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Scientific Officer, for their support in sponsoring this
work. The author of this report was Dr. J. G 5 ge Caldwell.

i n

II



I
I

I. INTRODUCTION AND SUMMARY

A. Study Purpose

-4This report describes the results of a study to examine the
feasibility of developing fast algorithms for estimation,
prediction and control. The objective of the study was to
assess the likelihood of finding procedures which could be
faster, in terms of computer running time, than the
classical least-squares method of parameter estimation, used
iktinsively to develop models or stochastic phenomena.
While the least-squares method has proved its worth in over
a century of use, it has some serious drawbacks, stemming
from the fact that it requires the inversion of matrices.
For "large" problems such as the problem of tracking many
missiles or processing data from multiple intelligence
sensors in real-time, the computational burden o the
least-squares method can overwhelm even today's powerful
computing systems. Previous attempts to solve this problem
have centered on the development of faster computers (e.g.,
array processors), the improvement of algorithms for matrix
inversiion, or tne simplirication of the modei to produie a

matrix that is easier to invert. In general, these
approaches have not been successful in solving the problem.
Modern sensor exploitation systems, for example, still
cannot operate in real-time or even near-real-time.

,*. The present study proposed to adopt a totally different
approach to the problem. In particular, it was proposed to
investigate methods which would avoid the
computationally-intensive process of matrix inversion.
Avoiding this procedure could reap tremendous benefits. For
example, the problem of tracking a missile can involve the
inversion of a nine-dimensional matrix at each instant that

Va radar pulse is received, if a nine-component state vector
is used to represent missile position, velocity, and
acceleration.

This project was supported as a Phase I project of the Small
Business Innovation Research (SBIR) program. The objective
of a Phase I SBIR project is to assess the feasibility of a
proposed concept and to develop a plan for developing the
concept. If, based on the Phase I effort, the proposed

,
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concept appears to have merit, then development of the
concept may be funded under Phase II of the SBIR program.

B. Study Results

This Phase I project has successfully accomplished all of
the tasks identified in the proposal, and established the
feasibility of the proposed concept. Seven tasks were
proposed to be accomplished in this study:

Task 1. Development of Criteria for Comparing
Alternative Estimation Schemes

Task 2. Development of Test Cases

Task 3. Implementation of the Single-Variable Linear-
Model Case

Task 4. Extension to the Multiple-Variable Linear-
Model Case

Task 5. Comparison of Methods

Task 6. Design of Phase II Work Plan

Task 7. Preparation of Final Report

The results of each of the seven study tasks are summarized
in the paragraphs that follow.

Task 1. Development of Criteria for Comparing Alternative
Estimation Schemes

A total of seven criteria were identified and retained as
useful for describing the performance of alternative
estimation algorithms. These criteria address the following
performance aspects:

o computational speed

o computer storage requirements

o precision of the model parameter estimates

o bias of the model parameter estimates

o accuracy of the model parameter estimates

o precision of model-based predictions

2



m
o numerical stability of the algorithm

"Computational speed" refers to the time required to analyze

the data and produce estimates of the model being used to
describe the data. "Computer storage requirements" refers
to the total amount of direct-access memory ("core")
required to implement the algorithm. "Estimate precision"
refers to the amount of variability of the estimates in
repeated data samples. "Estimate bias" refers to the
difference between the expected (average) value of the
parameter estimates in repeated data samples and the true
values of the parameters. "Estimate accuracy" is a combined
measure of precision and bias. "Prediction precision"
refers to the closeness of the model-based predictions to
actual future values. "Numerical stability" refers to the
ability of an algorithm to converge to a desired answer.

Specific measures were determined for each of the preceding
concepts. Because of project resource limitations, however,
it was not possible to develop computer software to
determine numerical values for all of the measures.

Task 2. Development of Test Cases

It was decided to test the performance of alternative
algorithms on sixteen data sets. All of these data sets
involve a single dependent variable ("y") and a number (i)
of independent variables ("x's"). In each case the model
used to generate the data is of the form:

yj =b o + z bi xij + ej

-b +x.'b+ e.

r ..
" This model, called a linear statistical model, specifies the

relationship of the dependent variable y to m independent,
or explanatory, variables (xlIx 2 , -. Xmj). The
variables b and bI ,b,, b e cnstants, called
regression coefficients. ar specified when generating
the test data, and are to be estimated by the estimation
algorithm. The e. are called model error terms, or model
residuals. They are a sequence of uncorrelated random
variables with mean zero and standard deviation SIG. The m_
x's are also random variables with zero mean and variance
matrix Z * SIGMA 2  (where the asterisk denotes
multiplication). The test cases vary in the ratio of SIG to
SIGMA (models for which the ratio SIG/SIGMA is low are

3.
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easier to estimate), and the strength of the correlations
among the x's (if the x's are uncorrelated, i.e., E is the
identity matrix, the estimation is easy; if the x's are
highly correlated, the estimation is difficult). The values
of SIG, SIGMA, Z , b and b are collectively referred
to as the "model parameters." -

The test cases considered were as follows:

Test Cases 1-4: m=l x, value of SIG/SIGMA varies
from low to high

Test Cases 5-8: om=3 x's, correlation of x's varies
from none to high

Test Cases 9-12: m=6 x's, correlation of x's from
none to high

Test Cases 13-16: m=10 x's, correlation of x's from
none to high

The number (i) of independent variables (x's) represents the
"dimensionality" of the estimation problem. In the
classical least-squares approach, it is necessary to invert
a matrix of order m in order to estimate the model
parameters.

In social science applications, the dimensionality of a
linear regression model can be quite high, e.g., m = 25 to
50 (e.g., there can be a model coefficient corresponding to
every possible response to a socioeconomic or demographic
question included in a survey questionnaire). In industrial
and scientific applications, the number of explanatory

p variables may vary from small to large, but the researcher
is often able to specify the values of the independent
variables, so that even if there are many of them, special
procedures (e.g., fractional factorial experimental designs)
can be used to avoid the explicit inversion of a matrix. In
military applications, the value of m is often moderate or
small. For example, in the application of tracking a
missile, the position, velocity, and acceleration of the

. missile can be specified by a nine-component state vector,
and the estimation of the parameters of the statistical
model (called a Kalman filter) requires inversion of a nine
by nine matrix. The test cases specified above include the
usual dimensionality range of interest for many military
applications. For all test cases, the number of
observations generated (i.e., the sample size) was n = 100.
Later study should examine the effect of varying sample
size; with the resources available to this project, it was

4I
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not possible to examine a very large number of test cases,
and the decision was made to hold sample size constant for
all test cases.

A computer program, called SIMULA, was written to implement
the generation of the test case data. A source code listing
of that program is presented in Appendix A.

Task 3. Implementation of the Single-Variable Linear-Model
Case

In the 1940 's and 1950 's, some work was done in
investigating model estimation procedures that were
alternatives to the classical least-squares procedure. Two
of these procedures are referred to as the "Wald" method and
the "Bartlett" method. They were designed for application
to the case in which there was a single explanatory variable
(i.e., m = 1). A computer program was written in this
project to implement both of these procedures.

As one of the first steps in this study, it was proposed to
compare the performance of the Wald and Bartlett estimation
procedures to the performance of the classical least squares
method, in order to illustrate the utility of the criteria

" and associated performance measures proposed to compare
alternative estimation procedures.

This comparison demonstrated that several of the suggested
criteria could be applied to measure algorithm performance.
For the single-explanatory-variable example, however, the
comparison is not very revealing. The estimation of
parameters for single-explanatory-variable (m = 1) models is
very easy and fast with any of the methods, so that there is .
almost no variation in the performance measures.

It was not possible to implement all of the performance
measures in this project, because of resource limitations.
For example, one problem that arose was that, for the
microcomputer software used in this study, the system timer
could not be accessed by the FORTRAN compiler. It was X
decided not to allocate project resources to the development
of an assembly-language timer that could be linked to the
FORTRAN-compi led object modules. Instead, timing
measurements were made externally (manually, by direct
visual observation), and they are hence approximate. For
other performance measures (e.g., the parameter accuracy
measures), it would have been necessary to replicate a large
number of sample cases to determine numerical estimates of
these measures. Once again, project resources were not
sufficiently ample to accomplish this. Although it was not

5..,.



possible to implement all of the suggested performance
measures in this Phase I effort, it is quite feasible to do
so with some additional resources, and this should be done
as part of Phase II, if Phase II is funded.

Task 4. Extension to the Multiple-Variable Linear-Model

Task 4 was the central task of the proposed study. The
objective of this task was to determine fast algorithms for
estimating parameters of models containing more than one
explanatory variable. In this project, we sythesized and
analyzed a number of algorithms that represent extensions of
the Wald-Bartlett methods. They are iterative methods, and j.
will be referred to as "iterative Wald-Bartlett" methods.
Several variations of this method were considered, and the yy
one that worked best was selected for detailed examination.
This method is described in detail in this report, and all
of the performance assessments that are presented in this
report are for this method.

The thrust of this project was to compare the performance of
*new estimation techniques to the performance of the

classical least-squares technique. In order to do this, a
computer program was required that could perform the
classical least-squares computations. We implemented the
least-squares estimation procedure by using the Gauss-Jordan
method of solving the normal equations (i.e., inverting the
correlation matrix). This procedure is described in Chapter
3 of Cooley and Lohnes, Multivariate Procedures for the
Behavioral Sciences (Reference 8), and is the basis for the
least-squares estimation procedure presented in the IBM
Scientific Subroutine Package (Reference 9). The
least-squares algorithm used in this project was based on M
subroutines available from the IBM Scientific Subroutine
Package, adapted to the Microsoft (R) FORTRAN compiler that
was available to the microcomputer used in this project.
Thorough documentation of the subroutines, including
commented code, is included in Reference 9. A source code
listing of the algorithm used in this project is presented
in Appendix A. The listing in Appendix A does not include
any comments in the subroutines, in order to avoid possible
copyright infringement.

The computer program source code for the iterative
Wald-Bartlett method and the classical least-squares method
is also presented in Appendix A. These programs are written
in FORTRAN II, an early, unstructured version of FORTRAN.
That version was used since it was the version implemented
by the Microsoft FORTRAN compiler used on this project.

6
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Task 5 was concerned with comparison of the performance of
the iterative Wald-Bartlett method and the classical
least-squares method, applied to estimate the parameters of
the sixteen test cases developed in Task 2. The results
were very interesting.

First, the performance of both the iterative Wald-Bartlett
and the classical least-squares method depends on the nature
of the problem. For "easy" problems, in which there are few
x's or they are uncorrelated, both methods work well.
Second, in problems of low to moderate difficulty, there
does not appear to be an appreciable speed difference
between the classical least-squares algorithm and the
alternative algorithm synthesized in this study.

Third, both the classical least-squares and the iterative
Wald-Bartlett methods have difficulties with very difficult
problems (m large and the x's highly correlated). The 1

. really significant result that was observed in this case was
that, whereas the classical method may fail
catastrophically, producing totally-absurd results, the
iterative Wald-Bartlett method is not particularly fast, but
it determines an estimated model that produces reasonably
close predictions. (Note: The original number of test cases
planned to be examined was 12. It was after observing this
result that we added four more test cases, representing
singular covariance matrices, to examine this phenomenon in
greater detail.)

The implications of this result are very significant, and
probably outweighs the importance of speed in most
applications, particularly since the processing speed
differences between the iterative Wald-Bartlett and the
classical least squares algorithm are not great. For
example, in an embedded-computer application (e.g., a
tracker on an unmanned missile) it may be very desirable to
have a "robust" estimation or prediction procedure -- one
that does not fail catastrophically. Moreover, the problem
causing the catastrophic failure of the least-squares method
(the failure of the algorithm to be able to invert a
"nearly-singular" matrix) is one that has plagued data

: analysts for years -- ever since the widespread use of
digital computers to implement the least-squares
methodology. Matrix inversion problems in statistical
analysis were not severe or widespread prior to the 1960's,
when most computations were done using mechanical
calculators. Most statistical calculations were done by
masters-level mathematicians, and the problems were kept

0 N
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small or designed to avoid the inversion of large matrices.
Starting in the 1960's, however, computer packages and
computing resources were widely available, and were being
applied in many cases by researchers who had little or no
appreciation of the matrix-inversion problem inherent in the
least-squares method. With the large number of
non-statisticians using statistical linear-model packages
(e.g., multiple regression packages) and the low precision
of many microcomputers, this problem arises frequently.
Consulting statisticians are often called in on regression
analysis investigations when regression analysis packages
produce meaningless results due to a matrix-inversion
problem caused by a near-singularity in a correlation matrix
or a linear dependency in the x's. With the growing number

$i of microcomputers, and the increasing number of
non-statisticians using regression analysis programs (and
the many other statistical procedures that require matrix

-* inversion), there is a need for statistical estimation
procedures that do not fail when near-singularities or
linear dependencies are present in the data. The demand for
"robust" statistical estimators probably represents a far
greater commercial value than the demand for high-speed
algorithms, since the demand for real-time processing
represents only a small portion of the total demand for
statistical estimation. This aspect should be explored
further in Phase II.

In general, Task 5 succeeded in demonstrating the
feasibility of the proposed approach. Although the
iterative Wald-Bartlett method does not appear to be
substantially faster than the classical least-squares
method, it appears to be much more "robust" than the
classical least-squares method. Also, since the iterative
Wald-Bartlett method is based on "order statistics," it
would be much less sensitive to data errors, such as
outliers," than the classical method. The results of the

Phase I study suggest that additional exploration of this
area would be very beneficial.

Task 6. Design of Phase II Work Plan

The results of this Phase I study have demonstrated the
feasibility of determining fast, robust estimators. This
study centered on the synthesis of a particular class of
estimator, however, and that estimator certainly does not
represent a final solution to the general problem. Although
the iterative method considered in this study does not fail
catastrophically in difficult or ill-conditioned problems,
as does the classical least-squares method, it is not very
fast in such cases. The present feasibility study has

S...%w.. .



revealed the promise of the proposed approach, but
substantial development effort is necessary to produce an
estimation method that works well (i.e., is both fast and
robust) in all cases. We believe that the resources
available in Phase II can accomplish that development
effort, and have outlined a research plan for implementing
the effort.

It is proposed that the Phase II effort be redirected from
the goal originally proposed for Phase I. The Phase I
research was directed solely to the problem of finding fast
algorithms. Based on the Phase I results, however, it
appears that there may be more potential (both in terms of
project success and commercial value) in attempting the
development of robust algorithms. The serendipitous
discovery that the synthesized iterative method could
produce solutions to problems for which the classical
least-squares method failed catastrophically probably
outweighs the promise of a fast algorithm, in terms of both
military and commercial/industrial significance. Embedded
processors in military weapon systems require software that
is robust, i.e., does not fail catastrophically under
certain circumstances. The current effort has demonstrated
that it is indeed possible to develop such estimators. The
growing use of microcomputers in commercial and industrial
applications will create a growing demand for estimation k
procedures that do not fail in ill-conditioned problems, and
do not require the participation of a professional
statistician to assure their convergence to a correct
solution. These applications include not only multiple
linear regression models of the sort addressed in this
study, but the whole range of modern-day data analysis
procedures (multivariate analysis of variance, factorpanalysis, canonical correlation analysis, discriminant
analysis, and time series analysis models), since all of
these methods involve matrix inversion, which is the source

" . of the slowness and potential for catastrophic failure of
these methods. The availability of robust algorithms would
be particularly beneficlal in time series applications
(e.g., "Box-Jenkins" analysis), where iterative estimation
methods are often employed, and convergence problems are
encountered by non-statistician users.

It is proposed that Phase II be a two-year effort, staffed
at approximately 2-5 persons per year. A description of the
proposed tasks to be addressed in the Phase II effort is
included in this report.

Task 7. Preparation of Final Report

9
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This document describes the activities, results, and
conclusions of the Phase I study. In addition, it
identifies the effort that should be implemented in Phase

* II, in order to complete the development of fast, robust
algorithms for estimation, prediction, and control.

This Phase I study has accomplished each of the seven tasks
identified and described in the proposal, in the proposed
six-month time frame. We believe that our success in
accomplishing all of the proposed tasks, on schedule, augurs

qwell for the accomplishment of the Phase II objectives as
well.

. C. Organization of the Report

The remainder of this report consists of four additional
sections and two appendices. Section II ("Background")

.A. describes the motivation for the proposed research effort,
both relative to the requirement for fast algorithms and for
robust algorithms. Section III ("Project Approach")
describes the methodology for conducting the Phase I
investigation. The methodology consists of the
specification of performance criteria, the simulation of
test-case data with which to test the performance of
alternative algorithms, the synthesis of one or more
candidate "fast algorithms," and the comparison of the

.. performance of the synthesized method to the classical
least-squares method using the specified criteria and the
test-case data. Section IV ("Simulation Results") presents
the results of this simulation study. Section V
("Conclusions and Recommendations") summarizes the study
conclusions and describes the additional research and
development thata is needed to develop and implement the
proposed concept. The Appendices contain source code
listings of all computer programs used in this study
(Appendix A), and detailed output listings (Appendix B).

.41.
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II. BACKGROUND

A. General Motivation for the Proposed Study

This report describes the results of a research study to
assess the feasibility of developing fast algorithms for
real-time estimation, prediction and control. Such
algorithms would provide a solution to a critical problem
faced in both industrial and military applications -- the
fact that the algorithms used to implement state-of-the-art
statistical estimation, prediction and control techniques
are far too slow for many real-time or near-real-time
applications of high interest, even using the fastest
computers.

The slowness of statistical correlation/tracking techniques
such as the Kalman-Bucy filter was one of the principal
reasons for the failure of the ballistic missile defense
program of the 1960's. This problem has still not been
satisfactorily solved, even with substantial improvements in
computer processing speed and direct-access storage
capability. Modern command, control, communications, and5 intelligence (C31) systems such as those intended to
support the AirLand Battle concept, the Air Force's Tactical
Air Control Center, or Naval tactical data systems require
multisensor correlation/fusion to be performed in real time

* or near real time. The success of such systems is in
jeopardy to the extent that they rely on data processing by

*traditional statistical algorithms.

In addition to military applications, the availability of
fast prediction and control algorithms would assist control
of rapid, time-varying processes occurring in industry and
commerce (e.g., hot steel finishing mills and air traffic
control), for which available prediction and control methods
are generally heuristic, because of the current inability to
conduct on-line system identification (and thereby use
model-based predictors/controllers).

B. The Requirement for Fast Prediction/Control Algorithms

Over the past two decades, tremendous advances have been
made in the development of powerful statistical estimation
techniques. The applications associated with these
techniques cover a wide variety of fields, including

;.4,
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scientific, economic, industrial, and military applications.
In general, present-day statistical estimation procedures
represent extensions of the work of Gauss, who developed the
least-squares method of estimating the position of an
asteroid, based on observations which contained measurement
errors. Gauss's method, or the method of least squares,
consists in determining a set of model parameters in such a
way that the sum of squares of the differences between the
actual measurements and the position estimates based on the
model is minimized.

A salient characteristic of the method of least squares is
that it requires computation of a "cross-products" matrix
(or a covariance matrix or a correlation matrix), and it
requires the inversion of a matrix whose order depends on
the number of parameters being estimated. In many
applications, this presents no problems, since statistical
analysis need not be done in "real-time." Instead, in most
applications the analyst may collect the observed data, and
then determine the parameter estimates "off-line" in the
hours, days, or weeks that follow. In some applications,
however, such as those involving the tracking of fast-moving
objects (such as missiles, airplanes, or satellites), or the
control of rapidly-changing systems (such as certain
industrial processes), it is necessary to estimate the
parameters "on-line," in real-time or near-real-time. In
problems in which attention centers on only one or a few
processes at a time (e.g., a small number of objects are
being tracked, or a small number of electromagnetic emitters
are being monitored), the computational burden is not
severe. If numerous tracks (or emitters) are involved, or
the underlying system changes "too fast," the method of
least-squares breaks down -- the computational requirements
may saturate even the most powerful (fastest, largest)
computers available.

.. In an attempt to remedy this problem, a tremendous amount of
effort has been expended on the development of
computationally efficient algorithms for determining
least-squares estimates. In 1960, Kalman and Bucy developed
a recursive solution to the least-squares estimation
problem, now called the Kalman filter (or Kalman-Bucy
filter). Kailath (Reference 1) provided a comprehensive
survey of over 600 references on filtering. Aggarwal
(Reference 2) describes the problem of developing
least-squares algorithms that are numerically stable and
computationally efficient.

One approach to reducing the computational complexity of
tracking algorithms is linearization. While this procedure

12



helps, it is not sufficient. As an example of the
inadequacy of linearization, it is noted that the ballistic
missile trackers proposed in the 1960's were in fact
simplified nine-component Kalman filters in which the
equations of motion had been linearized, and the covariance
matrix radically simplified. Yet this approach still
failed, because of the tremendous computational requirements
of the general linear model and the least-squares estimates.

As a further example of the inadequacy of linearization, it
p is noted that neither the Kalman filter nor the Box-Jenkins

(autoregressive-integrated-moving-average time series)
models could outperform the heuristic alpha-beta tracker, in
air traffic control studies of the early 1970's. As a final
example, it appears that in complex correlation/tracking
problems (e.g., satellite ocean surveillance, intelligence
analysis of electromagnetic emissions for unit
identification), heuristic nonlinear "algorithmic"
procedures work better than procedures derived from
linear-model theory.

bThe potential exists to reduce the computational burden of
prediction/control algorithms by a factor of several orders
of magnitude. Furthermore, this reduction can probably be
achieved at very modest cost -- a few person-years of
research effort. This investment is negligible, when
compared to the massive research investment that will be
required to develop even a hundred-fold increase in computer
speed, through the development of an operational large-scale
parallel-processor or bio-chip technology.

In addition to improvements in the computational efficiency
of least-squares algorithms, tremendous gains have been made
in the speed of the computers which perform the
least-squares computations. Advances such as Very
Large-Scale Integration (VLSI) technology have increased
computer processing speeds and direct-access storage
capabilities by a factor of one thousand since the

- mid-1960's, when the feasibility of performing least-squares
tracking of incoming ballistic missiles was seen to exceed
available computational capabilities.

Despite the tremendous computational gains of the last
fifteen years, however, it appears that further advances may
be elusive. Computer processing technology is now running
up against physical limits, such as the time required for
electronic signals to propagate along the wires inside the
computer. As reported in a recent issue of Defense

"k Science (Reference 3), advances in computational speed are
leveling off (see Figure 1). In order to achieve processing

13
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Figure 1. The Exponential Rate of Growth in Computer
Processing Speed is Slowing
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MLW speed increases of two orders of magnitude or more with

physical devices, it appears that parallel processing
architectures will be required. Unfortunately, formidable
problems are associated with the development of large-scale
parallel processors and associated software, and a
substantial amount of basic research and development will be
requi red.

To achieve further increases will probably require the
development of "bio-chips," in which synthetic organic
molecules perform the binary switching functions of
present-day physical switches such as silicon or gallium
arsenide field-effect transistors. In principle, the use of
bio-chip molecular switches could lead to circuit elements
one thousand times smaller than may be achieved by
conventional semiconductors. Developments in this area may
be slow, however, since even the most promising of the
bio-chips -- the soliton switch -- is still theoretical.

In summary, it does not appear likely to significantly
improve the computational speed of least-squares algorithms,
and the likelihood of realizing substantial increases in
computer speed very soon is not high. In order to achieve
substantial gains in processing speed in the near term, I.

then, it appears that the most promising approach is to
develop estimation procedures which impose a substantially
reduced computational burden.
C. Early Accomplishments in the Area of Low-Compute

Estimation Procedures

1. Experimental Design Applications

In the 1930's and 1940's, tremendous advances were made in
the development and application of the general linear
statistical model, to solving problems in statistical
experimental design. In those days, however, no computers
(other than human beings) were available for solving
large-scale systems of linear equations, and ingenious
methods were developed to determine designs for which the
estimators could be determined without the need for explicit
matrix inversion.

The advantage in the field of experimental design, of
course, is that the statistician has control over the values
of the explanatory variables of the model. The popular
experimental designs developed in the 1930's and 1940's
(randomized blocks, Latin squares, fractional factorial,
partially-balanced incomplete blocks) were models in which
the designer introduced various degrees of orthogonality
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into the "design matrix" of the model, so that the equations
of estimation could be easily solved.

The point to be recognized here is that, in the face of a
strong requirement to develop low-compute estimation
procedures in experimental-design applications, tremendous
advances were made. The underlying theory was complex
(Galois theory and projective geometries), but the
computational algorithms that resulted were extremely
simple, allowing for the rapid hand-solution of estimation
problems containing large numbers of variables.

2. Regression-Model Applications

In regression analysis, the statistician does not always
have control over the values of the explanatory variables,
as is the case in experimental design. Nevertheless, in the
period 1920-1950 significant advances were made in the field
of developing low-compute procedures for soving regression
problems. The Biometrika Tables for Statisticians, which A
were published in 1953 to "reduce the labour of statistical
arithmetic," included tables of orthogonal polynomials,
which vastly reduced the amount of computation required to
produce estimates of linear contrasts. These tables were of
invaluable aid to statisticians in computing estimates of
regression model parameters until about 1960, when
high-speed digital computers became generally available in
research facilities. At that time, it appears that just
about all effort directed toward computational simplicity
ceased. A digital computer could, in minutes, invert large
matrices that simply could not be inverted manually.

