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CHAPTER 1 

INTRODUCTION & SUMMARY 

MAC is a relatively new digital control design technique that can be 

implemented using dedicated microcomputers or microprocessors.  In its 

simplest form, MAC consists of: ,, 

(i)    an internal model of the system to be controlled 

(ii)   a reference trajectory description of the desired closed 

loop behavior 

(iii)  an on-line optimization of future control inputs to produce 

the desired performances. 

This technique has been proven successful in many industries and aerospace 

applications.  Although the methodology was originally developed by prac- 

ticing engineers from heuristic arguments, single-input single-output MAC 

under some reasonable assumptions has been extensively analyzed in the pre- 

vious report AFWAL-TR-80-3125.  As a result of basic research questions 

arising in this previous study, the present work on adaptive MAC was undertaken. 

The main objective of this project is to develop an adaptive MAC and an 

appropriate framework for robustness analysis particularly when the plant 

is compensated apriori by a fixed gain analog controller.  Based on the 

objective of this project, this report is primarily divided into three 

parts:  an adaptive estimation scheme for system identification of the 

unknown plant dynamics is developed and analyzed in Part 1- classical and 

modern robustness analysis techniques are applied to MAC in Part 2; and Part 

3 contains the results on simulation. 

The methods of Parts 1 and 2 are demonstrated on several examples by 

computer simulation in Part 3.  Detailed derivations and proofs of a number 

of the results are contained in the Appendices in the form of published 

research papers or papers being submitted for publication. 
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In Chapter 2, the system identification procedure for adaptation 

to system changes is presented.  The method used for identification is the 

canonical variate analysis (CVA) technique.  This method has been developed 

in the last several years and overcomes the difficult problems in currently 

available methods which prevent their use in general real-time automated 

systems.  Some of the difficulties of other methods are first discussed, 

and the attractive features of CVA are described including the statistical 

and computational robustness of the method as well as the inherent 

ability to determine the appropriate model state order from the obser- 

vational data.  The basic conceptual aspects of CVA are then developed 

which include the choice of a best set of reduced states of the past 

for prediction of the future evolution of the process.  This is 

accomplished by a canonical variate analysis of the past and future. 

The details of such an analysis are given in two of the appendices. " 

The computational aspects of the procedure involve a singular value 

decomposition which is a very accurate and numerically stable 

algorithm.  The close relationship between the CVA method and the 

maximum likelihood and instrumental variable methods are described. 

To investigate the effect of external input excitations on the 

accuracy of the identified system model, simultaneous confidence bands 

on the identified plant transfer function and disturbance noise power 

spectrum are computed.  The details of this computation are contained 

in an appendix.  Using these results the output tracking error due to 

both control and identification errors is derived in the context of 

stochastic and dual control.  The computational aspects of the 

algorithms are described including the basic steps and amount of com- 

putation with the detailed computational equations contained in the 

appendices. 

Chapter 3 analyzes MAC when applied to a lightly damped plant 

that has been compensated apriori by constant gain output feedback.  MAC 

software uses an impulse response description of the plant which has a 

large number of terms and is not suitable for analytical studies. 

Therefore in this chapter MAC has been described using a rational transfer 

function model (difference equation model) of the plant which shows that 
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one-step-ahead MAC can also be explained using the classical root locus 

technique.  In chapter 4 an appropriate framework is developed for robust- 

ness analysis applying the perturbational argument to the Nyquist plot of 

the steady state MAC loop transfer function.  It has been possible to apply 

the current robustness analysis technique to MAC under this framework.  The 

analysis gives a set of sufficient conditions, and the perturbed closed- 

loop system remains stable if the additive or multiplicative modelling 

error of the plant satisfies these conditions.  These conditions define the 

neighborhood of the identified model such that if the actual plant lies in 

this neighborhood then the MAC control law designed on the basis of the 

identified model also stabilizes the actual plant.  Finally, in Chapter 5, 

new techniques are developed for selecting optimum (possibly unique) 

sampling rates, which play a crucial role in an adaptive control scheme. 

The sampling time interval is selected on the basis of a minimax approach 

and also satisfies the classical Nyquist sampling rate. 

Finally, in Chapter 6, extensive simulation results have been presented 

and in Chapter 7 conclusions and summary are provided. 

The major conclusion of this report is that MAC is a very effective and 

superior control technique for linear multivariable plants in a deter- 

ministic environment as well as in an uncertain environment where the plant 

is not exactly known.  The adaptive MAC has also been found to be success- 

ful where the plant is slowly time varying and/or non-linear.  The robust- 

ness properties of standard MAC and adaptive MAC have been verified by 

extensive simulations of the missile attitude control problem.  A complete 

model of MAC for a multi-step-ahead optimization horizon and input-blocking 

is not yet available, and without this the theoretical properties of a real 

world MAC are not available in an analytical form.  It is recommended that 

future studies of MAC concentrate on (i) developing a complete model of the 

MAC algorithm, (ii) comparison of MAC performances with other control design 

techniques, and (iii) applying an adaptive MAC to a full scale flight 

control problem. 
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Part 2 

CHAPTER 2: SYSTEM IDENTIFICATION 

2.1 Introduction 

There has been considerable progress in system identification in recent 

years.  The method of maximum likelihood has been established as the most 
accurate in theory, although the computational burden and numerical con- 

ditioning are serious problems particularly for general applications where 

the number of parameters can easily be dozens of even hundreds.  A number 

of simplified schemes have been considered such as recursive ML and instru- 

mental variable methods.  While these methods have reduced computational 

requirements, there are difficulties with initialization and with accuracy 

in small samples which are of particular interest in tracking dynamical 

systems.  Also these methods are not entirely reliable numerically since 

they depend upon the ARMA parameterization which is known to have global 

singularities (Gevers and Wertz, 1984).  Also if the system order is over 

estimated, then the computations become ill-conditioned.  This considerably 

complicates the task of determining the state order which is usually 

unknown.  A number of more ad hoc schemes are available, but these have 

even less desirable statistical or computational properties. 

Fortunately, in the last several years, a new method has been developed 

using the approaches of canonical variate analysis (CVA) method of mathema- 

tical statistics, stochastic realization concepts from system theory, and 

information or entropy methods for the statistical choice of model order 

and structure.  This method has some highly desirable properties.  The 

order of the state is determined statistically.  The computation is based 

upon a singular value decomposition which is one of the most stable and 

accurate numerical procedures available.  The model fitting and state order 

selection is always numerically well conditioned.  The model fitting 

accuracy has been found to be very close to maximum likelihood in moderate 

and large samples sizes.    The canonical variate analysis method for 

system identification has been used as the primary procedure in this study 

2-1 



because it is the only method currently available with the above proper- 

ties.  Furthermore, it handles with no additional complication the dif- 

ficult multi-input multi-output system identification problem.  In the 

development, the CVA method is discussed in Section 2.2, and the close 

relationship of CVA to the instrumental variable and maximum likelihood 

methods are discussed in Sections 2.3 and 2.4 respectively.  The topics of 

input design and sampling for identiflability are described in Section 2.5, 

while the approaches of stochastic and dual control for input design are 

discussed in Section 2.6.  Finally the computational aspects of the CVA 

method are discussed in Section 2.7.  The detailed derivations supporting 

these sections are contained the various appendices. 

2.2 Canonical Variate Analysis of Time Series 

The canonical variate analysis method of system identification was first 

proposed by Akaike (1975).  In this fundamental contribution, a stochastic 

realization algorithm was proposed by using the statistical method of cano- 

nical correlation analysis on the Hankel covariance matrix to choose a 

basis for the state space and to statistically determine the rank of the 

state space.  This provided a fundamentally new and statistical approach to 

the  determination of a dynamical system on the basis of noisy and finite 

length data.  The statistical determination of state order was based upon 

the Akaike information criterion (AIC).  This initial work did not consider 

the case of an input to the system, but considered only the case of an out- 

put. 

Later work (Larimore, 1983, in Appendix B) includes the more general 

case of a multi-input multi-output system. The computational procedure of 

this method is more efficient in requiring only one canonical correlation 

analysis, and can also be used to solve the reduced order modeling problem 

using a general quadratic weighting on the prediction error of the future. 

Furthermore, a more exact computation of the AIC is used for order deter- 

mination than that used in the original work of Akaike. 

The approach to system identification using generalized canonical 

variables is described in some detail in Larimore (1983, in Appendix B). 
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That approach involves consideration of the past p(t) and future f(t) of a 

vector process at a time t defined as 

pT(t)-(yT(t),uT(t),yT(t-l),uT(t-l),...)T (2.i) 

fT(t)=(yT(t),yT(t-i),...)T (2.2) 

where u(t) is the input and y(t) is the output of an unknown system with 

state space structure of the form 

x(t+l)=<tx(t)+Gu(t)+w(t) (2.3) 

y(t)=Hx(t)+Au(t)+Bw(t)+v(t) (2.4) 

with v(t) a measurement noise and w(t) a process noise with respective 

cross spectral density matrices R and Q.  From the theory of Markov 

processes and in particular the theory of stochastic realization, the 

minimal state vector defines the information from the past relevant to 

the future of the process and is called the predictor space (Akaike, 1974a). 

The approach of canonical variables to system identification is to . 

determine the optimal set of linear combinations m(t) of the past p(t) 

that best predict the future f(t) in terms of minimizing the prediction error 

E II f-f II =E[(f-f)T Cov-1 (f.f) (f-f)] (2.5)    ' 

where Cov(f,f) is the covariance matrix of the future f and f is the best 

prediction of f based upon the memory m(t) . This optimization problem 

involves the optimal selection of the dimension of m(t)  as well as 

the optimal selection of the linear combinations of the past. 

The solution to this problem is derived in Larlmore (1985a), included in 

appendix A, in terms of a generalized singular value decomposition (SVD). 
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This solution is precisely a generalization of the classical canonical 

correlation analysis problem of mathematical statistics (Hotelling, 1936). 

Modern computational procedures use a singular value decompositions (Golub, 

1969) involving the covariance matricies of the past and future.  The 

generalized SVD determines transformations J and L and a diagonal matrix D 

such that 

JCov(p,f)L = Diag(Yi>... >Yi> 0,...,0)=D    '      (2.6) 

JCov(p,p)J = I; LCov(f,f)L =1 (2.7) 

The transformations can be interpreted as defining a new set of coor- 

dinates for the past and future in which the covariance are D, I and I as 

given in the last equation.  If in (2.5) and (2.7), the covariance matrix 

Cov(f,f) is replaced by an arbitrary positive semidefinite weighting matrix 

A, then the above generalized SVD still gives the solution to minimizing 

the weighted prediction error (2.5) even though the covariance rela- 

tionships no longer hold (Larimore, 1985a). 

For a full order state model, the optimal memory or state x(t) is 

related to the past p(t) in terms of the first k canonical variables as 

m(t) = (Isub k, O)Jp(t), i.e. the first k components of the canonical pre- 

dictor variables Jp(t).  A minimal order realization is obtained with this 

choice of state.  The computation of the state space matricies is given in 

Larimore (1983) in Appendix B.  The state space matricies and noise 

covariance matricies are given by a linear regression as specified by the 

state space equations (2.3) and (2.4). 

In system identification, the covariance raatrics are not known but are 

estimated from the observations.  The statistical determination of rank in 

the canonical variate analysis is given approximatley using standard cano- 

nical correlation analysis methods (Akaike, 1976).  A more refined com- 

pareson between the different order models is given by use of the Akaike 

information criterion (AIC) which is asymptotically optimal in minimizing 

entropy (Shibata, 1981).  The use of entropy measures such as the AIC has a 

fundamental justification in terms of the basic statistical principles of 

sufficiency and repeated sampling (Larimore, 1983a). 
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The minimal order realization is unique independent of the weighting 

matrix A, but when a reduced memory is selected, the approximate system 

does not in general minimize the prediction error for that order.  This is 

because the reduced rank canonical variables are not in general recursively 

computable.  However in the case of the statistical rank determination 

problem, there is an insigificant difference between the state of the 

realized system corresponding to the statistically optimum choice of order 

and the full rank canonical variables. t 

2.3 Relationship with the Method of Instrumental Variables 

The instrumental variables method gas a natural interpretation in terms 

of the generalized canonical variate problem.  In the instrumental 

variables approach, the state equations (2.3) are considered as unobserved 

structural relationships that are indirectly observed through the noisy 

measurement equations (2.4).  A vector m(t) of instrumental variables is 

constructed which is hopefully close to the true state x(t).   This is used 

in place of the true state in solving the problem.  This apparently works 

well for an appropriate choice of the instrumental variables when the true 

order of the system is known or well chosen.  In other cases, this approach 

may lead to inaccurate models. 

A more general problem is the optimal choice of instrumental variables 

for a specified order k of the model as posed by Rao(1973, 1979) (see also 

Larimore, 1985a, in Appendix A).  This is formulated as finding the optimal 

choice of k linear combinations of the past p(t) that predict the future 

f(t) as measure in terms of the squared error (f-f)T (f-f).  This is preci- 

sely the generalized canonical variate problem with weighting matrix A  = I. 

If k is chosen as full rank, then the memory and the state space realiza- 

tion are independent of the weighting.  However, for lower rank k, there 

can be a considerable difference between the state space and reduced order 

system (Larimore, 1983).  The squared error of instrumental variables 

relates to energy while the canonical correlation analysis relates to the 

statistical significance of the problem.  Thus the canonical correlation 

analysis can be viewed as an optimal choice of the instrumental variables 
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using the appropriate weighting of the prediction errors for the deter- 

mination of the statistically significant number of states. 

Time recursive methods using instrumental variables and approximate 

maximum likelihood (IV-AML)  are claimed to be an approximately efficient 

parameter identification method for large samples as shown in simulation 

examples (Young and Jakeman, 1979).  This is shown by Monte Carlo simula- 

tion and by estimating the parameter estimation error covariance matrix. 

Below it is shown by Monte Carlo simulation that the canonical correlation 

method also gives efficient identification of the system dynamics.  This is 

done by evaluating the spectral estimation error. 

2.4 Maximum Likelihood Efficiency of CVA 

The canonical variate system identification procedure has been found in 

moderate sample sized to be close to the lower bound of maximum likelihood 

estimation.  There is no proof available for this, however simulations 

have shown this to be the case.  There is some theory to suggest why cano- 

nical variate analysis is an efficient estimation procedure. 

Conditional upon the choice of the state vector by the canonical 

variate analysis, the computation of the state space matricies by 

regression is a maximum likelihood procedure.  The difficulty in proving 

the asymptotic efficiency of CVA is that for correlated time series there 

is no proof that CVA gives the choice of state that will result in maximum 

likelihood estimates unconditionally. 

The lower bound for estimating the power spectrum and transfer function 

is given in Larimore (1985a, in Appendix A) as a function of frequency. 

From extensive simulations, the canonical variate analysis gives an iden- 

tified system within the lower bound error of the maximum likelihood proce- 

dure at each frequency as shown in Larimore, Mahmood, and Mehra (1984, in 

Appendix D). - 

2.5 Input Design and Sampling 

The accuracy of the identified plant model and subsequent control tracking 

error depends upon the sampling rate, sample size, the presence of Implicit 
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or explicit extra input signals, and the presence of disturbance or output 

measurement noise.  In fact the presence of a linear feedback control pro- 

vides no information for identification of the plant (Ljung, Gustafson, and 

Soderstrom, 1974) , and some additional input signal is required for plant 

identiflability.  Recently, Anderson(1985) has shown that available adap- 

tive control methods that do not have persistent excitation of the system 

necessarily exhibit burst phenomena of short periods with large tracking 

errors when the system parameters drift far from the true. ; 

The requirement for additional information is easily seen since the 

presence of a linear feedback could be present in the plant internally and 

the actual input could be unconnected to the system and still give exactly 

the same response.  On the presumption of a strictly linear plant, a nonli- 

near feedback can be used to provide identiflability.  Also a switching 

between different linear feedback systems can provide identiflability.  A 

better approach, however is to use an explicit additional input excitation. 

Such an excitation is best chosen to be a broad band noise type of spectrum 

which guarantees that it is persistently exciting. 

In some applications, there are implicit excitations such as wind gust 

turbulence on an aircraft which provide some information about the plant. 

If the power spectrum of the turbulence is exactly known along with the 

input coupling to the plant state, then this can provide amplitude information 

about the transfer function from the gust input to the output.  In particular, 

the relationship between the observed output spectrum Sy(z) and the 

assumed input noise spectrum  Sn(z) and transfer function H(z) is 

Sy(z)=H(z)Sn(z)H*(z) (2.8) 

Unfortunately, in most cases this is not very helpful since the gust 

spectrum is not accurately known and is highly variable with time.  Also 

the gust input coupling to the state will generally be different than the 

control input.  Furthermore, this provides only amplitude information, and 

for control the transfer function phase can be crucial. 
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The best input excitation is one that is incorrelated with the system 

state.  The spectrum of the input excitation can be chosen on the basis of 

the plant transfer function, and the disturbance and output measurement 

noise spectra.  The resulting plant identification error expected at each 

frequency is a complicated function of the above power spectrum and 

transfer functions as well as the parameterization of the model.  A 

detailed derivation and description of the transfer function and noise 

spectrum estimation error variance at each frequency is given in Larimore 

(1985b, in Appendix E).  These expressions are complicated but can be used 

to calculate the estimation error and produce simultaneous confidence 

bounds on the estimated transfer and spectral functions. 

An additional consideration in identification accuracy is the sample 

rate and rate of reidentificatlon of the system or equivalently the sample 

size.  The issue of sample rate for representing a continuous time system 

is covered in Section 5.  The primary consideration in choosing the sample 

rate is to insure that the important frequency information is preserved and 

that the higher frequencies of no interest do not degrade the estimation by 

aliasing.  For large sample, the sample size has a simple relationship to 

the accuracy of the identified system which increases proportional to the 

inverse square root of the sample size.  For moderate sample sizes of 

several hundred which is of primary interest, this relationship can be 

expected to hold approximately. 

As an example of the accuracy bounds that are obtainable from the 

methods in Larimore (1985b, in Appendix E), consider the case identifying 

the transfer function of an ARMA(4,3) model discussed in Larimore et al 

(1984, in Appendix D) with a sample of 800 which is observed in closed loop 

with a white noise input excitation and a white output measurement noise 

with the signal to noise power ratio of the input to output equal to 0.10. 

Then the transfer function of the true, identified, and simultaneous con- 

fidence bands about the estimated are shown in figure 2.1.  The confidence 

bands contain the true transfer function entirely within the bands across 

the entire frequency range with probability 0.95.  Note that the confidence 

bands are quite tight in both phase and amplitude.  For a lower sample 

size, the confidence bands are wider by a factor of the square root of the 

sample size. 
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FREQUENCY  (HZ) FREQUENCY  (HZ) 

Figure 2.1    Power  Spectral Density of ARMA(4,3)   Process, 
True   (solid),   Estimated   (dashed),   and  Simultaneous 

'      .   Confidence Band   (dotted). 
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2.6 Stochastic and Dual Control 

In stochastic and dual control, the effect of the stochastic input on 

both plant Identification and control tracking error is taken into account. 

This is also possible in the adaptive MAC framework.  In this section, we 

derive the tracking error as a function of the stochastic input excitation, 

plant disturbance and measurement noise, and the MAC controller plant 

mismodelling error. 

The closed-loop transfer function from the plant input  u(z) and the 

composite plant disturbance and measurement noise  n(z)  as seen at the 

plant output to the observed output  y(z)  is given in Section 4.2 and can 

be expressed as 

vr.^-  (z-I)H(z)u(z)+(z-l)n(z) . ,„ -. 
y^^-* (z-l-a)I+aR(z)  ^2.9) 

where the relative error R(z) in estimating the plant transfer function is 

defined as 

R(z) = H-l(z)[H(z)-H(z)] (2.10) 

Here H(z) is the true and H(z) is the identified plant open loop transfer 

function.  Now for a complex differentiable function w = f(x)  of a 

complex random variable x with mean M , the variance of the function is 

derived from 

f (a) = f(M) + f' (M) (X - M) (2.11) 

which holds to first order so 
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E|   f   (x)   -   f(y)|  2     =  E|   [f(x)   -  f(M)][f(x)   -  f(p)]* 

=    I  f'   (y) I 2  E I  x-u I 2 (2.12) 

In   the   context   of   the   identification  and   control   involving  different 

segments  of  data,   we  have  approximate  independence  between  the  processes 

u(z),   n(z)   and   the   transfer  function  relative  estimation  error     R(z). 

Thus   the   tracking  error  due   to   the   input   and  disturbance  excitation  as   well 

as   the   plant  modelling  error   is 

2 
EI y(z) I 2  =[| G(z)| -2   Su(z)| +1 J(z)l 2Sn(z)][   1  + f—-^; -T?"^^^   IMz)]] 

' ' 111 (^2-1)+  a    ^ 

(2.13) 

where  G(z)  and  J(z)  are the closed loop transfer functions from 

the input excitation and disturbance noise excitations respectively 

to the plant output, and where  S^ (z) is the spectrum of the plant 

disturbance and measurement noise as seen at the plant output in open loop 

operation. 

It is seen that as the input excitation is increased, the control 

tracking error increases for a fixed relative modeling error R(z) , but 

the increased excitation decreases the relative error in identification. 

The quantity Var [ R(z) ] , the relative squared error of identifying the 

transfer function Is derived In Larlmore (1985b, Appendix E).  This is a 

function of the characteristics of the plant transfer function as well as 

those of the process and disturbance noise spectrum characteristics.  The 

expressions for computing these quantities are straight forward but not 

easily expressed analytically.  Thus as in the stochastic dual control 

literature, the optimal design is analytically intractable and requires a 

numerical approach. 
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2.7 Computational Considerations 

In this section the major computational steps in the algorithm are    ,,: 

described.  The detailed computational equations are contained in the 

appendices. 

The computational steps in the identification algorithm are shown in 

Figure 2.2.  In the identification of the plant, first the covariance among 

the past and future are computed.  Second, a canonical correlation analysis 

between the past and future is performed.  From this, a comparison of the 

various state space model orders is computed using the AIC criterion.  On 

the basis of this, the best state order is selected and the state space 

matrices computed by regression.  This state space model is then used in 

the MAC controller.  The detailed computations of these blocks are con- 

tained in Larimore (1983, in Appendix B) except for the AIC computation. 

An approximate AIC computation is given in Akaike (1976) as 

k 
AlC(k) = I   logl-Y^) +2pk ,,      (2.14) 

where  p^^^ is the number of parameters fitted in the model. 

To evaluate the AIC, the number of free parameters adjusted in the 

canonical variate procedure is required.  For a state space model of state 

order k of the form of Equations (2.3) and (2.4), there are a number of 

implied constraints so that it is not correct to simply count the number of 

elements of the various matricies.  The number of functionally Independent 

free parameters  pj^^ including the process and measurement noise covariance 

is (Candy, Bullock, and Warren, 1979) 

Pk =2kn+n(n+l)/2+km+nm '        (2.15) 

where  n and  m are the vector dimensions of the number of outputs and 

inputs respectively at a given time.  If there is no Instantaneous feedfor- 
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ward, then the term nra Is deleted, while if there is no input the terms 

km + nm are deleted. 

The AIC expression (2.14) is only approximate, and the precise eva- 

luation is given by computing the state space model 6]^ for competing order 

models and doing an exact evaluation of the AIC by 

AlC(k) = -2 log p(Y,ei^)+2pi<. (2.16) 

The state order is chosen which minimized the AlC(k). 

The major computations are the covariance and the singular value decom- 

position.  Once the plant state order is determined, the computation of the 

state space matricies requires relatively little computation.  For slow 

identification rates, the computation becomes proportional to the sample 

size times the the dimension of the past and future, while for fast iden- 

tification rates, the computation is proportional to the cube of this 

dimension. 
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PART 2 

CHAPTER 3 

KULTIVARIABLE MAC IN A CLASSICAL CONTROL FRAMEWORK 

3.1  Introduction 

The theoretical properties of MAC have been studied In details In 

the previous report (AFWAL-TR-80-3125) using the Impulse response (IR) 

model of the plant.  The reason for using the IR description of the  * 

plant is that the MAC software (known as IDCOM) uses this description 

of the internal model in the computation of the control sequence.  The 

IR description of the plant is the basis of the MAC technique where a 

quadratic optimization problem is formulated explicitly in terms of 

the future control sequence.  The IR description of the plant is 

superb from the computational point of view, but it has a disadvantage 

that this description is not parsimonious i.e. it contains too many 

parameters and is therefore not suitable for analytical studies. 

Since one of the objective of this project is to investigate analyti- 

caly various aspects of MAC, the MAC technique is described in this 

chapter in terms of a difference equation (DE) model of the plant. 

The DE description usually contains far fewer number of parameters 

than an IR description and is therefore suitable for analytical studies 

if a low order plant is selected in the analysis. 

There is no mathematical model for a generalized MAC with 

multistep ahead optimization horizon, input blocking, input 

constraints etc.  Therefore it is not possible to Investigate analyti- 

cally the properties of a generalized MAC control law.  The MAC stra- 

tegy generates an optimal control sequence by on-line optimization of 

a cost functional and the first element of this sequence is applied to 

the actual system.  It has been shown in an earlier report that if the 

plant is minimum phase and the cost functional is optimized over one 

step ahead, then the MAC control law can be Interpreted in a classical 

control framework.  In this chapter we extend this Interpretation to 
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multivariable systems and indicated how the robustness of MAC can be 

assessed in this framework. 

Section 3.2 extend the earlier descriptions of MAC to multi-input 

multi-output (MIMO) systems which shows that MIMO MAC can also be 

interpreted in a standard unity feedback configuration.  With a slight 

modification of this configuration It is shown that MAC can be 

explained in a multivariable root-locus framework.  The root-locus 

technique gives the locations of the closed-loop poles as the output- 

feedback gain is changed from zero to infinity.  Usually a rational 

transfer function or difference-equation (DE) model of the plant is 

used in this technique.  Therefore in order to cast MAC technique in a 

root-locus framework, MAC has been described in section 3.3 using the 

DE model of the plant.  Using this analysis, the root-locus interpre- 

tation of MAC is presented in section 3.4.  Finally the MAC for a 

lightly damped system is discussed in section 3.5 where it has been 

shown qualitatively that one should not try to use a high gain output 

feedback to introduce sufficient damping in a lightly damped system, 

otherwise a high sampling rate may have to be selected.  Conclusions 

are discussed in section 3.6. 

3.2  What is MAC? - An Overview 

MAC control strategy has been described and analyzed in earlier 

reports and publications [1,4,5,6].  We include here a simple descrip- 

tion of MAC for the sake of completeness of this report.  The 

following is an extended version of the earlier descriptions for MIMO 

plants. 

The MAC methodology generates a control sequence by on-line opti- 

mization of a cost functional, and the algorithm is suitable for 

implementation on microprocessors.  One of the attractive features of 

MAC is the clear and transparent relationship between system perfor- 

mance and various design parameters embedded in the design procedure. 

There are five basic elements in MAC (we assume in the following that 

the input sequence u(n) is m-dimensional and output sequence y(n) is 

p-dimensional): 
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(1)   An actual stable plant, possibly not known exactly, with a 

pulse response sequence (Hni, n=l,2,...N where each H^ is pxm dimen- 

sional matrix (we assume for simplicity that the plant has no time 

delay and is purely dynamic i.e. it has no feedthrough term).  Then 

the input sequence u(n) and the output sequence y(n) are related by 

y(n) = El   u(n-l) + H2 u(n-2) +...+ % u(n-N)       (3.1a) 

or,   Y(z) = H(z)U(z) (3.1b) 

where U(z), Y(z) and H(z) are z-transforms of u(n), y(n) and {HJ^} 

respectively. 

Here 

H(z) = Hiz~l + H2Z-2 +...+ HNZ-N = Hp(z)z-N 

where      Hp(z) is a pxm dimensional polynomial matrix in z and is 
given by 

Hp(z) = HizN-1 + H2zN-2 +... + HN    .  . (3.1c) 

This model is known as an "all-zero" model and Hp(z) determines zeros 

of the plant.  The locations of non-minimum phase zeros impose 

restrictions on achievable performance of MAC.  We must remind the 

reader that the physical interpretation of zero in the impulse 

response model of the plant is different from that of a transmission zero 

in a rational transfer function model or equivalently difference equation 

(DE) model) of the plant.  In the same way the physical interpretation of 

poles as natural modes of a plant are lost in this description.  However 

this point will be elaborated further in the next section. 

(ii)  An internal model of the plant having the same input-output 

dimension pxm as that of the actual plant and the pulse response 

sequence {Rn}, n = 1,2,...S.  The input u(n) is the same as that to the 

actual plant and therefore the output y(n) of the model is given by 

y(n) = Hi u(n-l) + ^2  u(n-2) +...+ % u(n-N)       (3.2a) 

or    ?(z) = ft(z) U(z) (3.2b) 

where, as before 
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H(z) = Hp(z) z-N (3.2c) 

and Hp(z) is a pxm dimensional polynomial matrix.  {5^} is generally 

different from (Hnj. . 

(iii)  A p-dimensional reference trajectory y^Cn), preferably 

smooth, Initialized on the current output of the actual plant y(n) that 

leads y(n) to a possibly time varying p-dimensional set point c.  If each 

of the reference trajectories y^iCn) has a first order dynamics with time 

constant a^  leading to set point c^, i=l,2,...p and if the trajectories do 

not interact with each other then y^Cn) evolves as 

yr(n+l) = Aa yr(n) + (I-Aa)c, yr(n) = y(n) (3.3a) 

or,    zYr(z) = Aa Yr(z) + (I-A^) C(z) (3.3b) 

where      A^ = diag (a^) 

(iv)  A closed loop prediction scheme for predicting the future 

output of the plant according to the scheme 

yp(n+l) = y(n+l) + yp(n) - y(n) (3.4a) 

or,    Yp(z) = Y(z) + z-1 [Y(z) - ?(z)] (3.4b)  ' 

Here yp(n) is p-dimensional. 

(v)  A quadratic cost functional J based on the error between 

yp(n) and yr(n) over a finite horizon !„ (here T^ is an integer): 

Tn 
J  =     I       [eT(n+k) W(n+k) e(n+k) + (3.5a) 

k=l 

,  uT(n+k-l) R(n+k-l) u(n+l-l)] 

= Trl       [W(n+k) e(n+k) eT(n+k) + (3.5b) 
k=l 

R(n+k-l) u(n+k-l) uT(n+k-l)] 

where W(.) and R(.) are positive semi definite time varying weights and 

e(n+k) = yp(n+k) - yr(n+k). In most of MAC applications R(.) is set to 

be zero. 
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Given (i)-(v), MAC finds as optimal control sequence {u*(n+i-l), 

i=l,...T^| by minimizing J over the admissible Input sequence 

{u(n+i-l)efi(i) , i=l...T^j.  Once the optimal control sequence is com- 

puted, the first element of the sequence is applied to the actual 

plant and the process repeats all over again. 

In general, there is no analytic solution for the control 

sequence (u ''^)} - it is computed at each step using an algorithm 

known as IDCOM.  In its greatest generality, MAC cannot be put into a 

classical control framework.  However under the following simplifying 

assumptions MAC is equivalent to an inverse-control law and can be 

modelled as a feedback configuration. 

(i)  The actual plant H(z) is minimum phase; 

(ii)  The plant model fl(z) is minimum phase; 

(iii)  There are no input constraints, i.e. ii(i) = R"* for all i; 

(iv)  Tn=l i.e. the optimization is carried over one future step 

ahead:  under this condition MAC is a one-step ahead pre- 

dictive controller. 

