DISCRETE MODEL FOR INNER-SPHERE REORGANIZATION OF ANIONS

by

Paul Delahay and Andrew Dziedzic

Accepted for publication in
Chemical Physics Letters

New York University
Department of Chemistry
New York, NY

May 1986

Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited
Title: Discrete Model for Inner-Sphere Reorganization of Anions

Authors: Paul Delahay and Andrew Dziedzic

Abstract:

The energy of inner-sphere reorganization of univalent anions in photoionization in aqueous solution is calculated from a multipole expansion accounting for ion-solvent electrostatic interaction. Only terms pertaining to nuclear motion are retained to the exclusion of induced moments. London dispersion, Born repulsion, cavity formation and hydrogen bonding are also taken into account. Calculated and experimental energies agree very well for halide and hydroxide ions in aqueous solution.
The energy of inner-sphere reorganization of univalent anions in photoionization in aqueous solution is calculated from a multipole expansion accounting for ion-solvent electrostatic interaction. Only terms pertaining to nuclear motion are retained to the exclusion of induced moments. London dispersion, Born repulsion, cavity formation and hydrogen bonding are also taken into account. Calculated and experimental energies agree very well for halide and hydroxide ions in aqueous solution.

1. Introduction

Photoelectron emission by an aqueous solution of the univalent anion $A^- (aq)$ is the opposite of the hydration of the ion $A^- (g)$ except that the negative charge is removed from solution by the emitted electron and the hydrated atom or radical $A(aq)$ is left in solution in the case of emission. Solvation of anions and nuclear reorganization in photoionization therefore are closely related [1] (fig. 1). Solvation of $A^- (g)$ is described as the formation of a cavity of radius r_i and the orientation of N_i solvent molecules in the inner-sphere region of $A^- (aq)$, e.g., in an octahedral configuration. There is also polarization of the outer-sphere region which is treated as a continuous medium. Emission involves the removal of the charge $e^- (g)$ from the anion $A^- (aq)$ to the gas phase and a change of the cavity radius from r_i to the value r_f corresponding to the atom or radical A.

1Present address: The Perkin-Elmer Corp., 50 Danbury Road, Wilton, Conn. 06897, USA.
Subsequent nuclear reorganization changes the solvent configuration around \(\text{A(aq)} \) and, in some cases, the number of solvent molecules from \(N_i \) to \(N_f \), e.g., from an octahedral to a tetrahedral configuration.

Two opposite approaches can be followed to calculate the energy of inner-sphere reorganization in photoionization. (i) The terms not corresponding to nuclear motion and the outer-sphere Born solvation term are subtracted from the experimental solvation energy. (ii) Only the terms pertaining to nuclear motion are retained in the theoretical expression for the solvation energy. The first approach used in [1] yields the reorganization energy as the difference between two quantities which are significantly larger than the energy being sought. The second approach adopted in the present paper neither has this disadvantage nor requires the knowledge of the solvation energy. A fairly standard model of ionic solvation [2] will be used.

The approach in this paper is similar in principle to that followed by Marcus [3] in his treatment of outer-sphere reorganization except that a multipole expansion of the inner-sphere potential is used instead of the continuous medium model for the outer-sphere region. The possibility is being examined of extending the present treatment to the calculation of the inner-sphere reorganization energy in the photoionization of metal cations and complexes. A bond-stretching model [4,5] is used at the present for these species under the conditions discussed in [1] in the case of photoionization.

2. Energy of inner-sphere reorganization of anions

Consider the photoionization of the univalent anion \(\text{A}^-(\text{aq}) \) in aqueous solution with the formation of the hydrated atom or radical \(\text{A(aq)} \). In view of the discussion in sec. 1, the energy \(U_{IN} (> 0) \) for inner-sphere reorganization may be written as
\[U_{IN} = U_f^{\text{nucl}} - U_i^{\text{nucl}}, \]

