“AD-RL67 873 THE RISC (REDUCED INSTRUCTION SET COMPUTE 172
ARCHITECTURE AND COMPUTER PERFORMANCE EVI\LURTIW(U)
NﬁWIL POSTGRADUATE SCHOOL MONTEREY CR ROS
UNCLASSIFIED / 9/2

N

-

Lamh. o SRE ob)

/
\\
\

.ol o
-
-

\
’
.
’
.
B

——

Lot
,.1.’
,
N
Naa e

S
s, g - ... N _
— Sl
: d
.- Lo
(Y o~ o =
SEEEE B
= = N - <
Ol o~ -
REEE
E -]
3aaaad
dAddaaaa.i =
O. _— N i
—_— il &
m— ——— —— 154
— —] =

e e v S QL ¢ v s 1 .y a- SN . . ¢ 9 9 M T ? P B S S > s e o a o

a2 8 s

"o wt

DA et A A b Ay

----- X . ol Rt STX AT o Byt NI e P W W W T W,V ‘vl v ol 3 o LA

’
5 praewrnd
. NSO

v
L
[LAPNES

- -
B

.

.
LA
. ¢

s

-

~NAVAL POSTGRADUATE SGHOOL

Monterey, California

pbr

K] 2

7’

X

Wt
A

DTIC &

» ELECTE

AD-A167 873

THESIS 3
THE RISC ARCHITECTURE AND g
COMPUTER PERFORMANCE EVALUATION i

b y . -..‘:‘

Manuel Filipe Pedrosa de Barros

RY
March 1986 il

Thesis Mddvisor: [Tarriettr B. Rigas

Approved for public release; distribution is unlimirted. N

.............
......
s e

LM aOE AN S oL e vt il ot s - - s . "
. . S . It A A - el VL WA A Salin g tud Anl Sadh Sl il And and aul val ol tn

R I - . - . . e % P SN e S N P P % "B Al i e Yoy ava " _‘.‘\
[)
vt
Y

SECURITY ELA§§IEUEA|I5N OF TRIS PAGE r".
. h
REPORT DOCUMENTATION PAGE e
"> REFORT SECURITY CLASSIFICATION To. RESTRICTIVE MARKINGS oo
UNCLASSIFIED .
Za SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBUTION/ AVAILABILITY OF REPORT Approved Tor
. public release; distribution is
=1 2b DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited ::._.
4]
3 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S) o
.)
(i)
62 NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL |7a NAME OF MONITORING ORGANIZATION 3
Naval Postgraduate School (If applicable) Naval Postgraduate School e
62 R
6¢ ADDRESS (City, State, and 2IP Code) 7b. ADDRESS (City, State, and ZIP Code) o
Monterey, California 93943-5000 Monterey, California 93943-5000 s
. o
8a NAME OF FUNDING/SPONSQRING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENY IDENTIFICATION NUMBER e
ORGANIZATION (If applicable) L
3¢ ADDRESS (City, State, and 2IP Code) 10 SOURCE OF FUNDING NUMBERS - }:
PROGRAM PROJECT TasSK WORK JNIT R
ELEMENT NO |nO NO ACCESSION NO e
b]
TTLE (include Security Classification)
THE RISC ARCHITECTURE AND COMPUTER PERFORMANCE EVALUATION
2 PERSONAL_AUTHOR(S) e
Manuel Filipe Pedrosa de Barros - :
“3a TYPE OF REPORT) 135 TIME COVERED 14 DATE OF REPORT (Year, Month, Day) |1S PAGE COUNT
41 Engineer's Thesis Jrmom__ Tt0__ 86 March 97 o
"5 SUPPLEMENTARY NOTATION R
. .__\‘
T COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) "b
TELD GROUP SUB-GROUP RISC Architecture; CISC Architecture;
Computer Performance Evaluation
L s
"3 23573A(" (Continue on reverse if necessary and :dentify by block number) -."'_‘.
A definition of Reduced Instruction Set Computers is developed. REN
A computer performance model which allows the evaluation of
; architectural alternatives is presented. T
f An example on the use of the model to compute the performance
s alternatives for a given application is presented to study the effect
. of the addition of an instruction to a processor instruction set.

' - o " A !

i

.

1

; Tl ACAILARIL T (3F AgsTRACT (2 ASSTRACT SECURITY J_ASSF ATION ;
":,\' A SN, WtTeED : TAME AS IPT {: DT CLSERS ' UNCLASSIFIED ‘ Y
. B SR SR 2.0 TICIPmONE Gnciude Areg C'ode) Paco WJrr i SNt . :':':
Prof H. I»]_',‘Llh 1 1I08S)HH 1B =2082 AN ‘, .:,_\
PSRRI I PR e 31 APQ et an T3y 2e Lyen L erausted SEE R FLASS ST cn e el s :::.'_-
Aldlgtnereciturt are S 20t Tt T T oo T T ‘_-"

H
.

Sy
oo

D N T I o ~ e e e et e L. B N P O R Pt S L USRI USRI TR ULIPUL T P

.
L] - . ~ . .

RO S e e S SO, AT L P - . - DTSR R Tastoto L SR T R U,

PR PR PRWPLUIL P T W W VPR AR WALy VR, S R R A P L ey J'-" A “h " T W \‘\' SRR “w ot T

Q,
l»‘

4 Approved for public release; distribution is unlimited. ?ﬁ
Pl ,“_\
. I
. Kot
hA) The RISC Architecture I
an 3
Computer Performance Evaluation Tt

] ks
4 !
o Ko
K] by . {‘
: w
- Manuel Filipe Pedrosa de Barros "
Lieutenant, Portuguese Navy N

B.S., Escola Naval, 1978 e

o

- Submitted in partial fulfillment of the NG
" requirements for the degree of -
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING - 3;

. and s
- ELECTRICAL ENGINEER o
; from the ‘ o
7 NAVAL POSTGRADUATE SCHOOL , AR
" March 1986 g
: 23
4
] . - , "
- Author: [T A TR A e m
. ~Manuel Filipe Pedrosa de Barros . B
-: 5‘\\ a ’_\/ '::. b
. Approved by: S et WA : R
. Harriett B. Rigas, Thesis Advisor -
’\4./’ '/ " ' /‘ e . /l Z .
- — L g (,//[/1/"(./ '
. T rarry Abbott, Second Reader T
- ~ / . , s
. | e .
) Coe LT \. o
. Harriett B. Rlgas, Chalrman, Department of <
1 Electrical and Computer Engineering A,
= ~
N , Jéhh N. Dyer, b
x Dean 'of Science and Engineering i.
: ::
- g‘

-}' 2 . ._:
2 i
2 i

S e T T S A RSEAERET AN AT AT e s RS S

ABSTRACT

A definition of Reduced Instruction Set Computers 1is
developed.

A computer performance model which allows the evaluation
of architectural alternatives is presented.

An example on the use of the model to compute the
performance alternatives for a given application is
presented to study the effect of the addition of an instruc-
tion to a processor instruction set.

Accession For

NTIS GRA&I
DTIC TAB O
Unannounced |
Justification______

By
mDistribut}oq/
Lﬁ_ﬂvullabilitv Codes
: Avail and/or
‘Digt | Special

Ay

Qiagiry
NS Ctep

3

A P . . e e e

S M . S e e
RS RS AR AL VLA L

9o A e de i N S e e]

TABLE OF CONTENTS

) I. INTRODUCTION . . &« & v v v v v e e e e e e e e e 0 9
‘ II. WHAT ISARISC 2 . . . v « v v v v v v v v v v . .11

5 A. INTRODUCTION « « « & « « o « o o « . . 11
B. THE RISC I AND II . . . + « « v v « o « . . . 12

C. THE 801 MINICOMPUTER 15

D. THE MIPS . . . + + v 4 + v « v v v v v v v . . 16

; E. TOWARD A DEFINITION OF A RISC MACHINE 17
III. MY APPROACH TO COMPUTER PERFORMANCE EVALUATION . . 18

‘ A. INTRODUCTION « « « « 18
- B. EVALUATION AND MEASUREMENTS 18
E C. THE RISC/CISC CONTROVERSY 20
5 D. AN EXAMPLE + & v « v 4 v v v v v v o . 22
; E. SUGGESTED APPROACH « . . « .« . . . 25

Iv. TIMING ANALYSIS . . . + + « « « & o« v o « « . . . 28

A. INTRODUCTION "+ + & & v o v « v 28

B. THE COMPUTER SYSTEM +« « 29

. 1. Memory and I/O Interface 30
j 2. The Busses « « « v « v « « « . 31

.: 3. The Processor « v « @« « « « . . 32
5 C. THE APPLICATION + + v « « « « « . . . 32
D. THE PERFORMANCE « . . « 35

E. A SPECIAL CASE AND THE RISC 37

: F. THE SYSTEM ARCHITECTURE AND TIMING 37
V. CONTROL ANALYSIS « « « « « « 43

- A. INTRODUCTION « . + v v v v w v a3

ﬁ B. THE CONTROL UMNIT AS A FINITE STATE MACHINE . . 44

y C. THE CONTROL UNIT COMPLEXITY 45

|

-
-
-
o
L)

FI‘_‘;".Y"‘I\K‘ EaR ot Tkt c el el N A S Sl it e S O A e AN S Mt Dlat i el e e Sl v R B Sl e A N An ey bR S 2 B 28 V'\m'\-n-s‘\“-q‘_—y.\.
D. THE APPLICATION AND THE CONTROL UNIT 47
E. THE MODEL +. . « ¢ v v « & o o« « « . . 4°
VI. CASE ANALYSIS « . « ¢« ¢ & « « « .« . ba&
A. INTRODUCTION +« « « « « « + « . 54
B. THE ADDITION OF AN INSTRUCTION 54
C. THE COST/GAIN TRADEOFF 56
1. Timing Criterion 57
2. Control Unit Complexity Criterion 62
D. AN ILLUSTRATIVE EXAMPLE 64
" 1. The Processor « « « o« « « + « . . 64
2. The Application 65
3. The Floating Point Representation 66,
4. The Hardware Involved 67
5. The Model « 70
VII. CONCLUSIONS v v v v v @« 4« v v o« o« o« « « . 176
APPENDIX A: FAST FOURIER TRANSFORM 79
APPENDIX B: IBITR FUNCTION « « « v « « « « . . . 86
APPENDIX C: SINE FUNCTION « + « « « . . . 87
APPENDIX D: COSINE FUNCTION +« « . . . 91
LIST OF REFERENCES« . ¢« v « « « « « « « « . 95

INITIAL DISTRIBUTION LIST « « « « « . . 96

- e o > . . R Sl i - A s
S0 00N A WL B A A A S A At L N ” T NS

LIST OF TABLES

I EXECUTION TIME OF EACH SUBROUTINE IN FAST
FOURIER TRANSFORM PROGRAM

II FAST FOQURIER TRANSFORM APPLICATION PROGRAM
EXECUTION TIME . .

II1I FET PROGRAM EXECUTION TIME BEFORE THE
ADDITION OF THE FLOATING POINT MULTIPLY

INSTRUCTION

iv FET PROGRAM EXECUTION TIME AFTER THE
ADDITION OF THE FLOATING POINT MULTIPLY
INSTRUCTION . .

v PERFORMANCE EFFECTS OF THE ADDITION OF

THE FLOATING POINT MULTIPLY INSTRUCTION

)

LIST OF FIGURES

RISC Register Window 14
Conceptual View +. . « . .« . . 26
Simple Control Unit State Diagram 44
More Detailed Control Unit State Diagram 45
Floating Point Representation 66

General Hardware Structure for the Floatlng
Point Multiply Instruction 68

o0 U W N
N =N

~J

- e N et e . .
- - IR A TS e T e L L3 -_~~~‘»~ ------------
. e . L e e,

R, . - - NES
-a.L-;,.t‘ _—altate L.»..‘L.h RO o, y.‘nl‘rgn\‘u A.A?..A _.\‘an. ralaataat s e N T e e e)
laa A o as s

LRI

d R A LS EE T KR e e Y

TERT T

 PACRPLTATIL e NS AR

ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. Rigas for
her guidance in completing this project.

To my parents for all they taught me and finally and
most important to my wife Carmo and my son Andre for their
constant support and understanding, without which I would
not have got here, I dedicate this work.

of SRR

PR A
Lay

W R A R o
., *, 0

Y
] d!
o ol al

O [
.',’.'.'F,“u' et
g e E s "

v l_l""

R o LI

T R A T T T T I Ty

]
3
L
i
L]
.
»

TeTaTaTeT s + *

»* Th Te s

ERN s

¢ famr v - .7, .

o WS 5T e

I. INTRODUCTION

The first Reduced Instruction Set Computer (RISC)
appeared at the end of the 1970's and since then long and
heated discussions have taken place in the computer archi-
tecture community. These discussions centered around the
validity of the claims made by the RISC proponents regarding
the performance achieved by the proposed machines when
compared to traditional computers that are referred to as
Complex Instruction Set Computers (CISC).

Due to a 1lack of an appropriate method to evaluate the
performance effects of various architectural features, it is
difficult to resolve the RISC/CISC controversy.

The interest in the ideas proposed by this philosophy
has ber growing, and presently many of the major computer
companies are investing a great deal in this new type of
computer architecture.

This thesis tries, first, to define the basic character-
istics of a Reduced Instruction Set Computer, so that it is
possible to focus on the specific architectural features
peculiar to RISC machines.

The approach that 1in the author's opinion has to be
followed, in order to evaluate computer performance,
together with the author's disagreement on the approach
taken on several published comparisons between RISC and CISC
machines, are presented.

A medel for computer performance evaluation is
suggested. This model is composed of two parts. The first
part deals with the timing analysis of the computer perform-

ance. The second part sets a criterion to determine the

-

efficiency of a given computer control unit when used for a

+

given application. Finally in order to evaluate the model,

TR

an example 1is given demonstrating the quantificaticn of 4le

. P T S -~ ~O o R - :
Ll e e e T T T, . v et e o R TR Y - -~ . T -
PP WP NP LI, PO v S S P A T WP AP o B0 o B S I g P RO o T AT W s TP P IR I S S e St SR

Y
g

‘y

LY

M

Py
-
&

N
P AL

BRI

'X""‘
A

A

P l’ l,-

L ona

C N P R P T P R S .
A mNa A tat A A N g e e PRTIAPIP NP AP

performance effects of an architectural enhancement to a
system architecture.

The model suggested for computer performance evaluation
constitutes a departure from the current computer perform-
ance evaluation methods, because the attention is centered
on the computer architecture rather than on the measurements
of throughput, response time and mean job turnaround time
where the main emphasis of the evaluation process is put on
the software.

The model 1is intended to provide a tool for computer
architects to use, so that discussions regarding the
performance achievements of certain architectural features

might be quantified and rational conclusions may be reached.

TN
-

- : T e e e
SR S TR UL -, .

A O S L et et . . e e
PPV VP VR VAL PR VA ST LT O G WU VG W

S —— - - -y —p
AN (LA i At ahg b gatutear=s - JAg= o Lot i N0 A et ittt i i & B eyt ot e e e e A St S e &g s e e o i o T ———
- - - . . - - - . - L e e - « _ - - . . . - - Pad

II. WHAT IS A RISC ? |8

LT,

A. INTRODUCTION
In recent years a new type of computer architecture has

el
WAL

e eTa e,
2"

.

)

o
's

received a great deal of attention.

r!

This new architecture is mainly the result of an effort

.
P
«

[

conducted in an academic environment. Profiting from the new

L e S an
oo
-

AT

possibilities that custom VLSI offers, the prcfessors and

[

Py -'L’;'\;h‘" .

[

students at the University of California at Berkeley,

v

collaborating in several courses 1in this area, began

projects on building single chip computers.

: Due to limitations of the chip area, available tools and ';j
ﬁ the available time for the completion of the project,]
several simplifications to contemporary architectures were .
made. For example, the instruction set was simplified by

elimirating all instructions that might be called composite

instructions. This type of instruction is equivalent, in the
operation performed, to a sequence of other more elementary
(atomized) instructions.

A claim has been made, that the obtainable performance
of these machines was unexpectablly remarkable and this
triggered a major discussion on the subject of the merits of
RISC's.

Feeding the controversy is undoubtly the lack of an
appropriate method or tool to measure computer architecture
performance and the effects of a particular architecture
modification on the computer performance.

Trom the very beginning the RISC machines were reiated

to implementation issues in the use of V13I technology.

Proponents called the approach "RIsC", for Reduced
Instruction Set Computers, as opposed to the traditional
zomputers which they referred to as "CIsCc's', for Complex
nsTtruction Set Cemputers

11

Y
3
3
&
N
‘w
3
e
,

e s e . -
O S

NI . .
P S IR Y S ST .
QEAT AT S LT PR G SR, L%

7

o e e T A L R e AN R e e A T T LI -
daiey = VWS A A RGP SN PR AT R e AR S ol S

............