Under these simplifying assumptions, it is sufficient to select 

u*(n) to satisfy 

yp(n+l) = yr(n+l) for all n ^ 0 (3.6) 

for a minimum of the cost function J.  The assumptions (i)-(iii) 

ensure the existence of an optimum control u*(n) that satisifies 

(3.6) - the resulting optimal cost J* is zero in this case.  However 

U*(2) is then implicitly generated by Yp(z) = Yj-(z) so that 

U*(z) = [(z-l)a(z) + (I-Act)H(z)]-l [l-Aa]C(z)      (3.7a) 

Y(z) = H(z) [(z-l)H(z) + (I-Aa)H(z)]-l [I-Acj]C(z)  (3.7b) 

Equations (3.7a) and (3.7b) relate the setpoint C(z) with the optimal 

input sequence U*(z) and output sequence Y(z).  It is easy to see that 

this simplified form of MAC is equivalent to the following MIMO unity 

feedback configuration (we have henceforth dropped the * superscript). 
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y(z) 

Figure 3.1  MIMO MAC in a classical framework 

To see that the setup in Figure 3.1 indeed represents equation (3.7), 

note that at point 1 we have, 

U(z) = -^'^"^ (z)(I-Aa)E(z) 

= ^^~Nz)(I-Aa) [C(z) - H(z)U(z)] 

Multiplying both sides of this equation by (z-l)fl(z) and rearranging 

we have, 

[(z-l)H(z) + (I-Aa)H(z)] U(z) = (I-Aa)C(z) 

from which (3.7a) and (3.7b) follow.  The block within the dashed line can 

be thought of as a dynamic controller of the classical type.  The loop 

transfer function when the loop is broken at the plant input (point 1) 

is given by 

l^(z)   = ^^-Hz){l-ha)Eiz) (3.8) 

and determines the robustness of the feedback configuration at this 
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point.  When we have perfect identification i.e. H(z) = R(z), then 

points 2 and 3 are the same in Figure 3.1 and 

U(z) = Y(z) = ^ (I-Aa)E(z) 

or,    U(z) =^(I-Aa) [C(z)-U(z)] 

or,  zO(z) = Aa U(z) + (I-Aa)C(z) (3.9) 

Equation (3.9) is equivalent to 

u(n+l) = Aa G(n) + (I-Ao()c(n), u(n) = y(n) 

which shows that u(n) is the reference trajectory sequence y-^^in)   as 

shown in equation (3.3a).  This means that when the plant model is 

known exactly, the control sequence U(z) is generated as 

U(z) = H-l(z)U(z) = H-l(z)Yj-(z) (3.10a) 

Therefore the output of the actual plant is 

Y(z) = H(z)U(z) = Yj-(z) (3.10b) 

which shows that, in steady state, the plant output y(n) is identical 

to the reference trajectory yr(n) - perfect tracking has been 

achieved.  Equation (3.10a) clearly shows the need for minimum phaseness of 

H(z).  This analysis has revealed another interesting property of MAC. 

Exact tracking could as well be achieved by inverting the plant to 

generate the sequence u(n) in an open-loop configuration, but in MAC it 

does so in a closed-loop configuration and therefore the additional 

benefits of a feed-back configuration such as disturbance rejection, 

sensitivity reduction, etc are also obtained at the same time while 

achieving exact tracking. 

Further insight is available if we interpret the above equations 

for SISO plants.  The loop variables for SISO plants are denoted by 

corresponding small letters, e.g. h(z) is a transfer function for a 

SISO plant and H(z) is that for a MIMO plant.  Also for a SISO loop A^ =  a, 

and the Figure 3.1  takes the following simple form: 
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Figure 3.2  SISO MAC as a classical controller 

Note that in this figure (1-cx) can be treated as a gain and the usual 

classical root-locus technique can be applied to analyze the behavior 

of the closed loop poles as a changes from 0 to 1. But since the 

impulse response description of a plant has too many poles and zeros, 

the root-locus technique will not be useful and this is why we intend 

to describe MAC in terms of a difference-equation (DE) model of the 

plant in the next section. 

3.3  Lightly damped system in terms of difference equation (DE) and 

impulse response (IR) model 

Consider a generic lumped parameter linear time-invariant (LTI) 

system 

x(t) = Ax(t) + Bu(t), x(0) = XQ 

y(t) = Cx(t) 

(3.11a) 

(3.11b) 

where x(t), u(t) and y(t) are n-, m- and p-dimensional vectors repre- 

senting the states, inputs and outputs respectively and A, B, C have 

appropriate dimensions.  The corresponding frequency domain descrip- 

tion is •.,•,• 

X(s) = $(s)BU(s) and Y(s) = C<t'(s)BU(s) = Hc(s)U(s)  (3.12) 

where $(s) = (sI-A)~l and Hc(s) is the impulse response of the system. 

If ^i = Ci - 3^i   is the i-th eigenvalue of A, then the system is 
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asymptotically stable if a^^ < 0 for each 1 and in this case each ele- 

ment of H^(s) is analytic in the closed right half plane.  On the 

otherhand, the system is unstable if a^ >  0.  If Hj,(t) is the inverse 

Laplace Transform of H(,(s), then for asymptotically stable systems 

each element of H(,(t) approaches zero as t-*-", whereas for an unstable 

system some element diverges.  If the impulse response H„(t) of a 

system takes a long time to settle down to zero, the system is 

generally known as a lightly damped system.  The damping ratio asso- 

ciated with the i-th complex pole-pair ^i = cti - j^^^ is defined as 

^i 
l^TTT-^ (3.13) 

so that 0 < Ci < 1.  The system is lightly damped if C-j^ is small which 

results when ja-^l is small, i.e. the system is lightly damped when at 

least one of the poles lies near jw-axis.  These systems show unde- 

sirable behavior of "ringing" and excessive "overshoot" in open-loop 

transient response.  The impulse response of these systems decays to 

zero very slowly, and therefore a large amount of data must be stored 

in the computer for representing the impulse response sequence model 

of the plant which directly affects MAC computation. 

Since MAC is a digitally implemented control algorithm, we must 

find a sampled-data version of (3.11).  There are several ways of 

implementing digital control schemes - one of these is the sample and 

zero-order hold mechanism which is equivalent to discretizing (3.11) 

by using an exponential transform.  In this method the input is 

sampled every T seconds and held constant, i.e. u(t) = u(n) , nT < At < 

(n+l)T  between the two sampling instant.  In this case the z-domaln 

and s-doraain descriptions are related through 

z = eST (3.14) 

and the corresponding discrete-time system in state-space description 

is               .    . 

x(n+l) = Fx(n) + Gu(n), x(0) = XQ '   (3.15a) 
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y(n) = Cx(n) '■  (3.15b) 

where F = exp (AT), G = (F-I)A"'^B, provided that A"'^ exists, otherwise 

T 
G = /  exp (Aw)dwB (3.15c) 

0 

If the system (3.15) is asymptotically stable, the zero-state solu- 

tion of (3.15) is given by . , 

n-1  .  ■ ' 

y(n) = i     Hn-i U(i), H^ = Cpn-l G, n > 1 (3.16a) 
i=0 

which is the familiar discrete-time convolution.  Notice that if T is 

very small, to the extent that max lAj^jTj << 1, where A^^   is the 
ij        .  , - 

(i,j)-th element of A, then 

Hn == C exp(A(n-l)T)BT (3.16b) 

which also results if the integral in (3.15c) is approximated by the lower 

Riemann sum.  Taking the z-transform of (3.15a) - (3.15b) we get the 

frequency domain description, 

Y(z) = Hd(z)U(z), ,             (3.17a) 

where ■''- 

Hd(z) = C(ZI-F)-1G ,    .              (3.17b) 

The power series expansion of H(z) gives              '  ', 

Hd(z) = C(I/z + F/z2 +...) G = ), HnZ~" (3.18a) 
■    a-  .   .^ 

with the region of convergence (ROC) |z| > max |^i(F)|.  We can 
i 

recover (HH} from H(j(z) using a Cauchy Integral as follows , 

Hn = J_    Hd(z)zn-1 dz = CF^-l G (3.18b) 

2Trj 

which is the same in (3.16a). 

Ideally an IR sequence {Hnl computed in the above manner has an 

infinite number of terms.  Since MAC uses in its internal algorithm a 
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finite impulse response sequence |HJ^| , the matrix valued sequence {H^^} 

must be a fast converging one.  The poles in the continuous time 

system X^ and those of the sampled-data system z^   are related by z^   = 

exp (Aj^).  Therefore the discrete time system is unstable if \z^\   >   I 

for any i and is a lightly damped system if |z-j^|<I but close to unit 

circle i.e. |z£|-l.  In the earlier case {HJ^} diverges and in the 

later case {HJ^J has a very large number of terms before it converges 

to zero.  If the system is asymptotically stable |HJJ| converges, and 

given e > 0 we can always find an integer N(e) such that   II H^ II < e 

for all n > N and we can truncate the impulse response sequence to any 

desired degree of accuracy.  The finite impulse response description 

is also known to practicing engineers as a moving average (MA) or all 

zero model of the plant. 

Now suppose that an impulse response has been truncated to obtain 

a finite sequence [B.J^\   -   {H^ ,H2. . .Hf^}.   MAC uses this description of 

the plant model as shown in section 3.2 for a lightly damped system. 

This sequence is relatively long.  The z-transform H(z) is given by 

N 
H(z) = I     Hn z-n. (3.19) 

n= 1 ■  . 

Comparing with (3.18a) we find that 

Hd(z) -  H(z), |z| » 1.0. (3.20) 

Here Hd(z) will be called a difference equation (DE) description and 

H(z) an impulse response description.  Although H(j(z) and H(z) are 

approximately equal for all z within the region of convergence, the 

physical interpretation associated with the two description are 

different.  To see the difference clearly, consider a SISO plant in 

which case Hd(z) and H(z) are complex scalars and represented respec- 

tively by Hd(z) and h(z).  Then 

u   r   \       b(z) 

where a(z) and b(z) are polynomials in z, b(z) having a lower degree 

than a(z) for a causal system.  The zeros of the denominator a(z) are 
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the 'poles' of the system h^jCz) and are associated with the natural 

modes of the system.  The impulse response (IR) of the system is com- 

posed of these modes.  The zeros of b(z) are transmission zeros of the 

plant which have the physical interpretation that if ZJL is a zero of 

the plant and if z^ is also a mode of the input to the plant, then 

this mode of the input Is blocked by the plant and does not appear at 

the output.  On the otherhand the IR description h(z) can also be 

written as 

h(z) - ^(^^ 
d(z) 

where n(z) and d(z) are polynomials in z.  Here d(z) = z^, and n(z) is 

a polynomial of degree N.  This shows that h(z) has N poles at the 

origin and N zeros - but these poles and zeros do not have any physi- 

cal significance as in the rational transfer function model h(j(z). 

Since we want to explain the behavior of MAC in terms of standard 

pole-zero configuration, our immediate objective is to describe MAC 

using a difference ea'iation model. 

3.4  MAC with Difference-Equation Model:  a Root Locus Approach 

Consider again a pxm dimensional MIMO plant HjCz) with input U(z) 

and output Y(z).  Then parallel to the description of MAC in section 

3.2, we can describe the various elements of MAC as follows: 

(i)  The actual plant described by  \.j 

Y(z) = Hd(z) U(z) (3.21) 

(ii)  The internal model of the plant, also described by a 

rational transfer function description and given by 

Y(z) = Hd(z) U(z) (3.22) 

(iii)  A p-diraensional reference trajectory yr(n) which evolves ais 

y^Cn+l) = Aa yr(n) + (I-Aa)c, yr(n) = y(n) 
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or,     zY^Cz) = Act Y(z) + (I-Aci)C(z) (3.23) 

(iv)  a closed-loop prediction scheme yp(n) for predicting the 

future output of the plant, according to the scheme 

yp(n+l) = y(n+l) + YpCn) - y(n) 

or,     Yp(z) = Y(z) + z-1 [Y(z) - Y(z)] (3.24) 

(v)  and a cost functional as in (3.5) 

If we compare the expressions in (3.21)-(3.24) with those in 

(32.lb)-(3.4b) , we see that these expressions are the same mathemati- 

cally although in (3.lb)-(3.4b) we have used the IR description of the 

plant whereas in (3.21)-(3.24) we have used the DE (rational transfer 

function) model of the plant.  This comparison reveals the important 

fact that the basic principle of MAC does not depend upon the model 

description of the plant i.e., whether the model is described using a 

difference equation or impulse response.  Therefore, for a one-step 

ahead prediction horizon, the interpretation of MAC as a feedback con- 

figuration (as shown in Figure 3.1) is also applicable in this case. 

The important difference in this case is that if we use the DE model 

of the plant, we can associate the traditional pole-zero interpreta- 

tion to MAC.  Indeed if we choose a^ = a making the dynamics of all 

the reference trajectories the same, then we have Aj^ = al and the 

Figure 3.1 then is a familiar unit feedback MIMO configuration with 

(1-a) playing the role of a varying gain.  There are two advantages of 

this configuration: 

(i)  the closed loop pole position can be ascertained apriori 

using the multlvariable root-locus approach; 

(ii)  robustness of the closed loop can be examined in terms of 

the recently developed criteria employing the loop transfer 

function and return difference function at appropriate 

points in the loop. 
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3.4.1  Root Locus Analysis of MAC 

Consider, for simplicity, a SISO plant with an actual transfer 

function h(z) and suppose that its model is given by fi(z).  We assume 

that both the plant and this internal model is described by difference 

equation.  Note that we have dropped the subscript d here from the 

previous section for notational convenience. 

It is not obvious how y(n) will be affected as a changes, but the 

effect can be analyzed as if we are finding the root locus of the 

closed-loop configuration in Figure 3.2.  We can consider both a and 

h(z) as parameters that can be varied to regulate the closed-loop 

behavior of the system.  Indeed if, 

n(z) =   h(z) (3.25) 
d(z)   (z-l)R(z) 

wher     n(z), d(z) are polynomials in z, 

h(z) = plant transfer function in DE description 

ii(z) = model of the plant in DE description 

the closed loop poles will trace a continuous path from the open-loop 

poles (i.e. poles of the plant, the zeros of the model and the zero at 

z=l) to the open-loop zeros (i.e. poles of fi(z) and zeros of h(z)) as 

the gain varies from 0 to infinity.  But here the gain (1-a) varies from 0 

to 1 as a varies form 0 to 1.  So the closed loop poles trace a path 

from the open loop poles to somewhere towards the open loop zeros.  To 

put the problem into a standard framework of root locus, we introduce 

a one-to-one invertible mapping: 

«=_«_. (3.26) 
1-a 

so that as a changes from 0 to 1, B changes from 0 to infinity. 

Let        h(z) =^h(^ and h(z) =  ~^^ 

From Figure 3.2 it can be shown that the     input-output of the closed- 

loop is given by , 

3-14 



h„i(2) = Oz20n   y(z) = hci(z) c(z) 
d+(l-a)n 

where for simplicity we have written 

n = n^Cz) dh(z),  and d = (z-1) nh(z) d|^(z).    (3.27) 

For convenience henceforth we shall suppress the argument z.  Using 

o 
the transformation  a =    gives 

,  / V      n --" (3.28) 
C-L      deq + eneq 

where        dgq = ny^H^ + (z-On^d^ 

■^eq = d = (z-On^dj^ 

The closed loop characteristic polynomial is 

(t)ci(z) = deq(z) + eneq(z) (3.28a) 

It is obvious that 

(i)  as 6*0 i.e. a>0 (fast reference trajectory), the closed 

loop poles approach the zeros of deq(z) = ni^3^ + (z-l)n^dh. 

Depending on the characteristics of this polynomial the 

closed loop response may be oscillatory, damped and/or 

unstable. 

(ii)  as ti-*- infinity i.e. a->-l (slow reference trajectory), the 

closed loop poles approach the zeros of neq(z), i.e. one 

pole approaches +1 and the remaining poles approach the 

poles of the plant and the transmission zeros of the model. 

The pole at z=l will contribute to the sluggish response of 

the closed loop system. 

So the problem of obtaining a specific response from MAC can be 

translated into the design of the polynomials neq(z) and deq(z). If 

the open loop poles are not located in the appropriate region of the 

z-plane, we can choose the model of the plant, i.e. n^ and d^ such 
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that the zeros of the polynomial dgq(z) are placed accordingly and the 

specific response can be obtained asymptotically as 3->-0.  Note that 

the stability of the plant or the model is not required when analyzing 

MAC in a root locus framework.  The problem is algebraic in nature, 

i.e., is a problem of synthesizing a specific polynomial dgg(z). 

3.4.2  Examples 

In this section we will demonstrate the above analysis through a 

simple example. 

Example 3.1 

Consider a scalar dynamic system 

x(t) = ax(t) + bu(t), x(0) = XQ (3.29a) 

y(t) = cx(t). (3.29b) 

Suppose the input and ouput are sampled every T seconds. Then the 

corresponding discrete-time (scalar dynamic system, as obtained by 

using the exponential transform (3.14), is 

x(n+l) = fx(n) + gu(n) (3.30a) 

y(n) = cx(n), (3.30b) 

where 

f   =   eaT   ^nd   ^  =  e^T-i 
a 

the   plant   is 

x(n+l)   =  5x(n)   + gu(n) 

y(n)   = cx(n) 

(3.31a) 

(3.31b) 

For simplicity, let us chose c=l/g.  Then using the notation of the 

previous section we have 

1     nh(z) 1     nh(z) 
h(z) = 2_f =  -— ,   fi(z) = TTf = 

dh(z) "J^/iy 
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Therefore, using the notation in (3.28), 

deq = n^dh + (z-l)nhdh = z-f + (z-l)(z-f), 

neq = (z-l)dhn^ = (z-l)(z-f), 

and the closed loop characteristics polynomial is 

<J>cl(z) = dgq(z) + engq(z) 

= (z-f) + (z-l)(z-f) + e(z-l)(z-f). 

As 3-»-0 (i.e. a-»-0:  a fast trajectory), the closed loop characteristic 

polynominal asymptotically approaches 

■ <t)ci(z)^ z2-fz+(f-f) 

and the closed loop poles approach 

zi .2 ^ f- '^f^-4(f-f).     :■ (3.32) 

Suppose f=0'9 and the model is perfect, i.e, f=0-9 too.  Then 

since the plant is minimum phase, the closed-loop transfer function 

for all values of 3 is, from (3.27), 

hci(z) = iz^        ■ (3.33) 
z-a •     . 

i.e., the perfect tracking has been achieved.  This is shown in Figure 

3.3, for a=0-01. 

When f = 0*1, and equation (3.32) indicates that the closed loop 

poles approach 0*45±jO*77.  The closed loop response therefore is 

oscillatory which is demonstrated in Figure 3.4 for a=0'01.  If 

f=-0*l, the closed loop poles approach 0*45±jO*90 - the closed loop 

response becomes further oscillatory, which is shown in Figure 3.5 for 

the same value of a.  Similary a choice of f=-0.4 places the closed 

loop poles at 0*45±jl'047 and the simulation has indeed shown the 

instability. 
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It may also be noted that as 3-^°°, one of the closed loop poles 

approaches +1.0 which implies the loss of asymptotic stability or a 

very sluggish response therefore highly undesirable to operate MAC 

with a large 3 (or, a nearly equal to 1).  But the problem with 

smaller 3 is that, along with a fast response, the bandwidth of the 

closed loop system is increased and the possibility of excitation of 

the unmodelled dynamics is also increased.  A compromise, therefore, 

is needed while choosing the value of 3. 

To see how the root-locus interpretation helps in determining MAC 

behavior, let us consider the case of a perfect model and assume that 

the system is minimum phase.  Then from equation (3.2), 

n(z) =  1 
d(z)   z-1 

and 

"h = ^h'   dh = a^, Sgq = zn^^d^, ng^ = (z-Dn^dh 

<^^^(z)   = zn^dh "*" ^(^-l)   n^d^ 

Clearly then as 3-*-0, (or a> 0), one closed loop pole approaches the 

origin z=0 and the others approach the zeros of n^d^-  The later 

poles, however, get cancelled eventually (indicating that these mode 

become asymptotically either unobservable or uncontrollable) and the 

pole at z=0 becomes dominant, and a fast response is available from 

MAC.  On the other hand as 3^°° (or, a+I), the dominant pole is the one 

as z=l and a sluggish response is obtained.  All of these analyses 

agree with the observed behavior of MAC in everyday use. 

3.5  Apriori fixed Gain Compensation of a Lightly Damped System 

or Unstable System. 

A lightly damped system has a long impulse response (IR) sequence 

and therefore imposes burden on the computer storage.  If the impulse 

response is sampled according to Nyquist sampling rate, an impulse 

response sequence of 60-150 elements are very common for a lightly 

damped system, particularly if the system has a frequency mode.  It 

has been proposed that some additional damping may be introduced into 
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the system by applying output feedback and then MAC be applied to the 

overall system.  It is the purpose of this section to investigate if 

apriori fixed gain output feedback can be useful for MAC application. 

Since there is no mathematical model available for a standard regular 

MAC with multistep prediction horizon, input blocking etc, we can not 

investigate analytically the effect of apriori output feedback on MAC. 

So the following analysis is based on the available properties of out- 

put feedback and our analysis is more qualitative then quantitative. 

We shall primarily emphasize on the issue that whether we can make the 

length of impulse response shorter using apriori fixed gain analog 

compensation of the plant. 

3.5.1  Qualitative Analysis 

In Section 3.4, we have characterised a lightly damped system by 

its pole positions.  Roughly speaking, a continuous time dynamic 

system Is lightly damped if any of its poles lies near the jw-axis in 

the s-plane.  Similarly, in discrete time domain, a system is lightly 

damped if any pole lies near the unit circle on the z-plane. 

Physically it means tha the impulse response (IR) or the IR sequence 

is relatively longer.  This fact plays an important role in the MAC 

technique, because the latter uses the IR descritpion of the plant.  A 

lightly damped system has a relatively longer IR sequence and there- 

fore uses more computer storage compared with a damped system.  Since 

an unstable system has an infinitely long IR sequence, the current MAC 

implementation using the IR can not handle such systems. 

If a system is open-loop unstable or lightly damped, it can be 

made stable or damping can be added apriori using constant or dynamic 

output feedback.  The compensated plant with possibly a shorter IR 

sequence can be thought of as a new plant and MAC can then be applied 

to it for improved performance - the overall configuration is hybrid 

in nature.  For simplicity, consider again a SISO plant 

x(t) = Ax(t) + bu(t),  x(0)=xo (3.34a) 
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y(t) = cx(t), (3.34b) 

where x(t) is n-dimensional and A,b,c have appropriate dimensions.  If 

an output feedback control law is chosen of the form 

u(t) = -ky(t) + v(t), (3.35) 

the closed loop system is given by 

x(t) = (A-bkc)x(t) + bv(t),  x(0)=xo (3.36a) 

y(t) = cx(t), (3.36b) 

and the closed-loop poles are given by the eignevalues of A-bkc.  The 

hybrid system as a result of application of MAC is shown in Figure 

3.6. 

The speed of response and bandwidth of the system can be increased 

using output feedback.  This makes it necessary to use a higher 

sampling rate for the compensated plant.  This point needs some clari- 

fication.  Although the Nyquist criteria holds for bandlimited 

signals, engineers have selected sampling rates according to this cri- 

teria, whether the signal is bandlimited or not, i.e., a  rate of at 

least twice the highest frequency in the oscillatory modes in a plant. 

Similarly in a system without any oscillatory modes, the sampling rate 

is selected at a rate determined by the "Bandwidth (BW)" of the 

system.  We may recall that the BW of such systems are defined as the 

frequency where the magnitude of the loop-transfer function drops off 

to half of its dc value.  In this section we will see how apriori out- 

put feedback affects MAC performance via the sampling rate selection. 

The effect on robustness will be discussed in the next chapter. 

Case 1.  When the Plant is Open-Loop Unstable; 

If the states are available for feedback, then it is well known 

that under the assumption of controllability, the closed loop poles 

can be placed arbitrarily in the complex plane using constant-gain 

state-feedback.  But in the case of constant-gain output feedback, 
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this freedom is lost and the poles are moved accordingly to the rules 

for root locus.  But, as we know, it may not be possible to stabilize 

an unstable plant by constant-gain output-feedback - the interested 

reader may consult Youla's elegant work [Youla, et. al, 1974] for 

details.  In such cases, the plant must be stabilized first by using 

dynamic output feedback before MAC can be used on the overall plant 

hf(s) in Figure 3.6.  However once a stable hf(s) is obtained MAC 

treats it like any other stable plant. 

Case 2.  When the Plant is Lightly Damped: 

If the open-loop plant has all the transmission zeros in the open 

left half of the s-plane (OLHP), the gain k can be made high and 

arbitrary fast response can be obtained without destabilizing the 

overall plant hf(s).  As k->-°°, some of the closed loop poles approach 

the finite transmission zeros of the plant and the remaining ones 

approach infinity.  The limiting dynamical behavior of hf(s) is deter- 

mined by the location of the transmission zeros.  If the system has 

closed right half plane (CRHP) (in the s-plane) zeros, k can not be 

increased arbitrarily. 

The BW of the overall system hf(s) in Figure 3.6 is determined by 

the fastest dynamics which in turn are determined by the poles that 

move toward infinity.  Therefore as k^=°, the plant output must be 

sampled faster and faster to capture the dynamical characteristics of 

the overall plant hf(s).  The situation is even worse if the 

transmission zeros are stable and lie near the joi-axis.  In this case, 

as k->-°°, some of the closed-loop poles arrive at these zeros and there- 

fore hf(s) is lightly damped again.  The IR of this system is composed 

of slow dynamics as well as of fast dynamics - the modes corresponding 

to slow dynamics make the impulse response of hf(s) long and the modes 

corresponding to fast dynamics dictate a fast sampling rate.  The net 

result is that the IR sequence of the discretized system has possibly 

many more terms then the uncompensated plant.  Therefore, there is a 

trade-off between the damping added to the system using output feed- 

back and the resulting sampling rate. 
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Although the length of the impulse response gets smaller as a 

result of damping added, we may keep the sampling rate unchanged so 

that the number of terms in the IR sequence is smaller.  This . 

obviously deteriorates MAC performance.  We illustrate these ideas 

with two simple examples. " 

3.5.2  Examples 

Example 1. 

Consider again the scalar system of the last section; 

x(t) = -ax(t) + bu(t),  x(0)=xo    ' (3.37a) 

y(t) = cx(t), ■ (3.37b) 

where a,b,c are scalars.  Let us assume c=l, then the open-loop 

transfer function of the plant is hc(s)=b/(s+a).  Although there is no 

oscillatory mode in this system, we will call it a lightly damped 

system if a-0.  Using an output feedback, control law u=-ky+v, the 

closed loop system is 

x(t) = -(a + bk)x(t) + bv(t),  x(0)=xo (3.38a) 

y(t) = x(t) ■ (3.38b) 

and the closed-loop transfer function hf(s)=b/(s + a + bk).  The power 

spectrum is 

|hf(ju))|2 =  b  (3.39) 
w2 + (a+k)2 

Clearly if the BW OJQ of this system is defined as the frequency WQ at 

which |hf(j(jjQ) I = p |hf(jO) I , where p is a constant, then CJQ is given 

'iOQ =   (l/p2-l) (a+k) = 2-rTf(). (3.40a) 
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The sampling time interval T is given by 

=  I 

2^0   ^ 
(3.40b) 

(I/p2-l) (a+k) 

The last equation shows that as k is increased to add more damping, 

(or, strictly speaking, to get a shorter duration IR sequence) the BW 

UJQ is also increased and so does the sampling rate.  The discretized 

system corresponding to (3.38) is obtained via an exponential trans- 

form as 

x(n+l) = fx(n) + gu(n) (3.41a) 

y(n) = x(n) (3.41b) 

where 

f = e-(a+k)T 3^^ g = f-1    b (3.41c) 
-(a+k) 

We shall examine how the MAC performance varies for a given T as k 

changes.  Suppose a=l and b=10 and consider the case for k=0; then for 

a choice of T=0.1 Sec, f=0.90484 and g=0.95163.  MAC is applied to 

this system with a set point of 15.0, a=0'l.  The result is shown in 

Figuree 3.7.  Next k=10 is selected.  For the same value of T, the 

discretized system parameters are f=0*332871 and g=0*60648.  The 

result of applying MAC to this system is shown in Figure 3.8.  Notice 

the difference between the control efforts in the two cases.  In the 

later case, the same sampling interval of T=0*1 sees has captured less 

dynamical characteristics than the earlier case and the controller has 

spent more control effort in the stady-state tracking. 

Example 2. 

Next consider the decoupled longitudinal dynamics of an air-to-air 

missile (cf. AFWAL-TR-80-3125) [1]. 

-1.4868   1.00 \        /       0 \  u(t) 
x(t) =  I 1 x(t) + 

-149.93     0 /       \  -281.11 
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y(t) =  (1   0)x(t:) 

where     x(t)=/xj(t)\ 
\x2(t); 

x^Ct) = angle of attack in radian 
X2(t) = perturbed pitch rate (rad/sec) 
u(t) = elevator angle (rad) 

The eigenvalues are at  sj 2 ~ -0.7434±j12.22 

The damping ratio E,  =   ^'^^^^  = 0.061 
/ |l.48682 _ 4 149.93 

The system is lightly damped with a natural frequency of 1.95 Hz. 

Therefore, the output must be sampled at least every I/4 sec.  Using 

negative feedback of the output, the closed loop system is given by, 

-1.4868 1.00 
x(t) 

-149.93 + 281.11k   0 

y(t) = (1  0) X (t) 

The damping ratio of the closed loop system can be found as 

Co =   1.4868  

1(1.4868)2 - 4(149.93 + 281.11k) | 

Clearly for k > 0, SQ ** ?•  As k increases, the system approaches 

being undamped and accordingly the sampling rate decreases up to about 

k==0*531 when the system becomes critically damped.  As k increases 

further both poles are real - one mode becomes fast and the other mode 

slow thus making the IR even longer until k=0*533 when the system is 

marginally stable. 

As in the last example, T=0.1, set point = 15.0 and a=0.1 is 

selected.  The result of application of MAC to the uncorapensated 

plant, i.e. k=0, is shown in Figure 3.9.  Now when k=0'53289, the com- 

pensated system is sampled in sampled at T=0.1 sees, and MAC is 

applied to the discretized system at this sample rate.  The result is 

shown in Figure 3.10.  As in the last example, the control effort 
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needed to keep it in the right trajectory is larger than for uncompen- 

sated plant. 

3.6  Cotlclusion 

The main contribution of this chapter is the description of MAC for 

Multivariable system in section 3.2 where it has been shown that the 

classical-controller interpretation of MAC can be extended to MIMO 

systems.  This interpretation of MAC will help the designer to apply 

the recently developed robustness analysis tool to MIMO MAC.  Another 

important contribution of this chapter is the description of MAC using 

the rational transfer function (or difference equation) model of the 

plant - MAC can then be interpreted in a root-locus framework and 

explained using traditional pole and zeros of a rational transfer 

function.  Finally in section 3.5, the effect of apriori analog com- 

pensation on the MAC performance has been investigated qualitatively. 

It has been found that if the addition of output feedback creates a 

faster mode than in the uncompensated plant, the sampling rate must be 

increased accordingly to capture the dynamical characteristics of the 

compensated plant.  Otherwise MAC performance will deteriorate. 
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CHAPTER 4 

ROBUSTNESS ANALYSIS OF MAC 

4.1  Introduction 

Any model of the plant is almost invariably different form the  actual 

plant for many reasons.  For the purpose of synthesizing a finite dimen- 

sional controller, the plant is modelled as finite dimensional even though 

the plant may be of a distributed nature or may have delays embedded in it. 

Usually the high frequency part of a plant is neglected and the model 

emphasizes the low frequency behavior of the plant.  Even though a plant 

has been modelled accurately in the past, low frequency error is introduced 

eventually due to aging, deterioration etc.  On the other hand a control 

law is designed on a nominal model and implemented on the actual plant. 

The nominal control law therefore must be robust enough to ensure the per- 

formance level for the actual plant.  The purpose of robustness analysis is 

to examine the range of the nominal control law maintaining the closed-loop 

stability and performance level for all the plants around the nominal 

model.  The classical designers measure the robustness (with respect to 

stability) of a nominal control law by its gain-margin (GM) and phase- 

margin (PM).  In this chapter, the robustness of the MAC control law will 

be studied from the viewpoint of a classical controller and therefore MAC 

must be modelled as a classical controller.  We have already developed a 

model of MAC of this type in the preceeding chapters which we summarize 

here again briefly.  For simplicity of analysis, we shall consider SISO 

plants only.  The MIMO plants are described in Larimore, Mahmood, and Mehra 

(1984). 

This chapter is organized as follows.  The MAC model developed in the 

previous chapter is briefly reviewed in Section 4.2 — this model is the 

basis for all subsequent analysis of robustness.  Classical gain margin 

(GM) and phase margin (PM) for MAC are analyzed in Section 4.2.1.  The 

robustness in terms of GM and PM can handle a limited class of plant per- 
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turbations; therefore a more generalized class of perturbations are charac- 

terized and robustness evaluated in Section 4.2.2.  Since a rational 

transfer function model usually has far fewer numbers of parameters than in 

the impluse response (IR) description of the plant, a robustness result is 

derived for such models in Section 4.2.3.  A simple analytical example is 

presented in Section 4.3.  Finally the chapter is concluded in Section 4.4. 

