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FOREWORD

This report describes work done by Sabbagh Asso aates, Inc. under contract N60921-
85-C-0046 with the Naval Surface Weapons Center, White Oak, as part of the Center's
Small Business Innovation Research Program (SBIR)(.The research problem is to develop
a model and an inversion algorithm 4fat-i3 suitable for the three-dimensional quantitative
nondestructive evaluation (NDE) of advanced composite materials by using eddyLcurrents.
The'pprach is based ondabbagh Associates' work in eddy-current NDE of conventional
metals. TheAechnical objectives are to determine the feasibility of using multifrequencies
for this job, to determine in localized regions the fiber-resin ratio in graphite epoxy, and
to determine more precisely the types of IMomalies, whether flaws, delaminations, broken
fibers, etc., that can be reconstructed b3½Ar inversion method. These objectives are met
by: (1) applying rigorous electromagnetic theory to determine a Green's function for a
slab of anisotropic composite material, (2) determining the integral relations for the direct
and inverse problemsý, using the Green's function just derived, (3) determining suitable
numerical algorithms for solving the inverse problem, and (4) writing a computer program
to execute the model. These objectives have been met; in addition we illustrate some
interesting electromagnetic phenomena in composite materials. Ii c , -

Composite materials in the form of fiber-reinforced matrix materials, as, for example,
graphite-epoxy, are being increasingly used in critical structures and structural compo-
nents because of their high strength-to-weight ratio., Such structures range from high-
performance aircraft to rocket motor cases to consumer goods, such as automobiles, golf
clubs and tennis rackets. In order to assess the integrity of these structures, thereby de-
termining the presence and size of flaws, it is necessary to employ suitable methods of
quantitative nondestructive evaluation, such as eddy-currents. This research will have
significant applications in the military and commercial aircraft industries, as well as auto-
mobiles and consumer products.

Approved by:

JACK R. DIXON, Head
Materials Branch
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CHAPTER1

IDENTIFICATION AND SIGNIFICANCE OF THE PROBLEM

The proposed research problem is to develop a model and an inversion algorithm that
is suitable for the quantitative nondestructive evaluation (NDE) of advanced composite
materials by using electromagnetic methods, especially eddy-currents. We are specifically
interested in determining, in localized regions, the fiber-resin ratio in graphite-epoxy.

Composite materials in the form of fiber-reinforced matrix materials as, for example,
graphite-epoxy, are being increasingly used in critical structures and structural components
because of their high strength-to-weight ratio. In order to assess the integrity of these struc-
tures, it is necessary to employ suitable methods for quantitative NDE. One method uses
eddy-currents; composite materials, however, are inherently anisotropic, which means that
many of the classical eddy-current technology and design procedures are not applicable. In
addition, composite materials vary widely in their permittivities and conductivities, which
means that new analyses must be carried out to develop effective strategies for using eddy-
currents in quantitative NDE. A final problem is that there is a variety of potential failure
modes in composites, such as delaminations, fiber-breakage due to impact damage, flaws,
etc., some of which may not be readily detectable by eddy-currents [1]. In order to corm-
plement the empirical studies of [1] it is necessary to embark upon a rigorous quantitative
NDE program for composites to assess the role that eddy-currents play in it, and especially
to determine a suitable inversion algorithm.

In quantitative NDE one seeks to determine the orientation and spatial extent of flaws,
i.e., to reconstruct or image flaws. By so quantifying a flaw one is better able to assess its
potential for damaging the structure in which it is located, thereby offering a means for
judging whether to eliminate the flawed member or not. Clearly, such decisions can save
hundreds of thousands of dollars in "down time", as well as potentially saving lives.

The present state of the art in quantitative eddy-current NDE of composites does not
include the ability to reconstruct or image anomalous regions, or flaws, in three dimensions.
The objective of Phase I research, therefore, is to develop a model and algorithm suitable
for inverting eddy-current data for the reconstruction of flaws in quantitative NDE of
advanced composite materials. The specific technical objectives are:

1. To develop a model describing the interaction of induced eddy-currents and the
conducting graphite fibers in graphite epoxy,

2. To develop a fiber density algorithm based on this model,

3. To determine the feasibility of using multifrequencies for this job.

These objectives can be met by accomplishing the following:

1. Apply rigorous electromagnetic theory to determine a Green's function for a
4,." stratified half-space, or a finite slab, of anisotropic composite materials.
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2. Determine the integral relations for the direct and inverse problem, using the
Green's function derived in 1.

3. Determine suitable numerical algorithms for solving the inverse problem.

4. Write a computer program to execute the model.

Electromagnetic theory and the Green's function are dealt with in Chapters 2-4,
and in Appendices A, B and C. Integral equations for the direct and inverse problems
are derived in Chapter 5, which also includes a discussion of the discretization of these
equations by means of the method of moments and the use of multifrequencies. Chapter
6 describes the numerical algorithms that were used: these are least-squares, by means
of the singular value decomposition and QR-decomposition, together with the Levenberg-
Marquardt stabilization parameter, and an iterative algorithm for analytic continuation

(or Fourier extrapolation.)

We conclude the report with a description of some numerical experiments, comments
and conclusions.

2
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CHAPTER 2

AN ELECTROMAGNETIC MODEL FOR GRAPHITE-EPOXY

BACKGROUND

Eddy-current methods for the examination of carbon fiber reinforced epoxy resins
and other composite materials have been discussed and analyzed by Owston and Prakash
[2]-[5]. These analyses have been based on an ad hoc equivalent circuit in which the
composite test piece is regarded as being inductively coupled to the probe, much as in
the classical treatment of eddy-current evaluation of metals. Though the technique gives
a useful indication of the form of the results, a more satisfactory approach, as Owston [4]
points out, is to use a field-theoretic analysis which is capable of giving exact results for a
given model. A field-theoretic analysis is also desirable when computing electromagnetic
interactions for shielding effectiveness of advanced composites in aircraft [6].

The heart of the problem is to determine a Green's function for the composite material.
(The Green's function is the electromagnetic field produced by a point-source of current.)
Much work has been done in recent years on the subject of electromagnetic interactions
with composite materials, mostly in the context of electromagnetic shielding of avionics
equipment from electromagnetic pulses [6]-[10]. Some of this work is directly applicable
to the problem of computing eddy-current flow within composites, but the Green's func-
tion problem must be attacked by applying rigorous electromagnetic theory to anisotropic
media.

CONSTITUTIVE RELATIONS FOR ADVANCED COMPOSITES

Advanced composite materials are laminates made up of a number of individual layers
bonded together. Each layer consists of a unidirectional array of long fibers embedded in,
and firmly bonded to, a matrix. The basic building blocks of any specific composite are
defined by the types of fibers and matrix involved. Some fiber-matrix systems are: boron-
epoxy, graphite-epoxy, Kevlar-epoxy, graphite-polymide and graphite-thermoplastic [7].

The matrix for each of these materials is normally a good dielectric, whereas the fibers
v'ary in electrical conductivity from modest (graphite) to a poor dielectric (boron) to a good
dielectric (Kevlar). These materials are nonmagnetic, so that the magnetic permeability
is 5.o.*

Composites have anisotropic conductivities because of the unidirectional arrays of
fibers within. For example, for graphite-epoxy the average macroscopic conductivity along
the fiber direction is 20,000 mhos/m, whereas in the direction transverse to the fibers, the
conductivity is 100 mhos/m. It may be surprising to find a nonzero transverse conductivity

* These, and other facts about electromagnetic constitutive relations, are taken from [7],

which is the most complete reference on electromagnetic modeling of composite materials
that we have found.

3
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in graphite-epoxy, in view of the earlier statement that the matrix is a good dielectric.
The fact is that there is enough local fiber-to-fiber contact that the average macroscopic
conductivity is not zero. (See Figure 1(a).) Other materials, of course, have different
longitudinal and transverse conductivities, as shown in Table 1 [7]:

TABLE 1. SUMMARY OF ELECTRICAL PROPERTIES
OF SOME COMPOSITES

Graphite-Epoxy Boron-Epoxy Kevlar
Permeability/ZR 1 1 1
Permittivity CR indeterminate 5.6 3.6
DC Conductivity (mhos/m)

longitudinal UL 2 X 104 30 6 x 10-9
transverse aT 100 2 x 10-s 6 x 10-9

Anisotropy Ratio (aL/CT) 200 1.5 X 109  1

The reason that IR for graphite-epoxy is indeterminate is because the fiber-to-fiber contact
effectively shunts the capacitance between fibers with a fairly low resistance path, making
it impossible to measure dielectric permittivities at frequencies less than 100 megahertz, or
so. Thus, in Figure l(b), which shows a possible ac equivalent circuit for eddy-current flow,
the capacitors are effectively shorted by the fiber-to-fiber resistors at the lower frequencies.

The anisotropy of the composite manifests itself in a complex permittivity tensor, the
tensor being diagonal in a coordinate system (el C2, 63), where el is parallel to the average
fiber direction, C2 is perpendicular to the average fiber direction, but lies in the plane of
the composite layer, and 6 is perpendicular to both fibers and the plane of the layer:

S= 22 0

0 0 63

Here, iii = Eii - , with j = V/T-I, and w is the angular frequency. The coordinate
system just defined, for which the complex permittivity tensor is diagonal, is not necessarily
the laboratory coordinate system, (x,y,z), in which the electromagnetic field vectors are
defined. In any case, the tensor symbol will be used, and the components in a particular
coordinate system may be computed by applying the usual rules for transforming Cartesian
tensors.

