
'7-fal 873 THE RISC (REUCED INSTRUCTION SET CONPUTER) 12
ARCHITECTURE 0N COPUTER PERFORNANCE EVALUATION(U)

RD t6 73 NAYAL POSTGRDUATE SCHOOL NiNTRE CR N F BARROS
UPMCLASSIFIED HAR 96 F/0 9/2 ML

132

9;6 Jil 2,

- - , o n r C •/ 9- -T

I-

M~c~cnr"CH#(

'/-2

328::::

I-..- -

'r .

NAVAL POSTGRADUATE SCHOOL
Monterey, California

00

IO

DTIC
ELECTE D

MAY 2 9 1986.-

THESIS
THE RISC ARCHITECTURE AND

COMPUTER PERFORMANCE EVALUATION

by

Manuel Filipo Pedrosa de Barros

March 198(;

Thesis Advisor: Harriett 13. ,

Approved for pill c r(,as ; ion st Pi) 111 je iflimi (,d.

-. "

SECURIrY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
* & REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

* UNCLASSIFIED ___________________

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTIONI/AVAILABILITY OF REPORT Approved tor
public release; distribution is

2b DECLASSiFICATON/ DOWNGRADING SCHEDULE unlimited%

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)%

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL ?a. NAME OF MONITORING ORGANI1ZATIONY

Naval Postgraduate Schoolj (if applicable) Naval Postgraduate School
62__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

6c ADDRESS kCity. State, and Zip Code) 7b. ADDRESS (City, State, and ZIP Code)

* Monterey, California 93943-5000 Monterey, California 93943-5000

Sa NAME OF FUNDING/ISPONSORING O b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
*ORGANIZATION (it applicable)

Sc aDDRE SS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK(WORK UNIT
ELEMENT NO NO NO jACCESSION NO

~Include Security Classification)
* THE RISC ARCHITECTURE AND COMPUTER PERFORMANCE EVALUATION

PERSONAL AUTHOR(S)
Manuel Filipe Pedrosa de Barros

* L ~ ~ EPOT 3bTIME COVERED 14 DATE OF REPORT (YaMnh a)15 PAGE COUNT

Engineer's Thesis FROM ____To___ 86 March 97

6 SC;PPLLVENTARY NOTATION

* COSATI CODES IB SUBJECT TERMS (Continue on reverse if necessary ndidentify by block number)
GROUP SUB-GROUP RISC Architecture; CISC Architecture;

* Computer Performance Evaluation

13 AYRAC- (Continue on reverie if necessary and identify by block number)
A definition of Reduced Instruction Set Computers is developed.

A computer performance model which allows the evaluation of

In xamleon the use ofthe model to compute the performance
altenatvesfor a given application is presented to study the offect

)f ~headdtio ofaninstruction to a processor instruet ion set.

A WA~uIL. .' re 1J~C A-SSTPAC' SECAIqTV CAS F CA

* ~3' L 'A ITY .,IF:) 2 AS -4P 1 . LNC\SS I F IED

r'i * I] ~1 I (10)8)1; II;-21(82

? 1JV ,

~A 1-e eo I Q .f ' . - . - . .> -

Approved for public release; distribution is unlimited.

The RISC Architecture
and

Computer Performance Evaluation

by

Manuel Filipe Pedrosa de Barros
Lieutenant, Portuguese Navy

B. S. , Escola Naval, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

and

ELECTRICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
• March 1986

Author: " ' " . . .
-Manu -eilip reurosa de Baro

Approved by:
Harriett B., Rigas, Thesis Advisor

ry Abbot, Second Reader
_//

Harriett B. Rigas, Chairman, Department or
Electrical and Computer Engineering

Jctin N. Dyer,
Dean of Science an& Engineering

2

'.Z

ABSTRACT

A definition of Reduced Instruction Set Computers is

developed.

A computer performance model which allows the evaluation

of architectural alternatives is presented.

An example on the use of the model to compute the

performance alternatives for a given application is

presented to study the effect of the addition of an instruc-

tion to a processor instruction set.

Accession For

NTIS GRA&I
DTIC TAB 0
Unannounced

By-"'"
Distribution/

V- -_____

1 Avwilablity Codes ..
Avail and/or

Dist Special

1- '1','.

30

3

* *.:. .. .

7, T TV N L" -. V x-A W 5' -

TABLE OF CONT9NTS

I. INTRODUCTION.....................9

II. WHAT IS A RISC ?.......... 1

A. INTRODUCTION.............. 1

B. THE RISC IAND II................12

C. THE 801 MINICOMPUTER...............15

D. THE MIPS.....................16

E. TOWARD A DEFINITION OF A RISC MACHINE 17

III. MY APPROACH TO COMPUTER PERFORMANCE EVALUATION .. 18

A. INTRODUCTION..................18

B. EVALUATION AND MEASUREMENTS...........18

C. THE RISC/CISC CONTROVERSY............20

D. AN EXAMPLE....................22

E. SUGGESTED APPROACH................25

IV. TIMING ANALYSIS...................28

A. INTRODUCTION 28

B. THE COMPUTER SYSTEM...............29

1. Memory and I/O Interface. 30

2. The Busses.................31

3. The Processor................32

C. THE APPLICATION.................32

D. THE PERFORMANCE.................35

E. A SPECIAL CASE AND THE RISC...........37

F. THE SYSTEM ARCHITECTURE AND TIMING 37

V . CONTROL ANALYSIS...................43

A . INTRODUCTION..................43
B. T:IE CONTROL UNIT AS A FINITE STATE MACHINE .. 44

C. THE CONTROL UNIT COMPLEXITY..........45

44

D. THE APPLICATION AND THE CONTROL UNIT . .47

E. THE MODEL......................49

VI. CASE ANALYSIS...I...................54

A. INTRODUCTION...................54

B. THE ADDITION OF AN INSTRUCTION....I........54

C. THE COST/GAIN TRADEOFFI.............56

1. Timing Criterion..I...............57

2. Control Unit Complexity Criterion 62

D. AN ILLUSTRATIVE EXAMPLE............64

1. The Processor................64

2. The Application..............65

3. The Floating Point Representation . . I. 66.

4. The Hardware Involved............67

5. The Model.................70

VII. CONCLUSIONS.I........................76

APPENDIX A: FAST FOURIER TRANSFORM.............79

APPENDIX B: IBITR FUNCTIONI..................86

APPENDIX C: SINE FUNCTION..................87

APPENDIX D: COSINE FUNCTION...............91

LIST OF REFERENCES.....................95

INITIAL DISTRIBUTION LIST..................96

5

LIST OF TABLES

I EXECUTION TIME OF EACH SUBROUTINE IN FAST
FOURIER TRANSFORM PROGRAM 72

II FAST FOURIER TRANSFORM APPLICATION PROGRAM
EXECUTION TIME 72

III FFT PROGRAM EXECUTION TIME BEFORE THE
ADDITION OF THE FLOATING POINT MULTIPLY
INSTRUCTION 73

IV FFT PROGRAM EXECUTION TIME AFTER THE
ADDITION OF THE FLOATING POINT MULTIPLY
INSTRUCTION 74

V PERFORMANCE EFFECTS OF THE ADDITION OF
THE FLOATING POINT MULTIPLY INSTRUCTION 75

-77

.7S

A..

LIST OF FIGURES

2. 1 RISC Register Window...................14

3. 1 Conceptual View.......................26

5. 1 Simple Control Unit State Diagram............44

5.2 More Detailed Control Unit State Diagram.......45

6. 1 Floating Point Representation..............66

6. 2 General Hardware Structure for the Floating
Point Multiply Instruction...............68

~ -.... '-- ... ,P .*~ . . .

a -. - 4 . - , S..-. + + ".,. . ,,,..

I V

104

ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. Rigas for . -
her guidance in completing this project.

To my parents for all they taught me and finally and

most important to my wife Carmo and my son Andre for their

constant support and understanding, without which I would

not have got here, I dedicate this work.

3-.

"I;

.. o- .. .

I.

I. INTRODUCTION

The first Reduced Instruction Set Computer (RISC)

appeared at the end of the 1970's and since then long and

heated discussions have taken place in the computer archi-

tecture community. These discussions centered around the

validity of the claims made by the RISC proponents regarding

the performance achieved by the proposed machines when

compared to traditional computers that are referred to as

Complex Instruction Set Computers (CISC).

Due to a lack of an appropriate method to evaluate the

performance effects of various architectural features, it is

difficult to resolve the RISC/CISC controversy.

The interest in the ideas proposed by this philosophy

has bern- growing, and presently many of the major computer

companies are investing a great deal in this new type of

computer architecture.

This thesis tries, first, to define the basic character-

istics of a Reduced Instruction Set Computer, so that it is

possible to focus on the specific architectural features

peculiar to RISC machines.

The approach that in the author's opinion has to be

followed, in order to evaluate computer performance,

together with the author's disagreement on the approach

taken on several published comparisons between RISC and CISC

machines, are presented.

A model for computer performance evaluation is

suggested. This model is composed of two parts. The first

part deals with the timing analysis of the computer perform-

ance. The second part sets a criterion to determine the

efficiency of a given computer control unit when used for a

given application. Finally in order to evaluate the model,
an evample is given demonstrating the quantification of -th " '

L

performance effects of an architectural enhancement to a

system architecture.

The model suggested for computer performance evaluation

constitutes a departure from the current computer perform-

ance evaluation methods, because the attention is centered

on the computer architecture rather than on the measurements

of throughput, response time and mean job turnaround time

where the main emphasis of the evaluation process is put on
the software.

The model is intended to provide a tool for computer

architects to use, so that discussions regarding the

performance achievements of certain architectural features

might be quantified and rational conclusions may be reached.

.

.. -* -. -

N

'/.

II. WHAT IS A RISC ?

A. INTRODUCTION

In recent years a new type of computer architecture has "'

received a great deal of attention.

This new architecture is mainly the result of an effort

conducted in an academic environment. Profiting from the new

possibilities that custom VLSI offers, the prcfessors and

students at the University of California at Berkeley,

collaborating in several courses in this area, began

projects on building single chip computers.

Due to limitations of the chip area, available tools and

the available time for the completion of the project,

several simplifications to contemporary architectures were

made. For example, the instruction set was simplified by

eliminating all instructions that might be called composite

instructions. This type of instruction is equivalent, in the

operation performed, to a sequence of other more elementary

(atomized) instructions.

A claim has been made, that the obtainable performance

of these machines was unexpectablly remarkable and this

triggered a major discussion on the subject of the merits of

RISC's.

Feeding the controversy is undoubtly the lack of an

appropriate method or tool to measure computer architecture

performance and the effects of a particular architecture

modification on the computer performance.

From the very beginning the RISC machines were related

to implementation issues in the use of VlSI technology.

Proponents called the approach "RISC", for Reduced

:nstruction Set Computers, as opposed to the traditional

:=rnuters which they referred to as "CISCS'" for Comie.-

":sgru:ion Set Colmputers.

11
"-.H

.........

The "new architecture" proponents didn't present it as a

proposal to enhance, in some way, the prevailing architec-

ture, but as a complete departure from the previous work.

No precise definition has ever been given for the

complete characteristics of a RISC machine, and because of
that, there are now in existence several different machines

all claiming to be RISC's. Although there are some common

features there is no clear cut agreement on what comprises a

reduced instruction set computer.

No doubt some very valid ideas were brought to the

computer architecture environment by the "RISC philosophy

proponents", but,. nevertheless, it constitutes a sure risk

to accept a new idea without an open, substantiative debate

where the benefits are separated from the jargon.

The first step in understanding and identifying the RISC

trade-off is a more precise definition of RISC.

As stated above, several implementations of RISC's are

already in existence, and, of these, four have undoubtly

enough importance to be mentioned.

They are:

1) The RISC I and II, developed at the University of
California at Berkeley

2) The 801 Minicomputer, developed at the IBM Thomas S.
Watson Research Center

3) The MIPS, developed at Stanford University.

In order to develop a definition of the "RISC" the

existing "RISCs" should be studied.

B. THE RISC I AND II

The RISC I and II were both developed at the University

of California at Berkeley where the acronym RISC originated.

Since both were developed at U. C. Berkeley, they are very

similar in their composition. In fact, RISC II is no more

than an enhanced version of RISC I.

Both are single chip VLSI processors having the

following characteristics:

12

-. 7- -7 '... .77. -7 771%~P V V. .17. lr_7 I. R T. -v jW -1 -72 . P V -~ .7 -J. -

,.b

1) They are 32-bit machines. That is, all registers and
busses are 32 bit wide.

2) Instruction Set:

2a) RISC I has 31 instructions
RISC II has 39 instructions

2b) Both have a load/store architecture. This means
that all instructions except load and store are
register-to-register. Load and store are the only
memory-reference instructions.