4.2  Review of MAC Model for Robustness Analysis 

Let us recall that under some simplifying assumptions, MAC can be 

modelled as in a classical control framework.  The underlying assumptions are; 

(i)  the actual plant h(z) is minimum phase 

(ii)  there are no input constraints, i.e. i^(i) = R for all i, 

where R is the real line 

(iii)  the optimization is carried over one future step ahead i.e., 

(T = 1); under this condition MAC is a one-step ahead pre- 

dictive controller 

The transfer functions under the MAC control law for MIMO plants have been 

developed in Equations (3.7a) and (3.7b).  The corresponding quantities for 

SISO plants are: 

u(z) ^        1 - g  (4.1a) 
c(z)   (z-l)E(z) + (l-a)h(z)    ' 

. Mt i;      ■   ' 

y(z) _      h(z)(l-a) (4.1b) 
c(z)   (z-l)R(z) + (l-a)h(z) 

Equations (4.1a) and (4.1b) imply that MAC under assumptions (i)-(iii) 

is equivalent to the classical unit feedback configuration of Figure 3.2 

in an input-output sense.  The figure is again reproduced in the following 

for convenience: 
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c(z)  ,^e(z)' 

~"^0 . y(z) 

Figure 4.1.  MAC as a Classical Controller 

This interpretation of MAC is the basis of our analysis of MAC in the fra- 

mework of classical control. 

4.2.1.  Phase and Gain Margins 

The block within the dashed line can be considered as a dynamic 

controller of the classical type.  The loop transfer function l(z) at point 

1 is 

l(z) = 
h(z)(l-a) 
h(z)(z-l) 

(4.2a) 

and the return difference function is 

1 + l(z) 
R(2)(z-1) + h(z)(l-a) 

h(z)(z-l) 
(4.2b) 

Note that since we are dealing with a SISO loop, the loop transfer function 

at any point of theloop is same.  For MIMO loops, the loop transfer func- 

tion depends on the point where the loop is broken because of the non- 

commutativity of matrices.  However, in this case the error y(z) in 

tracking  e(z) = c(z) - y(z) is given by 

. e(z) = (1 + l(z))-l c(z) 

so that the steady state error due to a step input is 

eggCt) = lim (l+l(z))-l = (1 + 1(1)) =0 
z-^1 . 
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whether the model is exact or not.  This is a consequence of a built-in 

integrator in the compensator. 

It may be noted from Figure 5 that at point 2, u(z) = y^Cz) when 

h(z) = H(z), where y^-Cz) is the reference signal.  In this case the input 

u(z) to the actual plant is generated as u(z) = yj.(3)/h(z) and therefore 

y(z) = h(z)u(z) = yj-(z).  This shows why perfect tracking is possible 

under perfect identification.  We will, however, now pursue this issue 

further. 

It is obvious from Equations (4.1) and (4.2) that the closed-loop 

system is internally asymptotically stable if the roots of the rational 

function 

(!)ci(z) = (z-l)?\(z) + (l-a)h(z) (4.3) 

are within the open unit disk z < 1, and these roots are also the 

roots of the return difference function 1 + l(z).  We can therefore 

find the stability margin in terms of the gain margin (GM) and phase 

margin (PM) from the Bode plot or Nyquist plot of the loop transfer 

function l(z) evaluated on the contour z = exp (jw) appropriately 

indented around the poles on this contour.  Recall that in continuous- 

time, the GM and PM are those values of k and (]) respectively such that 

the perturbed loop l(s) = kexp( j (l))l(s) is stable, where l(s) is the 

nominal loop and s is the Laplace variable.  A similar interpretation 

goes for the discrete-time systems (Kuo(1980)); but the PM, unless it 

is an integral value of the sampling interval, does not have any phy- 

sical significance.  Strictly speaking the complex constant kexp(j(t)) 

in continuous time should be replaced by kz~^, n an integer, for 

measuring GM or PM of the discrete-time system. 

Another way to compare with other continuous-time domain design 

techniques is that each element of the discrete-time loop should be 

transformed into an equivalent continuous-time element using the bilinear 

transformation, and PM of the fictitious continuous-time loop can be taken 

as the PM of the discrete-time loop.  In this paper the word PM is used to 

mean the continuous-time equivalent phase margin.  We can now state 
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Theorem 4.1 

Under assumptions (i)-(iit), MAC has GM = (0, 2/(l-a)), equivalent 

PM = Cos"^ (l-a)/2, and unity gain cross-over frequency ^Q  =  ' 

2sin-l (l-a)/2. 

Proof 

The proof is trivial if we recall that PM and GM are measure on a 

nominal loop.  Here we can assume that the nominal plant h(z) = Fi(z), 

which implies h^ = h^   and N = N because both h(z) and R(z) are power 

series in z~^.  This nominal loop transfer function from (4.2a) is 

then 

,, ,   I-a (4.4) 

i.e. an integrator delayed by one-step.  Evaluating on z = exp(jaj), we 

get ... 

w    / .  \^       1."°'    •  l-C    ^ W (4.5) 
;   l(exp(jw)) = 2 J ~2~  ^°^ "2   ■ 

and |l(exp(ju)0) I = 1.0 implies that unity gain cross-over frequency at 

0)0 = 2 sin ^ —TT- 

The Nyquist plot of the discrete-time loop in Equation (4.5) is quite 

simple and from the plot it is easy to see that the system is stable for 

all gains in the interval (0,2/1-a), and a pure delay <\> =  90° -Sin~Hl-a)/2 

will change the number of encirclements by the Nyquist contour, thus making 

the system unstable.     ■  ' 

To get the equivalent PM we transform each element of the loop 

using the bilinear transformation s = (z-l)/(z+l)~^ to get the equiva- 

lent continuous loop 

1(3) _^_^/^_ ,. (^.7) ¥(i-) 
From the Nyquist plot of l(s) it is obvious that GM (0,2/(l-a)) (same as 

found by analyzing the discrete-time Nyquist plot) and a PM = Cos~^I-a)/2. 
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Theorem 1, although very simple, reveals some intuitively 

appealing results about GM and PM of MAC.  We can make the following 

remarks. . ',.■.' 

Remarks 

1) Since c(e[0,l], the guaranteed upward GM is 2 and the PM is 

60°. 

2) We can always trade-off robustness against the speed of 

response.  As response speed is increased by decreasing a, BW 

tjiQ  =  2sin~l (l-a)/2 increases (which makes sense) with a con- 

sequent reduction of robustness in terms of GM and PM. 

3) We get this remarkable PM even though MAC is an output- 

^     feedback controller possibly because the plant is inverted 

causally through the use of an optimization algorithm in the 

sense that at each time the algorithm provides the controller 

with the entire future input sequence.  For the same reason, 

the discrete-time loop has a one pole roll-off for all fre- 

quencies - which is rather unusual. 

4) Theorem 1 ensures that the controller can stabilize the loop 

for all the plants {hi\   belonging to the set 

(hilhi = kRi, i=l,...,N, ke(0,2/(l-a))}. 

4.2.2.  Plant Robustness Analysis for Generalized Perturbations 

The nominal model fi(z) is usually different from the actual plant 

h(z) for various reasons.  Sometimes h(z)   is deliberately made simple 

to facilitate the control computation by retaining the modes in the 

active frequency range.  On many occasion it is difficult to model 

high frequency modes, and these are simply neglected.  Due to ageing, 

etc., the modes of the actual plant drifts slowly thus introducing 

low-frequency error.  Thus the modeling error e(z) has in almost every 

case, a dynamic structure; and the information about e(z) must be 

incorporated in designing a nominal loop.  As a minimum amount of 
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information e(z) is expressed as an upperbound on |e(exp(j (u)|; and the 

purpose of robustness analysis is to find a requirement on the nominal 

loop interms of this upperbound so that the closed loop performance 

and stability is maintained in the face of modeling uncertainty. 

Usually the admissible uncertainties are expressed in two ways: 

additively or multiplicatively.  If we take fi(z) as the nominal plant, 

then in an additively uncertain model, we express the actual plant 

h( z) as 

h(z) = R(z) + Aha(z) (4.8) 

and in a multiplicatively uncertain model, the actual plant h(z) is 

h(z) = Uz)(l  +  Af\n,(z)) (4.9a) 
or 

h(z) = h(z) Ahn,(z) (4.9b) 

For single-loop systems the order of multiplication in (4.9) is not rele- 

vant, but for MIMO cases the order is important because of the non- 

commutativity of matrices where input channel (left) uncertainty and 

output-channel (right) uncertainty must be distinguished.  Both of the 

multiplicative forms in (4.9) are often used in analysis, but in this paper 

we shall be using (4.9b).  Note that at nominal values of the plant, Aha(z) 

= Ahm (z) = 0 and Ahj^ (z) = 1.  Also note that the classical GM and PM 

ensures the stability of a perturbed plant of the form (4.9b).  If the GM 

is k, then Ah^(z)=k, and if the PM=n (in the sense of discrete-data 

system), Ahjn(z) = z~'^.  These are undoubtedly a limited class of allowable 

perturbations and we must consider other possible error-structures in 

designing the nominal loop.  The framework of (4.8) and (4.9) is more 

general in the sense that it can handle a constant, nonconstant and even 

dynamic model mismatch (say for example unmodelled poles, etc.).  Let us 

rewrite H(z) and h(z) as 

■ ■   N 

R(z) = I   R^z-l = z-NRp(z) (4.10a) 
i=l 

^   ~ . 
where     Fip(z) = \  ^^z^~^  = a polynomial in z, 

1=1 
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and       h(z) = z-N hp(z), 

N 
h„(z) = I  h.zN-i . (4.10b) 

■.  P    i=l ^ 

then by straightforward manipulation, the closed loop characteristics 

polynomial is 

^cl,p (z) = zN(z-l)hp(z) + zN (l-a)hp(z)      ;      (4.11) 

with p denoting that we are considering the polynomial part only. 

For closed-loop stability, <})cl,p(z) must have all the roots strictly ; 

inside the unit disk |z|=l.  For perfect identification N=N, 

hp(z)=hp(z), and <})(,]^^ p(z)=zN(z-a)hp(z).  Of course the zeros of fip(z) 

will be cancelled eventually leaving the only closed loop pole 

at z=a.  However N, the order of the true plant, is usually unknown, and 

therefore in real-world situations (4.11) can not be evaluated.  The actual 

plant h(z) must be considered as a perturbation of the nominal plant fi(z), 

and the stability conditions must be derived in terms of the nominal 

sequence {hij and the perturbation Aha(z) or Ahjn(z).  Let us assume that 

Aha(z) and Ah[j(z) can be expressed as in (4.10), i.e.,      ' 

Aha(z) = I  haiz-i ,    ;    :, 

i=l, 

= z~NgAhap(z), Ahap(z) = a polynomial in z    (4.12a) 

Km  ■ '    . ■ ^    "  'v 

Ah^(z) = I     Ahn,iZ-l = z-Nmhn,p(z) . (4.12b) 

1=1 V'  ■        ;    -■ 

although the following theorem can be developed without such an expli-  '    l 

cit form.  Note that the index in (4.12b) must start from 0 to accomo- 

date constant multiplicative perturbation.  We have the following 

theorem on robustness: 
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Theorem 4.2 

(i)  The system is closed-loop stable for all additive pertur- 

bations AhgCz) satisfying 

hh3p(z)|<   p:^  |Bp(z)| (^^^3^^ 

and z= exp(ja)) 

(ii)  The system is closed-loop stable for all multiplicative 

perturbations Ahj„(z) satisfying 

lAhnjp (z) - z^m| < 
N„,i ^  z - a (4.13b) 

1 - a 

on the unit circle where Ah^pCz) and Ah^p(z) are given by (4.8). 

Proof:  The proof is straightforward if we express h(z) using the 

form (4.10)-(4.11), find the corresponding closed-loop characteristic polyno- 

mial, and finally use Rouch's theorem to prove (4.13) on the assumption that 

the nominal loop is internally stable and hence (z-a)hp(z) has all the 

roots strictly inside the unit disk |z|=l. 

The tests of the type given in (4.13) are sufficient conditions 

and generally tend to be conservative. Nevertheless we can make the 

following remarks: 

(i)  Both tests (4.13a) and (4.13b) are useful.  For example when 

an actual known model {h-;^, i=l,...,N| is truncated to 

obtain {Ri, i=l,... ,N, N < NJ , so that {^hg^i  = h j^, i=P5, 

N+1,...N and Ah^j^ = 0, i < N} , stability around {h^^} can be 

obtained from (4.13) 

(ii)  For constant multiplicative gain mismatch, i.e. hj^ = k^^ 

for all i, t^h^ni = k when i=0 and Ahj^j^ = 0 when i > O}, so 
N 

that Ahn,p(z) = kz ™ and test (4.13b) yields that the system 

is stable for all k such that 

11^ - 1 I < I   _ ct' . z = exp(ja)) 
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But it is easy to see that min |exp(ju))-a| =  1-a so that (4.10) 

becomes |k-l |<1 which implies ke(0,2).  This clearly shows that these 

tests are conservative.  (See remark (4) of the previous section).   ' 

It can be shown trivially that near oi)=0, the bound on the RHS of 

(4.13a) is meaningless; almost any reasonable perturbation will satisfy 

this sufficiency condition at low frequencies, but the above inequality 

must be obeyed for each a)e[0,n] particularly at high frequencies. 

We note further that given any perturbation Ahp(ja)), it is extremely 

difficult to come up with a stable design to accomodate it.  On the other 

hand, given any stable design we can only make statements about the size of 

a perturbation the design can tolerate, and perhaps from our previous 

experience we can change the nominal design iteratively to accomodate the 

given perturbation. 

4.2.3.  Robustness Analysis When the Plant Model is Described by a Rational 

Transfer Function 

In the previous section we analyzed the robustness of the MAC 

control law for systems represented by an impulse response sequence. 

In this section the analysis will be carried out for plants described 

by Difference Equations (DE) - this will yield more insight into the rela- 

tion between the robustness of MAC and the design parameters embedded 

in it. 

We analyze again under the usual assumptions, viz, 

(i)  the system is minimum phase 

(ii)  the optimizing horizon is one-step in the future 

(iii)  there are no constraints either on the input or any other 

loop variables 

Under these assumptions, the MAC control law is given by equations 

(4.la)-(4.lb) and the equivalent classical network is given in Figure 4.1. 

Obviously then the loop transfer function is 

ir ^ = (I-g^)Mz)        ■ (4.15a) 
^^^^   (z-l)h(z) 
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so that the return difference function is 

1 * ir,^   1-1. (l-ct)h(z) _ (z-l)h(z) + (l-a)h(z) 
1 + l(^) = 1 + (z-l)^(z) (z-l)h(z)  (4.15b) 

Clearly the closed loop poles are given by the zeros of the numerator 

(4.15b).  We have shown in the previous section that the MAC control 

law is nominally closed loop stable for all values of a, o<a<l. 

A typical Nyquist plot is shown in Figure 4.2.  It is obvious from 

the figure that at any frequency w^, the loop transfer function 

1(8'' °) can tolerate a maximum perturbation of |l + l(eJ'^o)j and yet the 

Nyquist plot will not change the number of encirclements of the -1+jO 

point.  This observation leads to the following theorem on additive 

perturbations. 

i  Imaginary axis 

l(z)-plane 

-1+jO 

l+l(e^"0) 

Real axis 

Figure 4.2.  A Typical Nyquist Plot 

Theorem 4.3 

Suppose the loop is nominally stable.  The the perturbed loop is stable for 

all additive perturbations Al(z) satisfying 

AlCeJ*^)! < |l+l(eJ'^) (4.16) 

where w varies over the unit circle if l(z) is analytic on the contour 

|z| = 1 or over any suitable Indented contour on the unit circle to 

bypass any singularity of l(z) on the unit circle. 
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Proof:  A heuristic proof should be obvious from Figure 4.2.  A 

rigorous proof follows from a straightforward application of Rouches' 

Theorem as in the previous section. 

A similar theorem can be developed for multiplicative pertur- 

bations.  Theorem 4.3 gives the sufficiency condition for stability. 

Its usefulness lies in the fact that given an apriori knowledge of a 

perturbation that satisfies the inequality (4.16), the Theorem guarantees 

the stability of the closed loop system for such perturbation.   For 

example if a high frequency mode is neglected or if the modes are not 

correctly modeled, the discrepancy is expressed in an additive form and a 

test of the type (4.16) must be carried out after a nominal control law has 

been found. 

We can find a more specific form of Equation (4.16) as follows. 

Suppose the nomimal (or identified) plant is fi(z).  The true plant 

h(z) is assumed to lie in a neighborhood of R(z), and suppose h(z) is 

an additive perturbation of Fi(z).  In this case 

h(z) = h(z) + Aha(z) . (4.17) 

The designer usually has a knowledge of an upperbound on |Aha(eJ*')|. 

The nominal loop transfer function I(z) and the nomimal return dif- 

ference function 1 + h(z) can be found from Equation (4.2).  These are 

l(z)  = iz£  ,  1 + l(z) z-a 

^-^ ^-1 (4.18) 

Let Al(z) be an additive perturbation of the nominal loop l(z) when 

the nominal plant ii(z) is perturbed to h(z) as in Equation (4.17). 

Then the perturbed loop transfer function l(z) + Al(z) can also be 

evaluated using Equation (4.2) and we get 

l(z) + Al(z) = h(z)(l-a) 
h(z)(z-l) 
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from which we find 

Al(z) = ^ha(z) i:::a  , (4.19) 

h(z)   z-1 

Therefore using Theorem 4.3, we conclude that the closed-loop is 

stable for all perturbations Ahg(z) which satisfy 

|Aha(z)| <   li_I_^l |h (z)| (4.20a) 
1 - a 

on the unit circle z=exp(jw).  This inequality can further be 

simplified to 

lAhaCeJ*^)! < >/ 1 + g - 2a Cos oi  |h(ju))| ,  ■ (4.20b) 
1-a 

which can be verified easily by plotting these functions. 

It is very important to note that the conditions developed in 

Theorems 4.1, 4.2, and 4.3 are all sufficiency conditions and not 

necessary ones.  If any perturbation Ahg(z) or Al(z) violates these 

conditions, the closed loop is not necessarily unstable; on the other 

hand, satisfaction of these conditions necessarily guarantees asymp- 

totic stability of the perturbed closed-loop provided that the nominal 

closed-loop is stable. 

4.3  Examples ^ 

In this section, the main features of the analyiss of the last 

section are demonstrated through a simple example.  Since the IR 

description contains many more parameters than in the DE description, 

we use a rational transfer function model of the plant.  The Theorem 

4.3 will be used to evaluate the robustness against modelling mismatch 

of the true plant. 

Example 4.1 

Consider again the example of a scalar dynamic system of the last 

chapter.  Suppose it has been modelled as 

4-13 



x(k+l) = ? x(k) + gu(k) (4.21a) 

y(k) = cx(k). (4.21b) 

Assume for simplicity that cg=l so that the rational transfer func- 

tion of the model is 

h(z) =  ^~r    . (4.21c) 
z - f 

Then if the true plant h(z) = R(z) + Aha(z), according to Equation 

(4.20b) the closed loop is stable for all Ahg(z) satisfying 

 2  
|Aha(joa)|     <    '^   1  + g     -  2a  Cos   oj        . (4.22) 

(1   -  a)   /   1   +  I'^   -  2f  Cos   CO 

Now suppose that the actual plant is of the form 

x(k+l) = f x(k) + gu(k) (4.23a) 

y(k) = cx(k) (4.23b) 

which is the same as the nominal model in (4.21) except that the true 

mode f is different from the nomimal mode B.  Therefore 

h(z) =  \ ' , (4.23c) 
z - f 

and  Aha(eJ'^)   is   of   the   form 

Aha(ja))   =  LjlJ      . (4.24) 

eJ2a)  _  eJW(f+?)   +  ff 

Given a nominal MAC loop for a specified ?, the loop is stable for all 

f's if |^ha(j(jj) I evaluated from (4.24) satisfies the inequality 

(4.22).  We selected ?= 0.3 and tested inequality (4.22) for three 

different f's: f = 0.8, f = -0.3, f = -0.8.  In all cases, the set 

point = 15.0, and a=0.1 are selected.  Since B is the same for all 

three runs, the right-hand side of (4.22) is also the same and is 

shown as a thick line in all the plots.  The left-hand side of (4.22) 

is shown in dotted lines. 
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Case 1:  f = 0.3, f = 0.8 

Here the true plant has the mode at 0.8.  For perfect iden- 

tification the MAC response is shown in Figure 4.3a.  For an iden- 

tified plant mode at ?= 0.3, the sufficiency conditions are displayed 

in Figure 4.36 - which shows that this perturbation satisfies the ine- 

quality constraints in (4.22).  The closed loop, therefore, is 

guaranteed to be stable as shown by the MAC performance for the per- 

turbed loop in Figure 4.3c. 

Case 2:  ? = 0.3, f = -0.3 

MAC performance for the true plant f=-0.3 is shown in Figure 4.4a. 

The sufficiency conditions are displayed in Figure 4.4b which shows 

that the inequality has been violated.  But because these conditions 

are only sufficient, we cannot say anything of the stability of the 

loop.  In this particular situation, the perturbed closed loop has 

turned out to be stable as shown in Figure 4.4c. 

Case 3:  f = 0.3, f = -0.8 

MAC performance for the true plant at f = -0.8 is shown in Figure 

4.5a.  The two sides of inequality (4.22) are drawn in Figure 4.5b, 

which shows that, as in Case 2, the sufficiency condition has been 

violated.  But this time, the closed loop is unstable, as shown in 

Figure 4.5c. 

4.4  Conclusion 

An analytical model of MAC was developed in Chapter 3; we have 

used that model in this chapter to analyze the robustness of MAC.  The 

robustness as been assessed ina classical control framework.  The 

classical GM and PM of MAC are given in Theorem 4.1.  The upward CM 

can be increased arbitrarily by slowing down reference the trajectory, 

PM can go up to 90°.  GM and PM can guarantee stability against a 

limited class of plant perturbations, therefore a new framework for 

analyzing generalized perturbations has been developed in Section 
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4.2.2 and the main result in this direction is presented in Theorem 

4.2.  The corresponding analysis for models described by rational 

transfer functions is given in Section 4.2.3 and the main result is 

presented in Theorem 4.3.  Theorem 4.1 and 4.2 can be readily verified 

by plotting transfer functions.  These Theorems give the sets of 

plants in the neighborhood of the identified models which are 

guaranteed to be closed-loop stable whenever the nominal loop is stable. 
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CHAPTER 5 

SAMPLING INTERVAL & CONTROLLABILITY 

5.1  Introduction 

Sarapled-data (SD) systems are becoming increasingly important 

with the advent of cheap computing power of microprocessors.  Although 

these systems have been studied for a long time, very few researchers 

have explicitly dealt with the design of a suitable "sampling time 

interval 'T'.  Almost all literature dictates a sampling rate 

satisfying the Nyquist rate—although the latter is applicable only 

for band-limited systems.  For the systems with undamped modes, only 

certain discrete values of T are excluded (Chen, 1970) to guarantee 

the required rank of the "Controllabiity Matrix" of the SD systems. 

Nothing further is said as to what values of T should be chosen once 

the rank condition of this matrix is satisfied. 

A recent study in this direction is by Reid et al.(1979), where T 

is uniquely chosen to maximize the robustness of a dead-beat control 

law.  Although this is a significant step towards the characterization 

of a unique T, the procedure has limited application because not all 

of the SD systems will be used for the purpose of dead-beat control. 

Maximizing the determinant of the product of the controllability 

matrix and its transpose are much discussed in the literature, but 

without any rational justification. 

In this study we have provided a logical and intuitively 

appealing framework for choosing an optimal, unique T.  Our analysis 

is based on two intuitive ideas: 

(1) that the amount of energy needed to drive a discrete system 

from an arbitrary initial state to the origin is a measure 

of the controllability  of the system, 

(2) that the amount of energy is also a measure of the degree of 

effectiveness of various control components. 
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A minimum energy terminal control problem is formulated which 

explains controllability in a quantitative framework and its relation 

with sampling time T.  The solution is given in terras of the 

"Controllability Grammian," and a natural choice of T is made by 

maximizing the minimum singular value of the Grammian matrix over a 

compact interval of T.  The excitation ability of various control 

components (or equivalently how effectively each control component 

influences the dynamics of the system) depends upon the relative 

orientation between the space spanned by left eigenvectors of the 

system matrix and the range space of the input distribution matrix. 

It is extremely difficult to visualize the interplay between a 

changing T and the relative orientation of the spaces.  This has led 

us to solve the problem implicitly as a minimum energy problem where 

the relative orientation changes automatically as T varies to provide 

optimal effectiveness of the control components. 

Sometimes control components may have different costs.  We would 

prefer, then, that the two spaces adjust to reflect the relative costs 

so that the system uses more of the cheaper controls than others.  We 

have implemented this idea by introducing an "input-weighted 

controllability Gramian" matrix. 

The above ideas can be dualized to find an optimal T from the 

viewpoint of observability.  Here T is chosen to minimize the maximum 

possible energy in the outputs for arbitrary initial states.  Since 

the Hankel matrix is the product of the controllability and 

observability matrix, the corresponding values of T can be deduced 

from the singular values of the Hankel matrix, too. 

In sections 5.2 and 5.3 we briefly discuss the relation between 

SD systems and the original continuous time systems and the previous 

results on the controllability of the SD systems.  Section 5.4 also 

contains a brief discussion on modal controllability and 

observability.  In section 5.5 we have formulated the minimum energy 

problem in the new perspective for finding an optimal T.  Section 5.6 

deals with the observability issues.  Conclusions are given in section 
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5.7. The analysis has been kept limited to LTI systems for the sake of 

clarity although generalization to time varying systems are concep- 

tually straightforward. 

5.2  Problem Definition 

Consider a linear time-invariant continuous-time system 

x(t) = Ax(t) + Bu(t) (5.1a) 

y(t) = Cx(t) (5.1b) 

where x(t) e R",  u(t) e R'",  y(t) e RP and A, B, C are matrices 
of compatible dimensions. 

There are many sampling schemes to discretize the system (5.1). 

We shall be using here the "sample and zero-order hold" sampling 

mechanism, because it is easier to implement and probably the scheme 

most widely used in industries. Under this scheme the input is held 

constant during the sampling interval and the corresponding discrete 

system is given by 

x(k+l) = Fx(k) + Gu(k) (5.2a) 

y(k) = Hx(k) (5.2b) 

F = exp(AT) (5.3a) 

T 
G = [ / exp(Av)dv]B (5.3b) 

0 

= (F-I) A~1B, when A is nonsingular 

H = C (5.3c) 

and exp(AT) is the transition matrix associated with (5.1).  The 

solution of equation (5.2) is given by 

k-1 
x(k) = F^x(O) + L       F^-l-iGu(i) (5.4a) 

i=0 
y(k) = Cx(k) (5.4b) 

where F'^ is the state-transition matrix of (5.2). 
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Roughly speaking the controllability of a system refers to its 

ability to steer any initial condition x(0) at k=0 to the origin at 

k >0 for finite k^   whereas the reachability refers to its ability to 

steer the system from the origin to any given state in finite time. 

Because of the non-singularity nature of exp(AT), the notions of 

controllability and reachability in continuous-time systems coincide. 

For discrete time systems, obviously a sufficient condition for the 

system to be controllable is that F^ be non-singular for each k, i.e., 

the system has the ability of backward transition whereas the 

reachability is the property of the range space {F'^-G}, k = 0,1,...- 

The controllability can be checked through the controllability 

Gramarian formed over a finite horizon;  and for time-invariant 

systems, a horizon of n-steps is necessary and sufficient.  The pair 

{F,G} is controllable if the Controllability Grammian 

k-1 ,     : . 
W(0,k) =  Z  p-iQ G'(F-I) (5.5) 

i=0 ■   • . 

is non-singular for any k>n.     Equation (5.5) also shows why the 

non-singularity of F is necessary. 

In a sample and zero-order hold mechanism, F is given by (5.3a) 

which means F is necessarily non-singular for any A.  Thus the notion 

of controllability and reachability are the same, and we shall be 

using the word controllability hereafter to denote both concepts. 

Sometimes the discretization mechanism (5.3a) goes by the name of 

"exponential transform." It is obvious from (5.3a) that under this 

mapping, both the continuous-time and the sampled-data system share 

the same eigenvectors and their poles are related through 

zi = exp(siT) 

where s^ and z^  are respectively the ith eigenvalue of F and A.  Also 

note that 
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0 

because 

/  exp(Av)dv Is always non-singular even if A is singular, 

det[  /  exp (Av)dv] 
0 

n Pi * 0.0 
i=l 

where 

Pi = 
I - expCs^T) 

Si 
when Si ?t 0 

(5.6) 
T when Si = 0 

Equality (5.6) is obvious from the Jordan form of A. 

5.3  Controllability and Observability of SD system: 

The controllability and observability of the time-invariant (TI) 

sampled-data system is a well-studied topic.  Probably the mostly used 

criteria is the rank condition of the controllability matrix C and the 

observability matrix 0, where 

C = [G FG pn-lG] (5.7a) 

and 

H 
HF 

.HF' n-1 

(5.7b) 

The system is controllable if p('^)=n and the system is observable 

if p(Q)=n, where p(A) denotes the rank of A.  The matrices F and G 

depend upon T whereas H does not.  One way to determine the role of 

the sampling time interval T on the controllability and observability 

of the system is to check the rank condition of the matrices in (5.7) 

as T is continuously increased.  The most significant results 

available in this direction are contained in the following theorem 

extracted from [2]. 
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THEOREM 2.1 

Assume that the continuous time system (5.1a) is controllable.  A 

sufficient condition for the discrete time system (5.2a) with 

coefficients in (5.3) to be controllable is that Im[ XJL(A)-X^ (A) ] * 

2irk/T, k=±l,±2,... whenever Re[ Xi(A)-Xj (A) ] =0.  For the single-input 

case, the condition is necessary as well. 

We can make the following remarks as a corollary of Theorem 2.1: 

1. The conditions are also sufficient for maintaining the 

observability of the SD system, because the pair F, H  is 

observable if and only if the pair (F*, H'} is controllable; 

and the Theorem gives the condition in terms of the 

eigenvalues of A, not in terms of H or G. 

2. If ^i=Oi ± ja)£ is any complex pole pair of A, T should not 

be chosen such that T=kTr/co-j^, k=±l,±2....  Therefore for SISO 

systems, as T^ is increased, SD system (5.2a) loses 

controllability for as many values of T and their integral 

multiples as there are complex pole pairs.  Obviously by a 

continuity argument we can say that the controllability 

matrix will be ill-conditioned for T in the neighborhood of 

these Ti's. 

3. Although not related to this theorem, another requirement on 

T to avoid aliasing effects is that we must sample the 

system at a Nyquist rate at the least.  If a)max=ni?x wj^, 

then T should be selected such that 

T < ~  (5.8) 
'^ax 

Note that if we choose T=ii/a)jnax exactly satisfying the Nyquist 

rate, we lose controllability for SISO systems. 
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5.4  Modal. ControIIabt Itty and Observability 

Theorem (5.1) does not provide any "quantative" information on 

the "degree" of controllability which is best explained by modal 

controllability.  The concepts of modal controllability and 

observability are old and can be found in any standard text on control 

theory.  In this subsection we discuss briefly how the sampling time T 

is related to these ideas.  Assume for simplicity that A is 

diagonalizable.  The modal decomposition of A is 

A = WAV (5.9) 

where A is the diagonal matrix containing the eigenvalues X^ of A, W 

and V' are respectively the matrices containing right- and 

left-eigenvectors of A. 