SFrom here on we will consider only graphite-epoxy, for which cII = (22 = (33 = E0,

a~l = 2 x 104 mhos/m, and a22 = a33 = 100 mhos/m.

MATRIX WAVE EQUATIONS FOR GRAPHITE-EPOXY

Maxwell's equations are the fundamental equations for electromagnetic analysis. Us-
ing the constitutive relations just defined for graphite-epoxy, these equations become, in

4
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the sinusoidal steady-state:
VxH= - JH(2)

Because of the anisotropy of graphite-epoxy, it is convenient to work with a matrix for-
mulation of these equations that has been useful in crystal optics, plasmas and microwave
devices [11]-[19J. We start by writing (2) in the 6 x 6 matrix form

xjw ,,- o x\ :9  - (3)
\V XI jWPsO7/kH

where the permittivity tensor includes a conductivity term, as in (1), except that the

matrix is not necessarily diagonal. I is the identity matrix, and 0 is the zero vector.

We write the matrix of partial derivatives as:

(Vx • -Vx?)= V, a/ax + 2 a/ay +U•s az, (4)

where /o° /(4)
0 0 0 0 0 -1)

0 0 01 00 000 -1 0 1 0--
1, 0 0 0 2 0 0 1 r

0 0 -1 0 0 00

0 1 0 --1 0 0 (1
0 1 0()

6 - 0 0

U3 0 -1 0Us 01 0 0 00
100

0 0 0

When these matrices are substituted into (3), along with the definitions

we get

[jwR + U1 0/oX + U2 a/dy + U3 d/dz] 1 = -j('). (7)

Upon defining the two-dimensional Fourier transforms in (x,y) by

C 1 k-)ffE (x,y,z)ei(kzz +kcyy)dxdy (8) (a)47r2

e , e ff , kk, z)e-i(k~z+ky•) dkz dk, (8) (b)

5
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we take the Fourier transform of (7):
[= - = ] -"(i)

iwK - jk.Uj - jkU 2 + U3 d/dzj = - . (9)

To get this result we assume that the composite material is homogeneous in the (x,y)

plane, so that K is independent of (x,y).

The third and sixth rows of (9) are independent of z-derivatives. Thus, we can use
these two equations to solve for e3 and i6 in terms of the remaining variables:

K 3 1  K 32 ~ _ky k 1_ 3(1()-k3el -- e2 + - 4-ý 4(0 a
K33  WK 33  wK 33  JWK33

E6- ky il + k.= i2 (10) (b)

When we use these two equations to eliminate the z-components from the remaining equa-
tions in (9) we end up with system of four first-order differential equations in the four
transverse electromagnetic field components. This system is written as the 4 x 4 vector-
matrix equation:

dz =S !t + U1 (1

where
et = [i1,i2,i4,] [Ez,Ei, Hz,Hy]; (12)

the subscript, 't', denotes transverse field variables.

The components of S and U are:

S11- jk.K 3 l ' S12 = ik.K 32 ' S1= -jk ,wk S14 = -jWo +Jik.2

K33 ' S2= K33 ' S3=wK33 'wK 33
S21 jkYK 33 ' S22 = jkK 3 2  S23 = jWAO - "--y S24 i k-ky

21 K33 ' 2 K33  WK3 WK 33

K 23 K 31  k2k .K 3 32 ._

S31 = jwK 21 - jWK + , kzk, S32 = jwK2 2 - jw K2-K32 J
K 33  W/AO K33  WgO

_jkYK 23  -jk 2 K23  K13 K3 1  ýS33 = --k3K-3 S34 =-zz S, 41 = -jjK Il + jwls 1 + j

- K33 ' K 3 3  /K3 3  WAO
S42 = -jwK12 + jw K 13 K3 2  kSkyK13 S44 yk.K13

K33 -J 0 K33  K 33 (13)

U11 = 0, U12 = 0, U13 = k,
W K33

U21 = 0, U22 = 0, U23 = ky
WK 33 (14)

U31 = 0, U32 = 1, U33 = K23
K33

U4 1 = -, U42 = O, U =

6
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CHAPTER 3

DERIVATION OF A GREEN'S FUNCTION FOR A GRAPHITE-EPOXY SLAB

The formal solution of (11) defines the Green's function, G:

t(z) • - (zlz') (* (z')dz'.15)

The double bars over G denote a tensor, and the tilde over any variable means a transverse
Fourier transform, as before. Clearly, the Green's function is the transverse field at z due
to a point current source at z'. Thus, it is a 4 x 3 tensor, because there are four transverse
field components, as shown in (12), and the point current source can be oriented in the
x-, y-, or z-direction. Because the current flow in the models studied in this report are
confined to the transverse plane, i.e., the (x,y)-plane, we will be interested in only the first

two columns of G.

The calculation of the Green's function requires a knowledge of the eigenmodes of (11)
for a nonstratified medium. These are solutions of the homogeneous form of (11), with
constant with respect to z. The eigenmode theory is developed in Appendix A.

In order to compute G we must know the geometry of the composite material. In this
report we will work with the plane-parallel slab that is shown in Figure 2, with the x-axis
parallel to the fiber direction, and the y-direction transverse. Thus, the region of interest
consists of three parts: the region above the slab (which is free space), the composite slab,
and the region below the slab. Call these regions 1, 2, 3, respectively, as shown in Figure
2, and introduce the following notation for the Green's function:

Gij(zlz') =Field produced at z in region i, due to a

point source of current at z' in region j;

i,j = 1,2,3.

As we will see later, the only Green's functions that are needed are G21 and G12.

In order to compute G21, consider Figure 3(a), in which the point-source of current is
located at z' in region 1. We further subdivide the three regions into four regions, called
A-D, and expand the vector field solutions in each of these four regions in terms of the
eigenvectors of Appendix A:

A: a -C2)0 e-o(z-z')_+tb I1O: e-A°(Z-Z') (16) (a)

7
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Clio -Clio0
B: c + d C20  C \O(Z-Z') + eC io CeAO(zZ')

". 1 ) 1-0 20 )

+-t f ii01: e-AO(Z-') (16)(b)

91  -o0 0
C: e,,z +d' -0o2 _ eI e + -#I e-3(16)(c)

0 0 1• 1 •
I( 1) ( o1)e(-0)e(-02)

010 0
D e°'\O(z+z•) + h Po eAO(z+zo) (16) (d)

(~0 (/1)

where a1 = S14 /A1 , a2 = S 24/A 1 , /31 = A3/S 32 , and 32 = S3 1/S 3 2. The subscript '0'
N. denotes quantities defined in isotropic free-space.

Equations 16(a) and 16(d) contain only outgoing waves at ±infinity. In order to
determine the unknown expansion coefficients a through h, c' through f', we must satisfy
certain boundary conditions. The fields must be continuous at the two boundaries, z =
0, andz = -zo, which do not contain current singularities. At z = -z', which does contain
a point singularity, there must be a discontinuity. The amount of discontinuity can be
inferred from (11), in which the imposed source current has the form:

3 =-ejk'ejib(z- z'), (17)

where j is the unit vector in the direction of current flow.

Upon integrating (11) an infinitesimal distance across the plane z = z', we get
"",.+- •- • ei'e'kv', (18)

where (+) denotes the limit immediately above z', and (-) denotes the limit immediately
below.

In order to find the response to x-directed currents (the first column of the Green's

tensor) we let j = a.. The right-hand side of (18) becomes

(19

8
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Similarly, for a y-directed current, which will produce the second column of the Green's
tensor, we let j = a., and get

for the right-hand side of (18).

Once we obtain the boundary conditions, the solution for the expansion coefficients
becomes a straight-forward problem in linear algebra.

The computation of G 12 proceeds in a similar manner, except that the four subregions
are shifted downward, as shown in Figure 3(b). The field expansions are given by:

S a 20 e 0 OZ

A:\O (e +b #1 (21)(a)) )
1 ) (-020

B: c /2 eAl (z+z') +d-02 e-\(z+z') e ) e13 (z+z')

+ f ( - \) e-Z(+z') (2•1)(b)

-a1
-#2

C : c (2e (z+z') +d' -a 2 e-I(z+z')+.t 0 A(z+z')

00

+f e- (Z+Z') (21)(c)

a1 0o 0

D: g (20)eAO(z+zO) + h 010 eAo(D+zo), (21)(d)

1 ) -,20)

and the current singularity is at z', which is within the slab.
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The boundary conditions, including the discontinuity condition, (18), are the same
as before. In particular, the inhomogeneous terms, (19) and (20), corresponding to an
x-directed and y-directed current source, respectively, continue to hold.

In Appendix B we sketch the application of the boundary conditions for solving for the
expansion coefficients for G12. The process for G21 is similar. After the coefficients have
been determined, we substitute c' through f' into (16) (c) to complete the computation of

G21; for G12 we substitute (a, b) into (21)(a). These steps complete the solution of the
Green's tensor.