It is interesting to note that it was at just about this
same time that Kalman and Bucy developed their recursive
scheme for determining estimates and predictions for a
linear time-series model. The computational requirements of
their method were staggering from a manual perspective, but
offered no difficulties when tackled by a digital computer.
Over the next twenty years, advances were made in the
development of more rapid or more precise algorithms for
implementing the Kal. - Bucy filter, but these methods
accepted the basic linear-model-estimation formulas of the
recursive filter as a starting point. With this mind-set,
the computational requirements of the Kalman-Bucy filter
were never substantially reduced.

In a serendipitous fashion, however, it is interesting to
observe that some advances were inadvertently made in the
development of low-compute estimators for the
non-time-series linear (regression) model. These
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developments, by Wald and Bartlett, are described in the
I paragraphs that follow.

In its simplest form, the general linear statistical modelI (which forms the basis for modern estimation, prediction,
and control algorithms) may be written as:

~y,, X'p + e,

where

y y = vector of observations;

p = vector of parameters;

X = matrix of explantory variables ("data matrix");

e = error vector,

and the prime (') denotes matrix transposition. In
correlation/tracking and fusion problems, the form of the
equations changes somewhat (e.g., there are "model" and
"observation" errors, and the representation is usually in
terms of a state vector), but the elementary form given
above will serve to illustrate the nature of the estimation
algorithms.
The least-squares estimate of the parameter p is given by:

2 - (XX')*xy

where the asterisk denotes a conditional (generalized)
inverse of a matrix. The key point to note with the
least-squares estimate is the fact that it involves matrix
products and matrix inversion. (As the model becomes more
complex, the number of matrix operations increases.)

In the simple example of regression analysis (fitting a
straight line), the above model reduces to:

Yi = PI + P2Xi + ei,

where the index i denotes the i-th observation (i =

1, 2, ... , n) , and the least-squares estimates of the
parameters (the intercept and slope of the line) are:

(xi -
)(yi

E (xi x)2
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I
and

Pl= Y - P2X

where x and y denote the means of the observed x's and y's,
respectively.

In 1940, Abraham Wald (the "father" of statistical decision
theory and sequential analysis) proposed (Reference 5) a
much simpler estimator as an alternative to P2 :

= (Y2 - Yl)(x 2 - x1 )

where x1 and xj denote the means of the x-values above
and below the fedian (of the x's) and 7 1 and y9 denote
the means of the corresponding y-values (i.e., the f-values
associated with the x-values). Wald originally proposed
this estimator as a solution to the problem in which both
the x variable and the y variable are subject to error. It
is interesting to observe, however, that Wald's estimate
requires substantially less computation than the
least-squares estimator -- 4n additions and one division
versus 4n additions, 2n multiplications and one division,
where n denotes the number of observations. This represents
a reduction in computer time by an order of magnitude.

Wald's estimator possesses the desirable statistical
property of consistency (which the least squares estimate
does not, in the errors-in-variables problem), but the
sampling variance of the estimator is larger than for the
least-squares estimate. This inefficiency may be overcome
by taking a slightly larger sample, in which case the Wald
estimate still has the computational advantage.

In 1949, M. S. Bartlett (Reference 6) modified Wald's
estimator by dividing the ranked x-variable into three .
equal-sized groups, and forming the estimate

P2= (Y3 - Yl)/(x3 - xl)

where x y: are the means corresponding to the
low-vall e group of x's, and x Y3 are the means
corresponding to the high-value grop of x's. Bartlett's
estimator is more efficient (i.e., has lower sampling
variance) than Wald's estimator, and requires 1/3 less
computation.
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In 1958, J. W. Hooper and H. Theil (Reference 7) extended
the Weld/Bartlett method of grouping to the case of multiple linear regression (in which there is more than one ._.

x-variable). The method was judged somewhat tedious to
implement, however, and was essentially abandoned. Note
that this was about the time when high-speed digital
computers (e.g., the IBM 650) were becoming generally
available (at least in the major universities and research
centers), and so there was at that time no longer an A
incentive to prefer the Wald-type estimators to the
least-squares estimators on computational grounds. (For the
errors-in-variables problem, for which the Wald's estimator
was orginally developed, a method by J. Durbin, introduced
in 1954, was generally adopted as a perferred method. It is
more (statistically) efficient than the Wald and Bartlett
estimators, but is not relevant to the present problem
because it requires the same amount of computation as the
least-squares estimation procedure.)

It is interesting to observe that both the Wald and Bartlett
estimators may be derived from the formula for the

S least-squares estimates, by replacing the values of the
explanatory variables by +1's and -l's in the case of the
Wald estimator, and by +1's, -l's, and 0's in the case of

* the Bartlett estimator. This procedure is analogous to the
procedure of determining an experimental design: the
x-values are set at values which enable the equations ofi estimation to be solved without explicit matrix inversion.
(The difference is, of course, that in the case of
experimental design, the specified x-values are actually
used in the experimentation process, whereas in the
regression case, the actual (continuous) x-value is replaced
by the simpler discrete value.)

The point to the above is that, with a little ingenuity, it
is possible to develop estimators that have drastically

: reduced computationa- requirements, over those of the
least-squares estimates. The preceding example addresses
the simplest situation (one dependent variable, one
explanatory variable), with no matrix multiplications or
inversions required, and yet a reduction in computational
requirenents of an order of magnitude were realized. In the
general case of several or many variables (e.g., a Kalman
filter for a nine-component state vector), involving many
matrix multiplications and inversions, the potential for
dramatic computational reductions is tremendous.

A review of the statistical literature of the past two
decades reveals a fixation with least-squares estimation. V
To be sure, some new estimators have been introduced (e.g.,

19r
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I
jacknife estimators), but they are computationally similar
to the least-squares estimates (requiring matrix
multiplications and inversions), and have similar
computational efficiencies. It appears that the effort to
improve computational efficiency has been conditional on use
of the least-squares approach, rather than on centering on
novel estimation procedures. The criteria against which the
procedures are invariably judged is the error-variance of
the minimum-variance linear unbiased estimator. While
restriction to this criterion may be reasonable for off-lineIstatistical estimation, it is not reasonable to restrict
attention to this single criterion for the large-scale
on-line (real-time) estimation situation. We believe that,
once the criteria against which the estimator are to be .-.
judged are appropriately modified, significant and
substantial improvements will follow.

E. Parallel with Optimization Theory

In a sense, the situation with respect to the use of the
general linear statistical model and the least-squares
estimates parallels the situation that existed in the 1950's
in the field of optimization theory. At that time, the
principal optimization procedure was linear programming.
The framework of linear programming did not suit many
practical applications, however, and so alternative
nonlinear programming methods were sought. In 1963, the
Generalized Lagrange Multipliers method was introduced by H.
E. Everett. This powerful method produced very fast
solutions to very large optimization problems in which the
objective function could be nonlinear, non-convex, and
discontinuous. The GLM method had a tremendous advantage
over previous optimization procedures, in that it did not
require the solution of a large-scale system of equations.
Unfortunately, the GLM method is restricted to problems in
which the objective function is "separable," i.e., may be
expressed as a certain sum. Furthermore, it was not
possible to guarantee convergence of the method, and in some
cases convergence could be slow.

In the late sixties, Fiacco and McCormick promoted the use
of "quadratic penalty fuctions" to solve constrained
optimization problems. This approach (called the Sequential
Unconstrained Minimization Technique, or SUMT) worked well
for a larger class of problems, but in general it did not
possess the great speed of the GLM method. Also, the method
fails in a fairly wide class of problems in which the
Hessian matrix is "ill-conditioned" (not positive definite).

,.€
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Finally, also in the late 1960's, the two methods were
combined into what is now known as the "generalized
Lagrangian method." Hestenes and Powell suggested adding a
quadratic penalty function to the Lagrangian function,
instead of the objective function, as is done in the SUMT
method. The generalized Lagrangian method converges fast,
and does not exhibit the ill-conditioning that frequently l
occurs in the original penalty-function method (SUMT).

Thus, in a span of about ten years, a tremendous leap
forward was maie in solving constrained optimization

Sproblems. The interesting fact to note, however, is that
whereas the linear programming solution (the simplex method)
had a very well-behaved theory associated with it, and was
guaranteed to converge in a predetermined number of steps,
the generalized Lagrangian methods possessed no such
property -- the methods are defined as algorithms (for
adjusting the values of Lagrange multipliers), and no
definitive statement can be made about the rate of
convergence.

The fact remains, however, that by moving out of the very
restrictive linear-model framework, tremendous advances were
quickly realized. Furthermore, satisfactory solutions were
not achieved by "linearizing" nonlinear problems, but by
developing heuristic algorithmic procedures, which were
demonstrated to work w ell.

While the problems of estimation, prediction, and control

are statistical in nature, they are also optimization
problems, and it is reasonable to conjecture that a
tremendous advance in speed may be realized by applying the
ingenuity and heuristic methods that worked so well in the
field of constrained optimization. The current situation --

a near-total dependence on the general linear statistical
model -- is analogous to the situation in which the field of
constrained optimization theory found itself twenty-five
years ago. It would appear that much can be done.

F. The Need for a Robust Estimator

During the course of this Phase I study, it was observed
that the algorithm that had been synthesized as a candidate
"fast" algorithm possessed a remarkable property -- it
produced reasonable results when applied to "difficult"
problems, in which the classical least-squares method failed
catastrophically. The "difficult" problems were ones in
which the correlation matrix that had to be inverted in the
classical least-squares method was "near-singular" (i.e.,
had a small determinant). This situation arises whenever
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the explanatory variables of the model are highly
correlated. In this case, inverting the correlation matrix
(which is central to the classical least-squares method) is
difficult (in a numerical analysis sense), particularly for
large or even moderately large matrices (e.g., m = 10
explanatory variables). What happens is that roundoff
errors (due to the truncated representation of real numbers
in the computer) ruin the matrix inversion, and the matrix
inversion algorithm fails to produce the desired inverse.
The least-squares method in fact fails "catastrophically,"
in the sense that the produced results are generally totally
wrong -- the resultant model produced by the method may
predict even worse than the "trivial" model that predicts
the mean value of the dependent variable for all values of
the independent variables. This problem is ameliorated
somewhat by using double precision arithmetic, but it is a
particularly troublesome problem in a microcomputing
environment, where the computer word length is short (and

" the precision of computation is low). The problem is a
particularly insidious one, since many statistical analysis
programs do not warn the user that the method has failed,
and if the results do not appear to be patently absurd, they
may be accepted as correct.

In addition to the problem of near-singular correlation
matrices, the problem of catastrophic failure may arise if a
a problem is "ill-conditioned," or "ill-specified." This
happens, for example, if there is a linear dependency among
the independent variables (the x's). This situation often
arises in social science applications. In a survey
questionnaire, for example, the respondent may be asked to
select an answer in one of a number (e.g., five) of
categories. In the analysis of the survey data, the
response for the selected category is coded as a ", and
the response for the other categories are coded as "0's." A
social science researcher who is not aware of the matrix
inversion to be done in a regression analysis may include
all five responses as variables in the data base, and in a
regression model. These variables are linearly dependent,
however, since the sum of all five category responses must
equal 1. The presence of this linear dependency in the
dependent variable will cause the correlation matrix to be
singular. Once again, the least-squares method, if applied
to this problem, will fail catastrophically. This case is
often not as troublesome as the "near-singular" case,
however, since the presence of an exact linear dependency
may result in a computed matrix determinant of exactly zero,
and some computer programs check for this condition.
Because of roundoff errors, however, the computer algorithm
may fail to recognize the singularity, compute a nonzero
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numerical value for the determinant, and produce a

"1solution," which, unfortunately, is totally wrong.

This situation is a very real problem. Many users of
statistical program packages are not trained in the theory
underlying the computations and are unaware of the pitfalls
of the least-squares method. Researchers in social science
are now trained in university curricula in how to apply the
statistical procedure of multiple regression analysis, but
they are not expected to know matrix algebra and are
generally not trained in it as part of their introduction to
statistics. As a professional consulting statistician, the
author of this report has been retained on more than one
occasion to "explain" absurd results obtained because of the I
problem of linear dependencies in regression analysis
applications. In technical terms, the classical
least-squares method is not "robust" with respect to the
correlations) in the explanatory variables.

Statistical theory can handle the presence of linear
dependencies, if they are recognized. In such cases, the
inverse of the correlation matrix is replaced by a
"generalized inverse" or "conditional inverse." Although
this theory is generally taught to graduate statistics
majors, however, it is not known to most data analysts.
Moreover, most of the major statistical software packages do
not offer this capability.

The present study began as an attempt to determine the
feasibility of finding fast algorithms for estimation,
prediction, and control. In the course of the study, an
algorithm was developed that did not fail catastrophically

pin "difficult" problems. Upon observing this, it was
decided to explore the performance of the algorithm in
ill-conditioned problems containing linear dependencies.
The method works well in such cases. The significance of
this result could be very great from a commercial viewpoint,
in view of the extensive use of statistical multiple
regression analysis. Moreover, virtually all multivariable
statistical analysis procedures involve matrix inversion.

* All of these methods are subject to catastrophic failure,
and are candidates for application of a method that does not
require matrix inversion.

2.
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I

III. PROJECT APPROACH

A. Summary of Approach

The approach proposed for this study consisted of four major
Tsteps:

1. Development of Criteria for Comparing Alternative
Estimation Algorithms

2. Generation of Test Cases

3. Synthesis of Candidate Algorithms

4. Comparison of the Performance of Candidate
Algorithms to the Perfomance of the Classical
Least-Squares Algorithm

Each of these steps is described in detail in the following
subsections.

B. Development of Criteria for Comparing Alternative
Estimation Algorithms

In order to assess the performance of alternative procedures
for estimation, prediction and control, it is necessary to
identify a number of quantitative, measurable descriptors of
performance. Alternative procedures may differ in a number
of respects, such as processing speed and accuracy. It is
desirable to identify a set of performance measures, or
criteria, which afford a relatively comprehensive
description of algorithm performance, and yet is not overly
redundant.

PIt is noted that the performance measures that are
appropriate for an algorithm may vary, depending on whether
the algorithm is intended for use for estimation, or for'k .
prediction, or for control. In an estimation problem,
attention centers on estimating the model parameters (b
b, E, SIG, SIGMA) as closely as possible. In a predicti8n
or control problem, attention centers on using the model for
predicting a new value of y corresponding to a specified set
of x-values. How close the parameter estimates are to the
true values is of secondary interest in this situation. (In
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a "prediction" problem, the x's are either passively
observed or actively controlled; in a "control" problem, the
x's are actively controlled. The problem of predicting the
state of the economy is essentially a prediction problem;p the problems of controlling a steel production process or
directing a "smart" bomb to a target are examples of
"control" problems.) The intended application of the model
-- estimation, prediction or control -- should influence the
sample design for the collection of the data from which the
model is to be estimated. For example, if a model, is to be
used to predict how the dependent variable (y) will respond
to forced changes in the independent variables (x's), then
the data should correspond to the case in which forced

changes are made in the x's. A model developed from
passively-observed x's is not appropriate for predicting how
the system will respond if forced changes are made in the
x's (although this is often done, with dissapointing

* results!).

After consideration of the various uses (estimation,
* .prediction and control) of the models under study, and of

the various properties of algorithms that may be of interest
to model developers, it was decided that the following seven
concepts characterized the algorithm performance in
reasonably comprehensive fashion:

1. Computer running speed

2. Computer storage requirements

3. Precison of the parameter estimates

4. Bias of the parameter estimates

5. Mean squared error of the parameter estimates

6. Precision of model-based predictions ,

7. Numerical stability of the algorithm

Having decided on these concepts as comprising a relatively
comprehensive characterization of the performance of an

". algorithm, it remained to determine quantitative measures of
each concept. These concepts and their associated measures
are described in the paragraphs that follow. Note that,
although the preceding concepts were identified as part of
the Phase I report, it was not possible with the Phase I

0; resources to numerically determine values for all of the
measures. That numerical determination can be accomplished
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with some additional programming, and should be done as one
of the first steps in the Phase II study.

1. Computer Running Speed

The primary motivation for the proposed study was to
determine the feasibility of determining estimation,
prediction and control algorithms that had faster running
times than the classical least-squares method. The measure
of speed that was used in this study was the total elapsed
time required to read the data from the file on which it was
stored, compute the parameter estimates, and print out the
results. The time required to "set up" the run (e.g.,
specify the data file name, number of parameters, number of
observations, etc.) was not included, since this time
consists mainly of the time of the human operator to enter
data through the microcomputer keyboard, and does not
reflect algorithm performance.

All of the computer programming and processing on this
project was done using a Radio Shack Model II microcomputer
using a TRSDOS Version 2.0 operating system. This
microcomputer utilizes a 4 MHz Z80 microprocessor, and has
64 kilobytes of direct access memory. The programming was
done in FORTRAN II, using a Microsoft (R) FORTRAN compiler

* to produce the object code. Unfortunately, the available
Microsoft FORTRAN did not permit access to the system timer,
and so the timing was done manually (external to the
program), not automatically (internal to the program). The
running times presented in this report are hence
approximate. In addition to algorithm processing time, they
include the time required to print the results. The amount
of printed output for the various methods is comparable.
For the simpler cases examined, the algorithm procossing

Ptime was very short compared to the print time, and so the
total measured running time is not an accurate reflection of
the processing time. For the more difficult cases, the

• algorithm processing time is large relative to the print
S' .. time, and so the measured running time is a relatively valid

indicator of algorithm processing time.

, $It is recognized that the speed measure used in this study
is very crude, particularly for problems having a small
number of explanatory variables (since the processing time
for these problems is small compared to the data access and
printout time). In Phase II, we propose to develop an
assembly-language timer that can be called internal to the

, * program, so that accurate measures of processing time can be
determined.
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The time measurements for the iterative algorithm were
biased high in many cases, because the algorithm was forced
to make at least ten iterations even if convergence had
already occurred. In Phase II, a test for convergence
should be developed, so that the algorithm stops when
convergence occurs.

2. Computer Storage Requirements

The amount of direct-access computer memory required to
implement an algorithm is a concern, since it determines how
"large" a problem can be handled with available memory, or
how much memory is required to handle a problem of a given
size. The size of an estimation problem is determined -
primarily by two factors -- the number of observations and
the number of explanatory variables (we are speaking here
only the univariate case, in which there is but a single
dependent variable). The classical least-squares method has
an advantage in that the observations may be read and
processed one-at-a-time, and do not need to be stored
simultaneously in memory. The particular "fast algorithm"
that was considered in this study required that all of the
data be stored in memory.

Although the required amount of direct-access memory
required depends on the problem size, the computer programs
developed in this project did not dynamically adjust the
memory requirement to the size of the problem. Instead, the
"dimensions" of the program variables were set to allow for
storage of all observations and variables, corresponding to
the largest problem analyzed -- 100 observations and ten
independent variables (and a single dependent variable).
Under these conditions, the core requirements of the N-
classical least-squares algorithm and the particular "fast ON

algorithm" investigated in this study were as follows:

Least-squares algorithm: 20,984 bytes

Fast algorithm: 21,759 bytes,

i.e., the core requirements are approximately the same.

3. Precision of the Parameter Estimates

In an estimation problem, it is desired to determine
("estimate") the values of the model parameters as "closely"
or "accurately" as possible. The model parameters are b
k, E, SIGMA, and SIG. With regard to estimation, howeve?

' we are generally interested only in b b and SIG, not
in E or SIGMA. The reason for this limitatton is that the
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parameters E and SIGMA are not generally of concern in an
estimation problem once the x's are known. The usual
objective in a data analysis is to estimate the values of
b , b, and SIG, or to predict the value of a new y given
secTfied values of the x's. While the fact that the x's
are random variables can affect some analysis procedures
(e.g., hypothesis testing), the least-squares estimates are
the same whether the x's are fixed numbers or random
variables. For this reason, we shall restrict attention
only to measures of precison of the estimates of b , b,
and SIGMA. This restriction applies also to the nex2 two
performance concepts considered (bias and accuracy).

Accuracy is usually reflected in two concepts -- precision
and bias. The "precision" (or reliability) of an estimator

44 (i.e., an estimation formula or algorithm) refers to the
degree of reproducibility, or variation, of the estimates,
if repeated data samples were selected and the estimator
used to determine the estimate value for each sample. The
usual measure of precision is the standard deviation (square

V. root of the variance, or second central moment). The "bias"
of a parameter estimator is the amount of systematic error
in the estimate, measured as the difference between the
average value obtained for the parameter estimate in
repeated sampling and the true value of the parameter.
(Note: in the preceding discussion, we have used the
distinction that an "estimate" is a numerical value that
represents our guess as to the value of the parameter,
whereas the term "estimator" refers to the formula or
algorithm for producing that numerical value. This

4. distinction in usage of these terms is not strict, either in
the field of statistics or in this report.)

In the present study, it was possible to estimate the
precision of the parameter estimates for the classical
least-squares method, but project resources dis not permit
the estimation of precision of the parameter estimates for
the fast algorithm studied. Closed-form mathematical
formulas are available for estimating the precision of the
least-squares estimates, but such is not the case for
estimating the precision of the fast algorithm estimates.

- Instead, the precision has to be measured empirically, by
selecting many independent data samples and computing the
standard deviation of the parameter estimates over these
samples. Although it was not possible to implement this
procedure in Phase I (because of resource limitations), the
estimated standard deviation of the parameter estimates is
considered to be an important measure of algorithm
performance, and this procedure should be implemented in the
Phase II effort.
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While the precision and bias of the parameter estimates are
of high concern in estimation problems, they are of
secondary conern in prediction and control problems. In the
latter types of problems, it is the accuracy of the
prediction that is of primary concern. It is possible to
have a model in which the parameter estimates are not very
accurate, and yet the accuracy of the predictions based on I
that model is comparable to those obtained from a model in
which the parameter estimates are substantially moreaccurate. (This may be the case, for example, if the

le, explanatory variables are highly correlated.)

. The precision of most statistical estimates increases as the
sample size (number of data observations) increases, usually
by the factor l/A- (for the standard deviation).

4. Bias of Parameter Estimates

The bias of an estimate is the expected value (over repeated
data samples) of the difference between the expected value
of the parameter estimate and the true value of the
parameter. The bias of an estimator is of greater concern
in estimation probalems than in prediction and control
problems.

As was the case in the measurement of precision, Phase I
project resources did not permit the generation an analysis
of a large number of data samples (corresponding to the same
model parameters) to estimate the bias.

The bias of an estimator may or may not decrease as the

sample size increases.

5. Mean Squared Error

The mean squared error is a measure of accuracy -- i.e., it
is a "combined" measure of precision and bias. The
definition of the mean squared error of a parameter
estimator is:

Mean Squared Error = variance + bias 2

or

E(p - p) 2 = E(p - E()) 2  + (E(p) p)2,

where p is the parameter value and p is the estimate, i.e.,
the mean squared error is the expected value of the square
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U
of the difference between the estimated parameter value and
the true parameter value, over repeated data samples.

Once more, Phase I resources did not permit the numerical
determination of the mean squared error, but this can be
done in Phase II.

6. Precision of Model-Based Prediction

The three preceding measures are concerned wtih measurement
of the "closeness" of the parameter estimates to the true
values, or to the amount of variability in the parameter
estimates in repeated data samples. For prediction
problems, the primary concern is how close the model-based
predictions (of y, the dependent variable) corresponding to
a specified set of x-values will be to a newly-sampled y
corresponding to those x-values. An interesting fact is
that there can be fairly substantial errors in the
estimation of the model parameters, and yet predictions
based on the (erroneous) model may be almost as good as
those based on a much-more-nearly-correct model. In some
applications (e.g., econometric modelling), attention
centers very much on estimation of the model parameters. In
other applications, the parameter values are of incidental
interest -- all that matters is the error of prediction.

A standard indicator of the prediction error is the
estimated variance or standard deviation of the modela "residuals," or error terms (differences between the
observed y-values and those predicted by the model). This
is not the same as the standard deviation of the prediction
error for a particular set of x's, which depends also on the
specified values of the x's. The standard deviation of the
prediction error is proportional to the standard devaition
of the residuals, however, and so the latter is a good
indicator of the predictive ability of the model.

Another indicator of the predictive power of a model is the
reduction in variance between predictions based on the
trivial model that predicts that each new y will equal the
mean (of the y's), and the variance of the predictions based
on the estimated model. (This measure is valid only for
application of the model to predict y-values from x-values
that were produced in the same fashion -- e.g., passively
observed, forcibly changed -- as were those from which the
model parameters were derived. Also, its use assumes that
the theoretical variance of y is finite, which is often not
the case for time series data.) The standard error of the
residuals is best estimated from a sample other than that
from which the model parameters were derived, but as long as

?P.,

'I3 0 %~ % 
* * ~ * * ~ * * * ~ * ** * * ~ * 5 . ~ ** ..



the number of parameters is very small relative to the
number of observations, it is common practice to use the
same data set for both purposes.