If W;i^ and Vj^ are right- and left-eigenvectors respectively 

associated with ith eigenvalue X^, then 

W= col (w]^, W2,...Wjj) (5.10a) 

''I 
t       f T 

'  V' = row (v]L, V2, ... Vji) (5.10b) 

and 

WV' = V'W = In 

Then the modal decomposition of F is 

F = W exp(AT)V' = W Ap V 

where {Ap}  =exp X-j^T = z^,   the i-th mode of the SD system (5.2).  By 

straightforward calculation, (5.4) simplifies to 

n        , k-1  n , 
x(k) =  E (zi)k (vix(O)) Wi +  S   Z  (zi)l^-l i (vjG)u(i)wj 

i=l 1=0 j=l 
(5.11a) 
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n        , k-1  n , 
y(k) = Hx(k) =  E (z^)^   (vix(0))Hwi +  E   E (zi)'^-l-i( VjG)u( i)Hw( j ) 

i=l i=0 j=l 

(5.11b) 

It should be apparent from (5.11) that it is the row vector (v.G) 

that determines whether the control at the i-th instant u(i) will have 

any Influence on the j-th mode of the system.  If this row vector is 

identically zero for any j, i.e., if Vje left ker (G) then the j-th 

mode is uncontrollable and the component of the state in the subspace 

spanned by j-th eigenvector cannot be controlled.  Similarly if gj<. is 

the k-th column of G, then mj]^ = <v^,g]^>  determines the sensitivity of 

the k-th component of the control u\^  on the j-th mode.  In particular, 

if we form the n x m matrix M = {mj^^} , j=l,...n, k=l,...m, where 

M = V'G (5.12) 

we can deduce the controllability as well as the "degree of 

controllability" of various imput-components from the entries of M.  M 

is called the modal controllability matrix.  To increase the 

sensitivity of the k-th control on the j-th mode, we should design gi<. 

as much collinear with Vj as possible.  It is easy to show that M is 

related with C in (5.7a) as 

C  = W[M : ApM : . . . :Ap  M] (5.13) 

where W is the matrix of right eigenvectors as defined in (10), and if 

any row of M is identically zero then the controllability matrix C 

becomes rank deficient. 

For the zeroeth order sample and hold (S&H) mechanism under 

consideration 

T T 
M= V /  exp (Ax)dxB = ( / exp(Ax)dx)v'B   (5.14) 

0 0 

Now V'B and A are predetermined by the continuous-time system (5.1a), 

The only variable here is T which can be adjusted to regulate the 

elements of M. 
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Following the same argument as above we can deduce from equations 

(5.11) that the degree of the modal observability is given by the 

modal observability matrix N where 

N = HW (5.15) 

and the observability matrix  in terms of N is 

e = 

N 
NAp 

•n-1 

.Np _l 

V (5.16) 

Since H=C and W is predetermined by the continuous-system, N is 

not affected by T  , i.e., the modal observability matrix of a 

discretized system is the same as in the continuous-time system 

although the observability matrix 0 in (16) is dependent on T.  This 

shows that the sampling time T will have more impact on the "degree of 

controllability" than on the "degree of observability" because T 

influences both the system matrix F and Input matrix G forming the 

controllability matrix. 

5.5  Sampling Time to Maximize the Degree of Controllability 

In this section we formulate a minimum energy terminal control 

problem for the discretized system and explain why this scalar measure 

can be naturally taken as a "degree of controllability." Finally we 

choose T to optimize this scalar measure.  Recall that a controllable 

discrete system can be driven to zero-state from any initial state in 

n-steps which motivates an optimization horizon of n-steps.  Consider 

then the minimization of the cost functional 

min 1 
n-1 

J(x(0))=^  Z  u'(i)R(i)u(i), R(i)=R'(i)>0 
{u(i),i=l,..n}        "^1=1 

subject to 

(5.17a) 
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x(i+l)=Fx(i) + Gu(i) '    (5.17b) 
x(0) given, and x(n)=0 

Obviously, if the modes are sensitive to the control-components, 

the system can be driven to  (n)=0 from  (0) with lower expense of 

input energy than if the modes are insensitive to control components. 

This fact is reflected in the construction of J.  The relative 

orientation between the left eigenspace of F and the range space of G 

(or equivalently the elements of M) and the elements of F are adjusted 

automatically while minimizing J.  Note also that the relative cost of 

various input components can be reflected through the weighting matrix 

R, which possibly may be time varying. 

The minimization in (5.17a) can be carried out using the 

ordinary-least-square technique or using Linear-Quadratic (LQ) theory 

from modern control, although we shall be using the latter to get a 

better perspective of the problem.  The Harailtonian sequence H(i) 

H(i)=u'(i)R(i)u(i) + p'(i+l)[Fx(i) + Gu(i)]        '■ " '      (5.18) 

where p(i) is the sequence of Lagrange multiplier. 

The necessary condition of optimality gives [3], 

x(i+l) = Fx(i) + Gu(i) (5.19a) 

p(i) = F'p(i+1),   i=0,l,...n-l   _. , .. 

subject to a given x(0) and x(n)=0, and the optimal control sequence 

is given by -       /      . 

u(i) = -R-ki)G'p(i+l) *'" V (5.19b) 

Solving in terms of p(0)(note that F is non-singular in our case) 

and matching the boundary values of x(i) at i=0 and n, we get, 

successively, " - 

p(i) = (F')-ip(O)  ,  , 

u(i) = -R-l(i)G'(Fl)-i-lp(0) '   ■. 

p(0) = W-l(0,n)x(0) 
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n-1 
W(0,n) =  E  E^i-lGR-ki)G'(F')-i-l (5.20) 

i=0 

Here W(0,n)=W(0,n) is the usual controllabtltty Grammian except that 

it ts weighted by a sequence R(l), and consequently W(0,n) in (5.20) 

may be called "Input-Welghted-Controllablllty Grammian." The optimal 

control sequence is 

u*(i)=-R-l(i)G'(F)-i-lw-l(0,n)x(0), 1=0,...n-1 (5.21) 

and the optimal cost J* is 

n-1 n        - 
J* =  E  u*'(i)R(i)u*(i) = x'(0)W-l(0,n)x(0) =  Z (l/oi) c- 

1=0 i=l 
(5.22) 

where ai=i-th eigenvalue of W(0,n) 

c^ = <x(0) ,Uj^> = projection of x(0) on i-th orthonorraal 
eigenvector of W(0,n) 

Remarks: 

1. W(0,n)=W(0,n) and is positive definite if the system is 

controllable.  If the system is not controllable 0^=0 for at least one 

i and therefore infinite energy is required to bring the initial state 

x(0) to zero, which makes sense physically. 

2. W(0,n)=W(0,n) >  0  which implies the ai's  are also the 

singular values of W(0,n). 

3. Since the matrices F, G depend on T (the sampling time), the 

ai's   and consequently the minimum J are dependent on T.  As we have 

seen from theorem 2.1, as T Increases from zero to Infinity, the 

discretized SISO system loses controllability around Ti=TT/a)-L, making 

some o^ equal to zero and hence J* in (22) goes unbounded.  For other 

values of T, the Oj^'s are non-zero and finite and J* is also finite. 

4. The use of the matrix R(i) weights the share of various 

control components in the minimum energy.  The cost of various control 
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components can be reflected through R(i).  For the single-input case, 

the use of R(i) is superfluous and can be set equal to 1. 

5. Note that an equivalent controllability Graramian Q(0,n) can 

be formed from the controllability matrix 'g' weighted by the sequence 

R(i) as follows: .> ,   , 

»(0,n) =<g''diag (R(i)>^' 

n 
=  E  F^-iG R-ki) G'(F')n-i (5.23) 

1=1 

Although rank [W(0,n)]=rank [W(0,n)], the singular values are 

different.  For this modified controllability Grammian W(0,n), matrix 

inversion of F is not needed. 

We are now in a position to find an optimal T on a rational basis 

The maximum possible normalized energy is 

*             J*             x'(0)W-l(0,n)x(0) 
JM = max    —, / „s—TTTT    =  max   
'  x(0).Rn "^°)"^°)     x(0)    -•(O)-(O) 

|w-l(0,n)||2 =  a(^l(0,n)) = a(vlo,n)) ^^'^^^ 

where ||.||2 denotes the induced Euclidean norm and a(.) ,_a( .) , is the 

maximum and minimum singular value respectively.  From (5.22) it is 

obvious that J* is bounded above and below as 

^   ' |x(0) I 1^ < J* < vi^  ||x(0)||^ (5.25a) 
a(W) a(W) 

0 < —^ < JM < -TTTT , (5.25b) 

where W(0,n) has been denoted by W for the sake of brevity. 

A rational choice of T is to minimize the upperbound of Jj^  as 

much as possible, i.e., the optimal T=T* should be such that 
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T* = Inf Jfj (5.26a) 
T 

* 
Since J^     is bounded below by zero and we shall be working with a 

compact interval l=[0,t], (5.26a) is equivalent to 

* 1 T* = min J^ =  min    . (5.26b) 
Tel      Tel  -^^^ 

Therefore the complete procedure of obtaining T* is 

n-1 
T* = min max min      Z  u'(i) R(i)u(i)   (5.27) 

Tel x(0)eRn       u(i)eR™ i=0 
|>(0) I 1 = 1 

subject to 

x(i+l) = Fx(i) + Gu(i), x(0)=x(0) 

T 
F = exp(AT),  G = (  /  exp(As)ds)B 

0 

Note that when the system loses controllability, then for some Tel, 

a_(W)>0, or, l/£(W) blows up.  So for computational and plotting 

purposes we may as well evaluate (5.26b) as 

T* = max a(W) (5.28) 
Tel 

It is conjectured by many practitioners that T should be chosen 

to maximize the determinant of "gW where "^ is the controllability 

matrix in (5.7a) without any rational justification.  We explain here 

why this determinant of'8^' is not a good measure of the quantitative 

controllabiity ideas developed herein.  Recall from remark (5.5) above 

that if R(i)=Im for all i, 

^'i^'   = »(0,n) 

and 

W(0,n) = ir^  W(0,n)(F')-n,    F= exp(AT) 
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Therefore 

det (CC) = det(W(0,n)) 

n ai(W(0,n))    ,, . .. 
i=l 
  (5.29) 
n 
H  exp(-2Re[Xj^]nT) 

i=l 

under the assumption that A is diagonalizable with eigenvalues X^. 

Expression (5.29) clearly shows the inadequacy of the determinant 

criteria, because for T, where the system almost loses 

controllability, the denominator of (5.29) is fixed and^(W(0,n)) is 

nearly zero.  According to criteria developed herein, the system is 

nearly uncontrollable.  Yet det('g^) may be large if the remaining 

singular values are large;  thus the "almost uncontrollability" 

situation of the discretized system remains undetected with the 

determinant criteria. 

Examples: 

Example 5.1.  Consider a SISO continuous system 

The poles are at -2±j3, with a Nyquist sampling rate Tpgyq=l .04719 

sec.  The £(W(0,2)) as a function of T is plotted in figure 5.1, which 

rightly shows that at T=1.047 sec, the system loses controllability. 

To avoid aliasing effects we must choose T smaller than the Nyquist 

sampling rate, and as seen from the plot the optimum T=0.65 second. 

Note also that near T=Tf}yq, the degree of controllability is poor. 

Example 5.2.   As another example consider the decoupled longitudinal 

dynamics of a missile in flight condition 1: 
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x(t) 
•1.4868 

■149.93 

X = 

where X2^(t) = angle of attack in rad 
XoCt) = perturbed pitch rate rad/sec. 
u(t)  = elevator angle 

The poles are at -0.7434±jl12.22 with a damping ratio 5=0.061 and 

a Nyquist sampling interval rate TNyq=0.257sec.  o;(W(0,2)) plot is 

given in figure 2 which shows that the system loses controllability at 

Ti=kTNyq, k=l,2  

Although the optimal T* is lower than Tfjyq by an infinitesimal 

amount, it is recommended that a sampling time between 0.1 and 0.2 

sec.  be chosen from practical considerations. 

o 
o 

R MATRIX 
l.OOOfOO 

< > 

M 

•z. 
M 

0.00       .40        .80 

SAMPLING TIME IN SECS 

1.20 1.60 

Figure 5.1.  Sampling Time Interval and Degree of Controllability 
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Figure 5.2. Sampling Time Interval and Degree of Controllability for 
an Air-to-Air Missile 

5.6  Sampling Time Interval and the Observability of the Discretized 

Systems 

In this section we formulate an optimization problem for finding 

an optimal sampling time interval T* from the observability viewpoint. 

The approach is analogous to that in the preceding section.  The cost 

functional chosen for optimization is subjective and depends upon the 

application of the discretized system;  but the point we want to 

emphasize is that this type of formulation yields an optimal unique T. 

It is shown here how to formulate the problem from the consideration 

of sensor sensitivity and optimal use of sensor measurements. 

The observability of the SD system 

x(k+l) = Fx(k.) ,  x(0) unknown 

y(k) = Hx(k) 

(5.30) 
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is concerned with the inference of the initial state x(0) from 

n-observations, y(k.), k.=0,-..n - 1 and depends upon the observability 

matrix 0 in (7b). 

Define 

Yn = [y'(0) : y'(I): . . . y'(n-l)]' 

Then the estimate of x(0) based on n-observations is 

x(0)|Yn = Oh^ \/ 

where 0^'* is the generalized inverse of the observability matrix 0.  If 

rank (0)=n, YQ lies in the range-space of 0 and x(0) can be estimated 

exactly and 

x(0)  |Yn = (0'0)-lQ'Yn 

When the system is unobservable, 0'0 is rank deficient and the 

estimate is not perfect.  The structure of the observability matrix 0 

determines the "observability" of the system and the system continues 

to remain observable as long as rank (0)=n.  To embed the 

observability problem in a quantitative framework, note that the 

structure of this matrix also determines how a given initial condition 

x(0) (or equivalently any given state x(k)) is distributed in the 

output sequence {y(k.) , k=0,...n-l}.  Maximizing observability by 

adjusting T implies in the sense of the L2-norm that any initial 

condition x(0) with energy | |x(0) | |   gives rise to maximum energy in 

the output sequence. 

In the extreme case when the system is completely unobservable, 

the energy in the sequence {y(k), k=0,...n-l} is zero for any x(0). 

There is another advantage of maximizing output energy.  For a good 

performance from the sensors it is desirable to maximize the energy, 

because for a given x(0) (or {x(k)}) and unmeasurable corrupting 

output noise, this is equivalent to maximizing signal to noise power 

ratio and consequently best sensor performance is obtained.  There is 

another motivation that some sensors may be more efficient than others 

and less efficient sensors will need higher signal to noise ratio than 
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the more efficient ones.  These observations suggest a weighted 

cost-functional (weighted energy in the output sequence), similar to 

(5.17a), 

n-1 
J=  Z  y'(i)R(i)y(i),   R(i)=R'(i)>0 (5.32) 

i=0 

where R(i) determines the relative importance of various sensors.  We 

should then maximize J.  However (5.32) reduces to ,. 

J = x'(0)V(0,n)x(0) ,. (5.33a) 

where 

n-1        '   ' 
V(0,n) =  Z  (F')ic'R(i)C(F)i (5.33b) 

i=0 ... 

may be called the "output-weighted observability Grammian." 

The normalized energy is 

N  x'(0)x(0) ' 

and the minimum possible normalized energy is 

* J 
JN = min     J = min     ^un^^((^^     =a(V(0,n) (5.34) 

x(0)eRn      x(0)eRn "^  ^"^^^U-' 

where o{.},   a(.) denote as usual the minimum and maximum singular 

value respectively.  Note that J^  is bounded below and above as 

0 < a(V(0,n) < JN < 'a(V(0,n) 

and when the system is unobservable £(V(0,n))=0.  The minimum singular 

value of V(0,n), a^(V(0,n)) is a sensitive measure of unobservabillty, 

because the system need not be completely unobservable for a((V)(0,n)) 

to be zero.  If any subspace of R"^ is unobservable an arbitrary x(0) 

will have non-zero projection on this sub-space and a(V(0,n))=0,  We 
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* 
therefore should choose T to maximize J^    to take the system away from 

unobservability as much as possible.  The optimal T=T* should then be 

chosen such that 

* 
T* = sup Jj^ 

T 

with the constraint that T* should be less than the Nyquist sampling 

rate. 

Therefore, following the arguments of the previous section, we 

should find an optimal sampling time T* from the observability 

viewpoint by solving the following max-min problem: 

n-1 
T* = max min x'(0)( E  (F')ic'R(i)C(F)i)x(0) 

T  x(0)eRn i=0 
||x(0)|f=l 

Examples 

Example 5.3. We consider again the example 1 of the previous sec- 

tion with ! ' 

the output matrix 

H = (1   0) 

The minimum singular value plot of V(0,2) as a function of T is given 

in figure 5.3.  Note the similarity with figure 1 and observe that the 

sampling time at which the system loses controllability is also the 

time at which the system loses observability.  These happen at the 

Nyquist sampling interval of 1.04719 seconds. 
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Figure 5.3:  Sampling Time Interval and Degree of Observability 

Example 5.4. Consider the example 5.2 with angle of attack as the 

output, i.e. 

H = (1   0)       :' ■    • :   '  '  ' • f ■■'- r-   '''     '   ': 

£(V(0,2)) plot is given in figure 4.  Notice again the similarity with 

Figure 2.  At T=0.257 sec.  the observability is lost. 
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Air-to-Air Missile 

5.7  Conclusions 

In this paper we have described a framework for determining a 

unique optimal sampling time T.  The solution T is given by a mini-max 

problem when considered from the controllability viewpoint, and by 

maxi-min problem when considered from an observability viewpoint.  The 

choice of cost-functionals as a basis of an optimization problem is 

very much a subjective matter and depends upon the application of the 

discretized system.  But nevertheless, the framework developed in the 
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paper Is based on practical considerations;  the analysis is very 

simple, and the results are extremely useful to practicing control 

engineers. 
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CHAPTER 6 

/ 
SIMULATION RESULTS 

6.1  Introduction 

The identification technique using CVA (Canonical Varlate 

Analysis) has been described in Chapter 2 and the robustness analysis 

of the simplified MAC controller has been analyzed in Chapters 3 and 

Chapter 4.  These results are combined in this chapter as an Adaptive 

MAC (AMAC) controller, and its performance will be demonstrated 

through realistic simulations in deterministic as well as in 

stochastic environments.  The simulation runs have been designed to 

emphasize the effect of data length, dither strength (SNR), and closed 

loop identification capability of the CVA technique.  It has also been 

shown how AMAC behaves for SISO and MIMO plants. 

The primary purpose of this chapter is to exhibit the strength of 

the CVA technique as a closed-loop identifier and to demonstrate the 

reliable adaptive control scheme AMAC which utilizes the robust MAC 

technique.  If the performance of the CVA technique degrades for some 

reason i.e. the identified plant is not 'close' to the actual plant, 

the robustness of MAC compensates for it in the sense that it enables 

the plant to maintain the closed-loop stability and follow the desired 

trajectory. 

This chapter is orgnized as follows: The simulation models have 

been selected from the previous project report on MAC 

(AFWAL-TR-80-3125).  For the sake of completeness of this report, the 

models and the various simulation parameters are described again in 

Section 6.2.  Simulation results under various scenarios are presented 

in Section 6.3.  Finally the summary and conclusions are given in 

Section 6.4. 

6-1 



6.2  Simulation Model and Simulation Parameters 

The simulation models have been selected from the previous report 

on MAC [AFWAL-TR-80-3125].  The SISO and MIMO models are extracted 

from a single hypothetical air-to-air missile model with asymmetric 

aerodynamic properties.  This model represents a simple, three-axis 

attitude control problem in flight condition 1 with independent pitch 

axis and coupled roll-yaw dynamics.  In this flight condition (Mach 2 

at 20,000 ft. and weighing 239.5 lb), this missile is flying at an 

equilibrium pitch angle of 9°, sideslip of 0° and roll angle of 0°. 

6.2.1  SISO Model 

The SISO Model consists of the decoupled pitch axis dynamics with 

2 states.  The model in the continuous time domain is 

-1.4868   1 \       / 0 
I x(t) +        |u(t)  (6.1a) 

-149.93  0 /       \-281.iy 

■ y(t) = (1  O)x(t) (6.1b) 

The states are: 

x^(t) = angle of attack, 

X2(t) = perturbed pitch rate (rad/sec), 

with input u(t) = elevator angle (rad) and output y(t) = angle of 

attack (rad).  The open loop poles are at -0.7434±j12.222 with a 

damping ratio of 0.061 which shows that the pitch axis dynamics are 

quite oscillatory. 

The plant dynamics are discretized at a sampling rate of 10 Hz 

using the exponential transform (sample and zero order hold).  The 

resulting poles of the discrete time system are 

0.31711+jO.87252 (6.2) 
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with a modulus of 0.92836.  The pulse response and step response when 

these are applied at t=0.4 seconds to this system are shown in Figure 

6.1.  The true poles in equation (6.2) will be subsequently compared 

with those of the identified systems. 

6.2.2   MIMO Model 

The coupled roll-yaw dynamics from the same air-to-air missile in 

section 6.2.1 are used for the MIMO Model.  It has four states, two 

inputs and two outputs. The states are 

X]^(t) = sideship angle (rad) 

X2(t) = perturbed roll rate (rad/sec) 

X3(t) = perturbed yaw rate (rad/sec) 

X4(t) = roll angle (rad) 

with inputs 

and outputs 

U]^(t) = aileron angle (rad) 

U2(t) = rudder angle (rad) 

y]^(t) = sideship angle (rad) 

y2(t) = roll angle (rad). 

An early analysis of these dynamics indicated a very severe roll 

instability.  Since MAC can work, only for systems with a finite 

impulse response, roll angle and rate feedback were added to the 

aileron command to add damping to the system (see the previous report, 

page 125).  With such compensation, the dynamics are 
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'-0.91237 0.15708 -1.0 0.015431 
•1559.2 -4385.3 0 -4385.3 

x(t)  =\    290.48 0 0             0/   x(t)  + 
0 .1 0             0 

10    0    0 
y(t)   =1 0    0    0     1   I x(t) (6.3b) 

The open-loop poles are at 

-4384.24, 
-1.00040,  -0.484±jl7.035. (6.3c) 

As in the SISO case, the plant dynamics are discretized using an 

exponential transform for a sampling interval of 0.1 seconds.  The 

open-loop poles of the discretized system are: 

0.00000654, 0.9047, -0.12609±jO.9444        ^   (6.4) 

The response of this system to a pulse and a step in aileron input is 

shown in Figure 6.2.  The corresponding responses to similar excita- 

tions in rudder input are shown in Figure 6.3.  As in SISO case, these 

inputs are applied at t=0.4 seconds.  In all the figures involving 

MIMO plant simulations, the following notations have been used: 

on output plots: 

A = sideship angle, 

B = roll angle, 

on input plots: v- 

A = aileron angle, .*' 

B = rudder angle. 

It is obvious from Figures 6.2 and 6.3 that the first output is insen- 

sitive to changes in the first input and the second output is simi- 

larly related to the second input. 
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6.2.3  Simulation Parameters 

In order to facilitate comparison between related plots, the 

scales have been kept constant, if possible, within each series of 

runs.  Unless otherwise noted, the following conditions existed in the 

simulations: - 

• The sample time was 0.1 seconds. 

• The controls were computed for the three blocks ending at 
one, three and five steps in the future (for details of the 
input blocking techniques see the previous report on MAC). 

• The reference trajectory time constant was 0.1 seconds for 

all outputs. 

• No input constraints were imposed. 

• It was assumed that the plant model was completely unknown at 

the beginning. 

Therefore the missile was allowed to run open-loop for a while under 

the effect of dither excitation and measurement noise.  The plant was 

identified at the end of this period which was then used by MAC as an 

internal model of the plant.  The set points were then changed at the 

end of this interval as follows: 

For the SISO plant, angle of attack was set from 0° to 15°, 

For the MIMO plant, sideslip was set from 0° to 10° and the roll 

set point remained at 0°. 

• The output weights were all equal to 1 and no input weights 

were used. 

• The input excitation noise (dither) and measurement noise 
were white Gaussian noise processes generated by the 
subroutine GGNML from IMSL library. 
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6.3  Simulation Under Various Scenarios 

Under each condition, AMAC was applied to the SISO plant of 

Section 6.2.1 and the MIMO plant of Section 6.2.2.  These results are 

exhibited separately. 

6.3.1 MAC Applied to Perfectly Known Plants 

Extensive simulation results under this condition, i.e. when the 

plant model is perfectly known, have been reported in the previous 

report on MAC [AFWAL-TR-80-3125].  Two of these results are reproduced 

here for later comparison with AMAC performances.  The control and the 

output of the SISO plant under the same simulation parameters of 

Section 6.2.3 when the set point is changed from 0° to 15° at 0.4 

seconds is shown in Figure 6.4.  Similar response for the MIMO plant 

for a set point change at 7.0 seconds is shown in Figure 6.5. 

6.3.2 AMAC Applied to Unknown Plants 

The adaptive MAC was applied to the plants of Sections 6.2.1 and 

6.2.2 and the results are shown in the subsequent figures.  The 

variance of the excitation signal (dither) was 0.1 and that of the 

measurement noise was 0.05 so that the signal-to-noise ratio (SNR) was 

6db.  This ratio is considered to be realistic by many practicing 

engineers.  The dither was superimposed on the normal input obtained 

from MAC algorithm and the measurement noise was added to the actual 

output of the plant. 

The SISO plant was identified at the end of every 7-second inter- 

val and the optimal state order was selected using the AIC criteria 

(see Chapter 2 for details).  As mentioned earlier, the plant was 

running open loop during the first interval and closed loop in the 

subsequent intervals.  The control and the output sequences are 

plotted in Figure 6.6 - the vertical dotted lines in this and the sub- 

sequent figures indicate the length of the intervals.  The plant is 

identified at the instants indicated by these dotted lines.  This 

figure clearly shows that under AMAC, the plant can track the 
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reference input albeit at the expense of ride comfort (or oscillations 

in the output).  To see how CVA performs when combined with MAC, we 

have compared the transfer function of the identified plant in the 

first interval (i.e. open-loop identification) with the actual one in 

Figure 6.7(a) and that from the 3rd interval (closed-loop iden- 

tification) in Figure 6.7(b).  The optimal state order and the iden- 

tified poles during various intervals (see Figure 6.6) are found as 

follows: 

State Order Poles 

Section I        3 0.588, 0.3437±j0.8509 

Section II       3 0.988, 0.3042±j0.8455 

Section III       3 0.966, 0.2664±j0.8308 

These poles of the identified system can be compared with those of 

actual plant which are at 0.3171l±j0.87252. 

The MIMO plant was identified every 20 seconds under similar con- 

ditions, the plant being run open loop in the first interval.  The 

servo performance of AMAC under this run is shown in Figure 6.8.  The 

set point was changed at the 20th second.  The optimal order and the 

identified poles are: 

State Order Poles 

Section  I 3 0.8089,-0.12066±jO.9312 

Section II 5 0.5888,   0.7479,  0.835, 

. '■   -0.1358±j0.9308 

Again these identified poles may be compared with the actual ones in 

equation (6.4).  Each element of the identified transfer function from 

Section I (i.e., open-loop identification) is compared with the 

corresponding element of the actual transfer function in Figure 6.9. 

The comparison of the closed-loop identified system (i.e. from Section 

II) is made in Figure 6.10.  Note that the accuracy of the transfer 

function identification is essentially the same for both the open-loop 
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and closed-loop identification which is a theoretical property of the 

CVA identification method as discussed in Chapter 2. 

6.3.3  Effect of Data Length and Dither Strength .  • 

The adaptation interval for the SISO plant was reduced from 7 

seconds to 4 seconds and the AMAC was applied to the plant, keeping 

other simulation parameters unchanged.  But this time the identified 

plant was too far away from the true plant and the inherent robustness 

of MAC was not adequate to enable the plant to track the reference 

input.  The closed-loop was unstable as is shown in Figure 6.11.  The        ; 

dither strength was then raised to 1.0 thus making SNR 26 db.  The 

adaptation interval was fixed at 4 seconds.  This time the quality of 

the identified plant was better and the plant under MAC was able to 

track the reference input again albeit at a cost of much higher 

oscillation.  The resulting tracking behavior is shown in Figure 6.12. 

The identified plant in the open-loop and closed-loop environments are 

compared in Figure 6.13.  The optimal state orders for Sections I, II 

and III were respectively 4, 3 and 6. 

For the MIMO plant the data length was reduced from 200 to 100 

and similar effect was observed - the closed loop was unstable as 

shown in Figure 6.14.  As in the SISO case above SNR was raised to 26 

db by increasing the dither strength to 1.0.  As shown in Figure 6.15, 

the tracking capability of AMAC was revived again.  The identified 

system from the closed loop operation is compared in Figure 6.16.  The 

optimal state order was 6 in both sections I and II. 

The simulations in this section clearly indicate that the servo 

quality of AMAC can be improved either by increasing data length or 

dither strength. ■ | 
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6.3.4  No Measurement Noise 

In this set of runs. It was assumed that there was no measurement 

noise and the dimension of the state-space was known apriorl.  The 

intensity of the dither signal was taken to be 0.1. 

The SISO plant Is identified every 2.5 seconds, i.e. only 25 data 

points were used in the identification algorithm.  The result of 

applying AMAC is shown in Figure 6.17 and the transfer function of the 

identified plant is compared in Figure 6.18.  The identified poles are 

follows: 

State Order 

Section I 2 

Section II        2 

Section III       2 

Poles 

0.2981+J0.8751 

0.3161+J0.8629 

0.3094±j0.8729 

Under similar conditions, AMAC was applied to MIMO plant for a 

data length of 50, i.e. the identification scheme was Invoked every 5 

seconds.  The result is shown in Figure 6.19.  The transfer function 

of the identified plant in closed loop operation (i.e. , from segment 

III) is compared in Figure 6.20.  The identified poles from different 

segments of the run are as follows: 

State Order 

Section I        4 

Section II        4 

Section III       4 

Poles 

0.907,-0.029, -0.145±j0.885 

0.676, 0.912, -O.I15±j0.967 

0.888±j0.037, -O.ll+jO.948 

These plots show that when there is no observation noise, the CVA 

technique can reliably identify the plant from a relatively small data 

length. 
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6.3.5  Gust Noise Excitation . 

To demonstrate the effect of colored noise excitation on the 

accuracy of the identified trasnfer function, a wind gust excitation 

of the form described in MIL-F-8785 (Hoh et al, 1982) is used.  This 

Is in contrast to the white noise Input excitation used in the other 

simulations of this chapter.  The wind gust excitation was simulated 

using a white noise excitation of unit variance into a transfer 

function shown In Figure 6.21 along with the plant transfer function. 

The gust excitation level was chosen so that the total variance of the 

input excitation was the same as the white noise excitation used in 

Figure 6.6 and 6.7. 

The control and output sequences are shown in Figure 6.22.  The 

identified transfer functions corresponding to the time intervals I 

and III are shown In Figures 6.23 with the use of open and closed loop 

data respectively.  In theory, the accuracy of the identified transfer 

function at different frequencies is proportional to the ratio of the 

input excitation power to the measurement noise power at the 

frequency.  Thus one would expect to see a slightly greater accuracy 

of the transfer function near the peak of the gust spectrum and 

slightly lower accuracy at the frequencies with low power when 

compared with Figure 6.7.  This is consistent with the simulation run, 

however the statistical variability is high in comparing 

identification accuracy on only two data sets. 

An irapllcit input excitation where the excitation is not observed 

was also considered.  The result is of little use in transfer function 

identification since only the magnitude of the trasnfer function is 

obtainable and not the phase.  In addition the accuracy of the 

magnitude function is considerably worse than in the case of an 

explicit input excitation.  Thus the presence of wind gusts are of 

very limited value in plant transfer Identification unless the gust 

excitations are accurately measured. 
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6.4  Conclusion 

The simulations of this chapter have demonstrated the fact that 

the combination of CVA and MAC results in a reliable adaptive control 

scheme.  This scheme can be used in an environment where the plant 

model is completely unknown and/or slowly time varying.  The satisfac- 

tory performance of AMAC demonstrated that: 

(i)   CVA can identify a plant satisfactorily in an open loop as well 

as in closed loop operation of the plant. 

(ii)  The optimal state-order selection criteria (using AIC) is 

extremely helpful when the state-space dimension of the true plant is 

not known apriori.  The comparison between the identified and the true 

transfer function shows that this order selection technique works very 

well in a low SNR environment. 

(iii) The accuracy of the identified plant (and hence the performance 

of AMAC) depends upon data length and SNR.  However these factors can 

be traded between one another - CVA performance can be maintained by 

using shorter data length and larger SNR and vice versa. 