10
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CHAPTER 4

CALCULATION OF THE ELECTROMAGNETIC FIELD
WITHIN A GRAPHITE-EPOXY SLAB

Having computed a Green's function for the graphite-epoxy slab, it is possible to

determine the field within the slab due to currents above the slab (by using ? 2 1), or to

determine the field above the slab due to currents within the slab (by using G12). The
latter operation will be used in the inverse problem. The method of determining the fields,
given the currents, is to use (15).

•(1)

We have considered four different impressed current sources, j : an infinite current
sheet, a filamentary circular current loop, and two finite circular current sheets with dis-
tributed windings, one with a uniform distribution, and the other with a linearly increasing
distribution. Each of the current sources is parallel to the surface of the slab. The three
circular currents simulate, to a degree, flat 'pancake' coils.

The infinite current sheet plays a significant role in the inversion process, which will
be presented in the next two chapters, and will be discussed first.

INFINITE CURRENT SHEET

The problem is illustrated in Figure 4. In the Fourier transform domain, the current
sheet is given by

_-.(i).-

j (k,,ky,z') = Io6(k4)6(ky)6(z' - z")(i.cos9 + avsin6), (22)

where I0 is the surface current density in amperes per meter, and a is the direction of
current flow. The delta function at the origin of (k2 , ky) space is due to the fact that
the current sheet is uniform over the entire (x, y) plane. The principal axes are the x-
and y-axes, the x-axis being along the fiber direction, and the y-axis transverse. We will
compute the field within the slab when the current is oriented along either of these axes
(i.e., 0 = 00 or 900) , and then use a simple tensor transformation to compute the fields
when the current sheet is oriented at any other angle.

=-()
Because the spectrum of j is concentrated at the origin, we can simply put k. =

ky = 0 in computing the Green's function, G2 1 . Of course, the evaluation of the integral
in (15) is simplified because of the delta function at z". These facts allow us to write down
a simple analytic expression for the transverse fields within the slab:

current in x-direction:

= c' 0 )eA' + d' e-Ala. (23)(a)

Hff 00
Hy1

11
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current in y-direction:

E Y+e l" -\3 X/ e - A 3 X (2 3 ) (b )

where
= g( 711 1 l)A I, d = g(1 2,70 )e-A.zo

e--\o of

-a.1 =___- 10
g- ( Io ~)e1 'ii-'o 2 ~z2all

(,- l + ,- o)2e '° (,71 -"o)2 --\-°
"a2 2 -= (,1,+ + ,)o)- (tl - ,70)2cA-,o

%
0 = 1 + 17io \30) A7 -- 1 /o A3 Z= oe= h(•- )e P = h(-- )e-(4

h- 22P? (24)

t(,7 + ,7o)2e'3°10 (,7 - ,7o)2e-A3Z°
" "'• = (,7 + yjo)2 (,7 - 170)2

770 = (t/io/) 2  l,1 = (uO/Kil)I/2 ,P = (iso/K)1/ 2 .

We see from (23) that an x-directed uniform current sheet produces an x-directed
electric field and a y-directed magnetic field, whereas a y-directed current sheet produces
a y-directed electric field and an x-directed magnetic field. This is what we expect from
an isotropic medium; it occurs in an anisotropic medium when the x- and y-directions are
principal axes for the medium.

For an "off-axis" orientation of the current sheet, however, the results are much dif-
ferent and must be calculated by using a simple tensor transformation. Let T., and Ty
be the electric fields produced within the slab due to a current sheet above the slab. Then
in the principal coordinate system, (X, y), we have

so that

0 = (c ) (26)

asLt x /x e roae system.Le X Y)b the rtedcoordinate ste.Then

(,') = .sinO) (27)

si2 0 cos 0 y

12
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Hence, the relationship between the induced current and the exciting current, in the
(x', /') coordinate system, is

_ cose0 sine\1(28
-sine cos0)] ((cose0 sine) ~( or1 T,, 0 ) cose -sine O r- sin 0 cos 01] 0 cYTy1 sin 0 cose J 0 ,9)

or( I1 T,,, cos 2 e + ory sin 2  (-a, IT,,. + orTyy) sine0 cos 0
S(-a 1 T + orTy)sinecose oa, T2 sin 2 0 +oT,,cosr 0 C J

The magnitudes of the currents that are induced at the surface of the slab are plotted
in Figure 5(a), for a frequency of 106 Hz, and all = 2 x 104, -= 100. The slab thickness,
z0 , is 1.27 cm (0.5 inches), and z", the height of the current sheet above the slab, is 2.54
mm (0.1 inch). We assume that the current sheet carries current in the z' direction only;
the angular variable shown in Figure 5(a) is the angle between the z' and z axes. Now we
see that, generally, there is a component of current (the smaller loop) that flows transverse
to the direction of the current sheet. The larger curve is the component of current that
flows parallel to the exciting current. For an isotropic medium, the smaller loop would
vanish, and the larger curve would be an arc of a circle.

These results are in qualitative agreement with those of Prakash and Owston [3],
who used a simple theoretical analysis that was based on an equivalent circuit. We can
extend the field model that has been developed in this report to include slabs that consist
of graphite-epoxy laminates of differing "lay-up order", i.e., in which the laminates have
their principal axes differing from one-another. In addition, we can include the effects of
non-simple excitation sources, such as the "horse-shoe" eddy-current probe of Prakash and
Owston [3]. An advantage of the more extensive field-theoretic analysis is that it more
clearly suggests the limits of simpler equivalent circuit models.

CIRCULAR CURRENT DISTRIBUTIONS

The circular currents produce more interesting field distributions than does the infinite
- (i)

current sheet. Expressions for j (k3 , ky, z) for each of the distributions are derived in
Appendix C. We note, now, that the spectrum of each current distribution is no longer

concentrated at the origin, so that we must compute CG& for all k2, k, as described in

Chapter 3. When G21 and j are substituted into (15), we obtain the transverse Fourier
transform of the transverse field vector at any level, z, within the slab. Then, upon taking

the inverse Fourier transform, say by using the Fast Fourier Transform (FFT) algorithm,
we get the fields in physical space, at each level, z. We have done this for each of the current
distributions, and have found that the results are qualitatively similar in all three cases;
hence, we will display results of the filamentary loop, only. The parameters, dimensions
and frequency are the same as for the current sheet; the radius of the current loop is 0.5
inch (1.27 cm).

13

"" ..



NSWC TR 85-304

Before going into the anisotropic problem, we illustrate, in Figure 5(b), the fields
induced into an isotropic medium (with conductivity 2 x 104 mhos/m) at a depth of 0.05
inch (0.127 cm). The isotropic nature of the response is clearly apparent; if we were to
look vertically downward we would see a circular response region. Each pixel is a square,
whose side is 0.05 inch. Thus, the response region has a diameter of about 1.0 inch, which
is the diameter of the current loop. Therefore, the result agrees with our intuition.

The situation in an anisotropic material is changed dramatically, however. In this case
the fibers will 'guide' the field, so that it will die out much less rapidly in the x-direction
(along the fibers) than in the y-direction. This is illustrated quite clearly in Figure 5(c),
where the complex values of the x- and y-components of the electric field at a depth of 0.05
inch are shown. The response region in this figure is highly elongated in the x-direction,
when viewed from directly above. The x-component of the induced electric current field
is obtained by multiplying the x-component of the electric field by a11, which is equal
to 2 x 104 mhos/m, and the y-component of the current is given by the product of the
y-component of electric field with a22 (100 mhos/m). Therefore, the eddy-currents do not
flow in the usual circular paths of an unbounded isotropic medium, as suggested by Figure
5(b), but, rather, flow in highly elongated quasi-elliptical paths. The degree of eccentricity
of the paths depends upon the degree of anisotropy, as measured by the ratio, al01/022.

In many applications it is important to know how rapidly the induced field dies out
with depth into the slab. In an anisotropic medium there is no unique skin-depth, because
the conductivity varies with direction of the electric field. Therefore, the problem must be
handled numerically in most cases. We present in Figure 5(d) model calculations of the

*I induced electric field at a depth of 0.4 inches within the slab. The excitation source is the
filamentary current loop of before, and the frequency remains 1 MHz. Upon comparing this
figure with Figure 5(c), we draw the following conclusions: the field magnitude is reduced
by about an order-of-magnitude, the field is much more spread out in the y-direction
and is very uniform in the x-direction. These results are consistent with the notion of
diffusion in isotropic media; they are an obvious manifestation of the filtering-out of the
higher spatial frequencies, k,, k., with depth, and the crowding of the spatial-frequency
spectrum toward the origin. In addition, we note that the x-component of the electric field
dies out much more rapidly with depth than does the y-component. This is due to the fact
that in the principal axis coordinate system the x-component interacts with a much larger
conductivity, o1 1, than does the y-component (which interacts with 022.) This supports
our statement that there is no unique skin-depth in graphite-epoxy.

Model computations of the type presented in this chapter can be very useful in setting
up eddy-current experiments in graphite-epoxy, and interpreting the results.