2c) All instructions except LOAD and STORE are single-
cycle where a cycle is the time it takes to read
and add two registers, and then store the result
back into a register.

2d) All instructions are the same size (32 bits).
There are two different formats but the fields are
at fixed locations.

2e) Addressing Modes:
There are two addressing modes; one for register-
to-register instructions--Register Direct and the
other for memory reference instructions--Index +
Displacement.

3) Registers

3a) Total number of on-chip registers
RISC I --- 138
RISC II --- 198

3b) The processor is organized in multiple overlapping
windows in order to facilitate parameter passing
between procedures.
The windows are organized in a circular buffer
fashion. In the case that the nested procedure
depth is greater than the number of windows minus -
one, the values in the window corresponding to the
oldest procedure are stored in memory and this
window is then free to be allocated to the current
procedure. At any time 32 registers are visibe
constituting what is called the current window
All windows have a fixed size and the composition
shown in Figure 2.1.
The global registers are common to all procedures,
and therefore they are used to store global vari-
ables. Register RO holds a fixed value of zero.
The low registers are common to the current proce-
dure and to the called procedure although in the
called procedure, they will fiave a different
number since there they constitute the high regis-
ters of the corresponding window. The high regis-
ters are common to the current procedure and to
the calling procedure. The high and low registers
along with the global registers constitute the
overlapped part of each window and are used for
parame er passing between procedures. The local
registers are only visible in the current window.

4) The control unit is h~rdwired with most of its logic
implemented using PLA's.

5) Pioeline Stages
The RISC I has two pipeline stages, i e. , dependingon the program sequence it can prefetch tne next
instruction while it executes the present

13

],

,°/"

I,m

Ma

2eZ

NI" R.AiIe 8

all
D.z

.2LocAL (i os

W

.(LOCAL aI,.&I,,tft'$

-. t) °ir

a-. DLoW OEArUEGs'-

0a:

go

Figure 2.1 RISC Register Window.

instruction. The RISC II has three pipeline stages,
i. e. , depending on the program sequence it canprefetch the next instruction and store the finalresults of the previous instruction in a register,

while it executes the present instruction.

6) Use of Delayed Branch
In order to increase speed and not to discard theprefetch instruction, when a branch instruction isexecuted, the branch takes place only after the
execution of the next sequential instruction.
Tyically the compiler arranges for the instruction
foTlowing the branch to be part of the loop, see

[Ref. 11.

8) Implementation
RISC I is implemented with 4 micron NMOS VLSItechnolouv with a clock of 8 MHZ and a cycle of 500NSEC. R C II is implemented with 3 miHro NMOS VLI
technology with a clock of 12 MHZ and a cycle of 330

NSEC.

14

. A . L A . ' A
+ "

9) Both RISC I and II have no floating-point support.

C. THE 801 MINICOMPUTER

Developed by IBM at the Yorktown Heigths Research Center

from 1975 until 1979, it was the first machine to follow

what later would be called "The RISC Approach to Computer

Architecture".

Due to its proprietary nature, not much is known about

it, but some of the ideas present in its design are known

and have been, in a certain way, the basis for the develop-

ment of RISC I and II at Berkeley and MIPS at Stanford.

As opposed to the RISCs and the MIPS, the 801 is not a

single chip processor but a minicomputer.

The general approach is the basis for the design of an

IBM NMOS VLSI single chip processor known as ROMP or 802.

The 801 machine is basically a 32 bit architecture with

single-cycle four byte instructions and 32 registers. It has

separate data and instruction cache memories. As in RISC I

and II, the 801 also has a delayed branch scheme, that is

the branch only takes place after the execution of the next

instruction.

The 801 system is said to be compiler-based meaning that

a greater demand is made on the compiler.

The 801 architecture was defined by George Radin in his

article 'The 801 Minicomputer' [Ref. 21 as the set of run

time operations which:

1) Could not be moved to compile time

2) Could not be more efficiently executed by object code
produced by a compiler which understood the high-
level intent of the program, or

3) Was to be implemented in random logic more effec-
tively than the equivalent sequence of software
instructions.

Both data and address busses are 32 bit wide. The uI
addressing modes are few:

- base+index

- base+displacement

15

.**-

- register direct.

Also a highly-effective optimizing compiler was devel-

oped for the system.

D. THE MIPS

The MIPS computer was developed at Stanford University

by John Hennessy and his students. Its acronym stands for

Microprocessor without Interlocked Pipe Stages. L.

There are strong similarities with the RISC project at

Berkeley. It has, however, some conceptual differences that

have already been identified by its proponents in Ref. 3 as:

i) more complex user level instruction set. ,-
ii) the main design goal is high performance of the

hardware employed and not simplicity of the
instruction set.

iii) much more complex compiler.

Specifically its characteristics are the following:

1) 32 bit machine.

2) Instruction Set

2a) 55 instructions

2b) Load/store architecture

2c) All instructions except LOAD and STORE are single-
cycle

2d) Instructions may be 16 or 32 bit long. An opti-
mizing compiler reorders the instructions so that
all 16 bit instructions always come in pairs.

2e) Addressing Modes
immediate

- :ze with offset
indexed

- base shift

3) Registers
There are sixteen 32-bit general purpose registers,

4) Hardwired control with most of its logic implemented
using PLA's

5) Use of Delayed Branch instructions

6) Five pipeline stages

7) No condition codes

8) Word-addressable machine

9) Separate data and instructions memory

10) No support for floating-point operations

16

~~.. -. ", . . - p.' . '- -..".',- -. ". . "o° ,.',,,.-.....,..... ., - -. •.

6 0R

11) Implemented with 4 micron NMOS VLSI technology with
a clock rate of 8 MHZ.

E. .90

E. TOWARD A DEFINITION OF A RISC MACHINE

Four machines have been described as examples of a new

type of computer architecture defined as the RISC architec-

ture, as opposed to the traditional architecture now

referred to as CISC architecture.

Any definition of this architecture will have to encom-

pass the characteristics common to the four previous

examples.

To summarize, a RISC Machine will have the following

characteristics:

1) Simple instruction set where the great majority of
the instructions are single-cycle,

2) Load/store architecture that is all instructions are
register-to-register with the LOAD and STORE being
the only memory-reference instructions,

3) Very few addressing modes,

4) Hardwired Control i.e. no microcode,

5) Instructions with one or two sizes and with fields at
fixed locations,

6) Some degree of pipelining, ..,.

7) Demand on the compiler to increase performance.

17

- -.

III. APPROAC TO U PERFORMANCE EVALUATION

A. INTRODUCTION

This thesis has been motivated by the rise of the new,

RISC computer architecture trend, described in the previous

chapter, and by the claims made by RISC proponents regarding

the inherent superior performance of RISC when compared to

traditional architectures.

Unfortunately, the claims made for these structures were

not supported by any quantitative arguments. No specific i
attention was given to the effects of various factors intro-

duced in the RISC architecture and to the influence that

each factor had on the system performance.

Computer performance evaluation is different depending

on the aspects of performance being evaluated. From the

view point of a potential computer system buyer, there is a

need to identify features in the system which will enhance

the performance for a particular application. From the

viewpoint of a computer architect, performance analysis is a

way to evaluate specific enhancements from which trends in

computer architecture design may follow.

B. EVALUATION AND MEASUREMENTS

In order to perform an evaluation of any kind, one must

take measurements of the system under different conditions.

One wants to take the measurements properly, or else the

evaluation will be unvalid.

In order to guarantee that the evaluation will be based

upon correct data, one has to know:

1) What the measurements are for

The buyer is not worried about any of the architectural

details of the machine, but rather about the throughput of a

system programmed in a high-level language.

13

.,.•. ,. . . ,•°- °- . . -. o .° .• °°.,. - .' - '. . " . . % ".

In contrast, the computer architect must be concerned

with the internal characteristics and the behavior of the

system, even when he is testing a system using programs

written in high-level languages.

Considering the RISC family of machines the correct

point of view is undoubtly the latter one.

2) What is measured

Typically one wants to test how each enhancement to the

computer architecture affects the system performance. In

order to get a realistic comparison of features, only one

feature at a time may differ. If more than one feature is

different, it is difficult to measure the individual effect

of each architectural feature on the system performance.

3) How is the evaluation performed

Because it is not feasible to build a new system each

time one of the architectural features is altered, a model

is required.

Because it is through the use of a model that the

performance effects of any architectural feature will be

determined, this model has to be able to quantify, in a

precise manner, the effects of any change in the

architecture.

4) For which application are the measurements valid

The application for which the system is being used has

an effect on the system performance. No system will show the

same performance in two different environments. For example,

in one application the user might be doing only word- L"
processing, and, in the second, the system might be

floating-point intensive.

There are, nevertheless, systems that present a balanced

performance throughout a diversified number of applications.

They are the so called "General Purpose Computers". But even

for these, the performance fluctuates, indicating that

general purpose computers have a better performance for some

applications than for others.

19

r7

Due to these reasons, the system performance evaluation

must pay attention to the rigorous definition of the appli-

cation for which the system performance is being evaluated.

This requirement for a precise definition of the appli-
cation, will clarify the validity of the conclusions.

5) Which factors interact with the measurements
In the second question, the need to make just one change p-

at a time when making the evaluation is emphasized, other-

wise it would be impossible to determine the individual '-

effect of an enhancement on the system performance.

Specifically if the evaluator has already made measure-

ments for several changes in the architecture and has also

quantified the effect of each of those changes on the system

performance, it is possible to compare two systems, that

differ by all those changes plus an extra one, not yet

considered. As a result of the analysis, the effect of this

last change on the system performance can be quantified.

C. THE RISC/CISC CONTROVERSY

Because the problem being discussed is related to I
computer architecture, there is a need for a concise state-

ment defining Computer Architecture as it is commonly

understood.

The adopted definition is the IEEE standard 729-1983

stating Computer Architecture as:

" The process of defining a collection of hardware and

software components and their interfaces to establish a

framework for the development of a computer system. "

In the published papers on RISC, several comparisons of

CISC and RISC examples were made.

The way these comparisons were done did not give any

insight, to the answers to the questions presented in the

previous section, or other similar questions.

The result is that now, no one knows for example, if the

performance of the RISC II is due primarily to its register

20

14',

7.- - IV W-07WW K I -07 -KR VTVK;L-71

Ai

organization scheme, as some claim, or to the simplicity of

its instruction set, as others do.

Specifically,

1) If one wants to evaluate the effects of reducing the
instruction set, one might pick a CISC machine e.
the VAX-11 and consider the improvements due to al-
the instructions whose execution is equivalent to a
sequence of simpler instructions. For each of these
more complex instructions one could determine if the
execution is faster than the equivalent sequence. If
that is not the case, the instruction should be
discarded. If an improvement is seen then consider
the cost of adding the instruction to the instruction
set.

2) If one wants to evaluate the effects of reducing the
number of addressing modes, one should consider:

- Why are they needed ?

- With which data types are they used ?

- What its the benefit brought by its addition.

3) If one wants to evaluate the effects of overlapped
register windows, one should test implementation of
overlapped windows on several systems and measure, as
a cost/benefit ratio, the effect of overlapped
windows on the system performance.

4) One cannot change more than one feature at a time and
hope to.get an idea of what the effect of each
feature is on the system performance.

5) If one wants to do an evaluation using programs
written in a high-level language, one should state
that as a limiting factor. Since different compilers
generate different code, some compilers are better
than others and therefore make different contribu-
tions to the system performance. Furthermore, in the
case of compil er generated code, the frequency of
execution of each instruction in the system instruc-
tion set will be different for different high-level
languages. Besides, two different systems with
distinct instruction sets do not necessarily have the
same best compiler.

6) If one wants to make some conclusive statement about
the advantages and disadvantages of the RISC archi-
tecture, one must separate the effects of features
that are orthogonal to the RISC philosophy.

The fact is that in the papers published on RISC's,

almost all the comparisons made, involved systems with

different instruction sets, different addressing modes and a

different number of registers and registers organization

schemes. Furthermore compiler generated code was used

without considering the performance effects. These are the

reasons why no one can say whether the RISC architecture is

or is not better by itself.

In this situation, while the RISC proponents are

bringing some jargon to the architectural environment, those

against RISC are losing track of the possible benefits

present in the RISC philosophy.
p.

D. AN EXAMPLE

As an example, let us pick a common CISC processor, the I

MC68000 and consider its addressing modes.

The MC68000 has six basic types of addressing modes,

namely:

1) REGISTER DIRECT - The effective address is the
register designation field in the instruction.