where \(U_f^{\text{nucl}} \) and \(U_i^{\text{nucl}} \) represent, respectively, the terms in the expression of the hydration energies of \(A(aq) \) and \(A^- (aq) \) which correspond only to nuclear motion in the solvation of these species. The superscripts \(f \) and \(i \) in this and subsequent equations denote the species \(A(aq) \) and \(A^- (aq) \), respectively. The term \(U_f^{\text{nucl}} \) in eq. (1) represents the nuclear contribution to the solvation energy of the species \(A(aq) \) surrounded by its equilibrium inner-sphere shell of solvent. Conversely, \(U_i^{\text{nucl}} \) denotes the nuclear contribution from the species \(A(aq) \) surrounded by the nonequilibrium inner-sphere solvent shell of the ion \(A^- (aq) \). Furthermore, the reorganization energy \(U_{IN} \) is determined by the change in ionic valence caused by photoionization and not by the absolute value of the ionic valences of the species involved in this process. Equation (1) is the counterpart of the expression for the free energy of orientation polarization in the treatment of outer-sphere reorganization on the basis of a continuous medium model [3].

The expression for \(U_i^{\text{nucl}} \) is taken from [2] with the additional consideration of the difference in water orientation around anions and cations. By analogy with [2], one writes

\[U_f^{\text{nucl}} = U_{\text{disp}}^f + U_{\text{rep}}^f + U_v^f + U_c^f, \]

where \(U_{\text{disp}}^f \) is the London water-water dispersion energy; \(U_{\text{rep}}^f \) the Born water-water repulsion energy; \(U_v^f \) the energy corresponding to the volume change of the solvent upon hydration of \(A(g) \); \(U_c^f \) the energy for cavity formation and the breaking up of the solvent structure in the hydration of \(A(g) \).

Combining eqs. (1) and (2) with the expression for \(U_i^{\text{nucl}} \) from [2], one obtains
where the first five terms on the right hand side represent interaction energies involving the change (e) of ionic charge upon photoionization, water permanent dipoles (p) and quadrupoles (q). The next four terms with superscript i in eq. (3) are analogous to the corresponding terms in eq. (2).

Explicit forms except for the U_v's and U_c's are [2]

\[U_i^{\text{(ep)}} = -(N_i \epsilon_0 / r_i^2) \cos \beta \]
\[U_i^{\text{(eq)}} = N_i \epsilon_0 / 2r_i^3 \]
\[U_i^{\text{(pp)}} = (B p^2 / r_i^3) \cos^2 \beta \]
\[U_i^{\text{(pq)}} = -(C q \epsilon / r_i^4) \cos \beta \]
\[U_i^{\text{(qq)}} = D q^2 / r_i^5 \]
\[U_i^{\text{disp}} = -F q^2 / r_i^6 \]
\[U_i^{\text{rep}} = -(1/x) (2U_i^{\text{(ep)}} + 3[U_i^{\text{(pp)}} + U_i^{\text{(eq)}}] + 4U_i^{\text{(pq)}} + 5U_i^{\text{(qq)}} + 6U_i^{\text{disp}}) \]
\[U_i^{\text{disp}} = F f q^2 / r_f^6 \]
\[U_i^{\text{rep}} = -6U_i^{\text{disp}} / x, \]

where \(N_i \) is the number of solvent molecules in the inner-sphere shell of \(A^-\text{(aq)} \); \(r_i \) the charge-point multipole distance, namely \(r_i = r_c + r_w \) (\(r_c \) and \(r_w \) crystallographic radii of \(A^-\text{(g)} \) and water, respectively); \(r_f = r_r + r_w \) (\(r_r \) the radius of \(A\text{(g)} \)); \(e \) the absolute value of the electronic charge; \(p \) the permanent dipole moment of water; \(q \) the quadrupole moment of water; \(\beta \) the angle between the vectors representing the electric field of the charge and the permanent dipole of the solvent; \(I \) the gas-phase ionization energy of water; \(\alpha \) the polarizability of water; \(x \) the exponent in the Born repulsion expression. The dimensionless coefficients B to F are [2,6] B = 2.296
and 7.114; C = 1.722 and 5.336; D = 0.5490 and 2.030; F = 0.2373 and 1.160 for tetrahedral and octahedral configurations of the solvent molecules, respectively.