The "new architecture" proponents didn't present it as a
proposal to enhance, in some way, the prevailing architec-
ture, but as a complete departure from the previous work.

No precise definition has ever been given for the
complete characteristics of a RISC machine, and because of
that, there are now in existence several different machines
all claiming to be RISC's. Although there are some common
features there is no clear cut agreement on what comprises a
reduced instruction set computer.

No doubt some very valid ideas were brought to the
computer architecture environment by the "RISC philosophy
proponents", but, nevertheless, it constitutes a sure risk
to accept a new idea without an open, substantiative debate
where the benefits are separated from the jargon.

The first step in understanding and identifying the RISC
trade-off is a more precise definition of RISC.

As stated above, several implementations of RISC's are
1; already in existence, and, of these, four have undoubtly
enough importance to be mentioned.

They are:

1) The RISC I and II, developed at the University of
California at Berkeley

2) The 801 Minicomputer, developed at the IBM Thomas S.
Watson Research Center

3) The MIPS, developed at Stanford University.
In order to develop a definition of the "RISC" the
existing "RISCs" should be studied.

B. THE RISC I AND II Ej
o The RISC I and II were both developed at the University '

AR

of California at Berkeley where the acronym RISC originated.

P
PRI

Since both were developed at U. C. Berkeley, they are very ?
similar in their composition. In fact, RISC II is no more
than an enhanced version of RISC I.

Both are single chip VLSI processors having the

) following characteristics:

.“"nn“,,
el T8

...
......

7
,
B
2 "
Lo

4‘,_
Jl'l
.

=M

"F
-
e
(A

A

> %
arat

1) They are 32-bit machines. That is, all registers and
i busses are 32 bit wide.

- . -
e

-
.
5N
;W

2) Instruction Set:

2a) RISC I has 31 instructions
RISC II has 39 instructions

A,

»
-'
P

A E
Ly
Bag® 5

n';

2b) Both have a load/store architecture. This means
that all instructions except _load and store are
register-to-register. Load and store are the only
memory-reference instructions.

2¢) All instructions except LOAD and STORE are single-
cycle where a cycle is the time it takes to read
and add two registers, and then store the result
back into a register.

2d) All instructions are the same size (32 _bits).
There are two different formats but the fields are
at fixed locations.

2e) Addressing Modes: . .
There are two addressing modes; one for register-
to-register instructions-~Register Direct and the
other for memory reference instructions--Index +
Displacement.

3) Registers
3a) Total number of on-chip registers
RISC I 138

RISC II =--- 198

3b) The processor is organized in multiple overlapping
windows in order to facilitate parameter passing
between procedures. . . .
The windows are organized in a circular buffer
fashion. In the case that the nested procedure
depth is greater than the number of windows minus
one, the values in the window corresponding to the
oldest procedure are stored in memorg and this
window is then free to be allocated to the current
procedure. At any time 32 regigters are visible
constituting what is called, the "current window'.
All windows have a fixed size and the composition
shown_in Figure 2. 1.
The %lobal registers are common to all procedures,
and therefore theX are used to store global vari-
ables. Register RO holds a fixed value of zero.
The low registers are common to the current proce-
dure and to the called procedure, although, in the
called procedure, they will have a different
number since there they constitute the high regis-
ters of the corresponding window. The high regis-
ters are_ common to the current procedure and to
the call;ng grocedure. The high and low registers
alon? wit he global registers constitute he
over agped part of each window and are used for
parameter pa551n? between procedures. The local
registers are only

visible in the current window.

4) The control unit is hardwired with most of its logic
implemented using PLA's.

5) Pipeline Stages) .
The RISC I has two pipeline stages, 1i.e., depending
on the program seguence it can prefetch the next
instructlion while it executes the present

13

L P

‘.- ".- " -t . W . .
DA A I AR AN D L e
, PO AL SO R S, W - et

2 276 s 4"

REPRODUCED AT GOVERNMENT EXPENSE

At 2 IO AP S AR A i s s s Bl ab e s e e ol gk Gt ahie AR S el andl av gl ag (gt g NS A BN A At Al Sl il Al Al A 2

-

[

6)

8)

1 [
an
Rise
T HIGH RELISTERS
Q28
R21
L ocAL QE4Q\TeRs
R22
k21
Low QReQisTERS
g
RV
QLOBAL QEBQSTERS
R
3N o
Rise I 3
HIGH Realstes
a2¢
k2
LocalL QEBGQIITERRS
et
{1y
Low QREQUSTERS
[-31
eq
QLOBAL REGISTERS
Ao

Figure 2.1 RISC Register Window.

1nstruct10n The RISC II has three plpellne stages,

egen ing on the grogram uence it can
prefetch he next instruction and s ore the final
results of the previous 1instruction in a register,
while it executes the present instruction.

Use of Delayed Branch
In order to increase speed and not to discard the

prefetch instruction, when a branch instruction is
executed, the branch takes place only after the
execution of the next sequential instruction.

ijlcally the compiler arranges for the instruction
£2 low1ng the branch to be part of the loop, see
ef

Imolementatlon

RISC is implemented with 4 micron NMOS VLSI
technologg with a clock of 8 MHZ and a <cycle of 500
NSEC C Il is implemented with 3 micron NMOS VLSI
ﬁgggnology with a clock of 12 MHZ and a cycle of 330

14

S

'r"‘:‘.\"i

e

S R T TR e TR T T T T L Y Y T T T Y S T N N Y N T Y T G T gy T R T

P
ayate
ag}

-
s

X

AP N

v

I
L

ls S
P
.. l. l' [A

"
—

9) Both RISC I and II have no floating-point support.

C. THE 801 MINICOMPUTER

Developed by IBM at the Yorktown Heigths Research Center
from 1975 until 1979, it was the first machine to follow
what later would be called "The RISC Approach to Computer
Architecture".

Y
[¢
-

S,

“¥ “» ¥
0]

¥
7,
.".

o
14

Due to its proprietary nature, not much is known about
it, but some of the ideas present in its design are known
and have been, in a certain way, the basis for the develop-
ment of RISC I and II at Berkeley and MIPS at Stanford.

As opposed to the RISCs and the MIPS, the 801 is not a
single chip processor but a minicomputer.

The general approach is the basis for the design of an
IBM NMOS VLSI single chip processor known as ROMP or 802.

The 801 machine is basically a 32 bit architecture with
single-cycle four byte instructions and 32 registers. It has
separate data and instruction cache memories. As in RISC I
and II, the 801 also has a delayed branch scheme, that is

L]

the branch only takes place after the execution of the next

i
AR

instruction.

LI
.,
.

v
“y

»
.::n

The 801 system is said to be compiler~based meaning that
a greater demand is made on the compiler.

The 801 architecture was defined by George Radin in his
article 'The 801 Minicomputer' [Ref. 2] as the set of run
time operations which:

1) Could not be moved to compile time

2) Could not be more efficiently executed by object code

groduced by a compiler which understood the high-
evel intent of the program, or

3) Was to be implemented in random locgic more effec-

tively than the equivalent sequence of software
instructions.

Botlhi data and address busses are 32 bit wide. The
addressing modes are few:

- base+index

- baset+displacement

15 s

2

«'
J

AN

“NS

- register direct.

FL T

Tl

Also a highly~-effective optimizing compiler was devel-

oped for the system.

D. THE MIPS

The MIPS computer was developed at Stanford University
by John Hennessy and his students. 1Its acronym stands for
Microprocessor without Interlocked Pipe Stages.

There are strong similarities with the RISC project at
Berkeley. It has, however, some conceptual differences that
have already been identified by its proponents in Ref. 3 as:

i) more complex user level instruction set.

ii) the main design goal is high performance of the
hardware employe and not simplicity of the
instruction set.

iii) much more complex compiler.

Specifically its characteristics are the following:

l) 32 bit machine.

2) Instruction Set

2a) 55 instructions

2b) Load/store architecture

2c) All instructions except LOAD and STORE are single-

cycle

2d) Instructions may be 16 or 32 bit 1long. An opti-
mlzlng compiler reorders the instructions so that
all 16 bit instructions always come in pairs.

2e) Addressin% Modes
- immediate

- Uaze with offset
- indexed
- base shift

3) Registers .
There are sixteen 32-bit general purpose registers,

4) Hardwired control with most of its logic implemented

using PLA s
5) Use of Delayed Branch instructions
6) Five pipeline stages
7) No condition codes
8) Word-addressable machine
9) Separate data and instructions memory

10) No support for floating~point coperations

16

> -
" a
LA

« v
L.,
Y » PR

3,
%
»

%

4

11) Implemented with 4 micron NMOS VLSI technology with
a ¢clock rate of 8 MHZ.

E. TOWARD A DEFINITION OF A RISC MACHINE

Four machines have been described as examples of a new
type of computer architecture defined as the RISC architec-
ture, as opposed to the traditional architecture now
referred to as CISC architecture.

Any definition of this architecture will have to encom-
pass the characteristics common to the four previous
examples.

To summarize, a RISC Machine will have the following

characteristics:

-~ 1) Simple instruction set where the great majority of
the instructions are single=cycle,

2) Load/store architecture, that is all instructions are
register-to~register with the LOAD and STORE being

the only memory~reference instructions, ;fi

3) Very few addressing modes, S
4) Hardwired Control i.e. no microcode, . o
5) Instructions with one or two sizes and with fields at K-
fixed locations, DR

. A T

6) Some degree of pipelining, RO
7) Demand on the compiler to increase performance. 32{
' ’ N

o

S
NS

::\

B

~y

-

AN

S

.'.-.’.-

.'I\'D

o

. ik

17 s

o

R N N SR R S
I ST ST IT IR RPN

....................

III. MY APPROACH TO COMPUTER PERFORMANCE EVALUATION

A. INTRODUCTION

This thesis has been motivated by the rise of the new,
RISC computer architecture‘trend, described in the previous
chapter, and by the claims made by RISC proponents regarding
the inherent superior performance of RISC when compared to
traditional architectures.

Unfortunately, the claims made for these structures were
not supported by any quantitative arguments. No specific
attention was given to the effects of various factors intro-
duced in the RISC architecture and to the influence that
each factor had on the system performance.

Computer performance evaluation is different depending
on the aspects of performance being evaluated. From the
view point of a potential computer system buyer, there is a
need to identify features in the system which will enhance
the performance for a particular application. From the
viewpoint of a computer architect, performance analysis is a
way to evaluate specific enhancements from which trends in
computer architecture design may follow.

B. EVALUATION AND MEASUREMENTS

In order to perform an evaluation of any kind, one must
take measurements of the system under different conditions.
One wants to take the measurements properly, or else the
evaluation will be unvalid.

In order to guarantee that the evaluation will be based
upon correct data, one has to know:

1) What the measurements are for

The buyer is not worried about any of the architectural
details of the machine, but rather about the throughput of a

system programmed in a high-level language.

13

L e aeg et oot e S i et g e Jeul it i et el St Jels S B SRR I SR IS DA NS Sk N Sl N NI A TRk Sl Al A M
S

._‘...S;n - Iy

W
PP A

e M

o g By
b CAALS

g
“p i

'P-‘- ‘e Yt

SN L o AR

In contrast, the computer architect must be concerned
with the internal characteristics and the behavior of the
system, even when he is testing a system using programs
written in high-level languages.

Considering the RISC family of machines the correct
point of view is undoubtly the latter one.

2) What is measured

Typically one wants to test how each enhancement to the
computer architecture affects the system performance. In
order to get a realistic comparison of features, only one
feature at a time may differ. If more than one feature is
different, it is difficult to measure the individual effect
of each architectural feature on the system performance.

3) How is the evaluation performed

Because it 1is not feasible to build a new system each
time one of the architectural features is altered, a model
is required.

Because it is through the use of a model that the

performance effects of any architectural feature will be
determined, this model has to be able to quantify, in a
precise manner, the effects of any change in the
architecture.

4) For which application are the measurements valid

The application for which the system is being used has
an effect on the system performance. No system will show the
same performance in two different environments. For example,
in one application the user might be doing only word-
processing, and, 1in the second, the system might be
floating-point intensive.

There are, nevertheless, systems that present a balanced
performance throughout a diversified number of applications.
They are the so called "General Purpose Computers". But even
for these, the performance fluctuates, indicating that
general purpose computers have a better performance for some

applicaticns than for others.

ra ¥ es /A

oo

NI
)

e
y

Due to these reasons, the system performance evaluation
must pay attention to the rigorous definition of the appli-
cation for which the system performance is being evaluated.

This requirement for a precise definition of the appli-
cation, will clarify the validity of the conclusions.

5) Which factors interact with the measurements

In the second question, the need to make just one change
at a time when making the evaluation is emphasized, other-
wise it would be impossible to determine the individual
effect of an enhancement on the system performance.

Specifically if the evaluator has already made measure-
ments for several changes in the architecture and has also
quantified the effect of each of those changes on the system
performance, it is possible to compare two systems, that
differ by all those changes plus an extra one, not yet
considered. As a result of the analysis, the effect of this

last change on the system performance can be quantified.

C. THE RISC/CISC CONTROVERSY

Because the problem being discussed 1is related to
computer architecture, there is a need for a concise state-
ment defining Computer Architecture as it 1is commonly
understood.

The adopted definition is the IEEE standard 729-1983
stating Computer Architecture as:

" The process of defining a collection of hardware and
software components and their interfaces to establish a
framework for the development of a computer system. "

In the published papers on RISC, several comparisons of
CISC and RISC examples were made.

The way these comparisons were done did not give any
insight, to the answers to the gquestions presented in the
previous section, or other similar questions.

The result is that now, no one knows for example, if the

performance of the RISC II is due primarily to its register

N
DA

el

R
»

BRI A RSEL A AAR L Sl Nkia gte MM) (s b o A A A s tala ik) At g Bl A et b ANRICAR A S A0 £ GAF L A SN E-0 2 b sAtate Sad i s se s

organization scheme, as some claim, or to the simplicity of
its instruction set, as others do.
Specifically,

l) If one wants to evaluate the effects of reducing the
instruction set, one might pick a CISC machine e.qg.
the VAX~1l and consider the improvements due to all
the instructions_ whose execution is_equivalent to a
sequence of simpler instructions. For each of these
more complex instructions one could determine if the
execution is faster than the equivalent sequence. If

that 1is not _the case, the “instruction should be
discarded. If an improvement is seen, then consider
the cost of adding the instruction to the instruction

set.

2) If one wants to evaluate the effects of reducing the
number of addressing modes, one should consider:

- Why are they needed ?
- With which data types are they used ?
- What its the benefit brought by its addition.

3) If one wants to evaluate the effects _of overlapped
register windows, one should test implementation of
overlagped windows on several systems and measure, as
a_ cost/benefit ratio, the effect of overlapped
windows on the system performance.

4) One cannot change more than one feature at a time and
hope to get an idea of what the effect of each
feature is on the system performance.

5) If one wants _to do an_evaluation using Erograms
written in_ a high-level language, .one should state
that as a limiting factor. ince different compilers

enerate differen code, some complilers are better
han others and therefore make different contribu-
tions to the system performance. Furthermore, in.the
case of compiler generated code, the frequency of
execution of each instruction in the system instruc-
tion set will be different for different high-level
languages. Besides, two different systems with
distinct instruction sets do not necessarily have the
same best compiler.

6) If one wants to make some conclusive statement about
the advantages and disadvantages of the RISC archi-
tecture, one must separate the effects of features
that are orthogonal to the RISC philosophy.

The fact is that in the papers published on RISC's,
almost all the comparisons made, involved systems with
different instruction sets, different addressing modes and a
different number of registers and registers ovrganization
schemes. Furthermore compiler generated code was used
without considering the performance effects. These are the

reasons why no one can say whether the RISC architecture is

or 15 not better by itself.

" % ¥ 4 §F & F F.EEERTS v ¥ =

T

. _» 5 8 v
PR}

JOHRYL

« A

i

s B # ® & v
RS

PR

IR

v

In this situation, while the RISC proponents are
bringing some jargon to the architectural environment, those
against RISC are 1losing track of the possible benefits
present in the RISC philosophy.

D. AN EXAMPLE

As an example, let us pick a common CISC processor, the
MC68000 and consider its addressing modes.

The MC68000 has six basic types of addressing modes,
namely:

1) REGISTER DIRECT - The_ _effective address is the
register designation field in the instruction.

EA = Rn
2) ABSOLUTE - The effective address is that given in the
instruction field itself and it 1is used directly
without modification
EA = INSTRUCTION FIELD

3) REGISTER INDIRECT - The effective address is the
contents of the designated register

EA = (Rn)

4) IMMEDIATE - The operand is part of the instruction
itself and no further addressing is needed

5) PROGRAM COUNTER RELATIVE - The effective address is
computed by taking the value in the program counter
register and adding or subtracting an offset wvalue

EA PC + OFFSET
or
EA = PC - OFFSET

6) IMPLIED - The operand is 1in a register designated by
the mnemonic of the instruction.

