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CHAPTER 1

INTRODUCTION & SUMMARY

MAC is a relatively new digital control design technique that can be
implemented using dedicated microcomputers or microprocessors. In its

simplest form, MAC consists of:
(i) an internal model of the system to be controlled

(ii) a reference trajectory description of the desired closed

loop behavior

(iii) an on-line optimization of future control inputs to produce

the desired performances.

This technique has been proven successful in many industries and aerospace
applications. Although the methodology was originally developed by prac-
ticing engineers from heuristic arguments, single-input single-output MAC
under some reasonable assumptions has been extensively analyzed in the pre-
vious report AFWAL-TR-80-3125. As a result of basic research questions

arising in this previous study, the present work on adaptive MAC was undertaken.

The main objective of this project is to develop an adaptive MAC and an
appropriate framework for robustness analysis particularly when the plant
is compensated apriori by a fixed gain analog controller. Based on the
objective of this project, this report is primarily divided into three
parts: an adaptive estimation scheme for system identification of the
unknown plant dynamics is developed and analyzed in Part 1: classical and
modern robustness analysis techniques are applied to MAC in Part 2: and Part

3 contains the results on simulation.

The methods of Parts 1 and 2 are demonstrated on several examples by
computer simulation in Part 3. Detailed derivations and proofs of a number
of the results are contained in the Appendices in the form of published

research papers or papers being submitted for publication.
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In Chapter 2, the system identification procedure for adaptation
to system changes is presented. The method used for identification is the
canonical variate analysis (CVA) technique. This method has been developed
in the last several years and overcomes the difficult problems in currently
available methods which prevent their use in general real-time automated
systems. Some of the difficulties of other methods are first discussed,
and the attractive features of CVA are described including the statistical
and computational robustness of the method as well as the inherent
ability to determine the appropriate model state order from the obser-
vational data. The basic conceptual aspects of CVA are then developed
which include the choice of a best set of reduced sﬁates of the past
for prediction of the future evolution of the process. This is
accomplished by a canonical variate analysis of the past and future.
The details of such an analysis are given in two of the appendices.
The computational aspects of the procedure involve a singular value
decomposition which is a very accurate and numerically stable
algorithm. The close relationship between the CVA method and the
maximum likelihood and instrumental variable methods are described.
To investigate the effect of external input excitations on the
accuracy of the identified system model, simultaneous confidence bands
on the identified plant transfer function and disturbance noise power
spectrum are computed. The details of this computation are contained
in an appendix. Using these results the output tracking error due to
both control and identification errors is derived in the context of
stochastic and dual control. The computational aspects of the
algorithms are described including the basic steps and amount of com-—
putation with the detailed computational equations contained in the

appendices.

Chapter 3 analyzes MAC when applied to a lightly damped plant
that has been compensated apriori by constant gain output feedback. MAC
software uses an impulse response description of the plant which has a
large number of terms and is not suitable for analytical studies.
Therefore in this chapter MAC has been described using a rational transfer

function model (difference equation model) of the plant which shows that
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one-step-ahead MAC can also be explained using the classical root locus
technique. 1In chapter 4 an appropriate framework is developed for robust-
ness analysis applying the perturbational argument to the Nyquist plot of
the steady state MAC loop transfer function. It has been possible to apply
the current robustness analysis technique to MAC under this framework. The
analysis gives a set of sufficient conditions, and the perturbed closed-
loop system remains stable if the additive or multiplicative modelling
error of the plant satisfies these conditions. These conditions define the
neighborhood of the identified model such that if the actual plant lies in
this neighborhood then the MAC control law designed on the basis of the
identified model also stabilizes the actual plant. Finally, in Chapter 5,
new techniques are developed for selecting optimum (possibly unique)
sampling rates, which play a crucial role in an adaptive control scheme.
The sampling time interval is selected on the basis of a minimax approach

and also satisfies the classical Nyquist sampling rate.

Finally, in Chapter 6, extensive simulation results have been presented

and in Chapter 7 conclusions and summary are provided.

The major conclusion of this report is that MAC is a very effective and
superior control technique for linear multivariable plants in a deter-
ministic environment as well as in an uncertain environment where the plant
is not exactly known. The adaptive MAC has also been found to be success-
ful where the plant is slowly time varying and/or non-linear. The robust-
ness properties of standard MAC and adaptive MAC have been verified by
extensive simulations of the missile attitude control problem. A complete
model of MAC for a multi-step-ahead optimization horizon and input-blocking
is not yet available, and without this the theoretical properties of a real
world MAC are not available in an analytical form. It is recommended that
future studies of MAC concentrate on (i) developing a complete model of the
MAC algorithm, (ii) comparison of MAC performances with other control design

techniques, and (iii) applying an adaptive MAC to a full scale flight

control problem.

1-3



Part 2
CHAPTER 2: SYSTEM IDENTIFICATION

2.1 Introduction
There has been considerable progress in system identification in recent

years. The method of maximum likelihood has been established as the most
accurate in theory, although the computational burden and numerical con-

ditioning are serious problems particularly for general applications where
the number of parameters can easily be dozens of even hundreds. A number
of simplified schemes have been considered such as recursi?e ML and instru-
mental variable methods. While these methods have reduced computational
requirements, there are difficulties with initialization and with accuracy
in small samples which are of particular interest in tracking dynamical
systems. Also these methods are not entirely reliable numerically since
they depend upon the ARMA parameterization which is known to have global
singularities (Gevers and Wertz, 1984). Also if the system order is over
estimated, then the computations become ill-conditioned. This considerably
complicates the task of determining the state order which is usually
unknown. A number of more ad hoc schemes are available, but these have

even less desirable statistical or computational properties.

Fortunately, in the last several years, a new method has been developed
using the approaches of canonical variate analysis (CVA) method of mathema-
tical statistics, stochastic realization concepts from system theory, and
information or entropy methods for the statistical choice of model order
and structure. This method has some highly desirable properties. The
order of the state is determined statistically. The computation is based
upon a singular value decomposition which is one of the most stable and
accurate numerical procedures available. The model fitting and state order
selection is always numerically well conditioned. The model fitting
accuracy has been found to be very close to maximum likelihood in moderate
and large samples sizes. The canonical variate analysis method for

system identification has been used as the primary procedure in this study



because it is the only method currently available with the above proper-
ties. Furthermore, it handles with no additional complication the dif-
ficult multi-input multi-output system identification problem. In the
development, the CVA method is discussed in Section 2.2, and the close
relationship of CVA to the instrumental variable and maximum likelihood
methods are discussed in Sections 2.3 and 2.4 respectively. The topics of
input design and sampling for identifiability are described in Section 2.5,
while the approaches of stochastic and dual control for input design are
discussed in Section 2.6. Finally the computational aspects of the CVA
method are discussed in Section 2.7. The detailed derivations supporting

these sections are contained the various appendices.

2,2 Canonical Variate Analysis of Time Series

The canonical variate analysis method of system identification was first
proposed by Akaike (1975). 1In this fundamental contribution, a stochastic
realization algorithm was proposed by using the statistical method of cano-
nical correlation analysis on the Hankel covariance matrix to choose a
basis for the state space and to statistically determine the rank of the
state space. This provided a fundamentally new and statistical approach to
the determination of a dynamical system on the basis of noisy and finite
length data. The statistical determination of state order was based upon
the Akaike information criterion (AIC). This initial work did not consider
the case of an input to the system, but considered only the case of an out-

put.

Later work (Larimore, 1983, in Appendix B) includes the more general
case of a multi-input multi-output system. The computational procedure of
this method is more efficient in requiring only one canonical correlation
analysis, and can also be used to solve the reduced order modeling problem
using a general quadratic weighting on the prediction error of the future.
Furthermore, a more exact computation of the AIC is used for order deter-

mination than that used in the original work of Akaike.

The approach to system identification using generalized canonical

variables is described in some detail in Larimore (1983, in Appendix B).



That approach involves consideration of the past p(t) and future f(t) of a

vector process at a time t defined as
pT(t)=(yT(t),uT(e),yT(e-1),uT(t-1),.. )T (2.1)

£fTCe)=(yT(e),yT(t-1),...)T (2.2)

where u(t) 1is the input and y(t) is the output of an unknown system with

state space structure of the form
x(t+1)=bx(t)+Gul(t)+w(t) (2.3)

y(t)=Hx(t)+Au(t)+Bw(t)+v(t) (2.4)

with v(t) a measurement noise and w(t) a process noise with respective
cross spectral density matrices R and Q. From the theory of Markov

processes and in particular the theory of stochastic realization, the
minimal state vector defines the information from the past relevant to

the future of the process and is called the predictor space (Akaike, 1974a).

The approach of canonical variables to system identification is to
determine the optimal set of linear combinations m(t) of the past p(t)

that best predict the future f(t) in terms of minimizing the prediction error

E|| £-£ || =E[(£-£)T Cov-l (£,£) (£-£)] (2.5)

where Cov(f,f) is the covariance matrix of the future f and ¥ is the best
prediction of f based upon the memory m(t) . This optimization problem
involves the optimal selection of the dimension of m(t) as well as

the optimal selection of the linear combinations'of the past.

The solution to this problem is derived in Larimore (1985a), included in

appendix A, in terms of a generalized singular value decomposition (SVD).
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This solution is precisely a generalization of the classical canonical
correlation analysis problem of mathematical statistics (Hotelling, 1936).
Modern computational procedures use a singular value decompositions (Golub,
1969) involving the covariance matricies of the past and future. The
generalized SVD determines transformations J and L and a diagonal matrix D

such that

JCov(p,f)L = Diag(y{>... >Y;> 0,...,0)=D (2.6)
JCov(p,p)J = I; LCov(f,f)L = I (2.7)

The transformations can be interpreted as defining a new set of coor-
dinates for the past and future in which the covariance are D, I and I as
given in the last equation. If in (2.5) and (2.7), the covariance matrix
Cov(f,f) is replaced by an arbitrary positive semidefinite weighting matrix
A, then the above generalized SVD still gives the solution to minimizing
the weighted prediction error (2.5) even though the covariance rela-

tionships no longer hold (Larimore, 1985a).

For a full order state model, the optimal memory or state x(t) is
related to the past p(t) in terms of the first k canonical variables as
m(t) = (Isub k, 0)Jp(t), i.e. the first k components of the canonical pre-
dictor variables Jp(t). A minimal order realization is obtained with this
choice of state. The computation of the state space matricies is given in
Larimore (1983) in Appendix B. The state space matricies and noise
covariance matricies are given by a linear regression as specified by the

state space equations (2.3) and (2.4).

In system identification, the covariance matrics are not known but are
estimated from the observations. The statistical determination of rank in
the canonical variate analysis is given approximatley using standard cano-
nical correlation analysis methods (Akaike, 1976). A more refined com-
pareson between the different order models is given by use of the Akaike
information criterion (AIC) which is asymptotically optimal in minimizing
entropy (Shibata, 1981). The use of entropy measures such as the AIC has a
fundamental justification in terms of the basic statistical principles of

sufficiency and repeated sampling (Larimore, 1983a).
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The minimal order realization is unique independent of the weighting
matrix A, but when a reduced memory is selected, the approximate system
does not in general minimize the prediction error for that order. This is
because the reduced rank canonical variables are not in general recursively
computable. However in the case of the statistical rank determination
problem, there is an insigificant difference between the state of the

realized system corresponding to the statistically optimum choice of order

and the full rank canonical variables.

2.3 Relationship with the Method of Instrumental Variables

The instrumental variables method gas a natural interpretation in terms
of the generalized canonical variate problem. In the instrumental
variables approach, the state equations (2.3) are considered as unobserved
structural relationships that are indirectly observed through the noisy
measurement equations (2.4). A vector m(t) of instrumental variables is
constructed which is hopefully close to the true state x(t). This is used
in place of the true state in solving the problem. This apparently works
well for an appropriate choice of the instrumental variables when the true
order of the system is known or well chosen. In other cases, this approach

may lead to inaccurate models.

A more general problem is the optimal choice of instrumental variables
for a specified order k of the model as posed by Rao(1973, 1979) (see also
Larimore, 1985a, in Appendix A). This is formulated as finding the optimal
choice of k linear combinations of the past p(t) that predict the future
f(t) as measure in terms of the squared error (f—f)T (f—E). This is preci-
sely the generalized canonical variate problem with weighting matrix A = I,
If k is chosen as full rank, then the memory and the state space realiza-
tion are independent of the weighting. However, for lower rank k, there
can be a considerable difference between the stéte space and reduced order
system (Larimore, 1983). The squared error of instrumental variables
relates to energy while the canonical correlation analysis relates to the
statistical significance of the problem. Thus the canonical correlation

analysis can be viewed as an optimal choice of the instrumental variables
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using the appropriate weighting of the prediction errors for the deter-

mination of the statistically significant number of states.

Time recursive methods using instrumental variables and approximate
maximum likelihood (IV-AML) are claimed to be an approximately efficient
parameter identification method for large samples as shown in simulation
examples (Young and Jakeman, 1979). This is shown by Monte Carlo simula-
tion and by estimating the parameter estimation error covariance matrix.
Below it is shown by Monte Carlo simulation that the canonical correlation
method also gives efficient identification of the system dynamics. This is

done by evaluating the spectral estimation error.

2.4 Maximum Likelihood Efficiency of CVA

The canonical variate system identification procedure has been found in
moderate sample sized to be close to the lower bound of maximum likelihood
estimation. There is no proof available for this, however simulations
have shown this to be the case. There is some theory to suggest why cano-

nical variate analysis is an efficient estimation procedure.

Conditional upon the choice of the state vector by the canonical
variate analysis, the computation of the state space matricies by
regression is a maximum likelihood procedure. The difficulty in proving
the asymptotic efficiency of CVA 1s that for correlated time series there
is no proof that CVA gives the choice of state that will result in maximum

likelihood estimates unconditionally.

The lower bound for estimating the power spectrum and transfer function
is given in Larimore (1985a, in Appendix A) as a function of frequency.
From extensive simulations, the canonical variate analysis gives an iden-
tified system within the lower bound error of the maximum likelihood proce-
dure at each frequency as shown in Larimore, Mahmood, and Mehra (1984, in

Appendix D).
2.5 Input Design and Sampling

The accuracy of the identified plant model and subsequent control tracking

error depends upon the sampling rate, sample size, the presence of implicit
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or explicit extra input signals, and the presence of disturbance or output
measurement noise. In fact the presence of a linear feedback control pro-
vides no information for identification of the plant (Ljung, Gustafson, and
Soderstrom, 1974), and some additional input signal is required for plant
identifiability. Recently, Anderson(1985) has shown that available adap-
tive control methods that do not have persistent excitation of the system
necessarily exhibit burst phenomena of short periods with large tracking

errors when the system parameters drift far from the true.

The requirement for additional information is easily seen since the
presence of a linear feedback could be present in the plant internally and
the actual input could be unconnected to the system and still give exactly
the same response. On the presumption of a strictly linear plant, a nonli-
near feedback can be used to provide identifiability. Also a switching
between different linear feedback systems can provide identifiability. A
better approach, however is to use an explicit additional input excitation.
Such an excitation is best chosen to be a broad band noise type of spectrum

which guarantees that it is persistently exciting.

