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INTRODUCTION

A samara~type decelerator was developaed by the 1I.S. Army Armament Research
and Development Center to orient and stabilize acanning submunitions cjected From
a spinning projectile in mid-to-late flight, The 1idea of using a single Flexible
fin with a tip weight to generate a lunar scan motion was derived from the flight
of maple secds or “samaras.” The submunitfons descend vertically over the hat-
tlefield, searching for armored targets. A spiral ground-scan Footprint pattern
18 genevated by the rotation of the cylindrical submunition about an axis tilted
with respect to its axis of symmetry (fig. 1). When a target Lls detected, the
ftring train {8 initiated, and a penetrator s explosively formed and fired from
the front face of the submunition.

The samara decelerator consists of a single flexthle fin, with a tip weight
typically between 2% and 5% of the bhody weight. Tt {8 attached to the top edsyo
of the cylindrical submunition. The fin is mounted and shaped to give the cam-
ber, twist, and dihedral required for steady spin, descent veloncity, and stabil-
iey. Dispersion may bhe obtained by sequential deployment of the fin on each
submuntion. The packing volume {s about 1/10th that of a deceleration system
using a rotating parachute.

The effectiveness of the design was first demonstrated in free-flight test-
ing of a small scale model, using a single flexible fin, in the vertfical wind
tunnel (VWT) at Wright Patterson Alr Force Base, Ohio. Later testing with a full
(dimensional) scale model in the VWT demonstrated a constant spin rate, descent
velocity, and a scan angle near the design value of 30 degrees.

This report presents the results of VWT testing of the samara-body combina-
tion. A set of aerodynamic coefficients was estimated, then refined using a six-
degree-of-freedom (6-DOF) computer program to simulate the motion observed in the
VWT.

DISCUSSION
Submunition Physical Characteristics

The wind tunnel model (fig. 2) consisted of an approximately full (dimen-
sional) scale, right circular cylinder made of Lexan (35% of the weight of an
actual submunition) and a single flexible fin as an orfentatfon and stahflization
(0&S) device. The cylinder was 4.75-in. in diameter and 3.40-in. long. The
flexible fin, made of a double layer of 3 oz/yd2 nylon, had a 7.5-i{n. span and a
3-in. chord. Tt was attached at the edge of the cylindrical submunition body and
weighted at the tip with a steel cylinder whose center of gravity (c.g.) was
slightly forward of the mid-chord. (Subsequent testing showed the fin to he more
stable, particularly during the spin-up phase, 1{f the c.g. of the tip weight were
located at the quarter~chord position. The model wefghed 2.78 1b and the tip,
0.085 1b,
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The physical characteristics of the wind tunnel model were evaluated with a
computer program capahle of calculating moments and products of inertia, center
of gravity, mass, and the orlentation of the principal axes of inertia for asym-
metric hodies. For purposes of modeling, the submunition was treated as a rigid
body with three parts: the cylindrical body, the flexible fin, and the tip
weight., Tt was assumed that in flight, the orifentation of the fin was normal to
the spin axis, and the axis of symmetry of the body was tilted at the scan angle
(a ) to the spin axis (fig. 3). Computations were performed for different
valiés of a until the spin axis was aligned with a principal axis of inertia
which ts th&®aXis about which the body would rotate {n the absence of any exter-
nal moments. The angle for this configuration was 31 degrees.

A set of curves was computed to show the effect of tip weight mass and fin
length on the scan angle for a Lexan body (fig. 4) and an aluminum body (fig.
S). Increasing the tip weight and/or the fin length {increases the scan angle,

although the plots indicate a maximum angle of about 50 degrees for this size
body.

Wind Tunnel Testing

The testing was conducted in the vertical wind tunnel (VWT) at the Air Force
Wright Aeronautical Laboratory (AFWAL), Wright Patterson Air Force Base, Ohio.
The VWT has a t2-foot open jet test gection with an annular return and is capable
of velocities up to 140 ft/s. The model was hand-launched with an initial spin
rate to deploy the fin, Motlon pictures were taken during test flights at 100
frames per second. The submunition in free flight 1is shown in figure 6. 1t flew
at steady state conditions with a constant axial velocity of 77.0 ft/s and con-

atant angular velocity of 47.1 rad/s. These values were determined from the
mot {on plctures.