14
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CHAPTER 5

INTEGRAL EQUATIONS FOR THE DIRECT AND INVERSE PROBLEMS

DIRECT AND INVERSE PROBLEMS

At this point we introduce some systems-related ideas that should make clearer the
way our concept of inversion is used for nondestructive evaluation. Refer to Figure 6, which
shows a "system", together with its input and output. In part (a) of the figure the input
is known and so is the system, and the output is to be determined. This is the "forward"
or "direct" problem. For example, the input could be current or voltage source and the
system, a coil coupled to the composite workpiece. The output, the electromagnetic field or
induced eddy-current within the workpiece, can be directly computed in a straightforward
manner by electromagnetic theory; we have done this in Chapter 4, by computing the
eddy-current induced into the workpiece as a function of the orientation of the exciting
current-sheet.

In part (b) the system and output are known, and the input is to be determined.
This is a problem of communication theory, or signal detection. One assumes a catalog
of possible input signals to be available, whose structure and characteristics are known a

priori; from the known output one estimates the input signal on the basis of the maximum
a posteriori probability of its occurrence.

This is the basis of the application of feature extraction and artificial intelligence to
nondestructive evaluation. It is an example of another forward method, and appears to be
sufficient for many applications. It is, however, limited by both the large volume of signal
waveforms that must be catalogued for a suitable generalized interpretation and by the
subjective comparisons made by the interpreter. The method also gives little indication of
the sensitivity of the solution to possible errors in the data and the degree of non-uniqueness
associated with the chosen model.

In Figure 6(c) both the input and output are known and the system is unknown.
The input could be a known probing signal and the output, the measured response to the
probe. The object is to determine the nature of the, system.

This is an example of system identification, or parameter estimation, where "param-
eter" refers to certain parameters of the unknown system. In the sense that problems (a)
and (b) are direct, problem (c) is the "indirect" or "inverse" problem, and is the problem
attacked in this research effort. What one seeks in this problem is a model-system that,
when operating on the input, produces a model-output that is, in some sense, an optimum
estimate of the known output.

In Figure 7 we show a current-sheet that excites a region of the composite workpiece,
Sand a sensor that measures the scattered field. Within the workpiece lies an anomalous

region (the "flaw") that we wish to reconstruct. A mathematical mesh is defined that
surrounds the anomaly, as shown. The system, then, consists of the current-sheet, the
"sensor, the workpiece, and the mesh that encloses the anomalous region. The unknown

• 15
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parameters that are to be estimated in order that the system be identified, in the sense of
Figure 6(c) and the discussion about it, are the generalized electrical permittivities that
are to be assigned to each cell of the mesh. The known input is the current to the current-
sheet, and the known outputs are the field components at the sensor. Clearly, if we can
determine the permittivity map that is defined on the mesh, we will have reconstructed
the anomalous region.

The method of solving this problem is based on minimizing the square of the error
between the actual measured data and that produced by the model-system, the model-
output. The parameters that are varied to produce the optimum model, in the least squares
sense, are, of course, the permittivities that are assigned to each cell in the mesh of Figure
7.

Thus, mathematically, we wish to determine a set of unknown parameters, {f,}, j =

1,..., M, where M is the number of cells in the mesh, from a set of data, {ei}, i = 1,... , N,
where {ej} is the field component measured by the sensor at a number of points, and at a
number of different frequencies (if we are using a multifrequency approach). The {ej} are
functionally related to the {jc} in a known way:

(29)
eN =fN(E1,.. .,M).

Hence, given the {,}, we can calculate the {ei} by treating this as a "forward" problem,
in the sense of Figure 6(a).

It is the {ei}, however, that are the given data, so we must invert the system, (29),
to determine the {c"}. We do this by minimizing the error function

N

=f(e,-)]/ 2  (30)
i= 1

Iterative methods are commonly used to carry out the minimization of (30). The iterative
method successively improves a current model, i.e., a current estimate of the {fj}, until
the error measure, (30), is small and the parameters are stable with respect to reasonable
changes in the model.

The equations that define the forward and inverse problems are integral equations
that are determined by using electromagnetic theory; they will be derived next.

INTEGRAL RELATIONS FOR THE DIRECT AND INVERSE PROBLEMS

The detection of flaws, or anomalies, by means of eddy-currents depends upon the
fact that flaws have different electrical parameters than the host material, and, therefore,
the eddy-current flow is interrupted at the boundary of the flaw. The flaw, therefore,

16
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can be considered to be an inhomogeneity, which consists of a tensor permittivity, tf that
is imbedded in a region whose tensor permittivity, (o, is known a priori. The magnetic
permeability of each region is 10. Hence, Maxwell's equations for the two regions are:

"V x Eo = -jwAoHo known region

"V x Ho = jwfo - o (31)(a)

"V x Ef = -jwjlo'Hf flawed region

V x gf = jwf=f E f (31)(b).

Upon subtracting (31)(b) from (31)(a), we get:

A V x (Eo - Ef) = -jWAO(HO - H1 ) (32)

v x (Ho -H ) = jlo. (-o - -P) + 1j(=o - R)"-Bf,(

where we have added and subtracted jwCo -Ef to get the final result.

Thus, the perturbation of the electromagnetic field, Eo - E 1 , Ho - Hf, satisfies the
same equation as the original electromagnetic field within the known region, except for the
presence of the term 7. = jw(Eo - E,) "EI. This term, which is equivalent to a current
source, represents the presence of the anomalous region, or flaw. It is important to note
that this current source vanishes off of the flaw, because there the tensor permittivities
are equal. Thus, we say that the anomalous current density has a "compact support"; it
occupies a finite spatial extent.

Equation (32) has the same form as (2), with the anomalous current playing the role
of the impressed current. Thus, (32) can be transformed into the transverse-matrix format,
(11), whose solution is given by (15), again with the impressed current replaced by the
"anomalous current. The general form of the solution is

(eo - ef)(z) f= ?(z•z') .(z')dz'. (33)

"1 4., We suppress the subscript, t, on the transverse field variable, e, to avoid confusion with
other subscripts.

Before going further, we define:

1e,2(z) =transverse field in region 1 or 2,

with the flaw present

oii eo(z) =transverse field with the flaw absent,

due to the exciting current sheet.

With this notation, together with the corresponding notation for the Green's function in
Chapter 3, we can use (33) to write down the following integral equation for computing
the field within the flawed region, which is in region 2:

Eo(Z) = 12(z) + if 22(zIz') .J.(z')dz', (34)(a)

17
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where
Ja =w(f- - E2. (34)(b)

The known field, eo, that appears in (34)(a) has already been calculated in Chapter 4.

Equations (34)(a),(b) are the integral equations for the direct problem: given the
anomalous permittivity, (Vo - kr), compute the field •2 (z).

The integral equation for the inverse problem is also derived from (33), except now
the fields on the left-hand side are in region 1, because they are measured by the sensor
(recall Figure 7). The anomalous current is still in region 2, of course, so that we have:

(eo - ei)(Z) = i 12(ZIZ') (z')dz', (35)

where Ja is defined as in (34)(b).

Equations (34) and (35) (or, more precisely, their discretized versions) constitute the
model system that was discussed in (29) and (30). The rigorous algorithm for using the
system consists of first computing the incident field, eo, at the flaw, by the methods of
Chapter 4; this is the left-hand side of (34) (a). For a given distribution of flaw permittivity,
Ef(z),_(34) can be solved numerically by the method of moments [20]. The solution of
(34), E2, in the flawed region is the source term for (35), which produces the perturbed
field at the sensor. This is the model field that is compared with the measured field to
determine if the assumed flaw permittivity is "close" to the actual (though unknown) flaw
permittivity. The problem is really nonlinear because (34) and (35) involve the product
of two unknowns, the flaw permittivity and the electric field within the flaw. Thus, we
resort to the iteration just outlined to get a solution. This iteration consists of a series
of "direct" problems, which are the solution of (34), given an assumed flaw permittivity,
and "inverse" problems, wherein we determine the flaw permittivity from (35), given the
measured fields at the sensor.

A LINEARIZED INVERSE MODEL

This iteration is time consuming, so we seek a means of linearizing the problem. From
some of our previous work in numerical electromagnetic modeling of two-dimensional flaws
in conventional metals [30J, together with laboratory results [31], we have found that we
can approximate e2 , that appears in (35), by the known field, io, that is produced by
the current sheet, and that has already been computed in Chapter 4. This linearizes the
problem, decouples the inverse problem from the direct problem and, in fact, renders the
solution of the direct problem unnecessary.

In the linearized approximation we have

J,a(x,y,z) : jw(Eo - (f) Eo

J= jW(COI - joao/w - COI + j=f/W) .-Eo (36)

(Oo - ). Eo
Or g"Eo.

18
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Note that the anomalous conductivity, or, has a compact support in the (x,y) plane.

Eo is uniform in the (x,y) plane; hence, the transverse Fourier transform yields

ja(kz,ky,z) = ."a(k., ky, z) E o, and when this is substituted into (35), we get the basic
approximate integral equation for inversion:

f.0 -z-. (7

EW 1-20 G12( Z') -d. ~(Z) O i~(z') dz', (37)

where the left-hand side is the perturbed field measured by the sensor at z =

We assume that the anomalous conductivity tensor has the same structure (including
the same principal axes) as the host conductivity tensor. Hence, in the principal axes, we
have:

0
0a &a22  0) (38)

with ja 22  &a3.1' Our host material satisfies o, = 20, 000, a 2 2  033 = 100 mhos/m.