(iv)  MAC has excellent robustness properties.  As a result the closed 

loop performances can be maintained in many instances, even when the 

quality of identification has been degraded. 

(v)  If there is no measurement noise, the plant can be identified 

from a much smaller sample size compared to the situations having 

measurement noise. 

It is worth noting that the MAC control technique is based upon 

the impulse response model of the plant and therefore MAC can be used 

only for controlling stable plants.  This causes no problem in a 

deterministic environment if the plant is a stable one.  But in an 

adaptive control scheme where the plant is reidentified frequently, 

the identified plant may turn out to be unstable if the data length is 

too short or the signal-to-noise ratio too low even if the true plant 
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is an asymptotically stable one. We indeed faced this problem in some 

of the simulations of this chapter, but the effect was not dramati- 

cally visible because the intervals of simulations were too short. 

However this problem can be remedied by using Model Predictive Control 

(MFC) technique - a newer version of MAC which can handle stable and 

unstable systems with equal ease in the same framework. 
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CHAPTER 7 

CONCLUSIONS 

The overall conclusion of this study is that MAC control design 

technique can be used in situations where the plant model is not know 

exactly and/or slowly time varying by incorporating a suitable on-line 

parameter estimation technique in the existing MAC software.  Many of 

the available techniques for system identification suffer from the 

fact that these can not identify the system in a closed-loop con- 

figuration.  But the one developed in Part 1 of this report is based 

on canonical variate analysis and has the same performances in both 

open-loop and closed-loop configurations.  The robustness analysis in 

Part 2 gives the neighborhood of stability around the identified model 

provided that the nominal MAC loop is stable for the identified plant. 

Thus combining the results of Parts 1 and 2, adaptive MAC provides an 

analytically sound and very useful control design technique in an 

uncertain environment such as in the missile attitude control problem 

in different flight conditions where the plant model drifts from one 

flight condition to another.  The problem of under sampling and over 

sampling can be avoided by using the optimum selection technique deve- 

loped in Part 2. 

Specific conclusions of this study are: 

(i)  MAC software uses impulse response description of the plant 

and therefore cannot be used if the plant is unstable to start with. 

On the other hand if the plant is lightly damped, the impulse response 

sequence contains a large number of terms and computational require- 

ments become large.  For these systems, it is recommended that the 

plant be made stable and/or damping be added to the dynamics of the 

plant apriori by using constant gain output feedback and then MAC be 

applied to the overall compensated plant.  However if the overall 

dynamics are made very fast using high gain, the sampling rate must be 

high too in order to satisfy Nyquist's sampling criteria.  However if 
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the plant model is not known exactly, gain should not be made 

arbitrarily high because if the unmodelled dynamics have non-minimum 

phase zeros, the overall combination will again be unstable. 

(li)  The standard frequency domain robustness analysis can also 

be applied to a one-step-ahead MAC control law and thus the MAC 

robustness can be compared to that of other conventional control 

design techniques under similiar situations.  The robustness results 

obtained in this report for SISO plants can be extended to MIMO plants 

if the magnitude function is replaced by the operator norm of the 

transfer function.  Every nominally stable design guarantees the sta- 

bility of a class of plants in the neighborhood of the nominal one, 

and the boundary of this neighborhood has been identified in Part 2 of 

this report.  It is recommended that, before applying MAC to any real 

world situation, the region of guaranteed stability be calculated and, 

if unsatisfactory, enlarge by slowing down the trajectory time 

constants and/or other parameters. 

(iii)  Any conventional on-line parameter identification tech- 

nique can be embedded in the existing MAC software to generate the 

internal model of the plant and the resulting control technique in an 

"Adaptive MAC".  It is recommended that the identification technique 

based on canonical variate analysis developed in Part 1 of this 

report be used for identifying and updating the system parameters.  The 

advantage of this technique is that it can identify the plant equally 

well in open-loop and closed-loop configuration and it can give the 

simultaneous confidence band on the transfer function for all frequen- 

cies.  In this technique the parameters are updated intermittantly 

whereas in other conventional techniques this is done in every step. 

Although the computational requirement is comparatively higher in this 

technique, the quality of the estimate and computational reliability 

of the solution justifies this additional burden. 

(iv) Sampling interval is an important parameter in the MAC 

design process. Usually sampling rate is selected satisfying the 

constraints of Nyquist rate, but yet the designer is confronted with a 
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choice from Infinitely many rates satisfying this constraint.  The 

optimum (possibly unique) sampling rate selection technique developed 

in this report relieves the designer form this problem.  The use of 

this technique is not limited to MAC control design only - it can be 

used in any situation where a sampling rate is to be selected. 

(v)  The simulation results in Chapter 6 demonstrate that the use 

of MAC and a suitable system identification method such as CVA or 

Maximum Likelihood provide a reliable adaptive control method if there 

is sufficient input excitation or data length.  The AMAC procedure is 

demonstrated on multiinput multioutput systems in closed loop 

operation under MAC feedback, control.  The accuracy of the parameter 

identification is shown to be the same in either open or closed loop 

operation as is predicted by theory.  The selection of state order 

using the AIC procedure in the CVA method is shown to give accurate 

model selection in the cases where state order is unknown.  The 

accuracy of the identified plant can be increased by increasing the 

data length or the input excitation amplitude.  The robustness of MAC 

can accomodate a moderate uncertainty in the identified plant, but for 

too large an error the closed loop system may become unstable. 

(vi)  The results of this study suggest a number of fruitful areas 

for future research.  The MAC approach uses the impulse response 

representation of the plant dynamics which has the difficulty of being 

unbounded for unstable systems and very long for very lightly damped 

systems.  Constant gain feedback is used in this study to obtain a 

closed loop system that is well damped.  A more direct approach is 

that of Model Predictive Control (MPC) using a state space 

representation of the system.  Such a representation is in fact the 

natural representation given in the CVA Identification.  The CVA 

procedure can be easily extended to nonlinear systems of polynomial 

form.  This would greatly widen the areas of application of the AMAC. 

Another area for research is the use of the confidence intervals on 

the identified transfer function and the robustness bounds on the MAC 

controller to determine the required sample size or input excitation 

to maintain stable closed loop operation. 
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SUMMARY 

A generalized reduced rank prediction problem, which is a generalization of a 

number of multivariate analyses including the classical canonical correlation analysis, is 

formulated as an explicit prediction problem: given two sets of random variables and an 

integer p, find p linear combinations of the first set which best predict the second set as 

measured in terms of a specified quadratic form in the prediction error. Use of a general- 

ization of the singular value decomposition reduces this problem to a simple form with an 

explicit geometric interpretation, includes the case of singular covariance matrices, is the 

preferred numerical procedure for actual computation, and gives a complete characteriza- 

tion of nonuniqueness in the case of multiple solutions. The optimal solution is shown to 

be a formal application of classical canonical correlation analysis to a "pseudo" covariance 

matrix. Special cases include the classical canonical correlation analysis, the standard as 

well as a generalized principal component analysis, the optimal selection of instrumental 

variables, and reduced rank regression. 
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1. Introdactioa 

In recent years there has been considerable interest in unifying concepts in multivari- 

ate analysis and research into a number of generalizations (Izenman, 1975; Muller, 1982; 

Rao, 1979). The approach taken in this paper is to formulate a single generalized predic- 

tion problem which includes a number of multivariate analysis procedures such as princi- 

pal component, canonical correlation, reduced and full rank regression, instrumental vari- 

ables, as well as some generalizations of these. Some of these multivariate analysis pro- 

cedures are not traditionally formulated or considered as prediction problems, and this 

extends the range of useful applications for these methods (Yohai and Garcia Ben, 1980). 

The prediction problem is very naturally considered as a generalized canonical variate 

analysis. 

A primary objective of this paper is to give a complete characterization of the solu- 

tions of the generalized prediction problem in the cases of multiple solutions and/or singu- 

lar covariance matrices. Such multiple solutions may arise in the reduced rank case with 

repeated singular values or, in terms of the traditional formulation, with repeated general- 

ized eigenvalues. Multiple solutions have received little attention and seem not to have 

been characterized from the geometric point of view in terms of subspaces as is given in 

this paper. The singular case has also received little attention. This is probably due to the 

rather considerable complexity in the derivation and description of procedures such as 

canonical correlation analysis. 

The classical approach to reduced rank or rank constrained problems such as princi- 

pal component and canonical variate analyses has been the use of canonical representa- 

tions which are obtained by the solution of related generalized eigenvalue-vector problems 

(Hotelling, 1936). The canonical variables have a particularly simple covariance structure 

although the means of obtaining them are often quite complicated involving the solution 
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of a constrained maximization problem by differentiation leading to the generalized eigen- 

problem. Most treatments do not prove that the conditions sufficient for the existence of 

such a maximum are satisfied as noted by Stuart (1982). Rarely is there any discussion of 

the multiplicity of solutions, an exception being Yohai and Garcia Ben (1980). The case 

of singular covariance matrices is not included in these approaches and has received very 

little attention in the literature (see Khatri, 1976). 

In recent years, the simple structure of the covariance matrix of the canonical vari- 

ables has been expressed in terms of a singular value decomposition (SVD) of appropriate 

quantities depending upon the particular problem such as principal components or canoni- 

cal variates. In a few discussions, the derivations were considerably simplified by the use 

of the singular value decomposition as compared with the classical eigenproblem (Good, 

1969; Mandel, 1982; Rao, 1979; Stuart, 1982). While this greatly simplifies the derivation 

and interpretation, a unified treatment of the various reduced rank problems is not avail- 

able. 

The approach of this paper using a generalization of the singular value decomposi- 

tion includes simply the cases of multiple solutions and singular covariance matrices. This 

approach involves concepts and methods from the singular value decomposition which in 

recent years has become a standard tool of linear algebra for the investigation of reduced 

rank and illconditioned problems from both an analytical as well as a computational point 

of view (Golub, 1969; Lawson and Hanson, 1974;). This approach focuses immediately 

upon the central algebraic and geometric properties of the problem and gives the general- 

ized canonical variables directly. The generalized singular value decomposition reduces 

the optimal prediction problem to a simple form which is directly and easily solved using 

elementary properties of orthonormal matrices. This avoids the need to solve a con- 

strained maximization problem by differentiation using Lagrange multipliers which is the 

■■) 
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traditional approach to canonical variate analysis. 

The generalized singular value decomposition provides a unification on several levels. 

A single mathematical framework using the generalized singular value decomposition 

solves a single generalized problem that can be specialized to the various reduced rank 

prediction problems. This unified treatment gives the complete multiplicity of solutions 

for cases with re|>eated singular values and simultaneously includes the case of a singular 

covariance matrix largely missing in the literature. Also there is unification using the gen- 

eralized singular value decomposition in the derivation of the proof, the mathematical 

statement of the results, the geometric interpretation of the prediction problem and its 

solution, and the computation of the solution using modem numerical methods that are 

numerically accurate and stable. This gives a considerable unification of the teaching, 

understanding, interpretation, and application of these methods. The diversity and com- 

plexity of the present literature makes the learning and understanding of such methods as 

canonical correlation analysis difficult for many potential users, and is considered by some 

to be largely responsible for its relative neglect in appUcations. 

2. A Goieralized Prediction Problem 

Consider two sets of zero mean random variables X^ - (xj. . . . ,x„/ and 

y^ = (y\,-,ynf with a joint covariance matrix of (X^ ,Y^Y given by 

2    2 ■ 
(12) 

where 2„ and 2^^ are possibly singular. In this paper, the following constrained predic- 

tion problem is considered: for a given p, find a p-dimensional vector Z = H X of linear 

combinations of X such that the optimal prediction Yj of Y based upon Z minimizes the 

A-5 



general quadratic prediction error measure 

\\Y-YMlf=E{(Y-Yj\\Y-Y,)} (22) 

where A is an arbitrary nonnegative definite symmetric matrix of rank n, and t denotes 

the pseudoinverse, i.e. the inverse of the full rank part of A. Let L satisfy LAL^ = I 

where L is full rank with dimension nXn, then it will be convenient to express A^ =L^L. 

From the eigenvector decomposition of a matrix, the rows of L span the same subspace as 

the eigenvectors of A with nonzero eigenvalues. Such an L will occur naturally in the 

generalized singular value decomposition. Although the use of the inverse or pseudoin- 

verse in the definition of the prediction problem may appear awkward, it will lead to con- 

siderable simplicity in formulating the mathematical problem to be solved and in the 

geometrical and statistical interpretation of the resulting solution. The prediction problem 

(22) is considered in the case that A is full rank by Izenman (1975) and Rao (1979). Lari- 

more (1983) extends the prediction problem to the case of time series analysis of Markov 

processes of constrained Markov (state) order p. 

In the paper, the geometrical interpretation will play an important part. A linear 

vector space V of random variables generated by a set 5 of random variables is defined as 

the set V of all random variables that are linear combinations of 5. In the sequel, several 

inner products <u,v>r = Eu^Tv for M,V iV will be defined for various positive semidefin- 

ite symmetric matrices F. Two random variables u and v are orthogonal with respect to 

the inner product <.,.>r if <u,v>r = 0, and a s^t of random variables uj,.. . ,«„ are 

orthonormal if they are orthogonal and in addition <ui,ui>i- = 1. Then all of the usual 

properties of iimer product spaces apply to such a space of random variables such as sub- 

space, rank of a subspace, and linear independence of vectors. 
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Consider the case where ]£„ is full rank. Then for an arbitrary p-vector Z = H^X of 

linearly independent combinations of X where p ^ m so Hp is rank p , the optimal esti- 

mate Y^ of Y given Z is 

Y,= S^ 1-J Z=l,^ HliHp 2„ Hlr'z (23) 

and the prediction error is 

\\Y-Y,\\l = trS}%„-tr\^%^Hl{HpX„Hlr'Hpt^ (2.4) 

Now Hp does not uniquely specify Z in terms of estimating Y since from inspection of 

(23) any nonsingular transformation of Z will leave Y^ invariant. An orthonormalization 

of Z will give an equivalent Z = JpX with 

S^=-/p2„7j=/^ (2.5) 

where Ip is the p xp identity and where the last equality is satisfied if Rank(t„) 2: p. 

In the singular case where Rank(Zj^) <p, then by an orthonormalization of S^ a 

new set of random variables Z = AZ = AJpX — J-X of lower dimension p can be chosen 

with a full rank covariance matrix equal to the identity. For this new orthonormalized set 

of random variables, dropping the bar notation we have precisely (25). Note that by 

replacing Hp by Jp, the inverses in (23) and (2.4) are then also well defined. We may 

thus in any case introduce the constraint (25) on Jp without loss of generality. The 

optimum prediction problem (22) can thus be stated mathematically as choosing a Jp to 

minimise 

\\Y-Y,\\\,=tTt.^^^-trt.^X^jljpX^ (2.6) 

subject to the constraint 
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J,t„Jl=I, (2.7) 

This problem is of great practical interest. The classical canonical correlations and 

variates analysis will be shown to be equivalent to minimizing (22) with A = 2^ . The 

principal component analysis problem is equivalent to K = X so £„ = X^ = S„ and in 

addition setting A = / . More general weightings are afforded by other choices of A 

which can reflect a cost of prediction error of practical value such as dollars or a second 

order approximation to a nonlinear cost function. The particular weighting A used in a 

given problem can make a considerable difference in the solution, which suggests that the 

classical canonical correlation analysis in some cases does not give the most appropriate 

choice of A . The generalized canonical variate analysis provides a unified framework for 

canonical correlation analysis and principal component analysis as well as more general 

prediction problems. 

3. A GENERALIZED SINGULAR VALUE DECOMPOSITION 

A very intuitive approach to finding the canonical decomposition is through one par- 

ticular generalization of the singular value decomposition. The usual singular value 

decomposition is given by the following (Lawson and Hanson, p. 20-1, 1974). 

Theorem 1. If A is a real m'Xn matrix of rank r, then there exist orthonormal 

matricesB{mym) and C(ji^^) such that ' ' 

B^AC = Diag{d^ ^■■■^d,> 0,...,0) , B^B = I„ ,  C^'C = /, (3.1) 

where Diag denotes a mXn diagonal matrix with nonnegative elements in decending 

order. 
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In generalizing this, let P be a nonnegative definite symmetric matrix of rank r . 

Then we define a matrix 7 to be P-orthonormal (rowwise) when JPJ^ =1^. Note that 

this definition includes the requirement that the dimension of J is RankP xDimP with J 

full rank. This can all be conveniently stated simply as JPJ^ = Ig^„jj, so that the dimen- 

sion and ranks of P and J do not have to be expUcitly stated. Also throughout the 

paper, D = Diagid^, • • 4a>' ' ') ^i^ denote a general rectangular matrix with all ele- 

ments zero except for elements d^ on the main diagonal. Then the {R,S)-singular value 

decomposition is given by the following theorem. 

Theorem 2. Let R and S be nonnegative definite symmetric matrices of order m and 

n and ranks m and n respectively, and let A be a mXn matrix. Then there exist transfor- 

mations J and L such that 

JAL'' =D= Diagiy^ >...> 7r > 0,...,0)   , JRj'' = I^,^   , LSL" = /^^       (32) 

Thus the transformations J and L are /?- and 5-orthonormal respectively and in addition 

satisfy the following: 

(i) For distinct singular values 7,'s, the row vectors of J and L are unique except for a 

sign change. 

(ii) For repeated singular values 7,-'s, the rows of J corresponding to a given repeated 

singular value must span a fixed subspace, and similarly for L. 

(iii) Any transformations J and L satisfying the decomposition (32) are related to a par- 

ticular solution /.,L,  in terms of a block diagonal orthonormal matrix of the form 

J = Diag{Pi Ph'PuV" . ^ = Diag{P^. P* A)^« where the blocks Pj are arbitrary 

orthonormal matrices which for j^h have dimension i.xjfcy corresponding to the 7-th 

nonzero value of 7 that repeats kj times and where P„ and P^ are orthonormal matrices of 

dimension Rank(R)-r and Rank(S)-r respectively. Thus for any J and L, the rows 
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corresponding to the same singular value are orthonormal linear combinations of the 

corresponding rows of 7. and L, . 

Proof: Existence: Let B and C be any R- and 5-orthonormal matrices respectively 

so that BRB^ = Ig^jji and CSC^ = /a,„ty ■ Now consider the singular value decomposition 

of Theorem 1 applied to BAC^ , so PBAC^C = D with P'B =I = C^C . Then J = B^B 

and L = C^C satisfy (32). 

Uniqueness: To determine all solutions, let 7, L, and D be another solution satisfy- 

ing (32). Then P'RJ = Ig^„jjf = J^RJ^ implies that the row vectors of 7 and 7 span the 

full rank subspace of R . Thus there exists a nonsingular matrix F such that J = FJ and 

similarly there exists a nonsingular matrix G with L = GL . From the decomposition (32), 

'«an« = 7/lP" = FJRJ^F^ = FF^ and simUarly GG^ = Ig^,^ so that F and G are 

orthonormal matrices. Also DD^ = FDD^F^ , and from the uniqueness of the eigen- 

values and eigenvectors of a symmetric matrix it follows that DD^ = DD^ so D = D and 

that F is block diagonal with blocks corresponding to the repeated singular values. A simi- 

lar result holds for G by considering D^D . Now D = D = FDG^ , so using the block 

diagonal forms of D, F, and G with diagonal blocks D,, F,, and G, respectively, we have 

for every block i with 7, = 0 that 7,/ = f J-Y./G/" SO FiGf = / = F.F/" which implies 

Fj = Gi since they are both square matrices which proves the Theorem. 

One generalization of the singular value decomposition proposed by Van Loan (1976) 

is somewhat different defining F-orthonormality column wise and using the inverse of the 

transformation J   so  that  the  decomposition  satisfies  the  following: J^RJ = //ja„juj   , 

L SL = Igaij^   , J   AL = Diag{yI >...>■>/,.,0 0)   .    If  we  make  the  identification 

J = 7~^ , L =L^ , and R = R~^ , then J,L,R,S and D satisfy the generalized singular 

value decomposition (32). From a statistical point of view, this decomposition is much 

* 
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more intuitive as is seen in the next section, and treatment of the case of singular covari- 

ance matrices would be considerably more involved using the Van Loan decomposition. 

4. GENERALIZED CANONICAL VARIATE ANALYSIS 

Now consider the (X„ ,A)-singular value decomposition of S^ given as 

JX^L^ =D =Diag{y^ 7r,0,...,0)  , J2„y^ -/-   , LAL^ =/- (4.1) 

where m-Rank(^^) and n = Rank{h). This decomposition has the very intuitive 

interpretation of a new basis defined by the generalized canonical variables or variates 

U =JX   ,  V =LY (42) 

of dimensions m and n respectively for which: 

(i) 2^ = / , so that the components of U are uncorrelated with variance unity. 

(ii) !,„ = Diag{-yi 7^,0, .. . ,0) , so that the components of U and V are uncorre- 

lated except for the i-th pairs with cov(u,v,) = 7,- . The 7/3 will be called canonical 

covariances. 

(iii) the norm of the prediction error 

II y-Fjl J, = E{(Y-YJL''L(Y-Y,)} - E{iV-Vj{V-V,)} = II V-VJI / (43) 

is a sum of squares in V-V^ where V^ =LY^, and the inner product induced by the 

transformation L is <l'i,y2>A = E{Y\L^LY'^ = <Vx,V2>j, the inner product with respect 

to the identity. 

(iv) the projection of the prediction error Y-Y^ on the full rank subspace of A, i.e. where 

the prediction error has nonzero weighting, is 
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SA\Y-Y,)=^\L^L{Y-Y,)=M7{V-y,) (4.4) 

which gives the inverse transformation from V onto the full rank subspace of A. 

As in the discussion following (25), U contains the part of X involving the full rank 

part of £„. Thus without loss of generality X may be expressed as X = KU . In terms of 

the canonical variables U , the p linear combinations Z are Z —JpX =JpKU = MpU 

where we define the ^ xm matrix Mj, = JpK . Using the constraint {25) gives the 

equivalent constraint 

MpMl=Mpt^Ml=X„=Ij, {AS) 

so that Mp has orthonormal rows. Furthermore since Z -JpX =MpU =MpJX, we can 

substitute into (2.6) the relationships Jp = MpJ and A^ = LJL. Use of the generalized 

singular value decomposition (4.1) then gives the simple expression 

\\Y-Y,\\l = \\V-V,\\} =trh^X^-trMpDD-'Ml (4.6) 

Thus the generalized singular value decomposition (23) reduces the original problem of 

minimizing (2.6) subject to the constraint (2.7) to the problem of finding a /? xm matrix Mp 

with orthonormal rows maximizing trMpDD^Mp with D = Diag{yi ^ • • • ^ 7^ > 0, • • • ,0) 

. To solve this maximization problem requires only |he elementary properties of orthonor- 

mal matrices as stated in the following Lemma. 

Lemma 1: Let the integer p rs, fii he fixed, let m^ be the columns of the p Xm matrix 

Mp    with     orthonormal   rows,    and   suppose   the   mx«    diagonal   matrix   D    is 

D = Diag(7i 7,>"y,+i =  • • •  =yp= ■■■  = 7,+i>"y,+t+i, • • •)    for    k    repeated 

values equal to 7^, so for 7^ unique we have q+1 = p = q+k+1. Let Af' = [mj m,], 

Af* = [m,+i mg+t], Af" = [m,+t+i, . . . ,m-]. Then TrMpDD^M^ is a maximum if and 
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only if all of the following hold: 

M'f^M'* = I   , M'^'^M^ =0  , Af" = 0 (4.7) 

Proof:  By Gram-Schmidt orthonormalization, the myp matrix Mp may be extended 

to a square mXm matrix [A/JjV^] with orthonormal columns. Thus 

N [M; N^] = 
/„     0 

0   I-_ m-p 
[<   A^l N (4.8) 

where the second equality follows since a right inverse is also a left inverse. In particular, 

denoting the i-th column of M^ and N by m,- and n, respectively, we have mfnti+nfrii = 1 

so that mfnii ^ 1 . Furthermore 

p = trip = triMpMl) = HMlMp) = ^mjifit 
1=1 

= trM'^^M" + trM*''^M^ + trM'^M nu zjin (4.9) 

Using mfnii ^ 1 implies the inequality 

tr{MlMp)DD'' = X-^fmJmt ^ %f 
<=1 i=l 

(4.10) 

By considering mjmi = Oj as arbitrary positive numbers whose sum is p, it is easily shown 

that the equality is achieved if and only if mjmi = 1 and n/^/i, = 0 and mjnii — 0 for 

q+k <i <.m. 

(Only if).  Now if we partition N similar to that of M^ so AT = [0 A^* iV"], then 

when the maximum is achieved we must have from (4.8) 

M'^     0 
M"  Af*    0 

M"   7V*^ 
0    N*   A^" 

0     N^ 

A/'^'A/' A/*^Af« 0 

Af^^'A/'  A/*^Af*+Af*^Ar*   N^N"^ 

0 N"^N* A^"^A^'" 
= f^ (411) 
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which impUes that Af «''Af« = /, and M''^M^ = 0. 

(If). Suppose that (4.7) is true. Then from Af^M" = /,, A/" = 0 and (4.9), 

trM^^M^ =  \ mfnii = p-q (4.12) 

Then using (4.10), 

Tr{MlM^)DD^ = fyfn^^m, = ^7,- + 7,+i/'-M*^Af* = ^7^ (4.13) 
1=1 i=l j=l 

so that the maximum is achieved which proves the Lemma. 

5. Optimal Predictioa via Generalized Canonical Variables 

Using the above reduction to canonical variables and previous Lemma, solutions to 

minimizing the prediction error (22) are characteri2ed simply in terms of the generalized 

canonical variables from the generalized singular value decomposition (4.1). The solution 

is given by essentially choosing Z as the first p canonical variables, although for repeated 

singular values it is somewhat more involved in that any p-q dimensional subspace 

corresponding to the repeated singular value may be chosen. The uniqueness of the gen- 

eralized singular value decomposition exactly characterizes the nonuniqueness of the 

canonical variables and the solution to the optimal prediction problem (22). This is pre- 

cisely stated in the following theorem. 

Theorem 3: Consider the problem of choosing p linear combinations Z = HpX of X 

for predicting Y such that 

\\Y-Y,\\l;=E{(Y-YjA\Y-Y,)} (5.1) 
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is minimized where X„ and A are possibly singular positive semidefinite symmetric 

matrices with ranks m and n respectively. Then existence and uniqueness are given as 

follows: 

(i) Existence:   Z = HpX is a solution minimizing (5.1) if and only if there exist 

transformations J and L satisfying the (£„ ,A)-geiieralized singular value decomposition 

JX^J^ = /- , LAL^ = /- , yS^L'" = Diagiy^ &...S -y,,0 0) (52) 

such that 

(a) Z —HpX spans the first p of the canonical predictors U =JX, i.e. we have 

Z = Q.Up=Q[Jp 0]t/ = Q[Ip G\IX for some nonsingular Q . Thus Hp =Q[Ip OJ/ , so the 

rows of Hp are linearly independent linear combinations of the first p rows of 7. In addi- 

tion we have: 

(b) the prediction error is reduced in the span of the corresponding first p canonical 

variables V, and the corresponding subspace of Y is the span of the random variables con- 

sisting of linear combinations of Y given by the first p rows of L. 

(c) there is no reduction in the prediction error in the span of the last n-p variables of 

V, and the corresponding subspace of Y is the span of the random variables consisting of 

linear combinations of Y given by the last n-p rows of L. 

(ii) Uniqueness: 

(a) If "y^+j > 7p then the solution in (i) is essentially unique, i.e. the subspaces in (a), (b), 

and (c) are unique and given by any particular representation (52). 

(b) If 7p = "Yp+i with k equal singular values 7,+i = •• • = 7^ = • • ■ = 7,+^ , then the 

subspaces in (i) are not unique. The subspace span by Z contains the first q canonical 

predictors J7, = [/, Q\IX and in addition contains an arbitrary selection of p-q linear 

combinations of the canonical variables u,+i, • • • ,«,+£• In particular, Hp has the form 
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H,=Q 
/,     0     Q 

0   C,_,  01 (53) 

where Cp_^ is {p-<i)yk with orthonormal rows so Cp_^Cp_^ ~^p-q ^^'^ C is an arbitrary 

aonsingular matrix. 

(iii) The minimum value is 

minll y-yjl I = rrS^A^ _ -^2 _ .. . _ ^2 (5 ^^ 

Proof: (i) Existence - (only if). Suppose Z =//pX is given which minimizes (5.1), 

then we seek a generalized singular decomposition satisfying (52) and (iXa)- To simplify 

the derivation we work with the equivalent Z = JpX as in (2.6) subject to the constraint 

(2.7). Now consider a fixed decomposition (52) with J and L given with corresponding 

canonical variables V and V. From the discussion following (4.4), there exists a 

Mp = JpK satisfying (45) and minimizing (4.6). We use Mp to construct 7 and L satisfy- 

ing (52) and (i)(a). 

As in Lemma 1, suppose that Mp = [M' Af* 0] minimizes the prediction error. 

From the nonuniqueness of the generalized singular value decomposition, the problem is 

to select a new basis from among the columns of M* which is full rank and use this in the 

construction. This is simply accomplished by considering the generalized singular value 

decomposition of the matrix Mp with respect to the identity matrices given by 

FMpG^ =D, FF^ =Ip, GG^ =/-. From the orthogonality of Mp, we have Ip = FF^ 

- FMpMpF^ = DD^ so that D = [Ip 0]. Partitioning the various matrices in this singular 

value decomposition corresponding to the partitioning of Mp =[M^ M* 0] gives 

[FA/'C FM^G^ 0] = [Ip 0]. A reordering of columns of F gives of the generalized 

singular value decomposition of the p xik matrix iif * with respect to the identity matrices 
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as 

BM^C^ = 0     0 , BB^ = /-   ,  CC^ = 4 (55) 

where  k ^p-q.   The  rank of Af*   is  thus obviously p-q. Let B      = [^p-u ^l®   ^nd 

Cp_^ = [/p_, 0]C be the first p-^ rows of B and C respectively. 

Now consider the transformation on the variables Z to Z 

Z = 
wn 
B, p-<i 

(5.6) 

In the sequel, we will need the property that Bp_^M'' = 0 which is the case if and only if 

M''^Bp_^Cp_^ = 0 since Cp_^ is full rank. This indeed follows from Lemma 1 since 

M'^^'B^^Cp^ = M'^fl^ 
/p-^1 

[/      0]C = Mf^B^BM^C^C = hf'^M^ = 0 (5.7) 

Thus the matrix of (5.6) is orthonormal, and using Z = M„U = M.JX it follows that 

M«1 
B [M"  Af*   0]t/ 

0 0 

0    [/.-   0]flAf*C'C    0 'p-H 
U 

^,     0     01 

0   Cp^  01 
JX 

= [ip oyx = [ip op = f/. (5^) 

where J = Diag{Iq,CJ[-_^_^y. From Theorem 2 (iii), the transformations J and 

L = Diag[/^,C/-_j^]L are just an alternate set of matrices satisfying the generalized 

singular value decomposition (52). Thus (i)(a) is satisfied since Z In (5.6) is given by a 

nonsingular linear transformation of Z which is by construction Up. 
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(iXif). Suppose H^ =Q[Ip OJ/, with J and L satisfying (52). Then by Lemma 1, 

with Mp = [Ip 0], (4.6) is minimized so that Z = H^X is a solution minimizing (5.1). 

To show (i)(b) and (c), consider the prediction error V-V in V where 

V= tyy[Ip  Qflp[Ip  0]f/ as in (23). The reduction in prediction error is 

2^ - S(v-vXv-v) = / - / + D''[Ip  Qif[Ip  Op = Diag[^l 72 0 Q]       (5.9) 

which proves (b) and (c). 

(ii) Uniqueness: Suppose that there are two solutions satisfying (52) which minimize 

the prediction error (5.1). Then by the uniqueness of the generalized singular value 

decomposition from Theorem 2, the respective J and L matrices are related by a block 

diagonal orthonormal matrix. If 7^ is unique, then so is the subspace span by the rows of 

Jp which proves (iiXa). If 7^ is not unique, then a choice of a different generalized 

singular value decomposition relates to a different choice of basis for the Jk-dimensional 

basis corresponding to the singular value 7 .  Thus there is an arbitrary choice ot a. p-q 

dimensional subspace from the rows ^ +1 q +k of J giving the canonical variables 

«,+i Up.   The matrix Cp_^ = [/p_,  OX^ is constructed in (5S) which proves (ii)(b). 