The wuses of each addressing mode depends on the
programmer.

Until now, the philosophy present in the design process
was to give the maximum versatility possible to the
programmer, so that he or she could choose the address mode
better suited to his or her needs. The rise of the RISC
architecture brings some questions regarding the correctness

of this philosophy.

9]
ro

ST Y TS S T NEEENe A 6. S % e e RWES. . .

- e e

S e T e T

NI, W

T AU AR it S ey RANIC (AP DI T i ol i A S il Stk et o T W T AT e e e T w e e

In order to answer these questions, there is a need to
have a correct method for the evaluation of a system
performance. Together with the evaluation method there are
some points that have to be considered when deciding how
many addressing modes to include in the system instruction
set and how long each addressing mode should be.

The considerations are to:

1) reduce the storage reguirements per program

2) reduce the number of bits that must be moved between

processor and memory to execute a program, i.e.,
reduce the bandwidth requirements on the bus

3) reduce the average length of an instruction, i.e.,
reduce the required width of the instruction bus.

There is a trade-off between the number of instructions
needed for the system to execute a program and the average
instruction size.

The decision regarding the number of addressing modes to
include is also very much dependent on the application, on
the data types, on the operations involved, on the use of
nested procedures, and how the parameter passing operation
is accomplished between procedures.

Although not considered here, the addressing problem is
also very much related to schemes of memory protection where
one wants to forbid the regular user program from accessing
some part of memory.

Besides how each one of the addressing modes is used, it
is also important to consider the frequency with which each
addressing mode is used.

Not much material is available regarding the usage of
addressing modes. As an example, consider again the
addressing modes of the MC68000.

1) REGISTER DIRECT

Since the operand is, in this case, in a register, no
memory accesses are involved. This provides some speed
advantages when used for operating on frequently-~accessed

o

3
-
<

rariables. Tor infrequently-accessed variables it would n

P R S S L T T PR - . e
LW S W et P VA LY Y SR SAFSAPAP. ¥ S R P VL L WA WA A W L S S P S S

1

[AER L T e
Sl ,»'a-h,'.
PRI N R

Ly

R

LVt ol S
GGG,
LA

ot atat ety

b

4
e

A RAYRA A g G s el el St S ok Mt A A IEAALIN & St AME St e A T T, Boaiih alnd - . iy odliy- i adnic afe aeChc

be used because the number of registers available on-chip is
usually very small.

2) ABSOLUTE

A memory access cycle 1is involved in absolute
addressing, because the operand is in memory. For this
reason it 1is not as fast as the previous mode.

Absolute addressing does not have much versatility
because the instruction address field 1is constant and the
operand must reference a fixed location in memory.
Nevertheless, it is simple. Because no alteration on the
address field of the instruction is performed, absolute
addressing is an efficient mode to use when the operand is

within the range of the instruction.

3) REGISTER INDIRECT

In the register indirect mcde, one register access plus
one memory access cycle are involved because the register
holds the operand address and not the operand itself.

The register indirect approach is used when the address
of the operand has just been calculated. It provides
address-range extension, and in fact this extension
increases with the difference between the size of the
instruction address field and the size of the specified
register.

4) IMMEDIATE

Immediate addressing 1is the fastest way of addressing,
although it 1is limited by the instruction size. No addi-
“ional memory accesses are needed since the operand 1is
within the instruction itself. Since programs are not self-
modifying it is used only for predefined values---constants.

5) PROGRAM CCUNTER RELATIVE

The major advantage of relative addressing is that it
allsws the generation of position independent code because

tiie location referenced 1is always fixed relative to the

2

[ean

LA
AT
el ol ate ot

P PR

P S N‘_.‘_:_.'_.-“».-.‘. N ‘-‘-._‘.‘_-..-'_-_:\. .‘._...\.

“ . - T - - - S ERR S N B L te N SR L IO T R
LI IR TS I T ZPLPP D PP P S SR S D R I PSP S AP Rl Sh R U T VAR RPN W VW N O W o PO P T VO v Pl

F- T A TATR T ST m T T TN T T YT A A Padh M A i At e A/ Ban A0 i 4

CARAA Toie Wi DAL Sl bl SR A A it el A Sk 8 W 8B ate ANG e o

A8

program counter. The importance of this fact 1is very much
dependent on the memory management scheme adopted in the
system.

In addition to the regular memory access, an addition or
subtraction must also be executed. It is used in relative
jump instructions e.g., to set up loops or to set up parame-
ters to be passed to a subroutine.

6 IMPLIED

Implied addressing is equivalent to the register direct

addressing. However, implied addressing restricts the
opcode to the predetermined register specified by the design
of the opcode and the design of the processor.

E. SUGGESTED APPROACH

It is not feasible to build a new system each time a
single architectural feature is changed, in order to eval-~
uate its effects on system performance.

As a result, there is then need for a model.

This model should be clear, complete, and able *to
reflect the interrelations that exist between the different
components. The model should also be applicable to any
computer system, 1i.e., the model should be general.

The model should reflect the performance effects of any
computer architectural feature such as: ’

* Bus Width
* Addressing Modes
* Pipelining

* Instruction Queue

*+ Instruction Prefetching
in the method suggested for computer performance evalua-

ion, a compariscn 1s made between a reference system and v

ct

the same system with some change. The reference system 1is .“fﬂ
the computer system for which it is desired to determine the

impact of each architectural enhancement. The result of

this ccecmparison will then constitute a measure of the

S . P P A e S B .
S Se e, R S Pt T e et
P R R A P R T TR SR N P PP e

P A b

L M e ARCILIE i R ANC IS M el A ol st A aORE (el it e i ot SR S AN S S i S SN R A i LAk ot it Gl aint suih arl Adk delh A i)

performance effects of the particular change. The concep-

tual view of the system used in the model is illustrated in
Figure 3. 1.

TustTQuelioN
SeTt

PERCoRNANCE

GOVERINMFENT EXPENSE

REPRODUCED AT

Figure 3.1 Conceptual View. b

Four entities are considered:

1) The Application, _ang.evaluation will onl{_ be valid
for a certain application, not for any application

2) The System being considered
3) The System Instruction Set

4) The Performance, as the object of the evaluation
process.

The instruction set constitutes the central point of the

conceptual view. The application uses it. The system

supports it. The best match will>necessarily give the best

performance. ;5
The application is characterized by a set of tasks that jés

must be performed. Each task 1is performed with a different : CS'

f£requency. For each task a program must be written, so that

-] - ‘..l-l.~-...0'. . . e v’ . - ._"- .'..-'.-'.
PP AU PR PR P P ALY S S P S R P W O W)

one task 1s mapped into one program. Each one of these
programs executes in a different time.

The weight of each task or its representation in the
application 1is then the product of the frequency of its
execution and the corresponding program execution time.

The effects of the application on the system performance
are the frequency of execution of each instruction in the
system instruction set. This together with the average
execution time of the programs of interest will ultimately
lead to a " typical " program of the application.

The system supports an instruction set in two ways: one
by the execution time of each instruction and the other by
the complexity of the control unit necessary to implement
the instruction set.

An instruction set 1is desired that allows for the
writing of programs with a minimum execution time, but also
minimizes the amount of support that has to be given by the
system.

"‘“l...l..‘l.." "—

L e

IV. TIMING ANALYSIS

A. INTRODUCTION
> In this chapter a detailed analysis o¢f the model for

computer performance evaluation is introduced. As described

in the previous chapter the model is divided into two parts.
§ In the first part, the model considers a timing analysis. In
E this analysis the application determines the dynamic
A frequency of execution of each instruction present in the
‘! system instruction set and finally the system architectural
characteristics determine the execution time of each

instruction.

In the second part of the model, which follows in the
next chapter, +the model considers <the relation between the
application and the control unit necessary to implement the
system instruction set. From this relation a performance
figure is obtained.

Any architectural feature will have consequences both in
the execution time of each instruction and in the complexity
of the control.

As has already been mentioned the first part of the

model is a timing measure. It will consider the execution

" n"

time of the specified application's typical program.
Several factors contribute to the execution time of a
program and not all of them are part of the computer archi-
tecture. Some have depend on the implementation of the
system.
The implementation is very much related to the tech-
nology chosen. The technology will determine, for example,
the maximum clock rate obtainable and the number of computer
components to be placed on chip. . o

Two factors have a great impact on the system perform- :Eq

ance, they are the clock rate and the average memory access o
—=—'
28 N

.' .'.
" N

time. Also the number of components on chip is an important
factor, since one of the most time consuming operations is
to transmit data from one place to another. For example by
being able to have more registers on chip, one might be able
to reduce the average operand access time and therefore
speed up the computer operation. If one considers the
storage registers as part of the system memory then one can
see that the average memory access time is reduced.

In the suggested approach to computer performance evalu-
ation, the main concern is architectural features and not
implementation restrictions due to technology limitations.
4 The reason for this is that a method to evaluate computer
performance should be general and therefore be able to
survive constant technological change.

l B. THE COMPUTER SYSTEM
Any computer system architecture is made of hardware and

software tools. In the area of software, an important factor

is the operating system.

For the sake of simplicity, and since in fact the oper-
ating system is also a program that has to be run on the
system, it can be considered as part of the application in
the computer performance evaluation process.

If the operating system is not considered as part of the
application software there would be a need to track all
calls to the operating system, measure the time the system
takes to execute the correspondent subroutines and subtract
this from the program execution time.

In the hardware, the major components are:

i) the processor

ii) the memory
iii) the busses
iv) the I/0 interfaces

v) glue circuits

*
L
ae A

)
.
a

29

e
A\

“e oy
s

'. 'l ‘a 'l
"‘J -

’
Lt
o ¢ s

T 8

,
5

e e e et et e T e e T T e e N T e e e e e e e

- oL e e . - L . IS e
R e e I e T e e et T e e T T T T T T N T e e e e YN . RN ~
‘e Lalatlat) ‘3&1.‘-“_4:‘.‘:.L 2 LA NN A TN T S R U A YA VLSRRIV DR TR SL A LR TR N ‘-..'-‘» IR ALY

FIZIEE

AN

.l 'A'
ll LI

SO S

e

L B iR A LA N MY Sl S M S

The processor consists of the portions of the computer
made up of the control unit, the arithmetic logic unit, the
general purpose registers and the busses that connect all of
these.

The memory consists of all the parts of a computer used
for either temporary or permanent storage, for instructions
or for data. The busses are a collection of signal lines
with multiple sources and multiple sinks. They provide for
the intercommunication capability among the other computer
components. The I/0 interfaces are the parts of the
computer through which the system communicates with the
outside world.

In order for the overall system to have a good perform=-
ance, it is desired to balance the average work done by each
component per unit of time. Since each computer component
has a different function, the work done by each is different
from the others. It is this work that has to be character-
ized, so that an understanding of how to maximize it, 1is
possible.

One requirement is that the idle time for each component
should be as low as possible. For example the processor
should be in an idle state for a data element stored in
memory as little as possible.

1. Memory and 1/0 Interface

Both memory and I/0 interface c¢an be considered
together, since both are communication media. Memory
performs a communication between two instants in time. 1/0
interfaces perform a communication between the computer
system and the outside world.

For both memory and I/O the work is characterized by
how long it takes to correctly receive a unit of information
from the bus and how long it takes to correctly place the
same unit of information on the bus. This unit of informa-
tion will be the same in the case of instructions and data.

This unit of information is then one bit.

30

3

SIS
N oy

.
»

NNONNES

P
B, 4 Y

LR A
T

i} (A

P &
N %y

",""."-'.4' -
v . Syt f
AR W

.
.

v

A

i L
“l A’I A'l ';' FP ‘-‘

A

-
) L
w2

v r e e, e,
* l. . 'l'l l.
,

LA Y

¥
o
L

B

Eﬁ

For both memory and 1I1/0, the measure of their

performance is the number of bits that are received or
transmited per unit of time. This is in fact no more than a
bandwidth in units of bits per second.

For example, a memory unit with a word size of
sixteen bits and an access time of two microseconds performs
the same work as another memory with a word size of thirty
two bits and an access time of four microseconds.

HENORY BANDWIDTYH . VEVORY woep 5126 CUT/ee) (4.1)

RETORY Access TI1NE

2. The Busses

The function of a bus is to pass information from a
computer component acting as a source to other components
acting as sinks. The memory and I/0O interfaces are also
communication media that treat data and instructions in the
same way.

The nature of these signals has no influence on the
characterization of the bus work or the efficiency with
which the bus preforms its work.

The bus work is characterized by: .

i) the number of active sources at a time, here
assumed to be one :

ii) the number of active sinks
iii) the number of signal lines, i.e., the bus width
iv) the bus cycle time
As its function is to be a communication medium, the
bus work 1is measured by a bandwidth in units of bits per
second.
The particular bus bandwidth will be given by:

Bus BANDWIDTH - ST _\.di (31T /s)
BCT (22)

where

SI =« is the number of active sinks

31

R

-«
&
’

¢
N oo

'
Ly

.l. .,

WI - is the bus width
BCT - is the bus cycle time iy
3. The Processor
After receiving data and/or instructions from the
bus, the processor alters this data according to the
sequence of instructions and then delivers the final results
back to the bus.

While the previous computer components treat data

AN

»

"y

»

.

and instructions in the same manner, this is not true for

the processor case. In this case, instructions specify the "

operations that have to be performed, and the data consti- k

tutes the object on which the operations are performed. :
The structure of the processor, i.e., the specific s

configuration of each element is dependent on the instruc- L

tion set and on the data types involved. The instruction

i

set configuration makes requirements on the processor,

- -
LS
’

’
e

P
v g e e

because the instruction set 1is intimately related to the

»
¥

¥ "'

processor control unit and the datapath.

¢

1%

The data types involved in an application should be
supported by the prbcessor. If£f, for example, a lot of array _ ;f
manipulation is done, then it is to be expected that the by
system considers some parallel opération capability.

In addition to the data types, the. instruction set
is also dependent on the application. Therefore the

processor structure is also dependent on the application. S

C. THE APPLICATION e
An application is characterized in the same way indepen- 7
dent of the computer system being evaluated. It is charac-
terized by a certain number of tasks that have to be done.
Each task is executed with a certain frequency. For each e
task and for each system there will correspond a program
Wwritten with that system instruction set.
The frequency of execution of each task is given by the

number of times (n), that this task is executed in a sample

P i T A i S LR Y
R S e o e e N PN

SRR SR B SOD i St A afhIC atll Al sl G~ o ARt mar a

MR A AN P N S O A e A e i A" e i ol AR LB o8 2P 088" Aok oa*) ST W W
A

of N tasks. So the frequency of execution of each task is
nothing more than the probability of this task being in
execution at any given time.

Fi:

N (4.3)
N
where
ﬁ: - is the frequency of execution of task i
N - number of times the task 1 was executed in a
big sample
N - total number of tasks that were executed in
that sample
For each task there is a corresponding computer program.
This program will take some time to execute. '
The weight of each task or its representation in the
application will be given by the product of 1its execution

frequency and its program execution time in the system under
study.

Wee Fx T (4.4)

W, - weight of the task i in the particular appli-
cation and for the system in study
T} - execution time of the correspondent program
By this it is seen that the weight of the task is both
dependent on the application choice and on the system
choice.
A program is a sequence of instructions. Its execution

time can be divided into smaller pieces where only one

instruction is executed. In this way the program execution
time is given by a sum of products. Each element of the sum
will be referred to a single instruction, and consists of

33

the product of the instruction execution time and the number
of times each instruction is executed.

Therefore each element of the sum will be given by:

where

N; - is the number of times that the instruction j
is executed for the particular program
I¥15- execution time of instruction j
The program execution time will be given by:

Z S (4.6)
J-:

where

55 - the weight of instruction j in the system
instruction set and for the particular task
J - the total number of instructions in the
system instruction set
Finally, the weight of the application for the system
under study will be given by the weighted sum of its tasks.