The quadrupole moment \(q \) of eqs. (5), (7), (8) was calculated by assuming that water molecules rotate freely about the OH-anion axis. The system of coordinates of [7] is defined as follows: the water molecule and the \(xz \) axes are represented as being in the plane of the paper; the positive segment of the \(z \)-axis bisects the HOH angle; the angles between the \(x \)- and \(z \)-axes and the OH-anion axis are \(\pi/2 - \beta \) and \(\beta \), respectively. All the \(y \)-components of \(q \) are equal to zero in view of the assumption of free rotation of the water molecule about the OH-anion axis. Thus, one has \(q_{xz} = (q_{xx}^2 + q_{zz}^2)^{1/2} \)
and the angle between \(q_{xz} \) and the OH-anion axis is \(\pi/2 - \beta + \cos^{-1} q_{xx}/q_{xz} \).

Hence,

\[
q = (q_{xx}^2 + q_{zz}^2)^{1/2} \cos[\pi/2 - \beta + \cos^{-1} q_{xx}/q_{xz}],
\]

where \(q_{xx} = 2.636 \times 10^{-26} \) and \(q_{zz} = -0.135 \times 10^{-26} \) esu cm\(^2\) according to [7].

The energy \(U_v^i \) is according to [2]

\[
U_v^i = -(v_{\text{eff}} - v_{\text{pm}})/\beta_c,
\]

where \(v_{\text{eff}} \) and \(v_{\text{pm}} \) are the effective and partial molar volume of the anion, respectively, and \(\beta_c \) is the compressibility of water. A negative sign is assigned to the right-hand-side of eq. (14) in the present treatment since the initial state corresponds to the solvated ionic species and thus differs from that of [2]. Data on these volumes are given in [8]. Actually, the right-hand-side of eq. (14) is equal to the free energy \(\Delta G^i_v \) rather than the energy, but this does not matter in view of the smallness of this term in eq. (3) (see numerical results below). The energy \(U_v^f \) for the atom or radical \(A(aq) \) was taken to be equal to zero.
The difference $U_C^f - U_C^i$ in eq. (3) was obtained by noting that solvation of $A(aq)$ for the halogens involves only the rotation of two of the four water molecules surrounding $A(aq)$ without a net change of hydrogen bonds and with conservation of tetrahedral symmetry [9]. In contrast, the substitution of the halogen atom by the halide ion involves a change from tetrahedral to octahedral configuration and consequently the breaking of one hydrogen bond. The reverse process from ion to atom therefore involves the net formation of one hydrogen bond, i.e., $U_C^f - U_C^i = -0.27 \text{ eV}$ on the basis of the calculation in [2]. This analysis does not apply to the hydroxide ion since both this ion and the hydroxyl radical have the same number of hydrogen bonds [9,10]. Hence, $U_C^f - U_C^i = 0$ for the photoionization of hydroxide ion.

The values of the energy U_{IN}^f from eq. (3) and the contributions to this energy are listed in table 1 with relevant data [11-14] for the photoionization of the halide and hydroxide ions. The charge-dipole term $-U_C^i(\text{ep})$ is dominant and the charge-quadrupole term in $-U_C^i(\text{eq})$ is very significant. The term ΔU_C pertaining to hydrogen bonding is far from negligible for the halides. The other terms in table 1 are generally smaller in absolute value than the charge-dipole and charge-quadrupole terms or are even negligible. The charge-octopole term was not included because only terms in the electric field (r_i^{-2}) and its first gradient (r_i^{-3}) are significant ($> kT$) in the multipole expansion according to [15] if the ion-point multipole distance is $> 3 \text{ Å}$.

3. Comparison with experimental free energies of inner-sphere reorganization

The free energy of reorganization can be computed from experimental threshold energies E_t for photoelectron emission by aqueous solutions of the anion being studied [16]. One has
\[E_t = \Delta G_H + \Delta G + R_{IN} + R_{OUT} + |e|\Delta x, \]

where \(\Delta G_H = 4.48 \text{ eV} \); \(\Delta G \) is the change of free energy for the reaction \(A^- (aq) + H^+ (aq) = A(aq) + \frac{1}{2}H_2(g) \); \(\Delta x \) is the difference between the surface potentials of the solution of \(A^- (aq) \) and water. This last term is generally very small (\(< 0.05 \text{ eV}\)) and was neglected. The free energy \(R_{OUT} \) for the outer-sphere reorganization is \[R_{OUT} = (\epsilon_{op}^{-1} - \epsilon_s^{-1})e^2/2a, \]