EA= Rn

2) ABSOLUTE - The effective address is that given in the
instruction field itself and it is used directly
without modification

EA = INSTRUCTION FIELD

3) REGISTER INDIRECT - The effective address is the
contents of the designated register

EA = (Rn

4) IMMEDIATE - The operand is part of the instructionitself and no further addressing is needed

5) PROGRAM COUNTER RELATIVE - The effective address is
computed by taking the value in the program counter
register and adding or subtracting an offset value

EA = PC + OFFSET

or

EA = PC - OFFSET

6) IMPLIED - The operand is in a register designated by
the mnemonic of the instruction.

The uses of each addressing mode depends on the

programmer.

Until now, the philosophy present in the design process

was to give the maximum versatility possible to the y

programmer, so that he or she could choose the address mode

better suited to his or her needs. The rise of the RISC

architecture brings some questions regarding the correctness

of this philosophy.

2.

A r .t -C.. C -.-

* .- -~-,-.- --.--

In order to answer these questions, there is a need to

have a correct method for the evaluation of a system .

performance. Together with the evaluation method there are

some points that have to be considered when deciding how

many addressing modes to include in the system instruction

set and how long each addressing mode should be.

The considerations are to:

2) reduce the storage requirements per program

2) reduce the number of bits that must be moved between
processor and memory to execute a program, i.e.,
reduce the bandwidth requirements on the bus

3) reduce the average length of an instruction, i.e.,
reduce the required wid h of the instruction bus.

There is a trade-off between the number of instructions

needed for the system to execute a program and the average

instruction size.

The decision regarding the number of addressing modes to

include is also very much dependent on the application, on

the data types, on the operations involved, on the use of

nested procedures, and how the parameter passing operation

is accomplished between procedures.

Although not considered here, the addressing problem is

also very much related to schemes of memory protection where

one wants to forbid the regular user program from accessing

some part of memory.

Besides how each one of the addressing modes is used, it

is also important to consider the frequency with which each

addressing mode is used.

Not much material is available regarding the usage of

addressing modes. As an example, consider again the

addressing modes of the MC6S000.

1) REGISTER DIRECT

Since the operand is, in this case, in a register, no

memory accesses are involved. This provides some speed

advantages when used for operating on frequently-accessed
variables. For infrequent ' -accessed vari"bies it wu i

-t riables-it"wo......

be used because the number of registers available on-chip is

usually very small.

2) ABSOLUTE

A memory access cycle is involved in absolute

addressing, because the operand is in memory. For this

reason it is not as fast as the previous mode.

Absolute addressing does not have much versatility

because the instruction address field is constant and the

operand must reference a fixed location in memory.

Nevertheless, it is simple. Because no alteration on the

address field of the instruction is performed, absolute -

addressing is an efficient mode to use when the operand is

within the range of the instruction.

3) REGISTER INDIRECT

In the register indirect mode, one register access plus

one memory access cycle are involved because the register

holds the operand address and not the operand itself.

The register indirect approach is used when the address

of the operand has just been calculated. It provides

address-range extension, and in fact this extension

increases with the difference between the size of the

instruction address field and the size of the specified

register.

4) IMMEDIATE

Immediate addressing is the fastest way of addressing,

although it is limited by the instruction size. No addi-

tional memory accesses are needed since the operand is

within the instruction itself. Since programs are not self-

modifying it is used only for predefined values---constants.

5) PROGRAM COUNTER RELATIVE

The major advantage of relative addressing is that it

allows the generation of position independent code because

the location referenced i3 always fixed relative to the

.. -. - . . .

program counter. The importance of this fact is very much " -

dependent on the memory management scheme adopted in the

system. W
In addition to the regular memory access, an addition or

subtraction must also be executed. It is used in relative

jump instructions e.g., to set up loops or to set up parame-

ters to be passed to a subroutine.

6) IMPLIED

Implied addressing is equivalent to the register direct

addressing. However, implied addressing restricts the

opcode to the predetermined register specified by the design

of the opcode and the design of the processor.

E. SUGGESTED APPROACH

It is not feasible to build a new system each time a

single architectural feature is changed, in order to eval-

uate its effects on system performance.

As a result, there is then need for a model.

This model should be clear, complete, and able to

reflect the interrelations that exist between the different

components. The model should also be applicable to any

computer system, i.e., the model should be general.

The model should reflect the performance effects of any

computer architectural feature such as:

* Bus Width

* Addressing Modes

* Pipelining

• Instruction Queue

• Instruction Prefetching

in the method suggested for computer performance evalua-

tion, a comparison is made between a reference system and

the same system with some change. The reference system is

the computer system for which it is desired to determine the

impact of each architectural enhancement. The result of

this comparison will then constitute a measure of the -

25

"oo.

performance effects of the particular change. The concep-

tual view of the system used in the model is illustrated in

Figure 3.1.

. &S SQUcrlow e;6tnA& r

U
0

Figure 3.1 Conceptual View.

Four entities are considered:
1) The Application, any evaluation will only be valid

for a certain application, not for any application

2) The System being considered

3) The System Instruction Set

4) The Performance, as the object of the evaluation
process.

The instruction set constitutes the central point of the

conceptual view. The application uses it. The system

supports it. The best match will necessarily give the best

performance.

The application is characterized by a set of tasks that

must be performed. Each task is performed with a different

frequency. For each task a program must be written, so that

S. %

.+

one task is mapped into one program. Each one of these

programs executes in a different time.

The weight of each task or its representation in the

application is then the product of the frequency of its

execution and the corresponding program execution time.

The effects of the application on the system performance

are the frequency of execution of each instruction in the

system instruction set. This together with the average

execution time of the programs of interest will ultimately

lead to a " typical " program of the application.

The system supports an instruction set in two ways: one

by the execution time of each instruction and the other by

the complexity of the control unit necessary to implement

the instruction set.

An instruction set is desired that allows for the

writing of programs with a minimum execution time, but also

minimizes the amount of support that has to be given by the

system.

27

...

)r
a'

-I -
IV. TIMING ANALYSIS

A. INTRODUCTION

In this chapter a detailed analysis of the model for

computer performance evaluation is introduced. As described

in the previous chapter the model is divided into two parts.

In the first part, the model considers a timing analysis. In

this analysis the application determines the dynamic

frequency of execution of each instruction present in the

system instruction set and finally the system architectural

characteristics determine the execution time of each

instruction.

In the second part of the model, which follows in the

next chapter, the model considers the relation between the

application and the control unit necessary to implement the

system instruction set. From this relation a performance

figure is obtained.

Any architectural feature will have consequences both in

the execution time of each instruction and in the complexity

of the control.

As has already been mentioned the first part of the

model is a timing measure. It will consider the execution

time of the specified application's " typical " program.

Several factors contribute to the execution time of a

program and not all of them are part of the computer archi-

tecture. Some have depend on the implementation of the

system.

The implementation is very much related to the tech-

nology chosen. The technology will determine, for example,

the maximum clock rate obtainable and the number of computer

components to be placed on chip.

Two factors have a great impact on the system perform-

ance, they are the clock rate and the average memory access

28

,

-',-m.'o °'o'°°°-." .'-° , °." °..'....--."....-...'".".-.. - °° °°

time. Also the number of components on chip is an important

factor, since one of the most time consuming operations is

to transmit data from one place to another. For example by

being able to have more registers on chip, one might be able

to reduce the average operand access time and therefore i
speed up the computer operation. If one considers the

storage registers as part of the system memory then one can

see that the average memory access time is reduced.

In the suggested approach to computer performance evalu-

ation, the main concern is architectural features and not

implementation restrictions due to technology limitations.

The reason for this is that a method to evaluate computer

performance should be general and therefore be able to

survive constant technological change.

B. THE COMPUTER SYSTEM

Any computer system architecture is made of hardware and

software tools. In the area of software, an important factor

is the operating system.

For the sake of simplicity, and since in fact the oper-

ating system is also a program that has to be run on the

system, it can be considered as part of the application in

the computer performance evaluation process.

If the operating system is not considered as part of the

application software there would be a need to track all

calls to the operating system, measure the time the system

takes to execute the correspondent subroutines and subtract

this from the program execution time.

In the hardware, the major components are:

i) the processor

ii) the memory

iii) the busses

iv) the I/O interfaces

v) glue circuits

29

The processor consists of the portions of the computer

made up of the control unit, the arithmetic logic unit, the

general purpose registers and the busses that connect all of

these. IL

The memory consists of all the parts of a computer used

for either temporary or permanent storage, for instructions

or for data. The busses are a collection of signal lines

with multiple sources and multiple sinks. They provide for

the intercommunication capability among the other computer

components. The I/O interfaces are the parts of the

computer through which the system communicates with the

outside world.

In order for the overall system to have a good perform-
ance, it is desired to balance the average work done by each

component per unit of time. Since each computer component

has a different function, the work done by each is different

from the others. It is this work that has to be character-

ized, so that an understanding of how to maximize it, is

possible.

One requirement is that the idle time for each component

should be as low as possible. For example the processor

should be in an idle state for a data element stored in

memory as little as possible.

1. Memory and 1/0 Interface

Both memory and I/O interface can be considered

together, since both are communication media. Memory

performs a communication between two instants in time. I/O

interfaces perform a communication between the computer

system and the outside world.

For both memory and I/O the work is characterized by

how long it takes to correctly receive a unit of information

from the bus and how long it takes to correctly place the

same unit of information on the bus. This unit of informa-

tion will be the same in the case of instructions and data.

This unit of information is then one bit.

30

* . . .*.

For both memory and I/O, the measure of their

performance is the number of bits that are received or

transmited per unit of time. This is in fact no more than a

bandwidth in units of bits per second.

For example, a memory unit with a word size of

sixteen bits and an access time of two microseconds performs

the same work as another memory with a word size of thirty

two bits and an access time of four microseconds.

'Q'enoRY~ \.joe aq *
~(~o~.f ~tJ~AjI~w(air/4rr) 1)

2. TeBusses >:

The function of a bus is to pass information from a

computer component acting as a source to other components

acting as sinks. The memory and I/O interfaces are also

communication media that treat data and instructions in the

same way.

The nature of these signals has no influence on the

characterization of the bus work or the efficiency with

which the bus preforms its work..4.-

The bus work is characterized by:.

i) the number of active sources at a time, here
assumed to be one

ii) the number of active sinks

iii) the number of signal lines, i.e., the bus width

iv) the bus cycle time

As its function is to be a communication medium, the

bus work is measured by a bandwidth in units of bits per

second.

The particular bus bandwidth will be given by:

S 3AAJbWDTH I- LT /eC) (Lt2)

7BC r

where

SI is the number of active sinks

31

WI - is the bus width

BCT - is the bus cycle time

3. The Processor

After receiving data and/or instructions from the

bus, the processor alters this data according to the

sequence of instructions and then delivers the final results

back to the bus.

While the previous computer components treat data

and instructions in the same manner, this is not true for

the processor case. In this case, instructions specify the

operations that have to be performed, and the data consti-

tutes the object on which the operations are performed.

The structure of the processor, i.e., the specific

configuration of each element is dependent on the instruc-

tion set and on the data types involved. The instruction

set configuration makes requirements on the processor,

because the instruction set is intimately related to the

processor control unit and the datapath.

The data types involved in an application should be

supported by the processor. If, for example, a lot of array

manipulation is done, then it is to be expected that the

system considers some parallel operation capability.

In addition to the data types, the. instruction set

is also dependent on the application. Therefore the

processor structure is also dependent on the application.

C. THE APPLICATION

An application is characterized in the same way indepen-

dent of the computer system being evaluated. It is charac-

terized by a certain number of tasks that have to be done.

Each task is executed with a certain frequency. For each

task and for each system there will correspond a program

written with that system instruction set.

The frequency of execution of each task is given by the

number of times (n), that this task is executed in a sample

32

.*~~~

of N tasks. So the frequency of execution of each task is

nothing more than the probability of this task being in

execution at any given time.

F' M (4.3)

where
S- is the frequency of execution of task i

rt - number of times the task i was executed in a

big sample

NI - total number of tasks that were executed in

that sample

For each task there is a corresponding computer program.

This program will take some time to execute.

The weight of each task or its representation in the

application will be given by the product of its execution

frequency and its program execution time in the system under

study.

where

W,- weight of the task i in the particular appli-

cation and for the system in study

T- execution time of the correspondent program

By this it is seen that the weight of the task is both

dependent on the application choice and on the system

choice.

A program is a sequence of instructions. Its execution

time can be divided into smaller pieces where only one

instruction is executed. In this way the program execution

time is given by a sum of products. Each element of the sum

will be referred to a single instruction, and consists of

33

.. ... r.."

the product of the instruction execution time and the number

of times each instruction is executed.