The minimum value is given by setting Mp = (7^,0) in (4.6) so trM^D^Mp = 71+ • • • +7^ . 

This proves the theorem. 

■*. 

6. Moltivariate Reduced Rank Predictioa 

The Theorem 3 includes a number of special cases that arise in the analysis of mul- 

tivariate data. A particular solution to the general prediction problem (22) in the case of 

A nonsingular is given by Izenman (1975) and Rao (1979), although the solution is not 

unique   if  the  generalized  singular  values  are  not  distinct.  The  classical  canonical 

A-18 



correlation analysis problem is obtained if we set A = X^ , since then the normalization 

LliyyL^ = lna„j[2   implies that the variables V = LK are orthonormal and hence 2^ is a 

correlation matrix. Infact the solution (52) then reduces to the canonical relationships 

2^ = /„ , 2^^ = /„ , 2^ = Diag{-iy, ... ,7^,0, .. . ,0) which are a central aspect of 

canonical correlation analysis (see e.g. Rao, 1973, Sec. 8f2(iv)). If A =/, the solution is 

different from canonical correlation analysis unless 2^ = / . 

The principal component analysis problem is given by X = Y and A = / , so that the 

norm is 1| X-X^|| / = £{(X-X^/(X-X^)}. A generalization of principal component analysis 

is obtained by setting K = X so 2^ = 2_ry = 2^ and using an arbitrary positive definite 

symmetric weighting A so the norm to be minimized is 

\\X~Xj\^^i = E{{X-X^)^A~\X-X2)}.    A   different   generalization,   principal   component 

analysis of instrumental variables, is discussed in Rao (1965). The problem is equivalent 

to setting A=/ so the prediction error norm is \\Y-Y^\\f = E{(Y-Y^f{Y-Y^)}. The 

canonical variables U are called the principal components of the instrumental variables X 

In the above particular cases, the derivation and proofs in the cited references all 

assume that the matrices 2;„ and A (i.e. 2^, or /) are nonsingular. The only discussion of 

the singular case seems to be Khatri (1976) for the canonical correlation analysis which is 

much more complicated than the present approach. 

The definition and properties of the generalized singular value decomposition clearly 

express the fundamental properties of these multivariate prediction problems. Mathemati- 

cally, geometrically and statistically the fundamental relationship is the selection of the 

canonical variables U and V by selecting the transformations J and L of the random vari- 

ables X and Y. The fundamental geometrical properties of these transformations are that 
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J and L are orthonormai with respect to the matrices 2„ and A while simultaneously they 

are orthonormai with respect to 2^ except in corresponding pairs. This is concisely stated 

mathematically by the generalized singular value decomposition which includes the gen- 

eral case of singular matrices. These mathematical orthonormaUty relationships have 

immediate and direct statistical interpretation in terms of the identity covariances of U 

and V , the mutual zero correlation between U and V except in pairs, and the sum of 

squares property of the prediction error V-V with the addition of more predictor vari- 

ables from U. The different multivariate prediction problems correspond only to a dif- 

ferent selection of the random variables X and Y and the matrix A involved in the weight- 

ing of the prediction error. 

7. Compatatioiial Aspects 

Modem computer algorithms for canonical correlation analysis use a standard singu- 

lar value decomposition to compute the generalized singular value decomposition (23) 

with A = Sjy by first finding square root factors of S„ and A , and then doing a standard 

singular value decomposition on A = 2^;,^ ^%^{Sr^ ^) = QSR^ where QQ^ = / = RR^ and 5 

is diagonal. Then the generalized singular value decomposition (23) is given by 

J = Q^la ^. ^ = J?^A~^ ^ and D = 5 . Thus the joint orthonormalization of X and r in 

the norms S„ and A to give the canonical covariance structure D is very naturally viewed 

as a generalized singular value decomposition both in terms of the simple reduction dis- 

cussed in Section 2 as well as the actual computational algorithms. This can be deter- 

mined computationally using a standard singular value decomposition which is numerically 

very accurate and stable as compared with the earlier eigenvalue computational methods 

(Bjorck and Golub, 1973). An open topic is the investigation of numerical methods that 

directly compute the generalized SVD rather than transforming the problem to the 
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standard SVD. Such a direct approach may have better overall numerical accuracy. 

A second problem is specified in terms of the observed data given as N repeated 

observations (X^ x'') = C and (y^ Y^)=D on X aadY respectively. The usual 

sample covariances are computed as 2„ = CC^ , %^ = CD^ and S^ = DD^ which 

mathematically are used in the generalized singular value decomposition. Numerically, 

however, the formation of these products defining the sample covariances results in a 

halving of the numerical precision of the computation. In the case of given data, Bjorck 

and Golub (1973) give computational procedures that avoid these squaring operations and 

operate directly on the observed data. 

Another computational aspect that may have a considerable effect upon statistical 

computing in the future is parallel computers. A very efficient algorithm for computing 

the singular value decomposition has been recently devised for highly parallel systoUc 

arrays by Brent and Luk (1985). Such an nx^ square array of processors requires com- 

munication between only the nearest neighbor processors in synchrony with the processor 

computational cycle. The computation of a singular value decomposition of a n xn matrix 

using a /ixn array of processors requires only order n processor cycles as compared to 

order n cubed for a serial computer with a single processor. Such parallel processors and 

algorithms could make routine the analysis of very large sets of variables such as arise 

naturally in multivariate time series (Larimore, 1983). 

From remarks above, it is obvious that the optimal solution to minimizing the qua- 

dratic prediction error measure (22) has exactly the same structure as solving the "pseudo" 

canonical correlation analysis problem using singular value decomposition methods with 

lyy in (1.1) replaced by A . Although the matrix (1.1) is no longer a covariance matrix, a 

formal application of canonical correlation analysis indeed gives the optimal solution to 

minimizing (22).   Thus a sufficiently general computational algorithm can be devised 
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which will solve all of the particular multivariate problems described above. Available 

algorithms for canonical correlation analysis may not be sufficiently general if for example 

they assume that the matrix (2.1) with S^^ replaced by A is a covariance matrix or that the 

canonical covariances are correlation coefficients ( (-y^)^ < 1 )• 
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Very general reduced order filtering and modeling 
problems are phased in terms of choosing a state based 
upon past information to optimally predict the future 
as measured by a quadratic prediction error criterion. 
The canonical variate method is extended to approxi- 
mately solve this problem and give a nearoptimal reduced- 
order state space model.  The approach is related 
to the Hankel norm approximation method.  The 
central step in the computation involves a singular 
value decomposition which is numerically very 
accurate and stable.  An application to reduced-order 
modeling of transfer functions for stream flow 
dynamics is given. 

1.  Introduction 

Many complex random phenomena are modeled as 
high order of infinite order Markov processes.  Often, 
however, most of the behavior of interest can be 
adequately approximated by a Markov process model of 
much lower order.  Many of the modeling, control, and 
filtering methods depend upon a Markov or state-space 
structure.  Even implementation of the general Wiener 
filter theory often requires use of finite-order state 
devices.  Thus, it is frequently necessary to reduce 
a complex process to a limited number of states at 
some point in the analysis or implementation.  In 
this paper, the problem of modeling or filtering with 
a restricted order state-space is addressed with empha- 
sis on how best to determine approximate models or 
filters when the state order is restricted. 

There have been a number of papers dealing with 
reduced-order modeling, filtering and system 
identification.  Here we review only those related 
to the canonical variate approach, with more technical 
details contained in the appropriate sections. The 
theory of canonical correlations and variables was 
developed independently by Hotelling (1936) and Obukhov 
(see Gelfand and Yaglom (1959)). The solution of the 
canonical variate problem was first reduced to finding 
Che eigenvectors of several symmetric matrices 
(Hotelling (1936), also see Anderson (1958)).  A 
more computationally efficient, numerically accurate 
and stable method was developed by Golub (1969) based 
upon the singular value decomposition of a matrix. 

Gelfand and Yaglom (1959) generalized the canon- 
ical variate method to describe the correlation 
structure between two discrete- or continuous-time 
random processes on possibly different time 
intervals.  They expressed the mutual information 
between two such random processes simply in terms of 
the canonical correlations (see Section 5).  Yaglom 
(1970) considered the relationship between the past 
outputs of a process and the future outputs (or 
any two disjoint intervals) and has shown there are a 
finite number of nonzero canonical correlations if 
and only if the process has a rational power 
spectrum, i.e., is a finite order Markov process. 

Using a canonical variate analysis between the 
past and future of a discrete time stochastic process, 
Akaike (1975) constructed a minimal realization 
procedure for Markov processes.  This resulted in a 

Part of this work was performed while the author was 
t The Analytic Sciences Corporation, Reading, MA. 

stochastic minimal realization algorithm similar to 
the algorithm of Ho and Kalman (1963).  Later, Akaike 
(1974a) gave an abstract (coordinate free) descrip- 
tion of the projection of the future of a process on 
the past and called it the predictor space.  The 
canonical variate realization provides a particular 
basis for the predictor space.  He used the concept 
of the predictor space to characterize any minimal 
realization for a discrete time Markov process as a 
particular choice of basis for the predictor space. 
The predictor space concept has been widely used in 
stochastic realization theory (Clary (1977), 
Fujishige et al. (1975), Picci (1976)). 

Fujishlge et al. (1975) addresses the reduced 
order modeling problem using the predictor space, but 
they do not use the canonical variate structure for 
model reduction.  The criterion they define is the 
sum square prediction error of all output components 
for all the future which is a special case of the 
prediction error criterion discussed in Section 3. 
Their procedure requires an initial state-space model; 
however. It results In needing only to solve for 
eigenvectors of a symmetric matrix whose dimension is 
the original system state order - a very small amount 
of computation compared with most reduced order 
modeling schemes.  A very interesting but brief 
discussion of canonical variate and predictor space 
methods and their relation to filtering problems is 
given by Kailath (1974) .  He talks about an approxi- 
mation problem and the possible usefulness of 
canonical variates, but he does not explicitly discuss 
a reduced-order filtering problem. 

The minimal splitting field of past and future is 
the continuous-time analog to the predictor space and 
predates Akaike's work although he was the first to 
propose a realization algorithm.  The methods involve 
abstract Hilbert spaces to accommodate continuous 
time processes (Levinson and McKean (1964), McKean 
(1963), Pitt (1972), Rozanov (1976), (1977)). 

The optimal Hankel norm approach of Adamjan 
et al. (1978) has received much recent attention 

in reduced order modeling (see Kung and Lin (1981) 
and cited references).  Canuto and Menga (1982) 
discuss relationships between the canonical variate 
approach of Akaike and the optimal Hankel norm 
approach. 

2.  Approach 

A major departure of  this  paper  from previous work 
is   the use of   canonical  variate  analysis  to  optimally 
choose k linear combinations of  the past  for  prediction 
of   the  future.     The very natural  measure  of   quadraticly 
weighted  prediction errors at  possibly all  future time 
steps   Is  used.     In  Section  3  we  formulate  the  problem 
and   show  how a  generalized  canonical  variate  analysis 
problem  solves   it   explicitly.     The   interpretation of 
canonical variates as optimal  predictors  Is  central 
in motivating  interest   in  such a problem formulation 
and   is  scarcely found  in  the  statistical  literature. 
The  optimal  k-order  predictors are not   In  general 
recursively  computable,   but   the  optimal   state-space 
structure  for  approximating  them   is  expressed   simply 
in terms of  the  canonical variate analysis.     The 
problem of  finding  an optimal  Hankel  norm reduced 
order  model   Is  related   to   the  canonical  variate  approach. 
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3. Scatement of the Problem 

Consider the problem of choosing an optimal 
svstem ormodel of specified order for use in pre- 
dicting the future evolution of the process.  We will 
distinj^uish between the past p(t) of one vector pro- 
cess r(t) at time t or before and the future f(t) of 
another vector process s(t) at time later than t so 

(3-1) 

(3-2) 

p'^(t) - (r'^(t). r^(t-l)....) 

f'^(t) - (3'^(t+l). s'^(t+2),...) 

We assume that the processes r(t) and 3(t) are jointly 
stationary. 

The major interest is in determining a specified 
number k of linear combinations of the past p(t) 
which allow optimal estimation of the future f(t). 
Any se- of k linear combinations of the past p(t) are 
denoted as a kxl vector m( t) , jenory of the past of 
order k.  The optimal linear prediction f(t) of the 
future f(t) which is a function of a reduced order 
memory m(t) is measured in terms of the prediction 
error 

f f 1 
-1 

E[(f - f)- = -1 (f - f)] (3-3) 

-1 
where ^ * is an arbitrary quadratic weighting and E is 
the expectation operation.  The reduction problem is 
to determine an optimal k-order memory 

extension of the classical canonical variate analvsis 
method.  The derivation of this extension is rather 
lengthy and will be described elsewhere. 

In the statistical literature, the canonical 
variate problem is delt with as one of maximizing 
correlation between two sets of variables (i.e., 
p(t) and f(t)); whereas our interpretation will be 
choosing variables from p(t) that optimally predict 
f(t), which is rarely the conceptual framework used 
in statistics. 

We treat here explicitly the case of finite past 
and future, i.e., p(t) and f(t) of finite dimension, 
to avoid the technicalities of the infinite dimen- 
sional case which is discussed in detail in Gelfand 
and Yaglom (1959). 

4.1  Canonical Variate Solution 

The solution to the canonical variate problem is 
expressed quite simply by putting the covariance 
structure of past p(t) and future f(t) in a canonical 
form. We seek nonsingular transformations of p and f 

- Jp, d Lf (4-1) 

such that in this new basis the norm (3-3) for weighting 
prediction errors of the future is a sum of squares 

I lf|l^_^ - d^(L9L'^)'^d » d^d (4-2) 

m(c) \p(t) (3-4) 

for which the optimal linear predictor f(t, x(t)) 
minimizes the prediction error. 

In addition the covariances among the past and between 
the past c and future d have a canonical structure 

cov (c,c) (4-3) 

In various particular problems, the process r(t) 
of the past will include outputs of a system and/or 
inputs of a system.  The process s(t) of the future 
may be the same as r(t) or different.  The general 
case of interest is the reduced order filtering and 
modeling problem:  given the past of the related ran- 
dom processes u(t) and y(t), we wish to model and 
predict the future of y(t) by a k-order state-space 
structure of the form 

^+1 
GUj. + 

Hx. Au. Bw + 

(3-5) 

(3-6) 

cov (c,d) Diag(Y^ Yf ,0,. ..0) - D (4-4) 

with the canonical covariances 
1- .>Y,^0 in descending 

order.  Thus, the components of the past c are mutually 
uncorrelated.  Of all linear combinations of p and f, 
the first component of c has maximum covariance with 
the first component of d. 

It can be shown that for any order k, that the 
first k components of c, i.e., corresponding linear 
combinations of the past p, lead to the best prediction 
f of the future f.  The optimal choice of a k-order 
memory is then 

where w and v are white noise processed that are 
independent with :ovariance matrices Q and R respect- 
ively.  These wr.ite noise processes model the co- 
variance structure of the error in predicting y from u. 
A special case of the reduced-order filtering problem 
is the transfer function approximation problem where 
u and V are the input and output processes and an 
approximate state-space model is desired. 

Once the optimal k-order memory m(t) is determined, 
we will develoD state-space equation.s for aporoximately 
computing the memory or recursively describing its 
evolution.  A major part of the problem is, however, 
the choice of the optimal k-order memory. 

4.  Canonical '.'ariates as Optimal Predictors 

In this section the solution to choosing the 
optimal k-order memory is described in terms 
of the canonical variate analysis method of mathe- 
matical statistics.  Here the solution is explicltely 
described in terms of a singular value decomposition. 
To treat the prediction problem of section 3 involving 
an arbitrary 9 in the prediction error (3-3) requires 

\ \P (\'°)^p 

The minimized prediction error for order k is simp 
expressed in terms of the canonical covariances as 

mtn 
f - fl -ff (■-•: 

The sum of squared canonical covariances Y 

(4-5) 

ly 

? 
(4-6) 

, 2 
k+1 

corresponding to the neglected variables gives the 
increased prediction error from using memory order k 
rather than I. 

4.2  Calculations Using Singular Value Decomposition 

The requirements of (4-2) through (4-4) are equiva- 
lent to finding J and L such that 

JZ ,L 

j;. J 
pp 

Diag(Y, 

(4-8), 

,Y.,0. . -0) 

L r L 

(4-7) 

(4-9) 
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This is easily accomplished using a singular value 
decomposition (Golub (1969)) which is computationally 
verv efficient and numerically very accurate and 
stable.  Dimensions of p(t) and f(t) as high as sev- 
eral hundred can be handled efficiently and 
accurately using these computational techniques. 

""   To find this decomposition, first the square 

roots ^  and 9  are computed by either a Cholesky 
PP 

procedure or an eigenvector procedure.  Since a 
singular value decomposition procedure is used 
latter and is numerically much more accurate and 
stable, it can be used to find the eigenvalues 
and eigenvectors 

r  - U,S,vy.    9 - U.S-VJ^ (4-10) 
pp    111 III 

where Ui"V and U.-V, are matrices of the eigenvectors, 

S and S, are diagonal and contain the eigenvalues, 

and the equality of the U's and V's follows since 
and 5 are positive definite and symmetric.  The 

"PP 
square roots are 

-J . u, s;^ v^^ e-^ . u^s,-'^ v/ (4-U) 

usv T 
UU - I, W (4-19) 

where S is diagonal with nonnegative singular values 
in nonincreaalng order.  A property of the singular 
value decompositions is 

inf       I[H - A] 
A : rank (A) < k. 

k+1 
(4-20) 

As shown in Adamjan et al (1978), this bound is 
achieved for A restricted to a Hankel matrix for 
single input-output systems, and is at least a lower 
bound for multivariable systems.  This solution 
is a minimax solution - for a given approximation A 
the norm (4-17) measures the largest possible error 
in output future sequences f over all possible past 
sequences p with ||p||-l.  For finite order systems, 
the exponential decay of the impulse response will 
cause the worst sequence to be concentrated near the 
origin.  This is a very atypical input sequence to use 
as a basis for measuring closeness 

By contrast, in the canonical variate formulation, 
the norm is 

Ellfjj - f^l!^ - tr(H-A)(H-A)^ 

- llH-All! 

(4-21) 

Now form the matrix 

^-^PP^f^'' 

and do a singular value decomposition 

USV , 
T    T u-^u - vW - I 

(4-12) 

(4-13) 

(4-14) 

where S is diagonal with nonnegative elements in 
descending order 

'   S - dla (Sj^ 1.^1 -"" '^n^ 

The canonical variate decomposition is obtained by 
setting 

,J r-*?     L - V^ 9'^,    D - S     (4-15) U 
PP 

4.3 Relationship to the Hankel Norm 

Consider the deterministic input-output case 
which can be cast in the canonical variate framework 
by choosing a white noise stochastic input so - "I 

and letting 9-1.  The covariance matrix 1       is 

f\    h      «3 

-fo -H  »2 »3 

(u ,u  , ..) - HZ  - H 
t  \ t' t-1       pp 

(4-16) 

where the Hankel matrix H involves the impulse response 
matrices H .  The Hankel norm between H and an 

approximation A is defined as 

MH-AIL (^-^^5 

where ill  is the spectral norm 
s 

Bi max I i Bxl 
2' 

2 - Zx^  (4-18) 

I .X : -, - 1 

Now consider a singular value decomposition of H 

the Frobenlus norm.  From (4 - 6) this norm has the 
lower bound 

inf      I 
A : rank(A) « k 

H-A (Vi^---^^""  ^'-''^ 

A fundamental difference here is that the norm (4-21) 
measures the average overall output sequences result- 
ing from random input sequences with unit average power, 

o       2 
i.e., E(u(t))^-1 for t<0; whereas for (4-20),^Z_^(u(t))-l. 

Camuto and Menga (1982) discuss some relationships 
between the canonical correlation and Hankel norm 
approaches.  There is no interpretation of the 
canonical correlations as minimizing a norm as in 
Equation (4-6), and further they note that the 
singular values in the two approaches do not coincide. 
They conclude that "because they (the canonical 
correlations) do not have any practical significance 
about the energetic structure of the dynamics of the 
process, the properties of the resulting approximated 
models are not clear".  The present canonical 
variate approach makes clear that the energetic 
structure of the dynamics is better accounted for in 
the prediction error measure than it is by the 
Hankel norm. 

4.4 Related Literature 

In the classical canonical correlation analysis 
(Hotelling (1936), Anderson (1958)),9 'L^^  so that 

the prediction errors of the future are weighted by 
their inverse covariance matrix, and consequently 
the future d is normalized to have identity covariance 
matrix.  Also the canonical covarlances are then 
correlation coefficients.  The traditional criterion, 
to the extent that there has been such discussions, 
has concerned the mutual information (Shannon and 
Weaver (1962)) in one random vector p about another 
random vector f defined by 

J(p;f) -/ 

P^,(p.f) 

^pf^"-^^ ^°^ Pp(p) P,(f) '" "'     ^"'"^ 

B-4 



The base of the logarithm is arbitrary and determines 
the particular units of Infonnation, and p , is the 

lolnt and p  and p. the marginal probability den- 
-' "^p     f 
sities. 

Gelfand and Yaglon (1959) showed that the 
mutual information is simply expressed in terms of 
the canonical correlations Y, Y^ between the two 
vectors by 

J(p;f) - -^ :  logd - Y.) - -mog w 
J-1. ^ 

(4-24) 

where Hotelling (1936) defines the vector alineation 
coefficient 

w - (1 - Y^) ... (1 - Y^) (4-25) 

as a measure of independence of p and f.  Gelfand and 
Yaglom (1959) extend the definition of mutual 
information to vectors of infinitely many random 
variables, e.g., random processes in both continuous 
time and discrete time.  This development also 
provides the basis for extending canonical variates 
to random processes (Yaglom (1970)). 

Now, if a restricted number k of linear combin- 
ations (c,,...,c,) of the past of one random process 

r(t) are used to predict the future of another random 
process s(t), then the choice maximizing the mutual 
information is the first k canonical variates and 
the mutual information is expressed by the first k 
canonical correlations 

r 
_^ J(c^,....c^;f)-^log^Z^(l-yj)    (,_2g) 

5.  State Space Realizations 

As discussed in Section 3, there are a variety 
of problems of interest including reduced-order 
stochastic modeling and filtering.  The most general 
form is the state space model 

t+1 
JXj. + Gu 

I     -Hx +Au  +Bw +v t    t    y    t   t 

(5-1) 

(5-2) 

where u  is an input process, x  is the state vector, 

w is white process noise with covariance matrix Q, 

and V is white measurement noise uncorrelated with 

w with covariance matrix R.  It has been shown 

(Lindquist and Pavon (1981)), that for no input u , 

the form (5-1) and (5-2) is the moat general state- 
space realization of a Markov process, and that the 
state dimension is equal to the Markov order.  Other 
Markov realizations as in Akaike (1975) and Baram 
(1981) which have A-B-G-R-0 are not the most general 
and may require much higher state order for a suitable 
approximation.  These latter forms are particularly 
inefficient in the presence of moving average terms 
or additive white measurement noise.  As will be 
seen below, a regression interpretation of the 
state-space matrices makes it clear that the error 
in regression is ignored.  A further point of 
Lindquist and Pavon (1981) is that for a parsimonious 
state defined by the predictor space, the past and 
future must be nonoverlapping as in (3-1) and (3-2) . 

For the purely stochastic case with u(t)-0, let 

r(t) - y(t);    3(t) - y(t) (5-3) 

Thus, the canonical correlation method provides an 
optimal procedure in terms of mutual information for 
choosing a finite number of linear combinations of 
one random process for prediction of another. 

Recently, in the statistical literature Yohai 
and Garcia Ben fl980) point out the use of canonical 
variates as optimal predictors.  They show that the 
canonical variates (with °'''^cf  in our scheme) 

minimize the prediction error 

E(f - f)(f - f) (A-27) 

where denotes determinant, and the minimum value 

-ff (1 Y^)...(l-Y^). (4-28) 

The  logarithm of   this  expression  is,   within  a  fixed 
additive  constant,   proportional  to   the minimized  mutual 
information   i'4-26) .     Rao   (1973)   gives  a  problem  in 
which  the  canonical  variates  for   the measure 

El'f (4-29) 

are to be determined (9"I in our scheme) which gives 
a different solution from the classical canonical 
correlation problem (5«~  ).  The general canonical 

variate problem using a general prediction error 
measure (3-3) was formulated and solved in Porter and 
Larimore (1974) for a nondynamical problem.  This 
was first applied to reduced order modeling for the 
canonical correlation case (9»I,, and no input u(t)) 

in Larimore et al. (1977).  The general prediction 
error measure (arbitrary 6) was considered for 
deterministic impulse response modeling in Goldstein 
and Larimore (1980). 

in setting up the past p and future f as in (4-1) . 
For the case of a deterministic input u(t), the input 
must also be included in the past so that 

T 
r'(t) 

T 
(u'(t), y (t));  s(t)-y(t) (5-4) 

Another  case   is   the deterministic   input-output   system 
with no  process and measurement  noises w    and v     so 

^ t t 

r(t)   - u(t), s(t)   .  y(t) (5-5) 

Note  that   in the case of  a known  input u(t)   present, 
the  covariance  function  of  u(t)   is  required  and   used 
in  specifying   the most   important  components  of   the 
past   of  u(t)   to   include   in  the  state   for  prediction 
of   the   future  of   y(t). 

Now for  a  given  order   k  for  a model,   we  wish  to 
find  a   best   k-element   state.     This   is   equivalent   to 
finding  the  k  linear  combinations  of   the  past   p 
which  have  the  best   ability   to   predict   the   future   f 
and  which  are  also  computable  recursively   in  time. 
The  optimal  k  linear  combinations  m(t)   given  by  the 
canonical  variate  analysis   (4-7)   through   (4-9)   is 
not   generally  recursively  computable  except  when  k 
is  the  full  order   i.     To  approximately  find   the  best 
k-order   state  x(t),   the  following  procedure   is  used. 
First   find  the  optimal  k-order memory  from  the 
canonical variate  analysis   for  any  k<Z. with  the 
minimal-order   realization  given  for  k"?..     Considering 
k  fixed   below,   we  have 

m(t)   -  J^p(t)   where  J,^'(Ij^,0)J 

with I,   the  kxk  identitv. 
k 

(5-6) 
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To determine a state x(t) satisfying the recursive 
relations (5-1) and (5-2) which approximately gives 
the optimal k order memory m(t) , the optimal predic- 
tion of m(t+l) and y(t) using m(t) and u(t) is deter- 
mined from simple regression relatlonshlDs. 

The dynamical equations (5-1) and (5-2) express 
(x   , y ) as a linear combination of (x , u ) plus a 
white noise vector with correlated components.  Thus, 
using simple multivariate regression procedures 
(Anderson (1958)), the matrix for optimal prediction 
of (m 

t+1' 
y ) from (m , .) is 

development and full acknowledgement for the origin 
of these ideas. 

6.  Example in Impulse Response Modeling 

In  a recent study (Goldstein and Larimore 
(1980)) for the National Weather Service, the can- 
onical variate procedure was used for deriving 
reduced-order state-space models of stream-flow 
dynamics.  This was a necessary component in that 
study which investigated the application of Kalman 
filtering and maximum likelihood parameter identifi- 
cation to hydrologic forecasting. 

(5-7) 

and the error in prediction has covariance matrix 

%i\   /Vi\ 

\+l\ /\ 

(5-8) 
The matrices Q, R, and B are simply expressed In terms 
of S bv 

s"s^ 
^21 ^11 

^22   21  11  12 

(5- 9) 

where (+) denotes the pseudoinverse. 

Explicit computation of the covariance matrices 
is obtained using the decomposition and the covariance 
of p, f, y and u as 

This, then, gives the covariance matrices explicitly 
in terms of the covariance functions involving u(t) 
and y(t).  In the purely stochastic case that there is 
no input u(t) present, the components of u in the 

T  T 
vector (m , u ) are deleted and G and A are then not 

computed.  For the deterministic case where w and v 

are zero for the full order realization, it may be of 
use in some reduced-order modeling problems to compute 
Q,3, and R to give a reduced-order model.  The reduced- 
order model (5-7) of a stable system can be shown 
(Fujishige et. al. (1975)) always to be stable. 

The existing literature on the use of the canon- 
ical variate method in deriving the above reduced-order 
state-space models is based upon Larimore et al (1977). 
Baram (1981) and Koehler (1981) describe a restricted 
stochastic modeling problem using the canonical 
correlation approach (5«Ij.^, no input u(t), no mea- 

surement noise v(t), and no prediction error interpre- 
tation) essentially as it was presented in Larimore 
et al (1977). White (1983) gives a more recent 

The problem la formulated in terma of a given 
unit hydrograph h(T) that specifies the response at 
lag T to a unit pulse input at time zero.  It is 
desired to find a state-space model, preferably of 
low order, which is a good approximation in some 
sense to the given unit hydrograph.  This problem 
cannot be separated from the characteristics of the 
input process since the modes of h(T) that are 
excited and, hence, the output depend strongly upon 
the input process.  Nominally, it will be assumed 
that the input process is white noise which excites 
all frequencies proportionately.  If the typical 
input signal power spectrum is known and different 
from white noise, this fact can be easily included 
and would lead to an alternative approximating 
state-space model.  It will be shown that the white 
noise assumption leads to excellent approximations 
of the unit hydrograph with low-order state-space 
models.  A schematic description of the problem is 
shown in Figure 1. 

u(t)-WHITE 

NOISE INPUT 
•-► 

CHANNEL UNIT 
HYDROGRAPH 

y(t) OLTTPUT 
 ►- 

REOUCED-OROER 
STATE-SPACE 

FILTER 

v(t) ESTIMATE 

Figure 1 Approximation of Unit Hydrograph 
by a Reduced Order Filter 

The reduced-order state-space modeling 
described above has been applied to unit hydrographs 
for a number of river basins supplied by NWS.  The 
character of the reduced-order models is illustrated 
below and described in more detail in Goldstein and 
Larimore (1980). 

Two different weightings 9 of errors in 
predicting the future f were used, 9-1 giving a sum 
squared error or energy measure and ^'^fc  giving a 
squared relative error measure. 

The differences in reduced-order models obtained 
from these two measures of prediction errors depend 
very strongly upon the spectral shape of the hydro- 
graph transfer function.  A striking comparison in 
fit using the two criteria was obtained for the Bird 
Creek basin which is order 14.  The six-hour unit 
hydrographs based upon the input hydrographs for 4- 
and 8-state models are shown in Figure 2 respectively 
for the two cases ■J-I and 9"! 

ff ■ 
The respective 

squared magnitude transfer functions are shown in 
Figure 3. Note in Figure 2 that even the 8-3tate 
unit hydrograph from the case ^"".rr has a significant 

nonzero tail whereas the 4-3tate unit hydrograph from 
the case 5"I produces an excellent fit.  Figure 3a 
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'^igure  2.     Six-Hour  Unit  Hydrographs,   Original   (Solid), 
Eight-Order   (Dashed),   and   Fourth-Order   (Dashed  and 
Dotted). 
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Figure 3,  Squared Magnitude Transfer Function, 
Original (Solid), Eight-Order (Dashed), and Fourth- 
Order (Dashed and Dotted). 

clearly illustrates the tendence of the case 9"I to 
fit all frequencies with nearly equal percent error, 
whereas from Figure 3b it is seen that in the case 
T"I the frequency bands of highest energy are 
emphasized.  Thus, for a hydrograph with a large 
spectral peak and complicated spectral shape, i.e., 
requiring a high order rational function for a good 
approximation, the case 9-1 can be expected to excel 
in fitting the unit hydrograph. 

10. Conclusion 

The canonical variate approach provides a power- 
ful and general procedure for reduced-order modeling, 
filtering and system identification.  The procedure 
is computationally noniterative and incorporates use 
of a singular value decomposition which is numeri- 
cally accurate and stable.  This guarantees a compu- 
tational solution in every case.  All reduced-order 
models are easily computed from one singular value 
decomposition. 