5 So,
b
X
W, = Z Wi (4.17)
L=
but since
- . - L L
\;J‘ - rL x Tt (& 4)
34
R e e T S e e T ¥ LTS, e R e e T e e e e e e e T T e e
J-nJ.i\ N "':.‘\.".‘ SR Y ':(ot uc,p‘l:‘.- AR P NP A\._.L- .L.._.L:- WP PN A_.A}-l.&.‘_.['._-‘l)

e"a" 8T A JF EERRIs 4 1

. TR S VS S 7 ST,

-SSR,

then
I
\Ja: Z Ft‘ * Tt (q'e)
L=\
But
a
T = ¢ S; (4.4)
‘ le J
and
SJ = NJ x IX_\:) (Q.S)
So,

DC
1]
M
.M
™4
n
u
.‘\/l ‘_‘
n
Ma
-
-\
>\
1
=~
=
l’ l"ll”l' l' L'

-4
I'l. ,
r SN

D. THE PERFORMANCE
A comparison is made between the weights that an appli-
cation has in two different systems. In this chapter, where
a timing analysis is done, the weight of an application
involves the execution time of each instruction and the
dynamic frequency of execution of the same instructions.
The performance will be given by the ratio of these two

weights.
’PUB' - Wa (4. [0)
'
Wa
35
. _."_.;;.-‘. .;...;.._;.._-;\;,_;:..:'{_;:..::.:-;..-‘;._::.:;:,.:_":;_--:::a‘..-\;.--;...'.-\‘.-.;.' S _--'.-\..- N -.' o ,"{A," :-',;J: . AT ARSI T R

Al A

e,

B LRI AT

AT e e e

TR

-
E
3
",
v,
:
A
|
-

KPR Ty g g g 3

where
kh - is the weight of the particular application
for the reference system
k%‘- is the weight of the same application for the
system being considered
Note that the two systems either have two different
instruction sets or the time of execution of each instruc-
tion is different or both.

So,
py <
| —
(=t Je =1
Therefore
e o J
) Z N TxT
i= J=
erf - (412)
1 W
Z X N, IxXT,
ey A=
where

I - is the total number of tasks in the particular
application. It is the same as the number of
programs.

J - is the total number of instructions in the
reference system instruction set

K - is the total number of instructions in the

system in study instruction set

(0%}
Y

",f,F \'..“._.'.,“. ‘

*‘\
k

o

"‘-

-

XXARLAA

N ol

PR
NSRRI
L, r.

.o .
‘v"‘:‘:':'n‘v’l,l_-_'- PR

P
E
L 4

Considered in this way the measure of the performance
for a system is better the larger the ratio.

E. A SPECIAL CASE AND THE RISC
If the application involves only one task and therefore
only one program, the performance would be given by,

J ot
K
z: N, TxT,
s

e

?ZrF = (4.13)

Let us now consider the RISC philosophy. For this case
the value of J is fixed.

The RISC proponents advocate that by reducing the total
number of instructions in the instruction set i.e., by
reducing the value of K, the performance of the system
inceases. They also advocate that the instruction execution
time for each instruction is reduced by having a simpler,
more straightforward machine with better performance.

Their argument is that the value of the denominator is
reduced because the two previous factors compensate for the
necessary increase in the number of times each instruction
is executed. By reducing the denominator the system will

have a better performance.

F. THE SYSTEM ARCHITECTURE AND TIMING

As has just been seen, the particular choice of applica-
tion determines the dynamic frequency of execution of each
instruction in the instruction set. To continue the study,
there is now a need to analyze how the system architectural

characteristics influence the system performance.

37

..............
o7y #t. 4

A
[

.

.0

oy
AR 'l.jh'.‘

Wt T e T e T
RS, WP PP LIPS SN . W S Sy

The system structure and its instruction set are neces-
sarily related. For every instruction, the system has to
have the necessary support in terms of the control unit and
the datapath. Also, any new enhancement to the system
architecture will affect the execution time of one or more
instructions. Therefore it will always affect the average
instruction execution time.

The model under discussion considers that each instruc-
tion has a certain associated weight, this weight being
dependent on the application and on the system architecture.
The application determines the number of times each instruc-
tion is executed, i.e., the dynamic frequency of execution
of the instruction. The system architecture determines the
execution time of each instruction. It is this execution
time that will now be studied.

We define the Life Cycle of an instruction (LC) as the
time period beginning at the instant the instruction is
first fetched from memory and ending at the instant the
final results produced by the operation are stored back in
memory. _

The instruction execution time will then be some portion
of its time life cycle. This portion will be dependent on
the system architectural characteristics such as pipelining,
parallel processing, instruction prefetching, instruction
queue, etc.

The main phases through which an instruction has to pass
in its life cycle are:

i) Fetching
ii) Execution

The time the system takes to fetch an instruction is

dependent on the instruction bus width, the instruction

lengthh and the bus cycle time in the following way:

t TRNSTRUATION LENGTH P
£ = < (Bus cvelaTima) (4.4l
BOS WIDT A

38

X~ et - Ct .
LR T R LI ST N e
L P I N e A

LR VLN S NN
o
AT

RS

N

LY

»
s
.

. .‘” ‘.‘-“-
.)

e

T TR T T T, T T M TR W Tk TR T N W T W TN T Y S T Y I T TN Y T W T T W Ty W T Y

This value for the fetch time will be an average, more ;ﬁf

or less rigorous, depending on:
i) instruction size (fixed or variable)
ii) the availability of the instruction gqueue
Not all the instructions have the same structure, but
nevertheless, all of the instructions accomplish some trans-
formation on some data. The data might be one or more oper-
ands and the final result in the case of an arithmetic
instruction, or the data might be the contents of the
program counter in the case of a branch.
In order for the system to be able to accomplish the
transformation required by the instruction, it has to:
1) decode the instruction
2) locate the data (e.g., addressing modes)

3) place the data in _a convenient _location to be
ransformed, if it is not there already

4) perform the transformation asked for by the
instruction

5) relocate the data in a convenient location.

Whether these phases are performed in a sequential
fashion or in parallel depends on the system architecture.
For example, suppose that the instructions followed a fixed
format with separate and predefined fields for OPCODE and
ADDRESSSING. Then it would be possible to decode the
instruction and the address field simultaneocusly.

In order for the system to process the addressing mode
and depending on the particular address mode, it may have to

do one or more of the following:

- preform data transfers A either register-to-
register or memory-to-register;

- preform some addition e.g., 1in the case of base
addressing, index addressing or branch

addressing;

- greform some multiplication e.g., in the case of
he VAX-11l index mode.

For the sake of simplicity one could consider all the

data transfers that have to be done while th system

39

PP W P PR PR WP W W WA VEUE R PRE RN U S, A A

N1 AT A A T 0 S s et S e D AR e e S e S e St Shr e dathiets ot (i A ARSI e id B S e A AN S 4 A

N
executes a program and determine an average time for data iﬁ
transfer. :%

Typically if the system has on-chip registers, cache VA
memory and main memory, the value for the average data :&
transfer time will be: ?:

t - R < M |
v 3 (RAT) ¢ = (cAT) + = (nat) (4.15) f
@ where :
i R = number of register accesses ;‘
éf C - number of cache accesses f‘
Ef M - number of main memory accesses :ET
T - total number of data transfers ii_

RAT - register access time

Q
>
H

1

cache access time -

MAT - memory access time fﬁ
and ~_Z:‘_'_
T=R+C+M (4.16) N

In summary, in the instruction life cycle one has:

TF - fetching time -l
TDEC - decoding time }fﬂ
TLOC -~ locating data (address mode) :
TDATA -~ access data E;%
TOP - perform the operation b
TW = write the final results

If the system performs all of these time phases in a

sequential fashion so that there is no overlap, then the
instruction time life cycle will just be the summation of
all the time phases:

40

1"

‘ “h

LCno = TEF+TDEC+TLOC+TDATA+TOP+TW (no overlap) (4.\1) 0

If some overlap among the phases is present, then the 4}
instruction time life cycle will be some portion of the A
- »

previous value (no overlap case). QJ
e

-‘_‘ 'Y

LCo = y * LCno (overlap case) (4.18) Es

where
Yy - is a coefficient that measures the efficiency .
of the architectural scheme that accounts for

the overlap possibility. 1Its value will be o
always between zero and one. 2;

Some of the architectural characteristics that might .

n

influence the value of " y "are:

- ieparate or common memories for data and instruc- o
ions,

- instruction format _ -
- instruction type . -
= bus width :ﬁ
- dual port memories ')

The architectural characteristics will also determine

(AR

the amount of overlap execution among different instruc- O

-
DR
’

tions. The efficiency of this overlap will then determine e

0

what portion of the instruction time life cycle value will

- .

N
D)
.

be the instruction execution time (IXT).

a4l
anng) o

,.
*
0

IXT = w * LCo (4.19) 3

ke

where

¢,

IXT - instruction execution time

.

-
N
|
»
b

s

41

B L TP LY
e

PO SN IV Sast

w - efficiency of the overlap among the time life

.

N cycles of different instructions. Values

-
¢

ranging from zero to one.

.c,'3 ™

;E' The value of w, that is the amount of overlap will be Ja
= determined by several architectural characteristics such as: 'ﬁ
- - pipelining ;

- prefetching

ML CAPUEN
AR] YN

> - instruction queue
) - parallel processing
% - ‘instruction length

- bus width
- datapath

LA

¢

.
~
a a

B
SN .
Wtatallt) &5 0 PLIPLE

R o
v RS
[s
5
<
. '-.,-'
) ‘-‘ c" Y
. -
(S
N LS
. s
- A
- i‘]
" Sl
.
'.. N -'.
- ot
.' .“'4
Tt
R
- ..‘ .
S
.
AS
..' -
.\.‘)
<, - .
-* -
Q._ '-~.
i. Q-~ -
K w .
o .
.)

" - a s e e e T T I
RS S A T P P
PP T P W AP A R PR PSP A

e Y LT . ‘.‘V'."_‘."ﬁ'<._..,."__.V.“A'_ L e
R P TP S T AR R I P I, 00 S 0 JAPIN NaP Su

S A T N U T e T e T T T T

V. CONTROL ANALYSIS

A. INTRODUCTION

In the previous chapters a timing analysis of the system
operation was presented. In it a study was made first of the
application effects on performance through the dynamic
frequency of execution of each instruction, and second of
the system architecture effects on performance through the
execution time of each instruction.

Finally to complete the model being suggested, one has
to consider the requirements that the instruction set poses
on the system in terms of the required control complexity.

These requirements will also be dependent on the
application.

This is also important since no matter what technology
is used in the system implementation, the number of
resources available on=-chip will always be limited.

Typically the control uﬁit is implemented using either
microcode or 1is hardwired e.g., using programmable logic
arrays. Some of the factors that impact the choice are:

* instruction set complexity

* required control unit size

¢ possibility of future changes in the instruction set
¢ speed

The size of the control unit (i.e., the number of gates
needed to implement the control wunit) will determine the
space available on=-chip for other components. In the case of
the RISC I and II the smaller control unit and therefore the
smaller power consumption, allowed the designers to add more
registers to the processor chip. With the choice of addi-
tional hardware for the processor , the designers in fact
reduce the average memory access time if one considers the

registers as also part of the system memory.

43

§
1
%
é
1
¥

.r.d
© 4

A

)
<

PP NN o 4
LS

4 [4;-: o)

e

BN ‘.1,

B

.fv"/ erd
AT

v

I
e ' o«
'k"l'm;.
TN

" A
Ry
PRIV B I (A

. v . . - . e .
TR ML N ‘;‘ .
o . [LR L A
. ,.1, [A [

R
YV

.l""
)

'
i3
.

PR I
)

o, o2, 4y v, N
4 o T

v % °r
'

A

~ .

.,
-
I

REPRODUCED AT GOVERNMFNT EXPENSE

-

AR SR N
g N YORF YRS W ' Y

O AT}
-t s ‘_q.'.-

B. THE CONTROL UNIT AS A FINITE STATE MACHINE
The control unit of a computer system can be viewed as a

finite state machine, and therefore can be analyzed as such.
If analyzed in that way, the control unit operation can be
described by a state diagram. In its most simple and most
general case, the state diagram will typically have only two
states, see Figure 5. 1.

| 1
!

FETeH

NELT INSTRUCTIN

ExecuTE

Figure 5.1 Simple Control Unit State Diagram.

In a more detailed analysis, the contrel unit state
diagram will have a tree like format where any vertical path
will correspond to the execution of an instruction, see
Figure 5. 2.

In this case, each and every instruction is identified
and each state although, still belonging to one of the two
major phases fetch and execute, will now correspond to a
microstep 1in the control unit output seguence while the

system is executing a program.

44

L N T Y R S Y IR S SRV S -

— w v e oy
L T

|

v
- P

v T,

a8 8 a

e "a s e s
LS

AR

A

d £
R '..I{ y
P ﬁ" alafalal

- - PR R T S N A W N Vel)
AR I 2 N - et L B ST N e . LI ALY S W e N A
- R - . " .

K
o .

LA NF I

»_ 4 s

R

REPRODUCED AT GOVERNMFNT EXPENSE

.

RGN S ghincoiia A

MCSMR oAt aie iy ot (1 Ayl ol a & SNIL AL gl g vy

FETew
NEYT aTRVCTION

Decogl
TNLTRY cTiod

Figure 5.2

Of course this
deal with more than one instruction at a time.
the complexity
with the number of

of the controller

states.

C. THE CONTROL UNIT COMPLEXITY

Not all the states will count

there

are states

that will be

instruction or vertical path.

- N A A AT AT At . e
S TN > s
) Rt S S PTIII

45

is complicated if the system

can always

common to

more than

More Detailed Control Unit State Diagram.

is able to
Nevertheless

be associated

in the same fashion since

one

. RS
N “w e

-t . .
BN A R SN .
P R VAT NP S A I

- o - - Al N L o . r »
M S SRR N AL D R L At et RPN et Rl A A A At 0t S NN o e A% A LW i R)

g

s e el

P
vt
ot

.‘
A &

>

e

g
The number of these shared states will depend both on éi»
the processor instruction set itself and on the implementa- Y
tion choices made by the processor designer. For example, in S
this last case the processor designer could make use of ' &?&
microcode subroutines to be shared or called by more than iﬁ;
one instruction. Y
If states are shared among instructions, then there will tﬁi
always be some trade-off between the total number of states ,:;
of the control unit and its speed. This tradeoff is due to
the fact that when states are shared among different
instructions, the control unit has to have some feedback !&.
capability. The specific value of the feedback will force %l'
the next state of the control unit, when the vertical paths ﬁ?
corresponding to the instructions will ultimately separate Qié
themselves. ;;?
No matter what this feedback will be, it will always ﬁj
have some cost related to it. The cost is the extra time it %ﬁ
takes for the values of the feedback signals to be valid. ’ Eti
Since the cost is time, it will be reflected in the average T;
instruction execution time, and so affect the performance of Eg.
the system in the portion the model described in the i~

previous chapter. _
In this part of the model we focus on the comparisons of e
two control units. -
The complexity of a particular instruction will then be
dependent both on the number of states it has and on the
numper of states which are shared by more than one
instruction.

The cost of adding a new instruction to a certain

processor instruction set 1is the number of new states that
have to be added to the control unit state diagram. The
addition of this instruction will have a cost on the system
performance that can be minimized by maximizing the number
of states necessary to 1its execution that are already in

existence in the control unit state diagram.

46

T W .

N ey y "
PN Lt T a T N T LT aaTe TaFe ™ T W 0N

Returning to "the control unit the number of states is
then dependent on: _
i) the number of instructions

ii) the number of states that are common toc more
than one vertical path (or instruction) :

iii) the average height of each instruction
Where the height of one instruction is defined as the

number of states in its vertical path.

D. THE APPLICATION AND THE CONTROL UNIT

In the previous chapter the instruction set and the
dynamic frequency of execution of each instruction together
with the instruction execution time were considered. Now
one wants to know how effective, the control unit is for the
application where the processor is being used.

It has already been seen that the complexity of the
control unit is related to the number of states. One knows
that a smaller and simpler control unit has an effect on the
processor performance, because more space would bé available
on-chip for other resources. One choice might be to add new
registers to the processor chip and thus try to decrease the
average memory access fime.

One also wants to minimize the number of instructions
that are needed in order to perform a certain task, so one
has to go back to the application. An application is char-
acterized by a certain number of tasks that have to be done.
Each task is performed with a certain frequency. For each
task a program will have to be written using the instruction
set available. Each program corresponds to a sequence of
instructions used to perform the corresponding task.

Directly from the program it should be possible to
compute the static frequency of each instruction. But that
is not the only frequency that 1is of interest to the
performance evaluation process. The dynamic frequency of

execution is more important.

47

e e . .- - .- .
AU A - LI - 0y N et - E A e et - B
..... . JE T o
- N - L R . - . - . - - - - - L T R S TR A R S - L Y .) . .
St e LT e L e LT K 4 Al W

.............

M

Lot ot ot il o
RN
A Gy

Vs
‘

e
o
.

1

v
]

AR RS TR SN
« »

'
-
-

T
3

rre

L - g aerd K piedh o S i i atuh el o B NE i ot sl gl o b ol mn o b R ati ouil el B3 gu e g B gl Sy S Aod it Sendl ~r
T T L W W, Y e T T N T T N W T WUN S PO AN A Sl N t4 vd . Al SN T A Mt S S Madh Al Pl A

N

gey

The two frequencies will be different for each instruc-
tion depending on:

e
'..' <’

k
Ny SN
7’

L4
(A7

i) program sequence

A

ii) conditional branches and the most frequent values of
the variables on condition. : :

Y A o o
':.-',:
L}

;/f:uﬁ

The execution of a program is then a sequence of several

f‘,'

instructions execution.