In some applications, there are implicit excitations such as wind gust
turbulence on an aircraft which provide some information about the plant.
If the power spectrum of the turbulence is exactly known along with the
input coupling to the plant state, then this can provide amplitude information
about the transfer function from the gust input to the output. In particular,
the relationship between the observed output spectrum Sy(z) and the

assumed input noise spectrum Sp(z) and transfer function H(z) is
Sy(z)=H(z)Sn(z)H*(2) (2.8)

Unfortunately, in most cases this is not very helpful since the gust
spectrum is not accurately known and is highly variable with time. Also
the gust input coupling to the state will generally be different than the
control input. Furthermore, this provides only amplitude information, and

for control the transfer function phase can be crucial.



The best input excitation is one that is incorrelated with the system
state. The spectrum of the input excitation can be chosen on the basis of
the plant transfer function, and the disturbance and output measurement
noise spectra. The resulting plant identification error expected at each
frequency is a complicated function of the above power spectrum and
transfer functions as well as the parameterization of the model. A
detailed derivation and description of the transfer function and noise
spectrum estimation error variance at each frequency is given in Larimore
(1985b, in Appendix E). These expressions are complicated but can be used
to calculate the estimation error and produce simultaneous confidence

bounds on the estimated transfer and spectral functions.

An additional consideration in identification accuracy is the sample
rate and rate of reidentification of the system or equivalently the sample
size. The issue of sample rate for representing a continuous time system
is covered in Section 5. The primary consideration in choosing the sample
rate is to insure that the important frequency information is preserved and
that the higher frequencies of no interest do not degrade the estimation by
aliasing. For large sample, the sample size has a simple relationship to
the accuracy of the identified system which increases proportional to the
inverse square root of the sample size. For moderate sample sizes of
several hundred which is of primary interest, this relationship can be

expected to hold approximately.

As an example of the accuracy bounds that are obtainable from the
methods in Larimore (1985b, in Appendix E), consider the case identifying
the transfer function of an ARMA(4,3) model discussed in Larimore et al
(1984, in Appendix D) with a sample of 800 which is observed in closed loop
with a white noise input excitation and a white output measurement noise
with the signal to noise power ratio of the input to output equal to 0.10.
Then the transfer function of the true, identified, and simultaneous con-
fidence bands about the estimated are shown in figure 2.l1. The confidence
bands contain the true transfer function entirely within the bands across
the entire frequency range with probability 0.95. Note that the confidence
bands are quite tight in both phase and amplitude. For a lower sample
size, the confidence bands are wider by a factor of the square root of the

sample size.
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Figure 2.1 Power Spectral Density of ARMA(4,3) Process,
True (solid), Estimated (dashed), and Simultaneous
Confidence Band (dotted).
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2.6 Stochastic and Dual Control

In stochastic and dual control, the effect of the stochastic input on
both plant identification and control tracking error is taken into account.
This is also possible in the adaptive MAC framework. 1In this section, we
derive the tracking error as a function of the stochastic input excitation,
plant disturbance and measurement noise, and the MAC controller ﬁlant

mismodelling error.

The closed-loop transfer function from the plant input u(z) and the
composite plant disturbance and measurement noise n(z) as seen at the
plant output to the observed output y(z) 1is given in Section 4.2 and can

be expressed as

(z=1)H(z)u(z)+(z-1)n(z)
' (z=1-a)I+aR(z)

y(z)= (2.9)

where the relative error R(z) in estimating the plant transfer function is

defined as

R(z) = H-1(z)[H(z)-H(z)] (2.10)

Here H(z) is the true and ﬁ(z) is the identified plant open loop transfer
function. Now for a complex differentiable function w = f(x) of a
complex random variable x with mean M , the variance of the function is

derived from

£ (a) = £(u) + £ (u) (x - w) (2.11)

which holds to first order so



E| £ () - £) 2 = E] [EGO) - £(0][Ex) - £(0)]*

- va (U)IZE|X—U‘2 (2.12)

In the context of the identification and control involving different
segments of data, we have approximate independence between the processes
u(z), n(z) and the transfer function relative estimation error R(z).

Thus the tracking error due to the input and disturbance excitation as well

as the plant modelling error is

2
E| y(z) | 2 =[] 6(2)] =2 sy(2) +| 3(z)| Zsn(2)]L 1 +f(z__‘:):T|—2v3r [R(2)]]

(2.13)

where G(z) and J(z) are the closed loop transfer functions from
the input excitation and disturbance noise excitations respectively
to the plant output, and where Sp (z) is the spectrum of the plant
disturbance and measurement noise as seen at the plant output in open loop

operation.

It is seen that as the input excitation is increased, the control
tracking error increases for a fixed relative modeling error R(z) , but
the increased excitation decreases the relative error in identification.
The quantity Var [ R(z) ] , the relative squared error of identifying the
transfer function is derived in Larimore (1985b, Appendix E). This is a
function of the characteristics of the plant transfer function as well as
those of the process and disturbance noise spectrum characteristics. The
expressions for computing these quantities are straight forward but not

easily expressed analytically. Thus as in the stochastic dual control

literature, the optimal design is analytically intractable and requires a

numerical approach.



2.7 Computational Considerations

In this section the major computational steps in the algorithm are
described. The detailed computational equations are contained in the

appendices.

The computational steps in the identification algorithm are shown in
Figure 2.2. 1In the identification of the plant, first the covariance among
the past and future are computed. Second, a canonical correlation analysis
between the past and future is performed. From this, a comparison of the
various state space model orders is computed using the AIC criterion. On
the basis of this, the best state order is selected and the state space
matrices computed by regression. This state space model 1s then used in
the MAC controller. The detailed computations of these blocks are con-
tained in Larimore (1983, in Appendix B) except for the AIC computation.

An approximate AIC computation is given in Akaike (1976) as

AIC(k) =
3

n o x

logl~Y2) +2pi (2.14)
1

where pg is the number of parameters fitted in the model.

To evaluate the AIC, the number of free parameters adjusted in the
canonical variate procedure is required. For a state space model of state
order k of the form of Equations (2.3) and (2.4), there are a number of
implied constraints so that it is not correct to simply count the number of
elements of the various matricies. The number of functionally independent
free parameters py including the process and measurement noise covariance

is (Candy, Bullock, and Warren, 1979)
Pk =2kn+n(n+1)/2+km+nm (2.15)

where n and m are the vector dimensions of the number of outputs and

inputs respectively at a given time. If there is no instantaneous feedfor-



ward, then the term nm is deleted, while if there is no input the terms

km + nm are deleted.

The AIC expression (2.14) is only approximate, and the precise eva-

luation is given by computing the state space model 8y for competing order

models and doing an exact evaluation of the AIC by

AIC(k) = -2 log p(Y,8;)+2py (2.16)

The state order is chosen which minimized the AIC(k).

The major computations are the covariance and the singular value decom-
position. Once the plant state order is determined, the computation of the
state space matricies requires relatively little computation. For slow
identification rates, the computation becomes proportional to the sample
size times the the dimension of the past and future, while for fast iden-
tification rates, the computation is proportional to the cube of this

dimension.
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PART 2
CHAPTER 3

MULTIVARIABLE MAC IN A CLASSICAL CONTROL FRAMEWORK

3.1 Introduction

The theoretical properties of MAC have been studied in details in
the previous report (AFWAL-TR-80-3125) using the impulse response (IR)
model of the plant. The reason for using the IR description of the
plant is that the MAC software (known as IDCOM) uses this description
of the internal model in the computation of the control sequence. The
IR description of the plant is the basis of the MAC technique where a
quadratic optimization problem is formulated explicitly in terms of
the future control sequence. The IR description of the plant is
superb from the computational point of view, but it has a disadvantage
that this description is not parsimonious i.e. it contains too many
parameters and is therefore not suitable for analytical studies.

Since one of the objective of this project is to investigate analyti-
caly various aspects of MAC, the MAC technique is described in this
chapter in terms of a difference equation (DE) model of the plant.

The DE description usually contains far fewer number of parameters

than an IR description and is therefore suitable for analytical studies

if a low order plant 1is selected in the analysis.

There is no mathematical model for a generalized MAC with
multistep ahead optimization horizon, input blocking, input
constraints etc. Therefore it is not possible to investigate analyti-
cally the properties of a generalized MAC control law. The MAC stra-
tegy generates an optimal control sequence by on-line optimization of
a cost functional and the first element of this sequence is applied to
the actual system. It has been shown in an earlier report that if the
plant is minimum phase and the cost functional is optimized over one
step ahead, then the MAC control law can be Interpreted in a classical

control framework. In this chapter we extend this interpretation to



multivariable systems and indicated how the robustness of MAC can be

assessed in this framework.

Section 3.2 extend the earlier descriptions of MAC to multi-input
multi-output (MIMO) systems which shows that MIMO MAC can also be
interpreted in a standard unity feedback configuration. With a slight
modification of this configuration it 1is shown that MAC can be
explained in a multivariable root-locus framework. The root-locus
technique gives the locations of the closed-loop poles as the output-
feedback gain is changed from zero to infinity. Usually a rational
transfer function or diffefence-equation (DE) model of the plant is
used in this technique. Therefore in order to cast MAC technique in a
root-locus framework, MAC has been described in section 3.3 using the
DE model of the plant. Using this analysis, the root-locus interpre-
tation of MAC is presented in section 3.4. Finally the MAC for a
lightly damped system is discussed in section 3.5 where it has been
shown qualitatively that one should not try to use a high gain output
feedback to introduce sufficient damping in a lightly damped systenm,
otherwise a high sampling rate may have to be selected. Conclusions

are discussed in section 3.6.

3.2 What is MAC? - An Overview

MAC control strategy has been described and analyzed in earlier
reports and publications {1,4,5,6]. We include here a simple descrip-
tion of MAC for the sake of completeness of this report. The

following is an extended version of the earlier descriptions:for MIMO

plants.

The MAC methodology generates a control sequence by on-line opti-
mization of a cost functional, and the algorithm is suitable for
implementation on microprocessors. One of the attractive features of
MAC 1is the clear and transparent relationship between system perfor-
mance and various design parameters embedded in the design procedure.
There are five basic elements in MAC (we assume in the following that
the input sequence u(n) is m—-dimensional and output sequence y(n) is

p—dimensional):



(1) An actual stable plant, possibly not known exactly, with a
pulse response sequence {Hn}, n=1,2,...N where each H, is pxm dimen-
sional matrix (we assume for simplicity that the plant has no time
delay and is purely dynamic i.e. it has no feedthrough term). Then

the input sequence u(n) and the output sequence y(n) are related by

y(n)
or, Y(z)

H; u(n-1) + Hy u(n-2) +...+ Hy u(n-N) (3.1a)
H(z)U(z) (3.1b)
where U(z), Y(z) and H(z) are z-transforms of u(n), y(n) and {Hn}

1]

respectively.

Here

H(z) = le'l + sz'z +aoeet HNZ'N = Hp(z)z'N

where Hp(z) is a pxm dimensional polynomial matrix in z and is
given by
Hp(z) = leN'I + szN‘z +... + HyN (3.1¢)

This model is known as an "all-zero"” model and Hp(z) determines zeros

of the plant. The locations of non-minimum phase zeros impose
restrictions on achievable performance of MAC. We must remind the

reader that the physical interpretation of zero in the impulse

response model of the plant is different from that of a transmission zero
in a rational transfer function model or equivalently difference equation
(DE) model) of the plant. 1In the same way the physical interpretation of
poles as natural modes of a plant are lost in this description. However

this point will be elaborated further in the next section.

(11) An internal model of the plant having ;he same input-output
dimension pxm as that of the actual plant and the pulse response
sequence {Hn}, n=1,2,...8. The input u(n) is the same as that to the
actual plant and therefore the output y(n) of the model is given by

y(n)

or ¥(z)

A} u(n-1) + 02 uw(n-2) +...+ fig u(n-N) (3.2a)

H(z) U(z) (3.2b)

where, as before
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H(z) = ﬁp(z) z~N (3.2¢)

and ﬁp(z) is a pxm dimensional polynomial matrix. {ﬁn} is generally
different from {Hn}.

(ii1) A p-dimensional reference trajectory y.(n), preferably
smooth, initialized on the current output of the actual plant y(n) that
leads y(n) to a possibly time varying p—dimensional set point c. If each
of the reference trajectories y,i(n) has a first order dynamics with time
constant ay leading to set point cy, i=1,2,...p and if the trajectories do

not interact with each other then yr(n) evolves as

Yr(ntl) = Ay yr(n) + (I-Ay)c, yr(n) = y(n) (3.3a)
01‘, ZYr(Z) . Aa Yr(z) + (I"Aa) C(Z) (3-3b)
where Ay = diag (ay)

(iv) A closed loop prediction scheme for predicting the future

output of the plant according to the scheme

]

yp(a+l) = y(n+l) + yp(n) = y(n) (3.4a)
or, Yp(z) = ¥(z) + 271 [Y(z) - ¥(2)] (3.4b)
Here yp(n) is p—dimensional.
(v) A quadratic cost functional J based on the error between

yp(n) and yr(n) over a finite horizon T, (here Tp is an integer):

n

[
]
il o~

[eT(n+k) W(n+k) e(n+k) + (3.5a)

k=1

uT(n+k-1) R(n+k-1) u(n+1-1)]
Th
= TrZ [W(n+k) e(n+k) eT(n+k) + (3.5b)
k=1
R(n+k-1) u(n+k-1) uT(n+k-1)]

where W(.) and R(.) are positive semi definite time varying weights and

e(n+k) = yp(n+k) - yr(n+k). In most of MAC applications R(.) is set to

be zero.
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Given (i)-(v), MAC finds as optimal control sequence {u*(n+i—1),
i=1,...Tn} by minimizing J over the admissible input sequence
{u(n+i—1)€Q(i), i=1...Tn}. Once the optimal control sequence is com-
puted, the first element of the sequence is applied to the actual

plant and the process repeats all over again.

In general, there is no analytic solution for the control
sequence {u*(n)} - it 1is computed at each step using an algorithm
known as IDCOM. In its greatest generality, MAC cannot be put into a
classical control framework. However under the following simplifying
assumptions MAC is equivalent to an inverse-control law and can be

modelled as a feedback configuration.

(i) The actual plant H(z) is minimum phase;
(i1) The plant model H(z) is minimum phase;
(iii) There are no input constraints, i.e. (i) = RM for all i;
(iv) Tp=1 i.e. the optimization is carried over one future step
ahead: wunder this condition MAC is a one—step ahead pre-

dictive controller.