where \(\epsilon_{op} \) (= 1.777 at 25°C) and \(\epsilon_s \) are the optical and static dielectric constants of water, respectively, and \(a = r_C + 2r_w \). Values of \(R_{IN} \) computed from eqs. (15) and (16) for the halide and hydroxide ions are listed in table 2 with supporting data. The threshold energies were obtained in earlier work \([1,17]\) except for fluoride. The previously used glass cell and quartz rotating disk target were not suitable for fluoride solutions because the leaching of impurities under the action of the fluoride solution (5 M KF) resulted in strong spurious photoelectron emission at photon energies well below 10 eV. A plastic-lined cell and platinum rotating disk target were satisfactory but not easy to use because of difficulties in removing traces of low-energy photoelectron emitting impurities. Moreover, the photon flux above 10.5 eV was only 10 percent at most of the level prevailing at lower photon energies. The threshold energy \(E_t = 10.57 \text{ eV} \) was obtained (fig. 2) by extrapolation \([16]\) after subtraction of the yield \(Y_{H_2O} \) for emission by water \((E_t = 10.06 \text{ eV}) \) from the total yield for emission by water and fluoride ion. The yield \(Y_{H_2O} \) in the range of emission by fluoride ion was obtained by extrapolation above 10.6 eV the linear plot of \(Y_{H_2O}^{1/2} \) against photon energy observed below the threshold energy of fluoride ion. The linearity of the extrapolation plot for pure water was verified up to 11.0 eV. More accurate values of the change of
free energy are available for $A^-(aq) + H^+(aq) = A(g) + 1/2H_2(g)$ for the halides [19], and the error on ΔG in table 2 arises mostly from the uncertainty on the free energy of solvation of the halogen atoms.

Only the continuous medium model of the outer-sphere region enters into the computation of R_{OUT} in table 2. This model is reliable and not sensitive to the choice of r_c, and the values of R_{IN} thus obtained can be regarded as "experimental" data. These values are, of course, independent of any model for the inner-sphere region, but two sources of error on R_{IN} in table 2 must be noted: (i) the uncertainty of ± 0.1 eV on E_t resulting from the distortion of the extrapolation plot caused by the effect of dielectric dispersion on the energetics of photoionization [20]; (ii) the uncertainty of ± 0.1 eV on ΔG arising from the estimation of the free energy of solvation of the halogen atoms and hydroxyl radical [9]. The first source of error affects especially the threshold energy of chloride ion, and values of E_t ranging from 8.8 to 9.0 eV are obtained depending on the extrapolation range of photon energies.

Agreement between the experimental free energies R_{IN} of table 2 and the calculated energies U_{IN} in table 1 is remarkably good for the halides. The entropy contribution to R_{IN} is probably within the experimental error (see above). The rather good agreement for the hydroxide ion also shows that the spherical symmetry of the ion, which prevails for the halide ions, is not absolutely essential to the application of the present theoretical calculations.

Acknowledgment

This work was supported by the Office of Naval Research.
References

Table 1
Contributions to the inner-sphere reorganization energy of the halide and hydroxide ions in eq. (3)^{a)}