We know from our work with the current sheet that an x-directed current induces an
x-directed electric field, and a y-directed current induces a y-directed field (as long as we
are in the principal-axes coordinate system). Hence,

a(z') E o(z') = &aý, (z')Eoj(z')a2, if current is in x direction (39)

"& a 22 (z')E02 (z')dy, if current is in y direction.

DISCRETIZING THE INTEGRAL EQUATION

We discretize the integral equation for inversion by appealing to the method of mo-
ments, together with a multifrequency approach. In applying the method of moments we
first divide the slab into Nz plane-parallel regions, and expand &aj1 , and &,a22 in terms of
"pulse functions defined on this partition:

No
a a,, (k.,,ky,z') = Z )i(kz,ky)P,(z'), (40)

where

Pi(z' 1, if z-_ z < z+
"0, otherwise,

and z•-), zj are, respectively, the bottom and top of the jth layer.

When this is substituted into (39), and that result into (37), we get
No Z(+)

.( L> G12 (CIz') .a±Eol(z')dz', current in x direction
p': zj (41)

. 2J G 12 (Cz')- dEo02 (z')dz', current in y direction.
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The dot product, G - , picks out the first column of G, and G. a- does the same for

the second. Hence, upon letting 1(= 1, 2, 3, 4) stand for the lth row of G, and suppressing

the subscripts on G, because we know that we are working with a source point in region
2 and field point in region 1, then (41) becomes

N, /Z( '+)

it __- Gtl(ýjz')Eol(z')dz, current in x direction

j=. (42)

_- &• fI G12 (CIz')Eo 2 (z')dz', current in y direction.

This result is a discretization of the unknown conductivity distribution. We proceed
by noting that the conductivity is independent of w, whereas d and Eo are not. Hence,
we can get a system of equations by using (42) at a number, Nf, of frequencies, {wi}, i =
1,...Nf:

N,

ii(wi)= ? H!,, current in x direction
j=1
Nx (43)

•HI H j, current in y direction
j=1

The matrices are defined by:

HO.~(C1,2) = [-i Gtl 2 )C(lz';wi)EO(1, 2)(z'"wj)dz'

.4z

(44)

"1 = 1,2,3,4.

Normally, we will be interested in sensing the magnetic field, and not the electric.
Thus, I = 3,4 in (44), where '3' refers to the x component, and '4' to the y component of
the magnetic field. Thus, we refer to the matrices in (44) as Hj.Z, HýY, Hyý, and HFY.

When the system matrices of (43) are nonsquare, as they will be if N1 / Nz, then
least-squares methods are used to solve the problem. This model is called a "multifrequency
model" because of the manner of acquiring data. The frequencies should be chosen so that
the system matrix is reasonably well-conditioned in the mathematical sense, i.e., so that
the columns of the matrix are relatively independent of each other. Putting it loosely,
this reduces the ambiguity in deciding which layer contributes to the measured magnetic

"4.-' field. If we use a broad range of frequencies, for example, the system matrix will have a
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structure that is approximated by Figure 8. The zeroes are not true zeroes but are numbers
that are much smaller than the x's. This structure is due to the physical phenomenon of
"skin-effect", wherein high-frequency eddy-currents are confined to the surface nearest the
exciting source. The matrix of Figure 8, because it is roughly triangular, has reasonably
independent columns.

We solve (43) for each spatial-frequency pair, (k,, k.), which gives us the Fourier
transfrom of the unknown conductivity at each layer. Then we take the inverse Fourier
transform of this solution vector to get the actual distribution of conductivity within the
anomalous region.
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CHAPTER 6

NUMERICAL ALGORITHMS FOR THE INVERSE PROBLEM

INTRODUCTION TO LEAST-SQUARES

The final step in the inversion process is to solve (43), which we rewrite in the vector-
matrix form:

At= b, (45)

where t is the unknown vector, b the data vector and A the m x n system matrix. We
seek a least-squares solution, as defined next. Let the residual vector, F(2), be defined by:

f(t) = b - Ax. (46)

Upon introducing the usual squared-norm notation, we have:

m

i=1

Then the definition of a least-squares solution of (45) is: given b = (bi,..., bin), find • =
(X1,... , X) that minimizes 1lf(±)ll; i.e., solve

Smin 11b - ;iill. (48)

If t* is a solution of (48), then it is known that [21]

=H .•H
"A f= A (6 - 7 =*)=, (49)

where the superscript, H, denotes the complex-conjugate transpose (or Hermitian trans-

pose) of a matrix. Thus,

A At =A b, (50)

or
t* =A b, (51)

=+ H =H
where A =(A HA) - is the pseudoinverse of A.

While (51) characterizes the mathematical solution of (48), we don't actually numeri-

cally compute A , because of the potential loss of precision. For numerical solutions other
methods are used, namely, the QR-factorization and singular value decomposition (SVD),
as described below. These two methods are also useful when A has less than full rank, i.e.,
when its columns are not linearly independent.
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LEVENBERG-MARQUARDT REGULARIZATION

It must be noted, now, that (45) is a model equation, whereas the data vector that
is actually measured will contain uncertainties due to noise, quantizing error in analog-to-
digital conversion, an imprecise model, etc. Due to this uncertainty in the data, therefore,
we really have to deal with the following equation:

At + = b, (52)

where q is the data-uncertainty vector. If the norm of qi is c, then from (52) we want the
norm of the residuals to satisfy:

lAII - bIl < 6. (53)

Since A is ill-conditioned (typical values of the condition number are 104 - 108), the
solution of (52) will be unstable, because of the data uncertainty. To help smooth the
solution we impose a constraint on the norm of the solution:

I1211 <_ M. (54)

Inequalities (53) and (54) can be combined to yield:

jjl2.t- _612 + (- 11)II 2 < 2,2. (55)

% Hence, our problem becomes: minimize the functional

FA(,) = _Ii 6112 + A2IIII2, (56)

where A = (6/M) is the Levenberg-Marquardt, or regularizing parameter.

The vector that minimizes (56) is
=SH

=(A A±+A•)-. (57)

Thus, the presence of the Levenberg-Marquardt parameter modifies the pseudoinverse of
A in such a manner as to stabilize the solution. This will be seen again when we discuss
the singular value decompostion next.

THE SINGULAR VALUE DECOMPOSITION

As before, we don't actually compute a modified pseudoinverse; instead, we work
directly with A, augmented in a certain manner. Equation (57) is the solution of

= = - H_ =H-
A A 27). =A b, (58)
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which are the normal equations for the least-squares problem [22]:

-- at- (59)A7

where • denotes equality in the least-squares sense of minimizing a norm.

The solution of (59) is based on the singular value decomposition (SVD) [21,22] of A:

A = U V- (60)

where U(m x m) and V(n x n) are unitary, and S = diag(sj,...,s,); the {si} are the
singular values of A.

Letting

2 = Vg (61) (a)

41 g=U b, (61)(b)

we get, from (59): =S

0 -(62)

The AI term can be eliminated by using Givens rotations [21,22], with the result:

= (A
%S

0 (63)

where
"'-,3 ~ ~g(A) = g~s8 l/8 "A) i ,

,gi, ' "" (64)(a),,.*.,gs , i = n + 1,..., m

"O\) = -giA/lsl), i = 1,...,n (64) (b)

S ( diag(s5) ... ,sS(.\)) (64)(c)

+ ( \? + A2 ) 1/ 2 , i= 1,... ,n. (64)(d)
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It is clear from (64)(d) that the Levenberg-Marquardt parameter accomplishes its stabi-
lization role by increasing the size of the smallest singular values; it is these singular values
that contribute to the ill-conditioning of the matrix.

From (63), therefore, we have

= gjsj/(sjA)), i= 1,...,n (65)

which, from (61)(a), produces the final result:

n

= [gjSj/(8ýA))2]Vj, (66)

where Vi is the ith column vector of V.

An excellent computer code for computing the singular value decomposition is ZSVDC
in the LINPACK package [23].

THE QR-FACTORIZATION

The advantage of the singular value decomposition, in addition to giving an explicit,
closed-form solution, is that it produces the singular values, which then allows one to
estimate a value of the Levenberg-Marquardt parameter, by using (65) and (66), that will
stabilize the solution. In addition, one can then compute exactly the condition number of
the system matrix, A, by finding the ratio of the largest to smallest singular values. The
disadvantage, however, is that the computation of the singular values and the matrices
of singular vectors, U, V, is expensive, in terms of computer resources and time. Thus,
we use another method to solve (45), or to minimize the functional, (56), and this is the
QR-factorization, which we now describe, following [23].

Given that A is m x n (where m > n), there exists a unitary matrix, Q, of order
m x m, such that

Q A= (67)

where R is upper triangular. If we write Q = [Q1,Q2 ], where QI has n columns, then

A= Q R. (68)

", Thus, if rank (A) : n, the columns of Q, form an orthonormal basis for the column space

of A. Now if A = [A1 ,A 2J, where AI has k columns, and if
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where RII is k x k, then

QH (A, (69)

Hence, Q and R11 give a QR-factorization of A,. This truncated decomposition is impor-

tant for matrices whose rank is less than full, i.e., for which rank (i) < min(m, n).