Under these simplifying assumptions, it is sufficient to select

u*(n) to satisfy

yp(ntl) = yr(n+l) for all n > 0 (3.6)

for a minimum of the cost function J. The assumptions (i)-(iii)
ensure the existence of an optimum control u*(n) that satisifies
(3.6) - the resulting optimal cost J* is zero in this case. However

U*(z) is then implicitly generated by Yp(z) = Yy(z) so that

U*(z)
Y(z)

]

[((z-1)H(z) + (I-Aq)H(Z)]-] [I-A4]C(2) " (3.7a)
H(z) [(z-1)A(z) + (I-Ag)H(z)]-1 [1I-Ag]c(z) (3.7b)

Equations (3.7a) and (3.7b) relate the setpoint C(z) with the optimal
input sequence U*(z) and output sequence Y(z). It is easy to see that
this simplified form of MAC is equivalent to the following MIMO unity

feedback configuration (we have henceforth dropped the * superscript).
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Figure 3.1 MIMO MAC in a classical framework

To see that the setup in Figure 3.1 indeed represents equation (3.7),

note that at point 1 we have,

1 g1

U(z)- z—1

(2)(I-Ay)E(z

I

i

z~-1

)

LA (0 (1-0g) [6(2) - B(2)UC2)]

Multiplying both sides of this equation by (2-1)f(z) and rearranging

we have,

1(z=DH(z) + (I-Aq)H(2)] U(z) = (I-Ag)C(2)

from which (3.7a) and (3.7b) follow.

be thought of as a dynamic controller of the classical type.

The block within the dashed line can

The loop

transfer function when the loop is broken at the plant input (point 1)

is given by

L(z) = ozl 1(2)(1-Aa)H(2)

(3.8)

and determines the robustness of the feedback configuration at this
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point. When we have perfect identification i.e. H(z) = fi(z), then

points 2 and 3 are the same in Figure 3.1 and

B(2) = ¥(2) = —Lr (I-Ag)E(z)
or,  U(2) = op (I-Ag) [C(2)-0(2)]
or, z0(z) = Ay U(z) + (I-Aa)C(z) (3.9)

Equation (3.9) is equivalent to

u(n+l) = Ay G(n) + (I-Ag)c(n), u(n) = y(n)
which shows that u(n) is the reference trajectory sequence yy(n) as
shown in equation (3.3a). This means that when the plant model is

known exactly, the control sequence U(z) is generated as

U(z) = B H2)0(2) = B 1(2)Y(2) (3.10a)
Therefore the output of the actual plant is
Y(z) = H(z)U(z) = Yp(2) (3.10b)

which shows that, in steady state, the plant output y(n) is identical

to the reference trajectory yy(n) — perfect tracking has been

achieved. Equation (3.10a) clearly shows the need for minimum phaseness of
H(z). This analysis has revealed another interesting property of MAC.
Exact tracking could as well be achieved by inverting the plant to

generate the sequence u{n) in an open-loop configuration, but in MAC it
does so in a closed-loop configuration and therefore the additional .
benefits of a feed-back configuration such as disturbance rejection,

sensitivity reduction, etc are also obtained at the same time while

achieving exact tracking.

Further insight is available if we interpret the above equations
for SISO plants. The loop variables for SISO plants are denoted by
corresponding small letters, e.g. h(z) is a transfer function for a
SISO plant and H(z) is that for a MIMO plant. Also for a SISO loop Ay = a,
and the Figure 3.1 takes the following simple form:

3~7



//————-compensator

, . |
c(2) e(z) _zl.:-% IR i G L))

plant
h(z)

- y(2)

o | ' |

Figure 3.2 SISO MAC as a classical controller

Note that in this figure (l-a) can be treated as a gain and the usual

classical root—-locus technique can be applied to analyze the behavior

of the closed loop poles as a changes from O to 1.

But since the

impulse response description of a plant has too many poles and zeros,

the root-locus technique will not be useful and this is why we intend

to describe MAC in terms of a difference~equation (DE) model of the

plant in the next section.

3.3 Lightly damped system in terms of difference equation (DE) and

impulse response (IR) model

Consider a generic lumped parameter linear time-invariant (LTI)

system

x(t)
y(t)

Ax(t) + Bu(t), x(0) = xq
cx(t)

(3.11a)
(3.11b)

where x(t), u(t) and y(t) are n-, m— and p-dimensional vectors repre-

senting the states, inputs and outputs respectively and A, B, C have

appropriate dimensions. The corresponding frequency domain descrip-

tion is

X(s) = ¢(s)BU(s) and Y(s) = C®(s)BU(s) = Ho(s)U(s) (3.12)
where ¢(s) = (sI-A)~-1l and He(s) is the impulse response of the system.
If A\{ = aj * jwy is the i-th eigenvalue of A, then the system is
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asymptotically stable if oy < O for each 1 and in this case each ele-
ment of H.(s) is analytic in the closed right half plane. On the
otherhand, the system is unstable if oy » 0. If H.(t) is the inverse
Laplace Transform of H.(s), then for asymptotically stable systems
each element of Hc(t) approaches zero as t+®, whereas for an unstable
system some element diverges. If the impulse response H.(t) of a
system takes a long time to settle down to zero, the system is
generally known as a lightly damped system. The damping ratio asso-

ciated with the i-th complex pole-pair A; = o; * jwj is defined as

£y = o |

L]
e G

so that 0 < & < 1. The system is lightly damped if £i is small which
results when !ail is small, i.e. the system is lightly damped when at
least one of the poles lies near jw-axis. These systems show unde-
sirable behavior of "ringing" and excessive "overshoot" in open-loop
transient response. The impulse response of these systems decays to
zero very slowly, and therefore a large amount of data must be stored
in the computer for representing the impulse response sequence model

of the plant which directly affects MAC computation.

Since MAC is a digitally implemented control algorithm, we must
find a sampled-data version of (3.11). There are éeveral ways of’
implementing digital control schemes - one of these is the sample and
zero-order hold mechanism which is equivalent to discretizing (3.11)
by using an exponential transform. In this method the input is
sampled every T seconds and held constant, i.e. u(t) = u(n), nT € At <
(n+1)T between the two sampling instant. In this case the z-domain

and s-domain descriptions are related through

z = eST (3.14)
and the corresponding discrete-time system in state-space description
is

x(n+l) = Fx(n) + Gu(n), x(0Q) = XQ (3.15a)
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y(n) = Cx(n) (3.15b)
where F = exp (AT), G = (F—I)A—IB, provided that Al exists, otherwise
T

G = | exp (Aw)dwB (3.15¢)
0

If the system (3.15) is asymptotically stable, the zero-state solu-
tion of (3.15) is given by

n-1

y(n) = ) Hp-y U(i), Hy = CFA~l G, n > 1 (3.16a)

i=0
which is the familiar discrete-time convolution. Notice that if T is
very small, to the extent that max lAijTl K1, where Ajj is the

i]

(i,j)-th element of A, then

Hy = C exp(A(n-1)T)BT (3.16b)

which also results if the integral in (3.15c) is approximated by the lower
Riemann sum. Taking the z-transform of (3.15a) - (3.15b) we get the

frequency domain description,

Y(z) = Hq(z)U(z), (3.17a)
where

Hq(z) = C(zI-F)~lg (3:17b)
The power series expansion of H(z) gives

Hg(z) = C(1/z + F/22 +...) G = ) Hpz™D (3.18a)
n

with the region of convergence (ROC) |z| » max |A{(F)|. We can

i
recover {Hn} from H4(z) using a Cauchy Integral as follows

Hy = _1 Ha(z)z™"1 4, = cpn-1 ¢ (3.18b)

which is the same in (3.16a).

Ideally an IR sequence {Hn} computed in the above manner has an

infinite number of terms. Since MAC uses in its internal algorithm a



finite impulse response sequence {Hn}, the matrix valued sequence {Hn}
must be a fast converging one. The poles in the continuous time
system Aj and those of the sampled-data system z; are related by zj =
exp (A{). Therefore the discrete time system is unstable if |zj| > 1
for any i and is a lightly damped system if |Zi|<1 but close to unit
circle i.e. |zj|=l. In the earlier case {Hn} diverges and in the
later case {Hn} has a very large number of terms before it converges
to zero. If the system is asymptotically stable {Hn} converges, and
given € > 0 we can always find an integer N(e) such that IHy I < ¢
for all n > N and we can truncate the impulse response sequence to any
desired degree of accuracy. The finite impulse response description
is also known to practicing engineers as a moving average (MA) or all

zero model of the plant.

Now suppose that an impulse response has been truncated to obtain

a finite sequence {Hn} {Hl,Hz...HN}. MAC uses this description of
the plant model as shown in section 3.2 for a lightly damped system.

This sequence is relatively long. The z-transform H(z) is given by

H(z) = ) Hy z70- (3.19)

Comparing with (3.18a) we find that
Hq(z) = H(z), |z]| > 1.0. (3.20)

Here H4(z) will be called a difference equation (DE) description and
H(z) an impulse response description. Although Hq(z) and H(z) are
approximately equal for all z within the region.of convergence, the
physical interpretation associated with the two description are
different. To see the difference clearly, consider a SISO plant in
which case H4(z) and H(z) are complex scalars and represented respec-—

tively by Hq(z) and h(z). Then

b(z)
a(z)

hq(z) =

where a(z) and b(z) are polynomials in z, b(z) having a lower degree

than a(z) for a causal system. The zeros of the denominator a(z) are



the 'poles' of the system hy(z) and are associated with the natural
modes of the system. The impulse response (IR) of the system is com—
posed of these modes. The zeros of b(z) are transmission zeros of the
plant which have the physical interpretation that if z; is a zero of
the plant and if zy is also a mode of the input to the plant, then
this mode of the input is blocked by the plant and does not appear at
the output; On the otherhand the IR description h(z) can also be

written as

- mGz)
NS e

where n(z) and d(z) are polynomials in z. Here d(z) = zN, and n(z) is
a polynomial of degree N. This shows that h(z) has N poles at the
origin and N zeros - but these poles and zeros do not have any physi-

cal significance as in the rational transfer function model hgq(z).

Since we want to explain the behavior of MAC in terms of standard
pole-zero configuration, our immediate objective is to describe MAC

using a difference egnation model.

3.4 MAC with Difference-Equation Model: a Root Locus Approach

Consider again a pxm dimensional MIMO plant Hg(z) with input U(z)
and'output Y(z). Then parallel to the description of MAC in section

3.2, we can describe the various elements of MAC as follows:

(i) The actual plant described by
Y(z) = Hg(z) U(z) (3.21)
(i1) The internal model of the plant, also described by a
rational transfer function description and given by
¥(z) = Hy(z) U(z) ©322)
(1i1) A p-dimensional reference trajectory y.(n) which evolves as

ype(n+l) = Ay yp(n) + (I-Ay)c, ye(n) = y(n)
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or, zY, (z) = Ay ¥(2) + (I-Ay)C(2) (3.23)
(iv) a closed-loop prediction scheme yp(n) for predicting the
future output of the plant, according to the scheme
ypln+l) = y(n+l) + yp(n) - y(n)
or, Yp(z) = ¥z) + 271 [¥(z) - ¥(2)] (3.24)

(v) and a cost functional as in (3.5)

If we compare the expressions in (3.21)-(3.24) with those in
(32.1b)~(3.4b), we see that these expressions are the same mathemati-
cally although in (3.1b)-(3.4b) we have used the IR description of the
plant whereas in (3.21)-(3.24) we have used the DE (rational transfer
function) model of the plant. This comparison.reveals the important
fact that the basic principle of MAC does not depend upon the model
description of the plant i.e., whether the model is described using a
difference equation or impulse response. Therefore, for a one-step
ahead prediction horizon, the interpretation of MAC as a feedback con-
figuration (as shown in Figure 3.1) is also épplicable in this case.
The important difference in this case is that if we use the DE model
of the plant, we can associate the traditional pole-zero interpreta-
tion to MAC. 1Indeed if we choose aj = a making the dynamics of all
the reference trajectories the same, then we have Ay = ol and the
Figure 3.1 then is a familiar unit feedback MIMO configuration with

(1-a) playing the role of a varying gain. There are two advantages of

this configuration:

(i) the closed loop pole position can be ascertained apriori

using the multivariable root-locus approach;

(ii) robustness of the closed loop can be examined in terms of
the recently developed criteria employing the loop transfer
function and return difference function at appropriate

points in the loop.



3.4.1 Root Locus Analysis of MAC

Consider, for simplicity, a SISO plant with an actual transfer
function h(z) and suppose that its model is given by h(z). We assume
that both the plant and this internal model is described by difference
equation. Note that we have dropped the subscript d here from the

previous section for notational convenience.

It is not obvious how y(n) will be affected as a changes, but the
effect can be analyzed as if we are finding the root locus of the
closed~loop configuration in Figure 3.2. We can consider both a and
h(z) as parameters that can be varied to regulate the closed-loop

behavior of the system. Indeed if,

n(z) = h(z) (3.25)
d(z) (z-1)h(z)

wher n(z), d(z) are polynomials in z,
h(z)
h(z)

plant transfer function in DE description

model of the plant in DE description

the closed loop poles will trace a continuous path from the open—-loop
poles (i.e. poles of the plant, the zeros of the model and the zero at
z=1) to the open-loop zeros (i.e. poles of h(z) and zeros of h(z)) as

the gain varies from O to infinity. But here the gain (l-a) varies from 0
to 1 as a varies form 0 to 1. So the closed loop poles trace a path

from the open loop poles to somewhere towards the open loop zeros. To

put the problem into a standard framework of root locus, we introduce

a one-to-one invertible mapping:

a ' (3.26)

P=1s

so that as a changes from 0 to 1, B changes from 0 to infinity.

n,(z) - np(z)
Let h(z) = _h and h(z) = zh
) = gyezy N = gy
From Figure 3.2 it can be shown that the input-output of the closed-

loop is given by



hep(2) =§%%% y(z) = he1(2z) c(z)

where for simplicity we have written

n = np(z) dp(z), and d = (z-1) np(z) dp(z). (3.27)

For convenience henceforth we shall suppress the argument z. Using

_ 8B
the transformation a = 178 gives

where

- n (3.28)
ho(z) = doq * Prgq
deq = nhah + (Z"l)ﬁhdh

fl

Neq d = (Z—l)ﬂhdh

The closed loop characteristic polynomial is

9c1(z) = deq(z) + Bngq(2) (3.28a)

It is obvious that

(1)

(ii)

as B+*0 i.e. a*0 (fast reference trajectory), the closed
loop poles approach the zeros of deq(z) = npdy + (z-1)npdp,

Depending on the characteristics of this polynomial the

closed loop response may be oscillatory, damped and/or

unstable,

as B+ infinity i.e. o>l (slow reference trajectory), the
closed loop poles approach the zeros of neq(z), i.e. one
pole approaches +1 and the remaining poles approach the
poles of the plant and the transmission zeros of the model.
The pole at z=1 will contribute to the sluggish response of

the closed loop system.

So the problem of obtaining a specific response from MAC can be

translated into the design of the polynomials neq(z) and deq(z). If

the open loop poles are not located in the appropriate region of the

z-plane, we can choose the model of the plant, i.e. np and dy, such



that the zeros of the polynomial deq(z) are placed accordingly and the
specific response can be obtained asymptotically as B+0. Note that
the stability of the plant or the model is not required when analyzing
MAC in a root locus framework. The problem is algebraic in nature,

i.e., is a problem of synthesizing a specific polynomial deq(z).
3.4.2 Examples

In this section we will demonstrate the above analysis through a
simple example.
Example 3.1

Consider a scalar dynamic system

x(t)

ax(t) + bu(t), x(0) = XQ (3.29a)

y(t) cx(t). (3.29b)

Suppose the input and ouput are sampled every T seconds. Then the
corresponding discrete-time (scalar dynamic system, as obtained by
using the exponential transform (3.14), is

x(n+l) = £x(n) + gu(n) (3.30a)

y(n) = cx(n), (3.30b)

where

f = eal and g = ng:l . Now suppose that the model of
the plant is

x(n+1) = ¥x(n) + gu(n) (3.31a)

y(n) = cx(n) (3.31b)

For simplicity, let us chose c¢=1/g. Then using the notation of the

previous section we have

1 np(z) a 1 np(z)
h =T_Ff = > = = = .
(2) = 7F (o) (z) = 3°F T



Therefore, using the notation in (3.28),
deq = Dhdy + (z=1)npdp = z-F + (2-1)(z-f),

neq = (z—l)dhﬁh = (Z"'l)(Z—f),

and the closed loop characteristics polynomial is

9c1(z) = daq(z) + Bngq(2z)

(z-f) + (z-1)(z-£) + B(z-1)(z-f).