The drag coefflclent (C,) of 3.21 was based on body diameter. Model spin-up
as a function of time was obtained from the VWT motion pictures (fig. 7). The
curve starts at a nonzero spin rate because the models were prespun. The roll
moment coefficients C_ and the roll damping moment coeffi{cients C_ were ohtained

from a computer program which numecrically solves the equation: p
% pV2Sd d
p = == [C2 + (Cz ) gv] (N
XX P

The resulting C2 was 0,282 and the Cg varied bhetween -1,59 and -2,45

P
After an Initial transient period, the cylindrical body flew in a lunar
motion at A constant angle-of-attack or scan angle of 25 degrees. The fin was
orlented 10 degrees above the horizontal and was curved along the span., The
steady state orlentation of the submunition {s shown ian figure 8. The physical
vharactertisgtics of the submunitfon with the fin in this orientation (about 35
degrees above the top of the body) were evaluated and the principal axes were

PO R R

Al
4
4,

T
",

el Wl g B
e £ ‘;,...‘_" -

3 m\“{:ﬂ;‘ﬁ

o

-‘i'

A I

[
"l"

T :"_,"’ m f%';v'l'. f‘.':‘.'_'."'.' b

L
-




U
i

e

%

-

-

[

73

¥

»

3
y

hby
o
¢ “Tv
‘ 3
A found to he rotated by 32 degrees with respect to the body axis of symmetry, ‘The o

~ moments of Incrtia were: x&

o] €
it

' Body axes Principal axes -
2 2 e

. ‘xx - l".(’s ‘h-tn. [xp - lﬁosl lb-‘“. %
Ty, = 9.36 lb-in.2 1,, = 6.64 Lh-1n.2 '

yy L L] yl, . L] &

: T,z = 15.49 1b-1n.2 T, = 15:49 1b-tn.2 ad
. - 10,2 oy

: Ixy 4.39 lb-in. é&

As previously stated, the body was rotating ahout an axis other than the ;iﬂ
principal axis. FEuler's equations of motion for a riglid body rotating ahout a !
fixed point state that a body will rotate about a principal axis of inertia un-

. less an external moment {s acting on the body. This moment {s glven by: <
- M, =1, 0 -1 w_ w_ +1 _ w W .::.
. P zp Xp xXp Yyp yp yp xp o
) . ;:f
' At steady state, Wy = 0; therefore —
' M= (1 ) 3

z yp ~ %ap “xp ‘yp :—.'-'
Substituting for the principal 1inertias and angular velocity components, the fﬁ'
external moment was 6.78 in.~1lb., This moment {s caused by the €in drag acting at oo

the fin-body junction, g X
g R
. N
. Computer Simulation ii:
« -.':\

The flight of the submunition was modeled by use of a 6-DOF computer simula-
tion (ref 1), This program is capahle of using a body-fixed or fixed plane coor-
dinate system and can handle aerodynamic and geometric asymmetries. To simulate

. the motion observed {n the VWT, a body-fixed coordinate system was used. The -
. orientation of the body axes with respect to the fixed inerttal (Earth) coordi- A
nates 1s described by three Euler angles (¢ the first rotation, O the second, and
¢ the third). The body axes (shown aligned with the inertial earth axes); the

A
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positive sense of pitch, yaw, and spin rates, and the Euler angles are shown 1in :kﬁ
! figure 9, ]
The basic aerodynamic coefficients used in the program are defined in an ?:{
aeroballistic system for symmetric missiles. However, the presence of the flex- f;’
ible fin on the body makes it highly nonsymmetric. Fortunately, the program also e
includes terms for aerodynamic asymmetries: the moment coefficlents Cm and Cn &l
[¢] (4] > <
and the force coefficients Cy and C; . The positive sense of the acrodynanmlc ﬁ:*
. o '~
forces and moments are shown in figure 10. The angular equations of motlon used ; N
in the program are At
.
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| Lee P = Ley(a = pr) = (I, = Lo dar + M, (2)
‘ Tyy 4 = L(p + ar) = (Lo, - I,)pr + My (3)
1, °= I,(y(p2 ~ qd) + (L Iyy)pa + M, (4)

where the aerodynamic moments are

. \
4 L2 pd Y
: M =3 oV sd [cz +C, (2v)] (5) Y
: P o
. o
L 2 pd
M =5 oV Sd {C) stn £+ cmp (&) cos & E_
3 ady 2 (xd
2 + Cmq [(ZV] sin” € (ZV) cos £ sin £]
+C [(ﬂi) cos2 £+ (ﬂ] sin £ cos €] ‘-
& n 2V 2V (6) ‘-'{
oy
+ C } ::_:
m -
o Q.
- E - 5“.
. 1l 2 - A
: M, =5 oV sd {~c cos €+ C, (2v) sin £ By
: o
d rd 2 L
- qc - (=2 :
c, [(ZV) sin £ cos £ (2v) cos” &] N
; ad rdy .2 !
- +C [(ZV) cos E sin £ + (ZV) sin E] . )
: e
¥ +C_ |} £
n ko
- o
- As ohserved {n the VWT test, the body flew at a constant scan angle (angle- Z:jfj
. of-attack) of 25 degrees and a constant angular veloclity of 7.5 Hz, This motion, o
. in terms of the Euler angles and angular rates, is -
il
N . [
¢ = variabhle V= 47.1 rad/s (%
. P
‘: 0 » ~H5 degreoes 0=0 oy
\: . ‘f
3 $ = 90 degrees $= 0 Y
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p = 42.7 rad/s 5 =0
q = 19.9 rad/s 5 =0
r = 0.0 rad/s r=20