This orthogonal triangularization is generated by Householder transformations 121,23].
Once we have this triangularization, then the solution to (48) follows:

=H =H- =H=
Q r=Q b-Q At

(70)

Since Q is unitary, IIQ fII = 1fII* Thus, 11fIj is minimized when

;1= (71)

and when this is true
1111 -= 116211. (72)

Because R is upper triangular the solution of (71) is easily obtained by back substi-

tution. In solving (48) we apply the QR-factorization to the matrix A; in minimizing the
functional (56), we apply the QR-factorization to the matrix of the system (59).

LINPACK [231 contains two useful subroutines, ZQRDC and ZQRSL, for solving
least-squares problems by means of the QR-factorization. ZQRDC produces the QR-
factorization of the matrix and passes the result to ZQRSL for the solution stage.

ANALYTIC CONTINUATION

We have already mentioned that (45) must be solved for each spatial frequency-pair,
(k., ky), in order to take the inverse Fourier transform of {&j}. The result is the conduc-
tivity distribution within the flaw, at the jth layer. Unfortunately, the matrix elements of
A become ever smaller with an increase in (k., ky), thereby rendering A so ill-conditioned
that it becomes virtually impossible to get meaningful results for the lower-level conductiv-
ities within the flaw. That is, the filtering action of the Levenberg-Marquardt parameter
forces &i = 0, except for the first layer or two, for large values of (k., k,). Or, to put it
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another way, because of the physical process of field-evanescence, which acts as a low-pass
filter, the sensed magnetic field at these high spatial-frequencies is zero, so that, because
of noise, one cannot use high spatial-frequencies for reconstruction by solving (45).

High-frequency components, however, are necessary for high-resolution reconstruction.
Therefore, it is necessary to try to regain these missing frequencies in order to achieve the
desired resolution. That this attempt at "superresolution" is feasible and practical (within
limits, of course) rests upon the notion of analytic continuation [24,25]. We will state two
theorems that are relevant (see [24, p. 133]):

Theorem 1. The two-dimensional Fourier transform of a spatially bounded function is
an analytic function in the (ks, ky)-plane.

Theorem 2. If any analytic function in the (k., ky)-plane is known exactly in an arbitrar-
ily small (nonzero) region of that plane, then the entire function can be found (uniquely)

N• by means of analytic continuation.

In order to use these theorems we recall that a flaw can be thought of as a space-limited
function g(x,y) (or a function with compact support). Thus, by Theorem 1, its Fourier
transform, G(u, v), is analytic in the (u, v)-plane. If we have only limited information
about G, say, only its values at low spatial-frequencies, Theorem 2 tells us that we can
uniquely extend G to the whole (u, v)-plane. Once we have continued G to the (u, v)-plane,
we can take an inverse Fourier transform to recover g.

We have studied two approaches to analytic continuation, one based on direct matrix
inversion via the singular value decomposition, and the other on an iterative scheme. We
will discuss only the latter here.

The mathematical setting for the iterative algorithm is projections onto closed linear
manifolds (CLM) in a Hilbert space [26-28]. An important feature of the method is that
a priori knowledge about g can be incorporated into the reconstruction technique in a
natural way. Such information includes the finite support and/or any constraints. In our
application we know that the conductivity within the anomalous region is bounded, which
in our model implies that -1 < g(z, y) _5 0, and we also have an estimate of the support
of g.

The algorithm that we used is listed here:

ALGORITHM

Let the function G(u, v) be given over a prescribed region L, and let I be the Fourier
transform. Then starting with:

fo(z,y) = -'[G(u,v)];

r =0;

REPEAT
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S

frl = P, I,;
(2) = p 3 f ();

F(1) [( 2)--
r+1 7 j

Fr+i = G + P2 ;

f~+i =.T 11 r+11;S,+i = r-'[F,+,];

r r= +1;

V. UNTIL CONVERGENCE OCCURS.

The important operations in the Algorithm, in addition to the Fourier and inverse
Fourier transforms, are the various projection operators Pi, which we now define:

pf = f, (z,y) ES, S = support off, (73)(a)

10, otherwise.

P2F= G(u, v), (73)((b)
F(u, v), (u,v) 0 L, where F(u, v) = [f (xy)].

P3 f = f(Xy), if--1 < f(z,y) < 0 (73)(c)

0, if f(x,y) > 0.

Hence, the algorithm successively applies the known properties of the sought-for solution
to the initial given data. The purpose of the theoretical analyses referred to in [26-29] is to
prove that the algorithm will converge. Numerical experiments suggest various methods
for speeding the convergence.
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CHAPTER 7

NUMERICAL EXPERIMENTS

We have tested the theory and numerical algorithms, that were presented in the
previous chapters of this report, with some numerical experiments that were performed on
our computer. The model analyzed was that depicted in Figure 7, with the following data:

thickness of graphite-epoxy slab: 0.50 inches

number of layers (N.): 10

resolution in z-direction: 0.05 inches

number of grid-points in (x,y): 64 x 64

resolution in (x,y)-plane: 0.05 inches

number of frequencies (Nf): 10

frequencies used (in MHz): 1, 6, 11, 16, 21, 26, 31, 36, 45, 60

The values of the electrical parameters were those stated in the second section of
Chapter 2. The orientation of the current is in the y-direction, which is transverse to
the fibers. The x-component of the magnetic field is assumed to be measured. Hence,
we worked with the matrix, H"Y, as defined in (43) and (44). The frequencies that were
defined above worked well with this coil-sensor orientation, in the sense that HZY has
a structure roughly like that shown in Figure 8, which is desirable, as we have already
discussed. We are experimenting with other orientations and frequency ranges.

The flaw consists of a cylinder of square cross-section that penetrates vertically the
entire thickness of the slab; i.e., the cross-section of the flaw, in each of the ten layers, is
a square. The length of a side of the square is 0.15 inches. The actual flaw, at each layer,
looks like Figure 9(a).

The first step in the reconstruction process was to use a program that we called
RECON1. This program is our implementation of the method described in the fourth
section of Chapter 6. The choice of Levenberg-Marquardt (LM) parameters was done
empirically; techniques for adaptive selection of optimal LM parameters are being studied.
In these experiments, the parameter values ranged between 10-10 and 10-i. We point
out that RECON1 computes the conductivities in the (k., k/)-plane (Fourier space) for
all (k., ky). For large values of (k., ky), or high spatial frequencies, the system equations
become highly ill-conditioned and thus can't be expected to give accurate results for these
values. However, for the small values of (k., ky), or low spatial frequencies, the results are
very accurate. Part of our experiment is to determine how much low frequency information
must be used to produce fast, accurate reconstructions.

In Figure 9 we show the reconstructions of the flaw at each layer. These figures are
labeled with the name RECON2ND which is the method of computing the inverse FFT
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for all values of k, and ky, even those in the high range. As we can see, reconstruction is
quite faithful through five layers and good from layers six through 10.

We must remember that in order to use RECON2ND, we must use RECONi for
all (k., ky). An alternative is to use RECON1 to compute the unknowns for only the
low frequencies, (where the system equations are not highly ill-conditioned), and then use
an image-enhancement technique. The program LENTUY is our implementation of the
algorithm described in the fifth section of Chapter 6.

In Figure 10, we show the reconstructions generated by simply taking the inverse FFT
of the low frequency data generated by RECON1. In this case, we used -7 < k, _• 7 and

-7 < ky • 7, hence a ratio of 15 to 64. The results show that something can be detected,
but the reconstruction needed to e improved. Remember, though, that we only need to
produce results from RECONI for the low frequencies and, thus, we save computing time
and improve accuracy.

Figure 11 shows the results of using program LENTUY for -7 < k, !• 7, -7 < ky : 7,
and 20 iterations. Based on our previous experience with this method, we believe that the
number of iterations can be reduced to 10. Also for larger flaws, the values of k, and ky
can be reduced. We see that this method improves the resolution over INVERFFT which
is to be expected and that the reconstructions are faithful through all 10 layers.

Based on these preliminary experiments and based on our previous work in image
reconstructions, we are excited by the results that have been generated.

"9.3
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* CHAPTER 8

COMMENTS AND CONCLUSIONS

The electrical model that we have developed in this report is based on a continuum
description of the constitutive relations for an advanced composite material. This implies
that there must be a lower limit to the resolution that can be achieved for flaw reconstruc-
tion, before the continuum hypothesis breaks down and individual fiber effects dominate.
We do not know what this limit is, so we have used 0.050 inches as our resolution in
the numerical experiments. Further experimental and theoretical analyses are required to
better answer this question.

Fiber density directly affects the bulk longitudinal and transverse conductivities.
Hence, determining (reconstructing) these conductivity values in certain anomalous re-
gions allows us to infer the status of the fiber density within these regions; it also informs
us as to the possibility of extensive fiber bi,.akage within such regions. Hence, our model
and algorithm allows us to draw conclusions about these classes of anomalies.

In some cases moisture effects can be inferred, as the following argument suggests.
Transverse conduction depends upon fiber-to-fiber contazt, whereas longitudinal conduc-
tion does not. One can hypothesize that as moisture is absorbed into the epoxy, the
epoxy swells and reduces fiber contact [7], thereby reducing the transverse conductivity
but not the longitudinal. Hence, if we can reconstruct the transverse conductivity map in
an anomalous region, as well as the longitudinal conductivity map, and if the transverse
map shows a significant decrease, whereas the longitudinal map does not, then we can infer
that moisture is present, and that there is no significant fiber breakage, or fiber-density
reduction.