The reduction in variance for predictions based on the "mean
model" compared to predictions based on the estimated model
is called the "coefficient of determination." It can be
defined as:

CD = 1 - (variance of predictions using "mean model")
/(variance of predictions using estimated model)

16: The coefficient of determination was determined both for the
classical least-squares model and the fast algorithm

algorithm studied in this project.

6. Numerical Stability of the Algorithm
The three preceding measures of algorithm performance are

appropriate in most cases. In some situations, however, an
algorithm may fail to operate as intended because of
computer roundoff errors or because of an intrinsic weakness

Pin the algorithm, such as a failure to converge to an answer
0 close to the desired answer, or a failure to converge at

all. The length of time required for convergence to a
desired answer is considered under performance measure 1 "..
(computer processing speed), if the process converges. (An
additional measure of performance that is of interest in
studying the performance of an iterative algorithm is the

. "rate" of convergence, or the number of iterations required
for convergence.) .A

Some of the test cases examined in the project present
difficulties, for both the classical least-squares and the

P fast algorithm. In some such cases, the algorithm may fail
catastrophically, i.e., produce totally wrong results. In
other such cases, the algorithm may produce an answer (i.e.,
set of parameter estimates) that is not very close to the
correct answer (i.e., the true parameter values). Those
cases are noted, with an indication of the nature of theIfailure. For example, the classical least-squares method
may fail because of an inability to invert a near-singular
matrix. Or, a "fast" algorithm may converge very slowly.

*2. Generation of Test Cases

The performance of an estimation algorithm may vary,
depending on the nature of the data set to which it is
applied. We proposed to develop a set of test cases to
which candidate algorithms could be applied, and to measure

~V
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their performance relative to each test case. Although
there is an infinite variety of test cases that might be
considered, it was possible in the present project to
generate and analyze only a few. It was decided to examine
sixteen cases in all. The nature of these test cases was
described in Section I of this report. The test cases
differ in terms of the number of variables included in the
model, and in terms of the complexity of the model, as
reflected in the covariance matrix of the explanatory
variables (x's).

The general model considered in this study was of the
following form:

j= bO + xj 'b + ej j=l,2,...,n

or

y= bol + X'b + e

where

Yj dependent variable

Y'= (Yl,Y2,...,Yn) = vector of all

observed y's
x = vector of inde-

J - xljlx2jI...Ixmj)

pendent variables corresponding to the
j-th observation

X = (x l , x 2 ,..., x n ) = data matrix

e= (el,e 2 , ..ten) = vector of model error

terms corresponding to all observations

b o= y-intercept

b= (bccb 2 '''''bm) = vector of regression

coefficients

;X var(x.) = SIGIMA2

var(e) = I SIG 2

*,-A.



1' = 1,i,...,i) = n-component vector of all l's

where E is an mxm covariance matrix and I is an nxn identity
matrix. The various test cases correspond to four different
values of m (m = 1, 3, 6, and 10), various values of SIGMA
and SIG, and various covariance matrices E.

The x's are random variables that are generated as follows.
First, m independent random variables, fl1 f , ,f
normally distributed with mean 0 and variance M,
sampled. An mxm coefficient matrix, C, is then specified:

C = {cij}

The x's are computed as

x = C f

The covariance matrix of x is

varx = CC' SIGMA 2 = E SIGMA2

where z = CC'.

To generate y. corresponding to a specified x (say,
- , standardized normal deviate, ej, is sampled,ntu.±tiplied by SIG, and the result added to b0 + x'b:

Yj = bo + xj'b + SIG ej

From the preceding, it is seen that the variance matrix
is not explicitly specified. Instead, it is the coefficient
matrix C that is actually specified. The matrix E has the
value CC'.

The coefficient matrices and values of b b, SIG, and
SIGMA for the various test cases are specif ed in the
computer printouts of Appendix B. The values of the
corresponding covariance matrices Z are also specified in

. those printouts, as part of .a larger matrix, ZA. TheZ
covariance matrix, A, specified in the printouts includes
an additional row an' column, which contains the variance
and covariances of y with each x, i.e.,

A = var(y,x')

= var(bo1 + x'b + e, x')
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The normally distributed random numbers were generated by
the algorithm

12
f = SIGMA ui

where u lU2,are a se uence of independentu ed'ra m numbers. The number u- was

generated by the multiplicative congruential method,
specified for the 16-bit Radio Shack Model II microprocessor
by the algorithm:

Itent = IXold (216 + 3) = IXold 259

IXtent if IXtent > 0
ne IX new = IXIXtent + 2= IXtent + 32767+1

if IXtent <0

U.- IXnew (2-15)= IXnew (.30517578E-4)

IXold = IXnew

The multiplicative congrential method for generating
pseudo-random rumbers is described in Reference 10.

The rationale for the specification of the test cases is as
follows. For the case of a single independent variable (m =-*,

1), the four test cases involved four different values of
the ratio SIG/SIGMA: .1, .5, 1.0, and 5. The case with
SIG/SIGMA = .1 is easiest, since there is a substantial .
amount of variation in x and a small model error term. :'-6

For the cases with m greater than one, the value of
SIG/SIGMA was set equal to .1, and the complexity of the
variance matrix was varied. For the first subcase, was
set equal to the identity matrix, i.e., the x's were
orthogonal (uncorrelated). For the second subcase, the
coefficient matrix used to generate the x's (and hence E)
was specified to correspond to a low-to-moderate degree of
correlation among the x's. For the third subcase, the
coefficient matrix was specified to produce a
moderate-to-high degree of correlation among the x's. In
the final subcase, a linear dependency was introduced among

34
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the x's: the last x was set equal to the sum of the two
preceding x's.

The values of the regression coefficient. b, were chosen
to make the estimation difficult. The correlations among
the x's were all positive, and so the regression
coefficients were specified to be plus ones and minus ones.
This caused convergence of the iterative algorithm to be
slow, because each time an adjustment was made in one
direction for a particular coefficient, a reverse adjustment

qwould be required on the next iteration for coefficients
having the opposite sign.

3. Synthesis of a Candidate Algorithm

In order to demonstrate the feasibility of the proposed
concept of developing a fast estimation algorithm that could
be used as an alternative to the classical least-squares
algorithm, it was proposed to synthesize one or more
alternative algorithms, and to examine their performance.
The class of algorithms that was synthesized in this project
are extensions of the Wald and Bartlett estimators, extended
to the case of more than one independent variable.

The algorithm is iterative. At the k-th iteration, the
residuals, e k-i , from the preceding iteration are

regressed on a3 particular independent variable, xi, using
either the Wald or Bartlett method:

e k-l = b0 k + blkxij + ejk

.\ where b k and b k are the Wald or Bartlett
estimates. in the regression process of determining b 0 k
and b k, of course, the value of e.k is unknown.

.* Once he values of b k and blk are datermined, the
vaule of ejk may be comput&d as follows:

I e k ek-l - bkxi .

The process cycles through all of the x's in order. That
is, the first iteration regresses y on xl s The second
iteration regresses the residuals from the first regression
on x2  The third iteration regresses the residuals from
the second regression on x3 , and so on. If there are m
independent variables, then the (m+l)-st regression begins
over again, and regresses the residuals from the m-th
regression on xl, and so on.

The preceding iterative procedure is conjectured to produce
consistent parameter estimates of the model parameters
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(i.e., estimates that converge in probability to the true
parameter values as the sample size increases).
Determination of whether this is true, or of conditions
under which it is true, should be addressed in Phase II.

In the present study, several modifications of the preceding
. .".procedure were examined. For example, a "stepwise"I

procedure was considered, in which the regression at each
iteration was performcd on the independent variable, xr,

4R which resulted in the greatest reduction in the criterion:

. br IQr

where '0 r denotes the interquartile range of xr, and
br denotes the Wald regression coefficient of the
residuals at that iteration on x Another approach
considered was to regress the residuals separately on all
x's, and then to adjust all m regression coefficents by a
specified fraction ("stepsize") of the indicated adjustment.

* . No modified algorithm was found, however, that performed
* :faster than the one specified above.

Both the Wald and Bartlett procedures were applied to the
* "test cases for which m = 1, but only the Wald procedure was

- ."applied to the other test cases. The iterative procedure
described above will be referred to as an "iterative

3Wald-Bartlett" estimation method.

E. Comparison of the Performance of the Candidate Algorithm
to the Performance of the Classical Least-Squares Algorithm

Each of the sixteen test cases was analyzed using both the
* classical least-squares (CLS) and the iterative
*Wald-Bartlett (IWB) algorithms. The performance of each

case was determined, using the processing speed and the
coefficient of determination as the measures of performance,
or observing whether the method failed catastrophically.
The closeness of the residual standard error to the
parameter SIG was also noted. The results of these
simulations are described in the next section of this
report.

"
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IV. SIMULATION RESULTS

A. Test Cases Involving a Single Independent Variable

The four test cases with m = 1 independent variable were
analyzed using both the Wald and Bartlett estimates, and the
classical least-squares estimator. In general, all cases
ran so fast that speed differences could not be reliably
determined among the methods. All methods produced
parameter estimates close to the true values, and all
produced similar values for the residual standard error and
the coefficient of determination. A summary of the results
of the four cases with m = 1, and all of the other test
cases as well, is presented in Figure 2.

B. Test Cases Involving Three Independent Variables

For the test cases with m = 3 independent variables, the
data were analyzed with both the iterative Wald-Bartlett
(IWB) and classical least-squares (CLS) methods. The
results are presented in Figure 2. Both the CLS and IYB
methods appear to be of comparable speed, in cases in which
the CLS method does not fail. The CLS method fails if the
correlations among the x's are high, or if there is a linear
dependency among the x's. The IWB method succeeds in these
cases, but does not converge very fast. The slow
convergence is probably due to the fact that the regression |
coefficients were purposely specified to cause slow
convergence.

4rC. Test Cases Involving Six Explanatory Variables

The results for the cases involving six explanatory
variables are as follows. For cases in which the CLS method
does not fail, it is somewhat faster than the IYB method,

.P. for the difficult estimation problems represented by the
test cases. For cases in which the correlations among the
x's is high, the CLS method fails. In these cases, the IWB
method is slow to converge. Once again, the slow
convergence is probably due to the "pathological"
specification of the regression coefficients.

D. Test Cases Involving Ten Independent Variables
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Figure 2. Algorithm Performance on Sixteen Test Cases

Model Parameters Performance Measures

Case SIG Est Time

No. m Corr SIGMA SIG CD Meth (sec) RSE CD Fail

1 1 - .1 1.0 .9901 CLS 40 1.12 .9864
WALD 35 1.12 .9862

BART 35 1.12 .9862

2 1 - .5 1.0 .8000 CLS 40 1.12 .7554

WALD 35 1.12 .7528

BART 35 1.12 .7528

3 1 - 1.0 1.0 .5000 CLS 40 1.12 .4547

WALD 35 1.12 .4489
BART 35 1.12 .4489

4 1 - 5.0 1.0 .0385 CLS 40 1.12 .0535
WALD 35 1.12 .0436

BART 35 1.12 .0435

5 3 0 .1 1.0 .9967 CLS 65 1.15 .9951
IWB 70 1.15 .9950

6 3 Low .1 1.0 .9967 CLS 65 1.15 .9951
IWB 55 1.16 .9949

"7 3 High .1 1.0 .9955 CLS 65 6.20 - Fail
• IWB 200 1.20 .9928

8 3 LDEP .1 1.0 .9975 CLS 65 1.52 - Fail
IWB 70 1.15 .9961

9 6 0 .1 1.0 .9983 CLS 105 .99 .9987

IWB 130 1.01 .9986

10 6 Low .1 1.0 .9985 CLS 105 .99 .9990

IWB 155 1.15 .9986

11 6 High .1 1.0 .9989 CLS 105 107. - Fail

IWB 840 1.13 .9990

12 6 LDEP .1 1.0 .9986 CLS 105 8.68 - Fail

IWB 70 1.00 .9987
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Figure 2 (cont.). Algorithm Performance on Sixteen Test Cases

Model Parameters Performance Measures

Case SIG Est Time
No. m Corr SIGMA SIG CD Meth (sec) RSE CD Fail

13 10 0 .1 1.0 .9990 CLS 180 1.10 .9989
IWB 200 1.28 .9988

14 10 Low .1 1.0 .9988 CLS 180 1.10 .9988
IWB 300 1.17 .9984

15 10 High .1 1.0 .9997 CLS 180 610. - Fail
IWB 1800 2.03 .9991

16 10 LDEP .1 1.0 .9991 CLS - - - Fail
IWB 185 1.13 .9988

Legend:
m: number of explanatory variables (x's)

Corr: degree of correlation in x's

CD: coefficient of determination

Est Meth: CLS: classical least-squares method

WALD: Wald's method

BART: Bartlett's method
IWB: iterative Wald-Bartlett method

Time: time to read data, process data, and print results

RSE: residual standard error

Fail: the CLS method failed to invert the correlation matrix,
or the correlation matrix was singular, and the solution
was incorrect
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The results for the test cases involving ten independent
variables were as follows. For cases in which the CLS
method succeeded, it is faster than the IWB method for the
test cases studied. For the cases in which the correlation
among the x's is high, the CLS method fails, and the IYB
method is slow. In the worst case (case 15), the process
was terminated after 1800 seconds. At that point, the model
had reached a solution close to the correct solution, but
not correct -- the residual standard error was 2.03,compared to the true value of 1.0.

In summary, the IYB method appears to be comparable in speed
to the CLS method for problems with a small number of
explanatory variables or low correlations among the x's.
For difficult problems (with high correlations among the
x's), the CLS method fails. The IYB method converged in all
of the difficult cases but one.

k6
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m V. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

This study has demonstrated the feasibility of developing an
algorithm for estimating the parameters of a linear
statistical model and making predictions based on the

estimated model, that is comparable in speed to the
classical least-squares method for problems of low to
moderate difficulty, and is definitely more robust, in the
sense that it is less subject to catastrophic failure. The
feasibility was established by synthesizing an algorithm --
an extension of the estimation procedures of Wald and
Bartlett -- which often outperformed the classical method.

The availability of a fast, robust estimation procedure
would be beneficial to both military and nonmilitary
applications. In a military context, there is a growing
need for faster estimation procedures -- current procedures
cannot accomplish tracking of large numbers of objects in
real-time, or accomplish large-scale sensor exploitation in
real-time. Also, embedded-processor estimation algorithms
are non-interactive (i.e., must perform without human
intervention), and are potentially subject to catastrophic
failure if based on the classical least-squares procedure,
if highly correlated data are entered into the data input
stream.

In both military and commercial/industrial applications,
there is a requi rement for "fail-safe" estimation
algorithms. The classical least-squares algorithm that is
currently in use is not fail-safe. For problems involving
moderate or large numbers of variables, computer roundoff
errors can ruin the estimates, and the user may be totally
unaware of the failure. The danger of this occurrence is
particularly strong in microcomputers having short word
lengths (e.g., 16 bit microprocessors), and is a problem
even for 32-bit machines. Furthermore, many persons using
statistical software packages are not aware that linear
dependencies in the variables can cause the complete failure
of the methods. Once again, roundoff errors may obscure the
problem, so that the user has no reason to believe that the
estimation algorithm failed.
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lei6 While the present project has demonstrated the feasibility
of developing fast, robust algorithms, it has not
accomplished the ultimate goal of developing such an
algorithm. The algorithm that was sythesized in this
project is not considered to be a final solution to this
problem -- it does not outperform the classical
least-squares method in every case, and its theoretical
properties (e.g., convergence, consistency of estimates) are
unknown. Continuation of the effort to develop improved
(fast, robust) estimators will require substantial
additional effort. The present study suggests, however,
that the potential for success of such an effort is high.

B. Recommendations

It is recommended that a Phase II study be conducted,
oriented toward the goal of developing improved algorithms
for estimation, prediction and control. It is further
recommended that the Phase II effort should address the
following tasks.

1. Extension of the results of the Phase I study, to
include analysis of a wider range of test cases,
and measurement of the full set of performance
measures identified in this study.

2. Development of a broader class of algorithms,
additional to the iterative Wald-Bartlett method
developed in this Phase I effort.

3. Extension of the algorithm to consider estimation
* problems additional to the multiple linear

regression problem considered in the Phase I effort.
Consideration should be given to developing fast,
robust methods for the full range of problems
currently addressed by least-squares methods,

*... such as multivariate analysis of variance and
time series analysis procedures (currently done
by Box-Jenkins, Kalman filter, and state-space
methods).

, 4. Analyze the theoretical numerical and statistical
properties of candidate algorithms, such as
convergence conditions and consistency.

If successful, it is expected that there would be a
substantial military and non-military demand for a
statistical estimation computer program package based on the
improved methods. With respect to military applications,
such methods offer the potential for fast, fail-safe
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processing of tracking and sensor exploitation data. With
respect to non-military applications, the methods are much
more "user-friendly" than the least-squares method, in that
the user would be protected from catastrophic failures, and
would not need to understand matrix algebra concepts such as
linear dependencies, singularities, and numerical stability
problems in matrix inversion, to be assured of successful
application of the procedures. In view of the large number
of persons involved in data analysis, and the growing use of
microcomputers, the development of such methods is
considered to be a very significant contribution to the
field of data analysis.

The determination that the iterative Wald-Bartlett method
avoided the catastrophic failure problem of the classical
least-squares method was serendipitously discovered during
the course of the Phase I investigation. Since this
property of the algorithm is judged to be probably more
important than speed in many applications, it is recommended
that the title of the Phase II study be changed from "Fast
Algorithms for Estimation, Prediction and Control," to
Improved Algorithms for Estimation, Prediction and

Control."

Reduction of the danger of obtaining wrong answers from

regression analyses represents an area of potentially great
benefit, to a wide class of data analysts. The original
concept of this study was to develop fast algorithms,
primarily for real-time applications such as tracking,
sensor exploitation, or industrial process control. Those
applications, while important, concern relatively few data
analysts. The discovery of the robustness of the iterative
Wald-Bartlett algorithm, however, could have substantial
impact for a wide class of data analysts. For example, a
typical logistics application involves the determination of
parametric cost estimating relationships. These
relationships are estimated by linear regression analysis.
Since the models developed are empirical in nature, they
involve the analysis of a large number of cost-related
variables. The presence of a linear dependency in the data,
or the occurrence of a roundof f-error-caused matrix
inversion failure caused by high correlation among some of
the explanatory variables, could produce incorrect results.
The availability of "fail-safe" algorithms would benefit
this and many other similar applications. In view of the
substantial amount of funds expended by the Office of Naval
Research on parametric cost analysis and other data
analysis, the benefits of improved estimation methods would
be substantial.
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IRTRAN-80 Ver. 3.4 Copyright 1978, 79, 80 (C) By Microsoft -- Bytes: 22872
Created: 26-Nov-80
a 100 C PROGRAM SIMULA

200 C THIS PROGRAM GENERATES THE VECTOR RANDOM VARIABLE X=C*F
300 C AND THE SCALAR RANDOM VARIABLE Y=BO+B*X+SIG*E, WHEREK0400 C F IS AN MX1 RANDOM VECTOR, X IS AN MX1 VECTOR,
500 C C IS AN MXM MATRIX, E(F)=0, VAR(F)=I*SIGMA**2,

R600 C I IS AN MXM IDENTITY MATRIX
00700 C BO IS A SCALAR PARAMETER, B IS AN MX1 PARAMETER VECTOR
1 800 C E IS A SCALAR N(0,1) ERROR TERM

900 C N OBSERVATIONS ARE GENERATED, AND WRITTEN TO FILE FNAM1
01000 C INPUT M,C(M,M), SIGMA, N, BO,B(N),SIG
W100 C OUTPUT THE N OBSERVATIONS (1 Y-COMPONENT AND M X-COMPONENTS)

200 DIMENSION C(11,11), CT(11,11),VARX(11,1I), X(10),F(10)
V1300 DIMENSION SX(11),B(10)
01400 DOUBLE PRECISION FNAM1(2)
i1500 DATA LUNI,LUN2,LUN6/1,2,6/
S[600 C LUN1:TERMINAL, LUN2:PRINTER, LUN6:DATA FILE FOR OUTPUT
01700 WRITE(LUN2,6)
2.1800 6 FORMAT(15HOPROGRAM SIMULA,/

' .1900 142H GENERATES MULTIVARIABLE UNIVARIATE SAMPLE)
02000 WRITE(LUN1,9)
6Q2100 9 FORMAT(53H ENTER FILE NAME, 1-16 ALPHA CHARS, LAST CHAR BLANK: )
N;200 READ(LUN1,8)FNAM1
2300 8 FORMAT(2A8)

02400 WRITE(LUN2,7)FNAM1
2500 7 FORMAT(12HOFILE NAME: ,2A8)

r 600 CALL OPEN(LUN6,FNAM1,80)
02700 MXDIM=10

800 5 CONTINUE
900 WRITE(LUN1,10)

3000 10 FORMAT(20HOINPUT DIMENSION, M:)
.Q3100 READ(LUN1, 20) M
s200 20 FORMAT(I2)
3300 IF(M.GT.MXDIM)GO TO 5

03400 WRITE(LUN2,31) M
4b500 31 FORMAT(17HODIMENSION (M) = ,12)
.:3600 WRITE(LUN2,56)
03700 56 FORMAT(26HOCOEFFICIENT MATRIX (C)...)
03800 WRITE(LUN1,42)

900 42 FORMAT(51HOINPUT 1 TO USE IDENTITY COEFT MATRIX, 0 OTHERWISE:)0*4000 READ(LUNI, 43 )IOPT

Q4100 43 FORMAT(Ii)
.A200 IF(IOPT.LE.0)GO TO 44
A300 DO 46 I=1,M
04400 DO 47 J=1,M

4500 47 C(I,J)=0.0
• 600 C(I,I)=I.0

04700 46 CONTINUE
f 4800 WRITE(LUN2,48)

4900 48FORMAT(37H COEFFT MATRIX IS IDENTITY MATRIX)
ifsbo0 GO TO 45
*5100 44 CONTINUE

200 DO 100 I=1,M
O5300 WRITE(LUNl,40),I,M

.05400 40 FORMAT(10H INPUT ROW,I3,21H OF COEFFT MATRIX, C./
• *'5500 15H M = ,12,21H VALUES, 8 AT A TIME:/)

% :.,600 READ(LUN1,50)(C(I,J),J=l,M)
05700 WRITE(LUN2,57)(C(I,J),J=l,M)

800 57 FORMAT(IX,8F10.4)

~~ ,800
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1 900 50 FORMAT(8F10.4)
06000 55 FORMAT(8F10.4)
6100 100 CONTINUE
s200 45 CONTINUE
O%300 WRITE(LUN1,60)

400 60 FORMAT(14H INPUT SIGMA: )
500 READ(LUN1,70)SIGMA
0600 70 FORMAT(F10.4)

06700 WRITE(LUN2,81)SIGMA
e800 81 FORMAT(49HOSIGMA (SCALING PARAMETER FOR INDEP VARIABLES)= ,F10.4)
& 900 WRITE(LUN1,710)
07000 710 FORMAT(23H INPUT BO (INTERCEPT):

10 READ(LUN1,70)BO
2~ 2000 WRITE(LUN2,711)BO

07300 711 FORMAT(18HOB0 (INTERCEPT) = ,F10.4)
07400 WRITE(LUNI,712)M
t 500 712 FORMAT(27H INPUT PARAMETER VECTOR, B./
e4600 15H M = ,12,21H VALUES, 8 AT A TIME:/)
07700 READ(LUN1,50)(B(I),I=1,M)
* -Y800 WRITE(LUN2,727)
C-900 727 FORMAT(24HOPARAMETER VECTOR (B)...)
08000 WRITE(LUN2,713)(B(I),I=1,M)
C-3100 713 FORMAT(1X,8F10.4) r.