Therefore each element of the sum will be given by:

S-. X ET. (4.S)

where

-is the number of times that the instruction j
is executed for the particular program

i XT-- execution time of instruction j

The program execution time will be given by:

where

S. - the weight of instruction j in the system-

instruction set and for the particular task

J - the total number of instructions in the

system instruction set

Finally, the weight of the application for the system

under study will be given by the weighted sum of its tasks.

So,

but since

*'TZ

34

-. ,,,-. ,.*-

I..I

then

But

and

SoS,

SO
''

D. THE PERFORMANCE

A comparison is made between the weights that an appli-

cation has in two different systems. In this chapter, where

a timing analysis is done, the weight of an application

involves the execution time of each instruction and the

dynamic frequency of execution of the same instructions.
The performance will be given by the ratio of these two

weights.

35 ..

- - |. -w r ~ v JU ~ ; - r r ~

where

VJ" -is the weight of the particular application

for the reference system

-is the weight of the same application for the

system being considered .

Note that the two systems either have two different

instruction sets or the time of execution of each instruc- i
tion is different or both.

So,

Therefore

tart.~ .<(.z

rxr-

where

I - is the total number of tasks in the particular

application. It is the same as the number of

programs.

J -is the total number of instructions in the
reference system instruction set

K - is the total number of instructions in the

system in study instruction set

-:.s
3 6 "-

Considered in this way the measure of the performance

for a system is better the larger the ratio.

E. A SPECIAL CASE AND THE RISC -.

If the application involves only one task and therefore

only one program, the performance would be given by,

4d..

Let us now consider the RISC philosophy. For this case

the value of J is fixed.

The RISC proponents advocate that by reducing the total

number of instructions in the instruction set i. e. , by

reducing the value of K, the performance of the system

inceases. They also advocate that the instruction execution

time for each instruction is reduced by having a simpler,

more straightforward machine with better performance.

Their argument is that the value of the denominator is

reduced because the two previous factors compensate for the

necessary increase in the number of times each instruction

is executed. By reducing the denominator the system will

have a better performance.

F. THE SYSTEM ARCHITECTURE AND TIMING

As has just been seen, the particular choice of applica-

tion determines the dynamic frequency of execution of each

instruction in the instruction set. To continue the study,

there is now a need to analyze how the system architectural

characteristics influence the system performance.

37

,.i ".

The system structure and its instruction set are neces-

sarily related. For every instruction, the system has to

have the necessary support in terms of the control unit and

the datapath. Also, any new enhancement to the system

architecture will affect the execution time of one or more

V' instructions. Therefore it will always affect the average

instruction execution time.

The model under discussion considers that each instruc-

tion has a certain associated weight, this weight being

dependent on the application and on the system architecture.

The application determines the number of times each instruc-

tion is executed, i.e., the dynamic frequency of execution

of the instruction. The system architecture determines the

execution time of each instruction. It is this execution

time that will now be studied.

We define the Life Cycle of an instruction (LC) as the

time period beginning at the instant the instruction is

first fetched from memory and ending at the instant the

final results produced by the operation are stored back in

memory.

The instruction execution time will then be some portion

of its time life cycle. This portion will be dependent on

the system architectural characteristics such as pipelining,

parallel processing, instruction prefetching, instruction

queue, etc.

The main phases through which an instruction has to pass

in its life cycle are:

i) Fetching

ii) Execution

The time the system takes to fetch an instruction is

dependent on the instruction bus width, the instruction

length and the bus cycle time in the following way:

NJ S.
3,

This value for the fetch time will be an average, more

or less rigorous, depending on:

i) instruction size (fixed or variable

ii) the availability of the instruction queue

Not all the instructions have the same structure, but

nevertheless, all of the instructions accomplish some trans-

formation on some data. The data might be one or more oper-

ands and the final result in the case of an arithmetic

instruction, or the data might be the. contents of the

program counter in the case of a branch.

In order for the system to be able to accomplish the

transformation required by the instruction, it has to:

1) decode the instruction

2) locate the data (e.g., addressing modes

3) place the data in a convenient location to be
transformed, if it is not there already

4) perform the transformation asked for by the
instruction

5) relocate the data in a convenient location.

Whether these phases are performed in a sequential

fashion or in parallel depends on the system architecture.

For example, suppose that the instructions followed a fixed

format with separate and predefined fields for OPCODE and

ADDRESSSING. Then it would be possible to decode the

instruction and the address field simultaneously.

In order for the system to process the addressing mode

and depending on the particular address mode, it may have to

do one or more of the following:

- preform data transfers either register-to-
register or memory-to-register;

- preform some addition e.g., in the case of base
addressing, index addressing or branch
addressing;

- preform some multiplication e.g. , in the case of
he VAX-11 index mode.

For the sake of simplicity one could consider all the

data transfers that have to be done while the system

39

executes a program and determine an average time for data

transfer.

Typically if the system has on-chip registers, cache

memory and main memory, the value for the average data

transfer time will be:

.. T T T

where

R - number of register accesses

C - number of cache accesses

M - number of main memory accesses

T - total number of data transfers

RAT - register access time

CAT - cache access time

MAT - memory access time

and

T R+ C + M

In summary, in the instruction life cycle one has:

TF - fetching time

TDEC - decoding time

TLOC - locating data (address mode

TDATA - access data

TOP - perform the operation

TW - write the final results

If the system performs all of these time phases in a

sequential fashion so that there is no overlap, then the

instruction time life cycle will just be the summation of

all the time phases:

. 40
•40. .4.

LCno = TF+TDEC+TLOC+TDATA+TOP+TW (no overlap) C/4.11)

If some overlap among the phases is present, then the

instruction time life cycle will be some portion of the

previous value (no overlap case).

LCo = y * LCno (overlap case) L .,)

where

y - is a coefficient that measures the efficiency

of the architectural scheme that accounts for

the overlap possibility. Its value will be

always between zero and one.

Some of the architectural characteristics that might

influence the value of " y "are:

- separate or common memories for data and instruc-
tions,

- instruction format

- instruction type

bus width

- dual port memories

The architectural characteristics will also determine

the amount of overlap execution among different instruc-

tions. The efficiency of this overlap will then determine

what portion of the instruction time life cycle value will

be the instruction execution time (IXT).

IXT =w *LCo

where

IXT - instruction execution time

41 .F~

- ..- .. .***v~.~.* - .* . -.

• w - efficiency of the overlap among the time life

cycles of different instructions. Values -

ranging from zero to one. I

The value of w, that is the amount of overlap will be -

determined by several architectural characteristics such as:

- pipelining

- prefetching

- instruction queue

- parallel processing

- instruction length

- bus width I
- datapath

4

42-.

1,.*

V. CONTROL ANALYSIS

A. INTRODUCTION

In the previous chapters a timing analysis of the system

operation was presented. In it a study was made first of the

application effects on performance through the dynamic

frequency of execution of each instruction, and second of

the system architecture effects on performance through the

execution time of each instruction.

Finally to complete the model being suggested, one has

to consider the requirements that the instruction set poses

on the system in terms of the required control complexity.

These requirements will also be dependent on the

application.

This is also important since no matter what technology

is used in the system implementation, the number of

resources available on-chip will always be limited.

Typically the control unit is implemented using either

microcode or is hardwired e.g., using programmable logic

arrays. Some of the factors that impact the choice are:

* instruction set complexity

* required control unit size

* possibility of future changes in the instruction set

• speed

The size of the control unit (i. e., the number of gates

needed to implement the control unit) will determine the

space available on-chip for other components. In the case of

the RISC I and II the smaller control unit and therefore the

smaller power consumption, allowed the designers to add more

registers to the processor chip. With the choice of addi-

tional hardware for the processor the designers in fact

reduce the average memory access time if one considers the

registers as also part of the system memory.

43

7.:.

B. THE CONTROL UNIT AS A FINITE STATE MACHINE

The control unit of a computer system can be viewed as a

finite state machine, and therefore can be analyzed as such.

If analyzed in that way, the control unit operation can be

described by a state diagram. In its most simple and most

general case, the state diagram will typically have only two

states, see Figure 5.1.

CL

Figure 5.1 Simple Control Unit State Diagram.

In a more detailed analysis, the control unit state

diagram will have a tree like format where any vertical path

will correspond to the execution of an instruction, see

Figure 5.2.

T I Tiiu ¢. ,i -"

In this case, each and every instruction is identified
and each state although, still belonging to one of the two

major phases fetch and execute, will now correspond to a

microstep in the control unit output sequence while the

system is executing a program.

44

Fi.. . . . e 5.2 . - .- --. 's.

.'

L61

rp.

Ln

"

U. step

-U

.0 L

'-7'

Figure 5.2 More Detailed Control Unit State Diagram.

Of course this is complicated if the system is able to

deal with more than one instruction at a time. Nevertheless

the complexity of the controller can always be associated

with the number of states.

C. THE CONTROL UNIT COMPLEXITY

Not all the states will count in the same fashion since

there are states that will be common to more than one

instruction or vertical path.

45

,

- . . .

_-V -'.In -W -
_

. - .--- W - -

The number of these shared states will depend both on

the processor instruction set itself and on the implementa-

tion choices made by the processor designer. For example, in

this last case the processor designer could make use of

microcode subroutines to be shared or called by more than

one instruction.

If states are shared among instructions, then there will

always be some trade-off between the total number of states

of the control unit and its speed. This tradeoff is due to

the fact that when states are shared among different

instructions, the control unit has to have some feedback

capability. The specific value of the feedback will force

the next state of the control unit, when the vertical paths

corresponding to the instructions will ultimately separate

themselves.

No matter what this feedback will be, it will always

have some cost related to it. The cost is the extra time it

takes for the values of the feedback signals to be valid.

Since the cost is time, it will be reflected in the average
instruction execution time, and so affect the performance of

the system in the portion the model described in the

previous chapter.

In this part of the model we focus on the comparisons of

two control units.

The complexity of a particular instruction will then be

dependent both on the number of states it has and on the

number of states which are shared by more than one

instruction.

The cost of adding a new instruction to a certain

processor instruction set is the number of new states that

have to be added to the control unit state diagram. The

addition of this instruction will have a cost on the system

performance that can be minimized by maximizing the number

of states necessary to its execution that are already in

existence in the control unit state diagram.

46

r , .. - ' -
".- .- .- .-",-"/ " - "- z "" ." .- " ."" -".-". --- , " , . ." ,'', ." '. " -.-. '..,''- ., " -,-.''.- .''.-'. '.-'/ ',.,,'-, - .'',v, " , " -. 7 "

Returning to *the control unit the number of states is * .*

then dependent on:

i) the number of instructions

ii) the number of states that are common to more
than one vertical path (or instruction)

iii) the average height of each instruction

Where the height of one instruction is defined as the

number of states in its vertical path.

D. THE APPLICATION AND THE CONTROL UNIT -.-

In the previous chapter the instruction set and the

dynamic frequency of execution of each instruction together

with the instruction execution time were considered. Now

one wants to know how effective, the control unit is for the

application where the processor is being used.

It has already been seen that the complexity of the

control unit is related to the number of states. One knows

that a smaller and simpler control unit has an effect on the

processor performance, because more space would be available

on-chip for other resources. One choice might be to add new

registers to the processor chip and thus try to decrease the

average memory access time.

One also wants to minimize the number of instructions

that are needed in order to perform a certain task, so one

has to go back to the application. An application is char-

acterized by a certain number of tasks that have to be done.

Each task is performed with a certain frequency. For each

task a program will have to be written using the instruction

set available. Each program corresponds to a sequence of

instructions used to perform the corresponding task.

Directly from the program it should be possible to

compute the static frequency of each instruction. But that

is not the only frequency that is of interest to the

performance evaluation process. The dynamic frequency of

execution is more important.

47

The two frequencies will be different for each instruc-

tion depending on:

i) program sequence

ii) conditional branches and the most frequent values of
the variables on condition.

The execution of a program is then a sequence of several

instructions execution.

Since a single instruction corresponds to a vertical

path in the processor control unit state diagram, the execu-

tion of a program will then be an up and down walk on the

state diagram.

When comparing two control units, the one that would

have to execute fewer instructions, supposing that the

average height of an instruction would be the same for both

control units, will be the best. The height of an instruc-

tion is in fact a measure of what the RISC proponents call

the instruction complexity. Because it would be natural that

two different -processors have instruction sets with '-'

different values for the average height of an instruction,

the bottom line is that the comparison of two control units'

complexity cannot be done through the counting of instruc-

tions executed, but through the counting of the number of

states through which each control unit has to pass when the

system executes a typical application program.