This argument holds for anisotropic slabs, such as the unidirectional slab that we
have considered. Fortunately, our algorithm allows us to do such a reconstruction by
simply orienting the current sheet along the fiber direction, and then transverse to the
fiber direction. In the discussion of Chapter 5, we will first carry out an inversion using
the matrix Hy= and then H 2 Y.

The electromagnetic model that we have developed is quite general, in that it treats
both isotropic and anisotropic slabs. In addition, it can be extended to treat anisotropic
lay-ups, i.e., slabs containing layers arranged in different directions. Often, however, such
slabs can be treated using a simpler isotropic theory, because the anisotropy effects are
cancelled by averaging over the coarse resolution cell.

* Because our model is quite general, it can account for current sources and induced
currents that flow normal to the fiber plane (the z direction, in our analysis). Currents
that flow in the z direction could be useful for distinguishing delaminations from other

anomalies, because delaminations would tend to perturb these currents more than would
other anomalies; more extensive modeling and experiments during Phase II will help clarify
this question, also.

Thus, we conclude that our research effort has met the specific technical objectives,
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as well as the work statement, listed in Chapter 1. Work during Phase II will include a
refinement of the electromagnetic model and algorithm to account for more complex ge-
ometries, further development of numerical algorithms, development of a prototype sensor,
and laboratory experiments with the prototype. All of this aims at the development of a
commercial product for the wide-area inspection and quantification of advanced-composite
structures.
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FIELD

CURRENT PATH FIBERS

FIGURE 1. (a) HOW FIBER-TO-FIBER CONTACT ALLOWS TRANSVEF:SE CONDUCTION
(REFERENCE 4).

Aý

EDDY-CURRENT PATH

FIGURE 1. (b) A POSSIBLE AC EQUIVALENT CIRCUIT FOR EDDY-CURRENT FLAW
(REFERENCE 4).
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Y

Re 9 i on I

Z=0

Region 2

z --
Reg ion 3

FIGURE 2. A PLANE-PARALLEL SLAB AND REGIONS DEFINED FOR COMPUTATION OF THE
GREEN'S FUNCTION.
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A - - - Z,

B Cx. Y)

CZ=0

z --
D

FIGURE 3. (a) A VECTOR POINT-SOURCE OF CURRENT AT (x', y', z') IN REGION 1; FOR

COMPUTATION OF G2 1.

z

x

A

z 0

FIGURE 3. (b) A VECTOR POINT-SOURCE OF CURRENT AT Wx', y', z') IN REGION 2; FOR

COMPUTATION OF G12.
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S z =-z

FIGURE 4. AN INFINITE CURRENT SHEET PARALLEL TO, THE ABOVE, THE ANISOTROPIC SLAB.
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230' 340 350 0. 10 20 30

30 20 10 3ý0 340 330

FIGURE 5. (a) VECTOR CURRENT INDUCED WITHIN ANISOTROPIC SLAB, AS A FUNCTION OF

ORIENTATION OF CURRENT WITH RESPECT TO FIBERS. (THE LARGE CURVE

* IS THE MAGNITUDE OF THE CURRENT COMPONENT PARALLEL TO THE SHEET,
AND THE SMALL CURVE IS THE MAGNITUDE OF THE CURRENT COMPONENT
TRANSVERSE TO THE SHEET. FREQUENCY = 106 Hz; all = 2 X 104, a = 100.)
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0.61973E-01 0.1'41l9E+00

X-15.000 ( xI15.000 emn - -0.141i9E-00

•-15.000 emon - 0.61973E-01 9-15.000

em5o00 - 05.000.2

emox - 0.61973E-Oi emox - -. 14119E00

i

i• ":0.o -l- E -0

,• , •~~.6 1973E -01 I• qlE

- -15.000 x-15.000em, -= - -. 61373E-0I em~rn - -0.1'4113E.0

emax - 0.61973E-01 emox - 0.1'4119E00

FIGURE 5. Wi ELECTRIC FIELD INDUCED INTO AN ISOTROPIC MEDIUM, BY A CIRCULAR
FILAMENTARY CURRENT LOOP, AT A DEPTH OF 0.05 IN. (FREQUENCY =

.106 Hz; all = = 2 X 10 4 . RE AND IM DENOTE REAL AND IMAGINARY
* "PARTS, RESPECTIVELY; X AND Y DENOTE x AND y COMPONENTS.)
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0. 15169E-01 0.2510'4E-01

X-15.000 X-15.000

9-15.000 emin - -0. 15169E-01 ý-50 emin - -0.2510'4E-01

emax - 0.'15-169E-01 emox - 0.2510L4E-01

0. 17900E-01 0. 41955E+00

X-15.000 X-15.000 mn-0.15E0
9-15.000 em,m - -0.17900E-01 9-15.000ein 0.U5E0

emx- 0.17900E-01 emox - 0.L41955E+00

FIGURE 5. (c) ELECTRIC FIELD INDUCED INTO AN ANISOTROPIC MEDIUM, BY A CIRCULAR
FILAMENTARY CURRENT LOOP, AT A DEPTH OF 0.05 IN. (FREQUENCY =106 Hz;

"i =2 X 104, a =100. SAME NOMENCLATURE AS FIGURE 5 Wb.)
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•0.24519E-03 0.73733E-03

x-15.000 15000
emin - -0.24519E-03 .000 emin - -0.73733E-03
emox - 0.24519E-03 

emox - 0.73733E-03

0.21828E-02 .0.36688E-01

X-15.000 x-15.000
Y-1.00ej)--.12E0 - 15. 000 - 0.m68E0

emox - 0.21828E-02 eaox - 0.36688E-01

FIGURE 5. (d) SAME AS FIGURE 5 (c) EXCEPT THAT THE DEPTH IS 0.4 IN.

40

O

UJ



w-,' -1 77W0 SMIW7wjý7WFW rw -wrw njý

NSWC TR 85-304

INPUT SYSTEM OUTPUT
I KNOWN I (KNOWN] ITO BE

COMPUTEDI

lal

INPUT SYSTEM OUTPUT
ITO BE IKNOWNI IKNOWNI
COMPUTEDI

(bI

INPUT SYSTEM OUTPUT
IKNOWNI ITO BE IKNOWNI

COMPUTEDI

1c)

FIGURE 6. SYSTEM REPRESENTATION OF DIRECT AND INVERSE PROBLEMS.
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z
Y

$ . x
Current Sheet

Sensor Plane Z

z 0

Anomalous
Region

F ~z =z

FIGURE 7. A CURRENT SHEET THAT EXCITES THE COMPOSITE WORKPIECE AND A SENSOR THAT
MEASURES THE SCATTERED FIELD. THE ANOMALOUS REGION IS ENCLOSED WITHIN
A MATHEMATICAL GRID.
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-L LRYER WITHIN SLRB >

TOP BOTTOM
LRYER LRYER

LOW FREOUENCY X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X 0 0

X XX X X X X X 0 0

X XX X X X 0 0 0 0
FREQUENCY

X X X X X 0 0 0 0

XX X X 0 0 0 0 0 0

X XX X [ 0 0 000

X X 0 0 0 0 0 0 0 0

HIGH FREQUENCY X X 0 0 0 0 0 0 0 0

FIGURE 8. HOW THE CHOICE OF FREQUENCIES PRODUCES A RELATIVELY WELL-CONDITIONED,
NEARLY TRIANGULAR SYSTEM MATRIX FOR INVERSION.
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r- LEVEL RECONSTRUCTION r - LEVEL RECONSTRUCTION

2 7

3 8U

* 4 -9

5 10

FIGURE 9. THE RECONSTRUCTION OF A SQUARE, CYLINDRICAL FLAW AT EACH OF THE 10 LEVELS;
USING RECON2ND.
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r - LEVEL RECONSTRUCTION r - LEVEL RECONSTRUCTION

16

2 7

38

4 9

5 .10

FIGURE 10. THE RECONSTRUCTION OF THE SAME FLAW; USING ONLY THE LOWEST
15 SPATIAL FREQUENCIES.
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r-LEVEL RECONSTRUCTION r-LEVEL RECONSTRUCTION

1 6

2 U7 3

3 U8

4 U9

5 10

FIGURE 11. THE RECONSTRUCTION OF THE SAME FLAW; APPLYING LENT-TUY ITERATION
TO THE LOWEST 15 FREQUENCIES.
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APPENDIX A

EIGENMODE ANALYSIS OF ANISOTROPIC MEDIA

Start with the homogeneous form of (11), i.e., with j = 0. Since the matrix, S, is
constant with respect to z for a nonstratified medium, we look for eigenvector solutions of
the form:

et(z) = Coexp(\z), (Al)

where !o is a constant vector, and A is a parameter to be determined. Upon substituting
(Al) into (11), we get the eigenvalue problem:

S EO = 'Eo. (A2)

The eigenvalues are the solutions of the secular equation

det [S-A I] =0. (A3)

There will be four eigenvalues, and the eigenvector corresponding to each eigenvalue can
be computed from the two independent equations arising out of the four simultaneous
equations in (A2).