200 WRITE(LUN1,714)
300 714 FORMAT(12H INPUT SIG:

08400 READ(LUNI, 50) SIG
r-.' 500 WRITE(LUN2,715)SIG
W@600 715 FORMAT(29HOSIG (MODEL ERROR STD DEV) = ,F10.4)
08700 WRITE(LUN1,90)., 800 90 FORMAT(36H INPUT NO OF OBSNS, N, TO SIMULATE:
U900 READ(LUN1,35)N
09000 35 FORMAT(I3)
.9100 WRITE(LUN2,36)N
*rQ 200 36 FORMAT(14HONO OF OBSNS =,14)
6§300 WRITE(LUN1,91)
0400 91 FORMAT(33H INPUT NO OF RANDOM NOS TO SKIP:

500 READ(LUN1,35)NSKIP
U'j600 WRITE(LUN2,92)NSKIP
09700 92 FORMAT(6H SKIP ,13,31H RANDOM NOS PRIOR TO SIMULATION)
.)800 DO 95 I=1,NSKIP
; )900 CALL RANDN(TEMP)
10000 95 CONTINUE
"I00 WRITE(LUN1,552)
"--)200 552 FORMAT(36H INPUT NO OF OBSERVATIONS TO PRINT:
1I300 READ(LUN1,35)NPRT
1.0400 C COMPUTE VARIANCE MATRIX OF X
')500 CALL ATRAN(C,M,M,CT)
*0600 CALL AB(C,CT,M,M,M,VARX)
10700 SIGS=SIGMA**2
S:)800 CALL ASCAL(VARX,SIGS,M,M,VARX)
1)900 C COMPUTE ROW AND COLUMN CORRESPONDING TO Y
11000 CALL AX(VARX,B,M,M,X)

100 MP=M+I
200 DO 325 I=1,M
300 VARX (MP, I)=X(I)

1.1400 VARX (I,MP)=X (I)
-.1500 325 CONTINUE
11600 CALL CROSP(B,X,M,CP)
11700 VARX(MP,MP)=CP+SIG**2
. 800 WRITE(LUN2,58)

a - ~ W ~ * S I) P -1 - A.. * , * a



L 900 58 FORMAT(27HOVARIANCE MATRIX OF X, Y...)
12000 DO 330 I=1,MP

S100 SX(I)=SQRT(VARX(II))
200 WRITE(LUN2,57)(VARX(I,J),J=1,MP)

12300 330 CONTINUE
S400 VY=VARX(MP,MP)
500 VRES=SIG**2

2600 CD=1. -VRES/VY
S700 WRITE (LUN 2, 6 40)CD
800 640 FORMAT(32HOCOEFFICIENT OF DETERMINATION = F1O.4)

E900 C COMPUTE CORRELATION MATRIX
13000 DO 610 I=1,MP

S100 DO 610 J-=1,MP
t200 610 VARX(I,J)=VARX(I,J)/(SX(I)*SX(J))

13300 WRITE(LUN2,54)
3400 54 FORMAT(3OHOCORRELATION MATRIX OF X, Y...)

-,13500 DO 630 I=1,MP
i3600 WRITE(LUN2,57)(VARX(I,J),J=1,MP)
13700 630 CONTINUE
;,3800 WRITE(LUN2,550)
.-3900 550 FORMAT(16HOOBSERVATIONS.. ./
14000 124H DEPENDENT VARIABLE LAST)
.100 WRITE(LUN2,553)NPRT
S200 553 FORMAT(8H (FIRST ,13,15H OBSNS PRINTED))
4300 KPRT=0
4400 DO 500 K=l,N

p.4 5 00 DO 400 I=1,M
IA 6 00 CALL RANDN(TF24P)
14700 F(I)=SIGMA*TE.MP

800A 400 CONTINUE
9i900 CALL AX(C,F,M',M,X)
15000 C COMPUTE Y
* 100 Y=BO
,200 DO 720 I=1,M

15300 720 Y=Y+B(I)*X(I)
J 4 00 CALL RANDN (TFt'4P)

,500 Y=Y+SIG*TEiMP
r5600 WRITE(LUN6,55) (X(J) ,J=1,M) ,Y t~

15700 KPRT=KPRT+l
'800 IF(KPRT.GT.NPRT)GO TO 501
.5900 WRITE(LUN2,551)K,(X(J),J=1,M),Y
16000 501 CONTINUE A

awl100 500 CONTINUE
'41200 551 FORMAT(9H OBSN NO ,14,2H: ,2(/lX,8Fl0.4))
'16300 END

..~ograrn Unit Length=O8ED (2285) Bytes

kata Area Lerigth=OB6C (2924) Bytes

.'ubroutines Referenced:

$13 $11 $I0
~RT $INIT $W2
~D $R2 OPEN

oM 9 $L1 $T1
JFANDN ATRAN AB
.,.S C AL $EA AX
-ROSP $AB $DB

$ SB $NB $MB

OEX4



Variables:

0001" CT 01E5 VARX 03C9
X 05AD" F 05D5" SX 05FD"

0629" FNAMI 0651" LUNI 0661"
2 0663" LUN6 0665" MXDIM 06FE"

0719" T:000002 071F" IOPT 0790"
I 0796" J 0798" T:000000 079A"
A010000 079C" SIGMA 0846" B0 08A9"

;G 0948" N 099D" NSKIP 09DF"
TEMP 0All" NPRT OA3E" SIGS OA4C"

OA5C" T:020000 OA5E" T:030000 0A60"
.0A62" VY 0A8A" VRES OA8E"
CD 0A92" T:000001 OAC1" KPRT OB3B"
x OB3D" Y 0B45"

Labels:

L 0006' 6L 0667" 9L 06AA"
06E4" 7L 06E9" 5L 005E'

10L 0700" 20L 071B" 31L 0720"
, -'L 0739" 42L 0758" 43L 0792"

SL 0188' 46L 0169' 47L 0105'
L 079E" 45L 0250' 100L 0240'

49L 07C8" 50L 0823" 57L 0818"
'[woL 082B" 60L 0833" 70L 084A"
ZiL 0851" 710L 088D" 711L o8AD"
712L O8CA" 727L 090F" 713L 092C"

4L 0937" 715L 094C" 90L 0974"
L 099F" 36L 09A3" 91L 09B9"

92L 09El" 95L 0415' 552L 0A15"
.25L 04F0' 58L OA6A" 330L 05D1'
.40L 0A96" 610L 064F' 54L OAC5"
630L 071F' 550L OAE8" 553L 0B19"
C OL 08C6' 400L 0788' 720L 07B6'

IL 08C6' 551L 0B49"

16400 SUBROUTINE ATRAN(A,M,N,B)
.-.6500 C THIS SUBROUTINE COMPUTES B=A-TRANSPOSE
t6600 C INPUT MATRIX A(M,N),M,N
16700 C OUTPUT MATRIX B
06800 C A AND B MUST BE STORED IN DIFFERENT LOCATIONS
K':-6900 C DIMENSION A(M,N),B(N,M)
'17000 DIMENSION A(11,11),B(11,11)
.17100 DO 100 I=1,M
w.7200 DO 110 J=1,N
;N 30 B(J,I)=A(I,J)

17400 110 CONTINUE
4*7500 100 CONTINUE
,7'600 RETURN
17700 END

Srogram Unit Length=0090 (144) Bytes
ata Area Length=0013 (19) Bytes

-" ubroutines Referenced:

$AT $M9 $LI
pTl

I................. ..........



iriables:

0001" M 0003" N 0005"
0007" I 0009" J OOOB"

000000 OOD" T:010000 OOF" T:020000 0011"_

bels:

90L 007B' 1IOL 0067'

17800 SUBROUTINE AB(A,B,L,M,N,C)
JJ900 C THIS SUBROUTINE COMPUTES MATRIX PRODUCT C(L,N)=A(L,M)*B(M,N)
"OOO C INPUT MATRIX A(L,M),MATRIX B(M,N),L,M,N
S100 C OUTPUT MATRIX C(L,N)
18200 C DIMENSION A(L,M),B(M,N),C(L,N)

o'- o 3300 DIMENSION A(11,11),B(11,11),C(11,11)
'3 4 00 DO 100 I=1,L
18500 DO 110 J=I,N
: 3600 TEMP=0.0
*r9700 DO 120 K=I,M
18800 TEMP=TEMP+A(I,K)*B(K,J)
,L900 120 CONTINUE
$#000 C(I,J)=TEMP
A100 110 CONTINUE
19200 100 CONTINUE

300 RETURN
..-9400 END

'ogram Unit Length=00F5 (245) Bytes

ta Area Length=001D (29) Bytes

5jibroutines Referenced:

t;AT $ Li $ Ti
W9 $MB $AB

:-Iriables:

0001" B 0003" L 0005"
0007" N 0009" C OOB"
000D" J OOF" TEMP 0011"

Yj. 0015" T:000000 0017" T:010000 0019"
.. , 020000 001B"

Labels:
*.' .-

a0L OODC' 1IOL 00C8' 120L 0085'

,-.9500 SUBROUTINE ASCAL(A,SCAL,M,N,B)

P-9600 C THIS SUBROUTINE MULTIPLIES MATRIX A TIMES SCALAR SCAL
19700 C B=A*SCAL
%9800 C MATRICES A AND B MAY BE STORED IN THE SAME LOCATION
t900 C INPUT MATRIX A(M,N), SCALARS SCAL, M,N
)0 C OUTPUT MATRIX B(N,M)

.20100 C DIMENSION A(M,N),B(M,N)
,200 DIMENSION A(11,11),B(1I,1I)
0300 DO 100 I=1,M
20400 DO 110 J=1,N

500 B(I ,J)=SCAL*A(I ,J)



9600 110 CONTINUE
20700 100 CONTINUE
R800 RETURN
90 END

ogram Unit Length=0081 (129) Bytes

ta Area Length=0015 (21) Bytes

Subroutines Referenced:

$M9 $Li
$MB $T1

. riables:

0001" SCAL 0003" M 0005"
0007" B 0009" I 000B"
OOOD" T:000000 0OOF" T:010000 0011"

T:020000 0013"

r4lbels:

1 00L 006C' IOL 0058'

A000 SUBROUTINE AX(A,X,M,N,Y)
21100 C THIS SUBROUTINE MULTIPLIES MATRIX A(MXN) TIMES VECTOR X(NX1)
-1,200 C I.E., COMPUTES Y = A*X
0-1300 C INPUT MATRIX A(M,N), VECTOR X(N)
21400 C OUTPUT MATRIX Y(M)

S"'500 C X AND Y MUST BE IN DIFFERENT STORAGE LOCATIONS
3600 C DIMENSION A(M,N),X(1),Y(1)
21700 DIMENSION A(11,11),X(1),Y(1)
?.1800 DO 100 I=1,M
• " 900 TEMP=0.0
'2000 DO 110 J=1,N

,?100 TEMP=TEMP+A(I ,J) *X(J)
200 110 CONTINUE

• 12300 Y (I) =TEMP
22400 100 CONTINUE
2500 RETURN

; 600 END

4ogram Unit Length=00B7 (183) Bytes

..ata Area Length=0017 (23) Bytes

Subroutines Referenced:

;4AT $ Li $T1
$M9 $MB $AB

."ri ables:

0001" X 0003" M 0005"
0007" Y 0009" I 0OOB"

P 000D" J 0011" T:000000 0013"

' .010000 0015"

abels:

0L 009E' IOL 006D'



I -wW V
1700 SUBROUTINE CROSP(X,Y,M,CP)
800 C THIS SUBROUTINE COMPUTES THE CROSSPRODUCT OF VECTORS X AND Y
900 C INPUT VECTORS X(M),Y(M), DIMENSION M

00 C OUTPUT CROSSPRODUCT CP
S100 DIMENSION X(l),Y(1)
200 CP=0.0
300 DO 100 I=1,M

23400 CP=CP+X(I)*Y(I)
t1500 100 CONTINUE

600 RETURN
23700 END

.ogram Unit Length=006B (107) Bytes
ltra Area Length=OOOF (15) Bytes

A'broutines Referenced:

$AT $LI $T1
B $AB

Variables:

- 0001" Y 0003" M 0005"
0007" I 0009" T:000000 OOOB"

T;010000 00D"

#Ibels:

O0L 00 52'

23800 SUBROUTINE RANDN(V)
3900 C THIS SUBROUTINE GENERATES STANDARD NORMAL DEVIATES
000 C BY SUMMING 12 UNIFORMLY DISTRIBUTED RANDOM NUMBERS
100 C OUTPUT V IS THE RANDOM NUMBER

24200 A=0.0
..300 DO 50 I=1,12
5400 CALL RANDU(Y)
24500 A=A+Y
.4600 50 CONTINUE
,.1700 V=A-6.
24800 RETURN
. 900 END

"'rogram Unit Length=0055 (85) Bytes
Data Area Length=OOOD (13) Bytes

ibroutines Referenced:

$T1 RANDU
$SB

'5 riables:

0001" A 0003" I 0007"
Y 0009"

,,A, bel s S

L 002D'



000 SUBROUTINE RANDU(YFL)
100 C THIS SUBROUTINE GENERATES UNIFORMLY DISTRIBUTED RANDOM NUMBERS
200 C BY THE MULTIPLICATIVE CONGRUENTIAL ("RESIDUE") METHOD
300 C OUTPUT YFL IS THE RANDOM NUMBER

2.400 DATA IX/32769/
500 IY=IX*259
600 IF(IY)5,6,6

25700 5 IY=IY+32767+1I800 6 YFL=IY
5900 YFL=YFL*. 30517578E-4
26000 IX=IY

S100 RETURN
9200 END

rogram Unit Length=004C (76) Bytes
ta Area Length=0007 (7) Bytes

Subroutines Referenced:

~mg $ CA $T1
$ Li $MB

iariables:

YFL 0001" IX 0003" IY 0005"

':abels:

0019' 6L 0023'

'Ci
'C-,

5'._.s

b:~



LTRAN-80 Ver. 3.4 Copyright 1978, 79, 80 (C) By Microsoft -- Bytes: 22872
Created: 26-Nov-80

S100 C PROGRAM MREG
200 C PERFORMS MULTIPLE LINEAR REGRESSION ANALYSIS
300 DIMENSION XBAR(11),STD(11),RX(121),R(66),B(11),O(11),T(10)
S400 DIMENSION LL(1O),MM(10),SB(10),RY(10),ISAVE(11)
500 DIMENSION X(l),ANS(11),NAME(40)
600 DIMENSION RXI(10,10),RXJ(10,10),RPROD(10,10)

00700 C DOUBLE PRECISION RXI800 DOUBLE PRECISION FNAM1(2)
9900 DATA LUN1,LUN2,LUN6/1,2,6/

01000 C LUN1:TERMINAL; LUN2:PRINTER; LUN6:DATA FILE FOR INPUT
S100 WRITE(LUN2,80)
200 80 FORMAT(13HOPROGRAM MREG,/

9300 136H MULTIPLE LINEAR REGRESSION ANALYSIS)
Z 1400 WRITE(LUN1,90)

C. 500 90 FORMAT(53H ENTER FILE NAME, 1-16 ALPHA CHARS, LAST 
CHAR BLANK:)

L~ 600 READ(LUN1,95)FNAM1
01700 95 FORMAT(2A8)
41800 CALL OPEN(LUN6,FNAM1,80)
-t900 WRITE(LUN2,209)FNAM1
02000 209 FORMAT(17HODATA FILE NAME: ,2A8)
1100 WRITE(LUN1,201)
~200 201 FORMAT(46H ENTER NO OF OBS, NO OF VARS, INDEX OF DEP VAR/
9300 133H NO OF INDEP VARS IN REGRESSION:)

q. 00READ(LUN1 118 )NOBS ,NVAR, IDEP,NIND

q500 18 FORMAT(16I5)
&600 WRITE(LUN2,16)
02700 16 FORMAT(4OHONO OF OBS, NO OF VARS, INDEX OF DEP VAR/K 1800 149H IN REGRESSION, NO OF INDEP VARS IN REGRESSION...)

K900 10=0
03000 WRITE(LUN2,13)NOBS,NVAR,IDEP,NIND
Q3100 13 FORMAT(1X,8110)
4 200 WIiu.2(LUN1,19)
Xj3300 19 FORMAT(44H ENTER INDICES OF INDEP VARS, IN ASC ORDER: I

S400 READ(LUN1,18)(ISAVE(I),I=1,NIND)

0500 WRITE(LUN2,215)
63600 215 FORMAT(39H INDICES OF INDEP VARS IN REGRESSION...)
03700 WRITE(LUN2,13)(ISAVE(I),I=1,NIND)
..'3800 WRITE(LUN1,221)
' 900 221 FORMAT(33H ENTER MAX NO OF OBSNS TO PRINT:)
04000 READ(LUN1,222)NPRTM

S100 222 FORMAT(I4)
200 NPRTM=MI NO (N PRTM, NOBS)
300 NOPR=0

04400 WRITE(LUNI,29)
& 500 29 FORMAT(45H ENTER 1 TO PERFORM REGRESSION, 0 TO SUPPRESS/)

K600 READ(LUN1,203)IREG
04700 203 FORMAT(I1)
T-4800 WRITE(LUN2,12)
g900 12 FORMAT(8HODATA...)

05000 WRITE(LUN2,223)NPRTM
U 100 223 FORMAT(8H (FIRST ,14,7H OBSNS))
200 CALL CORRE(NOBS,NVAR, IO,X,XBAR,STD,RX,R,D,B,T,NPRTM,NOPR)

R300 WRITE(LUN2,32)
05400 32 FORMAT(27HOMEANS FOR ALL VARIABLES...)
4%3500 WRITE(LUN2,20)(XBAR(l),I=1,NVAR)'
:600 WRITE(LUN2,34)
05700 34 FORIMAT(41HOSTANDARD DEVIATIONS FOR ALL VARIABLES..)

Soo 800WTTE(LN2,20) (STD(I),I=1,NVAR)

Vq. . IN %



15 900 WRITE(LUN2,28)
06000- 28 FORMAT(22HOCORRELATION MATRIX...)
~100 DO 130 I=1,NVAR
200 N1=I*(I-1)/2+1

~6300 N2=N1+I-1K400 130 WRITE(LUN2,20)(R(J),J=N1,N2)
500 20 FORMAT(1X,8F10.4)
600 IF(IREG)125,,125,126

06700 126 CONTINUE
ri%800 CALL ORDER(NVAR,R,IDEP,NIND,ISAVE,RX,RY)
9900 DO 104 I=1,NIND
07000 K1=NIND*(I-1)

S100 DO 104 J=1,NIND
200 K=K1+J

9300 104 RXI (I, J) =RX(KW
400 CALL MINV(RX,NIND,DD,LL,MM)

.7400 WRITE(LUN2,213)DD
, 7600 213 FORMAT(15HODETERMINANT = ,EIO.4)
07700 IF(DD)211,211,212

800 211 WRITE(LUN2,214)
:.i 900 214 FORMAT(49HOZERO DETERMINANT, REGRESSION CANNOT BE PERFORMED)
08000 GO TO 100
j3100 212 CONTINUE
200 DO 108 I=1,NIND

9300 K1=NIND*(I-1)
Q$400 DO 108 J=1,NIND

5 500 K=K1+J
A-~600 108 RXJ (I, J) =RX (K)
*08700 WRITE(LUN2,25)
1 800 25 FORMAT(61HOINVERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSI
9900 ION... )
*09000 DO 105 I=1,NIND
C19100 N1=NIND*(I-1)+1
(0)200 N2=Nl+I-1
69300 105 WRITE(LUN2,20)(RX(J),J=N1,N2)

400 DO 107 I=1,NIND
500 DO 107 J=1,I

t6600 RP=0
09700 DO 106 K=1,NIND

' 19800 106 RP=RP+RXI(I,K)*RXJ(K,J)
jo.!'900 107 RPROD(I,J)=RP

10000 WRITE(LUN2,24)
W~100 24 FORMAT(33HOPRODUCT OF MATRIX AND INVERSE...,.
'! 200 152H SHOULD BE IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS/
10300 252H HAVE RUINED SOLUTION... DISREGARD REST OF ANALYSIS.)
0400 DO 103 I=1,NIND
S500 N11l
600 N2=I

10700 103 WRITE(LUN2,20)(RPROD(I,J),J=Nl,N2)
!4~800 CALL MULTR(NOBS,NIND,XBAR,STD,D,RX,RY, ISAVE,B,SB,T,ANS)

.)9 00o DO 102 I=1,NIND

11000 N1=NIND*(I-1)+1

W200 JJ=0
6'.300 DO 102 J=N1,N2
11)400 JJ=JJ+1

11500 102 RX(J)=RX(J)/(STD(I)*STD(JJ)*(NOBS-1))
t600 WRITE(LUN2,26)

11700 26 FORMAT(6HOINVERSE OF THE PART OF THE CROSS PROD MATRIX USED IN RE

-4 800 IGRESSION...)



i900 DO 101 I=1,NIND
12000 N1=NIND*(I-1)+I

100 N2=NI+I-1
200 101 WRITE(LUN2,33)(RX(J),J=NI,N2)
2300 33 FORMAT(1X,8(2X,EIO.4))

K 400 WRITE(LUN2,35)IDEP
500 35 FORMAT(34HOINDEX OF DEP VAR IN REGRESSION = ,I10)
600 WRITE(LUN2,36)

12700 36 FORMAT(39H INDICES OF INDEP VARS IN REGRESSION...)
800 WRITE(LUN2,21)(ISAVE(I),I=I,NIND)
900 21 FORMAT(1X,8II0)

13000 WRITE(LUN2,38)
100 38 FORMAT(27H REGRESSION COEFFICIENTS...)
200 WRITE(LUN2,20)(B(I),I=1,NIND)

13300 WRITE(LUN2,40)
,V400 40 FORMAT(12H T-VALUES...)
M500 WRITE(LUN2,20)(T(I),I=1,NIND)
Z.3600 DO 37 I=1,NIND
13700 37 T(I)=B(I)/T(I)
'3800 WRITE(LUN2,41)
ti900 41 FORMAT(25H STD DEVS OF REG COEFS...)
14000 WRITE(LUN2,20)(T(I),I=1,NIND)
L4 100 WRITE(LUN2,42)ANS(1)

200 42 FORMAT(12H INTERCEPT =,F10.4)
4300 WRITE(LUN2,47)ANS(3)
4400 47 FORMAT(27H RESIDUAL STANDARD ERROR = ,F10.4)
3500 WRITE(LUN2,43)ANS(2)
!4600 43 FORMAT(42H SAMPLE MULTIPLE CORRELATION COEFFICIENT =,F10.4)
14700 WRITE(LUN2,45)ANS(II)
a800 45 FORMAT(38H SAMPLE COEFFICIENT OF DETERMINATION =,F10.4)
k900 WRITE(LUN2,48)ANS(4)

15000 48 FORMAT(50H SUM OF SQUARES ATTRIBUTABLE TO REGRESSION, SSAR
&5100 1F14.4)w 200 WRITE(LUN2,49)ANS(5)

5300 49 FORMAT(42H DEGREES OF FREEDOM ASSOCIATED WITH SSAR =,F10.4)
400 WRITE(LUN2,50)ANS(6)
500 50 FORMAT(22H MEAN SQUARE OF SSAR =,F14.4)

t5600 WRITE(LUN2,51)ANS(7)
15700 51 FORMAT(53H SUM OF SQUARES OF DEVIATIONS FROM REGRESSION, SSDR =,
"5800 1F14.4)
"590 WRITE(LUN2,52)ANS(8)
16000 52 FORMAT(42H DEGREES OF FREEDOM ASSOCIATED WITH SSDR =,F10.4)
%100 WRITE(LUN2,53)ANS(9). 200 53 FORMAT(22H MEAN SQUARE OF SSDR =,F14.4)
6300 WRITE(LUN2,54)ANS(10)

)6400 54 FORMAT(10H F-VALUE =,F14.4)
5 50 0 125 CONTINUE
600 100 CONTINUE

16700 END
kogram Unit Length=094E (2382) Bytes

Data Area Length=10D5 (4309) Bytes

Ibroutines Referenced:
WJO $13 $Ii

$INIT $W2
$R2 OPEN

CORRE $M9 $D9
.DER $Li $T

* ~ ~ 7* ~ , * *~*****~ ** ~ IN



9wV $CA $MB
M MULTR SDB

ariables:

PBAR 0001" STD 002D" RX 0059"

023D" B 0345" D 0371"

T 039D" LL 03C5" MM 03D9"

03ED" RY 0415" ISAVE 043D"

0453" ANS 0457" NAME 0483"

RXI 04D3" RXJ 0663" RPROD 07F3"

AMi 0983" LUNI 0993" LUN2 0995"

0997" NOBS 0A85" NVAR 0A87"

EP 0A89" NIND OA8B" I0 OAFB"
T OB3E" T:000000 0B40" NPRTM 0B94"

.PR 0B9A" IREG OBCF" N1 0C79"

0C7B" J OC7D" Ki 0C94"

K 0C96" T:010000 0C98" DD 0C9A"
0D36" T:020000 OD3A" JJ ODE7"

?o000001 ODE9"

be1 s:

hL 0006' 80L 0999" 90L 09D4"

0AOE" 209L 0A13" 201L OA2D"
L 0A93" 16L 0A99" 13L 0B03"

a9L OBOC" 215L 0B42" 221L OB6E"
222L 0B96" 29L B9C" 203L 0BDI"
tL01 OBDS" 223L OBE1l" 32L oclo"

OL 0C7 F" 34L 0C30" 28L OC5E"
130L 027A' 125L 093F' 126L 02D2'

e4L 0303' 213L OCA4" 211L 0381'

.2L 0390' 214L OCBE" 100L 093F1
N8L 03B5' 25L OCF4" 105L 042F'
,7L 04F5' 106L 0497' 24L OD3C"

3L 055D' 102L 05F6' 26L ODED"

1 1L 068F' 33L 0E35" 35L 0E45"
36L 0E70" 21L OE9C" 38L OEA5"
P'0L OEC5" 37L 07C7' 41L OED6"

'OL 0 EF4" 47L OFOB" 43L 0F31"
45L 0F66" 48L 0F97" 49L OFD4"

L 1009", 51L 102A" 52L 106A"
L 109 F" 54L loCo"

16800 SUBROUTINE DATA(M,D,NPRTM,NOPR)
f6900 DIMENSION D(1)

47000 LUN2=2
17100 LUN6=6
$200 READ(LUN6,10)(D(I),I=1,M)
7300 10 FORMAT(8F10.4)
17400 NOPR=NOPR+.

500 IF(NOPR.GT.NPRTM)GO TO 12
600 WRITE(LUN2,11)(D(I),I=1,M)

T700 12 CONTINUE
780 11 FORMAT(1X,8FI0.4)
f7900 RETURN
W8000 END

ogram Unit Length=00D5 (213) Bytes



Lta Area Length=0025 (37) Bytes

broutines Referenced:

$AT $R2
D $W2

riables:

0001" D 0003" NPRTM 0005"
LPR 0007" LUN2 0009" LUN6 OOOB"
I OOOD" T:000000 OOF" T:000002 0019"

be1 s:

P0L 0011" 12L OODO' ilL 001A"

i 100 SUBROUTINE ORDER(M,R,NDEP,K,ISAVE,RX,RY)
18200 DIMENSION R(1),ISAVE(1),RX(1),RY(1)
.300 C DOUBLE PRECISION RX

43400 MM=o 'N
18500 DO 130 J=1,K
;.600 L2=ISAVE(J)

700 IF(NDEP-L2)122,123,123
"800 122 L=NDEP+(L2*L2-L2)/2
] 900 GO TO 125

S000 123 L=L2+(NDEP*NDEP-NDEP)/2
il 00 125 RY(J)=R(L)
19200 DO 130 I=1,Kt 300 Ll=ISAVE(I)

400 IF(LI-L2)127,128,128
19500 127 L=LI+(L2*L2-L2)/2
,7600 GO TO 129

S700 128 L=L2+(L1*LI-LI)/2
1-800 129 MM=MM+I

900 130 RX(MM)=R(L)
000 ISAVE(K+1)=NDEP

F 100 RETURN
20200 END

'

rogram Unit Length=01AC (428) Bytes
Data Area Length=001D (29) Bytes

,.ubroutines Referenced:

.kAT $M9 $D9
Li $Ti

Variables:

0001" R 0003" NDEP 0005".