As B0 (i.e. o*0: a fast trajectory), the closed loop characteristic

polynominal asymptotically approaches

$o1(z)> z2-fz+(£-1)

and the closed loop poles approach

zy,2 * f= (3.32)

YE2_4(£-F).
pA

Suppose f=0°9 and the model is perfect, i.e, f=0+9 too. Then
since the plant is minimum phase, the closed-loop transfer function

for all values of B is, from (3.27),

he1(z) = 1= (3.33)

Z-

Q

i.e., the perfect tracking has been achieved. This is shown in Figure

3.3, for a=0-01.

When £ = 0¢1, and equation (3.32) indicates that the closed loop
poles approach 0'45ij0'77.. The closed loop response therefore is
oscillatory which is demonstrated in Figure 3.4 for a=0°01. If
f=-0+1, the closed loop poles approach 0°+45%j0+*90 - the closed loop
response becomes further oscillatory, which is shown in Figure 3.5 for
the same value of a. Similary a choice of f=-0.4 places the closed

loop poles at 0+45%j1+047 and the simulation has indeed shown the
instability.
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It may also be noted that as B*®, one of the closed loop poles
approaches +1.0 which implies the loss of asymptotic stability or a
very sluggish response therefore highly undesirable to operate MAC
with a large B8 (or, o nearly equal to 1). But the problem with
smaller B8 is that, along with a fast response, the bandwidth of the
closed loop system is increased and the possibility of excitation of
the unmodelled dynamics is also increased. A compromise, therefore,

is needed while choosing the value of B.

To see how the root-locus interpretation helps in determining MAC
behavior, let us consider the case of a perfect model and assume that

the system is minimum phase. Then from equation (3.2),

(z) = 1
(z) z—1

=’

o

and
np = ﬁh, dp = Hh, Seq = znpdy, Neq = (Z—l)nhdh

¢u(z) = Zﬂhdh + B(z-1) npdp

Clearly then as B8>0, (or a> 0), one closed loop pole approaches the
origin z=0 and the others approach the zeros of npdp. The later
poles, however, get cancelled eventually (indicating that these mode
become asymptotically either unobservable or uncontrollable) and the
pole at z=0 becomes dominant, and a fast response is available from
MAC. On the other hand as B+« (or, a*l), the dominant pole is the one
as z=l and a sluggish response is obtained. All of these analyses

agree with the observed behavior of MAC in everyday use.

3.5 Apriori fixed Gain Compensation of a Lightly Damped System

or Unstable System.

A lightly damped system has a long impulse response (IR) sequence
and therefore imposes burden on the computer storage. - If the impulse
response is sampled according to Nyquist sampling rate, an impulse
response sequence of 60-150 elements are very common for a lightly
damped system, particularly if the system has a frequency mode. It

has been proposed that some additional damping may be introduced into



the system by applying output feedback and then MAC be applied to the
overall system. It 1s the purpose of this section to investigate if
apriori fixed gain output feedback can be useful for MAC application.
Since there is no mathematical model available for a standard regular
MAC with multistep prediction horizon, input blocking etc, we can not
investigate analytically the effect of apriori output feedback on MAC.
So the following analysis is based on the available properties of out-
put feedback and our analysis is more qualitative then quantitative.
We shall primarily emphasize on the issue that whether we can make the
length of impulse response shorter using apriori fixed gain analog

compensation of the plant.

3.5.1 Qualitative Analysis

In Section 3.4, we have characterised a lightly damped system by
its pole positidns. Roughly speaking, a continuous time dynamic
system is lightly damped if any of its poles lies near the jw—axis in
the s-plane. Similarly, in discrete time domain, a system is lightly
damped if any pole lies near the unit circle on the z-plane.
Physically it means tha the impulse response (IR) or the IR sequence
is relatively longer. This fact plays an important role in the MAC
technique, because the latter uses the IR descritpion of the plant. A
lightly damped system has a relatively longer IR sequence and there-
fore uses more computer storage compared with a damped system. Since
an unstable system has an infinitely long IR sequence, .the current MAC

implementation using the IR can not handle such systems.

If a system is open-loop unstable or lightly damped, it can be
made stable or damping can be added apriori using constant or dynamic
output feedback. The compensated plant with possibly a shorter IR
sequence can be thought of as a new plant and MAC can then be applied
to it for improved performance - the overall configuration is hybrid

in nature. For simplicity, consider again a SISO plant

x(t) = Ax(t) + bu(t), =x(0)=xq (3.34a)

(€S
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y(t) = cx(t), (3.34b)

where x(t) 1s n-dimensional and A,b,c have appropriate dimensions. If
an output feedback control law is chosen of the form
u(t) = -ky(t) + v(t), (3.35)

the closed loop system is given by

;(t)

(A=-bke)x(t) + bv(t), x(0)=xq (3.36a)

y(t) = ex(t), (3.36b)

and the closed-loop poles are given by the eignevalues of A-bkc. The

hybrid system as a result of application of MAC is shown in Figure
3.6.

The speed of response and bandwidth of the system can be increased
using output. feedback. This makes it necessary to use a higher
sampling rate for the compensated plant. This point needs some clari-
fication. Although the Nyquist criteria holds for bandlimited
signals, engineers have selected sampling rates according to this cri-
teria, whether the signal is bandlimited or not, i.e., a rate of at
least éwice the highest frequency in the oscillatory modes in a plant.
Similarly in a system without any oscillatory modes, the sampling rate
is selected at a rate determined by the "Bandwidth (BW)" of the
system. We may recall that the BW of such systems are defined as the
frequency where the magnitude of the loop-transfer function drops off
to half of its de value. In this section we will see how apriori out-
put feedback affects MAC performance via the sampling rate selection.

The effect on robustness will be discussed in the next chapter.

Case 1. When the Plant is Open-Loop Unstable:

If the states are available for feedback, then it is well known
that under the assumption of controllability, the closed loop poles
can be placed arbitrarily in the complex plane using constant-gain

state-feedback. But in the case of constant—gain output feedback,
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this freedom is lost and the poles are moved accordingly to the rules
for root locus. But, as we know, it may not be possible to stabilize
an unstable plant by constant-gain output-feedback - the interested
reader may consult Youla's elegant work [Youla, et. al, 1974] for
details. 1In such cases, the plant must be stabilized first by using
dynamic output feedback before MAC can be used on the overall plant
hg(s) in Figure 3.6. However once a stable hg(s) is obtained MAC
treats it like any other stable plant.

Case 2. When the Plant is Lightly Damped:

If the open-loop plant has all the transmission zeros in the open
left half of the s-plane (OLHP), the gain k can be made high and
arbitrary fast response can be obtained without destabilizing the
overall plant hg(s). As k*=, some of the closed loop poles approach
the finite transmission zeros of the plant and the remaining ones
approach infinity. The limiting dynamical behavior of h¢(s) is deter-
mined by the location of the transmission zeros. If the system has
closed right half plane (CRHP) (in the s—-plane) zeros, k can not be

increased arbitrarily.

The BW of the overall system hg¢(s) in Figure 3.6 is determined by
the fastest dynamics which in turn are determined by the poles that
move toward infinity. Therefore as k+=, the plant output must be
sampled faster and faster to capture the dynamical characteristics of
the overall plant hf(s). The situation is even worse if the
transmission zeros are stable and lie near the jw-axis. In this case,
as k»», some of the closed-loop poles arrive at these zeros and there-
fore hg(s) is lightly damped again. The IR of this system is'composed
of slow dynamics as well as of fast dynamics - the modes corresponding
to slow dynamics make the impulse response of hg(s) long and the modes
corresponding to fast dynamics dictate a fast sampling rate. The net
result is that the IR sequence of the discretized system has possibly
many more terms then the uncompensated plant. Therefore, there is a
trade-off between the damping added to the system using output feed-

back and the resulting sampling rate.
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Although the length of the impulse response gets smaller as a
result of damping added, we may keep the sampling rate unchanged so
that the number of terms in the IR sequence is smaller. This
obviously deteriorates MAC performance. We illustrate these ideas

with two simple examples.
3.5.2 Examples
Example 1.

Consider again the scalar system of the last section;

x(t)

—ax(t) + bu(t), x(0)=xg (3.37a)

il

y(t) cx(t), (3.37b)
where a,b,c are scalars. Let us assume c=1, then the open-loop
transfer function of the plant is h.(s)=b/(s+a). Although there is no
oscillatory mode in this system, we will call it a lightly damped
system if a=0. Using an output feedback control law u=-ky+v, the

closed loop system is

i(t)

H

-(a + bk)x(t) + bv(t), x(0)=xqg (3.38a)

y(t) x(t) (3.38b)

and the closed-loop transfer function hg(s)=b/(s + a + bk). The power

spectrum is

Ihg(jw)[2 = b (3.39)
w2 + (a+k)?2

Clearly if the BW wp of this system is defined as the frequency wp at
which |he(jwg)| = p |hg(j0) |, where p is a constant, then wy is given

by

/(1/p2—l) (at+k) = 2wfg. (3.40a)

wO
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The sampling time interval T is given by

T=_1 = L . (3.40b)
2,

(1/p2-1) (a+k)

The last equation shows that as k is increased to add more damping,
(or, strictly speaking, to get a shorter duration IR sequence) the BW
wg is also increased and so does the sampling rate. The discretized

system corresponding to (3.38) is obtained via an exponential trans-

form as
x(n+l) = fx(n) + gu(n) (3.41a)
y(n) = x(n) (3.41b)
where
£ = e (atk)T 4pq ¢ = i%é?ET b (3.41¢)

We shall examine how the MAC performance varies for a given T as k
changes. Suppose a=1 and b=10 and consider the case for k=0; then for
a choice of T=0.1 Sec, f=0.90484 and g=0.95163. MAC is applied to
this system with a set point of 15.0, o=0°*l. The result is shown in
Figuree 3.7. Next k=10 is selected. For the same value of T, the
discretized system parameters are f=0¢332871 and g=0-60648. The
result of applying MAC to this system is shown in Figure 3.8. Notice
the difference between the control efforts in .the two cases. In the
later case, the same sampling interval of T=0°l1 secs has captured less
dynamical characteristics than the earlier case and the controller has

spent more control effort in the stady-state tracking.

Example 2.

Next consider the decoupled longitudinal dynamics of an air-to-air
missile (cf. AFWAL-TR-80-3125) [1].

. ~-1.4868  1.00 0\ u(t)
x(t) = x(t) +
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Figure 3.7 MAC applied to a lightly damped system, T= 0.1 secs.
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(1 0)x(t)

y(t)

where x(t)'= xp(t)
Xz(t)
x1(t) = angle of attack in radian
x9(t) = perturbed pitch rate (rad/sec)
u(t) = elevator angle (rad)

The eigenvalues are at s) p = -0.7434%j12.22

The damping ratio & = 1.4868 = 0.061

"11.48682 - 4 149.93

The system is lightly damped with a natural frequency of 1.95 Hz.
Therefore, the output must be sampled at least every l/4 sec. Using

negative feedback of the output, the closed loop system is given by,

-1.4868 1.00 0 vit)

x(t) = x(t) +
-149.93 + 281.11k 0 -281.11
y(e) = (1 0) x (t)

The damping ratio of the closed loop system can be found as

£ = 1.4868
4

|(1.4868)2 - 4(149.93 + 281.11k) |
Clearly for k > 0, €5 £ & As k increases, the system approaches
being undamped and accordingly the sampling rate decreases up to about
k=0*531 when the system becomes critically damped. As k increases
further both poles are real — one mode becomes fast and the other mode
slow thus making the IR even longer until k=0°+533 when the system is
marginally stable.

As in the last example, T=0.1, set point = 15.0 and o=0.1 is
selected. The result of application of MAC to the uncompensated
plant, i.e. k=0, is shown in Figure 3.9. Now when k=0°53289, the com-
pensated system is sampled in sampled at T=0.l1 secs. and MAC is
applied to the discretized system at this sample rate. The result is

shown in Figure 3.10. As in the last example, the control effort
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Figure 3.10 MAC applied to air-to-air missile: after using apriori
output feedback, but at the same sampling interval ofq,1 secs.
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needed to keep it in the right trajectory is larger than for uncompen-

sated plant.
3.6 Conclusion

The main contribution of this chapter is the description of MAC for
Multivariable system in section 3.2 where it has been shown that the
classical-controller interpretation of MAC can be extended to MIMO
systems. This interpretation of MAC will help the designer to apply
the recently developed robustness analysis tool to MIMO MAC. Another
important contribution of this chapter is the description of MAC using
the rational transfer function (or difference equation) model of the
plant - MAC can then be interpreted in a root-locus framework and
explained using traditional pole and zeros of a rational transfer
function. Finally in section 3.5, the effect of apriori analog com-
pensation on the MAC performance has been investigated qualitatively.
It has been found that if the addition of output feedback creates a
faster mode than in the uncompensated plant, the sampling rate must be
increased accordingly to capture the dynamical characteristics of the

compensated plant. Otherwise MAC performance will deteriorate.
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CHAPTER 4

ROBUSTNESS ANALYSIS OF MAC

4.1 Introduction

Any model of the plant is almost invariably different form the actual
plant for many reasons. For the purpose of synthesizing a finite dimen-
sional controller, the plant is modelled as finite dimensional even though
the plant may be of a distributed nature or may have delays embedded in it.
Usually the high frequency part of a plant is neglected and the model
emphasizes the low frequency behavior of the plant. Even though a plant
has been modelled accurately in the past, low frequency error is introduced
eventually due to aging, deterioration etc. On the other hand a control
law is designed on a nominal model and implemented on the actual plant.

The nominal control law therefore must be robust enough to ensure the per-
formance level for the actual plant. The purpose of robustness analysis is
to examine the range of the nominal coantrol law maintaining the closed-loop
stability and performance level for all the plants around the nominal
model. The classical designers measure the robustness (with respect to
stability) of a nominal control law by its gain—marg{n (GM) and phase-
margin (PM). 1In this chapter, the robustness of the MAC control law will
be studied from the viewpoint of a classical controller and therefore MAC
must be modelled as a classical controller. We have already developed a
model of MAC of this type in the preceeding chapters which we summarize
here again briefly. For simplicity of analysis, we shall consider SISO
plants only. The MIMO plants are described in Larimore, Mahmood, and Mehra
(1984).