Noting that £ = O at steady state and substituting equations 5, 6, and 7 into
equations 2, 3, and 4,

pd
Co*Cyp v 0 (8)
pd qd -
Cm 2V + Cn 2V + Cm 0 (9)
1 .2
sevosd (c. -c )= (1. ~1_)pq
2 o m vy XX (10)

Substituting the numerical values of p, q, I,,, etc. into 8, 9 and 10, the fol-
lowing steady state relationships result:

C£+ 0.11 C}L =0 (11)
P
0.11 C +0.051C +C =29 (12)
™ n m
P r o
Cno -Cc = 1.65 (13)

From the wind tunnel test, C, was estimated to be 0.282 and solving equation

11 at steady state, Cz = -2.57. "The drag coefficient at steady state was 3.21,

but there was no way of obtaining the 1lift coefficient from the wind tunnel test.
For purposes of this simulation, it was assumed that the 1lift coefficient was
zero and the drag coefficient did not depend on the angle-of-attack (a) so that

Cx = CD cos o (14)

C = CD sin a (15)

N

Vot e
s

S R A T W T e T T I . VT ININ T
D

-

B
-]
. -q
- .-
!7
._~ 1

]
J

N "I“';‘ '-"_'-’;': i“v:'

A
*

a0
st
.o PRl I S

Y,':"

LAARS

e

I

e

ey,

ad
L
AL

e 1Y




Pitching momeat coefficlients (Cm) for the cylindrical body alone were obtained
from references 2 and 3. At a = 25 degrees, C; = -0.087 and solving equation 13,

C, = 1.559 at steady state. It 1s assumed that C, does not depend on a since
(o} o

it appears that only the body changes angle-of-attack in flight while the flexi-

ble fin is always oriented perpendicular to the spin axis and, therefore, gener-

ates a constant moment. The remaining coefficlents (Cm , Cm , C C_ ) were
1] (o]

n.* “m
r
obtained in an iterative manner: The damping moment coefficients C, and Ca

r q
were chosen and made equal; a value was chosen for C and equation 12 was

’
M,

solved for the Magnus moment coefficient (Cmp); cmo was assumed constant, and Cg

assumed linear with a. The program was run using the initial conditions from the
wind tunnel test: 1initial velocity of 77 ft/s, initial spin rate of 25.1 rad/s,
and an angle-of-attack of 0 degrees. This process was repeated until the tran-
sient motlon damped out in 2 or 3 seconds and the computed motion agreed with the
observed motion. A summary of a successful set of coefficlients (based on the
cross sectional body area) is shown 1in table 1. A plot of scan angle versus time
for a simulation run with these coefficlents 1is shown in figure 1l. Note that

other combinations of coefficlents (Cm , Cmo, Cnr, Cmq) would have produced an

acceptable match of the wind tunnel results.

CONCLUSIONS

1. A simple orientation and stabilization device for a slow, steady scan-
ning flight has been described. The device consists of a single flexible fin and
a tip welght which 1s used to drive the submunition in a lunar motion.

2. The scan angle was found to increase with the length of the fin and/or
the mass of the tip weight.

3. A set of aerodynamic coefficients has been determined for the submuni-
tion which was adequate to simulate the motion observed in the wind tunnel on a
six-degree-of-freedom computer program. More testing is required to verify those
coefficients and to determine the effect of angle-of-attack and Mach number vari-
attons on the coefficients.
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Figure 1. Submunition, descending and scanning
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Figure 6.

The wind tunnel model in free flight in the vertical wind tunnel
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oA vy

BN r

Sy Y

Moment of inertia about x body axis, through the c.g.
Moment of inertia about x principal axis

Product of inertia in the x-y plane

Moment of inertia about y principal axis

Moment of inertia about y body axis, through the c.g.
Moment of inertia about z principal axis

Moment of inertia about z body axis, through c.g.
Rolling moment

Roll damping moment

Pitching moment

Magnus moment

Damping moment, angle-of-attack plane

Trim moment

Normal force

Damping moment, magnus plane

Trim moment

Total moment about x body axis

Total moment about y body axis

Total moment about z body axis

Spin rate

Time rate of change of spin rate

Pitch rate

Time rate-of-change of pitch rate
2

Dynamic pressure, %-pv

Yaw rate
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\ c . Time rate-of-~change of yaw rate
9 N N 2
] Reference area, n re
: u Component of velocity in X-body direction
\Y Total velocity

o v Component of velocity in Y-body direction

. w Component of velocity in Z-body direction
= X Body coordinate
. Y Body coordinate

- Y, Trim force

2 A Body coordinate

) Z, Trim force
Al

. a Angle-of~attack

. Scan angle

scan

2 ] Second Euler rotation

7

‘I

" £ Orientation of cross velocity, cos £ = M

2 2
v +w
:: (o} Atmospheric density -
5 ¢ Third Euler rotation .
> P First Euler rotation i§
. wxp Component of angular velocity along x principal axis of composite body ::
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