K 0007" ISAVE 0009" RX OOB"
O0OD" MM 000F" J 0011"
0013" T:000000 0015" L 0017"
0019" Li 001B"

bels:

130L 013D' 122L 004A' 123L 0072'

R2 5L 009B' 127L 0OFI' 128L 0115'

ZeN



I9L 0136'

0300 SUBROUTINE ARRAY(MODE,I,J,N,M,S,D)

400 DIMENSION S(1),D(1)
0500 NI=N-I
S600 IF(MODE-1)100,100,120
700 100 IJ=I*J+l
800 NM=N*J+I

20900 DO 110 K=1,J
000 NM=NM-NI
100 DO 110 L=I,I

21200 IJ=IJ-1
300 NM=NM-1
400 110 D(NM)=S(IJ)
500 GO TO 140
L600 120 IJ=0
700 NM=0
L800 DO 130 K=1,J

21900 DO 125 K=1,I
;v000 IJ=IJ+l
.100 NM=NM+1
22200 125 S(IJ)=D(NM)
a2300 130 NM=NM+NI

S400 140 RETURN
2500 END

,ogram Unit Length=0168 (360) Bytes
Lwhta Area Length=001B (27) Bytes

t broutines 
Referenced:

$AT $M9 $L1

Variables:

)DE 0001" I 0003" J 0005"
0007" M 0009" S OOB"

D OOOD" NI 000F" T:000000 0011"
0013" NM 0015" K 0017"
0019"

.bels:

It0L 003D' 120L 00E6' 1IOL 0093'

140L 0167' 130L 0148' 125L 010C'

9600 SUBROUTINE MULTR(N,K,XBAR,STD,D,RX,RY, ISAVE,B,SB,T,ANS)
22700 DIMENSION XBAR(1),STD(1),D(1),RX(1),RY(1),ISAVE(1),B(1),SB(1)
.2'800 DIMENSION T(1),ANS(1)
? 2900 C DOUBLE PRECISION RX
23000 MM=K+1
13100 DO 100 J=1,K
j3200 100 B(J)=0.0

73300 DO 110 J=1,K
;3400 L1=K*(J-1)
.-500 DO 110 I=1,K
* 600 L=LI+I
23700 110 B (J) =B (J) +RY (I)*RX (L)
800 M =0.0



1900 B00
24000 L1=ISAVE(MM)

S100 DO 120 I=1,K
200 RM=RM+B()* RY (I)

4300 L=ISAVE(I)
S400 B(I)=B(I)*STD(L1)/STD(L)
500 120 BO=BO+B(I)*XBAR(L)
600 BO=XBAR(Ll)-BO

24700 SSAR=RM*D(Ll)
M 800 SSDR=D(L1)-SSAR
W900 FN=N-K-1

25000 SY=SSDR/FN
S100 DO 130 J=1,K
!200 L1=K*(J-1)+J

25300 L=ISAVE(J)
315400 C 125 SB(J)=DSQRT(DABS((RX(Ll)/D(L))*SY))
~500 125 SB(J)=SQRT(ABS((RX(L1)/D(L))*SY))

t5600 130 T(J)=B(J)/SB(J)
25700 135 SY=SQRT(ABS(SY))
* 800 FK=K
%6900 SSARM=SSAR/FK
26000 SSDRM=SSDR/FN

100 F=SSARM/SSDRM
~200 ANS(11)=RMv

26300 122 RM=SQRT(ABS(RM))
p6400 ANS(1)=BQ
LA500 ANS (2) =BM
F600 ANS(3)=SY

26700 ANS(4)=SSARt800 ANS(5)=FK
R900 ANS(6)=SSARM
27000 ANS(7)=SSDR
~100 ANS(8)=FN

27300 ANS(10)=F

4 400 RETURN
500 END

ft'.

Program Unit Length=04B0 (1200) Bytes
r ta Area Length=0065 (101) Bytes

Subroutines Referenced:

_pTABS $AT
:.L2R $T1 $M9

SB$AB $DB

:HSB$ CA

variables:

0001", K 0003" XBAR 0005"

STD 0007" D 0009", RX QOOB"
S OQOD" ISAVE OQOF" B 0011",

0013" T 0015" ANS 0017"1
0019" J 001B"l T:000000 001D"

T.1 001F" I 0021"1 L 00 23"
Z;:OlOOOO 0025"1 RN 0027"1 BO 002B"
e.:020000 002F"I T:030000 0031" SSAR 0033"
SSDR 0037" FN 003B" SY 003F"

*4:000001 0043" T:010001 0047"1 FK 004B"



I ARM 004F" SSDRM 0053" F 0057"1
T:040000 005B" T:050000 005D" T:060000 005F"

070000 0061"1 T:080000 0063"

a be is:

R OL 0020' 110L 007A' 120L 0194'
0L 02F31 125L 0290' 135L 0343'

122L 03B81

9600 SUBROUTINE MINV(A,N,DD,L,4)
27700 DIMENSION A(1),L(1),M(1)

If80 C DOUBLE PRECISION A,D,BIGAHOLD
,,;-'9 o oD=1.0

A~b00 NK=-N
?,8100 DO 80 K=1,N
r-200 NK=NK+N
ib3300 L(K)=K :;
28400 M(K)=K
.q500 KK=NK+K
~6 00 BIGA=A(1KK)

28700 DO 20 J=K,N
.-4t800 IZ=N*(J-1)

S900 DO 20 I=K,N
A000 IJ=IZ+1
S100 C 10 IF(DABS(BIGA)-DABS(A(IJ)))15,20,20
200 10 IF(ABS(BIGA)-ABS(A(IJ)))15,20,20

9300 15 ABIGA=A(IJ)
29400 L(K)=I
'500 M(K)=Jg 600 20 CONTINUE

29700 J=L(K)
U800 IF(J-K)35,35,25

,V900 25 KI=K-N
10000 DO 30 I=1,N

S100 KI=KI+N
0200 HOLD=-A(KI)

A303 JI=KI-K+J
30400 A(KI)=A(JI)
Z)500 30 A(JI)=HOLD
%p600 35 I=M(K)
30700 IF(I-K)45,45,38
2.800 38 JP=N*(I-1)
-")900 DO 40 J=1,N
31000o JK=NK+J K

31100 JI=JP+J
-',200 HOLD=-A(JK)
a300 A(JK)=A(JI)
31400 40 A(JI)=HOLD
.*500 45 IF(BIGA)48,46,48
.A-600 46 D=0.0
31700 GO TO 150
?.1800 48 DO 55 I=1,N

S900 IF(I-K)50,55,50
9000 50 IK=NK+I
S100 A(IK)=A(IK)/(-BIGA)
200 55 CONTINUE
300 DO 65 I=1,N

32400 IK=NK+I
S500 HOLD=A(IK)



51600 IJ=I-N
32700 DO 65 J=I,N

800 IJ=IJ+N
900 IF(I-K)60,65,60
000 60 IF(J-K)62,65,62
100 62 KJ=IJ-I+K
200 A(IJ)=HOLD*A(KJ)+A(IJ)
300 65 CONTINUE

33400 KJ=K-NI 500 DO 75 J=1,N
600 KJ=KJ+N

33700 IF(J-K)70,75,70
800 70 A(KJ)=A(KJ)/BIGA
900 75 CONTINUE

1000 D=D*BIGA
100 A(KK)=1.0/BIGA
200 80 CONTINUE
300 K=N

34400 100 K=(K-1)
1#500 IF(K)150,150,105
,600 105 I=L(K)
34700 IF(I-K)120,120,108

800 108 JQ=N*(K-1)
*J900 JR=N*(I-l)
h5000 DO 110 J=1,N
35100 JK=JQ+J
!*200 HOLD=A(JK)
*300 JI=JR+J

35400 A(JK)=-A(JI)
;500 110 A(IJ)=HOLD

5600 120 J=M(K)
35700 IF(J-K)100,100,125
?7-800 125 KI=K-N
-5900 DO 130 I=I,N
6000 KI=KI+N
;100 HOLD=A(KI)
200 JI=KI-K+J
i300 A(KI)=-A(JI)

36400 130 A(JI)=HOLD
500 GO TO 100

@6600 150 CONTINUE
36700 DD=D
-800 RETURN
?900 END

Program Unit Length=06C3 (1731) Bytes
ta Area Length=0047 (71) Bytes

Subroutines Referenced:

~BS$AT $ Li
$T1 $M9 $SB
B$DB $MB

Variables:

0001" N 0003" DD 0005".
L 0007" M 0009" D OOB"

O. OOF" K 0011' KK 0013"

N.V



IGA 0015" T:000000 0019" T:010000 001B"
T:020000 001D" J 001F" IZ 0021"

0023" IJ 0025" T:000001 0027"

010001 002B" ABIGA 002F" KI 0033"
HOLD 0035" JI 0039" JP 003B"

003D" IK 003F" KJ 0041"
0043" JR 0045"

Labels:

&L 04EBI 20L 012D' 10L 00B41
15L 00E61 35L 021CI 25L 017F'

L 01EB' 45L 02D9' 38L 0246'
L 02A81 48L 02F1 46L 02E2'

150L 06AE' 55L 033B' 50L 0310'
ESL 0418' 60L 03B61 62L 03CFI

04A21 70L 0482' 100L 0509'
S5L 051B- 120L 05E4 108L 0545'

IOL 05B3' 125L 060E' 130L 067A'

.-7 00 SUBROUTINE CORRE(NM, IO,X,XBAR,STD,RX,R,B,D,T,NPRTM,NOPR)
37100 DIMENSION X(1),XBAR(1),STD(1),RX(1),R(1),B(1),D(1),T(1)
> 7200 C DOUBLE PRECISION RX. 300 DO 100 J=1,M

400 B(J)=0.0
.7500 100 T(J)=0.0
% 600 K=(M*M+M)/2
i'700 DO 102 I=1,K
37800 102 R(I)=0.0
K900 FN=N

000 L=0
38100 IF(IO)105,127,105
&9200 105 DO 108 J=1,M
eJ300 DO 107 I=1,N
38400 L=L+I
IV500 107 T(J)=T(J) +X(L)
!! 600 XBAR(J)=T(J)
3700 108 T(J)=T(J)/FN
38800 DO 115 I=1,N
P900 JK=0
i000 L=I-N
39100 DO 110 J=1,M
iO200 L=L+N

300 D(J)=X(L)-T(J)
39400 110 B(J)=B(J)+D(J)
3.9500 DO 115 J=1,M
K, V600 DO 115 K=1,J
Y§700 JK=JK+I
39800 115 R(JK)=R(JK)+D(J)*D(K)
"~go "0GO TO 205
P.)"000 127 IF(N-M)130,130,135

40100 130 KK=N
.'0200 GO TO 137

300 135 KK=M
0400 137 DO 140 I=1,KK

A0500 CALL DATA (M,D,NPRTt4,NOPR)

:600 DO 140 J=1,M
..-0700 T(J)=T(J)+D(J)
40800 L=L+I
J900 140 RX(L)=D(J)

|- \' y. OA



100FKK=KKJ=,
41100 ~ DO 150 =,*200 XBAR(J)=T(J)

300 150 T(J)=T(J)/FKK
400 L=0
S500 DO 180 I=1,K(
600 JK=0
700 DO 170 J=1,M

41800 L=L+1
vk900 170 D(J)=RX(L)-T(J)
4000 DO 180 J=1,M
42100 B(J)=B(J)+D(J)

S200 DO 180 K=1,J
300 JK=JK+1

4400 180 R(JK)=R(JK)+D(J)*D(K)
42500 IF(N-KK)205,205,185
; 600 185 KK=N-KK
27 00 DO 200 I=1,KK
42800 JK0O
)900 CALL DATA (M,D,NPRTM,NOPR)

I"3000 DO 190 J=1,M
43100 XBAR(J)=XBAR(J)+D(J)
:a200 D(J)=D(J)-T(J)
&2300 190 B(J)=B(J)+D(J)
9400 DO 200 J=1,M

p 500 DO 200 K=1,J
V-3600 JK=JK+1
'3 7 00 200 R(JK)=R(JK)+D(J)*D(K)
43800 205 JK=0

S900 DO 210 J=1,M
5000 XBAR(J)=XBAR(J)/FN
44100 DO 210 K-1,J

~I200 JK=JK+1
A300 210 R(JK)=R(JK)-B(J)*B(K)/FN
i2400 JK=0

4 4500 DO 220 J=1,M
600 JK=JK+J

"M700 220 STD(J)=SQRT(ABS(R(JK)))
44800 DO 230 J=1,M K

Z4900DO 230 K=J,M
. oooJK=J+(K*K-K)/2

45100 L=M*(J-1)+K
t1-6200 RX(L)=R(JK)
~3 0 0 L=M*(K-1)+J

4*5400 RX(L)=R(JK)
,J5500 222 R ()0 K)2522,

IF00 22 (STD)*SDK))222,2
$5700 GO TO 230
45800 225 R(JK)=R(JK)/(STD(J)*STD(K))
1 5900 230 CONTINUE
t;i000 FN=SQRT(FN-1.0)
46100 DO 240 J=1,M
w"P6200 240 STD(J)=STD(J)/FN

300 L-
400 DO 250 I=1,M

16500 L=L+M+l

1 600 250 B(I)=RX(L)
1s,700 RETURN
46800 END

'l oi e



1 ogram Unit Length0OA03 (2563) Bytes

Data Area Length=0043 (67) Bytes

01broutines Referenced:

SQRT ABS $AT
$T1 $M9
$CA $AB

$DB $SB $NB
EMB DATA

Variables:

IF. 0001" M 0003" IO 0005"
0007" XBAR 0009" STD OOOB"
OOD" R OOF" B 0011"
0013" T 0015" NPRTM 0017"

KPR 0019" J 001B" T:000000 001D"
K 001F" I 0021" FN 0023"

0027" T:010000 0029" JK 002B"
-:020000 002D" KK 002F" FKK 0035"
T:030000 003D" T:000001 003F"

Ibels:

100L 0032' 102L 0088' 105L 00DB'
,'7L 02CF' 108L 0155' 107L OOEE'
i5L 024F' 1IOL 01FDI 205L 06C41
130L 02F2' 135L 02FF' 137L 0309'
c0L 0360' 150L 03E3 180L 04C71
WOL 0436' 185L 055F' 200L 064B'
190L 05F9' 210L 06FDI 220L 0786'
230L 0918' 225L 08C71 222L 08A71

.40 L 0964' 250L 09BEI

i.1.

- . . . . *5. . . . . . ..4." .



RTRAN-80 Ver. 3.4 Copyright 1978, 79, 80 (C) By Microsoft -- Bytes: 22872
eated: 26-Nov-80
100 C PROGRAM ITEREG
200 C ESTIMATES REGRESSION COEFFTS BY AN ITERATIVE "WALD/BARTLETT"
300 C METHOD.
400 C INPUT DATA READ FROM FILE.
500 DIMENSION Y(100),XX(100,11),X(100),XORD(100),INDX(100)
600 DIMENSION IRANK(100),XBAR(11),IIND(10),IX(100,10),COEF(11)

00700 DIMENSION RIQ(11),RMED(11)
0800 DOUBLE PRECISION FNAMI(2)

)900 DATA LUNI,LUN2,LLUN6/1,2,6/
01000 C LUN1:TERMINAL; LUN2:PRINTER; LUN6:DATA FILE FOR OUTPUT
U.100 WRITE(LUN2,80)

200 80 FORMAT(15HOPROGRAM ITEREG,/
1300 157H ESTIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD)
,1400 WRITE(LUN1,90) 4
500 90 FORMAT(53H ENTER FILE NAME, 1-16 ALPHA CHARS, LAST CHAR BLANK:

k600 READ(LUN1,95)FNAM1
01700 95 FORMAT(2A8)
A-800 CALL OPEN(LUN6,FNAM1,80)
.900 WRITE(LUN2,209)FNAMI
02000 209 FORMAT(17HODATA FILE NAME: ,2A8)
'100 WRITE(LUN1,201)
200 201 FORMAT(46H ENTER NO OF OBS, NO OF VARS, INDEX OF DEP VAR/

"300 133H NO OF INDEP VARS IN REGRESSION: )
%2400 READ(LUNI,18)NOBS,NVAR,IDEP,NIND
k'7?500 18 FORMATJ16I5)
v,2600 WRITE(LUN2,16)

02700 16 FORMAT(40HONO OF OBS, NO OF VARS, INDEX OF DEP VAR/
!800 149H IN REGRESSION, NO OF INDEP VARS IN REGRESSION...)

k900 IO=0
03000 WRITE(LUN2,13)NOBS,NVAR,IDEP,NIND

2.3100 13 FORMAT(iX,8Ii0)
, ,P200 WRITE(LUN1,19)
b-3300 19 FORMAT(44H ENTER INDICES OF INDEP VARS, IN ASC ORDER: /)
W400 READ(LUN1,18)(IIND(I),I=1,NIND)

500 WRITE(LUN2,215)
13600 215 FORMAT(39H INDICES OF INDEP VARS IN REGRESSION...)
03700 WRITE(LUN2,13) (IIND(I),I=1,NIND)
'44800 WRITE(LUN1,221)
' 900 221 FORMAT(33H ENTER MAX NO OF OBSNS TO PRINT:
04000 READ(LUN1,222)NPRTM
r4100 222 FORMAT(I4)
N200 NPRTM=MINO (NPRTM,NOBS)
A4300 NOPR=0
Ok4400 WRITE(LUN1,230)
10 500 230 FORMAT(49H INPUT 0 TO USE WALD EST, 1 TO USE BARTLETT EST: )
r4600 READ(LUN1,231)IWB
04700 231 FORMAT(I1)
S'4800 IF(IWB.GT.)GO TO 232
,900 WRITE(LUN2,233)
05000 233 FORMAT(56HOREGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

100 1)
5200 GO TO 234

E300 232 CONTINUE
n5400 WRITE(LUN2,235)
,t500 235 FORMAT(60HOREGRESSION METHOD USED AT EACH ITERATION: BARTLETT'S ME
;!5600 iTHOD)
05700 234 CONTINUE

800 WRITE(LUN,1,1239) -



1900 1239 FORMAT(36H ENTER NO OF ITERATIONS TO PERFORM: )
06000 READ(LUN1,1250)NITERX 100 1250 FORMAT(13)

9200 WRITE (LUN1, 1264)
06300 1264 FORMAT(44H PRINT RESULTS EVERY N ITERATIONS; INPUT N:

;400 READ(LUN1,1250)NPRT
500 KPRT=0
600 WRITE(LUN2,1262)NPRT

06700 1262 FORMAT(19HOPRINT AFTER EVERY ,13,11H ITERATIONS)
800 WRITE(LUN2,12)
;900 12 FORMAT(8HODATA...)

07000 WRITE(LUN2,223)NPRTM
r100 223 FORMAT(8H (FIRST ,14,7H OBSNS))
9200 C READ DATA

07300 NINDP=NIND+I
q7400 DO 1110 J=1,NOBS
dt500 READ(LUN6,10)(X(I),I=1,NVAR)
9W1600 10 FORMAT(8F10.4)
07700 NOPR=NOPR+1
"800 IF(NOPR.GT.NPRTM)GO TO 224

900 WRITE(LUN2,11)(X(I),I=I,NVAR)
08000 224 CONTINUE100 11 FORMAT(IX,8FI0.4)

200 Y (J)=X (IDEP)
N300 DO 1112 I=1,NIND

58400 INDEX=IIND(I)
0,500 XX(J,I)=X(INDEX)
63600 1112 CONTINUE
08700 XX(J,NINDP)=X(IDEP)

800 1110 CONTINUE
9900 C COMPUTE MEANS

09000 DO 1120 I=1,NINDP
S100 COEF(I)=0.0
200 XBAR(I)=0.0

9300 DO 1130 J=1,NOBS
S400 XBAR(I)=XBAR(I)+XX(J,I)
500 1130 CONTINUE

6600 XBAR(I)=XBAR(I)/NOBS
09700 1120 CONTINUE.I800 WRITE(LUN2,32)

900 32 FORMAT(35HOMEANS FOR VARIABLES IN REGRESSION,/
10000 127H DEPENDENT VARIABLE LAST...)
4100 WRITE(LUN2,20) (XBAR(I) ,I=1,NINDP)
)200 20 FORMAT(1X,8F10.4)

A300 COEF (NI NDP) =XBAR (NI NDP)
1.0400 C ORDER THE X'S
9500 DO 1160 I=1,NIND
1 600 DO 1170 J=1,NOBS
10700 X(J)=XX(J,I)

800 1170 CONTINUE
-900 CALL RANK(X,NOBS,XORD,INDX,IRANK)
11000 DO 1180 J=1,NOBS

S100 XX(J,I)=XORD(J)
200 IX (J, I)=INDX (J)

k300 1180 CONTINUE
,4400 C DETERMINE MEDIAN, INTERQUARTILE RANGE
,51500 IQ1=.25*NOBS

600 IQM=.5*NOBS
11700 IQ2=.75*NOBS

o 800 RMED(I )=XORD(IQkl)

........... " ". :'f; ".'::".:' ; " '., , .,,, .,,"', V ); :" : , ." ' " ."; , ,;



.900 RIQ (I )=XORD(IQ2)-XORD(IQ1)
12000 1160 CONTINUE

S100 CALL RANK(Y,NOBS,XORD,INDX,IRANK)
200 RMED(NINDP)=XORD(IQM)
300 RIQ(NINDP)=XORD(IQ2)-XORD(IQI)

1 400 WRITE(LUN2,22)
500 22 FORMAT(11HOMEDIANS...)
600 WRITE(LUN2,20)(RMED(I),I=1,NINDP)

12700 WRITE(LUN2,21)
800 21 FORMAT(24HOINTERQUARTILE RANGES...)
900 WRITE(LUN2,20)(RIQ(I),I=I,NINDP)

13000 WRITE(LUN2,1235)
100 1235 FORMAT(38HOREGRESSION COEFFICIENTS, INTERCEPT...)
200 IF(NITER.LE.0)GO TO 126
300 125 CONTINUE
400 DO 1300 ITER=I,NITER
500 C COMPUTE REGRESSION COEFFT ADJUSTMENTS
600 DO 1200 I=1,NIND

13700 DO 1210 J=1,NOBS
.- 800 X(J)=XX(J,I)
t-3900 INDX(J)=IX(J,I)
14000 1210 CONTINUE
14100 IF(IWB.GT.0)GO TO 1211

S200 CALL WALD(Y,X,NOBS,INDX,A)
9300 GO TO 1212
4400 1211 CONTINUE
f.500 CALL BART(YXNOBSINDXA)
sA600 1212 CONTINUE
14700 C ADJUST REGRESSION COEFFT
ZM800 COEF(I)=COEF(I)+A

W 900 C ADJUST Y
15000 DO 1220 J=1,NOBS

i100 IY=IX(J,I)
" 200 Y(IY)=Y(IY)-A*XX(J,I)
£ 300 1220 CONTINUE

400 C ADJUST CONSTANT TERM
500 COEF(NINDP)=COEF(NINDP)-A*XBAR(I)

0600 1200 CONTINUE
15700 C PRINT RESULTS
r800 KPRT=KPRT+I
B900 IF(KPRT.LT.NPRT)GO TO 1270
16000 KPRT=0
'100 WRITE(LUN2,1230) (COEF(I),I=1,NINDP)