This chapter is organized as follows. The MAC model developed in the
previous chapter is briefly reviewed in Section 4.2 -- this model is the
basis for all subsequent analysis of robustness. Classical gain margin
(GM) and phase margin (PM) for MAC are analyzed in Section 4.2.1. The

robustness in terms of GM and PM can handle a limited class of plant per-



turbations; therefore a more generalized class of perturbations are charac-
terized and robustness evaluated in Section 4.2.2. Since a rational
transfer function model usually has far fewer numbers of parameters than in
the impluse response (IR) description of the plant, a robustness result is
derived for such models in Section 4.2.3. A simple analytical example is

presented in Section 4.3. Finally the chapter is concluded in Section 4.4.

4.2 Review of MAC Model for Robustness Analysis

Let us recall that under some simplifying assumptions, MAC can be

modelled as in a classical control framework. The underlying assumptions are:
(i) the actual plant h(z) is minimum phase

(ii) there are no input constraints, i.e. (i) = R for all i,

where R is the real line

(iii) the optimization is carried over one future step ahead i.e.,
(T = 1); under this condition MAC is a one-step ahead pre-

dictive controller

The transfer functions under the MAC control law for MIMO plants have been
developed in Equations (3.7a) and (3.7b). The corresponding quantities for

SISO plants are:

u(z) _ 1 - o (4.1a)
c(z) (z-1)h(z) + (1-a)h(z)

ylz) . h(z)(1l-a) (4.1b)
c(z) (z-Dh(z) + (1-a)h(z)

Equations (4.la) and (4.1b) imply that MAC under assumptions (i)-(iii)
is equivalent to the classical unit feedback configuration of Figure 3.2
in an input-output sense. The figure is again reproduced in the following

for convenience:
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p— COMpensator

plant
hiz)

———r y(Z)

Figure 4.1. MAC as a Classical Controller

This interpretation of MAC is the basis of our analysis of MAC in the fra-

mework of classical control.

4.2.1. Phase and Gain Margins

The block within the dashed line can be considered as a dynamic

controller of the classical type. The loop transfer function 1(z) at point

1 is

h(z)(l-a) (4.2a)
1(2) = f2yz=1)

and the return difference function is

_ h(z)(z-1) + h(z)(1-0a) (4.2b)
1+ 1(z) = Tz)(z=1)

Note that since we are dealing with a SISO loop, the loop transfer function
at any point of theloop is same. For MIMO loops, the loop transfer func-
tion depends on the point where the loop is broken because of the non-
commutativity of matrices. However, in this case the error y(z) in

tracking e(z) = c(z) - y(z) is given by
e(z) = (1 + 1(z))7! e(z)
so that the steady state error due to a step input is

egg(t) = lim (1+1(z))~1 = (1 + 1(1)) =0
z+1 .
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whether the model is exact or not. This is a consequence of a built-in

integrator in the compensator.

It may be noted from Figure 5 that at point 2, u(z) = y,(z) when
h(z) = h(z), where yr(z) is the reference signal. In this case the input
u(z) to the actual plant is generated as u(z) = yr(3)/h(z) and therefore
y(z) = h(z)u(z) = y(z). This shows why perfect tracking is possible
under perfect identification. We will, however, now pursue this issue

further.

It is obvious from Equations (4.1) and (4.2) that the closed-loop
system is internally asymptotically stable if the roots of the rational

function
¢c1(2z) = (z=1)h(z) + (1-a)h(z) (4.3)

are within the open unit disk z < 1, and these roots are also the
roots of the return difference function 1 + 1(z). We can therefore
find the stability margin in terms of the gain margin (GM) and phase
margin (PM) from the Bode plot or Nyquist plot of the loop transfer
function 1(z) evaluated on the contour z = exp (jw) appropriately
indented around the poles on this contour. Recall that in continuous-
time, the GM and PM are those values of k and ¢ respectively such that
the perturbed loop 1l(s) = kexp(j$)1l(s) is stable, where 1(s) 1s the
nominal loop and s is the Laplace variable. A similar interpretation
goes for the discrete-time systems (Kuo(1980)); but the PM, unless it
is an integral value of the sampling interval, does not have any phy-
sical significance. Strictly speaking the complex constant kexp(j¢)
in continuous time should be replaced by kz™™, n an integer, for

measuring GM or PM of the discrete-time system.

Another way to compare with other continuous-time domain design
techniques is that each element of the discrete-time loop should be
transformed into an equivalent continuous—time element using the bilinear
transformation, and PM of the fictitious continuous-time loop can be taken
as the PM of the discrete-time loop. In this paper the word PM is used to

mean the continuous-time equivalent phase margin. We can now state
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Theorem 4.1

Under assumptions (i)-(iii), MAC has GM = (0, 2/(l-a)), equivalent
PM = Cos~l (1-a)/2, and unity gain cross-over frequency wg, =
2sin~1 (1-a)/2.

Proof

The proof is trivial if we recall that PM and GM are measure on a
nominal loop. Here we can assume that the nominal plant h(z) = h(z),
which implies hy = h; and N = N because both h(z) and h(z) are power
series in z~!. This nominal loop transfer function from (4.2a) is
then

() = iz2 (4.4)

z-1

R

i.e. an integrator delayed by one-step. Evaluating on z = exp(jw), we

get
. = e G w (4.5)
l(exp(jw)) = - -1 cot 5
and |l(exp(jw0)| = 1.0 implies that unity gain cross—-over frequency at
w0 = 2 sin~! l%ﬁ (4.6)

The Nyquist plot of the discrete—-time loop in Equation (4.5) is quite
simple and from the plot it is easy to see that the system is stable for
all gains in the interval (0,2/1-a), and a pure delay ¢ = 90° -Sin~1(1l-a)/2
will change the number of encirclements by the Nyquist contour, thus making

the system unstable.

To get the equivalent PM we transform each element of the loop
using the bilinear transformation s = (z—l)/(z+1)‘1 to get the equiva-

lent continuous loop

From the Nyquist plot of 1(s) it is obvious that GM (0,2/(l-a)) (same as
found by analyzing the discrete-time Nyquist plot) and a PM = Cos~l(l-a)/2.
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Theorem 1, although very simple, reveals some intuitively
appealing results about GM and PM of MAC. We can make the following

remarks.
Remarks

1) Since ae{0,1], the guaranteed upward GM is 2 and the PM is
60°.

2) We can always trade-off robustness against the speed of
response. As response speed is increased by decreasing a, BW
Wy = 2sin~!l (1-a)/2 increases (which makes sense) with a con~

sequent reduction of robustness in terms of GM and PM.

3) We get this remarkable PM even though MAC is an output-
feedback controller possibly because the plant is inverted
causally through the use of an optimization algorithm in the
sense that at each time the algorithm provides the controller
with the entire future input sequence. For the same reason,
the discrete-time loop has a one pole roll-off for all fre-

quencies — which is rather unusual.

4) Theorem 1 ensures that the controller can stabilize the loop

for all the plants {hi} belonging to the set
{hilhg = khy, i=1,...,8, ke(0,2/(1-a))}.

4.2.2. Plant Robustness Analysis for Generalized Perturbations

The nominal model h(z) is usually different from the actual plant
h(z) for various reasons. Sometimes h(z) is deliberately made simple
to facilitate the control computation by retaining the modes in the
active frequency range. On many occasion it is difficult to model
high frequency modes, and these are simply neglected. Due to ageing,
etc., the modes of the actual plant drifts slowly thus introducing
low-frequency error. Thus the modeling error e(z) has in almost every
case, a dynamic structure; and the information about e(z) must be

incorporated in designing a nominal loop. As a minimum amount of
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information e(z) is expressed as an upperbound on |e(exp(jw)|; and the
purpose of robustness analysis is to find a requirement on the nominal
loop interms of this upperbound so that the closed loop performance

and stability is maintained in the face of modeling uncertainty.

Usually the admissible uncertainties are expressed in two ways:
additively or multiplicatively. If we take h(z) as the nominal plant,

then in an additively uncertain model, we express the actual plant

h(z) as
h(z) = h(z) + Ahy(z) (4.8)
and in a multiplicatively uncertain model, the actual plant h(z) is

h(z)

h(z)(1 + 8hy(2)) (4.9a)

or

h(z) = B(2) bhy(z) (4.9b)

For single-loop systems the order of multiplication in (4.9) is not rele-
vant, but for MIMO cases the order is important because of the non-
commutativity of matrices where input channel (left) uncertainty and
output-channel (right) uncertainty must be distinguished. Both of the
multiplicative forms in (4.9) are often used in analysis, but in this paper
we shall be using (4.9b). Note that at nominal values of the plant, Ah,(z)
= Aﬁm (z) = 0 and Ahpy (z) = 1. Also note that the classical GM and PM
ensures the stability of a perturbed plant of the form (4.9b). If the GM
is k, then Ahm(2)=k, and if the PM=n (in the sense of discrete-data
system), Ahp(z)=z"0. These are undoubtedly a limited class of allowable
perturbations and we must consider other possible error—-structures in
designing the nominal loop. The framework of (4.8) and (4.9) is more
general in the sense that it can handle a constant, nonconstant and even

dynamic model mismatch (say for example unmodelled poles, etc.). Let us

rewrite h(z) and h(z) as

o~ 2R

B(z) = ) Byz7l = 27 Nhy(z2) (4.10a)
i=1

N
where Ep(z) = ) ByzN"1 = a polynomial in z,
i=1
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and h(Z) - Z-N hp(z))
hy(z) = ) hyzN-1 (4.10b)

then by straightforward manipulation, the closed loop characteristics

polynomial is
bel,p (2) = 2N(z=D)hp(z) + 2N (1-0)hy(2) (4.11)

with p denoting that we are considering the polynomial part only.

For closed-loop stability, ¢cl,p(z) must have all the roots strictly

inside the unit disk |z|=l. For perfect identification N=N,

Ep(z)=hp(z), and ¢Cl’p(z)=zN(z—a)Ep(z). Of course the zeros of Ep(z)

will be cancelled eventually leaving the only closed loop pole

at z=a. However N, the order of the true plant, is usually unknown, and
therefore in real-world situations (4.11) can not be evaluated. The actual
plant h{(z) must be considered as a perturbation of the nominal plant h(z),
and the stability conditions must be derived in terms of the nominal
sequence {hj} and the perturbation Ahy(z) or Ahp(z). Let us assume that

Ahy(z) and Ahp(z) can be expressed as in (4.10), i.e.,

Na
Aha(z) = ) hyiz-i
i=]
= Z—NaAhap(Z), Ahap(z) = a polynomial in =z (4.12a)
Nm
Ahp(z) = ) Ahpyz~t=z"Nmh, (z) . (4.12b)
m mi mp
i=1

although the following theorem can be developed without such an expli-
cit form. Note that the index in (4.12b) must start from 0 to accomo-
date constant multiplicative perturbation. We have the following

theorem on robustness:



Theorem 4.2

(i) The system is closed-loop stable for all additive pertur-

bations Ahy(z) satisfying

Y 1 - 2a Cosw + a2
1-a

|8hgp(2) | < |Bp(2) |

(4.13a)
and z= exp(jw)
(ii) The system is closed-loop stable for all multiplicative

perturbations Ahy(z) satisfying

zZ - a
1l -«

IAhmp 29y = sz| < (4.13b)

on the unit circle where Ahap(z) and Ahmp(z) are given by (4.8).

Proof: The proof is straightforward if we express h(z) using the
form (4.10)—-(4.11), find the corresponding closed-loop characteristic polyno-
mial, and finally use Rouch's theorem to prove (4.13) on the assumption that
the nominal loop is internally stable and hence (z—a)ﬁp(z) has all the

roots strictly inside the unit disk |z|=l.

The tests of the type given in (4.13) are sufficient conditions
and generally tend to be conservative. Nevertheless we can make the

following remarks:

(i) Both tests (4.13a) and (4.13b) are useful. For example when
an actual known model {hi, i=1,...,N} is truncated to
obtain {hy, i=1,...,N, N < N}, so that {Ah,; = hy, i=N,
N+1,...N and Ahygy = 0, i < N}, stability around {hj} can be
obtained from (4.13)

(ii) For constant multiplicative gain mismatch, i.e. hj = khy
for all i, {Ahmi = k when i=0 and Ahp; = O when i > 0}, so
that Ahmp(z) = ksz and test (4.13b) yields that the system
is stable for all k such that

= exp(ju) (4.14)
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But it is easy to see that min |exp(jw)—a] = 1-o so that (4.10)
becomes |k-1|<1 which implies ke(0,2). This clearly shows that these

tests are conservative. (See remark (4) of the previous section).

It can be shown trivially that near w=0, the bound on the RHS of
(4.13a) is meaningless; almost any reasonable perturbation will satisfy
this sufficiency condition at low frequencies, but the above inequality

must be obeyed for each we[0,ll] particularly at high frequencies.

We note further that given any perturbation Ahp(jw), it is extremely
difficult to come up with a stable design to accomodate it. On the other
hand, given any stable design we can only make statements about the size of
a perturbation the design can tolerate, and perhaps from our previous
experience we can change the nominal design iteratively to accomodate the

‘given perturbation.

4.2.3. Robustness Analysis When the Plant Model is Described by a Rational

Transfer Function

In the previous section we analyzed the robustness of the MAC
control law for systems represented by an impulse response sequence.
In this section the analysis will be carried out for plants described
by Difference Equations (DE) - this will yield more insight into the rela-
tion between the robustness of MAC and the design parameters embedded

in it.
We analyze again under the usual assumptions, viz,

(i) the system is minimum phase
(ii) the optimizing horizon is one-step in the future
(iii) there are no constraints either on the input or any other

loop variables

Under these assumptions, the MAC control law 1s given by equations

(4.1a)~(4.1b) and the equivalent classical network is given in Figure 4.1.

Obviousiy then the loop transfer function is

_ (1-a)h(z) (4.15a)
W)= =



so that the return difference function is

_ (1-a)h(z) _ (z=)h(z) + (1-a)h(z)
L+ 1(2) = 1+ D) (z-Dh(2) (4.15b)

Clearly the closed loop poles are given by the zeros of the numerator
(4.15b). We have shown in the previous section that the MAC control

law is nominally closed loop stable for all values of a, o<all.

A typical Nyquist plot is shown in Figure 4.2. It is obvious from
the figure that at any frequency w,, the loop transfer function
l(ejmo) can tolerate a maximum perturbation of |1+1(ejwoﬂ and yet the
Nyquist plot will not change the number of encirclements of the -1+j0
point. This observation leads to the following theorem on additive

perturbations.

A Imaginary axis

1(z)-plane

-14j0 o7
: s Real axis

j(ﬂo +

l+l(e ) #

Figure 4.2. A Typical Nyquist Plot

Theorem 4.3

Suppose the loop is nominally stable. The the perturbed loop is stable for

all additive perturbations Al(z) satisfying
|a1(eJW)| < |1+1(edw)]| (4.16)

where w varies over the unit circle if 1(z) is analytic on the contour
|z] = 1 or over any suitable indented contour on the unit circle to

bypass any singularity of 1(z) on the unit circle.



Proof: A heuristic proof should be obvious from Figure 4.2. A
rigorous proof follows from a straightforward application of Rouches'

Theorem as in the previous section.

