the

‘
-

g
A

model is the largest among the class of lognormal random

TATAY

By

-k.

processes. Further, it is legs flexible than the lognormal

random process model and the second moment approximation
models because its correlation distance is fixed to be in-
finity.
The lognormal randcm variable model correlates very .
well with all the experimental results of fastener hole
specimens under spectrum loadings. However, for crack pro-

pagation in the large crack size region in center-cracked

8
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specimens (CCT data set) under constant amplitude loading,
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the model is rather conservative in the sense that it predicts

larger statistical dispersion. Note that the statistical
dispersion of the CCT data set is much smaller than that of
all the fastener hole specimen data sets under spectrum
loadings, and such a small statistical variability may not
reflect the real situation of structural details experienced
in the field. Laboratory test results of full-scale articles
[e.g., 6,45], as well as the results of tear-down inspec-
tions [e.g., 82]), indicate that the statistical variakility
of the crack growth damage accumulation is much larger than
that of the CCT data set. Consequently, it is expected that
the lognormal random variable model may reflect the field

situation more realistically.

The lognormal random variable model is very attractive
for practical applications due to the following reasons: (i)
it is mathematically very simple for practical applications
including analysis and design requirements, (ii) it is of
conservative nature, (iii) it may reflect closely the crack
growth behavior in the real structure in service, and (iv)
it does not require the correlation distance parameter, such
that a small number of replicate specimens is adequate. 1In
practical applications, test results usually are not plen-
tiful and hence the model is very attractive.

The general lognormal random process model and the
second moment approximation models are quite flexible and
they are capable of describing fatigue crack propagation

behavior very well. However, these models require a corre-~
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lation distance parameter, the determination of which may
need a large number of sample functions for the primary data.
It is mentioned that the information similar to the corre-
lation distance is required in all advanced stochastic fati-
gue crack propagation models proposed in the literature
[Refs. 10-12,18-19]. )
For the crack propagation in fastener holes, in which
extensive data have been used for model verifications, the
lognormal random variable model is recommended. The advan-—
tages of such a model for practical applications to analysis
and design have been described previously. Although the
second moment approximation models and the lognormal random
process model correlation equally well with the experimental
results, the second moment approximation models are recom-
mended, because their applications are simpler than the simu-

lation approach employed for the lognormal random process

model.

K.
b,
i

In using the base-line crack propagation data (or pri-

mary data) for crack growth analyses, the importance of having

an equal number of data points for each specimen has been

demonstrated. Adjustment is suggested by adding additional

S T

data points artificially, if the available data set does not

contain an equal number of data points for each specimen. 1In

N
converting the primary data into the crack growth rate data zg
for analysis purposes, additional undesirable statistical %
variability is introduced by the data processing procedures. o
The five point incremental polynomial method is recommended E;
114 g%
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over the direct secant and modified secant methods. This
is because the latter two methods introduce much larger
additional statistical dispersion into the crack growth
rate data than the former,

Based on the recommended lognormal random variable

- crack growth rate model and the equivalent initial flaw

size (EIFS) concept, a stochastic-based initial fatigue
quality (IFQ) mcdel has been described and evaluated for the

durability analysis of relatively small cracks in fastener

R

5y
i

holes (e.g., <0.1"). Procedures have been presented and

evaluated for optimizing initial flaw size distribution

Ty

R

parameters based on pooled EIFS results. Expressions have

—
s

xR

-
-

been developed for predicting the cumulative distribution

-
"

BRI (- =LA |2

of crack size at any given time and the cumulative distri-
bution of times to reach any given crack size. The pre-
dictions compare well with the actual test results in the
small crack size region. However, further research is

needed to compare the durability analysis results based

on the deterministic crack growth approach [Refs. 6,64,45-

A

ERY

47). Likewise, research is needed for durability analysis

o

applications in the large crack size region.

- e e
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A fatigue reliability analysis methodology has been

. developed for structural components under scheduled in-

AR

. A,

o

spection and repair maintenance in service. Emphasis is

v
A

i T AOAN

placed on the non-redundant components based on the slow

crack growth design requirements. The methodology takes

_‘_{'

into account the statistical variabilities of the initial
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fatigue quality, crack propagation rates, service load spec-
tra, nondestructive evaluation (NDE) systems, etc. The
significant effect of the NDE system as well as the scheduled
inspection maintenance on the fatigue reliability of struc-
tural components have been illustrated. A numerical example
for the crack propagation in fastener holes of a F-16 lower
wing skin is worked out to demonstrate the application of the
developed analysis methodology.