In the principal coordinate system, the generalized permittivity tensor, I, is diagonal,
as in (1). Hence, the only nonzero Ki. in (13) are K1 1 0 K 22 = K 33. Upon letting
K 22 = K33 = K, we get:

S13 = -- j •--k-, S1 4 = -- jWO +j-- 23 = jWAi0- _

wKwK' 2 O K '
S24 = i •K'k S31 =3 = k0•K- k-2, (A4)

wK JOS 3 2 =jwK - (A4),

S41 = -juK 1 + i '• ,S 4 2 =-j3o
WILO who

When these coefficients are substituted into (A3), and the determinant expanded, we
obtain a quartic equation for A:

4 - aA\ 2 + b = 0, (A5)

where
a = -w 2 Ao(K + K 11 ) + 2k2 + k2(1 + Ku1/K)

b = w41gKKI - W2 Ao(2Kllk! + (K + KII)k2) (A6)

+ kc2 k2(1 + Ku/K) + k4(Ku/K) + k4

Hence, the eigenvalues (the roots of (A5)) are:

±\, = ±j(w 2,oK1j - (KII/K)kz2 - k2) 1 (/2

±3= ±j(w
2 oK - k2 - k2 )1/ 2

A-1



NSWC TR 85-304

Note that A3 corresponds to an isotropic medium, and that the anisotropy is manifest
in A1. Clearly, if K 11 = K, then Al = A3 , which agrees with the results for an isotropic
medium.

,4 Corresponding to each eigenvalue, A, is an eigenvector that satisfies (A2). We have
some liberty in choosing the two independent equations that generate the eigenvectors;
hence, there is some arbitrariness in choosing the eigenvectors. We choose the following:

(1/,l S14 /xl 0 / 0
-S2/AA 3 /S3 2  -A\/S 3 2f)A V2=I •)

V3(kA8)11 -S1/Ss2) (-S31/S32)

(+A1 ) (-A10) (+A3 ) (-A\3 )

The second and fourth vectors are the two (+)-going modes, and the first and third are
the two (-)-going modes, in the z-direction.

These results are used in computing the Green's function in Chapter 3.
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APPENDIX B

COMPUTATION OF COEFFICIENTS FOR G 12

"In this appendix we want to fill in a few of the steps outlined in Section III for G 12.

The computations for G21 are similar.

Referring to Figure 3(b), together with (21), we have for the boundary conditions at
z = 0 and z =-zo:

oCl oail -a 1l
-a 0 + -- 100 e Z' 0 -

-0320

+ e #I eXs. + f -01 e- A,'; (B 1) (a)

oil -a 1

c Ia2e L(z'-zo) + d' -a 2  e-AI(z'-zo)( I ) (0I1

/0 \0 \'1 al0

+ el 0 eA3(z'-ZO) + fl -01 e-A3(ZI- °) g C20 + h . (B1)(b)
-1) 0 1) (-020)

The boundary condition at z = z' is the discontinuity induced by the point current-
source. For an x-directed current the equation is:

a2 -- i2 -- 0

c a2  +d 0 +e +f

iJ 1XI 0 -32 0

= d L + d' -C12 + e 0 + ff -161
0011 0 (B2)(a)

and for the y-directed current it is:

c a2  +d 0 +e +f

1-#2 B-02

B-1
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1a1  ( al 0\ 0I0

=C a2 + di -a2 + iI +1 f(I + 0 (B2) (b)
1 01 1 1

Because the boundary conditions at z = 0 and z = z' are independent of current
direction, it is best to work with them first and solve for (c - f) in terms of (a, b), using
(B1)(a), and (c' - f') in terms of (g,h), using (B1)(b). The results, after some straight-
forward algebra, are:

C a(ail - aio) + bal 0( 2 - 020) exz,

d - a~ai + aio) + ba1 (182 - 1820) eAlz,
2a1

a(cil +- cil °) + b(02 - 12o) -A 3 z,
2a, _e

212-

f +t (1 +Po))l (B3)(a)213i
,= g(a1 + alo) + hal(02 -120) e_-C.(Z'Zo)

2a,

d' -g(cij - a10 ) + hal(f2  
1 3l20)eA1 (z'_. 0 )

2a,
g(•1~oQo-,..) + h(fl, + 8;o) _

eOl 2#13 e- A3(z'-zo)

/' _(•,1,.-,2•,,) + h(81, + 81o)f a 2,1 e+) (,-o). (B3)(b)

281i

Now we substitute these expressions into the remaining boundary condition at z = z',

for either the x- or y-directed current source. For the x-directed source:

(C-C -Ct2 + (d-d') (C2 +(f nf() -1 0 (B4)(a)

and for the y-directed source:

+ )2 ) +(e-de) #I +(f) 1 _ .(B4)(b)0 0 1
11 -862 /\-02 0

The solutions of these equations are:

B-2
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x-directed source:

(c - c') = -1/2, (d - d') = -1/2, (0 - e') = 0, (f - f') = 0; (B5)(a)

y-directed source:

(c - c') = 02/2, (d - d') = /2/2, (e - e') =-1/2, (f - f') -1/2. (B5)(b)

Upon using (B3), we eliminate (c - f), (c' - f), in favor of (a,b,g,h):

a(ct - aio) + bai(P 2 - /320) - g(Ql + aIO)eA•zO - ha1(0 2 - #20)eAoz° = VI (B6)(a)

a(,ci + C4o) + b01(0 2 - 020) - g(Cl - io)e-AlzO - h:I(P2 - # 20)e-C AIo .= V2  (B6)(b)

a( 2a1o - ala20) + b(3 -_,6o) - g(010a2o - C2fa•O)e,,\,o

- h(/31 + #jo)eA3xO = V3 (B6)(c)

-a(a2alo - ala2o) + b(#l +a0) + g(Ca 20 - a•2ao10 -eAo) bfh+/•1 g $1  )

- h(/31 - /3io)e-3zO V 14, (B6)(d)

where the vector on the right side is given by

) ,for x-directed source; (B7) (a)
0

- ) , for y-directed source. (B7) (b)

pe aA3X

(B6) and (B7) are the final analytic expressions; (a, b, g, h) are computed numerically, and
the results used in the Green's function. Note that we have not used the exponential term,
ei(k-z'+kV'), that appears in (19) and (20). This is due to the fact that in computing the
transverse Fourier transform of the Green's function, as defined in (15), we must divide by

M , which is the exponential term.
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APPENDIX C

COMPUTATION OFj FOR CIRCULAR CURRENT SHEETS

If the sheet lies in the plane z = z", and has a coil-turns density of f(r), where r is
the radial coordinate, then the current density is given by

y(i) (X, Y, z) = Io6(z - z")C(-d sin g + a, cosO)f(r), (Cl)

where 1o is the total current carried by the coil. Then

10(i l6(z - zf) 0
j (k,,ky, z) = 47r2 f 0 (-i2 sine + dy cos 6)fk(r)eg(k +y,)dx dy. (C2)

Upon transforming to cylindrical coordinates:

-'(/)1o6(Z- z") f" 2w 00

W (k,,ky~z)- 4c2 o )f2d~o rf(r)(--i ,sine+aYcosO)er(kxcos°+k, sine)dr

Io6 (z2Z)0 ff(r) 21r r-zsine0 + di, Cos O~j~.coos9+k, sin ) dr
42r /I [ foI

-2 fx (r) r(-az si + dy fo
=")j (r) [(-az. +n dE. 10 r(kfco'e+ksine)do dr.

(C3)

The 0-integral can be easily calculated by first transforming into cylindrical coordi-
nates in Fourier-space:

k, = kcos 4'
ky = k, sin4 (C4)
kr = (k + k 2)1/2

Thus, the integrand becomes ejir1cos('--), which, according to a well-known identity
involving Bessel functions, is

100

ekrcos(•o-) = Jo(kr) + 2 1 jkJk(kr) cos k(O - 0). (C5)
k=1

Only the first term survives the integral over 27r radians, so that (C3) becomes

SW (k 2 ,k,,z)= 2j,(z (-a, d-+ ay d•-)Sof(r)Jo(krr)

S= (-_d-'LY + L) f (r)Jj (krr)dr.
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The final integral is the Bessel transform of the coil-turns density, f(r). This transform
can be easily computed for a number of interesting practical coil configurations. For
example, if the coil consists of a single filamentary loop of radius ro, then f(r) = b(r - ro),
so that the Bessel transform is simply roJ1 (krro). Hence,

PO.= jIoro6(z - Z") (C7)
27r + k,

For a coil with a uniform distribution of turns, whose density is Nr, and extends
to a radius of ro, the Bessel transform reduces to Nc fo rJ, (krr)dr, which can only be
computed numerically. Thereforq, for such a coil

.() _ jNjIo6(z - z") _k (o(°

2=r (-ax- + av-) rJ (kr)dr. (C8)

Finally, for a coil of radius ro, whose density of turns linearly increases, i.e., for which
f(r) =Nr, the Bessel transform can be explicitly computed, with the result that

z(') jNer 3o6(z - z") _k k, J2(krro)(
= (a?-r +k, g k,. rro (C"

C-
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