A similar theorem can be developed for multiplicative pertur-
bations. Theorem 4.3 gives the sufficiency condition for stability.
Its usefulness lies in the fact that given an apriori knowledge of a
perturbation that satisfies the inequality (4.16), the Theorem guarantees
the stability of the closed loop system for such perturbation. For
example if a high frequency mode is neglected or if the modes are not
correctly modeled, the discrepancy is expressed in an additive form and a

test of the type (4.16) must be carried out after a nominal control law has

been found.

We can find a more specific form of Equation (4.16) as follows.
Suppose the nomimal (or identified) plant is h(z). The true plant
h(z) is assumed to lie in a neighborhood of h(z), and suppose h(z) is

an additive perturbation of h(z). In this case
h(z) = h(z) + Ahy(z) . (4.17)

The designer usually has a knowledge of an upperbound on IAha(ejW)

The nominal loop transfer function 1(z) and the nomimal return dif-

ference function 1 + h(z) can be found from Equation (4.2). These are

I(z) =1- "} + 1(z) = 2=¢
z-1 z-1 (4.18)
Let Al1(z) be an additive perturbation of the nominal loop 1(z) when
the nominal plant h(z) is perturbed to h(z) as in Equation (4.17).
Then the perturbed loop transfer function 1(z) + Al(z) can also be

evaluated using Equation (4.2) and we get

1(z) + Al(z) = h(z)(1-a)
h(z)(z-1)



from which we find

81(z) = Bha(z) 1-a

E(z) z-1

Therefore using Theorem 4.3, we conclude that the closed-loop is

stable for all perturbations Ah,(z) which satisfy

lang(z)] < lz=<| |& ()]
1 -«

on the unit circle z=exp(jw). This inequality can further be

simplified to

vi
|Ahy(edW) | < Y 1 +a" - 2a Cos w |[R(iw) |
1-a

which can be verified easily by plotting these functions.

It is very important to note that the conditions developed in
Theorems 4.1, 4.2, and 4.3 are all sufficiency conditions and not
necessary ones. If any perturbation Ahg(z) or Al(z) violates these
conditions, the closed loop is not necessarily unstable; on the other
hand, satisfaction of these conditions necessarily guarantees asymp-

totic stability of the perturbed closed-loop provided that the nominal

closed-loop is stable.

4.3 Examples

In this section, the main features of the analyiss of the last
section are demonstrated through a simple example. Since the IR
description contains many more parameters than in the DE description,
we use a rational transfer function model of the plant. The Theorem

4.3 will be used to evaluate the robustness against modelling mismatch

of the true plant.
Example 4.1

Consider again the example of a scalar dynamic system of the last

chapter. Suppose it has been modelled as
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x(k+1) = F x(k) + gu(k)
y(k) = ex(k).
Assume for simplicity that cg=1 so that the rational transfer func-

tion of the model is

h(z) = _IT

z - f

Then if the true plant h(z) = h(z) + Ahy(z), according to Equation
(4.20b) the closed loop is stable for all Ahy(z) satisfying

7
lah(Gw) | < v 1 +a” - 2a Cos w

(1 —a) v 1 +F - 2% Cos w

Now suppose that the actual plant is of the form
x(k+1) = £ x(k) + gu(k)

y(k) = cx(k)

which is the same as the nominal model in (4.21) except that the true

mode f is different from the nomimal mode f. Therefore

h(z) = _L ,

z -

and Aha(ejw) is of the form

Ahy(jw) = £ -1 .
eJ2w — oJW(f+F) + fF

Given a nominal MAC loop for a specified ¥, the loop is stable for all

f's 1if IAha(jw)l evaluated from (4.24) satisfies the inequality

(4.22). We selected = 0.3 and tested inequality (4.22) for three
different f's: f = 0.8, f = -0.3, f = -0.8. 1In all cases, the set
point = 15.0, and a=0.1 are selected. Since I is the same for all

three runs, the right-hand side of (4.22) is also the same and is

shown as a thick line in all the plots. The left-hand side of (4.22)

is shown in dotted lines.

(4.21a)

(4.21Db)

(4.21c)

(4.22)

(4.23a)

(4.23b)

(4.23c)

(4.24)



Case 1: f = 0.3, £ = 0.8

Here the true plant has the mode at 0.8. For perfect iden-
tification the MAC response is shown in Figure 4.3a. For an iden-
tified plant mode at f= 0.3, the sufficiency conditions are displayed
in Figure 4.36 - which shows that this perturbation satisfies the ine-
quality constraints in (4.22). The closed loop, therefore, is
guaranteed to be stable as shown by the MAC performance for the per-

turbed loop in Figure 4.3c.
Case 2: t = 0.3, £ = -0.3

MAC performance for the true plant f=-0.3 is shown in Figure 4.4a.
The sufficiency conditions are displayed in Figure 4.4b which shows
that the inequality has been violated. But because these conditions
are only sufficient, we cannot say anything of the stability of the
loop. In this.particular situation, the perturbed closed loop has

turned out to be stable as shown in Figure 4.4c.
Case 3: f = 0.3, £ = -0.8

MAC performance for the true plant at £ = —-0.8 is shown in Figure
4.5a. The two sides of inequality (4.22) are drawn in Figure 4.5b,
which shows that, as in Case 2, the sufficiency condition has been

violated. But this time, the closed loop is unstable, as shown in

Figure 4.5c.

4.4 Conclusion

An analytical model of MAC was developed in Chapter 3; we have
used that model in this chapter to analyze the robustness of MAC. The
robustness as been assessed ina classical control framework. The
classical GM and PM of MAC are given in Theorem 4.1. The upward GM
can be increased arbitrarily by slowing down reference the trajectory,
PM can go up to 90°. GM and PM can guarantee stability against a
limited class of plant perturbations, therefore a new framework for

analyzing generalized perturbations has been developed in Section



4.2.2 and the main result in this direction is presented in Theorem
4.2. The corresponding analysis for models described by rational
transfer functions is given in Section 4.2.3 and the main result is
presented in Theorem 4.3. Theorem 4.1 and 4.2 can be readily verified
by plotting transfer functions. These Theorems give the sets of
plants in the neighborhood of the identified models which are

guaranteed to be closed-loop stable whenever the nominal loop is stable.
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CHAPTER 5

SAMPLING INTERVAL & CONTROLLABILITY

5.1 Introduction

Sampled-data (SD) systems are becoming increasingly important
with the advent of cheap computing power of microprocessors. Although
these systems have been studied for a long time, very few researchers
have explicitly dealt with the design of a suitable "sampling time
interval 'T'. Almost all literature dictates a sampling rate
satisfying the Nyquist rate-—although the latter is applicable only
for band~limited systems. For the systems with undamped modes, only
certain discrete values of T are excluded (Chen, 1970) to guarantee
the required rank of the "Controllabiity Matrix" of the SD systems.
Nothing further is said as to what values of T should be chosen once

the rank condition of this matrix is satisfied.

A recent study in this direction is by Reid et al.(1979), where T
is uniquely chosen to maximize the robustness of a dead-beat control
law. Although this is a significant step towards the characterization
of a unique T, the procedure has limited application because not all
of the SD systems will be used for the purpose of dead-beat control.
Maximizing the determinant of the product of the controllability
matrix and its transpose are much discussed in the literature, but

without any rational justification.

In this study we have provided a logical and intuitively
appealing framework for choosing an optimal, unique T. Our analysis

is based on two intuitive ideas:

(1) that the amount of energy needed to drive a discrete system
from an arbitrary initial state to the origin is a measure
of the controllability of the system,

(2) that the amount of energy is also a measure of the degree of

effectiveness of various control components.



A minimum energy terminal control problem is formulated which
explains controllability in a quantitative framework and its relation
with sampling time T. The solution is given in terms of the
"Controllability Grammian,"” and a natural choice of T is made by
maximizing the minimum singular value of the Grammian matrix over a
compact interval of T. The excitation ability of various control
components (or equivalently how effectively each control component
influences the dynamics of the system) depends upon the relative
orientation between the space spanned by left eigenvectors of the
system matrix and the range space of the input distribution matrix.
It is extremely difficult to visualize the interplay between a
changing T and the relative orientation of the spaces. This has led
us to solve the problem implicitly as a minimum energy problem where
the relative orientation changes automatically as T varies to provide

optimal eftectiveness of the control components.

Sometimes control components may have different costs. We would
prefer, then, that the two spaces adjust to reflect the relative costs
so that the system uses more of the cheaper controls than others. We
have implemented this idea by introducing an "input-weighted

controllability Gramian” matrix.

The above ideas can be dualized to find an optimal T from the
viewpoint of observability. Here T is chosen to minimize the maximum
possible energy in the outputs for arbitrary initial states. Since
the Hankel matrix is the product of the controllability and
observability matrix, the corresponding values of T can be deduced

from the singular values of the Hankel matrix, too.

In sections 5.2 and 5.3 we briefly discuss the relation between
SD systems and the original continuous time systems and the previous
results on the controllability of the SD systems. Section 5.4 also
contains a brief discussion on modal controllability and
observability. 1In section 5.5 we have formulated the minimum energy
problem in the new perspective for finding an optimal T. Section 5.6

deals with the observability issues. Conclusions are given in section
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5.7. The analysis has been kept limited to LTI systems for the sake of
clarity although generalization to time varying systems are concep-

tually straightforward.

5.2 Problem Definition

Consider a linear time-invariant continuous—-time system

x(t)

Ax(t) + Bu(t) (5.1a)

y(t) cx(t) (5.1b)

where x(t) e R, wu(t) € RM, y(t) ¢ RP and A, B, C are matrices
of compatible dimensions,

There are many sampling schemes to discretize the system (5.1).
We shall be using here the "sample and zero-order hold" sampling
mechanism, because it is easier to implement and probably the scheme
most widely used in industries. Under this scheme the input is held

constant during the sampling interval and the corresponding discrete

system is given by

x(k+1) = Fx(k) + Gu(k) (5.2a)
y(k) = Hx(k) (5.2b)
F = exp(AT) (5.3a)
G = [OfT exp(Av)dv]B (5.3b)

(F-1) A~!B, when A is nonsingular

H=C (5.3¢)

and exp(AT) is the transition matrix associated with (5.1). The
solution of equation (5.2) is given by

k-1

Fkx(0) + &  Fk-l-igu(i) (5.4a)
i=0

Cx(k) (5.4b)

x(k)

y(k)

where FK is the state-transition matrix of (5.2).
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Roughly speaking the controllability of a system refers to its
ability to steer any initial condition x(0) at k=0 to the origin at
k >0 for finite k; whereas the reachability refers to its ability to
steer the system from the origin to any given state in finite time.
Because of the non-singularity nature of exp(AT), the notions of
controllability and reachability in continuous-time systems coincide.
For discrete time systems, obviously a sufficient condition for the
system to be controllable is that FK be non-singular for each k, i.e.,
the system has the ability of backward transition whereas the
reachability is the property of the range space {FKG}, k = 0,1,...-
The controllability can be checked through the controllability
Gramarian formed over a finite horizon; and for time—invariant
systems, a horizon of n-steps is necessary and sufficient. The pair

{F,G} is controllable if the Controllability Grammian

k-1 :
Wo,k) = 1 Fig ¢'(F 1) (5.5)
i=0

is non-singular for any k»n. Equation (5.5) also shows why the

non-singularity of F is necessary.

In a sample and zero-order hold mechanism, F is given by (5.3a)
which means F is necessarily non-singular for any A. Thus the notion
of controllability and reachability are the same, and we shall be

using the word controllability hereafter to denote both concepts.

Sometimes the discretization mechanism (5.3a) goes by the name of
"exponential transform." It is obvious from (5.3a) that under this
mapping, both the continuous-time and the sampled-data system share

the same eigenvectors and thelr poles are related through

zy = exp(syT)

where si{ and zj are respectively the ith eigenvalue of F and A. Also

note that
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T
i) exp(Av)dv is always non-singular even if A 1s singular,

because

T n
det[ [ exp (Av)dv] = I pgy # 0.0
0 i=1
where
1 - exp(syT)
pi = Sl A RO when s; # 0
54
(5.6)
T when sy = 0

Equality (5.6) is obvious from the Jordan form of A.

5.3 Controllability and Observability of SD system:

The controllability and observability of the time-invariant (TI)
sampled-data system 1s a well-studied topic. Probably the mostly used
criteria is the rank condition of the controllability matrix C and the

observability matrix 0, where

C=1[G: FG : ... Fo-lg] (5.7a)

and

5
. (5.7b)
i

The system is controllable if p(¥)=n and the system is observable

(0]
i

if p(9)=n, where p(A) denotes the rank of A. The matrices F and G
depend upon T whereas H does not. One way to determine the role of
the sampling time interval T on the controllability and observability
of the system is to check the rank condition of the matrices in (5.7)
as T is continuously increased. The most significant results
available in this direction are contained in the following theorem

extracted from [2].
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THEOREM 2.1

Assume that the continuous time system (5.1a) is controllable. A
sufficient condition for the discrete time system (5.2a) with
coefficients in (5.3) to be controllable is that Im[li(A)—Aj(A)]#
27k/T, k=*1,%2 ... whenever Re[Ai(A)—Aj(A)]=O. For the single-input

case, the condition is necessary as well.
We can make the following remarks as a corollary of Theorem 2.1:

1. The conditions are also sufficient for maintaining the
observability of the SD system, because the pair F, H is
observable if and only if the pair {F , H } is controllable:
and the Theorem gives the condition in terms of the
eigenvalues of A, not in terms of H or G.

28 If Aj=0; * jw;j is any complex pole pair of A, T should not
be chosen such that T=kn/wj, k=%1,%*2.... Therefore for SISO
systems, as Tj is increased, SD system (5.2a) loses
controllability for as many values of T and their integral
multiples as there are complex pole pairs. Obviously by a
continuity argument we can say that the controllability
matrix will be ill-conditioned for T in the neighborhood of
these Tj's.

3. Although not related to this theorem, another requirement on
T to avoid aliasing effects is that we must sample the
system at a Nyquist rate at the least. If Wmax=MgX Wi,

then T should be selected such that

(5.8)

Wnax

Note that if we choose T=m/wpax exactly satisfying the Nyquist

rate, we lose controllability for SISO systems.
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5.4 Modal Controllability and Observability

Theorem (5.1) does not provide any "quantative™ information on
the “"degree” of controllability which is best explained by modal
controllability. The concepts of wodal controllability and
observability are old and can be found in any standard text on control
theory. 1In this subsection we discuss briefly how the sampling time T
is related to these ideas. Assume for simplicity that A is

diagonalizable., The modal decomposition of A is
A = WAV' (5.9)

where A is the diagonal matrix containing the eigenvalues Ay of A, W
and V' are respectively the matrices containing right- and

left-eigenvectors of A.