It is to be expected that if one wants to add an

instruction to a processor instruction set, the control unit c...

will suffer by an expansion. For a hardwired implementation

e.g., using PLA's these will have to grow; for a microcode

implementation typically there will be a need to increase

the size of the microcode memory. The amount of the control

unit expansion will be dependent on the implementation, oil

the instruction itself, and on the designer's choice

regarding the number of states that will be shared with

existing instructions. There is a relation between the

number of gates used in order to implement a controller and

48

... ~ - . - -

the number of states present on the controller state

diagram.

Because there is a direct and individual relation

between the control unit states and the gates that compose

the control unit, and because one wishes to use each and

every one of these gates a similar number of times in order

to increase the overall efficiency, then for better effi-

ciency it is desirable that all states are used in a

balanced way. With some similarity one might say that the

efficiency of the use of an instruction set increases when

all the instructions in that instruction set tend to be used

an equal number of times.

An application has an indirect relation to the number of

states through which the control unit has to pass in order

for the system to execute the corresponding programs.

In the optimum case the control unit will have the

following characteristics:

i) minimum number of gates

ii) for the specific application all states will be used _
in a balanced number of times

iii) no state exists that will never be used.

E. THE MODEL

Assume that a control unit has a total number of states

T. Associated with each state there will be a certain
number of gates. This number will be dependent on the imple-

mentation choice, either microcode or hardwired logic. Of
these T states, an application uses S states, and of these S

states some states will be used more than others.

The weight of the application is related to the number

of states through which the control unit has to pass in

order to execute the corresponding programs.

Each state has some weight associated with it. This

weight will be dependent on:

i) the number of times the state is used

ii) the number of instructions that share the state

49

IL

iii) the number of gates needed for implementing each
state.

The complexity of an instruction will be related to its

height, that is the number of states in the corresponding

vertical path in the control unit state diagram.

So,

Cj(..1)

where

- complexity of the instruction j

Wj,- weight of state h

- height of the instruction j
and

- number of gates per state (implementation

U- number of instructions to which the state is

common

The weight of an instruction will be the product of the

number of times the instruction is executed for a given

program times the instruction complexity.

That is

where
- number of times the instruction j is executed

As in the previous chapter, the weights of the task and

the application will be:

50

"I-,

.. *""..

where

WIL' - weight of task i

VI - frequency of task i for a certain application

T - number of instructions in the instruction set "1*

For an application its weight will be:

or

where

- weight of the application

I - number of tasks in the application of

interest

- number of instructions in the processor Z

instruction set

-height of each instruction

Similar to the timing analysis in the previous chapter,

the performance of the system under study will be given by:

where

- weight of the application for the reference

system

w,- weight of the same application for the system

being considered

51

,..-

So,

'4.

X IT

where

I - number of tasks (programs) in the application

/ - number of instructions in the reference

system instruction set

- number of instructions in the system under

study instruction set

- height of instruction j in the reference

system instruction set

S- height of instruction k in the system under

study instruction set

- number of times instruction j is executed

while the reference system executes the

typical application program

AL -number of times the instruction k is executed

while the system under study executes the

same program

(io - number of gates per state in the reference

system control unit

- number of-gates per state in the system under

study control unit

U, - number of instructions that share state h in

the reference system control unit state

diagram

52

L4-number of instructions that share state 1. in

the system under study control unit state

diagram.

53

I

VI. CASE ANALYSIS

A. INTRODUCTION
As an example we will analyze the change in performance

of a particular application program when some floating point

capability is added to a processor which currently performs

fixed point arithmetic.

In this case study, the performance effects of the

program code sequence will not be considered. These effects

are mostly due to any capability of the processor related

to:

* pipelining

parallel processing

Specifically, the case consists in the possible addition

of a floating point multiply instruction to a processor

instruction set. The processor that was chosen was the

Motorola MC68000. The application for this evaluation is

the computation of a Fast Fourier Transform.

B. THE ADDITION OF AN INSTRUCTION

The addition of an instruction to the original instruc-

tion set has several consequences.

First of all if a hardwired controller is used the

processor's control unit must be expanded so that the

instruction is incorporated. The amount of the control unit

expansion is dependent on the number of new states that the

instruction under consideration will add to the control unit

state diagram and also on the control unit implementation.

In fact, one of the reasons to use microcode in the

implementation of an instruction set is due to the flexi-

bility it gives in any future changes of the instruction

set.

54

" I,.'
.o .'. 1

Second and depending on the operation performed by the

instruction, some hardware will have to be added to the

processor. The amount of hardware that will have to be added

to the processor is dependent both on the hardware that

already exists on-chip, that the instruction might use and

is dependent also on how fast one wants the instruction to

operate.

The addition of more hardware to the processor will

cause a rise in the power consumed by the processor. Due to

a limited power dissipation capability, the net effect of

the increase in the number of gates that constitute the

control unit and the datapath will be a reduction in the

size of existing processor components or a migration of some

off-chip, so that the power consumed by the processor stays

constant.

One choice might be to replace some of the registers

available on-chip. by the hardware necessary for the new

instruction. By reducing the number of registers on-chip,

there will be a decrease in the ratio of register accesses

to the number of main memory accesses.

In the case of a Load/Store architecture such as the

RISC architecture, a reduction in the number of registers

will cause an increase in the dynamic frequency of execution

of LOAD and STORE instructions relative to the other

instructions.

In a traditional architecture, where the LOAD and STORE

instructions are not the only memory reference instructions,

the effect of reducing the number of on-chip registers is an

increase in the average instruction execution time because

the proportion of memory accesses to register accesses will

increase.

This increase in average instruction execution time will

cause an increase in the typical application's program

execution time. It is this increase in execution time, that

55

will have to be overcome by the addition of the new instruc-

tion to the processor instruction set, so that in fact the

program execution time might suffer a reduction rather than

an increase. ."N

C. THE COST/GAIN TRADEOFF

The floating point multiply instruction after being

added to the processor instruction set, will replace the

sequence of instructions that the processor had to execute

every time a multiplication of two floating point numbers

was called for.

In order for the addition of the floating point multiply

instruction to be considered, the instruction has to pass

several tests. The first test requires the instruction

execution time to be smaller than the correspondent instruc-

tion sequence execution time.

If that is not the case, then there is no point in

adding the instruction to the processor instruction set.

So, consider:

ini - execution time of the new instruction

lseq - execution time of the corresponding sequence of

instructions

For the addition of the new instruction to be consid-

ered:

Ini < lseq (6.1)

Assume then that in fact the above condition is true,

then

-seq = lni + lgain

or

56

,y.,...... . .

ini / lseq = c (&.3)

where c < l

For the sake of simplicity, consider that the applica-

tion of interest is composed of only one task. That is to

say that the effects on the processor performance will be

considered only within the context of a program.

The model suggested for computer performance evaluation

has two parts, a timing analysis and a control unit

complexity analysis. These two parts of the model will give

rise to two distinct criteria to which the addition of the

instruction will have to comply. So that the gain in the

processor performance that is obtained, will surpass the

reduction or cost in the processor performance due to the

requirements brought by the same instruction to the

processor architecture.

1. Timing Criterion

The timing model says that the effects of the addi-

tion of one instruction to the system instruction set, on

the system performance will be measured by:

%1 ..J

IT

where

5- is the number of instructions on the original

system instruction set

57

.-.. "

number of times that the instruction j is

executed before the addition of the new

instruction to the processor instruction set

-execution time of the same instruction j on

the original system

. number of times that the instruction j is

executed after the addition of the new

instruction

- execution time of the instruction after the

addition of the new instruction
Nk- number of times the new instruction is

executed

Lm - execution time of the new instruction

The numerator is a measure of the execution time of

the application program before the addition of the instruc-

tion under consideration. The denominator is a measure of

the execution time of the application program after the

addition of the new instruction.

The sequence of instructions in the original

instruction set that implements the operation performed by

the new instruction is executed a number of times. This

number will be equal to Nnew.

The sequence execution time will consist of the

execution time of several instructions.

Therefore

IT

where

Ni- number of times that the instruction j of the

original instruction set is executed during

the sequence of instructions execution.

58

1%

thenO

T ff

II

N4 + NJf&A Lc i

and

t%0

where

N.-number of times the instruction j of the

original instruction set is executed outside

the sequence.

For improvement in performance:

Perf >1 T

This indicates that it is worthwhile to add the new

instruction to the original instruction set for this -

application.

Then, one wants

59

but

so

i9. +4 +

The right term of the inequality corresponds to the

increase in the application program execution time, that was

caused by the suppression of some hardware components of the

processor e.g., some registers.

This increase, caused by an increase in the number

of instructions that have to be performed--case of the LOAD

and STORE instructions in a Load/Store architecture, or

caused by an increase on the average instruction execution

time--case of a traditional architecture.

Therefore

... ,- N

60

-7,

On the left term of equation 6.7,

Lseq - Lnew

represents the gain in execution time that was obtained by

substituting the sequence of original instructions by the

new instruction, each time the operation was performed.

So,

Lseq - Lnew = Timing Gains = Tgain (&.i%)

Then,

Nnew Tgain > Tcost

or

Nnew > Tcost / Tgain

Based on an timing analysis, it is only advantageous

to add the new instruction if: .-

1) Lseq > Lnew ('.A-.

and

2) Nnew > Tcost / Tgain

To put it in another way, the addition of an

instruction to a processor instruction set will only

increase performance if that instruction is executed a

61

t%..-~. ,

I J* I - 7 -7 .

sufficient number of times during the application programs

execution. The exact number of times the instruction must be

executed is given by the above criterion.

2. Control Unit ComDlexity Criterion

Concerning the analysis of the control unit

complexity one has:

IT4

L L~

Since the implementation of the control unit will be

the same and the implementation determines the value of GO,

the equation simplifies to,

- -

As in the timing analysis one wants:

Perf > 1

62

That i s
IT::IT

- e ,LS .4

As before, the execution of the sequence will

consist on the execution of several instructions, then

_. 4 A.Uw.. -, NJ, L-. NI.i (.z-)

Then

4 W-- (r..4
2 3

4 U4A. U1

or

where

63

.. .. ;':

Ls - represents the gain in the number of states,

obtained each time the operation performed by

the instruction and/or the sequence is

executed.

Es - represents the cost in the number of states

due to the addition of the new instruction

Then

Nnew * Ls > Es (.25)

or

Nnew > Es / Ls (&.z)

D. AN ILLUSTRATIVE EXAMPLE

An example is now presented to clarify the use of the

model suggested through the present and previous chapters.

The example quantizes the effects of adding a floating

point multiply instruction to an existing processor instruc-

tion set.

As has been previously stated, the values determined for

the increase or decrease on the system performance will only

be valid for a given application.

1. T Processor

The Motorola MC68000 is selected for this example.

The MC68000 is a widely known microprocessor that has a

simple instruction set offering no floating point support.

The MC68000 has a 16-bit data bus and a 32-bit

address bus. In addition to the Program Counter and Status

Registers, the MC68000 has seventeen 32-bit registers. These

registers are divided into two groups. The first group,

64

OWL

composed of eight registers are general purpose data regis-

ters. The second group, composed of the remaining nine

registers is used mostly for handling addresses.

In total, there are fourteen addressing modes on the

MC68000, although they can be studied in six basic types.

These addressing modes are already described in chapter two

of this thesis.

The instruction set of the MC68000 consists of 56

basic instructions, having from zero to two addresses. Each

instruction can use several addressing modes. This fact

determines that the MC68000 does not follow a Load/Store

architecture.

The instruction set of the MC68000 supports five

basic types of data:

* bits
Vbytes (8 bits)

words (16 bits) S

* longwords (32 bits)

* Packed binary-coded decimal (BCD) with two digits per
byte

The input/output on the MC68000 is memory-mapped,

i.e., all I/O interfaces share the address space with

memory.

Considering the implementation of the MC68000, it is

a single-chip VLSI HMOS processor with a typical clock rate

between 4 and 12 MHZ and with a typical memory access of 4

clock cycles.

2. The Apolication

For the application we choose a program that

computes a Fast Fourier Transform. This program was

obtained from' The Fast Fourier Transform' by E. Oran

Brigham [Ref. 4]. The program is written in Fortran. The

flowchart of the computation done by this program is on page .-

161 of the above reference. The program itself appears on

page 164 of the same book.

65

7

7 ' -. -. - y- w- -. p- ,- . ..rr .P : V V.- .V .. P a I.W oy P-,,

From the reading of the program, one can immediately

verify that some of the operations that are called for could

not be directly implemented with the MC68000 instruction

set.

For these operations it was necessary to use either

subroutines present in ' Microprocessor Systems, a 16-Bit

Approach' by William J. Eccles [Ref. 5] or newly written
subroutines. The subroutines to handle floating point

numbers in the MC68000 came from Ref. 5.