The stochastic crack growth models investigated in this
report are aimed at the prediction of the global behavior
of the entire population. As such, the accuracy of the pre-
dicted upper or lower tail of the distribution of either
the crack size at any service time or the propagation life
to reach a specific crack size may be sacrificed. The dura-
bility requirement of aircraft structures deals with the
small crack size in which the extent of cracking and the
economical life are o. major concern [Refs. 6,45-47]. Under
this circumstance, the prediction of the entire crack popu-
lation, rather than the lower tail, should be made. Note
that the lower tails of the distributions shown in Figs. 24
and 25 for the WPB and XWPB data sets, respectively, shculd

not be interpreted as early failure, because the correspond-

ing crack size is very small. Thus, the present investigation

for the stochastic crack growth models is applicable to the
durability analysis of aircraft structures.
The damage tolerance requirement, however, is dealing

with the safety of flight and hence the crack propagation
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in the large crack size region [Refs. 1-3]. 1In this case,
the lower tail portion of the distribution of the propaga-
tion life, representing the early failure, is of major
concern. As a result, any stochastic model should be capable
of accurately predicting the lower tail portion of the pro-
pagation life distribution. The stochastic models investi-
gated in this report may be applicable to the damage tolerance
analysis; however, further effort is needed to demonstrate
their applicability. Another alternate approach for these
stochastic models is to estimate the corresponding crack
growth rate paraméters only from a certain percentage, say
5%, of the test results with high crack growth rate. Further
investigation is needed to verify such a possibility. An-
other problem of future research in the damage tolerance
analysis is the stochastic approach to take into account

the outliers resulting in an early failure.

Finally, the stochastic models for crack propagation
presented in this report arc based on the crack growth rate
egquation. As such, only the crack growth rate data are
required to estimate the crack growth rate parameters and
the model statistics. How the crack size a(t) varies as a
function of the propagation life t is not needed. Likewise,
the crack ygrowth rate data generated under nonhomogeneous
conditions can be pooled together to increase the sample
size (16,25,26]}. This is consistent with the fracture
mechanics approach, and hence is referred to as the frac-

ture mechanics-based stochastic model. Any stochastic model,
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which is based on the data of the crack size a(t) versus
the propagation life t ftor estimating the model parameters,

is not consistent with fracture mechanics.
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Table 1:

Linear Regression Estimate of b, @, g, and

Coefficient of variation, V, of Crack Growth

Rate

Data b Q a v a(0) a

Set (10=3) 2 (%) (in) (in)
WwPB  0.9413 0.116 0.0702 16.3 0.004  0.04
XWPB  1.0144 0.284°  0.1093 25.6 0.004 0.07
WWPF  1.1226 0.414 0.0774  17.9 0.017 0.51
WWPB  1.0125 0.237 0.1102 25,8 0.008 0.57
CWPF  1.3721 2.128 0.2020 49.2 0.010 0.35

* a(0) = initial crack size, ap = final crack size




Table 2: Correlation Parameter £ ! and Number of Simulated
Sample Functions for Each Data Set
WPB XWPB WWPF WWPB CWPF
E-l
(Flight 6,670 10,000 8,330 11,100 2,860
Hours)
No. of
Simulated 160 176 180 180 200
Samples
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TABLE 3: Correlation Parameter z % in Flight Hours for Various
Data Sets and Approximations

Flight Hours
roximation Gaussian ‘Weibull Gamma Lognormal
m;.__mmre , .
WPB 7,042 7,143 7,143 7,194
| XwPB 10,530 10,530 10,530 mdﬁo_;_w
WWPE. 38,460 38,460 38,460 | 38,460 N
| wuPB 11,630 11,760 111,760 | 11,760 E
CWPF. _4,500 _5,556 4,000 | 5,000 g*
ccr 15,380 15.380% | 15,380" | 15,380" i;
* Cycles E
d
I
;
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TABLE 4: Linear Regression Estimate of b, Q, o, and
Coefficient of Variation, V, of Crack Growth
Rate for CWPF Fastener Holes Using Various