This paper extends the pioneering work of Akaike's 
in a number of directions.  A generalized canonical 
variate procedure is explicitly described in terms 
of minimizing an arbitrary quadratic weighting of the 
error in prediction of the future froir the past.  This 

considerably extends the usefulness of the method. 
While Akaike considered only the case of process 
noise, we include any combination of inputs, process 
and measurement noise.  This extends the approach of 
Akaike to the reduced-order filtering and transfer 
function modeling problems as well as modeling in the 
presence of an input function.  The use of a non- 
overlapping past and future lead to lower-order 
state-space models.  Using a finite past and future, 
simple and computationally efficient expressions 
are explicitly given for determining reduced-order 
system state-space matrices.  A particular specializa- 
tion of the canonical variate procedure is related to 
the Hankel norm method for deterministic input-output 
systems, however the former has an interpretation in 
terms of the prediction error of the future. 

The example modeling river basin dynamics 
illustrates the flexibility of the general 
quadratic weighting of the error in predicting the 
future from the past.  The classical canonical 
correlation procedure leads to uniform fitting in the 
frequency domain while the sum square error criterion 
leads to a uniform fitting of the unit pulse 
response. 
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ADAPTIVE   MODEL   ALGORITHMIC   CONTROL^'- 

W.   E.   Larimore,   Shahjahan Mahmood,   R.   K.   Mehra 

Scientific  Systems,   Inc.,   Cambridge,   MA  02140  U.S.A. 

Abstract.     >;odel Algorithmic    Control (MAC)   is  a  relatively new design  methodology 
successfully  used   by   industries   for   the   last  several  years.     The  objective  of   this 
paper   is   to   investigate   robustness   properties   of  MAC,   and  evaluate   the  use  of 
adaptive  methods   for  real-time   identification  of   the   plant  under  closed-loop   control. 
Some  theoretical  robustness   properties  of   MAC  are  given   in   terms   of   classical   qualities 
such   as   gain  margin   and  phase  margin   for  a  wide  class  of   systems.     Although  MAC   is   an 
output-feedback,  controller,   it  has  a  guaranteed  continuous-time  equivalent   phase  mar- 
gin  of   60*^,   and   the  upward  gain  margin   can  be  made   arbitrarily  large  by  slowing  down 
the   reference   trajectory.     Some   robustness   properties  of  MAC  are  also   given   by  a 
perturoation  analysis  of   a miss-modeled  plant   impulse   response.     Preliminary   results 
are   discussed   for  on-line   identification  of  the   closed-loop  plant   using  the   canonical 
variate  method.      Performance  of   the   identification  of   the   plant   in   the   presence  of 
both   input   and   measurement   noise   is   given. 

Ke-/words.     Adaptive   control;   identification;   robustness;   canonical  variate  analysis; 
model  algorithmic   control. 

INTRODUCTION ^^   ^^^^^  ^j(^)   3^1^  ^^  output   v(t)   to   be 

controlled.     The  y(t)   are   related   through 
The   >UC  methodology   generates   a   control ^  convolution   operator(*) 
sequence   by  on-line  optimization  of  a >j . 
cost-functional,   and   Che  algorithm  is   suit- v(t)   =■  h(t;    * u(t)   =     Z h,u(t-i) 
able  for  implementation  on microprocessors. i=l   ■'■ 
One  of   the  attractive   features  of  MAC   is   the '   ■ 
clear  and   transparent   relationship  between or, 
system performance  and  various  design  para- M 
meters  embedded   in   the   design  procedure. y(z)   =  h(z)u(z),   h(z)   =     I  h.z"'" (1.1) 
>LAC has   been  described  elaborately  in   the i=l   ^ 
literature   (Mehra  et.   al.   (1977,    1979,   1980), 
Mereau  et.   al.   (1978),   Richalet  et.   al. (ii)     A model   cf   the   plant   hft)   ==    'h. , i  =1,...N'; 
(1978),   and   Rouhani  and Mehra   (1982)),   and ^ 
therefore  only  a  brief  description  of  MAC   is with  output  yit)   and   input   u(t;   so   that 
given  below.     The  z-transform  or  s-transform 
of  a   time   function   is   denoted  by   replacing N' 
the   time-argument   by   z  or  s   respectively; y(t)   =     7  h.u(t-i) 
for  example   y(z)   denotes   the   z-cransform of i«l 
yfnj .      For   the   sake   of   simplicity   a   single- ., ; '     ■      ' 
input   single-output   svstera  is   considered QJ-, ■      '       -, 
although   the  extension   to  multiinnut  multi- M 
output   plants   is   conceptually  straight- v(z)   =  h(z)u(z;,   h(z)   =■     _  I;. z (1.2) 
forward. i-1 

There  are   five  basic  elements   in  MAC; (iii)     A  smooth  trajectorv  v   (t)   initiated  on 
r 

(i)  .Vi actual plant with a casual pulse the current output v(t) that leads y(t) to a 
response function h(t) = 'h., i =1,...N;,        possibly time varying set point c.  The y (t) 

1  This work was supported by the Air Force      2  Reorinted from Proc. "AC '.'orr.shop on 
Wright Aeronautical Laboratory. I      Adaptive Svstems in Control and Sig^l 

Processine, June 20-22, 1983, £an Francisco. 
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evolves as follows: 

y^(c+l) - ly^Ct) + {l-i)c(t), y^(t) 

-1 , > . ,,  ^ -1 
V (z) !(z)   + (l--i)z  c (z) 

/(t) (1.3a) 

(1.3b) 

(z-l)h(z)u(z) + (l-i)h(z)u(z) 

= fl--i)c(z) (1.-) 

By further manipulation (1.7) can be express- 
ed as 

where < is a constant determining the speed of 
response; 

(iv)  a closed loop prediction scheme for pre- 
dicting the future output v (t) of the plant 

» P 
according to the scheme 

y (t+1) •= v(t+l) +• y(t) - y(t)    (1.4a) 
P 

V (z) = v(z) + z"^y(z) - y(z))   (1.4b) 
P 

and finally 

(v)  a quadratic cost functional J based on 
the error between y (t) and v (t) over a finite 

P       ' -^ 
horizon T: 

(y (t+i)-y (t+i))^ w(i) 
i=l 

+ u-(t+i-l)r(i-l)) ] (1.5) 

where w(i) and rCi) are time varying weights. 
Usually r(i) is chosen to be zero. 

Given (i) - (v), MAC finds an optimal control 
sequence lu*(t+i-l), i-l,...T-l; by minimizing 
J over the admissible input sequence 
•u(t+i-l);f4i) , i  « 1,...T-1;.  Once the 
optimal control sequence is computed, the 
first element of the sequence is applied to 
the actual plant and the process repeats all 
over again. 

To investigate the theoretical properties of 
MAC and to interpret MAC from the classical 
control viewpoint we make the following 
assumptions: 

(i)  the actual plant h(z) is minimum phase; 

(ii)  there are no input constraints, i.e. 
-(i) = R for all i, where R is the real line; 

u(z) ^ I-"1  
c(z) ' fz-l)h(:J   +   (l--4;h(z} 

y(z) h(z)(l- 0  
c(z) ' (z-l)h(z)   +   (l-^)h(z) 

n.Ha) 

a.Hb; 

Equations   (1.8)   imply   that   MAC   under  assump- 
tions   (i)-(iii)   above   is   equivalent   to   the 
following  classical  unity   feedback  configura- 
tion   in  an  input-output   sense. 

c(z) y Compensator y^^j, 

1 - " Viz) 

?     I 
z -  1 1/h(z) m Plant 

ri(z) 

Fig. 1.  MAC as a Classical Controller 

This interpretation of MAC is the basis of 
oar analysis of MAC in terms of classical 
control. 

PHASE AND GAIN MARGINS 

The block within Che dashed line can be 
considered as a dynamic controller of the 
classical type.  The loop transfer function 
at point 1 is 

L(Z) 
h(z)(l-t) 
h(z)(z-l) 

C.la) 

and Che return difference function is 

1+L(z) - "(^)^^-^) ^ h(z)(l-.)    (..lb) 
h(z)(z-l) 

The  error  e(z)   =  c(z)   -  y(z)   in   tracking   is 
given  by 

e(z)   =   (l+Kz))"^   c(z) 

(iii)  the optimization is carried over one 
future step ahead i.e., (T=U; under this 
condition MAC is a one-step ahead predictive 
controller. 

Under these simplifying assumptions, it Is 
sufficient to select u*(t) satisfying 

y (c + 1) =■ yj.(t + l) for all c        (1.6) 
P 

for a minimum of the cost function J.  The 
assumptions (i) - (ii) ensure the existence of 
an optimum control u*ft) satisfying <1 .5) .u''(t) 
is then implicitlv generated bv v (z) = y (z) 

' p      r 
so chat 

so chat the steady state error due to a step 
input is 

e  ft) '   Lim n+L (z))'^ - ri + L(l))"^ = ) 
ss       , z—1 

which   is   a  consequence  of  a  builtin   inte- 
grator   in   the   compensator.      It   mav  be  noted 
that   using   the   set-up   of   Fig.    1   and   by   treat- 
ing   (\—j.)   as  a   gain,   the  usual   classical 
root-locus   technique   can   be   applied   to 
analyze   the  behavior  of   the  closed-loop  poles 
as   rt  changes   from 0   to   I.     To  make   Che   rooc- 
locus   picture   complete,   the   characteristic 
pol^momial   can  be   rearranged  with  a  modified 
gain   -  =     !/(l-:t)   so   that   as   'J. changes   from 
0  to   1,   .-.  changes   from 0  to  infinity. 
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It may be noted from Fig. 1 that at point 2, 
x(z)-y (z) when h(z) • h(z), where y (z) is 
tha reference signal.  This shows why perfect 
tracking is possible under perfect 
identification. We will, however, not pursue 
this approach here. 

L(exp(j;j3)) l-g 
2 

.1-1 .. 
j   -:^ cot  - 

(2.4) 

and   .L(exp(ju^) ,   «   1.0   implies   the  unity 
gain  cross-over  frequency at 

=   2   sin 
■1   1--J. 

(2.5) 

It is obvious from (1.8) and (2.1) that the 
closed-loop system is internally asymptotic- 
ally stable if the roots of the rational 
function ' 

1 ,(z) = (z-l)h(z) + (l-a)h(z) (2.2) 

are within the open unit disk iz'<l, and 
these roots are also the roots of the return 
difference function 1 -•- L(z).  We can there- 
fore find the stability margin in terms of 
Che gain margin (GM) and phase margin (PM) 
from Che Bode plot or .Nyquist plot of Che 
loop transfer function L(z) evaluated on the 
Nyquist contour 2 - exp(jijj) appropriately 
indented around the poles on this contour. 
Recall that in continuous-time, the GM and 
PM are those values of k and i respectively 
such that the perturbed loop L(s) = 
kexp(j i) L(s) is stable, where L(s) is the 
nominal loop and s is the Laplace variable. 
A similar interpretation goes for the dis- 
crete-time systems (Kuo (1980)); but the PM, 
unless it is an integral value of the 
sampling interval, does not have any physical 
significance.  Strictly speaking the complex 
constant kexp(j5) in continuous time should 
be replaced by kz"", n an integer, for measur- 
ing GM or PM of the discrete-time system. 

.Another way to compare with other continuous- 
time domain design techniques is Chat each 
element of the discrete-time loop should be 
transformed into an equivalent continuious-time 
element using bilinear transformation, and PM 
of the fictitious continuous-time loop can 
be taken as the PM of the discrete-time loop. 
In this paper the word PM Is used to mean 
the continuous-time equivalent phase margin. 
We can now state 

Theorem 1: 

L'nder assumptions (i)-(iii), MAC has 
GM " (0, 2/(l-a)), equivalent PM - Cos"^( l-i)/2, 
and unity gain cross-over frequency 
-'     -  2 sin -1   (l-;i)/2. 

The  Nyquist   plot   of   the  discrece-cime   loop 
(2.4)   is   quite  simple  and   from  the   plot   it 
is   easy   to  see   that   Che  system  is   stable   for 
all   gain  E (O ,   2/1-ci), and  a  pure  delay 

i  -  90°   -  Sin-1   (l-a)/2  will  change   the 
number of  encirclement   by   the  Nyquist   con- 
tour,   chus  making   the  system  unstable. 

To  get   the  equivalent   PM we   transform each 
element  of   the   loop  using   the  bilinear   trans- 
formation  s   =   (z-1)/(z+1)"'   to  get   Che 
equivalent   continuous   loop 

L(s) ^(i-D. 
2     s 

(2.6) 

From the Nyquist plot of L (s) it is obvious 
thatCMCvO, 2/(l-a) (the same as found by 
analyzing the discrete-time Nyquist plot) 
and a PM = Cos"! (l-a)/2. 

Theorem 1, although very simple, reveals 
some intuitively appealing results about GM 
and PM of MAC.  We can make the following 
remarks. 

Remarks: 

(1) Since ^£ [0,1], Che guaranteed upward 
CM is 2 and the PM is 60° respectively. 

(ii)  We can always trade-off robustness 
against the speed of response.  .As response 
speed is increased by decreasing J.,   BW 
~ ■■ 2 sin-1 (l-oi)/2 increases (which makes o 
sense) with a consequent reduction of 
robustness in terms of GM and PM. 

(iii)  We get this remarkable PM even chough 
MAC is an output-feedback controller possibly 
because the plant is inverted causally 
through the use of an optimization algorithm 
in the sense that at each time the algorithm 
provides Che controller with the entire 
future input sequence.  For Che same reason, 
the discrete-time loop has a one pole roll- 
off for all frequencies - which is rather 
unusual. 

Proof:  The proof is trivial if we recall 
that PM and GM are measured on a nominal loop. 
Here we can assume chat the nominal plant 
h(z) » h(2), which implies h  - h  and N =■ S 
because both h(z) and h(z) are power series 
in z~^.   The nominal loop transfer function 
from (2. la) is then 

L(2) 
l-j. 

z-1 
(2.3) 

i.e. an integrator delayed by one-step. 
Evaluating on z = exp(j.-), we get 

(iv)  Theorem 1 ensures that the controller 
can stabilize the loop for all the plants 
', h . ■ belonging to the set 
•h^  h. = kh.. 1=1 N, kE(o, 2/(l--0);. 

PLANT ROBUSTNESS ANALYSIS 

The nominal model h(z) is usually different 
from the actual plant h(z) for various 
reasons.  Sometimes h(z) is deliberately 
made simple Co facilicate Che control compu- 
tation by retaining the modes in the active 
frequency range.  On many occasions ic Is 
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difficult to model high frequency modes, 
and these are simply neglected.  Due to age- 
ing, ^tc, the modes of the actual plant 
drifts slowly thus Introducing low-frequency 
error.  Thus the modelling error e(z) has in 
almost every case, a dynamic structure; and 
the information about e(z) must be incorpor- 
ated in designing a nominal loop.  As a 
minimum amount of information eCz) is expres- 
sed  as an upperbound on 'e(exp( j ^))i ; and 
the purpose of robustness analysis is to 
find a requirement on the nominal loop in 
cemis of this upperbound so that the closed 
loop performance and stability is maintained 
in the face of modelling uncertainty. 

Usually the admissible uncertainties are 
expressed in two ways:  additively or multi- 
plicatively.  If we take h(z) as the nominal 
plant, then in an additively uncertain model, 
we express the actual plant h(z) as 

hCz) > h(z) + Ah (z)) (3.1) 

and   in  a multiplicatively  uncertain  model, 
the  actual   plant  h(z)   is 

h{z)   -  h(z)(l  +  ih   (z) 

h(z) h(z)   Ah   (z) 

(3.2a) 

(3.2b; 

For     single-loop   systems   the  order  of  multi- 
plication  in   (3.2)   is   irrelevant,   but   for 
MIMO  cases   the  order   is   important   because  of 
the  non-commutativity  of  matrices where   input 
channel   (left)   uncertainty  and  output-channel 
(right)   uncertainty must   be  distinguished. 
Both  of   the  multiplicative   forms   in   (3.2) 
are  often  used   in  analysis,   but   in   this  paper 
we   shall   be  using   (3.2b).     Note   that   at  nom- 
inal  values  of   the  plant,   Ah   (z)   =  Ah   (z)   =  0 

am 
and  Ah   (z)   =■   1.     Also  note   that   the   classical m 
G.M and  PM ensures   the  stability  of  a  perturb- 
ed  plant   of   the   form   (3.2b).     If   the  GM  is  k, 
then  Ah   (z)   =  k,  and  if  the  PM - n  (in  the 
sense  of  discrete-data  system).   Ah   (z)   •   z~". 
These  are  undoubtedly  a   limited  class  of 
allowable   perturbations  and  we  must   consider 
other  possible  error-structures   in  designing 
the  nominal   loop.     The   framework  of   (3.1)   and 
(3.2)   is  more   general   in   the   sense   that   it 
can  handle   a  constant,   non-constant   and  even 
dynamic  model  mismatch   (say   for  example 
unmodelled  poles,   etc.).     Let   us   rewrite 
h<z)   and h(z)   as 

N 
h(z) 

-1 
h   (z) 

P 
(3.3a) 

>J- i 
where  h   (z)   =   _     h.z =■  a  polynominal   in   z, 

^ 1-1 

and  h(z) == z ' h (z), 
P 

N'   ^:- i 
h (z) = : h z 

P    i-l" (3.3b) 

Then by straight forward manipulation, the 
closed loop characteristic polynominal is 

'fc    fz) 
cl, p 

(z-l)h (z) 
P 

+ z  (1-a) h (z) 
P 

Ci.U, 

hplz) 
= 1. 

Of course the zeros of h_(z) and z  will be 
z   (z-i)h-(z) . 

For closed-loop stability, I'cl,p(^'' must have 
all the roots strictly inside the unit disk 
!zi" 1.  For perfect identification N = N, 

and ii)_-,  (z) 
h , . 

cancelled eventually leaving the only closed 
loop pole at z = a.  However N, the order of 
the true plant, is usually unknown.  In real- 
world situations, (3.4) can not be evaluated. 
The actual plant h(z) must be considered as 
a perturbation of the nominal plant h(z), and 
the stability conditions must be derived in 
terms of the nominal sequence {hj • and the 
perturbation Ah (z) or Ah (z).  Let us assume 
that Ah (z) and  Ah^(z) can be expressed as 

in (3.3), i.e.. 

Ah (z) 
a 

N 

1=1 
ai 

Ah     (z).   Ah     (z)   =■  a   pol'/nomial        H.ia) 
ap ap , ■ in   z 

Ah   (z)   = 
l-l 

Ah   ,z 
mi 

-N„ h     (z) 
mp 

(3.4b) 

although the following theorem can be develop- 
ed without such an explicit form.  S'ote that 
the index in (3.4b) must start from 0 to 
accomodate constant multiplicative perturba- 
tion.  We have the following theorem on 
robustness: 

Theorem 2:      ■ 

(i)  The system is closed-loop stable for all 
additive perturbations Ah (z) satisfying 

Ah  (z) 
ap 

exp(j J 

1-^ 
h (z) 
P 

(3.5a) 

(ii)   The   system   is   closed-loop   stable   for   all 
multiplicative   perturbations   Ah   (z)   satisfying 

Ah      fz) 
mp 

:z- X . 
(3.5b) 

on   the  unit   circle,   where   Ah     (z)   and  Ah     (z) 
ap mp 

are  given  by   (3.4). 

Proof:     The   proof   is   straightforward   if  we 
express  h(z)   using   the   form   (3.3)   -   (3.4), 
find  the  corresponding  closed-loop   characteris- 
tic     polynomial,   and  finally  use   Rouche's 
theorem  to   prove   (3.3)   on   the  assumption   that 
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the nominal loop is internally stable and 
hence iz-x)   ^Az)   has all the roots strictly 
inside the unit disk , z , = 1. 

The tests of the type (3.5) are sufficient 

conditions and generally tend to be 
conservative.  Nevertheless we can make the 

following remarks: 

(i)   3oth tests (3.5a) and (3.5b) are 
useful.  For example when an actual known 

model 

model is constructed of the form 

i=l,...N-   is   truncated  to  obtain 
r;, ,    i=l , . . .:;,   M  ^ N -,   so   that 

=   N,   N   +■   1, . . ..^l   and   Ah 

stability around  h. 

n.Sa;. ' ^ 

ai 

ai 
0, i< ^;, 

can be obtained from 

HI   For constant multiplicative gain mis- ( 
match, i.e. \\.   = 

L 

when i=0 and Ji_ 

for all i. 1 j.h 

0 when i>0 f, so that 

Ih  (z; = kz'^ and test  (3.5b) yields that 
mp 

the system is stable for all k such that 

1 
1- 

, z = expCjou) (3.6) 

But it is easy to see that min ;exp(ju)- AI» 

1-A so that (3.6) becomes k-1  <^ 1 which 
implies kE(0,2).  This clearly shows that 
these test are conservative.  (See remarks 
(iv) of the previous section). 

CLOSED-LOOP IDENTIFICATION 

The results of identification of the plant 
under closed-loop control using .MAC are 
described in this section.  The major dif- 
ficulty in closed-loop identification is 
that the future plant inputs are correlated 
with the past outputs due to the feedback, 
'lany identification procedures assume the 
absence of si ch correlation^ and produce 
biased estimates or have other difficulties 
in their presence.  Maximum likelihood will 
handle such correlation, but can be computa- 
tionally expensive especially if not prov- 
ided with good initial estimates of the 

parameters. 

For identification in this study, the can- 
onical variate analysis method was used. 
This approach to stochastic realization was 
first proposed by Akaike (1975).  A recent 
generalization (Larimore (1983)) extends the 
method to input-output identification in the 
presence of noise.  The method is based upon 
a decomposition of the covariance matrix of 
the past p(tJ and future f(t) of the plant 
inout process u(t) and output process y(t) 

where 

■ft) '■u'(t), y'(tj, u'^ft-I), y^(t-l), .. .) 

i'(z)   = 'v-ft-U, y'ft+2) ) 

A   :anonicai   "ariate   decomoosit ion   of   the 
:ovarijnce   o:   p > t )   ind   ft;   aetermines   the 
imoortanc    i .near   ':omD mat ijns   'jf   p(t)    for 
Dredict4.on   JI   I't).      Frjm  t^.is   a  state-space 

t + 1 
^Y.     + Gu  + w 

t    t   t 

y  = Hx 
' t t 

Au Bw 

where w and v are white noise processed that 
are independent with covariance matrices Q 
and R respectively.  These white noise 
processes model the covariance structure of 
the error in predicting y from u.  Computa- 
tionally, a singular value decomposition of 
the sample covariance matrix between p(t) 
and f(t) is used.  This decomposition is 
numerically very well conditioned and stable. 

To demonstrate the identification algorithm, 
the feedback system under MAC control illua- 
trated in Fig. 2 was considered where there 
is input white noise added prior to observ- 
ing the plant input and output white noise 
added prior to observing the plant output 
with power spectral densities S  and S 

respectively.  The oarticular plant consid- 
ered is the very lightly damped missile 
dvnamics model (Mehra et. al.) (1980) 

-1.4868 

-149.43 

1.00 

1 

where the states are xj » Ti the angle of 
attack (rad), x^ = P "he perturbed pitch rate 
(rad/s), input Q = ">-i Che elevator angle 
(rad), and output y " i the angle of attack 
(rad).  An analysis of the dynamics gives a 
natural frequency of 12.24 r/s (1.95 Hz) and 
a damping ratio (',) of 0.061. 

The canonical variate method was used to 
identify a second-order system while operat- 
ing under MAC control with input and measure- 
ment noise.  No other input nor change in 
the set point was present, and the system 
was in statistical steady-state.  The pre- 
sence of an input or varying set point would 

improve the ability of the algorithms to 
identify the plant.  The plant was approx- 
imated by a discrete time system using the 
exponential transformation at a sample rate of 

10 Hz.  This was used for the actual plant 
in the discrete time simulation, and in the 
MAC control computations the discrete time 
impulse response was used out to 5 seconds 
and set to zero at longer times.  The true 
and identified plant models are shown using 
sample sizes of 100 and 900 in Fig. 2.  Note 
that the Identified plant is close to the 
true even for a substantial amount of 

measurement noise. 

REFERENCES 

Akaike, H. (1975).  Markovian Representation 
of Stochastic Processes by Canonical Vari- 
ables, SI.VM ;. ':jntr., ''oi- 13, pp. W,;-17T. 

C-6 



Input 
Nolt* 

Output 
MaaBuramant 

Nolaa 

Input ^ 
Sacond 

Ordar [Qiacui. 
Plant (I) 

Faadback 

MAC 

Controllar 

(a)     Simulation Model 

FREQUENCY   ;HZ1 

(c)     Magnitude  Transfer  Function 

.^rAyf'^i'o*- IJ*I.<"IH1»I|1 

TIMEISECI 

(b)     Pulse  Response 

(d) 

FREQUENCY  (HH1 

Phase   Transfer   Function 

rig- Identification Under MAC Control, True Plant (Solid), Identified Plant for M-lOO, 
S^.l, S -0.01 (Dashed), and for N-900, S,-l, S 

o 1    c 
0.5 (Dotted). 

Kuo, B. C, (1980).  Digital Control Systems, 

Holt, Rinehart and Winston, pp. iO7-409. 
Larimore, W. E. (1983).  System Identification, 

Reduced-order Filtering and Modeling Via 
Canonical Variate Analysis, Proc. 1983 
American Control Conference, 
San Francisco, CA, June 22-24 

Mehra, R. K., W. C. Kessel, A. Rault and 
J. Richalet (1977).  Model Algorithmic 
Control Using IDCOM for the F-lOO Jet 
Engine Multivariable Control Design 
Problem.  International Forum of 
Alternatives for Multivariable Control. 

Mehra, R. K., R. Rouhani. A. Rault and J. G. 
Reid (1979).  Model Algorithmic Control: 
Theoretical Results on Robustness.  Proc. 
Joint Automatic Control Conference 
PP- 387-392. 

Mehra, R. K. , J. S. Etemo, R. Rouhani, R. B. 
Washbum, Jr., D. B. Stillman and L. 
Praly (1980).  Basic Research in Digital 
Stochastic Model Algorithmic Control, 
Technical Report AFlJAL-TR-80-3125, Air 
Force Wright Aeronautical Laboratories, 
Wright-Patterson AFB, Ohio 45433.  DTIC 
Document AD-A102145. 

Mereau, P., D. Guillanme and R. K. Mehra 
(1978).  Flight Control Application of 
MAC with IDCOM (identification and com- 
mand) .  Proc. IEEE Conf. on Decision and 
Control, pp.977-982. 

Richalet, J., A. Rault, J. L. Testud and 
J. Papon (1978).  Model predictive 
heuristic control:  applications to 
industrial processes.  Automatica, 
Vol. 14, pp. ii3. 

Rouhani, R., and R. K. Mehra (1982).  Model 
Algorithmic Control (MAC); Basic 
Theoretical Properties,  Automatica 

18. pp. iOl-414. Vol. 

C-7 



APPENDIX D 

MULTIVARIABLE ADAPTIVE MODEL ALGORITHMIC CONTROL 

By:  W.E. Larlmore 
S. Mahmood 
R.K. Mehra 

D-1 



Procesdingi of 23rd Conference 
on O«cision and Control 
Laa Vegas. NV. December 1984 TA2 - 9:30 

MULTIVARIABLE ADAPTIVE MODEL ALGORITHMIC CONTROL 

U.E. Larlmore, S. Mahmood, and R.K. Mehra 

Scientific Systems, Inc. 
Cambridge, MA 02140 

ABSTRACT 

br- In this paper the multlvarlable adaptive control 
problem is addressed using the Model Algorithmic 
Control (MAC) method in conjunction with the canonical 
varlate Identification method.  Under some simplifying 
assumptions multlvarlable MAC Is shown to be equivalent 
to a classical controller In a unit feedback con- 
figuration.  Robustness of the MAC controller against 
unmodelled dynamics Is assessed by perturbation analy- 
sis.  The canonical varlate Identification method is 
described in terras of choosing a state of a given order 
based upon past information to optimally predict the 
future.  The computation Is a noniteratlve algebraic 
stochastic realization algorithm that Involves pri- 
marily a singular value decomposition which is numeri- 
cally very stable and accurate.  The canonical varlate 
method Is shown to give an optimal choice of Instrumen- 
tal variables, and simulation results show It to be 
approximately maximum likelihood. 

1.  MULTIVARIABLE MAC AS A CLASSICAL CONTROLLER 

MAC control strategy has been described and analyzed 
In earlier reports and publications (Mehra et al, 1977, 
1979, 1980; Mereau, 1978).  The following is an 
extended version for MIMO plants. 

The MAC methodology generates a co 
on-line optimization of a cost functl 
algorithm is suitable for Implementat 
cessors. One of the attractive featu 
clear and transparent relationship be 
formance and various design parameter 
design procedure. We assume in the f 
input sequence u(n) is ra-dimenslonal 
sequence y(n) is p-dimensional. Ther 
elements in MAC: 

ntrol sequence by 
onal, and the 
ion on micropro- 
res of MAC is the 
tween system per- 
s embedded in the 
ollowlng that the 
and the output 
e are five basic 

(1) An actual stable plant, possibly not known 
exactly, with a pulse response sequence {Hj,} , 
n-1,2 N where each H^ is a pxm dimensional matrix. 
(We assume for simplicity that the plant has no time 
delay element and is purely dynamic, I.e. It has no 
feedthrough term).  Then the input sequence u(n) and 
the output sequence y(n), are related by 

y(n) - Hiu(n-l) + H2u(n-2) + ... + H(ju(n-N)   (1.1a) 

or, Y(z) - H(z)U(z) (1.1b) 

where  U(z),   Y(z)   and  H(z)   are   z-transforms   of   y(n), 
u(n)   and   {Hf,}   respectively.   Here 

H(z)   -  Hiz-1   + H2Z-2  +   ...  +  H^z-N  -  Hp(z)z-N 

^   This  work was  supported  by  the  Air  Force  Wright 
Aeronautical Laboratory under  Contract  No. 
F33615-82-C-3600 

Reprinted from THE 23RD IEEE CONFERENCE ON 
DECISION AND CONTROL, December 12-14, 1984 

where  Hp(z)   is   a  pxm  dimensional   polynomial  matrix   In   z 
and   is   given   by 

Hp(z)   -   Hizf^-1   +   H2zN-2   +   ...  +   Hfj (1.1c) 

This is an "all-zero" model and Hp(z) determines Che 
zeros of the plant.  The locations of non-ralnlraura phase 
zeros impose restrictions on the achievable performance 
of MAC.  We must remind the reader that the physical 
Interpretation of a zero in the Impulse response 
description of the plant is different from that of a 
transmission zero in a rational transfer function (RTF) 
model (or equivalently difference equation (DE) model) 
of the plant.  Also the physical Interpretation of 
poles of a RTF model as natural modes of a plant are 
lost in this description. 

(ii)  An internal model of the plant having the «i.irae 
Input-output dimension pxm as that of the aoCu.il pl.int 
and the pulse response sequence (fln^ • n-1,2,..,"5.  The 
input u(n) Is the same as that to the actual plant .ind 
therefore the output y(n) of the model Is ,i!lven by 

y(n) - fliu(n-l) + fl2u(n-2) + ... + ftptu(n-f5)  (1.2a) 

or, ?(z) - fl(z)U(z) (1.2b) 

where,   as   before, 

ft(z)   - flp(z)   z-^ (1.2c) 

and flp(z) is a pxm dimensional polynomial matrix.  tfl^} 
is generally different from (!!„}. 

(ill)  A p-dimensional reference trajectory yr(n), 
preferably smooth. Initialized on the current output of 
the actual plant y(n) that leads y(n) to a possibly 
time varying p-dimensional set point c.  If each of the 
reference trajectories yri(n) has a first order dyna- 
mics with time constant a^   leading to set point cj^, 
1-1,2,...p and If the trajectories do not Interact 
with each other, then yj-(n) evolves as 

yr(n+l) - A^, yj.(n)   + (I-A<,)c, yr(n) - y(n)    (1.3a) 

or, zYr(z) - AaY(z) + (I-A(,)C(z) (1.1b) 

where A^- diag(aj) and C(z) is the z-transforra of c. 

(iv)  A closed loop prediction scheme for predicting 
the future output of the plant according to the scheme 

yp(n+l) - y(n+l) + y(n) - y(n) 

or,  Yp(z) - ?(z) + z-l[Y(z) - ^(z) 

(1.4a) 

(1.4b) 

Here  yp(n)   is  also  p-dimensional. 