The subroutines that were written are shown on

appendixes C and D, these subroutines compute the sine and

the cosine of an angle, according to an algorithm presented

in the ' Software Manual of the Elementary Functions' by

William J. Cody, J.R. and William Waite [Ref. 6:pp.

125-143].

The translated program for the Fast Fourier

U Transform computation is shown on Appendixes A and B.

' 3. The Floating Point Representation
"O

The floating point representation that was chosen is

.- the IEEE proposed standard for single precision. This stan-

dard determines a 32-bit long representation of a floating

point number, shown in Figure 6.1.

j J E~XPO,.jatr MAt'j Ti SS~A

Figure 6.1 Floating Point Representation.

This standard has.the following characteristics:

i) 32 bits are used

66

;Iil

- . a. *. a - -.

ii) radix of two

iii) the radix point before the first digit with assumed
one to the left

iv) mantissa

iv.a) sign position - 0

iv.b) value position - 9-31

iv.c) representation - normalized, sign/magnitude

v) exponent PC
v.a) sign position - no sign

v.b) value position - 1-8

v.c) representation - biased exponent, bias =127(dec)

v.d) range of exponent - -126 to 127
vi) range of floating point number - +- 5.9*10**-39 to

+-1.7*10**38

All the subroutines that handle the floating point

data and that were used obey to this standard, so does the

hardware necessary to implement the floating point multip -y.

4. The H are Involve

The general structure of the hardware required for

the implementation of an additional floating point multiply

instruction in the MC68000 instruction set was obtained from

the 'Introduction to Computer Architecture' [Ref. 7 :p. 80]

and is shown on Figure 6.2.

The hardware consists of:

i) three 32-bit registers, these can be some of the
already existing data registers on the MC68000,

ii) an 8-bit adder used for the exponent addition, that
could just be the adder already existing on the
MC68000,

iii) a multiplier used for the mantissa multiplication,

iv) an exclusive-or gate for the product sign calcula-
tion,

v) a normalizer and converter

With the hardware structure that was chosen it is

possible to perform in parallel the determination of the

sign of the result, the addition of the two exponents, and

the multiplication of the two mantissas.

67

............ . . ". . .

..

z C
-'LU

N " Ii

LU s .() tU.&&e

U
Figure 6.2 General Hardware Structure for the

0 Floating Point Multiply Instruction.

X ,The execution time of the floating point multiplica-

tion instruction will then be determined by the slowest of

these three distinct and parallel operations.

The sign computation involves just one exclusive-or

gate gate and therefore takes a maximum of one clock cycle.

The addition of the two exponents involves in fact

the addition of the two exponents, followed by the subtrac-

tion of the bias since this has also to be performed concur-

rently with the determination of exponent overflow or

underflow.

From [Ref. 7] the addition of the contents of two

registers using the MC68000, takes 4 clock cycles to

complete. After this addition an extra clock cycle will be

taken for the determination of exponent overflow and under-

flow together with the subtraction of the extra. bias.

68

. ... ".. * --
"."". . - "* '- "" - ." .""Z .-.. '..".. . . ". ."..'- '.-'.-' '-4.' " " . ' ". -- "- . - ", '-- . ' - " "-'-" ,"

Therefore it is concluded that the addition of the two expo-

nents will take a maximum of 5 clock cycles.

For the mantissas multiplication, a multiplier will

have to be added to the processor hardware. According to

"Digital Systems: Hardware Organization and Design by

Frederick J. Hill and Gerald R. Peterson ' [Ref. 81 the

multiplier structure that gives the best cost/performance

tradeoff in terms of the hardware involved and the time it

takes to perform a multiplication is a.multiplier that uses

a carry-save adder. There a carry save adder type multi-

plier was chosen.

Also, according to [Ref. 8 :p. 361] the time that a

carry-save adder takes to perform an N-bit multiplication

using a adder for which each addition/shift cycle takes two .'

clock cycles is given by:

Tmult = (N+1)Tc (&.Z7)

where

Tc- is the clock cycle time

In the case being discussed the multiplication

involves two operands - the mantissas. Each mantissa is

24-bits long. Therefore according to the formula shown

above, the multiplication of the two mantissas will take 25

clock cycles. This makes the the multiplication the longest

operation involved.

Note that, the detection of a zero product can be

done concurrently with the multiplication, since a zero

product will happen only in the case where one of the oper-

ands is zero.

The normalization must still be done sequentially.

The normalization involves at most one left shift of the -

.mantissa product and a decrement of the product exponent.

69

p . . ~ 1 A 4~." .°

There is only at most one shift, since the mantissas of both

operands are in normalized form and therefore their values

are between 0.5 and 1. In the worst case, the two mantissas

are both 0.1 (binary) and so their product will be 0.01
(binary). In this case only one left shift is necessary in

order to normalize the mantissa of the product.

The normalization requirement that the standard

makes on the mantissa, also dictates that any overflow or

underflow of the exponent product does not have a possible
recovery.

In conclusion, the floating point multiply instruc-

tion with this hardware will take approximately 26 clocks to

complete.

The hardware that would have to be added to the

MC68000 would only consist of the 24 bit carry-save adder,

the exclusive-or gate *and some logic to determine overflow

or underflow of the exponent and a zero product.

All this hardware will be more or less equivalent to

two of the 32-bit registers existing on the MC68000. Say

then, that due to power dissipation limitations on the

MC68000 two of the 32-bit data registers would then be

removed from the MC68000, in order to add the additional

hardware necessary to implement the floating point multiply

instruction.

5. The Model

As stated previously, the addition of the instruc-

tion will have some costs. One of these costs has been

referred in the previous subsection, it is the removal of

two of the data registers.

As one might expect the removal of some of the

registers from the MC68000 will have an effect on the system

performance by reducing the number of registers accesses and

increasing the number of main memory accesses.

70

AI

-7 %

.4...

In the specific case of the application that is

being considered, this is not true because, at most, six of

the eight data registers are used at one time. Therefore,

for this specific case, the timing costs involved due to the

addition of the floating point multiply instruction will be

zero.

For each and every subroutine involved in this

application, the execution time of the subroutine was

computed following a worst case and a best case criteria.

The difference between the two execution time values for

each subroutine arises due to data dependencies on the

number of times each instruction is executed.

The execution times of each subroutine were then

combined, best with best and worst with worst, in order to

define two boundary lines for the final execution time of

the whole program.

For the specific case of the floating point multiply

subroutine, the smallest execution time corresponds to a

multiplication of two floating point numbers where one of

them is zero. The longest execution time for the same

subroutine corresponds to the multiplication of two numbers -

where an exponent underflow occurred after the normalization

step. Here, for the same reason as before, the normaliza-

tion requires at most one left shift.

Specifically, the values obtained for the execution

times of each subroutine are shown in Table I in terms of

clock cycles.

For the whole program the execution time will be

dependent on the values of the data and on the number of

entry points (N) to the Fast Fourier Transform computation.

The values obtained in terms of clock cycles and number of

required floating point multiplies are shown in Table I.

The best case and the worst case execution of a

floating point multiply subroutine takes respectively 203

71

. -.-

TABLE I

EXECUTION TIME OF EACH SUBROUTINE
IN FAST FOURIER TRANSFORM PROGRAM

BEST CASE WORST CASE

GETEP 162 162

STEP 180 253

NORM 126 1524

ADDEP 178 1929

MULTFP 203 604

SINE 2681+3MULTEP 14459+9MULTFP

COSINE 3904+3MULTFP 20756+9MULTFP

TABLE II

FAST FOURIER TRANSFORM
APPLICATION PROGRAM EXECUTION TIME

N BEST CASE WORST CASE

16 572482+352MULTFP 1899074+736MULTFP

32 1418194+88OMULTFP 4734674+1840MULTFP

64 3484658+2112MULTFP 114442104-4416MULTFP

128 8198594+4928MULTFP 26770882+103O4MULTFP

256 18901458+11264MULTFP 61352402+23552MULTFP

512 42902562+25344MULTFP 138417186+52992MULTFP

1024 96186226+56320MULTFP 308440946+11776OMULTFP

2048 213497794'1239O4MULTFP 680458178+259O72MJLTFP

4096 469394450-'270336MULTFP 1488217106+565248MULTEP

and 640 clock cycles to execute. For a clock rate of 10 MHZ,

the program execution time before the addition of the new

I.instruction will be is in Table III.

72

TABLE III

FFT PROGRAM EXECUTION TIME BEFORE THE ADDITION
OF THE FLOATING POINT MULTIPLY INSTRUCTION

N BEST WORST
EXECUTION TIME EXECUTION TIME

(SEC) (SEC)

16 0.064 0.234

32 0.160 0.584

64 0.391 1.411

128 0.920 3.299

256 2.119 7.558

512 4.805 17.042

1024 10. 762 37. 957

2048 23.865 83.694

4096 52.427 182.963

For the same clock rate, the program execution time

after the addition of the floating point multiply instruc-

tion is shown in Table IV.

The best case is the one where the implementation of

the floating point multiply offers less gain.

For the best case

Tgain = 203 - 26 = 177 clock cycles

For the worst case

Tgain = 604 - 26 = 578 clock cycles

As already explained, for both cases Tcost is zero.

This is due to the fact that in the particular application

program two of the general purpose data registers are never

used. In the case that all general purpose data registers

were used in the application program this would not be true.

If this happened then there would be an increase in the

ratio of the number of register accesses to the number of

-- ,

I..''

TABLE IV

FET PROGRAM EXECUTION TIME AFTER THE ADDITION
OF THE FLOATING POINT MULTIPLY INSTRUCTION

4'

N BEST WORST
EXECUTION TIME EXECUTION TIME

(SEC) (SEC)

16 0.058 0. 192

32 0.144 0.478

64 0.354 1.156

128 0.833 2.704

256 1.919 6.196

512 4.356 13.979

1024 9.765 31.150

2048 21.672 68.719

4096 47.642 150.291

main memory accesses, causing an increase on the average

operand access time and an increase on the average instruc-

tion execution time.

Using the formula for the model regarding the timing

analysis the performance effects of the addition of the

floating point multiply instruction come as shown in Table

V.

From these results one can see that the improvement

on the MC68000 performance due to the addition of the

floating point multiply instruction for this specific appli-

cation varies between ten and twenty percent and is

independent of the number of data points to the Fast Fourier

Transform computation.

•74

I. C

TABLE V

PERFORMANCE EFFECTS OF THE ADDITION OF THE
FLOATING POINT MULTIPLY INSTRUCTION

N BEST CASE WORST CASE

Perf Perf

16 1.11 1.22 1

32 1. 11 1.22

64 1.11 1.22

1.2 8 1. 11 1.22

256 1.10 1.22

512 1.10 1.22

1024 1.10 1.22

2048 1.10 1.22

4096 1.10 1.22

75

VII. CONCLUSIONS

This thesis began by making an identification and char-

acterization of a new and controversial type of computer

architecture called RISC for Reduced Instruction Set

Computers. The rise of this new computer architecture and

the discussions that followed regarding its performance,

when RISC machines are compared with CISC machines, has

* shown the need for an appropriate tool to evaluate computer

performance from an architectural point of view.

This thesis suggests a model to be used by computer

architects to determine the performance effects of an

enhancement to a computer architecture. The computer evalu-

ation process is important, since it generates have a quan-

tified perception of the influences that each enhancement to

the system architecture will have on the system performance.

The availability of a model to do computer performance eval-

uation is therefore essential in the decision-making process

for determining which architectural features a system should

have to optimize its performance for a certain application.

To develop this model for the evaluation of computer

performance, a conceptual view of what determines the system

performance was formed. It is the author's opinion that the

performance of a system results from the quality of the

match between a particular application requirement and the

architectural characteristics of the system. This match is

done through the customization of the system instruction

set.

The model that is suggested is divided into two parts.

The first part makes a quantification of the effects that an

architectural enhancement to the system has in the execution

time of a "typical" application program. The second part of

the model compares the efficiency of the design of two

76

.V1.'. , . | ' ,, P ' " C . - - . . :.. - -..-

systems control units. In both parts the model considers

that the application determines the number of times each

instruction of the system instruction set is executed.

For the first part, the system architecture determines

the execution time of each instruction. For the second part,

the system architecture determines the number of states

through which the system control unit will have to pass

during the execution of the application program(s).

Finally, an example on how to use the model, in order to

determine what are the costs and benefits of adding an

instruction to a processor instruction set for a particular

application, is given.-

The program that was used to apply the model is a bit

misleading in the quantification of the cost/benefit ratio

of the enhancement. This is due to the fact that in opposi-

tion to what should be expected, the program does not use

all the system architectural resources and so, even before

the addition of the new, instruction does not optimize the

system performance. If that were not the case and the

program was an optimal one for the application of interest

and for the processor chosen, then, surely, the enhancement

to the system architecture would have some costs.