Data Processing Procedures

Q
(10-3) 92 (%)

5 Point Incremental

Polynomial Method 1,385 2.120 0.219 53.9
(raw data)

5 Point Incremental

Polynomial Method 1,372 2.128 0.202 49.2
(added data)*

Modified Secant
Method 1,393 2.142 0.231 57.2

* Equalized the number of a(t) versus t values for each
specimen in the data set.
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Table 5: EIFSs For Data Sets WPF and WPB Based
on Stochastic Crack Growth

WPF *F‘ WPB
RANK EIFS EIFS
(Inch) (Inch)

.000218 .0000605
.000368 .0001240
.000385 .0001255
.000387 .0001652
.000459 .0001825
.000478 .0001872
.000485 .0001910
.000494 .0002105
.000523 .0002238
.000534 .0002458
.000582 .G002638
.000624 .0002658
.000629 .0002747
.000656 .0002969
.000714 .0003361
.000913 .0003386
.000962 .0003656
.000994 .0003822
.001000 .0003882
.001025 .0003963
.001040 .0004342
.001056 .0004421
.001075 .0004506
.001325 .0004665
.001390 .0005016
.001466 .0005073
.001797 .0007059
.001871 .0007586
.001890 .0008675
.002410 .0010270
.002441 .0010310
.003407 1 .0020770
.003864 ===
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NOTE: Fractographic Crack Size Range Used: 0.01" < a(t) < 0.05"
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Table 8: Average Percentage of Repair

No. 1 POD CURVE

NUMBER INSPECTION AVERAGE PERCENTAGE OF REPAIR .
OF INTERVAL, i th INSPECTION MAINTENANCE | TOTAL
’ INSPETTIONS HOURS 1 2 3 4 5
1 8,000 25.54 25,54
2 5,333 12.17 29,19 41,36
3 4,000 6.74 19.26 23.78 49.78

No. 2 POD CURVE

1 8,000 8.45 8.45
2 5,333 1.46 18.61 20.07
3 4,000 0.24  8.21 18.27 26.72
4 3,200 0.03  3.50 11.49 15.85 30.87
No. 3 POD CURVE
1 8,000 2.62 2.62
2 5,333 0.17  9.53 9.70 2
3 4,000 0.01  2.61 12.19 14.81 K
4 3,200 0.00 0.68 5,63 11.93 18.24 :
5 2,666 0.00  0.17 2.45 7.11 10.95 20.68
No. 4 POD CURVE
1 8,000  28.13 28.13
2 5,333 16.02  29.42 45.44
3 4,000  11.00 20.57 24.77 56.34
4 3,200 8.45 15.40 19.40 21.01 64.26
5 2,666 7.00 12,20 15.66 17.46 18.23 70.55
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Figure 28(a): Correlation Between Lognormal Random
Variable Model and Test Results for
the Distribution of Time to Reach 0.04
Inch Crack for CWPF Fastener Holes.
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Correlation Between Lognormal Random
Variable Model and Test Results for
the Distribution of Time to Reach
0.08 Inch Crack for CWPF Fastener
Holes.
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Figure 28(c): Correlation Between Lognormal Random
Variable Model and Test Results for
the Distribution of Time to Reach 0.35
Inch Crack for CWPF Fastener Holes.
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PROBABILITY OF
CRACK EXCEEDANCE

_ ] 1 |
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CRACK SIZE, 10~3 IN.

Figure 29: Correlation Between Lognormal Random Variable
Model and Test Results for the Probability of
Crack Exceedance at 8,000 ¥Flight Hours for
WPB Fastener Holes.
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Correlation Between Lognormal Random Variable
Model and Test Results for the Probability of

Crack Exceedance at 6,000 Flight Hours for
XWPB Fastener Holes.
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Figure 31: Correlation Between Lognormal Random Variable Model
and Test Results for the Probability of Crack Exceedance
at 6,000 Flight Hours for WWPF Fastener Holes
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Figure 32: Correlation Between Lognormal Random Variable Model and
Test for the Probability of Crack Exceedance at 7,000
Flight Hours for WWPB Fastener Holes

o

161

ENAEE AN

T O A



ol -J?'m’:' ,g:,

A

-,

SPed?