Since a single instruction corresponds to a vertical

path in the processor control unit state diagram, the execu-
tion of a program will then be an up and down walk on the
state diagram.

When comparing two control units, the one that would !EA
have to execute fewer instructions, supposing that the i}i
average height of an instruction would be the same for both ‘;f
control units, will be the best. The height of an instruc- uﬁ:

s 1

tion is in fact a measure of what the RISC proponents call

the instruction complexity. Because it would be natural that ﬁkﬁ
two different - processors have instruction sets with 5&:;
different values for the average height of an instruction, ;ﬁf'
the bottom line is that the comparison of two control units' _ff
complexity cannot be done through the counting of instruc- E?E
tions executed, but through the counting of the number of 'Ti
states through which each control unit has to pass when the Ei%
system executes a typical application program. _ﬁ;
It is to be expected that if one wants to add an EEE
instruction to a processor instruction set, the control unit &::
will suffer by an expansion. For a hardwired implementation :;}‘
e.g., using PLA's these will have to grow; for a microcode fﬂg
implementation typically there will be a need to increase i :
the size of the microcode memory. The amount of the control ﬂ;i
unit expansion will be dependent on the implementation, on }ﬁ;
the 1instruction itself, and on the designer's choice e
regarding the number of states that will be shared with i%ﬁ
existing instructions. There is a relation between the ;3&
number of gates used in order to implement a controller and %i.
-

48 o

RO

L T T T e T T T Y T Ty o

't

QAR N S S B A A0 e B 2l e Bhathie ral e ah

the number of states present on the controller state
diagram.

Because there 1is a direct and individual relation
between the control unit states and the gates that compose
the control unit, and because one wishes to use each and
every one of these gates a similar number of times in order
to increase the overall efficiency, then for better effi-
ciency it 1is desirable that all states are used in a
balanced way. With some similarity one might say that the
efficiency of the use of an instruction set increases when
all the instructions in that instruction set tend to be used
an equal number of times.

An application has an indirect relation to the number of
states through which the control unit has to pass in order
for the system to execute the corresponding programs.

In the optimum c¢ase the control unit will have the
following characteristics:

i) minimum number of gates

ii) for the specific application all states will be used
in a balanced number of times

iii) no state exists that will never be used.

E. THE MODEL

Assume that a control unit has a total number of states
T. Associated with each state there will be a certain
number of gates. This number will be dependent on the imple-
mentation choice, either microcode or hardwired logic. Oof
these T states, an application uses S states, and of these S
states some states will be used more than others.

The weight of the application is related to the number
of states through which the control unit has to pass in
order to execute the corresponding programs.

Each state has some weight associated with it. This
Wweight will be dependent on:

1) the number of times the state is used

ii) the number of instructions that share the state

49

. o e .

N R S L P T TR - B N
AP S R R PR S PSP S SR S S -~ P T I T TSR NN
SR s e e B als atn PPN D PR S U D U D T e W R T, T M T T P PN U SRR SR S

. -,
R R, B v <. e T e . N . - R .
IR DI DAFTRTEA TR TR DT W YRS S A SR Sl N VA W T P O A

.........................

v
b

P

e’

Y

ok iii) t%etnumber of gates needed for implementing each o
state. o
The complexity of an instruction will be related to its ;;
height, that is the number of states in the corresponding e
vertical path in the control unit state diagram. :3
So, ﬁ:
H
C: - Z 5.1
j = W, (s
«L-‘

where
'_..{'
CJ - complexity of the instruction j e
W, -~ weight of state h s
W - height of the instruction j 2

and

Wy = & (s.2) o
UJ\ —;,;
G - number of gates per state (implementation) X
Uy - number of instructions to which the state is }
common A

The weight of an instruction will be the product of the
number of times the instruction is executed for a given
program times the instruction complexity.

That is

\d$ i X C3 (s3)

]
z

where
Ni - number of times the instruction j is executed
As in the previous chapter, the weights of the task and ﬁ*
the application will be:
S c \
W= BN G (s
N
50

..
“ e,

]
:
.

where

W(- weight of task i
?; - frequency of task i for a certain application
J - number of instructions in the instruction set

For an application its weight will be:
T J
Wq = Z . Z. Nj » C; (s5)

or

I J H
. L6 LN Z_UC’- (5)

i= J:‘ ll‘(

where
Wq ~ weight of the application .
T -~ number of tasks in the application of
interest
J =~ number of instructions in the processor
instruction set
H <~ height of each instruction
Similar to the timing analysis in the previous chapter,
the performance of the system under study will be given by:

Perf - _\"_/9__ (s.7)
Wa
where .
W, - weight of the application for the reference
system
wl

a = Jeight of the same application for the system

being considered

51

Bt d S e S At T D Rk Bl S A e AAR At e e e o At S e dan A Min S et e Amctie sieag)e 8 A U 24 i Sl Drel B e bie dhhe b 8 oa 0 e e Srhn 2% b

So,

=
I J H ::_--.
. Qo o
gn F: Z.—. NJ Z —; ~'_:'{
s . *,
Teof = 3 . (5°8) N
T K L 3
\ s
AN . 3
(= At R ‘Q
3
where
I - number of tasks (programs) in the application A
J = number of instructions in the reference -

system instruction set -

K - number of instructions in the system under -
study instruction set S o

H - height of instruction j in thel reference B
system instruction set . N

L - height of instruction k in the system under u%
study instruction set o

Nj - number of times instruction j is executed :
while the reference system executes the ol
typical application program :

Nu - number of times the instruction k is executed if
while the system under study executes the .
same program

4o - number of gates per state in the reference
system control unit

Q! - number of.gates per state in the system under
study control unit

Uy - number of instructions that share state h in
the reference system control unit state

diagram

- - . T - - - -t . o - e T PR .'--"~ R . CORE et -
I A L S U AL R ApRIUE S, Gl G S Sl SR ooy

e \ ", -v .- ?, ‘“P-u.tp~\-\. ’n. m....v.t

-.-...-

LY
e VA-...-.
i...slnv !-ﬂ,\-.-»-
L NN A A A

state

"

A s B

Ll e

\

share state 1 in
PPV PPN A’;’;‘J VT T A

control unit

study

system under

diagram.

- number of instructions that
the

Uy

3

RS

+

i

o

S

\I

VI. CASE ANALYSIS .~

A. INTRODUCTION
As an example we will analyze the change in performance ;

of a particular application program when some floating point
capability is added to a processor which currently performs
fixed point arithmetic.

a a2,
S

.,
i

In this case study, the performance effects of the

7
.

program code sequence will not be considered. These effects ki

are mostly due to any capability of the processor related :f

to: . i::
¢+ pipelining ia
¢ parallel processing l&

Specifically, the case consists in the possible addition
of a floating point multiply instruction to a processor

instruction set. The processor that was chosen was the

L ity N Yy e e N

AT

Motorocla MC&8000. The application for this evaluation is
the computation of a Fast Fourier Transform.

" ‘l ‘y

B. THE ADDITION OF AN INSTRUCTION

The addition of an instruction to the original instruc-

[
F R vl

Ty

tion set has several consequences.

First of all if a hardwired controller is used the
processor's control unit must be expanded so that the
instruction is incorporated. The amount of the control unit
expansion is dependent on the number of new states that the
instruction under consideration will add to the control unit
state diagram and also on the control unit implementation.

In fact, one of the reasons to use microcode in the
implementation of an instruction set 1is due to the flexi-
bility it gives in any future changes of the instruction
set.

54

----- . T T e T T T e T

"‘-'-'-‘ . " T e Nyt et . AR - . . AP PR
YRR A O A NS A STk SR ST SOl I LA & A S L

| Second and depending on the operation performed by the
instruction, some hardware will have to be added to the
processor. The amount of hardware that will have to be added
to the processor 1is dependent both on the hardware that
already exists on-chip, that the instruction might use and
is dependent also on how fast one wants <the instruction to
operate.

The addition of more hardware to the processor will

cause a rise in the power consumed by the processor. Due to
a limited power dissipation capability, the net effect of
the increase in the number of gates that constitute the
b control unit and the datapath will be a reduction in the
{ size of existing processor components or a migration of some
off-chip, so that the power consumed by the processor stays
constant.
b One choice might be to replace some of the registers
available on=-chip by the hardware necessary for the new
instruction. By reducing the number of registers on-chip,
there will be a decrease in the ratio of register accesses
] to the number of main memory accesses.

In the case of a Load/Store architecture such as the
RISC architecture, a reduction in the number of registers

' will cause an increase in the dynamic frequency of execution
[of LOAD and STORE instructions relative to the other
i instructions.

E In a traditional architecture, where the LOAD and STORE
instructions are not the only memory reference instructions,
the effect of reducing the number of on-chip registers is an
increase in the averadgde instruction execution time because
the proportion of memory accesses to register accesses will

" increase.
This increase in average instruction execution time will

b

h

s

h

:

ause an increase in the typical application's program

Q

execution time. It is this increase in execution time, that

55

e "".'.':.‘g .o,
Safinaniitn, i

DS T N PN R
“ e " et a™

h (O
P
o .‘ l‘ l‘ & -

will have to be overcome by the addition of the new instruc-
tion to the processor instruction set, so that in fact the

program execution time might suffer a reduction rather than
an increase.

C. THE COST/GAIN TRADEOFF

The floating point multiply instruction after being
added to the processor instruction set, will replace the
sequence of instructions that the processor had to execute
every time a multiplication of two floating point numbers
was called for.

In order for the addition of the floating point multiply
instruction to be considered, the instruction has to pass
several tests. The first test requires the instruction
execution time to be smaller than the correspondent instruc-
tion sequence execution time.

If that 1is not the case, then there 1is no point in
adding the instruction to the processor instruction set.

So,‘consider:

lni - execution time of the new instruction

lseq - execution time of the corresponding sequence of
instructions

For the addition of the new instruction to be consid-
ered:

lni < lseqg (6.1)

Assume then that in fact the above condition is true,
then

lseq = 1lni + lgain (6.2)

56

o O

o

AR SN J
CINT T I]
o e

"
.

¥
-
.

b

v
)

-

- RIS

- T
DO 1 1 f
Y a3 Lt s
. N .

N ’ S

.'..
[ACRESEN

P

T

.
.
’

[R
o

LRI
lv " ‘n » 'l
o

R A
l.'J).‘-f

[

DRI v
l"’ o

aT e
b

W .","a
NS D

-,

B
N
L
.

r‘v T AT AT T T T TN T W W W Y T W e T Rl A S itfad it tat Ml Sad Andh gl ani b

AR e ate F i e S SRS R L g SO in fin Lo e ba AR Rl S AR S A P AY]
.

Iy o
R

2

lni / lseq = ¢ (6.3) R

where ¢ < 1 .*

For the sake of simplicity, consider that the applica- Q)

tion of interest is composed of only one task. That is to &

say that the effects on the processor performance will be 1

considered only within the context of a program. _}ﬁ

The model suggested for computer performance evaluation ;ﬁz

has two parts, a timing analysis and a control unit S
complexity analysis. These two parts of the model will give

»

rise to two distinct criteria to which the addition of the
instruction will have to comply. So that the gain in the

processor performance that is obtained, will surpass the

’
J I DI

4s,
»

. R

. e e e

. KRR

« ' e e’ PR
b .

reduction or cost in the processor performance due to the

requirements brought by the same instruction to the

v
.

processor architecture.
l. Timing Criterion
The timing model says that the effects of the addi-

tion of one instruction to the system instruction set, on

s
e
RN
L LA

e

Ve e e
'

"
~1
1

the system performance will be measured by:

Z: NBLQ

Terf - 32! ' (6.4)
J
Z Naj LQ:. + Nnww bnew
\');| :_~
o
where .:\:
J - is the number of instructions on the original {ﬁj
system instruction set §§3
b
Y
Ly
D

T R T A e Lt et et T T e Rt Tt s T Attt NN e e Tt
RPN R IO R IR T R Rt i P e S S P P e e P g T T TR ST IS P L) IR AR L R S A ST A B T
Py PRE R WAL WL VAT O W WA SR RIS T W P o . WP, ARSI W Y5, VIR SO S Y PRSI RS T SR S A SR AU T ST L

DA R R N N Y

R

gyl Ao

L S Tl S W N A

~ ’ R T s R e e, TR T e Fw QR AL N N WRAR T LTI AL W W E

N{ - number of times that the instruction j is
executed before the addition of the new
instruction to the processor instruction set

Lj - execution time of the same instruction j on
the original system

N‘j- number of times that the instruction j is
executed after the addition of the new
instruction

L{i- execution time of the instruction after the
addition of the new instruction

Nww = number of times the new instruction is
executed
Lrw - execution time of the new instruction

The numerator is a measure of the execution time of
the application program before the addition of the instruc-
tion under consideration. The denominator is a measure of
the execution time of the application program after the
addition of the new instruction.

The sequence of instructions in the original
instruction set that implements the operation performed by
the new instruction is executed a number of times. This
number will be equal to Nnew.

The sequence executlon time will <c¢onsist of the
execution time of several instructions.

Therefore
Lseq = Z‘_ Nsecn L:) (6.5)
J:

where
Nu“ - number of times that the instruction j of the
original instruction set is executed during

the sequence of instructions execution.

58

<('::'{..n

5

i

A
s s

v
' % %
R

e

ﬁ....._-
PAPSEUATEN

v
v

-'-":"w)

(o
sty

[k Akt o el Al Sl S i S AR Y AN A A SN

then
T I
Tl e Il
?ng 1= JT
B J
Z Nd‘-‘ LQA 4+ Nnew Lwes
J:l
and
N\i - Mo‘i 4 Nnws Mscrm (63)
where

N% - number of times the instruction j of the

original instruction set 1is executed outside
the sequence.

For improvement in performance:

Perf > 1 ' (6-7)

This indicates that it is worthwhile to add the new
instruction to the original

application.

instruction set for this

Then, one wants

I J J
L Z Nsee. L - Z Na: La: + Nuws bnug (864
Z No‘) LJ + Lv\w‘ n".)LJ > - 3 \) ()
J=t J LY Jd
59
et e e -_'-5:- W V. "'\“:;.- o7y S,) - = <: .;' PGS ;.- - ’ L e ;-.- ';‘..;;':;'L;'.;";_'- o S .‘.:‘.._:;_;_. . '_;."_;‘_'A"_:";..";';".;" o

A

wtetabalalal

PP 5

-’
Py

s P

M A dS

o 2 >

but

J
luel - Z Mw,i LJ
§=

SO

3%t jM

¥ J
N news (\Lsu\ - Lo) > :‘%_ Nq;) LQ;\ -§| MoJL

The right term of the inequality corresponds to the
increase in the application program execution time, that was
caused by the suppression of some hardware components of the

processor e.g., some registers.

This increase, caused by an increase

of instructions that have to be performed-~case of the LOAD
and STORE instructions in a Load/Store architecture, or

caused by an increase on the average instruction execution

time~=case of a traditional architecture.

Therefore

J J
Z Na- LQ‘ - L Ne. L: = T\N\\u(\ (os7TSs = Tmt

-
0"

e
"

60

T J
Z No, L:) + Nnes Ls.m7 > Z Nq:) La.;s + Nuow Lnww (6.10)

i (&n)

A Bt S Aaitoda LR JSe" BN ahe 81 AT TR o 08 g il Al

(e5)

4 .
. .
AN

L3

A0l

e LA

»
N

Ay,
4
.

W oot el

in the number

e

(612) s

-y
*
"

)
A

-~y

[7

..-
P as e
a4

o

T

J

B S T i Tt e - P .« B LT e e
AFLTYS FL R IS I PO P POV TIFC TR PR VI ST R SN S AP AR iy Sy

A e S e S v
e—— Aot e et e el s e e

Ll A A8 i el g

On the left term of equation 6.7,
Lseq = Lnew

in execution time that was obtained by

sequence of by the
each time the operation was performed.

represents the gain
substituting the

new instruction,

original instructions

So,
Lseq - Lnew = Timing Gains = Tgain (6.13)
Then,
Nnew Tgain > Tcost (6-t4)
or
Nnew > Tcost / Tgain (6.1%)

Based on an timing analysis, it is only advantageous

to add the new instruction if:

1) Lseq > Lnew (6-\0)
and
2) Nnew > Tcost / Tgain (6.17)

To put it in another way, the addition of an

will

executed a

instruction to a processor instruction set only

increase performance 1if that instruction 1is

61

S T T e T e e e, S N .
PRI P A L P PR waE W W R G P P SR

LY

TL ol v o

o

perAe S

...................

sufficient number of times during the application programs
execution. The exact number of times the instruction must be
executed is given by the above criterion.
2. Control Unjit Complexity Criterion
Concerning the analysis of the control unit
complexity one has:

Vet - Sl Lo U (6.2)
T H Ho
Z NQ\'I Z E‘: + Naw Z 2
:l“ LH Ua‘a] U"‘

Since the implementation of the control unit will be
the same and the implementation determines the value of GO,
the equation simplifies to,

!
J=| /L=| U‘t\
Verf -
(6.19)
I H Hau
! \
3 N, L TR Nuwy —
)=\ 4L3| A /L.’\ A
As in the timing analysis one wants:
Perf > 1 (6.20)

62

Y

That is

Hyey

J H J H
ZN' Z L > Z Na* Z -—|- -\-anZ - (6.21)

]3. i Lot u& X 3 4. U‘L Aos U‘h

As before, the execution of the sequence will
consist on the execution of several instructions, then

(6:22)

S |
> 2_ Na. Ly N . L (6.23)

or

where

63

o

-
AR
AR

-
<
L])
Rt UK

<

X

et
R

LA
v‘(;l- [

.
r v r
N .