<table>
<thead>
<tr>
<th>Anion</th>
<th>$-U_i^i$(ep) (eV)</th>
<th>$-U_i^i$(eq) (eV)</th>
<th>$-U_i^i$(pp) (eV)</th>
<th>$-U_i^i$(pq) (eV)</th>
<th>$-U_i^i$(qq) (eV)</th>
<th>$-\Delta U_{\text{disp}}$<sup>b)</sup> (eV)</th>
<th>ΔU_{rep} (eV)</th>
<th>ΔU_{v} (eV)</th>
<th>ΔU_{c} (eV)</th>
<th>U_{IN} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F<sup>-</sup></td>
<td>2.72</td>
<td>-0.87</td>
<td>-0.28</td>
<td>0.13</td>
<td>-0.03</td>
<td>-0.01</td>
<td>-0.18</td>
<td>0.21</td>
<td>-0.27</td>
<td>1.42</td>
</tr>
<tr>
<td>Cl<sup>-</sup></td>
<td>2.01</td>
<td>-0.55</td>
<td>-0.18</td>
<td>0.07</td>
<td>-0.02</td>
<td>-0.01</td>
<td>-0.16</td>
<td>0.05</td>
<td>-0.27</td>
<td>0.94</td>
</tr>
<tr>
<td>Br<sup>-</sup></td>
<td>1.84</td>
<td>-0.49</td>
<td>-0.16</td>
<td>0.06</td>
<td>-0.01</td>
<td>0.00</td>
<td>-0.16</td>
<td>0.03</td>
<td>-0.27</td>
<td>0.84</td>
</tr>
<tr>
<td>I<sup>-</sup></td>
<td>1.63</td>
<td>-0.41</td>
<td>-0.13</td>
<td>0.05</td>
<td>-0.01</td>
<td>0.00</td>
<td>-0.15</td>
<td>0.00</td>
<td>-0.27</td>
<td>0.71</td>
</tr>
<tr>
<td>OH<sup>-</sup></td>
<td>1.68</td>
<td>-0.52</td>
<td>-0.08</td>
<td>0.04</td>
<td>-0.01</td>
<td>0</td>
<td>-0.14</td>
<td>0.27</td>
<td>0</td>
<td>1.24<sup>c)</sup></td>
</tr>
</tbody>
</table>

^{a)}$N_i = 6$ from F⁻ to I⁻ according to neutron diffraction results [11,12], $N_i = 4$ for OH⁻ [9]. $N_f = 4$ for halogen atoms and hydroxyl radical. Radii from F⁻ to OH⁻: $r_i = 1.36, 1.81, 1.95, 2.16, 1.47$ Å [13]; $r_f = 0.68, 0.97, 1.13, 1.35, 1.47$ Å (see [14] for OH). Other data: $\beta = 52.23^\circ$ [11,12]; $x = 12$ for anions and $x = 10$ for halogen atoms and OH radical [10]; $p = 1.854$ debyes, $\alpha = 1.444 \times 10^{-24}$ cm³, $I = 12.61$ eV.

^{b)}$\Delta U = U^f - U^i$ for the four ΔU's.

^{c)}Negligible contribution from vibration of OH since the O-H distance is the same for OH⁻ and OH within 0.002 Å [14].
Table 2
Free energies R_{IN} for inner-sphere reorganization from experimental threshold energies

<table>
<thead>
<tr>
<th>Anions</th>
<th>E_t a) (eV)</th>
<th>ΔG b) (eV)</th>
<th>R_{OUT} (eV)</th>
<th>R_{IN} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F$^-$</td>
<td>10.6</td>
<td>3.6</td>
<td>0.96</td>
<td>1.56</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>8.9</td>
<td>2.55</td>
<td>0.87</td>
<td>1.00</td>
</tr>
<tr>
<td>Br$^-$</td>
<td>8.15</td>
<td>2.0</td>
<td>0.84</td>
<td>0.83</td>
</tr>
<tr>
<td>I$^-$</td>
<td>7.4</td>
<td>1.4</td>
<td>0.80</td>
<td>0.72</td>
</tr>
<tr>
<td>OH$^-$</td>
<td>8.6</td>
<td>1.8</td>
<td>0.94</td>
<td>1.38</td>
</tr>
</tbody>
</table>

a) From refs. [1] and [17].

b) From ref. [9] except for OH$^-$ [18]. See text for comments on ΔG.
Captions to Figures

Fig. 1. Solvation, photoelectron emission from the anion and nuclear reorganization for a univalent A^- in aqueous solution. Cavity radii r_i and r_f for $A^-(aq)$ and $A(aq)$, respectively; N_i and N_f solvent molecules in the inner-sphere shell of $A^-(aq)$ and $A(aq)$, respectively. The shaded area represents the outer-sphere region.