I1f wi and v{ are right- and left-eigenvectors respectively

associated with ith eigenvalue Xj, then

W= col (wy, wp,...wp) (5.10a)
v
1] 1 1

V' = row (vi, vo, «u. vp) (5.10b)

and

W'o= V'W = I

Then the modal decomposition of F is

F = W exp(AT)V'

]

W/\FV'

where {Ag} =exp X\4T = zy, the i-th mode of the SD system (5.2). By

straightforward calculation, (5.4) simplifies to
n q k-1 n '
x(k) = I (z{)K (vix(0)) wy + £ & (zk 11 (vi6)u(i)w;

i=] i:o j=1
(5.11a)
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n , k-1 n .
y(k) = Hx(k) = (zi)k (vix(0))Hwy + I z (Zi)kvl—i(VjG)u(i)HW(j)
i=] i=0 j=1
(5.11b)

]

It should be apparent from (5.11) that it is the row vector (vjc)
that determines whether the control at the i-th instant u(i) will have
any influence on the j-th mode of the system. If thils row vector is
identically zero for any j, i.e., if vje left ker (G) then the j-th
mode is uncontrollable and the component of the state in the subspace
spanned by j-th eigenvector cannot be controlled. Similarly if gk is
the k-th column of G, then mig = <Vj,gk> determines the sensitivity of

the k-th component of the control up on the j-th mode. 1In particular,

if we form the n x m matrix M = {mjk}, j=1,...n, k=1,...m, where

M= V'G (5.12)

we can deduce the controllability as well as the "degree of
controllability” of various imput-components from the entries of M. M
is called the modal controllability matrix. To increase the
sensitivity of the k-th control on the j-th mode, we should design gk
as much collinear with vy as possible. It is easy to show that M is

related with C in (5.7a) as

n
C =WM: AgM : . . . tAp M] (5.13)

where W is the matrix of right eigenvectors as defined in (10), and if
any row of M is identically zero then the controllability matrix C

becomes rank deficient.

For the zeroeth order sample and hold (S&H) mechanism under

consideration

T T
M=V [ exp (Ax)dxB = ( [ exp(Ax)dx)V'B (5.14)
0 0
Now V'B and A are predetermined by the continuous-time system (5,la).

The only variable here is T which can be adjusted to regulate the

elements of M.
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Following the same argument as above we can deduce from equations
(5.11) that the degree of the modal observability is given by the

modal observability matrix N where

N = HW (5.15)

and the observability matrix in terms of N is

0 = . A (5.16)

Since H=C and W is predetermined by the continuous-system, N is
not affected by T , i.e., the modal observability matrix of a
discretized system is the same as in the continuous—-time system
although the observability matrix © in (16) is dependent on T. This
shows that the sampling time T will have more impact on the "degree of
controllability™ than on the "degree of observability”™ because T
influences both the system matrix F and input matrix G forming the

controllability matrix.

5.5 Sampling Time to Maximize the Degree of Controllability

In this section we formulate a minimum energy terminal control
problem for the discretized system and explain why this scalar measure
can be naturally taken as a "degree of controllability.” Finally we
choose T to optimize this scalar measure. Recall that a controllable
discrete system can be driven to zero-state from any initial state in
n-steps which motivates an optimization horizon of n-steps. Consider

then the minimization of the cost functional

n-1

I u'(iL)R(1)u(i), R(L)=R'(i)>0 (5.17a)
=]

min J(x(0))=

1
{u(1),i=1,..n} z

i

subject to
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x(i+1)=Fx(1) + Gu(i) (5.17b)
x(0) given, and x(n)=0
Obviously, if the modes are sensitive to the control-components,

the system can be driven to (n)=0 from (0) with lower expense of
input energy than if the modes are insensitive to control components.
This fact is reflected in the construction of J. The relative
orientation between the left eigenspace of F and the range space of G
(or equivalently the elements of M) and the elements of F are adjusted
automatically while minimizing J. Note also that the relative cost of
various input components can be reflected through the weighting matrix

R, which possibly may be time varying.

The minimization in (5.17a) can be carried out using the
ordinary-least-square technique or using Linear-Quadratic (LQ) theory
from modern control, although we shall be using the latter to get a
better perspective of the problem. The Hamiltonian sequence H(i)

H(i)=u'(i)R(i)u(i) + p'(i+1)[Fx(i) + Gu(i)] (5.18)
where p(i) is the sequence of Lagrange multiplier.

The necessary condition of optimality gives [3],

x(i+1) = Fx(i) + Gu(i) (5.19a)

p(i) = F'p(i+l), i=0,1,...0-1
subject to a given x(0) and x(n)=0, and the optimal control sequence

is given by

u(i) = -R-I(1)G'p(i+1) (5.19b)

Solving in terms of p(0)(note that F is non-singular in our case)

and matching the boundary values of x(i) at i=0 and n, we get,

successively,
p(i) = (F")~1ip(0)
w(i) = -r-I(1)6' (Fl)~i-1p(0)

p(0) = w1(0,n)x(0)

~10
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W(o,n) = ¢ Fi-lgrl(i)gr(rr)-i-1 (5.20)

Here W'(0,n)=W(0,n) is the usual controllability Grammian except that
it is weighted by a sequence R(1), and consequently W(0,n) in (5.20)
may be called "Input-Weighted-Controllability Grammian.” The optimal

control sequence 1is

u*(1)=-R-1(1)e"(F)~1-1ly=1(0,n)x(0), i=0,...n-1 (5.21)
and the optimal cost J* is

- n
J* = I u*'(DR(1)ur(i) = x'(0W1(0,n)x(0) = I (i/oy) c

i=0 i=1
(5.22)

where gj=i-th eigenvalue of W(0,n)

cy = <x(0),u;> = projection of x(0) on i-th orthonormal
eigenvector of W(0,n)

Remarks:

1. W' (0,n)=W(0,n) and is positive definite if the system is
controllable. If the system is not controllable ¢j=0 for at least one
i and therefore infinite energy is required to bring the initial state

x(0) to zero, which makes sense physically.

2. W'(0,n)=W(0,n) » O which implies the oi's are also the

singular values of W(0,n).

3. Since the matrices F, G depend on T (the sampling time), the
oi{'s and consequently the minimum J are dependent on T. As we have
seen from theorem 2.1, as T increases from zero to infinity, the
discretized SISO system loses controllability around Ti=m/wi, making
some o4 equal to zero and hence J* in (22) goes unbounded. For other

values of T, the oi's are non-zero and finite and J* is also finite.

4., The use of the matrix R(i) weights the share of various

control components in the minimum energy. The cost of various control



components can be reflected through R(i). For the single-input case,

the use of R(i) is superfluous and can be set equal to l.

S. Note that an equivalent controllability Grammian Q(0,n) can
be formed from the controllability matrix @€ welghted by the sequence

R(i) as follows:

W(0,n) =¢g'diag (R(1))¢&'

Fi-ig r-1(i) ¢'(F')n-1 (5.23)

|
3

Although rank [W(0,n)]=rank {W(0,n)], the singular values are
different. For this modified controllability Grammian W(0,n), matrix

inversion of F is not needed.

We are now in a position to find an optimal T on a rational basis

The maximum possible normalized energy is

* Jiig x' ()W 1(0,n)x(0)
Jy = max ———— = max -
x(0)eRrD x'(0)x(0) x(0) x' (0)x(0)
= |[lw10,n) ||, = o(wi(o,n) =~ wgo,n)) (5.24)

]2 denotes the induced Euclidean norm and'g(.);g(.), is the

where ||.

maximum and minimum singular value respectively. From (5.22) it is

obvious that J* is bounded above and below as

1 2 1 2

B | [xC0) | [* < g% <0 | 1x(0) | | (5.25a)
1 x ]

0 << © N Tw (5.25b)

where W(0,n) has been denoted by W for the sake of brevity.

*
A rational choice of T is to minimize the upperbound of Jy as

much as possible, i.e., the optimal T=T* should be such that



*
T* = Inf Jy (5.26a)

T
*
Since Jy 1s bounded below by zero and we shall be working with a
compact interval I=[0,t], (5.26a) is equivalent to

*
T* = min Jy = min 0
Tel Tel =

1
D (5.26b)

Therefore the complete procedure of obtaining T* is

n-1
T* = min max min T u'(i) R(i)u(i) (5.27)
TeI x(0)er™? u(i)er® 1i=Q

|Tk(0)]|=l

subject to

x(i+1) = Fx(i) + Gu(i), x(0)=x(0)
T
F = exp(AT), G = ( Of exp(As)ds)B

Note that when the system loses controllability, then for some TeI,
a(W)»0, or, 1/0(W) blows up. So for computational and plotting

purposes we may as well evaluate (5.26b) as

T* = max o(W) (5.28)
Tel
It is conjectured by many practitioners that T should be chosen
to maximize the determinant of €' where & is the controllability
matrix in (5.7a) without any rational justification. We explain here
why this determinant of €€' is not a good measure of the quantitative

controllabiity ideas developed herein. Recall from remark (5.5) above
that if R(i)=Iy for all i,

€¢' = W(0,n)

and

W(0,n) = F @ WO,n)(F')"0, F = exp(AT)



Therefore

det (cC') = det(W(0O,n))

n
I oy(W(0,n))
i=1
= (5.29)
n
I exp(-2Re[Xi]nT)
i=]

under the assumption that A is diagonalizable with eigenvalues )j.
Expression (5.29) clearly shows the inadequacy of the determinant
criteria, because for T, where the system almost loses
controllability, the denominator of (5.29) is fixed and o(W(0,n)) is
nearly zero. According to criteria developed herein, the system is
nearly uncontrollable. Yet det(@¥') may be large if the remaining
singular values are large; thus the "almost uncontrollability”
situation of the discretized system remains undetected with the

determinant criteria.

Examgles:

Example 5.1. Consider a SISO continuous system

The poles are at -2*j3, with a Nyquist sampling rate TNyq=1.04719
sec. The o(W(0,2)) as a function of T is plotted in figure 5.1, which
rightly shows that at T=1.047 sec, the system loses controllability.
To avoid aliasing effects we must choose T smaller than the Nyquist
sampling rate, and as seen from the plot the optimum T=0.65 second.

Note also that near T=TNyq, the degree of controllability is poor.

Example 5.2. As another example consider the decoupled longitudinal
dynamics of a missile in flight condition 1:



) -1.4868  1.00 0
x(t) = x(t) + u(t)
-149.93 n -281.11

X1

]
]

")

where x,(t) = angle of attack in rad
Xo(t) perturbed pitch rate rad/sec.
u(t) = elevator angle

1}

The poles are at -0.7434*3j112.22 with a damping ratio £=0.061 and
a Nyquist sampling interval rate Tyyq=0.257sec. a(W(0,2)) plot is
given in figure 2 which shows that the system loses controllability at

Ti=KTNyq» K=1,2¢..

Although the optimal T* is lower than TNyq by an infinitesimal
amount, it is recommended that a sampling time between 0.1 and 0.2

sec. be chosen from practical considerations.
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5.6 Sampling Time Interval and the Observability of the Discretized
Systems

In this section we formulate an optimization problem for finding
an optimal sampling time interval T* from the observability viewpoint.
The approach is analogous to that in the preceding section. The cost
functional chosen for optimization is subjective and depends upon the
application of the discretized system; but the point we want to
emphasize is that this type of formulation yields an optimal unique T.
It is shown here how to formulate the problem from the consideration

of sensor sensitivity and optimal use of sensor measurements.
The observability of the SD system

x(k+1) = Fx(k), x(0) unknown

(5.30)
y(k) = Hx(k)



is concerned with the inference of the initial state x(0) from

n-observations, y(k), k=0,...n - 1 and depends upon the observability
matrix © in (7b).

Define

Yy = [y'(0) : y'"(D): « « ¢« y'(n-1)]"
Then the estimate of x(0) based on n-observations is
i(O)IYn = O#Yn

where off is the generalized inverse of the observability matrix 0. 1If
rank (0)=n, Y, lies in the range-space of © and x(0) can be estimated

exactly and

%(0) |Yp = (0'0)"10"Yn
When the system is unobservable, 0'0 is rank deficient and the
estimate 1s not perfect. The structure of the observability matrix O
determines the "observability” of the system and the system continues
to remain observable as long as rank (O)=n. To embed the
observability problem in a quantitative framework, note that the
structure of this matrix also determines how a given initial condition
x(0) (or equivalently any given state x(k)) is distributed in the
output sequence {y(k), k=0,...n-1}. Maximizing observability by
adjusting T implies in the sense of the Ljy-norm that any initial

condition x(0) with energy ||x(O)H2 gives rise to maximum energy in

the output sequence,

In the extreme case when the system is completely unobservable,
the energy in the sequence {y(k), k=0,...n-1} is zero for any x(0).
There is another advantage of maximizing output energy. For a good
performance from the sensors it is desirable to maximize the energy,
because for a given x(0) (or {x(k)}) and unmeasurable corrupting
output noise, this is equivalent to maximizing signal to noise power
ratio and consequently best sensor performance is obtained. There is
another motivation that some sensors may be more efficient than others

and less efficient sensors will need higher signal to noise ratio than



the more efficient ones. These observations suggest a weighted
cost-functional (weighted energy in the output sequence), similar to

(5.17a),

n-1
J= I y'(L)R(1)y(i), R(i) =R'(i) >0 (5.32)
i=0
where R(1) determines the relative importance of various sensors. We

should then maximize J. However (5.32) reduces to

J = x"(0)v(0,n)x(0) (5.33a)
where
n-1 . .
v(0,n) = £ (F')IC'R(i)C(F)1 (5.33b)
i=0

may be called the "output-weighted observability Grammian."

The normalized energy is

_ J
IN = =)

and the minimum possible normalized energy is

*
Jy = min J = min
x(0)eRD x(0)eR1

J

< (0yx(oy - S(V(o,n) (5.34)

where gﬂ.),‘;(.) denote as usual the minimum and maximum singular

value respectively. Note that Jy is bounded below and above as

0 < o(v(0,n) < Jy < o(v(0,n)

and when the system is unobservable o(V(0,n))=0. The minimum singular
value of v(0,n), o(V(0,n)) is a sensitive measure of unobservability,
because the system need not be completely unobservable for o((V)(0,n))
to be zero. If any subspace of RM is unobservable an arbitrary x(0)

will have non-zero projection on this sub-space and o(V(0,n))=0. We



*

therefore should choose T to maximize Jy to take the system away from
unobservability as much as possible. The optimal T=T* should then be
chosen such that

*
T* = sup JN
T

with the constraint that T* should be less than the Nyquist sampling

rate.

Therefore, following the arguments of the previous section, we
should find an optimal sampling time T* from the observability

viewpoint by solving the following max-min problem:

n-1
T* = max min x'(0)( £ (F)IC'R(1I)C(F)L)x(0)
T x(0)eR i=0
| |x€0) | [=1

Examples

Example 5.3. We consider again the example 1 of thé previous sec~
tion with

the output matrix
H=(1 0)

The minimum singular value plot of V(0,2) as a function of T is given
in figure 5.3. Note the similarity with figure 1 and observe that the
sampling time at which the system loses controllability is also the
time at which the system loses observability. These happen at the
Nyquist sampling interval of 1.04719 seconds.
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Example 5.4. Consider the example 5.2 with angle of attack as the

output, i.e.,

H= (1 0)

o(v(0,2)) plot is given in figure 4. Notice again the similarity with

Figure 2. At T=0.257 sec. the observability is lost.
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5.7 Conclusions

In this paper we have described a framework for determining a
unique optimal sampling time T. The solution T is given by a mini-max
problem when considered from the controllability viewpoint, and by
maxi-min problem when considered from an observability viewpoint. The
choice of cost-functionals as a basis of an optimization problem is
very much a subjective matter and depends upon the application of the

discretized system. But nevertheless, the framework developed in the
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paper is based on practical considerations; the analysis is very
simple, and the results are extremely useful to practicing control

engineers.
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CHAPTER 6

SIMULATION RESULTS

6.1 Introduction

The identification technique using CVA (Canonical variate
Analysis) has been described in Chapter 2 and the robustness analysis
of the simplified MAC controller has been analyzed in Chapters 3 and
Chapter 4. These results are combined in this chapter as an Adaptive
MAC (AMAC) controller, and its performance will be demonstrated
through realistic simulations in deterministic as well as in
stochastic environments. The simulation runs have been designed to
emphasize the effect of data length, dither strength (SNR), and closed
loop identification capability of the CVA technique. It has also been
shown how AMAC behaves for SISO and MIMO plants.