4
¥
i:
%
K|

-b
o

CWPF
1,600 FLIGHT HOURS

o o
) ®
l T

PROBABILITY OF
o
S
l

CRACK EXCEEDANCE

o
N
|

: o

i LJ‘-LM
20 40 60 80 100 120
CRACK SIZE, 10”3 IN.

o
o
(o)

Figure 23: Correlation Between Lognormal Random Variable
Model and Test Results for the Probability of
Crack Exceedance at 1,500 Flight Hours for
CWPF Fastener Holes,
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Figure 34: Simulated Sample Functions of Crack Size Versus Service for

WPB Fastener Holes; ¢ % = 6,670 Flight Hours.
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Figure 35: Simulated S=mple Functions of Crack Size versus
Service Time for XWPB Fastener Holes; £ —=10,000
Flight Hours
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Figure 36: Simulated Sample Functions of Crack Size versus

Service Time for WWPF Fastener Holes; £-1=8,330
Flight Hours
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Simulated Sample Functions of Crack Size versus
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Figure 38: Simulated Sample Functions

for CWPF Fastener Holes; £
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of Crack Size Versus Service Time
-1 _ 5,860 Flight Hours.
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Figure 39: Correlation Between Lognormal Random Process Mode and Test
Results for the Distribution of Time to Reach Crack Sizes
0.01, 0.02 and 0.04 Inch for WPB Fastener Holes.
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Figure 40: Correlation Between Lognormal Random Process Model and Test
Results for the Distribution of Time to Reach Crack Sizes
0.008, 0.025 and 0.07 Inch for XWPB Fastener Holes.
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Correlation Between Lognormal Random Process Model and
Test Results for the Distribution of Time to Reach Crack
Sizes 0.05, 0.15 and 0.51 Inch for WWPF Fastener Holes.
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Fig. 42: Correlation Between Lognormal Random Process Model and
Test Results for the Distribution of Time to Reach Crack

Sizes 0.025, 0.1 and 0.57 Inch for WWPB Fastenexr Holes.
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Process Model and Test Remults for the
Distribution of Time to Reach craock
nize a; for CWPF Fastener Holes: (a)
a1 = 0.04 Inch, (b) a) = 0.08 Inch,
and {(c) a; = 0.35 Inch.
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Figure 44: Correlation Between Lognormal Random Process Model and
Test Results for the Probability of Crack Exceedance at
8,000 Flight Hours for WPB Fastener Holes.
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Fig. 46:
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Correlation Between Lognormal Random Process Model and
Test Results for the Probability of Crack Exceedance at
6,000 Flight Hours for WWPF Fastener Holes
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Test Results for the Probability of Crack Exceedance at
7,000 Flight Hours for WWPB Fastener Holes
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Figure 48: Correlation Between Lognormal Random Process Model and Test
Results for the Probability of Crack Exceedance at 1,500
Flight Hours for CWPF Fastener Holes.
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Figure 49(a): Correlation Between Second Moment Approximations and Experimental Results
for the Distribution of Time to Reach Crack Sizes of 0.01, 0.02 and 0.04
Inch for the WPB Fastener Holes; Weibull and Gamma Approximation.
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Figure 49 (b) :

FLIGHT HOURS, 103

OOHHmHmdw@: wwwimms Second Moment Approximations and Experimental Results
for the Distribution of Time to Reach Crack Sizes of 0.01, 0.02 and 0.04

Inch for WPB Fastener Holes; Gaussian Closure and Lognormal Approximations.
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Correlation Between Second Moment Approximations and mxmeMmeﬁmH
Results for the Distribution of Time to Reach Crack Sizes of 0.008,
0.025 and 0.07 Inch for XWPB Fastener Holes; Weibull and Gamma

Approximations.
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Figure 50 (b) :
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Correlation Between Second Moment Approximations and Experimental

Results for the Distribution of Time to Reach Crack Sizes of 0.008,

0.025 and 0.07 Inch for XWPB Fastener Holes; Gaussian Closure and
Lognormal Approximations.
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Figure 51 (a):

FLIGHT HOURS, 103

Correlation Between Second Moment Approximations and
Experimental Results for the Distribution of Time to
Reach Crack Sizes of 0.05, 0.15 and 0.51 Inch for