N6200  1230 FORMAT(lX,8F10.4)
16300 1270 CONTINUE
1.6400 1300 CONTINUE

S500 WRITE(LUN1,1240)
9600 1240 FORMAT(41H ENTER NO OF ADDL ITERATIONS TO PERFORM: )
16700 READ(LUN1,1250)NITER
-i"800 IF(NITER.LE.0)GO TO 126

900 WRITE(LUN1,1264)
17000 READ(LUN1,1250)NPRT

100 WRITE(LUN2,1262)NPRT
200 GO TO 125
300 126 CONTINUE

A7400 C ESTIMATE RESIDUAL VARIANCE ',,-

-7500 C PUT THE X'S BACK IN ORIGINAL ORDER
i.7600 DO 1500 I=1,NIND
17700 DO 1510 J=1,NOBS Z'

V800 X(J)=XX(JI)



I 900 1510 CONTINUE
18000 DO 1520 J=1,NOBS

S100 JORIG=IX(J,I)
200 XX(JORIG,I)=X(J)
300 1520 CONTINUE

1 400 1500 CONTINUE
500 YINT=COEF (NINDP)
600 RVO0.0

18700 DO 1400 J=1,NOBS
af 800 YEST=YINT
1900 DO 1410 I=1,NIND
19000 YEST=YEST+COEF(I )*XX(J, I)

S100 1410 CONTINUE
200 RV=RV+(XX(J,NINDP)-YEST)**2

9300 1400 CONTINUE
S400 RV=RV/ (NOBS -NI ND-i)
500 RSD=SQRT(RV)

1600 WRITE(LUN2,1420)RV,RSD
19700 1420 FORMAT(21HORESIDUAL VARIANCE = Fl4.4/
"wa800 127H RESIDUAL STANDARD ERROR = F14.4)

900 C COMPUTE COEFFT OF DETERMINATION
20000 VY=0.0

S100 DO 1430 J=1,NOBS
200 VY=VY+XX(J,NINDP)**2

1300 1430 CONTINUE
20400 VY=(VY-NOBS*XBAR(NINDP)**2)/(NOBS-1)

~500 CD=(VY-RV)/VY
A600 WRITE(LUN2,1435)CD
20700 1435 FORMAT(32H COEFFICIENT OF DETERMINATION = FlO.4)

I 800 END

Program Unit Length=OCOE (3086) Bytes
Uata Area Length=2555 (9557) Bytes

ktbroutines Referenced:

~NO $13 $11
R t0 SQRT $INIT
$W2 $ND $R2
SPE N $L1 $T1

W9$AB $DA
RANK $MA $ CH

B $NB WALD
~RT $MB $EA
bB $EX

'6 riables:

Y 0001", XX 0191", X 12C1"
1451 INDX iSEl" IRANK 16A911

Q~BAR 177141 IIND 179D" IX 17B11"
COEF lF8161 RIQ iFAD" RMED 1FD9"1
( AMi 2005"1 LUN1 2015"1 LUN2 20171

N6 2019" NOBS 211EII NVAR 2120"
EP 2122"1 NIND 2124"1 10 2194"1
S21D7" T:O00000 21D9"@ NPRTM 222D"
PR 2233" IWB 226B" T:000002 2271"1
TER 2319" NPRT 2350" KPRT 2352"1

NINDP 23A3" J 23A5" INDEX 23BA"l
:010000 23BC"' T:020000 23BE" T:030000 2418" a



I1 241A" IQM 241C" IQ2 241E"
ITER 247E" A 2480" IY 2490"
IRIG 24CB" YINT 24CD" RV 24D1"

ST 24D5" RSD 24D9" VY 2522"
2526"

ibels:
$$L 0006' 80L 201B" 90L 206D"IL 20A7" 209L 20AC" 201L 20C6"
IL 212C" 16L 2132" 13L 219C"
19L 21A5" 215L 21DB" 221L 2207"

2L 222F" 230L 2235" 231L 226D"
21 01BI' 233L 2272" 234L 01BD'
5L 22AF" 1239L 22F0" 1250L 231B"
.64L 231F" 1262L 2354" 12L 237E"
3L 238A" 111OL 0389' 10L 23A7"
4L 02E6' IlL 23AF" 1112L 0349'

1120L 0437' 1130L 040C' 32L 23C0"
Z L 2407" 1160L 05FA' 1170L 04E3'
Z80L 0562' 22L 2426" 21L 2436"
1235L 2453" 126L 096B' 125L 0714'
i00L 08E7' 1200L 0877' 1210L 077D'
11L 07B0' 1212L 07BC' 1220L 083A'

1-70L 08E7' 1230L 2492" 1240L 249D"
J O0L 0A16' 1510L 09A2' 1520L 0A06'
400L OADE' 1410L 0A98' 1420L 24DD"

i,430L OB7C' 1435L 252A"

900 SUBROUTINE RANK(X,N,XORD,INDX,IRANK)
000 C THIS SUBROUTINE DETERMINES THE RANKS OF THE COMPONENTS OF THE

21100 C VECTOR X, AND ALSO ORDERS THESE COMPONENTS (ASCENDING ORDER).
200 C INPUT: VECTOR X(N), DIMENSION N

4300 C OUTPUT: RANKS OF ORIGINAL X'S ARE STORED IN VECTOR IRANK
2-400 C ORDERED X'S ARE STORED IN XORD
& 500 C ORIGINAL INDICES OF ORDERED X'S ARE STORED IN INDX

600 DIMENSION X(1),XORD(1),IRANK(1),INDX(1)
11700 DO 50 I=1,N
21800 INDX(I)=I

o900 50 XORD(I)=X(I)
it'2000 NM1=N-1
22100 DO 100 I=1,NM1
N'Q200 IPI=I+I
2300 DO 200 J=IP1,N
22400 IF(XORD(I).LE.XORD(J))GO TO 200
, 500 TEMP=XORD( I)

600 XORD(I)=XORD(J)
T2700 XORD(J)=TEMP
22800 ITEMP=INDX (I)
2900 INDX(I)=INDX(J)
A3000 INDX(J)=ITFMP
23100 200 CONTINUE

200 100 CONTINUE
300 DO 300 I=1,N
400 II=INDX(I)

p3500 IRANK(II)=I
'03600 300 CONTINUE
'-3700 RETURN
23800 END

-% A - * , * .. %* l .'.L.



--ogram Unit Length=01AE (430) Bytes
ata Area Length=0028 (40) Bytes

broutines Referenced:

T$ Li $Tl

Variables:

1 0001" N 0003" XORD 0005"
INDX 0007" IRANK 0009" I OOB"

Q000000 OOD" T:010000 OOOF" NMI 0011"
0013" J 0015" T;000002 0017"

. lP 0018" ITEMP 001C" T:020000 001E"

.030000 0020" T:040000 0022" T:050000 0024"
Y4 0026"

Labels:

L 002D' 100L 015C' 200L 0148'
300L 0199'

S900 SUBROUTINE WALD(Y,X,N,INDX,A)
k000 C THIS SUBROUTINE COMPUTES THE WALD ESTIMATE A IN THE REGRESSION

100 C EQUATION Y=A*X.
1'3200 C INPUT VECTOR Y(DEP VAR), VECTOR X(INDEP VAR), VECTOR INDX
1300 C (ORIGINAL INDICES OF THE ORDERED X'S, BEFORE ORDERING), DIMENSION N
24400 C OUTPUT REGRESSION COEFFT A

500 C X-DATA ARE ORDERED (ASCENDING ORDER)
600 C INDX CONTAINS INDICES OF Y CORRESP TO EACH X

24700 DIMENSION Y(1),X(1),INDX(1)
?800 C XBARI = MEAN OF X'S BELOW MEDIAN
Z900 C XBAR2 = MEAN OF X'S ABOVE MEDIAN
2$000 XBAR1=0.0

100 YBAR1=0.0
200 XBAR2=0.0

it300 YBAR2=0.0
25400 N2=N/2
P500 DO 100 I=1,N2
,600 XBAR1=XBAR1+X(I)
25700 IY=INDX(I)

800 YBAR1=YBAR1+Y(IY)
'900 100 CONTINUE
Y0000 C LEAVE OUT MIDDLE OBSN IF N IS ODD
26100 N3=N-N2+1
1&200 DO 200 I=N3,N
W300 XBAR2=XBAR2+X (I)

26400 IY=INDX(I)
2500 YBAR2=YBAR2+Y(IY)
%6600 200 CONTINUE
26700 A=(YBAR2-YBAR1)/(XBAR2-XBAR1)I 800 RETURN

900 END

Program Unit Length=0157 (343) Byte.3
4"ta Area Length=0027 (39) Bytes

Subroutines Referenced:

L



T$ Li $Tl
$D9 $AB $SB

t ri ables:

I00011" X 0003" N 0005"
tDX 0007" A 0009", XBAR1 0008"

YBAR1 OOOF" XBAR2 0013"1 YBAR2 0017"1
NO 001B" I 001D" ly 001F"

0021" T:000001 0023"

Sbels:

OL 009F' 200L 0114'

.06.-000 SUBROUTINE BART(Y,X,N,INDX,A)
-100 C THIS SUBROUTINE COMPUTES THE BARTLETT ESTIMATE A IN THE REGRESSION
27200 C EQUATION Y=A*X.
F..'300 C THE X-DATA ARE ORDERED (ASCENDING ORDER)

ZJ400 CINDX CONTAINS INDICES OF Y CORRESPONDING TO EACH X
27500 C INPUT VECTOR Y(DEP VAR), VECTOR X(INDEP VAR), DIMENSION N
'1-7600 C OUTPUT REGRESSION COEFFT A
L'..700 DIMENSION Y(1),X(l),INDX(l)
F800 N3=N/3
27900 XBAR1=0.0

000 YBAR1=0. 0
%;8100XBAR2=0.0

28200 YBAR2=0.0

9 W 300 DO 100 I=1,N3
400 XBAR1=XBAR1+X(I)

28500 IY=INDX(I)
2360 YBAR1=YBAR1+Y(IY)

~800 100 CONTINUE
-800 N2=N-N3+1

90 DO 200 I=N2,N
9000 XBAR2=XBAR2+X(l)
L-100 IY=INDX(I)
29200 YBAR2=YBAR2-Y(IY)
F-9300 200 CONTINUE
,400 A=(YBAR2-YBAR1 )/(XBAR2-XBAR1)
29500 RETURN
~6 00 END

'Program Unit Length=0157 (343) Bytes

p-ata Area Length=0027 (39) Bytes

41ibroutines Referenced:

Z AT $D9 $L1
.Zl$AB $SB

$DB

la riables:

X. 0001"1 X 0003"1 N 0005"
jNX 0007"1 A 0009", N3 00GB"

GOO" BAR1 OD 0011", XBAR2 0015"
YBAR2 0019"1 1 001D" IY 0011?"

m2 0021"1 T:000001 0023"1



Labels:

IOL 009F' 200L 0114'

i

I

-.

m 4

a
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k OGRAM SIMULA
GENERATES MULTIVARIABLE UNIVARIATE 

SAMPLE

LE NAME: DFIL1

DIMENSION (M)= 1

&EFFICIENT MATRIX (C)...

COEFFT MATRIX IS IDENTITY MATRIX

GMA (SCALING PARAMETER FOR INDEP VARIABLES) 
= 10.0000

a0 (INTERCEPT) = 1.0000

Z ARAMETER VECTOR (B)...

1.0000

kIG (MODEL ERROR STD DEV) = 1.0000

PP OF OBSNS = 100
%IP 0 RANDOM NOS PRIOR TO SIMULATION

VARIANCE MATRIX OF X, Y...

.: 100.0000 100.0000
lC 100.0000 101.0000

0EFFICIENT OF DETERMINATION = .9901

)RRELATION MATRIX OF X, Y...

1 1.0000 .9950
15. .9950 1.0000

OBSERVATIONS...
SPENDENT VARIABLE LAST

tIRST 3 OBSNS PRINTED) 
V

OBSN NO 1:
i -18.3276 -18.8362
;BSN NO 2:

-13.7183 -13.1409
.BSN NO 3:

"r 13.3911 12.3044

,-,

.
• 

;.. ,



I
I OGRAM MREG

LTIPLE LINEAR REGRESSION ANALYSIS

TA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 2 2 1
%DICES OF INDEP VARS IN REGRESSION...

1

STA...
(FIRST 3 OBSNS)
*-. -18.3276 -18.8362
"J-13.7183 -13.1409
'" 13.3911 12.3044

WANS FOR ALL VARIABLES...
'S 1.2364 2.2018

prANDARD DEVIATIONS FOR ALL VARIABLES...
9.4218 9.5641

ORRELATION MATRIX...
1.0000
.9932 1.0000

1 TERMINANT = .1000E+01

INVERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSION...
1.0000

PRODUCT OF MATRIX AND INVERSE...
mjOULD BE IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS

VE RUINED SOLUTION... DISREGARD REST OF ANALYSIS.
1.0000

,NVERSE OF THE PART OF THE CROSS PROD MATRIX USED IN REGRESSION...
.1138E-03

DEX OF DEP VAR IN REGRESSION = 2
§.PDICES OF INDEP VARS IN REGRESSION...

1

,UGRESSION COEFFICIENTS...
~1.0082
"-VALUES...

84.2544
;,,D DEVS OF REG COEFS...

.0120 N
INTERCEPT = .9553
(ESIDUAL STANDARD ERROR = 1.1217
EAMPLE MULTIPLE CORRELATION COEFFICIENT = .9932
TAMPLE COEFFICIENT OF DETERMINATION = .9864
,UM OF SQUARES ATTRIBUTABLE TO REGRESSION, SSAR 8932.3516
:0EGREES OF FREEDOM ASSOCIATED WITH SSAR = 1.0000
'IEAN SQUARE OF SSAR = 8932.3516
SUM OF SQUARES OF DEVIATIONS FROM REGRESSION, SSDR 123.3125

@EGREES OF FREE;DOM ASSOCIATED WITH SSDR =98.0000



L AN SQUARE OF SSDR = 1.2583

F-VALUE = 7098.7979

I
I

4,

'4
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OGRAM ITEREG
TIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

TA FILE NAME: DFILI

NO OF OBS, NO OF VARS, INDEX OF DEP VAR
REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 2 2
DICES OF INDEP VARS IN REGRESSION...1

EGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

-INT AFTER EVERY 1 ITERATIONS

DATA...
'IRST 3 OBSNS)
. -18.3276 -18.8362
-13.7183 -13.1409

, 13.3911 12.3044

6ANG FOR VARIABLES IN REGRESSION,
DEPENDENT VARIABLE LAST...
• : 1.2364 2.2018

MEDIANS...
.9692 1.7888

CTERQUARTILE RANGES...
12.9687 13.4609

:.-EGRESSION COEFFICIENTS, INTERCEPT...
1.0062 .9577

* 1.0062 .9577

.:1.0062 .9577 :~
1.0062 .9577
1.0062 .9577

_ 1.0062 .9577
1.0062 .9577
1.0062 .9577

.1.0062 .9577
1.0062 .9577 L. ,J

.-ESIDUAL VARIANCE = 1.2587
"ZESIDUAL STANDARD ERROR = 1.1219
COEFFICIENT OF DETEiRIINiATION .9862



I

OOGRAM ITEREG
hTIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

I TA FILE NAME: DFILI

NO OF OBS, NO OF VARS, INDEX OF DEP VAR
REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 2 2 1
INDICES OF INDEP VARS IN REGRESSION...1

tGRESSION METHOD USED AT EACH ITERATION: BARTLETT'S METHOD

iINT AFTER EVERY 1 ITERATIONS

DATA...
r.IRST 3 OBSNS)

-18.3276 -18.8362
-13.7183 -13.1409

13.3911 12.3044
.ANS FOR VARIABLES IN REGRESSION,

DEPENDENT VARIABLE LAST...
il 1.2364 2.2018

MEDIANS ...
i .9692 1.7888

INTERQUARTILE RANGES...
12.9687 13.4609

T'-GRESSION COEFFICIENTS, INTERCEPT...

1.0103 .9527
m 1.0103 .9527

1.0103 .9527
1.0103 .9527
1.0103 .9527

' 1.0103 .9527
1.0103 .9527
1.0103 .9527
1.0103 .9527
1.0103 .9527

1SIDUAL VARIANCE 1.2587
iSIDUAL STANDARD ERROR = 1.1219
COEFFICIENT OF DLTERAINAi.ON = .9862

i%

| V.



PROGRAM SIMULAfCNERATES MULTIVARIABLE UNIVARIATE SAMPLE
FILE NAME: DFILI

IMENSION (M) = 1

COEFFICIENT MATRIX (C)...

I CQEFFT MATRIX IS IDENTITY MATRIX

SIGMA (SCALING PARAMETER FOR INDEP VARIABLES) = 2.0000

t (INTERCEPT) = 1.0000

PARAMETER VECTOR (B)...
1 1.0000

SIG (MODEL ERROR STD DEV) = 1.0000

t,) OF OBSNS = 100
SKIP 0 RANDOM NOS PRIOR TO SIMULATION

iRIANCE MATRIX OF X, Y...
4.0000 4.0000
4.0000 5.0000

OEFFICIENT OF DETERMINATION = .8000

RRELATION MATRIX OF X, Y...
1.0000 .8944
.8944 1.0000

3SERVATIONS...
DEPENDENT VARIABLE LAST

IRST 3 OBSNS PRINTED)
WSN NO 1:
" -3.6655 -4.1741
OBSN NO 2:

" - 12.7437 -2.1663'113SN NO 3 :

2.6782 1.5916

i



E OGRAM MREG
LTIPLE LINEAR REGRESSION ANALYSIS

TA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR
REGRESSION, NO OF INDEP VARS IN REGRESSION...100 2 2 1

DICES OF INDEP VARS IN REGRESSION...
1

gTA...

(FIRST 3 OBSNS)
-3.6655 -4.1741
-2.7437 -2.1663
2.6782 1.5916

1"ANS FOR ALL VARIABLES...
.2473 1.2127

".ANDARD DEVIATIONS FOR ALL VARIABLES...

1.8844 2.2566

CORRELATION MATRIX...
o 10000

.8691 1.0000

;TERMINANT = .1000E+01

INVERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSION...

1.0000

PRODUCT OF MATRIX AND INVERSE...
OULD BE IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS

IfVE RUINED SOLUTION... DISREGARD REST OF ANALYSIS.
1.0000

<:4VERSE OF THE PART OF THE CROSS PROD MATRIX USED IN REGRESSION...
.2845E-02

DEX OF DEP VAR IN REGRESSION = 2
.%DICES OF INDEP VARS IN REGRESSION...

1

REGRESSION COEFFICIENTS...
1.0408

T VALUES...
17.3963

D DEVS OF REG COEFS...
0598

INTERCEPT = .9553
SIDUAL STANDARD ERROR 1.1217
MPLE MULTIPLE CORRELATION COEFFICIENT = .8691

SAMPLE COEFFICIENT Or DETERMINATION :: .7554
qTUM OF SQUARES ATTRIDUTABLf, TO REGRESSION, SSAR 380.8064
iGREES OF FREEDOM ASSOCIATED WITH SSAR = 1.0000
,2AN SQUARE OF SSAR = 380.8064

SUM OF SQUARES OF DEVIATIONS FRON REC;-1RSSION, SSDR 123. 31.53
VGREES OF FREEDOM ASSOCIATED WITH S5,DR 98.0000



lIEAN SQUARE OF SSDR = 1.2583

F-VALUE = 302.6309U
I
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I
PROGRAM ITEREG

r TIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD
DATA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR
REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 2 2 1
DICES OF INDEP VARS IN REGRESSION...
it 1

K GRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

INT AFTER EVERY 1 ITERATIONS

,tFIRST 3 OBSNS)
-3.6655 -4.1741
-2.7437 -2.1663
2.6782 1.5916

,VANS FOR VARIABLES IN REGRESSION,
"PENDENT VARIABLE LAST...

.2473 1.2127

.1938 1.1462

nTERQUARTILE RANGES...
f 2.5937 3.2969

t2jGRESSION COEFFICIENTS, INTERCEPT...
~% 1.0310 .9577

1.0310 .9577
1.0310 .9577
1.0310 .9577
1.0310 .9577
1.0310 .9577
1.0310 .9577
1.0310 .9577
1.0310 .9577

q 1.0310 .9577

! 7SIDUAL VARIANCE 1.2587
RESIDUAL STANDARD ERROR = 1.1219
-EFFICIENT OF DETERMINATION = .7528

I
pi



PROGR" ITEREG
ISTIM!xAES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

ATA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR
REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 2 2 1
ffDICES OF INDEP VARS IN REGRESSION...

1--

E GRESSION METHOD USED AT EACH ITERATION: BARTLETT'S METHOD

INT AFTER EVERY 1 ITERATIONS

TA...
jMIRST 3 OBSNS)

-3.6655 -4.1741

S.73 -2.16632.6782 1.5916

MEANS FOR VARIABLES IN REGRESSION,
SPENDENT VARIABLE LAST...

.2473 1.2127

SDIANS...
.1938 1.1462

UTERQUARTILE RANGES...
1 2.5937 3.2969

PEGRESSION COEFFICIENTS, INTERCEPT...
1.0513 .9527
1.0513 .9527
1.0513 .9527

! 1.0513 .9527
: 1.0513 .9527

1.0513 .9527
' 1.0513 .9527

1.0513 .9527
1.0513 .9527
1.0513 .9527

iESIDUAL VARIANCE = 1.2587
AESIDUAL STANDARD ERROR = 1.1219

Q-EFFICIENT OF DETERMINATION = .7528

Al



U
PROGRAM SIMULA

NERATES MULTIVARIABLE UNIVARIATE SAMPLE

LE NAME: DFILI

IMENSION (M) = 1

COEFFICIENT MATRIX (C)...
I COEFFT MATRIX IS IDENTITY MATRIX

SIGMA (SCALING PARAMETER FOR INDEP VARIABLES) = 1.0000

(INTERCEPT) = 1.0000

PARAMETER VECTOR (B) ...
1 1.0000

SIG (MODEL ERROR STD DEV) - 1.0000

.) OF OBSNS = 100
SKIP 0 RANDOM NOS PRIOR TO SIMULATION

WRIANCE MATRIX OF X, Y...
1.0000 1.0000
1.0000 2.0000

' EFFICIENT OF DETERMINATION = .5000

IRRELATION MATRIX OF X, Y...
1.0000 .7071
.7071 1.0000

tE SERVATIONS...
EPENDENT VARIABLE LAST
IRST 3 OBSNS PRINTED)
SN NO 1:

F -1.8328 -2.3413
OBSN NO 2:
fN -1.3718 -. 7944
,SN NO 3:

1.3391 .2524

oz.



OGRAM MREG
LTIPLE LINEAR REGRESSION ANALYSIS

TA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR
REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 2 2 1

DICES OF INDEP VARS IN REGRESSION...
1

ITA...
(FIRST 3 OBSNS)
S-1.8328 -2.3413
-1.3718 -. 7944
1.3391 .2524

oANS FOR ALL VARIABLES...
.1236 1.0890

,TANDARD DEVIATIONS FOR ALL VARIABLES...
.9422 1.5113

QRRELATION MATRIX...
, 1.0000

.6743 1.0000

TERMINANT = .1000E+01

INVERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSION...
1.0000

PRODUCT OF MATRIX AND INVERSE...
jiOULD BE IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS
VE RUINED SOLUTION... DISREGARD REST OF ANALYSIS.

1.0000

VERSE OF THE PART OF THE CROSS PROD MATRIX USED IN REGRESSION...
, .1138E-01

VDEX OF DEP VAR IN REGRESSION 2
gDICES OF INDEP VARS IN REGRESSION...

1
5iPGRESSION COEFFICIENTS...S1.0816

9.0392
D DEVS OF REG COEFS...

.1197
INTERCEPT = .9553
WSIDUAL STANDARD ERROR 1.1217
WMPLE MULTIPLE CORRELATION COEFFICIENT = .6743
SAMPLE COEFFICIENT O.L DETERMINAI'ION = .4547
RM OF SQUARES ATIRIBTAB ].E TO REGRESSION, SSAR 102.8119

GREES OF FREEDOM ASSOCIATED WITH SSAR = 1.0000
G'AN SQUARE OF SSAR 102.8119 %
SUM OF SQUARES OF DEVIATIONS FROM REGRESSION, SSDR 123.3141r GREES OF FREEDOM ASSOCIATED WITH SSDR = 98.0000 % %.-.'S ' '



lEAN SQUARE OF SSDR =1.2583

_-VA UE =81.7065

I



PROGRAM ITEREG

r TIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

DATA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR

REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 2 2 1

MDICES OF INDEP VARS IN REGRESSION...
ff, 1

GRESSION METHOD USED AT EACH ITERATION: 
WALD'S METHOD

VIRINT AFTER EVERY 1 ITERATIONS

TA...

4'IRST 3 OBSNS)
-1.8328 -2.3413
-1.3718 -. 7944
1.3391 .2524

,EANS FOR VARIABLES IN REGRESSION,

JfPENDENT VARIABLE LAST...
.1236 1.0890

jCDIANS...
- .0969 .9399

NTERQUARTILE RANGES...
i.2969 1.9375

D EGRESSION COEFFICIENTS, INTERCEPT...