A
£

<5
s Ay

h Y

g
-’ .
-t

-~ u
L)

geve,

.....

e

R R I B

TN AR A

etels

« 8 3 8

e A S S A AN N AN LA AR S N

Ls - represents the gain in the number of states,
obtained each time the operation performed by
the instruction and/or the sequence is
executed.

Es - represents the cost in the number of states
due to the addition of the new instruction

Then

Nnew * Ls > Es (6.28)

or

Nnew > Es / Ls (6.26)

D. AN ILLUSTRATIVE EXAMPLE

An example is now presented to <c¢larify the use of the
model suggested through the present and previous chapters.

The example quantizes the effects of adding a floating
point multiply‘instruction to an existing processor instruc-
tion set.

As has been previously stated, the values determined for
the increase or decrease on the system performance will only
be valid for a given application.

l. The Processor

The Motorola MC68C00 is selected for this example.
The MC68000 is a widely known microprocessor that has a
simple instruction set offering no floating point support.

The MC68000 has a 16-bit data bus and a 32-bit
address bus. In addition to the Program Counter and Status
Registers, the MC68000 has seventeen 32-bit registers. These

registers are divided into two groups. The first group,

64

L S S W N N
PR R A -l" o
PRI o

> S

'

RN |
.'

L S
o e
J‘_“) Ve

SOX - N

P

. . IR

, R]

. et .

, B p
POTTOP LY Uy R W

A
s
o s

COARANE R i’ Sa i il daP el A? Jlen s

hiatalabninlalo b oalyab et nb tab Sk Nt Al ob Ao ed &4 Il
L.

composed of eight registers are general purpose data regis-
ters. The second group, composed of the remaining nine
registers is used mostly for handling addresses.

In total, there are fourteen addressing modes on the
MC68000, although they c¢an be studied in six basic types.
These addressing modes are already described in chapter two
of this thesis.

The instruction set of the MC68000 consists of 56
basic instructions, having from zero to two addresses. Each
instruction can use several addressing modes. This fact
determines that the MC68000 does not follow a Load/Store
architecture.

The instruction set of the MC68000 supports five
basic types of data:

e bits

* bytes (8 bits)

« words (16 bits)

* longwords (32 bits)

. gagked binary-coded decimal (BCD) with two digits per
yte

The input/output on the MC68000 is membry-mapped,
i.e., all I/0 interfaces share the address space with
memory.

Considering the implementation of the MC68000, it is
a single-chip VLSI HMOS processor with a typical clock rate
between 4 and 12 MHZ and with a typical memory access of 4
clock cycles.

2. The Application

For the application we choose a program that

computes a Fast Fourier Transform. This program was
obtained from ' The Fast Fourier Transform' by E. Oran
Brigham [Ref. 4]. The program is written in Fortran. The

flowchart of the computation done by this program is on page

161 of the above reference. The program itself appears on

page 164 of the same book.

A
Xl

From the reading of the program, one can immediately e
verify that some of the operations that are called for could
- not be directly implemented with the MC68000 instruction
set.

Pl St
f "l
- .
O ot
N '

N
l' *

J.!‘.u’

For these operations it was necessary to use either

NEA N

subroutines present in '

Microprocessor Systems, a 16-Bit
Approach' by William J. Eccles [Ref. 5] or newly written
subroutines. The subroutines to handle floating point
numbers in the MC68000 came from Ref. 5.

The subroutines that were written are shown on

O O

) 2

[l
g e 0

appendixes C and D, these subroutines compute the sine and

TR)

the cosine of an angle, according to an algorithm presented

B

in the Software Manual of the Elementary Functions' by
William J. Cody, J.R. and William Waite [Ref. 6: pp. L
125-143]. o
The translated program for the Fast Fourier
Transform computation is shown on Appendixes A and B.
3. The Eloating Point Representation

The floating point representation that was chosen is e

REPRODUCED Al GOVF..RNMFNT FXPFENSE

the IEEE proposed standard for single precision. This stan-

a0
LI IR
.

dard determines a 32-bit long representation of a floating’
point number, shown in Figure 6. 1.

e AR
LD :

a4, -,

S EXPONENT MAN TI5SA

e
2 Figure 6.1 Floating Point Representation. Ky
", .\.
. This standard has.the following characteristics: N
. i) 32 bits are used ?Q

R At SR AR i M MR At i R aia S o it A A 2 oo 0 o o ol ek o
.

ii) radix of two

S e an un o g =

iii) the radix point before the first digit with assumed
one to the left

iv) mantissa

iv.a) sign position - O

iv.b) value position - 9-31

iv.c) representation - normalized, sign/magnitude
v) exponent

v.a) sign position - no sign

v.b) value position - 1-8

vV.C) regresentation - biased exponent, bias =
127(dec)

v.d) range of exponent - =~126 to 127

vi) range of floating point number = +- 5.9*%10%*-39 to
+=1.7%10*%%38

All the subroutines that handle the floating point
data and that were used obey to this standard, so does the

hardware necessary to implement the floating point multip.:.
4. The Hardware Involved

The general structure of the hardware required for
the implementation of an additional floating point multiply
instruction in the MC68000 instruction set was obtained from
the 'Introduction to Computer Architecture' [Ref. 7:p. 80]
and is shown on Figure 6. 2.

The hardware consists of:

i) three 32-bit registers, these can be some of the
already existing data registers on the MC68000,

ii) an 8-bit adder used for the exponent addition, that
could just be the adder already existing on the
MC68000,

iii) a multiplier used for the mantissa multiplication,

iv) %n exclusive~-or gate for the product sign calcula-
ion,

v) a normalizer and converter
With the hardware structure that was chosen it is
possible to perform in parallel the determination of the
sign of the result, the addition of the two exponents, and

the multiplication of the two mantissas.

67

R e BPUE PR PR L R S T Y

................................

- .¢\t.. o 7
. I I B .
P LY O PP, S FURT VDO, PP T I P PR, Aaln A At

)
v v,
‘1
" »_ T

+0 .
“x
.

& “-{
e RS
: s
-: ,::
1‘ H\
2(A) 8
R . Exvongast -!,-
4 — € .
3 G 2 AdOER ne 3
% A N
1 -4 -*
3 NORTIALI2¢R s, p “vf
u N ’ & iy
n b ANo t et 4
. - ..
.t é a3 CO) C '.
. : Conveater
lr 24
E g ~nid) NAATIGL 4 ¢ =
z ? 2B nutieuee
1 7 8 T
D T
. O e
U e
3 < L =%
:-) __}
- W |
- 8 Figure 6.2 General Hardware Structure for the -
~ 0 e
o) Floating Point Multiply Instruction. ; S
. & £
m > E3 . -,
E The execution time of the floating point multiplica- . o
tion instruction will then be determined by the slowest of e
these three distinct and parallel operations. b:-
. e
The sign computation involves just one exclusive=-or "o,
gate gate and therefore takes a maximum of one clock cycle. .35
The addition of the two exponents involves in fact fﬁ
the addition of the two exponents, followed by the subtrac- 5f
tion of the bias since this has also to be performed concur- i:
rently with the determination of exponent overflow or 'f
underflow. K
’ From [Ref. 7] the addition of the contents of two g
N registers using the MC68000, takes 4 <clcck cycles to :‘
complete. After this addition an extra clock cycle will be . ﬂ%
taken for the determination of exponent overflow and under- :t
;f flow together with the subtraction of the extra Dbias. jfﬁ
g 68 '.j-:'.
5 e

v e

Therefore it is concluded that the addition of the two expo-
nents will take a maximum of 5 clock cycles.
For the mantissas multiplication, a multiplier will

have to be added to the processor hardware. According to
"Digital Systems: Hardware Organization and Design by
Frederick J. Hill and Gerald R. Peterson ' [Ref. 8] the

multiplier structure that gives the best cost/performance
tradeoff in terms of the hardware involved and the time it
takes to perform a multiplication is a-multiplier that uses
a carry-save adder. There a carry save adder type multi-
plier was chosen.

Also, according to [Ref. 8:p. 361] the time that a
carry-save adder takes to perform an N-bit multiplication
using a adder for which each addition/shift cycle takes two
clock cycles is given by:

Tmult = (N+1)Tc (6.27)

where -

Tc - is the clock cycle time

In the case being discussed the multiplication
involves two operands - the mantissas. Each mantissa 1is
24-bits long. Therefore according to the formula shown
above, the multiplication of the two mantissas will take 25
clock cycles. This makes the the multiplication the longest
operation involved.

Note that, the detection of a zero product can be
done concurrently with the multiplication, since a 2zero
product will happen only in the case where one of the oper=-
ands is zero.

The normalization must still be done sequentially.

The normalization involves at most one 1left shift of the

- mantissa product and a decrement of the product exponent.

89

. . P T T T T e L I L

LR RSP L R PN '.""", N L . o
CRPREI "W G A IO T DB S G S S RPN S N PP PR P L YR PR S TSV VS

e T T e N Y T T Ty T o W ey e T e R Oy Y S T U YT
AR

£ d " ’l ".
.7,
(

F

“"lrl"l
2

P

’

H-_l'. '_‘l ,. "l,:"_ EF‘,_I"_"?'(.', LA e e ,"‘r: Al g At A" AR bl R R T T T W N W e W W O

.
Lk

There is only at most one shift, since the mantissas of both
operands are in normalized form and therefore their values

TARAARAL (00

are between 0.5 and 1. In the worst case, the two mantissas
are both 0.1 (binary) and so their product will be 0.01

'A

7 (binary). 1In this case only one 1left shift is necessary in
ﬁ order to normalize the mantissa of the product.

"

The normalization requirement that the standard
makes on the mantissa, also dictates that any overflow or

underflow of the exponent product does not have a possible

recovery.

In conclusion, the floating point multiply instruc-

tion with this hardware will take approximately 26 clocks to
complete.
- The hardware that would have to be added to the
'{ MC68000 would only consist of the 24 bit carry-save adder,
the exclusive-or gate -and some logic to determine overflow
or underflow of the exponent and a zero product.

All this hardware will be more or less equivalent to
two of the 32-bit registers existing on the MC68000. Say
then, * that due to power dissipation limitations on the
MC68000 two of the 32-bit data registers would then be
removed from the MC68000, in order to add the additional
hardware necessary to implement the floating point multiply
instruction.

. S. The Model
As stated previously, the addition of the instruc-
- tion will have some costs. One of these costs has been
= referred in the previous subsection, it is the removal of
two of the data registers.
As one might expect the removal of some of the
registers from the MC68000 will have an effect on the system
v performance by reducing the number of registers accesses and

increasing the number of main memory accesses.

2 70

| SRS S Naf S R i it S Y AR At AT i 4 S i e e b A A I S Bl 8 S Bl 0 A e i B - AT il ek A% b A Al Al aan-

In the specific case of the application that is
being considered, this is not true because, at most, six of
the eight data registers are used at one time. Therefore,
for this specific case, the timing costs involved due to the

addition of the floating point multiply instruction will be
zero. '

For each and every subroutine involved 1in this
application, the execution time of the subroutine was
computed following a worst case and a best case criteria.
The difference between the two execution time values for
each subroutine arises due to data dependencies on the
number of times each instruction is executed.

The execution times of each subroutine were then
combined, best with best and worst with worst, in order to
define two boundary lines for the final execution time of
the whole program.

' For the specific case of the floating point multiply
subroutine, the smallest execution time corresponds to a
multiplication of two floating point numbers where one of
them is zero. The longest execution time for the same
subroutine corresponds to the multiplication of two numbers
where an exponent underflow occurred after the normalization
step. Here, for the same reason as before, the normaliza-
tion requires at most one left shift.

Specifically, the values obtained for the execution
times of each subroutine are shown in Table I in terms of
clock cycles.

For the whole program the execution time will be
dependent on the values of the data and on the number of
entry points (N) to the Fast Fourier Transform computation.
The values obtained in terms of clock cycles and number of
required floating point multiplies are shown in Table II.

The best case and the worst case execution of a

floating point multiply subroutine takes respectively 203

71

- . l." - --. Ll ...--. . ‘.-..'. .~.' '.n : 4..
VORI EAS IR AR N,

TABLE I

EXECUTION TIME OF EACH SUBROUTINE
IN FAST FOURIER TRANSFORM PROGRAM

BEST CASE WORST CASE
GETFP 162 162
STEP 180 253
NORM 126 1524
ADDFP 178 1929
MULTEP 203 604
SINE 2681+3MULTEP 14459+9MULTFP
COSINE 3904+3MULTEP 20756+SMULTEP
TABLE II

FAST FOURIER TRANSFORM
APPLICATION PROGRAM EXECUTION TIME

N BEST CASE ' WORST CASE
16 572482+352MULTFP 1899074+736MULTFP
32 1418194+880MULTEP 4734674+1840MULTEFP
64 3484658+2112MULTFEP 11444210+4416MULTEP
128 8198594+4928MULTFP 26770882+10304MULTEP
256 18901458+11264MULTEP 61352402+23552ZMULTEP
512 42902562+25344MULTEP 138417186+52992MULTEP
1024 96186226+56320MULTEP 308440946+117760MULTEP
2048 213497794+123904MULTEP 680458178+259072MULTEP
4096 469394450+270336MULTEP 1488217106+565248MULTEP

and 640 clock cycles to execute. For a clock rate of 10 MHZ,

the program execution time before the addition of the new

instruction will be is in Table III.

'''''''''

72

........

TABLE III

FET _PROGRAM EXECUTION TIME BEFORE THE ADDITION
OF THE FLOATING POINT MULTIPLY INSTRUCTION

N BEST WORST
EXECUTION TIME EXECUTION TIME
(SEC) (SEC)
16 0. 064 0.234
32 0. 160 0.584
64 0. 391 1.411
128 0.920 3.299
256 2.119 7.558
512 4.805 17.042
1024 10. 762 37.957
2048 23. 865 83. 694
4096 52. 427 182. 963

For the same clock rate, the program execution time
after the addition of the floating point multiply instruc-
tion is shown in Table IV.

The best case is the one where the implementation of
the floating point multiply offers less gain.

For the best case

Tgain = 203 - 26

For the worst case

Tgain = 604 - 26
As already explained, for both cases Tcost is zero.

177 clock cycles

578 clock cycles

This is due to the fact that in the particular application
program two of the general purpose data registers are never
used. In the case that all general purpose data registers
were used in the application program this would not be true.
If this happened then there would be an increase in the

ratio of the number of register accesses to the number of

TR TW TS L YL Y TP R WK YR Y ST LIV
-

TABLE IV

FFT_PROGRAM EXECUTION TIME AFTER THE ADDITION
OF THE FLOATING POINT MULTIPLY INSTRUCTION

N BEST WORST
EXECUTION TIME EXECUTION TIME
(SEC) (SEC)
16 0. 058 0.192
32 0.144 0.478
64 0.354 1.156
128 0. 833 2.704
256 1.919 6.196
512 4.356 13.979
1024 9.765 31.150
2048 21.672 68. 719
4096 47. 642 | 150. 291

main memory accesses, causing an increase on' the average
operand access time and an increase on the average instruc-
tion execution time. _

Using the formula for the model regarding the timing
analysis the performance effects of the addition of the
floating point multiply instruction come as shown in Table
V.

From these results one can see that the improvement
on the MC68000 performance due to +the addition of the
floating point multiply instruction for this specific appli-
cation varies between ten and twenty percent and 1is
independent of the number of data points to the Fast Fourier

Transform computation.

PERFORMANCE EFFECTS OF THE ADDITION OF THE
FLOATING POINT MULTIPLY INSTRUCTION

TABLE V

| B

OO

.......