In any event and even considering that the example is a

bit misleading, the author arrived at two criteria, each one

derived, from one of the parts of the model, for which the

addition of an instruction to a system instruction set has

to obey so that the performance of the system for the

particular application is increased.

These two criteria will be applied if the new instruc-

tion execution time is smaller than the execution time of

the sequence of instructions that implemented the function

before the addition of the new instruction to the system. ...-

For the first part of the model the criterion for the

addition of the new instruction, states that:

77

Nnew > Tcost / Tgain

* where

Nnew - is the number of times the new instruction

is executed for the particular application

Tgain - is the difference in the execution times

of the sequence of instructions that had

to be executed by the system every time

the operation was performed before the

addition of the new instruction and the

execution time of the new instruction.

Tcost - is the increase in the application program

execution time that was caused by the

suppression of some hardware components of

the processor

For the second part of the model, the criterion for the

addition of the new instruction, states that:

Nnew > Es / Ls

where

Ls - represents the gain in the number of control

unit states, obtained each time the operation

performed by the the instruction and/or the

sequence is executed.

Es - represents the cost in the number of states

due to the addition of the new instruction to

the system instruction set.

The two parts of the model need to be thoroughly checked

and confirmed with measured values, so that their validity

is determined.

78

n -

FAST FOURIER TRANSFORM

EFT MOVE.W N,N2 ;N2=N/2

ASR.W N2

MOVE.W NU,NUl ;NU1=NU-1

SUBI.W #1,N~lT

CLR.W K ;K=0

MOVE.W NU,DO ;DO 100 L=1,NU

LOOPi BEQ. S 100

102 MOVE.W N2,D1 ;DO 101 1=1,N2

LOOP2 BEQ. S 101

MOVE.W NUl,D2 ;P=IBITR(K/2**NU1,NU)

MOVE.W K,D3

LOOP3 BEQ. S 200

ASR.W #1,D3

SUBI.W #1,D2

BRA LOOP3

200 MOVE.W D3,J

JSR IBITR

MOVE.L RX,P

MOVE.W N,D3 ;ARG =6.283185*P/FLOAT(N)

;convert N to float, point

MOVEQ.L #159,D4

300 ASL #1,D3

SUBI.L #1,D4

BCC 300

MOVE.B #t9,D5

LSR.L D5,D3

ROR.L D5,D4

A1NDI.L mask,D4 ;clear D4 except exponent

OR.L D4,D3 ;D3 <-- FLOAT(N)

t4OVE.L D3,FPN ;store FPN

79

~-. - -- - -7-. V 7

MOVE.L P,D3 ;convert P to float. point

MOVEQ.L #159,D4

*400 ASL #1,D3;

SUBI.L #1,D4

BCC 400

MOVE.B #9,DS

LSR.L D5,D3

ROR.L D5,D4

ANDI.L mask,D4 ;clear D4 except exponent

OR.L D4,D3 ;D4 <-- FLOAT(P)

MOVE.L D3,FPP ;store FPP

LEA FPWR,A2 ;A2 points to Floating Point

;Working Register

LEA FPACC,A1 ;Al points to Floating Point

Accumulator

LEA FPP,AO ;FPWR <-- FPP

JSR GETFP

MOVE.L #2P1,(A1) ;FPACC <-- 2P1

MOVE.B #2P1,2(Al) ;

JSR MULTFP ;FPACC <-- 2P1

LEA FPN,AO ;FPWR <-- FPN

JSR GETFP

JSR DIVFP ;FPACC <-- 2P1/FPN

LEA ARG,AO ;store ARG

JSR STFP

MOVE.L ARG,X ;C=COS(ARG)

JSR COSINE

MOVE.L RESULT,C ;store C

JSR SINE ;S=SIN(ARG)

MOVE.L RESULT,S ;store S

MOVE.W K,K. ;K=K+l

ADDI.W #1.Kl2

MOVE.W Kl,D3 ;K1N2=Kl+N2

ADD.W 12, D3

M'OVE.W D3, K1N2

80

LEA XREAL,A3 ; TREAL=XREAL(KlN2) *C+
+XIMAG(KIN2)*S

LEA XIMAG,A4

ASL.W #1,D3 ;D3 <- 2*K1N2

SUBI.W #2,D3 ;D3 <-- 2*KlN2-2

ADDA.W D3,A3

ADDA.W D3,A4

MOVEA.L A3,AO ;FPWR <-- XREAL(KlN2)

JSR GETFP

MOVE.B (A2),(Al) FAC<-PW

MOVE.L 2(A2),(Al) ;FAC<-PW

LEA C,AO ;FPWR <--

JSR GETEPI
JSR MULTEP ;FPACC <-- XREAL(I(1N2)*C
LEA TREAL,AO. ;store partial result

JSR STEP

MOVEA.L A4,AO ;FPWR <-- XIMAG(K1N2)

MOVE.L (A2),(A) ;FPACC <-- FPWR

MOVE.B 2(A2),2(Al) ;

LEA S,AO ;FPWR <-- S

JSR GETFP

JSR MULTFP ;FPACC <-- XIMAG(KJ.N2)*S

LEA TREAL,AO ;FPWR <-- partial TREAL

JSR GETFP

JSR ADDFP ;FPACC <-- TREAL

JSR STEP ;store TREAL

TIMAG=XIMAG(K1N2) *C

MOVEA.L A3,AO ;FPWR <-- XREAL(KlN2)

JSR GETFP

MOVE.L (A2),(Al) ;FPACC <-- FPWR

MOVE. B 2(A2),2(Al)

LEA S,AO ;FPWR <-- S

J SR GETFP

JSR MULTEP ;FPACC <-- XREAL(K1N2)*S

LEA TIMAG,AO ;store partial result

JSR STFP

EORI.L mask,(AO) ;change sign of TIMAG

MOVEA.L A4,AO ;FPWR <-- XIMAG(KlN2)
JSR GETEP

MCVE.L (A2),(Al) ;FPACC <-- FPWR a
MOVE.B 2(A2),2(Al)

LEA C,AO ;FPWR <-- C

JSR GETEP

JSR MULTFP ;EPACC <-- XIMAG(K1N2)*C

LEA TIVAG,AO ;FPWR <- partial TIMAG

JSR GETFP

JSR ADDFP ;FPACC <-- TIMAG

JSR STFP ;store TIMAG

XREAL(K1N2)=XREAL(1(1) -TREAL
EORI mask, TREAL ;change sign of TREAL

MOVE.L TREAL,(A3) ;XREAL(KIN2) <-- TREAL

LEA XREAL,A5F

MOVE.L Kl,D3

ASL #I., D3

SUBI.L #2,D3

ADDA D3,A5

MOVEA.L A5,AO ;FPWR <-- XREAL(K1)

K-JSR GETFP

[.MOVE.L (A2),(A1) ;FPACC <-- FPWR

MOVE.B 2(A2),2(A1);

MOVEA.L A3,AO ;FPWR <-- XREAL(KlN2)

JSR GETFP

JSR ADDFP ;FPACC <-.- XREAL(K1)-TREAL

JSR STFP ;storer ~ ~XIMAG(K1N2)=XIMAG(Ki) -

EORI mask,TIMAG ;change sign of TINAG

MOVE.L TIM4AG,(A4) ;XIMAG(KNk2) <-- -TIMAG

32

-7 T 17

LEA XIMAG,A6

ADDA.L D3,A6 ;A6 ->XIMAG(Kl)

MOVEA.L A6,AO ;FPWR <- XIMAG(K1) PL
JSR GETFP

MOVE.L (A2),(Al) ;FPACC <-- FPWR

MOVE.B 2(A2),2(A1)

MOVEA..L A4,AQ ;FPWR <-- XIMAG(K1N2)

JSR GETFP

JSR ADDFP ;FPACC <-- XIMAG(K1N2)

JSR STEP ;store

;XREAL(K1)XREAL(K1)+

+TREAL

EGRI mask,TREAL ;change sign of -TREAL

LEA TREAL,AO ;FPWR <-- TREAL

JSR GETFP

MOVE.L (A2),(Al) ;FPACC <-- FPWR

MOVE.B 2(A2),2(A1)

MOVEA.L A5,AO ;FPWR <-- XREAL(K1)

JSR GETFP

JSR ADDFP ;FPACC <-- final XREAL(K1)

JSR STEP ;store

;XIMAG(K1)XIMAG(Kl)+

+ TI MAG

EORI mask,TIMAG ;change sign of -TIMAG

LEA TIMAG,AO ;FPWR <-- TIMAG

JSR GETEP

MOVE.L (A2),(A1) ;EPACC <-- FPWR

MOVE.B 2(A2),2(Al)

MOVEA.L A6,AO ;FPWR <-- partial XIMAG(K1)

JSR GETEP

JSR ADDFP ;FPACC <-- final XIMAG(K1)

JSP. STFP ;store

ADDI.W #11,K ;K=K+l

SUBQ.W #1.01

BRA LOOP2

83

101 MOVE. W N2, Dl ;KK+N2 .

ADD. W K, Dl

MOVE. W DI, K

CMP. W N,D1 ;IF (K.LT.N) GO TO 102

BMI 102

CLR.W K ;K= NS

SUBI.W #11 NUI ;NUI=NUl-1 P
ASR.W N2 ;N2=N2/2

SUBQ.W #1,DO

BRA LOOPi

100 M~OVE.W N,DO

MOVE.W #1,D1 ;DO 103 K=1,N

LOOP4 BEQ. S 103

MOVE.W D1,J ;I=IBITR(K-1,NU)+1

SUBI.W #1,J

JSR IBITR

MOVE.W RX,I

ADDI.W #1,1

CMP.W I,D1 ;IF (I. LE.K) GO TO 103

BPL 1003

LEA XREAL,A3 ;TREAL=XREAL(K)

LEA XIMAG,A4

MOVE.W Dl,D2

ASR #1,D2

SUBI.W #2,D2

MOVEA.L A3,A5

mOVEA. L A4,A6

MOVE.W I,D3

ASR #1,D3

SUBI #2,D3

ADDA.L Dl,A3 ;A3 ->XREAL(K)

ADDA.L Dl,A5 ;A5 ->XIMAG(K)

ADDA.L D2,A4 ;A4 ->XREAL(I)

ADDA.L D2,A6 ;A6 ->XIMAG(I)

M4OVE. L (A3),TREAL

84

MOVE. L .(A5), TIMAG ;TIMAG=XIMAG(K)

MOVE.L (A4),(A3) ;XREAL(K)=XREAL(I)

MOVE.L (A6),(A5) ;XIMAG(K)=XIMAG(I)

MOVE. L TREAL, (A4) ; XREAL(I)=TREAL

MOVE. L TIMAG,(A6) ;XIMAG(I)=TIMAG

1003 ADDQ.W #1D

SUBQ.W #1,DO

BRA LOOP4

103 RTS ;RETURN

85

IBITR FUNCTION

IBITR MOVEM.L DO-D3,-(A7) ;save registers

MOVE.W JJ. ;J1=JPE

CLR.W IBIT ;IBITR=O

MOVE.W NU,DO ;DO 200 I=1,NU

LOOP BEQ. S 2000

MOVE.W J1,D1 ;J2=J1/2 5
ASR.W #1,Dl

MOVE.W' Dl,D2 ;D2 <-- J2

IBITR=IBITR*2+(J1-2*J2)

ASL.W #1,D2

MOVE.W J1,D3

SUB.W D2,D3. ;D2 <-- (J1-2*J2)

ASL IBIT

ADD.W D3,IBIT

MOVE.W Dl,J1 ;Jl=J2

SUBI #1,DO

BRA LOOP

2000 MOVEM.L (A7)+,DO-D3 ;restore registers

RTS ;RETURN

86

SINE FUNCTION

SINE MOVEM.L DO-D4,-(A7) ;save registers

MOVE.L X,DO

BTST.L #bit,X ;test sign of X

BNE 100 ;

MOVE.B #-I,SGN ;SGN <-- -1

BCHG #bit,DO ;DO <-- -DO

BRA 200

100 MOVE. B #,SGN ;SGN <-- 1

MOVE.L DO,Y ;Y <-- DO

200 CMP.L YMAX,DO ;YMAX - DO

BPL 300

error message '.