The primary purpose of this chapter is to exhibit the strength of
the CVA technique as a closed-loop identifier and to demonstrate the
reliable adaptive control scheme AMAC which utilizes the robust MAC
technique. If the performance of the CVA technique degrades for some
reason i.e. the identified plant is not 'close' to the actual plant,
the robustness of MAC compensates for it in the sense that it enables

the plant to maintain the closed-loop stability and follow the desired

trajectory.

This chapter is orgnized as follows: The simulation models have
been selected from the previous project report on MAC
(AFWAL-TR-80-3125). For the sake of completeness of this report, the
models and the various simulation parameters are described again in
Section 6.2. Simulation results under various scenarios are presented

in Section 6.3. Finally the summary and conclusions are given in
Section 6.4.



6.2 Simulation Model and Simulation Parameters

The simulation models have been selected from the previous report
on MAC [AFWAL-TR-80-3125]. The SISO and MIMO models are extracted
from a single hypothetical air-to-air missile model with asymmetric
aerodynamic properties. This model represents a simple, three-axis
attitude control problem in flight condition 1 with independent pitch
axis and coupled roll-yaw dynamics. In this flight condition (Mach 2
at 20,000 ft. and weighing 239.5 1b), this missile is flying at an
equilibrium pitch angle of 9°, sideslip of 0° and roll angle of 0°.

6.2.1 SISO Model

The SISO Model consists of the decoupled pitch axis dynamics with

2 gstates. The model in the continuous time domain is

. X (t) -1.4868 1 0
x(t) = . = x(t) + u(t) (6.1a)
xp(t) -149.93 0 -281.11
y(t) = (1 0)x(t) (6.1b)
The states are:
xj(t) = angle of attack,

xp(t) perturﬁed pitch rate (rad/sec),

with input u(t) = elevator angle (rad) and output y(t) = angle of
attack (rad). The open loop poles are at —Of7434tj12.222 with a
damping ratio of 0.061 which shows that the pitch axis dynamics are

quite oscillatory.

The plant dynamics are discretized at a sampling rate of 10 Hz
using the exponential transform (sample and zero order hold). The

resulting poles of the discrete time system are

0.31711%£30.87252 (6.2)



with a modulus of 0.92836. The pulse response and step response when
these are applied at t=0.4 seconds to this system are shown in Figure
6.1. The true poles in equation (6.2) will be subsequently compared
with those of the identified systems.

6.2.2 MIMO Model

The coupled roll-yaw dynamics from the same air-to-air missile 1In
section 6.2.1 are used for the MIMO Model. It has four states, two

inputs and two outputs. The states are

xp(t) sideship angle (rad)
xp(t) = perturbed roll rate (rad/sec)
x3(t) = perturbed yaw rate (rad/sec)
x4(t) = roll angle (rad)

with inputs
uj(t) = aileron angle (rad)
ug(t) = rudder angle (rad)

and outputs

y1(t) = sideship angle (rad)

yo(t) roll angle (rad).

An early analysis of these dynamics indicated a very severe roll
instability. Since MAC can work only for systems with a finite
impulse response, roll angle and rate feedback were added to the
aileron command to add damping to the system (see the previous report,

page 125). With such compensation, the dynamics are
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-0.91237 0.15708 -1.0 0.015431 0 0
-1559.2  -4385.3 0 -4385.3 B770.6 0

x(t) =\ 290.48 0 0 0 x(t) + 0 281.11 Ju(t)
0 1 0 0 0 0
(6.3a)
1 0 0 O

y(e) ={o 0 0 1 | x(t) (6.3b)
The open-loop poles are at

-4384.24,

-1.00040, -0.484%j17.035. (6.3c)

As in the SISO case, the plant dynamics are discretized using an
exponential transform for a sampling interval of 0.1 seconds. The

open—loop poles of the discretized system are:
0.00000654, 0.9047, -0.12609%j0.9444 (6.4)

The response of this system to a pulse and a step in aileron input is
shown in Figure 6.2. The corresponding responses to similar excita-
tions in rudder input are shown in Figure 6.3. As in SISO case, these
inputs are applied at t=0.4 seconds. In all the figures involving

MIMO plant simulations, the following notations have been used:

on output plots:

A

sideship angle,

B

roll angle,

oun input plots:

A

aileron angle,

B rudder angle.

It is obvious from Figures 6.2 and 6.3 that the first output is insen-

sitive to changes in the first input and the second output is simi-

larly related to the second input.
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6.2.3 Simulation Parameters

In order to facilitate comparison between related plots, the
scales have been kept constant, if possible, within each series of
runs. Unless otherwise noted, the following conditions existed in the

simulations:

® The sample time was 0.l seconds.

° The controls were computed for the three blocks ending at
one, three and five steps in the future (for details of the
input blocking techniques see the previous report on MAC).

® The reference trajectory time constant was 0.1 seconds for
all outputs.

® No input constraints were lmposed.

® It was assumed that the plant model was completely unknown at
the beginning.

Therefore the missile was allowed to run open-loop for a while under

the effect of dither excitation and measurement noise. The plant was
identified at the end of this period which was then used by MAC as an
internal model of the plant. The set points were then changed at the

end of this interval as follows:

For the SISO plant, angle of attack was set from 0° to 15°,

For the MIMO plant, sideslip was set from 0° to 10° and the roll
set point remained at 0°.

° The output weights were all equal to 1 and no input weights
were used.

'Y The input excitation noise (dither) and measurement noise

were white Gaussian noise processes generated by the
subroutine GGNML from IMSL library.

6-5



6.3 Simulation Under Various Scenarios

Under each condition, AMAC was applied to the SISO plant of
Section 6.2.1 and the MIMO plant of Section 6.2.2. These results are

exhibited separately.

6.3.1 MAC Applied to Perfectly Known Plants

Extensive simulation results under this condition, i.e. when the
plant model is perfectly known, have been reported in the previous
report on MAC [AFWAL-TR-80-3125]. Two of these results are reproduced
here for later comparison with AMAC performances. The control and the
output of the SISO plant under the same simulation parameters of
Section 6.2.3 when the set point 1s changed from 0° to 15° at 0.4
seconds is shown in Figure 6.4. Similar response for the MIMO plant

for a set point change at 7.0 seconds is shown in Figure 6.5.

6.3.2 AMAC Applied to Unknown Plants

The adaptive MAC was applied to the plants of Sections 6.2.1 and
6.2.2 and the results are shown in the subsequent figures. The
variance of the excitation signal (dither) was 0.1 and that of the
measurement noise was 0.05 so that the signal-to-noise ratio (SNR) was
6db. This ratio is considered to be realistic by many practicing
engineers. The dither was superimposed on the normal input obtained
from MAC algorithm and the measurement noise was added to the actual

output of the plant.

The SISO plant was identified at the end of every 7-second inter-
val and the optimal state order was selected using the AIC criteria
(see Chapter 2 for details). As mentioned earlier, the plant was
running open loop during the first interval and closed loop in the
subsequent intervals, The control and the output sequences are
plotted in Figure 6.6 - the vertical dotted lines in this and the sub-
sequent figures indicate the length of the intervals. The plant is
identified at the instants indicated by these dotted lines. This
figure clearly shows that under AMAC, the plant can track the
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reference input albeit at the expense of ride comfort (or oscillations
in the output). To see how CVA performs when combined with MAC, we
have compared the transfer function of the identified plant in the
first interval (i.e. open-loop identification) with the actual one in
Figure 6.7(a) and that from the 3rd interval (closed-loop iden-
tification) in Figure 6.7(b). The optimal state order and the iden-

tified poles during various intervals (see Figure 6.6) are found as

follows:

State Order Poles
Section I 3 0.588, 0.3437£j0.8509
Section II 3 0.988, 0.3042%j0.8455
Section III 3 0.966, 0.2664%£j0.8308

These poles of the identified system can be compared with those of
actual plant which are at 0.31711*j0.87252.

The MIMO plant was identified every 20 seconds under similar con-
ditions, the plant being run open loop in the first interval. The
servo performance of AMAC under this run is shown in Figure 6.8. The

set point was changed at the 20th second. The optimal order and the
identified poles are:

State Order Poles
Section I 3 0.8089,-0.12066%j0.9312
Section II 5 0.5888, 0.7479, 0.835,
-0.1358+3j0.9308

Again these identified poles may be compared with the actual ones in
equation (6.4). Each element of the identified transfer function from
Section I (i.e., open-loop identification) 1s compared with the
corresponding element of the actual transfer function in Figure 6.9.
The comparison of the closed-loop identified system (i.e. from Section
II) is made in Figure 6.10. Note that the accuracy of the transfer
function identification is essentially the same for both the open-loop

6-7



and closed-loop identification which is a theoretical property of the
CVA identification method as discussed in Chapter 2.

6.3.3 Effect of Data Length and Dither Strength

The adaptation interval for the SISO plant was reduced from 7
seconds to 4 seconds and the AMAC was applied to the plant, keeping
other simulation parameters unchanged. But this time the identified
plant was too far away from the true plant and the inherent robustness
of MAC was not adequate to enable the plant to track the reference
input. The closed-loop was unstable as is shown in Figure 6.11. The
dither strength was then raised to 1.0 thus making SNR 26 db. The
adaptation interval was fixed at 4 seconds. This time the quality of
the identified plant was better and the plant under MAC was able to
track the reference input again albeit at a cost of much higher
oscillation. The resulting tracking behavior is shown in Figure 6.12.
The identified plant in the open-loop and closed-loop environments are
compared in Figure 6.13. The optimal state orders for Sections I, II
and III were respectively 4, 3 and 6.

For the MIMO plant the data length was reduced from 200 to 100
and similar effect was observed - the closed loop was unstable as
shown in Figure 6.l14. As in the SISO case above SNR was raised to 26
db by increasing the dither strength to 1.0. As shown in Figure 6.15,
the tracking capability of AMAC was revived again. The identified
system from the closed loop operation is compared in Figure 6.16. The

optimal state order was 6 in both sections I and II.

The simulations in this section clearly indicate that the servo
quality of AMAC can be improved either by increasing data length or
dither strength.



6.3.4 No Measurement Noise

In this set of runs, 1t was assumed that there was no measurement
noise and the dimension of the state-space was known apriori. The

intensity of the dither signal was taken to be 0.l.

The SISO plant is identified every 2.5 seconds, i.e. only 25 data
points were used in the identification algorithm. The result of
applying AMAC is shown in Figure 6.17 and the traunsfer function of the
identified plant is compared in Figure 6.18. The identified poles are

follows:

State Order Poles
Section T 2 0.2981%j0.8751
Section II 2 0.3161%£j0.8629
Section TII 2 0.3094%£j0.8729

Under similar conditions, AMAC was applied to MIMO plant for a
data length of 50, i.e. the identification scheme was invoked every 5
seconds. The result is shown in Figure 6.19. The transfer function
of the identified plant in closed loop operation (i.e., from segment
III) is compared in Figure 6.20. The identified poles from different

segments of the run are as follows:

State Order Poles
Section I 4 0.907,-0.029, -0.145%30.885
Section II 4 0.676, 0.912, -0.115%j0.967
Section IIIL 4 0.888%j0.037, -0.11%j0.948

These plots show that when there is no observation noise, the CVA

technique can reliably identify the plant from a relatively small data
length.



6.3.5 Gust Noise Excitation

To demonstrate the effect of colored noise excitation on the
accuracy of the identified trasnfer function, a wind gust excitation
of the form described in MIL-F-8785 (Hoh et al, 1982) is used. This
is in contrast to the white noise input excitation used in the other
simulations of this chapter. The wind gust excitation was simulated
using a white noilse excitation of unit variance into a transfer
function shown in Figure 6.21 along with the plant transfer function.
The gust exciltation level was chosen so that the total variance of the
input excitation was the same as the white noise excitation used in

Figure 6.6 and 6.7.

The control and output sequences are shown in Figure 6.22. The
identified transfer functions corresponding to the time intervals I
and III are shown in Figures 6.23 with the use of open and closed loop
data respectively. 1In theory, the accuracy of the identified transfer
function at different frequencies is proportional to the ratio of the
input excitation power to the measurement noise power at the
frequency. Thus one would expect to see a slightly greater accuracy
of the transfer function near the peak of the gust spectrum and
slightly lower accuracy at the frequencies with low power when
compared with Figure 6.7. This 1is consistent with the simulation run,
however the statistical variability is high in comparing

identification accuracy on only two data sets.

An implicit input excitation where the excitation is not observed
was also considered. The result is of little use in transfer function
identification since only the magnitude of the trasnfer function is
obtainable and not the phase. 1In addition the accuracy of thé
magnitude function is considerably worse than in the case of an
explicit input excitation. Thus the presence of wind gusts are of
very limited value in plant transfer identification unless the gust

excitations are accurately measured.



6.4 Conclusion

The simulations of this chapter have demonstrated the fact that
the combination of CVA and MAC results in a reliable adaptive control
scheme. This scheme can be used in an environment where the plant
model is completely unknown and/or slowly time varying. The satisfac-

tory performance of AMAC demonstrated that:

(1) CVA can identify a plant satisfactorily in an open loop as well

as in closed loop operation of the plant.

(ii) The optimal state-order selection criteria (using AIC) is
extremely helpful when the state-space dimension of the true plant is
not known apriori. The comparison between the identified and the true
transfer function shows that this order selection technique works very

well in a low SNR environment.

(1ii) The accuracy of the identified plant (and hence the performance
of AMAC) depends upon data length and SNR. However these factors can
be traded between one another - CVA performance can be maintained by

using shorter data length and larger SNR and vice versa.

(iv) MAC has excellent robustness properties. As a result the closed
loop performances can be maintained in many instances, even when the

quality of identification has been degraded.

(v) If there is no measurement noise, the plant can be identified

from a much smaller sample size compared to the situations having

measurement noise.

It is worth noting that the MAC control technique is based upon
the impulse response model of the plant and therefore MAC can be used
only for controlling stable plants. This causes no problem in a
deterministic environment if the plant is a stable one. But in an
adaptive control scheme where the plant is reidentified frequently,
the identified plant may turn out to be unstable if the data length is

too short or the signal-to-noise ratio too low even if the true plant
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is an asymptotically stable one. We indeed faced this problem in some
of the simulations of this chapter, but the effect was not dramati-
cally visible because the intervals of simulations were too short,
However this problem can be remedied by using Model Predictive Control
(MPC) technique - a newer version of MAC which can handle stable and

unstable systems with equal ease in the same framework.
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