CH2093-3/84/0O(X)-O675 $1 (X) >^   19K4 IKKE 
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(v)  A quadratic cost functional J based on the 
error between yp(n) and y^^n) °''^'^   ^   finite horizon !„ 
(here !„ is an integer): 

j = ' [ef(n+k)W(n+l<)e(n+k) (1.5a) 

k-1 

+ uT(n+k:-l)R(n+k.-l)u(n+lc-l)l 

To see that the setup In Figure 1 Indeed represents 
equation (1.7), note that at point 1 we have 

U(z) '  -V rl(z)(I-Aj)E(z) 
z-l 

yp(n+l) =- yr(n+l) for all n>0 (1.6) 

for a minimum of the cost function J.  The assumptions 
(i)-(lli) ensure the existence of an optimum control 
u*(n) that satisfies (1.6) - the resulting optimal cost 
J* is zero in this case.  However U*(z) is then impli- 
citly (;!enerated by Yp(z)-yi.(z) so that 

U*(z) - ((z-l)R(z)+(I-A<j)H(z)l"^I-/\(,lC(z)     (1.7a) 

Y(z) - H(z)[(z-l)ft(z)+(I-Ac,)H(z)r^(I-ftc,lC(z) (1.7b) 

Equations (1.7a) and (I.7b) relate the setpolnt C(z) 
with the optimal Input sequence U (z) and output 
sequence Y(z).  It is easy to see that this simplified 
form of MAC is equivalent to the followini? MIMO unit 
feedback configuration (we have dropped henceforth the 
the * superscript). compensator 

C(z) y(z) 

,-l 
z-l 

fl  (z)(I-Aa)[C(z)-H(z)U(z)l 

- Tr I   lW(n+k)e(n+k)e''^(n+k) (1.5b) 
k-1 

+ R(n+k-l)u(n+k-l)uT(n+k-l)1 

where W(•) and R(•) are positive semideflnite time 
varying weights and e(n+k) - yp(n+k)-yr(n+k).  In most 
MAC applications R(•) is set to be zero. 

Given (l)-(v), MAC finds an optimal control 
sequence lu*(n+i-l), i-l,...Tn| by minimizing J over 
the admissible input sequence 1 u(n+i-l) ea(i) ,i-l.. .Tf,l . 
Once the optimal control sequence is computed, the 
first element of the sequence is applied to the actual 
plant and the process repeats all over again. 

In general, there are no analytic solutions for 
the control sequence fu*(n)[ - it is computed at each 
step using an algorithm known as lOCOM.  Therefore in 
its most general form, MAC cannot be put into a 
rlasstcal control framework.  However under the 
following simplifying assumptions MAC can be modelled 
as a unit feedback configuration: 

(1)  The actual plant H(z) is minimum phase; 
(11)  The plant model R(z) is minimum phase; 

(ill)  There are no Input constraints. I.e. ';K1)-R"' 
for all 1; 

(Iv)  Tn-1, I.e. the optimization is carried over 
one future step ahead.  Under this condition 
MAC is a one-step ahead predictive 
controller. 

In addition, if we assume that the plant model fl(z) 
Is exactly known, i.e. fl(z)-H(z), the MAC is equivalent 
to an Inverse control law.  However, under the 
simplifying assumptions, (i)-(iv), it is sufficient to 
select u*(n) to satisfy 

Multiplying both sides of this equation by (z-l)fl(z) 
and rearranging we have 

[(z-l)R(z) + (I-A^)H(z)|U(z)-(t-.'\^)C(z) 

from which (1.7a) and (l.7b) follow.  The block within 
the dashed line in Figure 1 can be thought of as a 
dynamic controller of the classical type.  The loop 
transfer function at the plant Input (point 1) Is given 
by 

L(z)- 
z-l 

rl(z)(I-AJH(z) 
(1.8) 

and determines the robustness of the feedback con- 
figuration at this point.  When we have perfect iden- 
tification, i.e. H(z) - fl(z), then at point 2 

0(z) - Y(z) • -—• (I-Aci)E(z) 

0(z) (I-A„)lC(z)-0(z)l 

(1.9) or  zO(z) = A30(z)+(I-A<j)C(z) 

Equation (1.9) Is equivalent to 

u(n+l) - A^u(n)+(I-Aa)c, u(n) - y(n) 

which shows that u(n) is the reference trajectory 
sequence yr(n) as shown in equation (1.3a).  This means 
that when the plant model is known exactly, the control 
sequence U(z) is generated as 

U(z) - H"'(Z)0(Z) = H"'(Z)Y (z) 

Therefore the output of the actual plant is 

Y(z) - H(Z)U(Z) Y (z) 
r 

(1.10a) 

(1.10b) 

Figure 1.  :iAC as a Classical Controller 

which shows that in steady state the plant output y(n) 
is identical to the reference trajectory yr(n) - per- 
fect tracking has been achieved.  Equation (1.10a) 
clearly shows the need for H(z) to be minimum phase. 
This analysis has revealed another interesting property 
of MAC.  Exact tracking could as well be achieved by 
inverting the plant to generate the sequence u(z) In an 
open-loop configuration, but in MAC it does so In a 
closed-loop configuration.  Therefore the additional 
benefits of a feedback configuration such as distur- 
bance rejection, sensitivity reduction, etc, are also 
obtained while simultaineoualy achieving exact 
tracking. 

2.  ROBUSTNESS ANALYSIS OF MIMO MAC 

In the following analysis we describe MAC using a 
rational transfer function or difference equation (DE) 
model.  It can be shown that the simplified MAC using 
DE description of the dynamics is also equivalent to 
the unit feedback configuration in Figure 1.  The 
advantage of using this description Is that the robust- 
ness of the closed loop can be examined in terms of the 
recently developed criteria employing the loop transfer 
function and return difference function at appropriate 
points in the loop. 
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Let   as    iii.ilyze   the   loop   transfer   funcC Lon   1.2(2)    ic 
t lif   'Hirpiit   ')t   till-   plinr,    I.",    it   point   }. ,     \.>( z)    Is 
j^lven   by 

L/z)   - —r H(2)n   '(z)(I-Ap,) 
(2.1) 

Here R{ z) I.3 the model of the actual plant.  In a nomi- 

nal design, the actual plant H(z) Is assumed to be 
equal to Che model fi(z), I.e. H(z) « 3(z).  However the 
return difference function H.(z) Is then 

H^Cz) - l+L^Cz) 
■1 

[(z-l)I+H(z)B'^z)(I-A^) 
(2,2) 

has .) fast lynaml .-s , I.e. i^ 0, then MAC has in npw.irl 
i<aln margin of h   tib c),i that '-hannol.  As a m.iliiT ,,1 

tact h   db upwar.l gain margin Is a guaranteed .ine for 
each channel.  However on the other hand by slowing 
down the reference trajectory, I.e. by making TJ»I.O, 

the upward gain margin at each channel can be Increased 
to Infinity - which I3 an unusual result for an output 
feedback control scheme. 

Using the above analysis, the tolerence of the 
nominal loop Co any perturbation K (not necessarily 
diagonal) can be obtained.  If the perturbation is 
dynamic, the analysis Is slightly complicated as shown 
In Che following. 

The closed loop poles are given by the zeros of 

det(H2(z)).  For the nominal loop, i.e. H(z)-R2(^)> the 
closed loop poles are given by Che zeros of 

det(zI-A„)-0 (2.3) 

which shows that the plane dynamics are cancelled and 
Che overall behavior of Che loop is governed by Che 
reference crajecCory dynamics as given by the poles aj, 
a2 •••oLp       In this case each of the p-outpuCs is iden- 
tical Co Che corresponding reference CrajecCory y  (n), 
1-1, 2,...p. rl 

We selecc Che Internal model fl(z) and Cherefore 
fl(z) Is coraplecely known Co us.  On Che ocherhand the 
plant H(z) Is noc known Co us exaccly.  Ic Is cuscoraary 
Co Chink chat Che accual plane H(z) lies in a neigh- 
borhood of fl(z).  If we define chls neighborhood by an 
addlcive perCurbaClon AH (z) chaC saclsfles 

a 

a(AH (e^"'))<a(!o), 0<'j<:2n, (2.8 

Chen we assume chaC H(z) lies among Che class 

R(z)+AH (z) (2.9) 

This propercy of MAC is also obcained If we corn- 
puce Che overall transfer function T2(z) from the 
reference CrajecCory see point C(z) to Che output Y(z), 
i.e. Y(z) - T2(z)C(z).  Since [.^(z) - (l-A„)/(z-l) we 
have 

1^(2) - L^(z)(I-t-L^(z))~'^   . (I-A^)(zl-A^)~'    (2.3a) 

Since A^ Is diagonal, T2(z) Is also diagonal.  This 

shows that the overall transfer funcclon is non- 
InCeracCing:  any change in the reference trajectory 
parameter in Che i-Ch inpuc channel affecCs Che outpuc 
In 1-ch channel only; Che ocher output channels are noC 
affected at all.  This decoupling property of MAC has 
made ic very popular in induscries where Che pracCicing 
engineer always prefers a decoupling concrol scracegy. 

This characteristic of MAC as an output feedback 
conCroller Is ouCstanding. 

Ic is scralghcforward Co corapuCe Che gain margin 
from (2.1) if we recall that iC is Che Colerence of 
the nominal loop Co a mulclpllcaclve perturbation.  In 
this case the gain margin Is given by the range of 
values of a diagonal matrix K-dlag(ki) such that Che 
percurbed loop remains sCable.  Here Che percurbed loop 
L  (z) Is given by 

1... (z) 
2p 

KH(z)n  (z)(l-A„) '  ifrr « 1   <2.4) 

The closed loop poles are given by 

det((z-ni+K-A^)-0 

where AHa(z) is given by (2.8).  Here 5 (X) denotes the 
maximum singular value of X and a('i)) is a frequency 
dependenc funcclon that Is usually known Co a designer 
from his aprtorl experience with Che system.  Kor con- 
venience of the analysis we assume that AHa(z) Is ana- 
lytic in |z|>l.  To analyze The worst possible case, 
suppose the actual plant H(z) lies on the boundary of 
the class of systems given In  (2.9), I.e. 

H(z) - fl(z)+AH (z) 
a 

The perturbed loop L. (z) is then 
2p 

L2p(z)- 777 (fl(z)+AH^(z)lfl"\z)(I-A^) 

p:j- [I+AH^(z)tl '(z)I [I-A^l 

(2.10) 

(2.11) 

The closed loop poles of the perturbed loop is given by 
the zeros of 

det(I+L. (z))-0 
2p (2.12) 

and we want to find some condition on fl(z) such that 
Che zeros In  (2.12) lie wichln Che unit circle |z|<l. 
The nominal loop transfer funcclon L2(z) and return 
difference funcclon H2(z) are obtained from (2.1)as 

^(z)' z-1 (I-A.) 

(2.5)     H2(z).I+L2(z) - ^^  (zI-A^) 

(2.13a) 

(2.13b) 

If A3 is diagonal and if z  are the roots of equation 
(2.5), Chen Che closed loop poles z are given by 

Zj^+k^-1-k a -0 or  z -k a +l-k 

0<k.< 
1     1-a, 

(2.6) 

Clearly   the   perturbed   loop   Is   stable   If   for  all   k^, 
|z   |<1.     This   Immediately   implies   that 

(2.7) 

Clearly the perturbed loop transfer function 

L2p(z) can be considered as a perturbation AL2(z) of 
the nominal loop transfer function L2(z) where 

AL (z)- -i-[AH (z)fl"\z)l (I-A 
^       Z"~ I A 0 

and  L, (z)-L,(z)+AL-(z). 
Zp     2      2 

Equation     (2.12)   then   reduces   to 

(2.14) 

which agrees with the SISO results obtained earlier. 
This Is a satisfactory result since MAC Is an output- 
feedback controller and not a state-feedback one. 
Equation  (2.7) shows chat If «ny reference trajectory 

det(I+L2(z)+AL2(z))-0. (2.15) 

The nominal loop Is stable, and, as we liave see 
earllur. It h«H p numho r of rlowud loop polrri In 
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l/.l'l.n.     Then   s   sufficient   condition   rh;it 
det( [+L2p(2))   In     a.15)   has   also   p   number   of   zeros   In 
IzKl.O   19   (Sain   (1981)) 

o(A4(eJ'^))<a.fl+4(e^")) (2.16) 

where a(X) denotes the smallest singular value of X. 
If AL2rz) satisfies  (2.16), the perturbed loop is 
stable.  Equation (2.16) can further be simplified as 
follows.  First note that a(niX) <;£(iiiY) implies 
o(X)<a_(Y).  Then using (2.14), and (2.13) in (2.16), 

we have 

5 [AH^(eJ"')a"^(eJ'")(I-i\c)l«ofeJ"'l-Ae,) 

which is Implied by 

with '/(t ) 1 measurt^ment nol<ie ,ind wf c) i   proctiSJ 'loti*? 
with respective cross spectral density matrtcies R and 
0.  From the theory of Markov processes and in par- 
ticular the theory of stochastic realization, the tilnl- 
mal state vector defines the information from the past 
relevant to the future of the process and is called the 
predictor space (Akaike, 1974a). 

The approach of canonical variables for system 
identification is to determine the optimal set of 
linear combinations m(t) of the past p(c) that best 
predict the future f(t) in terms of minimizing the pre- 
diction error 

J- J"' i'^T o[AH (e^'^)la_[R(eJ'')la[I-/\<,l<a(e^"l-«.^) 

(2.17) 

(2.18) 

where   each   '\i   Is   ^nch   chut   0<m<l. 

<^ min 

Equation     (2.18)   is   satisfied   if 

j:. , ^ a(uOn-a^ 

a(eJ'^I-A<,) 

(2.19) 

(2.19) 

lf - f||2 - Ei(f - n^ t.ff (f - f)i (3.5) 

where Zff   is the covariance matrix of the future f and 
f is the best prediction of f based upon the memory 
ra(t).  This optimization problem involves the optimal 
seIi»ctlon of the dimension of m( C) .is well an the opti- 
mal selection of the linear combtnuclons of the past. 

The problem of minimizing (4.5) is precisely a 
generalization of the classical canonical correlation 
analysis problem of mathematical statistics (Hotelling, 
1936).  Modern computational procedures use a genera- 
lized singular value decomposition (SVD) (Golub, 1969) 
involving the covariance raatricies of the past and 
future.  The generalized SVD determines transformations 
J and L and a diagonal matrix D such that 

The RHS of  (2.19) is precomputable.  If the identified 
model R(z) satisfies  (2.19), then the MAC control law 
is stable for all plants under the class given by 
(2.8).  However, we are still looking at the physical 
Interpretation of the condition given in  (2.19).  For 
SISO systems, the singular value is replaced by the 
magnitude function. 

Similiar relations can be drived for multiplica- 
tive perturbations and for modelling uncertainties at 
the plant input. 

T.  SYSTEM IDENTIFICATION USING CANONICAL VARIABLES 

Proposed methods for multlvariable parameter iden- 
tification are plagued with problems of computational 
complexity and unreliability.  For iterative optimiza- 
tion approaches such as maximum likelihood, there is no 
apriorl bound on the number of iterations required for 
convergence unless a good initial estimate is 
available.  The computations Involved in many schemes 
become illconditioned if the parameter identiflability 
is illconditioned which occurs frequently in practice. 
The canonical varlate method Involves solution of an 
algebraic problem involving primarily a singular value 
decomposition which is numerically accurate and stable 
for any set of data.  The system is identified in an 
implicit state space form which avoids Che iden- 
tiflabillty problem. 

The approach to system Identification using 
generalized canonical variables is described in some 
detail in Larimore (1983b). That approach involves 
consideration of the past p(t) and future f(t) of a 
vector process at a time t defined as 

pT(t) - (yT(t). uT(t). yT(t-l), uT(t-l), ... )    (3.1) 

fT(c) - (yT(t+l), yT(t+2), ... ) (3.2) 

where u( t) is the input and y( t) is the output of an 
unknown system with state space ntructure of the form 

x(t+l) - *x(t) - Gu(c) + w(t) (3.3) 

y(t) - Hx(t) + Au(t) + Bw(t) + v(t)       (3.4) 

J Z Pf 

J z pp 

Diag(Yi> 

I ; L Eff L 

>Yh>0.- 

I 

,0) = D (3.6) 

(3.7) 

The transformations can be interpreted as defining a 
new set of coordinates for the past and future in which 
the covariances are D, I, and I respectively as given 
in the last equations (3.6) and (3.7).  For a full 
order state model, the optimal memory or state x(t) Is 
related to the past p(t) in terms of the first h cano- 
nical variables as m(t) - (I,0)Jp(t), i.e.  the first h 
components of the canonical predictor variables Jp(t). 
A ra.iniraal order realization is obtained with this 
choice of state.  The computation of the state space 
raatricies is given in Larimore (1983b). 

In system identification, the covariance raatricies 
are not known but are estimated from the observations. 
The statistical determination of rank In the canonical 
varlate analysis is given approximately using standard 
canonical correlation analysis methods (Akalke, 1976). 
A more refined comparison between the different order 
models is given by use of the Akalke information cri- 
terion (AIC) which is asymptotically optimal in mini- 
mizing entropy (Shibata, 1981).  The use of entropy 
measures such as the AIC has a fundamental justifica- 
tion in terms of the basic statistical principles of 
sufficiency and repeated sampling (Larimore, 1983a). 

The minimal order realization can be determined 
from the canonical correlation analysis with k-h. 
However with k<h when a reduced memory is selected, the 
approximate system does not in general minimize the 
prediction error for that order. This is because the 
reduced rank canonical variables are not in general 
recursively computable.  However in the case of the 
statistical rank determination problem, there is an 
Insignificant difference between the state of the 
realized system corresponding to the statistically 
optimum choice of order and the full rank canonical 
variables. 

The Instrumental variables method has a natural 
Interpretation in terms of the generalized canonical 
varlate problem.  In the Instrumental variables 
approach, the state equations (3.3) are considered as 
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unobserved structural relattonahlos that are Indirectly 

observed through the noisy measurement equations (3.4). 

A vector m(t) of Instrumental variables Is constructed 

which Is hopefully close to the true state x(t).  This 

Is used In place of the true state In solving the 
problem.  This apparently works well for an appropriate 

choice of the Instrumental variables. 

A more general problem Is the optimal choice of 
instrumental variables as posed by Rao(1965, 1979). 

This is formulated as finding the optimal choice of k 
linear combinations of the past p(c) that predict the 
future f(t) as measured In terms of the squared error 
(f - t)'^{l  -  t).     This Is precisely the generalized 
canonical variate problem (Lariraore, 1983b) with 
weighting matrix 0 » I.  If k Is chosen as full rank, 
then rhp rtipraory and the state space realization are 
IndependynL nf   Che weighting matrix O-I replacing T. f f 
in O.')) and (3.7) (Larlmore, 1983b).  However, for 
lower rank k<h, there can he a considerable difference 
between the state space and reduced order system for 
different weightings 0 (Lariraore, 1983b).  The squared 
error relates to energy while the canonical correlation 
analysis relates to the statistical significance of the 
problem.  The canonical correlation analysis can be 

viewed as an optimal choice of the instrumental 
variables using the appropriate weighting (3.5) of the 
prediction errors for the determination of the sta- 

tistically significant number of states. 

Time recursive methods using instrumental 
variables and approximate maximum likelihood (IV-AML) 
are claimed Co be approximately efficient parameter 
Identification methods for large samples as shown In 
simulation examples (Young, 1979).  This is shown by 

Monti Carlo simulation and by estimating the parameter 
by Monte Carlo simulation that the canonical correla- 
tion method also gives efficient identification of the 
system dynamics.  This is done by evaluating the 
spectral estimation error. 

N(S,S) E ^ ; [log s( i))s-'(.)) 
2    -TJ 

(i.l) 

+ tr[I - S('■))§-'('^)1' du) 
2TI 

-E- /" tr{S-l(D)[S(.ij) - S(j)l}2 yf 
4   -TT 

where expectation is taken with respect to the para- 

meter estimates, and the approximation holds to second 
order In the elements of S-S.  The last expression Is a 
generalization of the integrated squared relative error 
In estimating the power spectrum S, and there Is an 
Interpretation In the multlvarlable case In terras of 
the principle components of the power cross-spectral 
matrix (Lariraore,1984). 

In the case of ML estimation of the parameters •), 
the estimates are asymptotically consistent and effi- 
cient achieving the Craraer-Rao lower bound E( 9-6)( =!-^)^ 
>F"^.  Using this lower bound, the lower bound on the 
entropy measure of spectral accuracy Is derived as 
E(N(S,S)1 < k/2N.  This Implies the lower bound 
(Lariraore, 1982, 1984) 

E  /  tr{S-l(u))(S(u) - S('a))! 
2 dc. 

2TI 

2k 
N 

(4.2) 

on the expected integral of the relative squared error. 

This is a fundamental bound on the achievable accuracy 
in spectral estimation. 

To demonstrate the efficiency of the canonical 
variate method of system Identification relative to 
MLE, the spectral accuracy of the method was compared 

with the lower bound (4.2).  The autoregresslve moving 

average (ARMA) process 

y(t) -  1.3136 y(t-l) - 1.4401 y(t-2) + 1.0919 y(t-3) 

- 0.83527 y(t-4) + w(t) + 0.17921 w(t-l) 

4.  EFFICIENCY OF CANONICAL CORRELATION ANALYSIS + 0.82020 w(t-2) + 0.26764 w(t-3) (4.3) 

The asymptotic efficiency of system identification 
using canonical correlation analysis is discussed in 
this section.  An entropy measure of the error between 

the true and identified system is used to measure the 
error in estimating the spectrum. 

To directly describe errors in the identified 
system, a recently developed entropy measure of the 

system identification errors involving the power 
spectrum is used.  The entropy measure is a fundamental 
measure of the error in approximating a system using a 
model selection procedure that may Include the choice 
of model order such as state space dimension.  In a 

predictive inference setting, the entropy measure 

follows naturally from the fundamental statistical 
principles of sufficiency and repeated sampling 
(Lartmore,1983a). 

Consider a vector stationary Gaussian process 
...,y(-l),y(0),y( 1),..., with power cross-spectral den- 
sity matrix S(u)), and suppose that some parameter esti- 
mation or model fitting scheme Is used to choose a 
model S(uj) based upon a sample of N time observations. 
The negative entropy per unit time, or negentropy for 

brevity, for measuring the error between the true 
spectrum S(ti)) and the niodel selection procedure which 

estimates the spectrum S(ui) can be expressed as 

of order (4,3) respectively for the AR and MA parts 
with the noise variance of w as 0 " 1.72581E-2 was used 
to simulate samples of size N-800.  This process was 
analyzed by Gersch and Sharp (1973) and Akalke (1974b) 
to show the Increased accuracy of ARMA models over AR 
models.  The canonical variate analysis was done on 
sample covariance raatrlcles involving 16 lags of the 

past and future. 

Figure 2(a) shows the power spect 
and estimated models for 6 Monte Carlo 
samples each.  The estimated spectrum 
close to the true spectrum with a sraal 
peaks and troughs.  Figure 2(b) gives 
tive error of the variability, excludi 
estimating the power spectrum at each 
with the lower bound for the expected 
error. The average of the errors over 
Carlo trials is very close to the lowe 
demonstrating the relative efficiency 

variate method. 

rum of the true 
trials of N-800 

appears to be 
1 bias at the 
the squared rela- 
ng the bias, in 

frequency along 
squared relative 
the 6 Monte 

r bound 
of the canonical 

In Larlmore et al (1983), the Identification of a 
very lightly damped plant under closed-loop control 
using MAC is simulated in Monte Carlo trials.  The ade- 
quacy of the Identified model is demonstrated by com- 
paring the fitted impulse response and transfer 

function with the known plant dynamics. 

\ 
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density matrices and Fourier coefficients. For simpUcity the time series case with t 

a scalar is developed below, however the results generalize easUy to the random 

field case of a vector t .  Then asymptotically the log likelihood function is given 

foUowing Whittle (1953) and Larimore (1977) with G(o>) = y (a,)-/?(<-) and using 

the relationship AQ (oi)X * (to) = 0 by ,^ ^ 

"logp(.,e) = -^log2-K - f/[logl 5„(o,)l  + G'(co)S^(<-)GHl^ ^ 
-IT 

and the elements of the gradient vector alogp/ae and Fisher information matrix 

^^^ =-^Jtr[{IS-iiu.m^)Q\<o)]S^\<^)-^- 
^i ^ -It . ,       ^ * 

-X(a,)G-(o,)S-Ho.)—^]— 
ae,-    217 

-.«=-'^' 

= f;.^i^«'(.)^<^«H.)^ - ^^H»)^)i^   (« 

2. SIMULTANEOUS CONFIDENCE BANDS      f^ v. 

Let -YCT be a variable such as frequency or time, and consider a p -dimensional 

complex vector / (7,6) with components that are functions of 7 and 6 having con- 

tinuous second derivatives with respect to the parameters 9. For example, the ele- 

ments of the vector function / (7,6) could be the elements of the spectral matrix S, 
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the squared magnitude coherences, the impulse response functions of a spectral fac- 

tor, or the covariance functions of the process. Asymptotically 

/ (7,e) - / (7,e) = / o(7,e)(e - e) (2) 

where / 9(7,6) denotes the matrix of partials df (y,Q)/d^ evaluated at 9 = 6. This 

expansion and the Scheffe' method (Scheffe', 1953, 1959, p.68-70) of simultaneous 

confidence intervals as applied in Newton & Pagano (1984) lead to simultaneous 

confidence bands in the univariate case. For multivariate processes, it is of consid- 

erable interest to extend these results to simultaneous confidence bands on vector 

and matrix functions of the parameters, e.g. the spectral matrix. The extension that 

we will consider is the quadratic form 

if (7,8) - / (-Y,e)}V (iW (7,6) - / (7,e)} 

which will be bounded as a function of 7. In the multivariate case, there is a 

choice to be made for P . For reasons of invariance and to obtain an equally tight 

confidence bound on any linear combination of / (7,6) - / (7,6), P is naturally 

chosen as the inverse of the covariance of (2). 

In the sequel, a general P is used and then specialized to this natural choice. 

The basic mathematical result needed for such an extension is given in the Appen- 

dix and is used to prove the following theorem on simultaneous confidence inter- 

vals. 

Theorem 1. Consider a parametric family of stationary Gaussian vector 

processes with power cross-spectral density matrices 5(7,6) for 6€© satisfying regu- 

larity conditions (Whittle, 1953), and for which the parameters are locally identifi- 

able so that the Fisher information matrix F(e) as given by (1) is full rank.  Let 
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y(i),y(2),...,y(N) be a sample realization and 6 be an asymptotically normal and 

efficient estimator of 6. Let P (y,Q) be a Hermitian matrix. Then as N - <», the 

probability is at least 1 - a that simultaneously for all -y^ the true p-vector func- 

tion / (7,9) is bounded by 

{/• M)-/(7,8)} V (7,6)0^ (7,6)-/(7,e)} 

^ ^a^'^ / e(7,e) F-^e) / S (7,8)? (7,6) 

where q is the dimension of the vector 8 and where X^^ is the upper a critical 

point of the chi-squared distribution on q degrees of freedom. 

Proof: As shown by Rothenberg (1971), the parameters are locally identifiable 

if and only if the Fisher information is full rank. Let / (7) and / (7) denote / (7,6) 

evaluated at 6 and 9 respectively. The vector random variable N^^{f (7) -/ (7)} is 

asymptotically distributed as the normal random vector N ^/ e(7,6)(8 - 9). Asymp- 

totically (9 - 8y^F(9)(9 - 9) is a X^^ random variable, where F (9) is proportional to 

sample size A^ as in (1). So the probability is 1 - a that the true 9 satisfies 

(9 - 9)^M (9 - 9) < 1 where Af =F{h)IXl^ . From the Appendix, this inequality is 

satisfied if and only if || ^^(9 - 9)|1 ^ :s trHM'^H* for all p x^-dimensional matrices 

H. Since the set {H - F^(7,9)/" 9(7,9) for -i^T) is possibly a proper subset of all 

px^-dimensional matrices H, it follows that asymptotically with probability at least 

1 - a the inequality 

A^{f(7)-/(7)}>(7,e){f(7)-/(7)} 

= A^ {/• e(7,8)(e - 8)} V (7,e){/'8(7,e)(e - 8)} 

<7vx2  ,r/e(7,e)F-He)/S(7,e)p(7,e) m 
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is satisfied simultaneously for all 7^- 

For the natural chdce of P = {/" 9(7,8) F~^(Q)fl{-y,Q)Y, using t to denote the 

pseudoinverse of the covariance of (2), the inequality (3) becomes 

where r = Rank(P). 

The relative squared spectral error tr\S (O)X5'(Q))-5(a>)}p is a fundamental 

quantity in measuring the accuracy of a spectral estimation procedure. The integral 

of this quantity is asymptotically the Kullback-Leibler information of negative 

entropy (Larimore, 1983) which is a fundamental statistical measure of model 

approximation error. The expected value of the integral is prt^rtional to the 

number of estimated parameters divided by the sample size (Larimore, 1982). From 

Theorem 1, simultaneous confidence bands on the sample relative squared spectral 

error are given by the following theorem. 

Theorem 2. Under the conditions of Theorem 1, as ^ - <», the probabiUty is 

at least 1 - a that simultaneously for all cj^n the sample squared relative spectral 

error is bounded as 

/r[5-^(a>KS(a))-5(<o)}f 

= x2^£rr[S-VX5(co)-5(o,)}f (4) 

where{««(e)}=G =F-\% 
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Proof:   Asymptotically 5(c«)) and S(<a) are equal so that we may consider its 

inverse in (4) a constant denoted 5(a)). To apply Theorem 1, we consider the Her- 

mitian matrix A (to) = S~^(o)X5(ci>) - 5((i>)}5~   (w) and express the squared relative 

error symmetrically as '" 

■ ^ 

tr [5-\aiX5 (o)) - S (oi)}f = tr [5-^(a)X5 ((o) - S (a))}5-^((o)f 

= lrA4 =*rAA' =5;a,;fl;=/*(a.)f(a>) (5) 
'J 

where / (to) = vecA (w) is a vector containing the elements of the matrix A (oj). 

Application of Theorem 1 to the vector function / (o)) and rearrangement as in (5) 

proves the inequality. Expanding 5 (<i»,9) as in (5), the equality follows from 

£ fr[5-\(oX5(a))-5(a))}f 

=/r 2 5-V,e)^^ ^ (8 - e)(0 - 6)-5-V,e)^^ 

and using £(6 - e)(9 - QY = F~^ from the asymptotic efficiency of 6. 

In principle any quadratic form in the components of the spectral matrix could 

be used as in Theorem 1 by introducing a weighting matrix P (o>,e). For confidence 

intervals on the spectral matrix, the weighting of the inverse covariance of the 

error in estimating the spectral matrix gives tightest confidence bands which can be 

expressed as 
-t     - 

v«-{s(o,)-s(a,)H2^5!^^„(e)i!:£^,W(s(„)_s(„))^x.^^ i 

For a given confidence level a, this gives a simultaneous confidence band for all 
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A 

frequencies ai^H as a quadratic form in the elements of 5(co) - 5(Q)). 
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APPENDIX: AN ELLIPSOIDAL INEQUALITY LEMMA 

Lemma 1. Let 4> be a real 9-dimensional vector and for a particular p let H 

be the class of p xq -dimensional complex matrices H, and let M be a symmetric 

positive definite matrix. Then <}> satisfies <j)^M <}) < 1 if and only if for every H iH 

the following inequality holds 

II//4>|| 2 </r HAf-^//* 

Proof: Any Hermitian matrix A has an eigenvalue-eigenvector expansion 

m 

From the Schwartz inequality, (iji'jc)^ ^ (t|i'i)»)(jt*j:) for any ^ and x with equaUty 

if and only if i|; = coc for c a scalar. Let B be such that BB* = M~^. Setting 

»j) = fl~^<J) and denoting the quantity in braces { } by A, we have for every H iH 

and every <}> 

\\H^\\'- = \\HBM\'- = ^''{{HB)\HBM 

= »!»• A i}i = »}»• ]^ X„ J:„ x* iji = ;^ X„ (ii>*x„)2 
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^ »!'> 2 ^m i^m ^«) = <»>'Af * trA = <t)*M<|> trHM-^H' 
m 

From this the "only iT part of the lemma follows, and choosing 

H* = B*~^(»j>,0,. . . ,0) gives A = ^* and strict equality which implies the "iT part 

of the lemma. 
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