WWPF Fastener Holes; Weibull and Gamma Approximations.
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Correlations Between Second Moment Approximations and
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Correlation Between Second Moment Approximations and
Experimental Results for the Distribution of Time to
Reach Crack Sizes of 0.025, 0.01 and 0.57 Inch mo«
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mations and Experimental Results for the
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Figure 53(a-2): Correlation Between Second Moment Approxi-
mations and Experimental Results for the
Distribution of Time to Reach Crack Size
of 0.08 Inch for CWPF Fastener Holes:
Weibull and Gamma Approximations.
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Correlation Between SEcond Moment
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Results for the Distribution of
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Figure 54(a): Correlation Between Second Moment Approxi-
mations and Experimental Results for the
Probability of Crack Exceedance at 8,000
Flight Hours for WPB Fastener Holes;
Weibull and Gamma Approximations.
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Correlation Between Second Moment Approxi-
mations and Experimental Results for the
Probability of Crack Exceedance at 8,000
Flight Hours for WPB Fastener Holes;

Gaussian Closure and Lognormal Approximations.
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Figure 55(a): Correlation Between Second Moment Approxi-
mations and Experimental Results for the
Probability of Crack Exceedance at 6,000
Flight Hours for XWPB Fastener Holes;
Weibull and Gamma Approximations.
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Figure 56 (a): Correlation Between Second Moment Approximations
and Experimental Resutls for the Probability of
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Fastener Holes; Weibull and Gamma Approximations.
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Fastener Holes; Weibull and Gamma Approximations.
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Correlation Between Second Moment Approximations
and Experimental Results for the Probability of
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Fastener Holes; Weibull and Gamma Approximations.
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Figure 59: Crack Propagation Time Histories of Center-Cracked Specimens.
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Model and Experimental Results for Distribution
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Length 21 mm for Center-Cracked Specimens.
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Figure 67(a): Correlation Between Second Moment
Approximations and Experimental
Results for Probability of Crack .
Exceedance after 150,000 Load
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Weibull and Gamma Approximations.
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LOG CRACK GROWTH RATE

Figure 71:
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Log Crack Growth Rate Versus Log Crack Size for
WPF Data Set
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Figure 72: Correlation Between Predictions and Test Results
for the Cumulative Distribution of Crack Size at
9200 and 14,800 Flight Hours for WPF Data Set (Case
I: EIFSs for WPF; Un~normalized Q Value)
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Figure 77: Correlation Between Predictions and Test Results for the
Cumulative Distribution of Crack Size at 29109 and 35438

Flight Hours for WPB Data Set (Case VI: Pooled EIFSs for
WPF + WPB; Normalized Q Value)
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Figure 78: Correlation Between Predictions and Test Results for
Cumulative Distribution of Time-to-Crack-Initiation at

0:03", 0.05", and 0.10" for WPF Data Set (Case I: EIFSs
for WPF; Un-normalized Q Value)
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Figure 79: Correlation Between Predictions and Test Results for

Cumulative Distribution of Time-to-Crack-Initiation
at 0.03", 0.05", and 0.10" for WPF Data Set (Case
II: Pooled EIFSs for WPF + WPB; Un-normalized Q
value)
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at 0.03", 0.05", and 0.10" for WPF Data Set (Case III:
Pooled EIFSs for WPF + WPB; Normalized Q Value)
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Figure g81: Correlation Between Predictions and Test Results for

Cumulative Distribution of Time-to-Crack-Initiation at
0.03", 0.05", and 0.10" for WPB Data Set (Case IV:
EIFSs for WPB; Un-normalized Q Value)
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Figure 82: Correlation Between Predictions and Test Results for
Cumulative Distribution of Time-to-Crack-Initiation
at 0.03", 0.05", and 0.10" for WPB Data Set
(Case V: EIFSs for WPF + WPB; Un-normalized Q Value)
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Figure 83: Correlation Between Predictions ané Test Results for
Cumulative Distribution of Time-to-Crack-Initiation
at 0.03", 0.05", and 0.10" for WPB Data Set
(Case VI: Pooled EIFSs for WPF + WPB; Normalized Q Value)
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Figure 86: Various POD Curves for NDE System.
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