N BEST CASE WORST CASE
Perf Perf
16 1.11 1.22
32 1.11 1.22
64 1.11 1.22
128 1.11 1.22
256 1.10 1.22
512 1.10 1.22
1024 1.10 1.22
2048 1.10 1.22
4096 1.10 1.22

g e e

L2
N N
L I

E T A P S B
' » bi,i b St e e

5

P
ol

Iy NA

AR

Ty %e 1TH
,°.
» ‘s 'n l0

AP PS

VII. CONCLUSIONS

This thesis began by making an identification and char-
acterization of a new and controversial type of computer
architecture called RISC for Reduced Instruction Set
Computers. The rise of this nhew computer architecture and
the discussions that followed regarding its performance,
when RISC machines are éompared with CISC machines, has
shown the need for an appropriate tool to evaluate computer
performance from an architectural point of view.

This thesis suggests a model to be used by computer
architects to determine the performance effects of an
enhancement to a computer architecture. The computer evalu-
ation process is.important, since it generates have a quan-
tified perception of the influences that each enhancement to
the system architecture will have on the system performance.
The availability of a model to do computer performance eval-
uation is therefore essential in the decision-making process

for determining which architectural features a system should

have to optimize its performance for a certain application.

To develop this model for the evaluation of computer
performance, a conceptual view of what determines the system
performance was formed. It is the author's opinion that the
performance of a system results from the quality of the‘
match between a particular application requirement and the
architectural characteristics of the system. This match is
done through the customization of the system instruction
set.

The model that is suggested is divided into two parts.
The first part makes a quantification of the effects that an
architectural enhancement to the system has in the execution
time of a "typical" application program. The second part of
the model compares the efficiency of the design of two

systems control units. In both parts the model considers
that the application determines the number of times each
instruction of the system instruction set is executed.

For the first part, the system architecture determines
the execution time of each instruction. For the second part,
the system architecture determines the number of states
through which the system control wunit will have to pass
during the execution of the application program(s).

Finally, an example on how to use the model, in order to
determine what are the costs and benefits of adding an
instruction to a processor instruction set for a particular
application, is given.:

The program that was used to apply the model is a bit
misleading in the quantification of the cost/benefit ratio
of the enhancement. This is due to the fact that in opposi-
tion to what shoﬁld be expected, the program does not use
all the system architectural resources and so, even before
the addition of the new, instruction does not optimize the
system performance. "If that were not the case and the
program was an optimal one for the application of interest
and for the processor chosen, then, surely, the enhancement
to the syétem architecture would have some costs.

In any event and even considering that the example is a
bit misleading, the author arrived at two criteria, each one
derived. from one of the parts of the model, for which the
addition of an instruction to a system instruction set has
to obey so that the performance of the system for the
particular application is increased.

These two criteria will be applied if the new instruc-
tion execution time is smaller than the execution time of
the sequence of instructions that implemented <the function
before the addition of the new instruction to the system.

For the first part of the model the criterion for the
addition of the new instruction, states that:

2

e T T T e e T W W e T L T T e e B T St A RN B N R I e
e e e T T T T e T T T e O I SIS RT N I Y SIS F g Nty X3 A

AW
MRS

Nnew > Tcost / Tgain

where
Nnew = is the number of times the new instruction
is executed for the particular application
Tgain = is the difference in the execution times
of the sequence of instructions that had
to be executed by the system every time
the operation was performed before the
addition of the new instruction and the
execution time of the new instruction.
Tcost - is the increase in the application program
execution time that was caused by the
suppression of some hardware components of
the processor '
For the second part of the model, the criterion for the
addition of the new instruction, states that:

Nnew > Es / Ls

where

Ls - represents the gain in the number of control
unit states, obtained each time the operation
performed by the the instruction and/or the
seqguence is executed.

Es - represents the «cost in the number of states
due to the addition of the new instruction to
the system instruction set.

The two parts of the model need to be thoroughly checked
and confirmed with measured wvalues, so that their validity
is determined.

78

-1,

F
[
.

S

. -
»

3

M N
¥

A]
P tad
el

v ¥ v .
AT AN

P ol L o et St S st aie et ast gp i gey - o 5 ot - T . ;
A A ST Tt SR A SO AE A e A A A A KA S i Al A Sub il te e A Aal A Al il i v dala® e *ia vl Sty ‘AL SR vhoaL o .

i
L)
Pl A
d s

MR
"l .

P
AA R
a_v
a5

P
Pl s

-

APPENDIX A , ' .
FAST FOURIER TRANSEFORM 5

FET MOVE. W N, N2 ; N2=N/2 :
ASR. W N2 ; -~
MOVE. W NU,NU1 ; NU1=NU-1
SUBI. W #1,NUl ;
CLR.W K ; K=0 _ _
MOVE. W NU, DO ;DO 100 L=1,NU !!;

LOOP1 BEQ. S 100 ; A
102 MOVE. W N2,D1 ;DO 101 I=1,N2 R
LOOP2 BEQ. S 101 ; s
MOVE.W NU1,D2 ; P=IBITR(K/2**NU1,NU) =

MOVE.W K,D3 ; o

LOOP3 BEQ. S 200 ; S
ASR. W #1,D3 ; L

SUBI.W #1,D2 ; =

BRA LOOP3 ; e

200 MOVE. W D3,J ; o
JSR IBITR ; o

MOVE.L RX,P ; s

MOVE.W N,D3 ;ARG = 6.283185*P/FLOAT(N) B
;convert N to float. point o

MOVEQ.L #159,D4 ; S

300 ASL #1,D3 ; o
SUBI.L #1,D4 ; S

BCC 300 ; e

MOVE.B #9,D5 ; L

LSR. L D5, D3 ; o

—

ROR. L DS, D4 ; o

ANDI.L mask,D4 ;clear D4 except exponent L}E

OR. L D4,D3 ;D3 <== FLOAT(N) o

MOVE.L D3,EPN ;store FEN N

79

S WL

R SR e - TR SR . T e e T T e T e e et e ST e
A T e N e e et T ™ -".zi‘.:‘.a"uf‘.;}.i‘.;_;.'ﬁﬂ.iﬁ.’f.ﬁ.‘r..'-..'g‘s_.‘,-;\v-i'rf.‘.;& A"

..........

LA,

400

MOVE. L
MOVEQ. L
ASL
SUBI. L
BCC
MOVE. B
LSR. L
ROR. L
ANDI. L
OR. L
MOVE. L
LEA

LEA

LEA
JSR
MOVE. L
MOVE. B
JSR
LEA
JSR
JSR
LEA
JSR
MOVE. L
JSR
MOVE. L
JSR
MOVE. L
MOVE.
ADDI. W
MOVE. W
ADD. W
MOVE. W

=

P,D3
#159,D4
#1,D3;
#1,D4
400
#9,D5
D5,D3
D5,D4
mask,D4
D4,D3
D3, EFPP
FPWR, A2

FPACC, Al

FPP, AO
GETFP
#2PI,(Al)
#2PI,2(Al)
MULTEP
FPN, AO
GETFP
DIVFP

ARG, AOQ
STFP
ARG, X
COSINE
RESULT,C
SINE
RESULT, S
K,K1l

#1. K1
K1,D3
N2,D3

D3, K1N2

;convert P to float. point

.
7’

;clear D4 except exponent
;D4 <-= FLOAT(P)

; store EPP

;A2 points to Floating Point
;Working Register

;Al points to Floating Point
;Accumulator

; FPWR <-=- FPP

; FPACC <-- 2PI

; FPACC <=-- 2PI

; FPWR <== EFPN

; FPACC <=-- 2PI/FPN

;store ARG

; C=COS(ARG)

;store C

; S=SIN(ARG)

;store S

; K1=K+1

; KIN2=K1+N2

.
7

..
.
RN

rE v e - - -
.,-,-,.,.,.,_-,q-
—{f(ﬁﬂ{) \

L

A

EEP e

-

A
".'

-~

s’ .
R A
. .

()

Ay

TERE
ey

............ -

LEA XREAL, A3 ; TREAL=XREAL(K1N2) *C+

; +XIMAG(K1N2)*S
LEA XIMAG, Ad ;
ASL.W #1,D3 ;D3 <=-= 2%KIN2
SUBI. W #2,D3 ;D3 <== 2%KIN2-2
ADDA. W D3,A3 ;
ADDA. W D3,A4 ;
MOVEA.L A3,A0 ; FPWR <-- XREAL(K1N2)
JSR GETEP ;
MOVE. L (A2),(Al) ; FPACC <=-- FPWR
MOVE. B 2(A2),2(Al1) ;
LEA C,A0 . ;FPWR <== ¢
JSR GETEP ;
JSR MULTEP ; FPACC <~= XREAL(KI1N2)*C
LEA TREAL,AQ ; store partial result
JSR STFP ;
MOVEA.L A4,A0 ; FPWR <=-- XIMAG(K1N2)
JSR GETEP ;
MOVE. L (A2),(Al) ; FPACC <-- FPWR
MOVE. B 2(A2),2(Al) ;
LEA S,A0 . ;EPWR <=-= S
JSR GETEP ;
JSR MULTEP ; FPACC <-= XIMAG(KI1N2)*S
LEA TREAL, AO ; FPWR <-= partial TREAL
JSR GETEP ;
JSR ADDEP ; FPACC <=-- TREAL
JSR STEP ; store TREAL

; TIMAG=XIMAG(K1N2)*C-~

; -XREAL(K1N2)*S
MOVEA.L A3,A0 ; FPWR <-=- XREAL(KIN2)
JSR GETEP ;
MOVE. L (A2),(Al) ; FPACC <-- FPWR
MOVE. B 2(A2),2(Al1) ;
LEA S,AQ ;EPWR <=~ S
J5R GETEP ;

31
RN e T L T e T e

Te

5 o
:‘ Y
! %
. o
E JSR MULTEP ; FPACC <-- XREAL(KIN2)*S :ﬁ:
. LEA TIMAG, AO ;store partial result N
i JSR STEP ; ‘i
: EORI.L mask, (AO) ;change sign of TIMAG >
" MOVEA.L A4,A0 ;FPWR <== XIMAG(KIN2) e
i JSR GETFP ; A
MOVE.L (A2),(Al) ;FPACC <=-- FPWR s

y MOVE.B 2(A2),2(Al) ; i
; LEA C,A0 ;EPWR <== C =
2 JSR GETFP ; e
. JSR MULTEP ;FPACC <=- XIMAG(KIN2)*C B
5 LEA TIVAG,AO ;FPWR <-- partial TIMAG -
JSR GETEP ; ' 7

JSR ADDEP ;FPACC <== TIMAG Py

JSR STEP ; store TIMAG 'é:

; XREAL(K1N2)=XREAL(K1) -TREAL T

EORI mask, TREAL ;change sign of TREAL o)

MOVE.L TREAL,(A3) ;XREAL(KIN2) <-~ TREAL SR

LEA ' XREAL, AS ; E

MOVE.L K1,D3 ; =

ASL #1,D3 ; 5

SUBI.L #2,D3 ; !

ADDA D3, A5 ; e

MOVEA.L AS,AO ;FPWR <=- XREAL(K1) 3

JSR GETEP ; N

MOVE.L (A2),(Al) ; FPACC <-- FPWR v

MOVE.B 2(A2),2(Al) ; Eg}

MOVEA.L A3,A0 ;FPWR <=- XREAL(KIN2) o

JSR GETFP ; 2

JSR ADDEP ; FPACC <-- XREAL(K1)-TREAL o

JSR STEP ;store e

; KIMAG(K1N2) =XIMAG(K1) - ;}i

; -TINAG -

EORI mask, TIMAG ;change sign of TIMAG S

MOVE.L TIMAG,(A4) ;XIMAG(KIN2) <-- -TIMAG "§

Y

82 N

I;.-:

[

e T R e L R L e e e N

R Sai d o S Ao S b ML A A S s et el A e b R L ey o

LEA XIMAG, A6 ;

ADDA. L D3,A6 ;A6 ==> XIMAG(K1l)
MOVEA. L A6,AO ; FPWR <=~ XIMAG(K1)
JSR GETFP ;
MOVE. L (A2),(Al) ;FPACC <=~ FPWR
MOVE. B 2(A2),2(A1) ;
MOVEA. L A4,AQ ; FPWR <== XIMAG(K1N2)
JSR GETFP ;
JSR ADDFP ; FPACC <=~ XIMAG(KI1N2)
JSR STEP ;store
; XREAL(K1)=XREAL(K1)+
; +TREAL
EORI mask, TREAL ;change sign of -TREAL
LEA TREAL, AO ; FPWR <=-=- TREAL
JSR GETFP ;
MOVE. L (A2),(Al) ; FPACC <=« FPWR
MOVE. B 2(A2),2(A1) ;
MOVEA. L A5,A0 ; FPWR <=-=- XREAL(K1)
JSR '~ GETFP - ;
JSR ADDFP ; FPACC <=-- final XREAL(K1l)
JSR STEP ; store
; XIMAG(K1)=XIMAG(K1)+
; +TIMAG
EORI mask, TIMAG ;change sign of -TIMAG
LEA TIMAG,AQ ; FPWR <== TIMAG
JSR GETFEP ;
MOVE. L (A2),(Al) ; FPACC <== FPWR
MOVE. B 2(A2),2(A1) ;
MOVEA. L A6,AQ ; FPWR <=-= partial XIMAG(K1)
JSR GETFP ;
JSR ADDFP ; FPACC <=-- final XIMAG(K1)
JSR STEP ; store o
ADDI.W #1,K ;K=K+1 o
SUBQ.W #1,D1 ; i
BRA LOOP2 ; w
83 o
s

..
.............................

101 MOVE.W N2,D1 ; K=K+N2
ADD. W K,D1 ;
MOVE.W Di,K ;
CMP. W N,D1 ;IF (K.LT.N) GO TO 102
BMI 102 ;
CLR. W K ; K=0
SUBI.W #1,NUl ;NU1=NU1-1
ASR. W N2 ;N2=N2,/2
’ SUBQ. W #1,D0 ;
BRA LOOP1 ;
100 MOVE.W N,DO ;
MOVE.W #1,D1 ;DO 103 K=1,N
' LOOP4 BEQ.S 103 ;
MOVE.W D1,J ; I=IBITR(K-1,NU)+1
SUBI.W #1,J ;
JSR IBITR ;
MOVE. W RX,I ;
ADDI. W #1,1 ;
" CMP.W - I,D1 ;IF (I.LE.K) GO TO 103
BPL 1003 ;
LEA XREAL, A3 ; TREAL=XREAL(K)
LEA XIMAG,A4 ;
MOVE. W D1,D2 :
ASR #1,D2 ;
SUBI.W #2,D2 ;
MOVEA.L A3,A5 ;
MOVEA. L A4, A6 ;
MOVE. W I,D3 ;
ASR #1,D3 H
SUBI #2,D3 ;
ADDA. L D1,A3 ;A3 ==> XREAL(K)
ADDA. L D1,A5 ;A5 =-> XIMAG(K)
ADDA. L D2,A4 ;A4 =-=-> XREAL(I)
ADDA. L D2,A6 ;A6 ==> XIMAG(1I)
[MOVE. L (A3),TREAL H
84

—T T y B 4 v ¥ oa " m " Y ¥ T
) (AL e i e i A ls Ga e A At bejiie e e /AR pul N ch U S R S NS AMIN g vt 2% e Sl - A ha e BAnta i S O A i e bbb

MOVE.
MOVE.
MOVE.
MOVE.
MOVE.

(A5),TIMAG ; TIMAG=XIMAG(K)
(A4),(A3) ; XREAL(K)=XREAL(I)
(A6),(AS) s XIMAG(K)=XIMAG(1I)
TREAL, (A4) ; XREAL(I)=TREAL
TIMAG, (A6) ; XIMAG(I)=TIMAG
1003 ADDQ. #1,D1 ;

SUBQ. #1,D0 ;

BRA LOOP4 ;
b 103 RTS ; RETURN

-0 SO o BN = B R - S

85

..... © . S e A e e e T T O A e
.............. .

............

. - -, . e .
e e e T I S e Sl e e e e SRR . i . . L R
R R L S A S R AW R AW A RO SIS WA T RS AT ISA R VOV SV Ve VO - Ba st mt o e SndaSadontonn S S A

APPENDIX B !E
IBITR FUNCTION - e

IBITR MOVEM. L DO=-D3,~-(A7) ;save registers §
MOVE. W J,J1 ;91=J |3

. R
CLR. W IBIT ; IBITR=0 o
MOVE.W NU,DO ;DO 200 I=1,NU ~h
LOOP BEQ. S 2000 ; o

MOVE.W J1,D1 ;J2=31/2
ASR. W #1,D1 ;
MOVE.W D1,D2 ;D2 <-= J2)
; IBITR=IBITR*2+(J1-2*%J2) ,}
ASL.W #1,D2 ; . K
MOVE.W J1,D3 ; -
SUB. W D2,D3 ;D2 <== (J1=2%J2) 3
ASL IBIT ;
ADD. W D3, IBIT ; z

-

LA

Nk

[N

1 MOVE.W D1,J1 ; J1=J2 o
y SUBI #1,D0 ; ﬁ\
BRA LOOP ;)

2000 MOVEM. L (A7)+,DO-D3 ;restore registers ,

RTS ; RETURN o

REAPAEIRNEA | PO Bt

.