300 MOVEA.L Y,AO ;AO -- > Y

JSR GETFP ;FPWR <-- Y

MOVE.L 1/PI,(Al) ;FPACC <-- inverse of pi .4
MOVE.B 1/PI,2(AI)
JSR MULTFP ;FPACC <-- Y/PI -f

MOVEA.L Y/PI,AO ;AO -- > Y/PI

JSR STFP ;store Y/PI
MOVE. L Y/PI,D1 ;DIl-- Y/PI

MOVE.L D1,D2

ANDI.,L mask,D1 ;Dl <-- mantissa

BSET #bit,D ;insert hidden bit

LSR #7,D2 ;hi D2 has exponent

SWAP D2 ;lo D2 has exponent

SUBI.B #127,D2 ;extract bias

BPL 400 ;if positive go to 400

MOVE.W #O,N ;clear N

BRA 500

400 BNE 600 ;if zero go to 600

87

-a. -.

o • • °.

MOVE. W #1,N ;N <--.1

BRA 500o

600 ASL.L D2,D1 ;shift left mantissa by
;exponent value, max = 8

ANDI mask,Dl- ;leave only integer part
ASR.L #7,Dl

SWAP Dl ;mantissa in lo D1

MOVE.W Dl,N ;N <-- integer of mantissa

500 MOVE.L Y/PI,XN ;XN <- FLOAT(N)

BTST.B #0,N ;N even ?

BEQ 700 ;if even do nothing

otherwise

BCHG #7,SGN ;change sign of SGN

700 MOVE.L X,1Ij ;determine F

ANDI. mask, IXI ;clear sign bit

M0VEA.L XN,AO ;FPWR <-- XN

JSR GETEP

MOVE.L -C1,(Al) ;FPACC <-- Cl

M0Vt.B -Cl,2(A1)

JSR MUEJTFP ;FPACC <-- -(XN*Cl)

MOVEA.L XI ,AO ;FPWR <-- lxi
JSR GETEP

JSR ADDFP ;FPACC <-- jXI-(XN*C1)

MOVEA.L TEMP,AO ;store FPACC

JSR STFP

MOVEA.L XN',AO ;FPWR <-- XN

JSR GETFP

MOVE.L -C2,(A1) ;FPACC <-- -C2

MOVE.B -C2,2(A1)

JSR MULTEP ;FPACC <-- -(XN*C2)

MOVEA.L TEMP,AO ;FPWR <-- IXI-(XN*Cl)

JSR GETFP

JSR ADDFP ;EPACC <-- F

MOVEA.L. F,AO ;store F

JSR STFP

88

%I.

MOVE. L F, IFI ;IFI <-- F

ANDI.L mask, tFl ;clear sign bit

CMPI.L IFI,#eps ;IFI - eps

BMI 800 ;branch if Ifl < eps

;otherwise h

;determine R(g)

MOVEA.L F,AO ;FPWR <-- F

JSR GETEP

M0VE.L (A2),(A1) ;FPACC <-- F

MOVE.B 2(A2),2(A1)

JSR MULTEP ;FPACC <-- F*F

;= F*F

MOVE.L (Al),(A2) ;FPWR <-- G

MOVE.B 2(A1),2(A2) ;

MOVE.L R4,(A1) ;EPACC <-- r4

MOVE.,B R4,2(Al)

JSR MULTFP ;FPACC <-- r4*G -

MOVEA.L G,A0 ;store G

JSR STEP

MOVE.L R3,(A2) ;FPWR <-- r3

MOVE.B R3,2(A2)

JSR ADDFP ;FPACC <-- r4*G+r3

MOVEA.L G,AO ;FPWR <-- G

JSR GETFP

JSR MULTFP ;FPACC <-- (r4*G+r3)*G

MOVE.L R2,(A2) ;FPWR <-- r2

MOVE.B R2,2(A2) , &
JSR ADDFP ;FPACC <-- (r4*G+r3)*G+r2

MOVEA.L G,AO ;FPWR <-- G

JSR GETFP

JSR MULTFP ;FPACC <-- (()*G+r2)*G

MOVE.L R1,(A2) ;FPWR <-- ri

MOVE.B R1,2(A2)

JSR ADDFP ;FPACC <--)*G~rl

MOVEA.L G,AO ;FPWR <-- G

89

JSR GETEP I.

JSR MULTEP ;FPACC <-- R(g)

MOVEA.L F,AO ;FPWR <-- F

JSR GETEP

JSR MULTEP ;FPACC <-- F"'R(g)

JSR ADDFP ;EPACC <-- F*R(g)+F

MOVEA.L RESULT,AO ;store result

JSR STFP

BRA 900

800 MOVE.L F,RESULT ;result <-- F

900 MOVE.B SGN,D3 ;test value of SGN

BPL DONE ;if positive do nothing

otherwise

;change sign of result

.MOVE.L RESULT,D4

BCHG #31,D4
MOVE.L D4,RESULT

DONE MOVEM.L (A7)+,DO-D4 ;restore registers

RTS ;return to main program

90

'.I-

COSINE FUNCTION

COSINE MOVEM.L DO-D4,-(A7) ;save registers

MOVE.B #1,SGN ;SGN <-- 1

ANDI mask, IXI ;clear sign bit

MOVEA.L lXi ,AO ;FPWR <-- lxi
JSR GETEP

MOVE.L PI/2,(A1) ;EPACC <-- PI/2

MOVE.B PI/2,2(Al)

JSR ADDFP ;FPACC <-- IXl+PI/2

MOVEA.L Y,AO ;store Y

JSR STEP

MOVE.L Y,DO ;DO <-- Y

CMP.L YMAX,DO ;YMAX -DO

BPL 100

error message

100 MOVEA.L Y,AO ;AO ->Y

JSR GETFP ;FPWR <-- Y

MOVE.L 1/PI,(A1) ;FPACC <-- inverse of pi

MOVE.B 1/PI,2(A1)

JSR MULTFP ;FPACC <-- Y/PI

MOVEA.L Y/PI,AO ;AO -- > Y/PI

JSR STEP ;store Y/PI

MOVE.L Y/PI,Dl ;Dl <-- Y/PI

MOVE.L D1,D2

ANDI.L mask,Dl ;Dl <-- mantissa

BSET #bit,D. ;insert hidden bit

LSR #*7,D2 ;hi D2 has exponent

SWAP D2 ;lo D2 has exponent

SUBI.B #127,D2 ;extract bias

BPL 200 ;if positive go to 200

91

MOVE.W #0,N ;clear N

BRA 300

200 BNE 400 ;i~f zero go to 400

MOVE.W #1,N ;N <-- 1

*BRA 300

*400 ASL.L D2,D1 ;shift left mantissa by

;exponent value, max = 8

ANDI mask,Dl ;leave only integer part

ASR.L #7,D1

SWAP D1 ;mantissa in lo D1

MOVE.W D1,N ;N <-- integer of mantissa

300 MOVE.L Y/PI,XN ;XN <-- FLOAT(N)

13TST.B #0,N ;N even ?

BEQ 500 ;if even do nothing

otherwise

BCHG #7,SGN ;change sign of SGN

500 MOVEA.L XN,AO ;FPWR <-- XN

JSR GETFP

MOVE.L #-.5,(Al) ;FPACC <-- .5

MOVE.B #-. ,2(A1) ;

JSR ADDFP ;FPACC <--XN-. 5

JSR STFP ;store XN

;determine F

MOVEA.L XN,AO ;FPWR <-- XN

JSR GETFP

MOVE.L -C1,(Al) ;FPACC <-- Cl

P4OVE.B -C1,2(A1) ,

JSR MULTFP ;FPACC <-- -(XN*C1)

MOVEA.L IXI,AO ;FPWR <-- IXI

JSR GETEP

JSR ADDFP ;FPACC <-- IXI-(XN*Cl)

MOVEA.L TEMP,AO ;store B'PACC

JSR STFP

MOVEA.L XM, AO ;FPWR <-- XN

JSR GETFP

92

MOVE. L -C2, (Al) ;FPACC <-- -C2 * p

MOVE.B -C2,2(A1)

JSR MULTFP ;FPACC <-- -(XN*C2)

MQVEA.L TEMP,AO ;FPWR <-- !XI-(XN*C1)

JSR GETEP,

JSR ADDFP ;FPACC <-- F

MOVEA.L F,AO ;store F

JSR STFP

MOVE.L FIlE ;IFI <-- F

ANDI.L mask, IF! ;clear sign bit

CMPI.L IFI,#eps ;IFI - eps

BMI 600 ;branch if If I < eps

otherwise

;determine R(g)

MOVEA.L F,AO ;FPWR <-- F

JSR GETEP

MOVE.L (A2),(A1) ;FPACC <-- F

MOVE.B 2(A2),2(Al)

JSR MULTEP ;FPACC <-- F*F

;= F*F

MOVE.L (AJ.),(A2) ;FPWR <-- G

MOVE.B 2(Al),2(A2),

MOVE.L R4,(Al) ;FPACC <-- r4

MOVE.B R4,2(Al)

JSR MULTFP ;FPACC <-- r4*G

MQVEA.Ej G,AO ;store G

JSR STFP

MOVE.L R3,(A2) ;FPWR <-- r3

MOVE.B R3,2(A2)

JSR ADDFP ;FPACC <-- r4*G+r3

MOVEA.L G,AO ;FPWR <-- G

JSR GETFP

JSR MULTEP ;FPACC <-- (r4*G+r3)*G

MOVE.L R2,(A2) ;FPWR <-- r2

MOVE.B R2,2(A2)

93

b r

JSR ADDFP ;FPACC <z-- (r4*G+r3)*G+r2

MOVEA.L G,AO ;FPWR <-- G

JSR GETEP

JSR MULTEP ;FPACC <-- (()*G+r2)*G

MOVE.L Rl,(A2) ;FPWR <-- ri

MOVE.B RJ.,2(A2)

JSR ADDFP ;FPACC <-- ()*G+r1

MOVEA.L G,AO ;FPWR <-- G

JSR GETFP

JSR MULTFP ;FPACC <-- R(g)

MOVEA.L F,AO ;FPWR <-- F

JSR GETEP

JSR MULTFP ;FPACC <-- F*R(g)

JSR ADDFP ;FPACC <-- F*R(g)+F

MOVEA.L RESULT,AO ;store result

JSR STFP

BRA 700

600 MOVE.L F,RESULT ;result <-- F .

700 MOVE.B SGN,D3 ;test value of SGN

BPL DONE ;if positive do nothing

otherwise

;change sign of result

MOVE.L RESULT,D4

BCHG #31,D4

MOVE.L D4,RESULT

DONE MOVEM.L (A7)+,DO-D4 ;restore registers

RTS ;return to main program

94

LIST OF REFERENCES

1. Katevenis, Manolis H., Reduced Instucion set
copert Achtue fr L Ph.D. The si sl

2. Radin, George, "The 801 Minicomputer" IBM Journa-o
ReerhaU evelopment, Volume 2'7 Number J, may ..

3. Stanford University Computer Systems Laboratory,
Technical Report 223, MIPS: A VLIPoe

Aciecture, by Hennessy ian-T-the~s, o75vember,

4. Brigham, E. Oran, fl& Fast Fourier Transform, -
Prentice-Hall, 1974.

5. Eccles, William J. , Micrpo.esg Systems, _4 16-bit
Approach, Addison-Wesley, 196b.

6. Cody Jr ,William J. and Waite William, Software
Manua-1 f__Zth er nentarv ZuncdiD., P rent i eITT

7. Stone H., and others, Inroucio to Corn uter
Achi~ectur, science Research Associates,71980.

8. Hill, Frederick J. and Peterson, Gerald R., D',a
systms: Hardware Or anization and Desim, Wiley,

95

7 18D-R167 973 THE RISC (REDUCED INSTRUCTION
SET COMPUTER)

242
ARCHITECTURE AND COMPUTER PERFORKANCE EVALUATION(U)
NAVAL POSTGRADUATE SCHOOL MONTEREY CA M F EARROS

UNCLASSIFIEID MAR 86 F/G 9/2 U.MEu'

L'A'

Ug 1j.2

U..,

Q61

S611 la 1 .

IIIIIL2I5

M'CRflCOP' CHART

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Post raduate School
Monterey, California 93943-5002

3. Dr. Harriett B. Rigas 2
Code 62Rr
Naval Postgraduate School
Monterey, California 93943

4. Dr. Larry Abbott 1
Code 62A
Naval Postgraduate School
Monterey, California 93943

5.. Dir. Serv. Instrucao e Treino 1
Edificio do Ministerio da Marinha
Rua do Arsenal
1000 Lisboa
Portugal

6. Manuel Pedrosa de Barros 4
Celula 5 Bloco 5 Lote D, 3 Direito
2795 Linda-a-Velha
Portugal

t~m

" 96"

..... |f.....

z

p9

.1~1

e~.

-~.1~

.~- ..

U

*: ~.

4*5

A

-'-S.'...
.1~

* -S. - ~ **S.~*S . . . S. * * - S.
S... * ~ .-.. **5S.S*~~*~*S. ~ . -. -. '.-. - . S. * . . .