1.0619 .9577

1.0619 .9577

1.0619 .9577
P 1.0619 .9577
- 1.0619 .9577

1.0619 .9577
>. 1.0619 .9577
. 1.0619 .9577

1.0619 .9577
1.0619 .9577

I ESIDUAL VARIANCE 1.2587

lESIDUAL STANDARD ERROR = 1.1219

4JEFFICIENT OF DETERMINATION = .4489

i .



tOGRAM ITEREG

&STIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

TA FILE NAME: DFILI

I OF OBS, NO OF VARS, INDEX OF DEP VAR
REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 2 2 1
DICES OF INDEP VARS IN REGRESSION...

1

E GRESSION METHOD USED AT EACH ITERATION: BARTLETT'S METHOD

INT AFTER EVERY 1 ITERATIONS

M-TA...
%FIRST 3 OBSNS)

-1.8328 -2.3413
1.3718 -. 7944
1.3391 .2524

MEANS FOR VARIABLES IN REGRESSION,
PPENDENT VARIABLE LAST...

.1236 1.0890

DIANS...

.0969 .9399

!TERQUARTILE RANGES...
.1.2969 1.9375

REGRESSION COEFFICIENTS, INTERCEPT...
1.1025 .9527

1.1025 .9527
1.1025 .9527
1.1025 .9527

4 1.1025 .9527
1.1025 .9527
1.1025 .9527
1.1025 .9527
1.1025 .9527
1.1025 .9527

* AESIDUAL VARIANCE 1.2587
, RESIDUAL STANDARD ERROR = 1.1219

EFFICIENT OF DETERMINATION = .4489

. I.

I f



PROGRAM SIMULA
ENERATES MULTIVARIABLE UNIVARIATE SAMPLE

NILE NAME: DFILI

MENSION (M) = 1

COEFFICIENT MATRIX (C)...
.COEFFT MATRIX IS IDENTITY MATRIX

EGMA (SCALING PARAMETER FOR INDEP VARIABLES) .2000(INTERCEPT)- 1.0000

PARAMETER VECTOR (B) ...

1.0000

SIG (MODEL ERROR STD DEV) = 1.0000

'}(IP 0 RANDOM NOS PRIOR TO SIMULATION

ZARIANCE MATRIX OF X, Y...
.0400 .0400
.0400 1.0400

JOEFFICIENT OF DETERMINATION = .0385

)RRELATION MATRIX OF X, Y...
if1.0000 .1961

.1961 1.0000

'6SERVATIONS...
k PENDENT VARIABLE LAST
(FIRST 3 OBSNS PRINTED)
SN NO 1:

-. 3666 -. 8751
OBSN NO 2:

-. 2744 .3030s N N1o 3:
.2678 -. 8188

F-,



I
OGRA"M MREG
LTIPLE LINEAR REGRESSION ANALYSIS

TA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 2 2 1

ILDICES OF INDEP VARS IN REGRESSION...
1

TA...
IRST 3 OBSNS)

-. 3666 -. 8751
-

"  -. 2744 .3030
.2678 -. 8188

EANS FOR ALL VARIABLES...
.0247 .9901

5TANDARD DEVIATIONS FOR ALL VARIABLES...
.1884 1.1472

CORRELATION MATRIX...
1.0000
.2313 1.0000

ZTERMINANT .1000E+01

VERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSION...
1.0000

§ZODUCT OF MATRIX AND INVERSE...
SHOULD BE IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS
IVE RUINED SOLUTION... DISREGARD REST OF ANALYSIS.

"J 1. 0000

T .VERSE OF THE PART OF THE CROSS PROD MATRIX USED IN REGRESSION...
" .2845E+00

S.i

U1DEX OF DEP VAR IN REGRESSION 2
' .qDICES OF INDEP VARS IN REGRESSION...

REGRESSION COEFFICIENTS...
,"' 1.4080
p-VALUES...

2.3535
--TD DEVS OF REG COEFS...

.5983
fNTERCEPT = .9553

ESIDUAL STALNDARD ERROR = 1.1217
MPLE MULTI PLE CORRELATION COEF.ICI. hi,- .23]. 3

E.MPLE COEFFIC[ENT OF1 DETERM I ,NPIO;N .0535

SUM OF SQUARES AT'iRIB[JTABLE TO 1 HK;AS1.ON, 5S.1-- 6.9698
,rGREES OF FREEDON ASSOCIATED) ti .... i.0000
m.EAN SQUARE OF SSAR 6.9698
SUM OF SQUARES OF DEVIATIONS 1',OA RRSS[ON, l'.;['Ws, 123.3141
fGREES OF FREEDONl ASSOCIATED WrT'i DD' = 9U.0000
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SEAN SQUARE OF SSDR = 1.2583

-VALUE = 5.5391

x

I

",p

i4

,

t.b



I
PROGRAM ITEREGE STIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD
DATA FILE NAME: DFIL1

kN OF OBS, NO OF VARS, INDEX OF DEP VAR

REGRESSION, NO OF INDEP VARS IN REGRESSION...
1 00 2 2 1

DICES OF INDEP VARS IN REGRESSION...

EGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

PRINT AFTER EVERY 1 ITERATIONS

' TA...
T .IRST 3 OBSNS)

-. 3666 -. 8751
S-.2744 .3030

.2678 -. 8188

,EANS FOR VARIABLES IN REGRESSION,
PENDENT VARIABLE LAST...

.0247 .9901

:-DIANS ...
.0194 .9687

'NTERQUARTILE RANGES...
i .2594 1.5406

TEGRESSION COEFFICIENTS, INTERCEPT...
1.3097 .9577
1.3097 .9577
1.3097 .9577
1.3097 .9577

. 1.3097 .9577
1.3097 .9577

r. 1.3097 .9577
1.3097 .9577
1.3097 .9577
1.3097 .9577

l'ESIDUAL VARIANCE 1.2587
RESIDUAL STANDARD ERROR 1.1219
iEFFICiENT OF DETERMINATION = .0436

W-..A



LRAM ITEREG

1 STIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

DATA FILE NAME: DFIL1

L OF OBS, NO OF VARS, INDEX OF DEP VAR
REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 2 2r DICES OF INDEP VARS IN REGRESSION...
I

GRESSION METHOD USED AT EACH ITERATION: BARTLETT'S METHOD

INT AFTER EVERY 1 ITERATIONS

"ATA...
fV'IRST 3 OBSNS)

-.3666 -.8751
-.2744 .3030
.2678 -.8188

MEANS FOR VARIABLES IN REGRESSION,
jPENDENT VARIABLE LAST...

a .0247 .9901

f DIANS ...
-1 .0194 .9687

;NTERQUARTILE RANGES...
t .2594 1.5406

1EGRESSION COEFFICIENTS, INTERCEPT...
' 1.5126 .9527

1.5126 .9527

1.5126 .9527
1.5126 .9527
1.5126 .9527
1.5126 .9527
1.5126 .9527

1.5126 .9527
1.5126 .9527
1.5126 .9527

-ESIDUAL VARIANCE = 1.2587
RESIDUAL STANDARD ERROR = 1.1219
DEFFICIENT OF DETERMINATION = .0435

l.



PROGRAM SIMULA
NERATES MULTIVARIABLE UNIVARIATE SAMPLE

LE NAME: DFILI

MENSION (M) = 3

COEFFICIENT MATRIX (C)...
I COEFFT MATRIX IS IDENTITY MATRIX

SIGMA (SCALI: G PARAMETER FOR INDEP VARIABLES) = 10.0000

I (INTERCEPT) = 1.0000

PARAMETER VECTOR (B)...
1.0000 -1.0000 1.0000

SIG (MODEL ERROR STD DEV) = 1.0000

b~OF OBSNS = 100
SKIP 0 RANDOM NOS PRIOR TO SIMULATION

kvRIANCE MATRIX OF X, Y...
100.0000 0.0000 0.0000 100.0000

0.0000 100.0000 0.0000 -100.0000
0.0000 0.0000 100.0000 100.0000

100.0000 -100.0000 100.0000 301.0000

)EFFICIENT OF DETERMINATION = .9967

CORRELATION MATRIX OF X, Y...I 1.0000 0.0000 0.0000 .5764
0.0000 1.0000 0.0000 -.5764
0.0000 0.0000 1.0000 .5764
.5764 -.5764 .5764 1.0000

.. SERVATIONS...
DEPENDENT VARIABLE LAST

*. eIRST 3 OBSNS PRINTED)
.' SN NO 1:

-18.3276 -15.0855 -13.7183 -16.3831
._4SN NO 2:
O± 13.3911 -20.8667 -6.9995 28.7576Xh3SN NO 3:

-14.8901 3.3520 -20.2808 -37.1018

-i



OGRAM MREG
LTIPLE LINEAR REGRESSION ANALYSIS

TA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 4 4 3IDICES OF INDEP VARS IN REGRESSION...
1 2 3

k TA...
IRST 3 OBSNS)
-18.3276 -15.0855 -13.7183 -16.3831
13.3911 -20.8667 -6.9995 28.7576

-14.8901 3.3520 -20.2808 -37.1018

.,ANS FOR ALL VARIABLES...
.0505 -1.4574 .7599 3.1979

,.TANDARD DEVIATIONS FOR ALL VARIABLES ...
9 9.2663 10.3026 8.5514 16.2291

CORRELATION MATRIX...
'i 1.0000

.1866 1.0000

.1537 -.0497 1.0000

.5326 -.5513 .6490 1.0000

DETERMINANT = .9362E+00

PAVERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSION...
1.0655

P -.2075 1.0429
-.1741 .0837 1.0309

PRODUCT OF MATRIX AND INVERSE...
- 1OULD BE IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS

wVE RUINED SOLUTION... DISREGARD REST OF ANALYSIS.
"1i.0000.0000 1.0000

-.0000 -.000" 1.0000

INVERSE OF THE PART OF THE CROSS PROD MATRIX USED IN REGRESSION ...

_.2953E-o .9924E-04

-.2219E-04 .9602E-05 .1424E-03

S.DEX OF DEP VAR IN REGRESSION 4
INDICES OF INDEP VARS IN REGRESSION...

1 2 3
GRESSION COEFFICIENTS..

.9964 -.9942 1.0063
T-VALUES...
" 77.3142 -86.6936 73.2542

I'rD DEVS OF REG COEFS...
.0129 .0115 .0137

,iTERCEPT = .9340

znz4



I DUAL STANDARD ERROR 1.1511
PLE MULTIPLE CORRELATION COEFFICIENT .•9976

SPLE COEFFICIENT OF DETERMINATION .9951
UMOF SQUARES ATTRIBUTABLE TO REGRESSION, SSAR = 25947.7559

LEGREES OF FREEDOM ASSOCIATED WITH SSAR = 3.0000
MEAN SQUARE OF SSAR = 8649.2520
M OF SQUARES OF DEVIATIONS FROM REGRESSION, SSDR = 127.2129L GREES OF FREEDOM ASSOCIATED WITH SSDR = 96.0000

MEAN SQUARE OF SSDR = 1.3251
VALUE = 6527.0757

I

1617

I ,F
I, "

** .... ,--..* .** .*

w-. -- *.



I
OGRAM ITEREG
TIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE MEl'HOD

DATA FILE NAME: DFILI

L OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 4 4 3
tDICES OF INDEP VARS IN REGRESSION...

1 2 3

GRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

PRINT AFTER EVERY 1 ITERATIONS

TA...
(FIRST 3 OBSNS)
X-18.3276 -15.0855 -13.7183 -16.3831
'1 13.3911 -20.8667 -6.9995 28.7576

-14.8901 3.3520 -20.2808 -37.1018

,EANS FOR VARIABLES IN REGRESSION,
C PENDENT VARIABLE LAST...

.0505 -1.4574 .7599 3.1979

."DI AN S..••. ,

-.0464 -1.8042 .5005 1.8826

*TERQUARTILE RANGES...
13.2813 14.8438 12.0312 23.7656

.01GRESSION COEFFICIENTS, INTERCEPT...
.8977 -.9887 1.0277 .9307
.9905 -.9949 1.0086 .9316

P .9952 -.9959 1.0077 .9306
.-9956 -.9959 1.0076 .9305
.9956 -.9959 1.0076 .9305
.9956 -.9959 1.0076 .9305
.9956 -.9959 1.0076 .9305
.9956 -.9959 1.0076 .9305
.9956 -.9959 1.0076 .9305
.9956 -.9959 1.0076 .9305

RESIDUAL VARIANCE = 1.3257
SSIDUAL STANDARD ERROR = 1.1514
XIEFFICIENT OF DETLPEMINATION = .9950

.
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"PROGRAM SIMULA
j ENERATES MULTIVARIABLE UNIVARIATE SAMPLE

ULE NAME: DFIL1

IMENSION (M) 3

COEFFICIENT MATRIX (C)...I 1.0000 0.0000 0.0000
.1000 1.0000 .1000
.5000 .5000 1.0000

GMA (SCALING PARAMETER FOR INDEP VARIABLES) 10.0000

BO (INTERCEPT) = 1.0000

.ARAIMETER VECTOR (B)...
1.0000 -1.0000 1.0000

IG (MODEL ERROR STD DEV) = 1.0000

NO OF OBSNS = 100
"kIP 0 RANDOM NOS PRIOR TO SIMULATION

VARIANCE MATRIX OF X, Y...
1 100.0000 10.0000 50.0000 140.0000
1. 10.0000 102.0000 65.0000 -27.0000
50.0000 65.0000 150.0000 135.0000

# 140.0000 -27.0000 135.0000 303.0000

OEFFICIENT OF DETERMINATION = .9967

. ORRELATION MATRIX OF X, Y...
". 1.0000 .0990 .4082 .8043

.0990 1.0000 .5255 -. 1536

.4082 .5255 1.0000 .6332

.8043 -. 1536 .6332 1.0000

".SERVATION S...
,PEDENT VARIABLE LAST
IFIRST 3 OBSNS PRINTED)
QfSH NO 1
-18. 3276 -18.2900 -30.4248 -29.8850

CESN NO 2:
13.3911 -20.2275 -10.7373 24.3806

:2BSN NO 3:
b -14.8901 -.1650 -26.0498 -39.3538

I1



OGRALM MREG

LTIPLE LINEAR REGRESSION ANALYSIS

TA FILE NAME: DFIL1

OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 4 4 3
CDICES OF INDEP VARS IN REGRESSION...

1 2 3

~TA...
CFIRST 3 OBSNS)
-18.3276 -18.2900 -30.4248 -29.8850

r 13.3911 -20.2275 -10.7373 24.3806
- -14.8901 -.1650 -26.0498 -39.3538

.-ANS FOR ALL VARIABLES...
.0505 -1.3763 .0565 2.4134

S-9ANDARD DEVIATIONS FOR ALL VARIABLES ...

j.9.2663 10.5197 11.7402 16.2744

CORRELATION MATRIX ...
1.0000.

. 2833 1.0000 * ",

.5885 .5806 1.0000

.8099 -.0630 .6842 1.0000

DETERi1INANT .4300E+00

INN
NVERSE OF THE PART OF THE COI'.;- MATRIX USED IN REGRESSION ...

1.5418
.1356 1.5204

p -. 9860 -. 9625 2.1390

PRODUCT OF MATRIX AND INVERSE...
1OULD BE IDENTITY MATRIX. IF NOT, RObTJDOFF ERRORS

..AVE RUIN;ED SOLUTION ... DISREGARD REST OF' ANALYSIS.
1.0000

.0000 1.0000

.0000 .000* 1.0000

INVERSE OF THE PART OF THE CROSS PROD MATRIX USED IN REGRESSION...

. .1814E-03
.1405E-04 .1388E-03

-. 9155E--04 -.7872E-04 .1562E-03

, 4DX 07 LEP VAR IN REGRESSIU, 4
INDICI;S O1 INDEP VARS IN RRESIf ON...
,-, 1 2 3
hyGRE,SlON' COE'FICIEN'lS...

.9931 -. 9972 1.0060
T-VALU S . ..

64.0,171 -73.5204 69.7856
!TD DEVS OF RR.G COEFS .... .

.0155 .0136 .0144
NTITERC PT .9341

l . .e



SIDUAL STANDARD ERROR = 1.1514

PLE MULTIPLE CORRELATION COEFFICIENT = .9976
qMPLE COEFFICIENT OF DETERMINATION = .9951

M OF SQUARES ATTRIBUTABLE TO REGRESSION, SSAR = 26093.6445

tGREES OF FREEDOM ASSOCIATED WITH SSAR = 3.0000
MEAN SQUARE OF SSAR = 8697.8818IM OF SQUARES OF DEVIATIONS FROM REGRESSION, SSDR 127.2637

WGREES OF FREEDOM ASSOCIATED WITH SSDR = 96.0000
MEAN SQUARE OF SSDR = 1.3257

VALUE = 6561.1553
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I
OGRAM ITEREG
TIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

TA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

1Ni00 4 4 3
DICES OF INDEP VARS IN REGRESSION...

1 2 3

,EGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

PRINT AFTER EVERY 1 ITERATIONS

-,YAT...
(FIRST 3 OBSNS)
' -18.3276 -18.2900 -30.4248 -29.8850

:.. 13.3911 -20.2275 -10.7373 24.3806
-14.8901 -. 1650 -26.0498 -39.3538

KEANS FOR VARIABLES IN REGRESSION,
EPENDENT VARIABLE LAST...

.0505 -1.3763 .0565 2.4134
.ADICA TS... '

-. 0464 -1.3525 .2002 2.7556

1 TERQUARTILE RANGES...
13.2813 15.3125 13.7500 25.5781

,:GRESSION COEFFICIENTS, INTERCEPT...
1.4114 -. 4568 .5350 1.6833
1.1608 -. 7393 .7908 1.2927
1.0651 -.8805 .9055 1.0967
1.0 -  6 -. 9453 .9553 1.0067
1.0126 .9737 .9765 .9671
1.00606 -.9859 .3854 .9501

. 1.0041 -. 9910 .9891 .9430
1.0031 -.9932 9907 .9400
1.0027 -. 9941 .9913 .9387
1.0025 -. 9945 .9916 .9382

RESIDUAL VARIANCE 1.3410
*:ESIDUAL STANDARD ERROR = 1.1580
4t"OEFFICIENT OF DETER"I O.9949

' .t ,,l =.994
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I
PROGRAM SIMULA
NERATES MULTIVARIABLE UNIVARIATE SAMPLE

LE NAME: DFIL1

*[MENSION (N) = 3

COEFFICIENT MATRIX (C)...
1.0000 0.0000 0.0000
.5000 1.0000 .5000
.9000 .9000 1.0000

?TGMA (SCALING PARAMETER FOR INDEP VARIABLES) = 10.0000

(INTERCEPT)= 1.0000

XRAMETER VECTOR (B)...
1.0000 -1.0000 1.0000

,,7G (MODEL ERROR STD DEV) 1.0000

ij OF OBSNS = 100
/*IP 0 RANDO i NOS PRIOR TO SIMULATION

VARIANCE MATRIX OF X, Y...100.0000 50.0000 90.0000 140.0000

50.0000 150.0000 185.0000 85.0000

90.0000 185.0000 262.0000 167.0000
140.0000 85.0000 167.0000 223.0000

COEFFICIENi OF DETERMI NATION = .9955

'.:RRELATION MATRIX OF X, Y...
1.0000 .4082 .5560 .9375
.4082 1.0000 .9332 .4648
.5560 .9332 1.0000 .6909
.9375 .4648 .6909 1.0000

* BSERATlCI; S..

[. PENDET :bL LAST

(FIRST 3 0:SNS PRINTED)
4BSN NO 1:
...-18.3276 -31.1084 -43.7901 -30.4319
&BSN NO 2:

13.3911 -17.6709 -13.7276 18.3337
.3S N NO 3:
i-14.8901 -14.2334 -30.6551 -29.9006

%.
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i ROGRAM MREG
ULTIPLE LINEAR REGRESSION ANALYSIS

DATA FILE NAME: DFILI

I OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...
al 100 4 4 3
JDICES OF INDEP VARS IN REGRESSION...

1 2 3

!ATA...
NTIRST 3 OBSNS)

-18.3276 -31.1084 -43.7901 -30.4319
Z4 13.3911 -17.6709 -13.7276 18.8337
i -14.8901 -14.2334 -30.6651 -29.9006

EANS FOR ALL VARIABLES...
.0505 -1.0521 -. 5064 1.5265

§TANDARD DEVIATIONS FOR ALL VARIABLES...
9.2663 12.8614 16.4787 14.1898

CORRELATION MATRIX...
:-" 1.0000
: .5608 1.0000

.6908 .9437 1.0000
- .9460 .5593 .7603 1.0000

!TERMINANT = .1605E+00

.,VERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSION...

1.6962
-. 0010 4.2709

P .0010 -3.4656 3.4656

PRODUCT OF MATRIX AND INVERSE...
AiOULD BE IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS
[AV$] RUINED SOLUTION... DISREGARD REST OF ANALYSIS.

1.6964
_ .9512 1.0000
.: 1.1719 .5640 -.5004

INVERSE OF THE PART OF THE CROSS PROD MATRIX USED IN REGRESSION...
: 19 95 E-0 3
S-.8687E-07 2 6 0 8 E-3

.678 0E-07 --.16 52--3 .1289E-03

fDEX Oi4' DSP VAi' K;% G 4L IOJ 4

NDICES OF INDEP VARS IN REGRESSION...
-E1 2 3

~GRESSION COEFFICI ENTS...
1.2840 -. 2726 .'007

T-VALUES.
* D14.6515 -2.7213 8.5276

'NDD DEVS OF REG COEFS...
.0876 .1002 .0704

N'TERCEPT = 1.4790



ISIDUAL STANDARD ERROR = 6.2037
SAMPLE MULTIPLE CORRELATION COEFFICIENT = 1.0887
SIPLE COEFFICIENT OF DETERMINATION = 1.1853
&MOF SQUARES ATTRIBUTABLE TO REGRESSION, SSAR = 23628.3906
DEGREES OF FREEDOM ASSOCIATED WITH SSAR = 3.0000
LAN SQUARE OF SSAR = 7876.1304
3M OF SQUARES OF DEVIATIONS FROM REGRESSION, SSDR = -3694.6973
DEGREES OF FREEDOM ASSOCIATED WITH SSDR = 96.0000
MEAN SQUARE OF SSDR = -38.4864
I-VALUE = -204.6469
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I
,ROGRAM ITEREG
STIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

DATA FILE NAME: DFILI

S0 OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 4 4 3
INDICES OF INDEP VARS IN REGRESSION...

1 2 3

1EGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

PRINT AFTER EVERY 10 ITERATIONS

.ATA...
(FIRST 3 OBSNS)
. -18.3276 -31.1084 -43.7901 -30.433,9
J 13.3911 -17.6709 -13.7276 18.8337

-14.8901 -14.2334 -30.6651 -29.9006

EANS FOR VARIABLES IN REGRESSION,
PENDENT VARIABLE LAST...

.0505 -1.0521 -. 5064 1.5265

,',EDIA NS...
-. 0464 -. 7959 .4599 2.5525

'NTERQUARTILE RANGES...
13.2813 19.3750 22.0625 22.4375

EGRESSION COEFFICIENTS, INTERCEPT...

1.1720 -. 4336 .5080 1.2684
1.0705 -. 7462 .7845 1.0846
1.0178 -. 9088 .9282 .9890
.9903 -. 9933 1.0030 .9392
.9761 -1.0373 1.0418 .9134
.9686 -1.0602 1.0621 .9000
.9648 -1.0720 1.0726 .8930
.9628 -1.0782 1.0780 .8893
.9617 -1.0814 1.0809 .8874
.9612 -1.0831 1.0823 .8865

RESIDUAL VARIANCE = 1.4433
!ESIDUAL STANDARD ERROR 1.2014
:ZEFFICIENT OF DETERMINATION = .9928

.N*
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ROGRAM SIMULA
1 ENERATES MULTIVARIABLE UNIVARIATE SAMPLE

AILE NAME: DFIL1

I MENSION (M = 3

COEFFICIENT MATRIX (C)...
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
1.0000 1.0000 0.0000

GMA (SCALING PARAMETER FOR INDEP VARIABLES) = 10.0000

BO (INTERCEPT) = 1.0000

&RAMETER VECTOR (B)...
1.0000 -1.0000 1.0000

G(MODEL ERROR STD DEV) = 1.0000

NO OF OBSNS = 100
tIP 0 RANDOM NOS PRIOR TO SIMULATION

VARIANCE MATRIX OF X, Y...
,;100.0000 0.0000 100.0000 200.0000
, 0.0000 100.0000 100.0000 0.0000
100.0000 100.0000 200.0000 200.0000
200.0O00 0.0000 200.0000 401.0000

)EFFICIENT OF DETERMINATION = .9975

.oRRELATION MATRIX OF X, Y...