Fig. 2. Extrapolation plot for the determination of the threshold energy of fluoride ion for 5 M KF in aqueous solution. See text for the determination of the yield Y_{F^-} of fluoride ion from the measured yield.
FIG. 2
TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>Office</th>
<th>No. Copies</th>
<th>Office</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
<td>Dr. David Young</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Code 334</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td></td>
<td>Marine Sciences Division</td>
<td></td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>San Diego, California 91232</td>
<td></td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Paul Delaha
Department of Chemistry
New York University
New York, New York 10003

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton S09 5NH
United Kingdom

Dr. J. Driscoll
Lockheed Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, California 94304

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. Manfred Breiter
Institut fur Technische Elektrochemie
Technischen Universitat Wien
9 Getreidemarkt, 1160 Wien
AUSTRIA

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. Sam Perone
Chemistry & Materials Science Department
Lawrence Livermore National Laboratory
Livermore, California 94550

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. B. Brummer
EIC Incorporated
111 Downey Street
Norwood, Massachusetts 02062

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Electrochimica Corporation
20 Kelly Court
Menlo Park, California 94025-1418
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute
of Technology
Cambridge, Massachusetts 02139

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

Dr. R. David Rauh
EIC Laboratories, Inc.
111 Downey Street
Norwood, Massachusetts 02062

S. Ruby
DOE (STOR)
Room 5E036 Forrestal Bldg., CE-14
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton SO9 5NH ENGLAND

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. John Wilkes
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. R. Nowak
Naval Research Laboratory
Code 6171
Washington, D.C. 20375

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Hector D. Abruna
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. B. P. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Code 633, Bayside
San Diego, California 95152

Dr. Gregory Farrington
Department of Materials Science
and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

M. L. Robertson
Manager, Electrochemical
and Power Sources Division
Naval Weapons Support Center
Crane, Indiana 47522

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. Joseph Gordon, II
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Nathan Lewis
Department of Chemistry
Stanford University
Stanford, California 94305

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, S09 5NH ENGLAND

Dr. E. Anderson
NAVSEA-56Z33 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Bruce Dunn
Department of Engineering &
Applied Science
University of California
Los Angeles, California 90024

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. Richard Pollard
Department of Chemical Engineering
University of Houston
Houston, Texas 77004

Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Donald Sandstrom
Boeing Aerospace Co.
P.O. Box 3999
Seattle, Washington 98124

Dr. Carl Kannewurf
Department of Electrical Engineering
and Computer Science
Northwestern University
Evanston, Illinois 60201

Dr. Joel Harris
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
DRDME-EC
Fort Belvoir, Virginia 22060

Dr. Judith H. Ambrus
NASA Headquarters
M.S. RTS-6
Washington, D.C. 20546

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 6802S Forrestal Building
Washington, D.C. 20595

Dr. J. J. Brophy
Department of Physics
University of Utah
Salt Lake City, Utah 84112

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107

Dr. Farrell Lytle
Boeing Engineering and Construction Engineers
P.O. Box 3707
Seattle, Washington 98124

Dr. Robert Gotscholl
U.S. Department of Energy
MS G-226
Washington, D.C. 20545

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. Martha Greenblatt
Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903

Dr. John Wasson
Syntheco, Inc.
Rte 6 - Industrial Pike Road
Gastonia, North Carolina 28052

Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222

Dr. Anthony Sammells
Eltron Research Inc.
4260 Westbrook Drive, Suite 111
Aurora, Illinois 60505

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. Thomas Davis
Polymer Science and Standards Division
National Bureau of Standards
Washington, D.C. 20234

Ms. Wendy Parkhurst
Naval Surface Weapons Center R-33
R-33
Silver Spring, Maryland 20910
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. John Owen
Department of Chemistry and
Applied Chemistry
University of Salford
Salford M5 4WT ENGLAND

Dr. Boone Owens
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. O. Thomas
University of Uppsala
Institute of Chemistry
Box 531
S-751 21 Uppsala, Sweden

Dr. O. Stafsudd
Department of Electrical Engineering
University of California
Los Angeles, California 90024

Dr. S. G. Greenbaum
Department of Physics
Hunter College of CUNY
New York, New York 10021

Dr. Menahem Anderman
W.R. Grace & Co.
Columbia, Maryland 20144
END
DTIC
6-86