, v -
PN
P 1

¢ e
2,0

'
.
4o s

R
T
|

..

SINE

100

200

300

400

APPENDIX C
SINE FUNCTION

MOVEM.L DO-D4,-(A7)

MOVE. L X,DO

BTST. L #bit,X

BNE 100

MOVE. B #-1,SGN

BCHG #bit,DO

BRA 200

MOVE. B #1, SGN

MOVE. L DO, Y

CMP.L YMAX,DO

BPL 300

error message

MOVEA.L Y,A0

JSR GETFP

MOVE. L 1/PI,(Al)

MOVE. B 1/PI,2(Al)

JSR MULTEP

MOVEA.L Y/PI,LAO

JSR STFP

MOVE. L Y/PI,D1

MOVE. L D1,D2

ANDI. L mask,D1

BSET #bit,D1

LSR #7,D2

SWAP D2

SUBI.B #127,D2

BPL 400

MOVE. W #0,N

BRA 500

BME 600

87

...... A e e T T

; save registers
; test sign of X
;SGN <== =1

;D0 <== =DO
;SGN <=-=- 1

;Y <== DO

; YMAX - DO

.
’

;AQ ==> Y

;FPWR <== Y

; FPACC <=-= inverse of pi
; FPACC <=~-=- Y/PI

;AQ ==> Y/PI

;store Y/PI

;D1 <== Y/PI

;D1 <=-=- mantissa
;insert hidden bit

;hi D2 has exponent
;1lo D2 has exponent
;extract bias

;1f positive go to 400
;clear N

;1f zero go to 600

..............

.............

-
A
)

'y

{.
L2 '..‘I

e an g o o

Bt an o

e

MOVE. W #1,N

BRA 500

600 ASL. L D2,D1
ANDI mask,D1l -
ASR. L #7,D1
SWAP D1
MOVE. W D1,N

500 MOVE. L Y/PI,XN
BTST.B #0,N
BEQ 700
BCHG #7,SGN

700 MOVE. L X, |X]
ANDI mask, | X|
MOVEA.L XN,AO
JSR GETFEP

MOVE. L -C1l,(Al)
MOVE. B -C1l,2(Al)

JSR MULTEP
MOVEA.L |X]|,AO
JSR GETFP
JSR ADDFP
MOVEA.L TEMP,AOQ
JSR STFP
MOVEA.L XN, A0
JSR GETFP
MOVE. L -C2,(Al)
MOVE. B -C2,2(Al)
JSR MULTEP
MOVEA.L TEMP,AO
JSR GETFP
JSR ADDEP
MOVEA.L F,A0
JSR STFP
88
R T T e e ~ CTe

;N <==1

;shift left mantissa by
;exponent value, max = 8
; leave only integer part
;mantissa in lo D1

;N <== integer of mantissa
; XN <== FLOAT(N)

;N even ?

;if even do nothing
;otherwise

;change sign of SGN
;determine F

;clear sign bit

;EFPWR <== XN

;s FPACC <=- C1l

; FPACC <== =(XN*Cl)
;EPWR <~= |X]|

;FPACC <== |X|=(XN*C1)

; store FPACC

;s FPWR <~= XN

;FPACC <== =C2

; FPACC <=- =(XN*C2)

; FPWR <== [X[=(XN*C1)
;FPACC <== F

;store F

.....
.....................

T T——

NI TS RERIEN IS 2,

MOVE. L
ANDI. L
CMPI. L
BMI

MOVEA. L
JSR
MOVE. L
MOVE. B
JSR

MOVE. L
MOVE. B
MOVE. L
MOVE. B
JSR
MOVEA. L
JSR
MOVE. L
MOVE. B
JSR
MOVEA. L
JSR

JSR
MOVE. L
MOVE. B
JSR
MOVEA. L
JSR

JSR
MOVE. L
MOVE. B
JSR
MOVEA. L

F,|F|
mask, |F|

|F|,#eps

800

F,A0
GETFP

(A2),(Al)
2(A2),2(Al1)

MULTEP

(Al),(A2)
2(Al),2(A2)

R4, (Al)
R4,2(Al)
MULTFP
G, A0
STFP

R3, (A2)
R3,2(A2)
ADDFP

G, A0
GETEP
MULTEP
R2,(A2)
R2,2(A2)
ADDEP

G, A0
GETFP
MULTEP
R1,(A2)
R1,2(A2)
ADDEP

G, A0

i |E| <== F

;clear sign bit
;|IE} - eps

;branch if [f]| < eps
;otherwise
;determine R(g)
;FPWR <== F

; FPACC <-=- F

; FPACC <== FE*F

;G = F*F

;EPWR <== G

; FPACC <== r4

; FPACC <== r4*G
;store G

;FPWR <== 13
;FPACC <== r4*G+r3
;FPWR <-- G

.
’

;FPACC <=~ (r4*G+r3)*G

; FPWR <== r2

.
)

;FPACC <=~ (r4*G+r3)*G+r2

; FPWR <-= G
; FPACC <=~ ((
; FPWR <== rl
; FPACC <== (
;EPWR <=-= G

}*G+rl

..........

)*G+r2)*G

. . . DT ST A
» A e e N e AT AN

3
2 JSR GETEP ;
JSR MULTEP ; FPACC <=- R(g)
’ MOVEA. L F,AQ ; FPWR <== F
b JSR GETFEP ;
- JSR MULTEP ; FPACC <== F*R(g)
: JSR ADDFEP ; FPACC <== F*R(g)+F
2 MOVEA. L RESULT, AC ; store result
:f JSR STEFP ;
L BRA 200 :
; 800 MOVE. L F,RESULT ;result <-=- F
= 900 MOVE. B SGN, D3 ;test value of SGN
. BPL DONE ;1f positive do nothing
- ;otherwise
3 ;change sign of result
& 'MOVE.L RESULT,D4 ;
' BCHG #31,D4 ;

MOVE. L D4,RESULT ;

DONE MOVEM. L (A7)+,D0-D4 ;restore registers

RTS ;return to main program
‘."\
)
¥
)
90
-

e e e e e e e e e e S e e
N 4 G L "

........................

.L.".
s

%
7

.,
o

"2,
S

v > v v
EX
A

APPENDIX D
COSINE FUNCTION

COSINE MOVEM.L DO=-D4,-(A7) ;save registers

MOVE. B #1, SGN ;SGN <-- 1
MOVE.L X, |X| S 1X| <=- x
: ANDI mask, | X| ;clear sign bit
E MOVEA.L |X|,AO ;FPWR <-= |X|
i JSR GETEP ;
i MOVE. L PI/2,(Al) ; FPACC <=- PI/2
' MOVE.B PI/2,2(Al) ;
r JSR ADDFP ;FPACC <==- |X|+PI/2
MOVEA.L Y,AO ;store Y
JSR STFP ;
MOVE. L Y, DO _ ;DO <== Y
CMP. L YMAX, DO ;YMAX - DO
BPL 100 ;

error message

100 MOVEA. L Y,AOQ ;A0 ==> Y
JSR GETFP ;FPWR <-= Y
MOVE. L 1/PI,(Al) ;FPACC <-- inverse of pi
MOVE. B 1/PI,2(Al) ;
JSR MULTEP ; FPACC <=- Y/PI
MOVEA. L Y/PI,AQ ;A0 --> Y/PI
JSR STEP ;store Y/PI
MOVE. L Y/PI,D1 ;D1 <=-=- Y/PI
MOVE. L D1,D2 ;
ANDI. L mask,D1l ;D1 <=- mantissa
BSET #bit,D1 ;insert hidden bit
LSR #7,D2 ;hi D2 has exponent
SWAP D2 ;1o D2 has exponent
SUBI.B #127,D2 ;extract bias

BPL 200 ;1f positive go to 200

...

. " I U L L T C S e e e e N e e e o LR
- - ., -, . - - - -« . - - - - - - - - - . - - - - - - . - - - ~ -,
PR YR . LT e T e T N W
- - “ . R I IR IR R *

s A e A 4 ' y iy ? x

.. 3
. My
\ MOVE.W #O,N jclear N §g:
v ERA 300 ; g%
200 BNE 400 ;if zero go to 400 N

. MOVE.W #1,N N <== 1 ;5
F. BRA 300 ; RS
. 400 ASL. L D2,D1 ;shift left mantissa by)
’ ;exponent value, max = 8 *’..
. ANDI mask,Dl ; leave only integer part ;_:'.
: ASR.L #7,D1 ; o
- SWAP D1 ;mantissa in lo D1 s
3 MOVE. W Di,N ;N <== integer of mantissa e
’ 300 MOVE.L Y¥/PI,XN ;XN <== FLOAT(N) fi‘
.. BTST.B #O,N ;N even ? S
BEQ 500 ;if even do nothing :jl‘-_':v
P‘ _ ;otherwise ;
- BCHG #7,SGN ;change sign of SGN 5y
g 500 MOVEA.L _ XN,AO ;FPWR <=-= XN jzf
: JSR GETEP ; o
MOVE.L #=-.5,(Al) ;FPACC <-- .5 1

MOVE.B #-.5,2(Al) o

JSR ADDEP ; FPACC <==XN-.5 2

JSR STEP ; store XN 4

» ;determine F ;

MOVEA.L XN,AO ;FPWR <== XN o

JSR GETEP ; o

MOVE. L -C1,(Al) ;FPACC <== C1 i

MOVE.B =-Cl,2(Al) ; <L

JSR MULTEP ;FPACC <=-- -(XN*C1) Fﬁ

MOVEA.L |X[,A0 ;FPWR <-= |X]| o

JSR GETFP ; BS

JSR ADDEP ;FPACC <-= |X|-(XN*C1) =

MOVEA.L TEMP,AO ;store FPACC -

JSR STEFP ; 2

MOVEA.L XN,AO ;FPWR <=- XN 3

JSR GETEP ; et
92 5
3

-'_'._j

. -1

- RS

...... e W ~
TPt ; LI . ,oe
.......

S PCPNEIE O DV S0 e REWY N REIV SISV NP S AP I P A S SRR S S ST G S, I S I ACA WRRIIAS 2 5, WA e Sl S

ER Rt e an o e s an

MOVE. L
MOVE. B
JSR
MOVEA. L
JSR
JSR
MOVEA. L
JSR
MOVE. L
ANDI. L
CMPI.L
BMI

MOVEA. L
JSR
MOVE. L
MOVE.
JSR

(vs]

MOVE.
MOVE.
MOVE.
MOVE.
JSR
MOVEA. L
JSR
MOVE. L
MOVE. B
JSR
MOVEA. L
JSR

JSR
MOVE. L
MOVE. B

W W

-C2,(Al)
-C2,2(Al)
MULTEP
TEMP, AO
GETEP
ADDEP
F,AQ
STEP
F,|F|
mask, |F|
|F|, #eps
600

F,AQ
GETEP
(A2),(Al)

2(A2),2(Al1)

MULTFP

(Al),(A2)

2(Al),2(A2)

R4, (Al)
R4,2(Al)
MULTEP
G, A0
STEP
R3,(A2)
R3,2(A2)
ADDFP

G, A0
GETFP
MULTFP
R2,(A2)
R2,2(A2)

; FPACC <== =C2

; FPACC <== =~(XN#*C2)
;FPWR <== |X|=(XN*C1)
; FPACC <== F

;store F

;|EFl <== F

;clear sign bit
;|E| = eps

;branch if |£f| < eps
;otherwise
;determine R(g)
;FPWR <== F

;FPACC <==- F
;FPACC <== F*F

;G = E*F

;FPWR <== G

; FPACC <=-- r4

; FPACC <== r4*G
;store G

;FPWR <=-- r3

;FPACC <== r4#*G+r3
;FPWR <== G

.
’

; FPACC <== (r4*G+r3)*G

;FPWR <== 12

600
700

DONE

JSR
MOVEA. L
JSR

JSR
MOVE. L
MOVE. B
JSR
MOVEA. L
JSR

JSR
MOVEA. L
JSR

JSR

JSR
MOVEA. L
JSR

BRA
MOVE. L
MOVE. B
BPL

MOVE. L
BCHG
MOVE. L
MOVEM. L
RTS

ADDEP

G, A0
GETFP
MULTEP
R1,(A2)
R1,2(A2)
ADDFP

G, A0
GETFP
MULTEP
F,AO
GETEP
MULTEP
ADDEP
RESULT, AO
STEP

700
F,RESULT
SGN, D3
DONE

RESULT, D4

#31,D4

D4,RESULT
(A7)+,D0-D4

;FPACC <== (ré4*G+r3)*G+r2

;FPWR <== G

;FPACC <== (()*G+r2)*G
;EPWR <~- rl

;FPACC <== ()*G+rl

;EPWR <== G

; FPACC <=« R(9Q)

;FPWR <=- F

; FPACC <=« F*R(g)

; FPACC <=-= F*R(g)+F

; store result

;result <-- F

; test value of SGN

;1f positive do nothing
; otherwise

;change sign of result
;restore registers

; return to main program

- . W W I N W TR WY Na OIS (N N A VNI N TN IW W,

’?W. T

S P AR S

LIST OF REFERENCES

Katevenls, Manolis H.

, educed Instrgc;;on Se
UQvQBL_I Arc hétectu;es iE_ . esis,
niversity o alifornia Berke ey,1983

Radin, George, "The 801 Minicomputer" IBM Jgurngl of
Rese ggg Development, Volgme 27 Number May

Stanford University Computer Systems Laboratory,
Technical Report 223, MIP VLS rocesso
A ect by Hennessy, an a others, ovember, .

Brigham, E. QOran, The Fast Fourier Transform,
Pregtlce Hall, 1974.

Eccles, William J., Microprocess Systems, a l6=bit
Approach ley, %985.

ach, Addison=Wes

Cody Jr Wllllam J. and Waite William, Software
Manggl ﬁg; the Elsmentary Euncﬁ;gg Prentice-Ha II

Stone ., and others, Introduction to Computer
A;gh;ﬁ_gtg;e Science Researc ssociates, 1980.

Hill, Frederick J. and Peterson, Gerald R., Digita
Sgstems: Hardware rganization and Desidn, iley,

95

................ R AT e T e
w

ol | 2828

Y ¥y

B A

A JCRNY
Sl el)

§ |

s
e
’

»
2
L

P
I"

A x

A |5

M
o
' .

o
W

T e
v T LA
fal s vST e

'l'
. .
v

AP W 4N A A

. . !.v"A
RN N A

P
0
[%

.

R
T

‘.‘.'..

"
-

»
Tw

| AN

.

.
.
¢

.
e

- RO

:
LI .
R .

AR

- e T
[A NN PR S - EELN . - R e L Y
PR PP A bl o s _).uAA_ NPT R PO AT, Y T T DY VU Vv TV PO T, VLV v

_AD-A167 873 THE RISC (REDUCED INSTRUCTION SET COMPUTER)
RRCHITECTURE AND COMPUTER PERFORNANCE EVﬁLUﬂTIOM(U)
NAVAL POSTGRADURTE SCHOOL MONTEREY CA M F BARROS
UNCLASSIFIED MAR 86

- e . i
L B2 T T R T D O R —— T |
3 . - ¢ A N N N N N N N

&

\/
v
y
. o
I
4 '.
I4
, -
/. .
! -
.
’
’ ,
Necs J‘ H /
J: :. |
. :.‘ '-
‘ L]
I
’

Y
o
- “:wn.

[0

rFErEEEE

EEEE
S

L = m
= ju

1§

e

Illll

MICROCOM -

. _‘ Rt

;_\A-L Y ,‘q':

P S e b By

CHhL o,

Y
.l
“~
-l

INITIAL DISTRIBUTION LIST

No.

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304~6145

Librarg, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Dr. Harriett B. Rigas

Code 62Rr

Naval Postgraduate School
Monterey, California 93943

Dr. Larry Abbott

Code 62

Naval Postgraduate School
Monterey, California 93943

Dir. Serv. Instrucao e Treino
Ed1f1c10 do Ministerio da Marinha
Rua do Arsenal

1000 Lisboa

Portugal

Manuel Pedrosa de_ Barros .
Celula 5 Bloco 5 Lote D, 3 Direito
2795 Linda-a=-Velha

Portugal

96

Copies

o, .y
P -
AL VLN

M.

poaN
N LR

B
-
-

LI
(¥ .43

EARERAL.

PRy
BAL
e Te

’
A Y

g

Ty "y

A

SN

TR
A

i i,

. e iy

. v e
UGS
.l'l: 3 ‘l "

A P
[AENE AR o
(LI

ATy
va'e'y

oy

V.. &

b g

2g Ao

P INATMA Dl ad 'S,

el e

VR it RV g A

-
L

W I 8