" 1.0000 0.0000 .7071 .9988
0.0000 1.0000 .7071 0.0000
.7071 .7071 1.0000 .7062
.9988 0.0000 .7062 1.0000

PBSERVATIONS...
hPENDENT VARIABLE LAST

W'FIRST 3 OBSNS PRINTED)
BSN NO 1:
,-18.3276 -15.0855 -33.4131 -36.0779

Y SN NO 2:
13.3911 -20.8667 -7.4756 28.2815

, SN NO 3:
6-14.8901 3.3520 -11.5381 -28.3591

tr,



DROGRAM MREG

NULTIPLE LINEAR REGRESSION ANALYSIS

] ATA FILE NAME: DFIL1

OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...
I 100 4 4 3
INDICES OF INDEP VARS IN REGRESSION...

1 2 3

!,ATA...
"tFIRST 3 OBSNS)

-18.3276 -15.0855 -33.4131 -36.0779
, 13.3911 -20.8667 -7.4756 28.2815

- -14.8901 3.3520 -11.5381 -28.3591

4.EANS FOR ALL VARIABLES...
.0505 -1.4574 -1.4069 1.0312 -_-

STANDARD DEVIATIONS FOR ALL VARIABLES...
9.2663 10.3026 15.0878 18.5535

CORRELATION MATRIX...
b 1.0000

.1866 1.0000

.7416 .7975 1.0000

.9981 .1892 .7422 1.0000

kTERI*IINANT = .1582E-05

%,4VERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSION...

ez3011935* 9
25585351*528446825*0
46875*004165908*4361008056*2

PRODUCT OF MATRIX AND INVERSE...
' iOULD BE IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS
'ZVE RUINED SOLUTION... DISREGARD REST OF ANALYSIS.

1.0312
.0313 1.0000
.0313 .0313 .9375

INVERSE OF THE PART OF THE CROSS PROD MATRIX USED IN REGRESSION ...

.2707E+02 -

.2707E+02 .2707E+02
-. 2707E+02 -. 2707E+02 .2707E+02

- DXOF DEP VA"" IN REGRESSION 4
DICES OF INDEP VAS IN REGRESSION...

1 2 3
.GRESSION COEFFIC I L:;...

t 2.1900 .16H -.1921
T-VALUES...

.2764 .0213 -. 0242
DDEVS OF REG COEFS...

7.9237 7.9237 7.9237
NTERCEPT = .8963



kSIDUAL STANDARD ERROR = 1.5229

M1PLE MULTIPLE CORRELATION COEFFICIENT = .9967

.APLE COEFFICIENT OF DETERMINATION 
.9935

W OF SQUARES ATTRIBUTABLE TO REGRESSION, SSAR = 33856.4766

VGREES OF FREEDOM ASSOCIATED WITH SSAR = 3.0000

MEAN SQUARE OF SSAR = 11285.4922

3M. OF SQUARES OF DEVIATIONS FROM REGRESSION, SSDR = 222.6484

tGREES OF FREEDOM ASSOCIATED WITH SSDR = 96.0000

MEAN SQUARE OF SSDR = 2.3193

, VALUE = 4865.9995

m 
I

x

mp

.. J



SOGRAM ITEREG
TIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

DATA FILE NAME: DFILI

I OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 4 4 3
BDICES OF INDEP VARS IN REGRESSION...

1 2 3

kGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

PRINT AFTER EVERY 1 ITERATIONS

&TA...
(FIRST 3 OBSNS)
v" -18.3276 -15.0855 -33.4131 -36.0779
'. 13.3911 -20.8667 -7.4756 28.2815
-14.8901 3.3520 -11.5381 -28.3591

4v

MANS FOR VARIABLES IN REGRESSION,
-PENDENT VARIABLE LAST...

.0505 -1.4574 -1.4069 1.0312

!..YDIANS...
-. 0464 -1.8042 -2.1631 .9846

5TERQUARTILE RANGES...
13.2813 14.8438 20.9375 26.5625

I',GRESSION COEFFICIENTS, INTERCEPT...

"' 1.9979 .0036 .0031 .9399
1.9931 .0008 .0068 .9413

1.9891 -. 0029 .0106 .9415
1.9852 -. 0067 .0145 .9416
1.9814 -. 0105 .0183 .9416
1.9775 -. 0144 .0222 .9416
1.9737 -. 0182 .0260 .9416
1.9698 -. 0221 .0299 .9416
1.9660 -. 0259 .0337 .9416
1.9621 -. 0298 .0376 .9416

RESIDUAL VARIANCE = 1.3293
ISIDUAL STANDARD ERROR = 1.1529
bEFFICIENT OF DETERMINATION = .9961

'./t



a ROGRAM SIMULA
ENERATES MULTIVARIABLE UNIVARIATE SAMPLE

FILE NAME: DFILI

IIMENSION (N) = 6

.OEFFICIENT MATRIX (C)...
SCOEFFT MATRIX IS IDENTITY MATRIX

GMA (SCALING PARAMETER FOR INDEP VARIABLES) 10.0000

0 (INTERCEPT) = 1.0000

illARAMETER VECTOR (B)...
1.0000 -1.0000 1.0000 1.0000 -1.0000 1.0000

,-.IG (MODEL ERROR STD DEV) 1.0000

'O OF OBSNS = 100

, KIP 0 RANDOM NOS PRIOR TO SIMULATION

4ARIANCE MATRIX OF X, Y...
100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.00000.0000 100.0000 0.0000 0.0000 0.0000 0.0000 -100.0000

u. 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 !00.0000
0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 100.0000
0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 -100.0000
0.0000 0.0000 0.0000 0.0000 0.000c 100.0000 100.0000

100.0000 -100.0000 100.0000 100.0000 -100.0000 100.0000 601.0000

OEFFICIENT OF DETERMINATION = .9983

CORRELATION LATRIX OF X, Y...
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 .4079
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 -. 4079
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 .4079
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 .4079
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 -.4079
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 .4079
.4079 -. 4079 .4079 .4079 -. 4079 .4079 1.0000

*BSERVATIONS...
DEPENDENT VARIABLE LAST
-FIRST 3 OBSNS PRINTED)
kSN NO 1:

-18.3276 -15.0855 -13.7183 -4.2261 13.3911 -20.867 -55.1443
.p.BS N NO 2:

4.9927 -14.8901 3.3520 -20.2806 4.211 6 .b28 6.32-4
OBSN NO 3:

16.4330 -6.5698 8.5474 11.7895 3.1567 2.64w) 44.8635

low

, :



F
SOGRAM MREG
5LTIPLE LINEAR REGRESSION ANALYSIS

0 TA FILE NAME: DFILI

-,OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

1 100 7 7 6
DICES OF INDEP VARS IN REGRESSION...

1 2 3 4 5

.TA...
(FIRST 3 OBSNS)
. -18.3276 -15.0855 -13.7183 -4.2261 13.3911 -20.8667 -55.1443

,'. 4.9927 -14.8901 3.3520 -20.2808 4.2114 6.8286 6.3284
. 16.4380 -6.5698 8.5474 11.7895 3.1567 2.6489 44.8635

-; ANS FOR ALL VARIABLES...
. -. 0472 .4075 -. 5128 -. 9081 -. 1784 .8763 .1547

9TANDARD DEVIATIONS FOR ALL VARIABLES...
_ 10.2626 9.8716 10.8903 10.3570 9.4954 9.5353 27.1463

CORRELATION MATRIX...
,I" 1.0000
'" -. 0039 1.0000

.2032 -.0813 1.0000

.0771 .1454 -. 0221 1.0000
-.0281 -.0781 .0677 .0364 1.0000
.2311 -.0366 .1645 -.0104 -.1342 1.0000
.5834 -.3250 .5361 .3263 -.3464 .5620 1.0000

.TPMINAN- .8320E+00

SVERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSION...
] 1.0972

-. 0047 1.0358
,'J -. 1901 .0698 1.0747

' -. 0910 -. 1515 .0302 1.0317
.0170 .0866 -. 0928 -. 0521 1.0360

-.2211 .0376 -. 1424 .0143 .1530 1.0966

.. ODUCT OF MATRIX AND INVERSE...
SHOULD BE IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS
bAVE RUINED SOLUTION... DISREGARD REST OF ANALYSIS.

1.0000
.0000 1.0000.0.oo0 -ooo* 1o000.0000 -.000* -. 000 1
.0000 .000* -.000" -.000" 1.0000 .. .,

.0000 -.000* -. 000* .000* 0.0000 1.0000

_NVERSE OF ThE , A-Pi,' COi THE CRO;S PROD MATRIX USED TN 11CU(,,0iS,ON...
.1052E-03

." -. 4657E-06 .1074E-03
.-. 1718E-04 .6557E-05 .9153E-04

-. 8649E-05 .1496E-04 .2700E-05 .9716E-04
.1760E-05 .9337L-05 -. 90683-05 -. 5350E-05 .1161E-03



2283E-04 .4034E-05 -.1385E-04 .1458E-05 .1707E-04 1218E-03

INDEX OF DEP VAR IN REGRESSION = 7
INDICES OF INDEP VARS IN RLGRESSION...

1 2 3 4 5 6
REGRESSION COEFFICIENTS...
3 1.0048 -. 9907 1.0082 .9830 -1.0231 .9974
-VALUES...

98.7807 -96.4196 106.2686 100.5752 -95.7703 91.1315
TD DEVS OF REG COEFS...

.0102 .0103 .0095 .0098 .0107 .0109
"INTERCEPT = .9589

SIDUAL STANDARD ERROR .9916
MPLE MULTIPLE CORRELATION COEFFICIENT .9994

9AMPLE COEFFICIENT OF DETERMINATION = .9987
SUM OF SQUARES ATTRIBUTABLE TO REGRESSION, SSAR 72863.9766
"71EGREES OF FREEDOM ASSOCIATED WITH SSAR = 6.0000
S.EAN SQUARE OF SSAR 12143.9961
SUM OF SQUARES OF DEVIATIONS FROM REGRESSION, SSDR 91.4453
-7EGREES OF FREEDOM ASSOCIATED WITH SSDR 93.0000
"EAN SQUARE OF SSDR .9833
?-VALUE = 12350.4600

.;

4Le

db

'%4"

I".



I
SROGRAM ITEREG
STIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

J ATA FILE NAME: DFILl

OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 7 7 6
NDICES OF INDEP VARS IN REGRESSION...

1 2 3 4 5 6

!EGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

PRINT AFTER EVERY 1 ITERATIONS

!ATA...
(FIRST 3 OBSNS)
' -18.3276 -15.0855 -13.7183 -4.2261 13.3911 -20.8667 -55.1443

'¢ 4.9927 -14.8901 3.3520 -20.2808 4.2114 6.8286 6.3284
16.4380 -6.5698 8.5474 11.7895 3.1567 2.6489 44.8635

EANS FOR VARIABLES IN REGRESSION,

PENDENT VARIABLE LAST...
-. 0472 .4075 -. 5128 -. 9081 -. 1784 .8763 .1547

.3833 .4614 -1.1401 -2.4292 -. 7105 .8911 -. 9060

fTERQUARTILE RANGES...

14.3750 13.9843 15.3906 13.3203 11.8750 11.6406 31.4258

I.-EGRESSION COEFFICIENTS', INTERCEPT...
1.4869 -. 7377 1.0480 .8243 -. 9862 .8140 .9222

1.0289 -. 9806 1.0338 .9833 -1.0185 .9758 .9892
.9981 -. 9968 1.0091 .9909 -1.0122 .9923 .9752

. 1.0007 -. 9944 1.0049 .9898 -1.0103 .9926 .9713
1.0016 -. 9537 1.0046 .9894 -1.0101 .9924 .9708
1.0018 -.9937 1.0046 .9894 -1.0101 .9923 .9708
1.0018 -.9936 1.0046 .9894 -1.0101 .9923 .9708
1.0018 -. 9936 1.0046 .9894 -1.0101 .9923 .9708
1.0018 -. 9936 1.0046 .9894 -1.0101 .9923 .9708
1.0018 -. 9936 1.0046 .9894 -1.0101 .91923 .9708

RESIDUAL VARIANCE 1.0136
VLSIDUAL STANDARD ERROR = 1.0068
: EFFICI}EN.Tf OF DETELMINATIC.= .9986

" " " " " " * ] ' * " " / " " " " 2 . " " ' - " * % " " " .' . " . .*, .' . .' -. - " " " - " % -." -, " .' ' ' -. ' .' ' - ' ' , ' . . . . - , - , . . .. .



SOOGRAM SIMULA
WNERATES MULTIVARIABLE UNIVARIATE SAMPLE

TLE NAME: DFILl

[MENSION (M) = 6

O'DEFFICIENT MATRIX (C)...
S0.0000 0.0000 0.0000 0.0000 0.0000

.1000 1.0000 .1000 .1000 .1000 .1000

.2000 .2000 1.0000 .2000 .2000 .2000

.3000 .3000 .3000 1.0000 .3000 .3000

.4000 .4000 .4000 .4000 1.0000 .4000

.5000 .5000 .5000 .5000 .5000 1.0000

-"iGMA (SCALING PARAMETER FOR INDEP VARIABLES) = 10.0000

,4 (INTERCEPT) 1.0000

PARAMETER VECTOR (B) ...
1.0000 -1.0000 1.0000 1.0000 -1.0000 1.0000

4G (MODEL ERROR STD DEV) = 1.0000

OF ORSNS = 100
-IP 0 RANDOll NOS PRIOR TO SIM ULATION

eRIANCE MATRIX OF X, Y...
fi00.0000 10.0000 20.0000 30.0000 40.0000 50.0000 150.0000

10.0000 105.0000 38.0000 52.0000 66.0000 80.0000 9.0000

.. 20.0000 38.0000 120.0000 74.0000 92.0000 110.0000 194.0000
-30.0000 52.0000 74.0000 145.0000 118.0000 140.0000 219.0000

40.0000 66.0000 92.0000 118.0000 180.0000 170.0000 174.0000
50.0000 80.0000 110.0000 140.0000 170.0000 225.0000 275.0000 -

3150.0000 9.0000 194.0000 219.0000 174.0000 275.0000 656.0001-

COEiFFICItEN T 0"; DETEICMI NATION =. 9985

.0000 .0976 .1826 .2491 .2981 .3333 7

.0976 1.0000 .3385 .4214 .4801 .5205 .0343

.1826 .3385 1.0000 .5610 .6260 .6694 .6l[t

.2491 .4214 .5610 1.0000 .7304 .7751 .710,

.2981 .4801 .6260 .7304 1.0000 .8447 .5064

.3333 .5205 .6694 .7751 .8447 1.0001 7153

.5857 .0343 .6914 .7101 .5064 .715 1 .01000

(FIRST 3 0IBSNK PRIji,.ITD)

-18.3276 -19. 6f2 -22.7412 -20 .6082 -15.4986 -39 4'261

4.9927 -1 4.(797 -. 4756 -18.9324 -3.7876 -4.4 ' . C304

. 16.4330 -2.3118 14.0400 19.0559 16.2983 19. 32K., 943

h°•.



II
,ROGRAM MREG
.ULTIPLE LINEAR REGRESSION ANALYSIS

DATA FILE NAME: DFILl

OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

i IESO TAP ASINRGRSIO..
1 2 3 4 5 6

(FIRST 3 OBSNS)
-18.3276 -19.4602 -22.7412 -20.6082 -15.4986 -39.8499 -66.2681

.. 4.9927 -14.9797 -. 4756 -18.9324 -3.7876 -4.4788 .6304
16.4380 -2.3118 14.0400 19.0559 16.2983 19.3298 56.9038

'EANS FOR ALL VARIABLES...
-. 0472 .3305 -. 4828 -. 7445 -. 2521 .2568 -. 1204

STANDARD DEVIATIONS FOR ALL VARIABLES ...
10.2626 10.1399 12.4193 13.1373 13.6447 16.1560 30.3060

CORRELATION MATRIX...

2 1.0000

.1462 1.0000

.3869 .2952 1.0000

.3890 .4894 .5968 1.0000
4330 .4555 .7089 .7764 1.0000
.5377 .5005 .7596 .8064 .8517 1.0000
.7104 .1115 .7875 .7222 .6205 .8239 1.0000

:ETEEtlINANT .1736E-01

,VERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSION.
'. 1.4607

.2377 1.4447

.1210 .3079 2.5382

.1233 -. 2822 .2253 3.2263

.0397 -. 1100 -. 6679 -1.0620 4.1532
-1.1.296 -. 7634 -1.7600 -1.7933 -2.1397 6.5947

'-'-"ODUC 0GF ATRIX AND INVERSE.
HOULD E' IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS ,.
.-. PUI:ED SOLUTION... DISREGARD REST OF ANALYSIZ:.

1.0000
C). ()ulc'0 1.0000

• ") . .000" .000* 1000
G, : 0 ~ 0 0; 000 000* 1.0000""-

"" .!0i;'i .000* b. 000 .0000 1.0000
0u0* b u0* .000* 000' .  i .0000

K'v ':: ' . l: P T 0P TI E C, 1 PROD ,ATRIX T ' EN rN , . iST ON .

" .3u'i L-w'k 1419 E-03
S 95'9)2-1. .2470E-04 .1662. "

.923 - 5 -. 2140E-04 .1395E- .1888E-03

. 28.i%-0 5 -. 8030E-05 -. 3981E-04 -. 5983E-04 . 22531-03

L-' L*•tz f4..A-., & ''- -,e-; 'Y , -. ;7,,..-.v-L rv I



-. 6882E-04 -. 4707E-04 -. 8860E-04 -. 8535E-04 -. 9804E-04 .2552E-03

JDEX OF DEP VAR IN REGRESSION = 7

ZiDICES OF INDEP VARS IN REGRESSION...
1 2 3 4 5 6

.EGRFSSION COEFFICIENTS...

1 1.0112 -. 9825 1.0182 .9849 -1.0278 1.0077

'f-VALUES...
86.1889 -83.2002 79.6708 72.3065 -69.0716 63.6332

: D DEVS OF REG COEFS...
.0117 .0118 .0128 .0136 .0149 .0158

INTERCEPT = .9589
2SIDUAL STANDARD, R ERROR = .9913

% MPLE MULTIPLE CORRELATION COEFFICIENT .9995
AMPLE COEFFICIENT OF DETERMI NATION = .9990
UM OF SQUARES ATTRIBUTABLE TO REGRESSION, SSAR = 90835.6094

. -GREES OF FREEDOM ASSOCIATED WITH SSAR = 6.0000
,%AN SQUARE OF SSAR = 15139.2686
SUM OF SQUARES OF DEVIATIONS FROM REGRESSION, SSDR 91.3828
i3'GREES OF FREEDOM ASSOCIATED WITH SSDR 93.0000
i:'-AN SQUARE OF" SSDR =.98 26
F-VALUE - 15407.1855

i

I11

.9 9

'-.:..?



SOGRAMX ITEREG
TIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

-(TA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR
Nm REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 7 7 6
LNDICES OF INDEP VARS IN REGRESSION...

1 2 3 4 5 6

GRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

J.'.RINT AFTER EVERY 2 ITERATIONS

DATA...
&FIRST 3 OBSNS)
0.% -18.3276 -19.4602 -22.7412 -20.6082 -15.4986 -39.8499 -66.2681

4.9927 -14.9797 -.4756 -18.9324 -3.7876 -4.4788 .6304
16.4380 -2.3118 14.0400 19.0559 16.2983 19.3298 56.9038

&ANS FOR VARIABLES IN REGRESSION,

DEPENDENT VARIABLE LAST...
-.0472 .3305 -.4828 -.7445 -.2521 .2568 -.1204

elEDIANS...
T 3833 -'2219 .4932 -2.0652 -. 4595 -1.3928 -. 9712 -.

~TERQUARTILE RANGES ...
14.3750 14.4844 17.7812 19.3985 20.6484 21.8750 41.3985

2 . " 4. - _

.":FGRESSION COEFFICIENTS, INTERCEPT...
1.4147 -.4632 1.4790 .7226 -.5361 .2250 1.1584

n 1.1234 -.8886 1.3225 1.0682 -.6632 .4241 1.3838
1.0834 -.9831 1.1404 1.0977 -.6860 .5760 1.3025
1.0602 -.9976 1.0535 1.0454 -.7153 .7003 1.1860
1.0376 -. 9978 1.0154 .9961 -. 7622 .8017 1.0921
1.0189 -. 9972 .9979 .9649 -. 8154 .8810 1.0255
1.0054 -.9973 .9896 .9483 -.8653 .9404 .98Q7
.9963 -. 9979 .9858 .9411 -. 9072 .9829 .9518
.9904 -. 9987 .9845 .9390 -. 9399 1.0122 .9338
.9867 -.9994 .9844 .9396 -.9641 1.0318 .9231

0 ESIDUAL VARIANCE 1.3218
ISIDUAL STANDARD ERROR = 1.1497
OEFFICIENT OF DETERMIINATION .9986

dl...
Z.El

N,14..



I
WOGRAM SIMULA
,NERATES MULTIVARIABLE U-NIVARIATE SAMPLE

. LE NAME: DFIL1

UiMENSION (M) 6

ZDEFFICIENT MATRIX (C)...
1.0000 0.0:00 0.0000 0.0000 0.0000 0.0000
.1000 1.0000 .1000 .1000 .1000 .1000
.3000 .3000 1.0000 .3000 .3000 .3000
.5000 .5000 .5000 1.0000 .5000 .5000
.7000 .7000 .7000 .7000 1.0000 .7000
.9000 .9000 .9000 .9000 .9000 1.0000

sIGMA (SCALING PARAMETER FOR INDEP VARIABLES) 1 i0.0000

,) (INTERCEPT) = 1.0000

PARAMETER VECTOR (B) ...
1.0000 -1.0000 1.0000 1.0000 -1.0000 1.0000

SIG (MODEL ERROR STD DEV) 1.0000

} OF OBSNS = 100
KIP 0 RANDOM NOS PRIOR TO SIMULATION

2 RIANCE MATRIX OF X, Y...
i00. 0000 10.0000 30.0000 50.0000 70.0000 90.0000 190.0000
10.0000 105.0000 52.0000 80.0000 108.0000 136.0000 65.0000

%. 30.0000 52.0000 145.0000 140.0000 184.0000 228.0000 307.0000
"-% 50.0000 80.0000 140.0000 225.0000 260.0000 320.0000 395.0000

70.0000 108.0000 184.0000 260.0000 345.0000 412.0000 473.0000
90.0000 136.0000 228.0000 320.0000 412.0000 505.0000 595.0000

.7190.0000 65.0000 307.0000 395.0000 473.0000 595.0000 950.0001

COEFFICI ENT OF DETERMI NATION = .9989

wk)RRELATION MATRIX OF X, Y...
1.0000 .0976 .2491 .3333 .3769 .4005 .6164
.0976 1.0000 .4214 .5205 .5674 .5906 .2058

.1, .2491 .4214 1.0000 .7751 .8227 .8426 .8272
.3333 .5205 .7751 1.0000 .9332 .9493 .8544
.3769 .5674 .8227 .9332 1.0000 .9871 .8262 >4

.4005 .5906 .8426 .9493 .9871 1.0000 .8590

.6164 .2058 .8272 .8544 .8262 .8590 1.0000

I PS ER VA T O NS . .
LE /PENDENI VARSIA'if, LAST
(FIRST 3 OrS '1
b3S N NO 1:
t-18.3276 -19.4602 -27.2527 -31.5296 -37.1658 -55.0364 -75.2203
OBSN NIO 2:
,4 4.9927 -14.9797 -2.3894 -18.0335 -9.7869 -13.5247 -3.4312
;' .SN NO 3:

16.4380 -2.3118 16.7864 23.9001 26.1545 32.6745 67.9829

,', -, ," , .4 ,r - \ ,. .. , .,. .-. . * .-. . - .. . . '' "- "' ':,'."" " " ''i,:. . . '"



_ OGRAM UREG
LTIPLE LINEAR REGRESSION ANALYSIS

TA FILE NAME: DFIL1

OF OBS, NO OF VARS, INDEX OF DEP VAR
REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 7 7 6
DICES OF INDEP VARS IN REGRESSION...

1 2 3 4 5 6

STA...
(FIRST 3 OBSNS)

-%18.3276 -19.4602 -27.2527 -31.5296 -37.1658 -55.0364 -75.2203
4.9927 -14.9797 -2.3894 -18.0335 -9.7869 -13.5247 -3.4312

16.4380 -2.3118 16.7864 23.9001 26.1545 32.6745 67.9829

."ANS FOR ALL VARIABLES ...
, -.0472 .3305 -.4678 -.6354 -.3074 -.2388 -.4367

,.TANDARD DEVIATIONS FOR ALL VARIABLES...
10.2626 10.1399 13.7158 16.5319 19.9104 24.6741 36.3758

rORRELATION MATRIX...
1.0000

.1462 1.0000

.4448 .3738 1.0000r .4830 .5431 .8001 1.0000

.5294 .5416 .8655 .9471 1.0000

.5623 .5633 .8792 .9577 .9886 1.0000

.7218 .2374 .8849 .8695 .8761 .9041 1.0000

DETERMINANT = .4848E-03
, VERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSION...

1.5937

.4234 1.6643
A .4623 .7992 4.7397

.6213 .0557 1.4482 11.2243
-. 2875 -. 3710 -2.8464 -6.8279 23.9330
.2875 .3710 2.8464 6.8279 -13.8066 13.6066

!RODUCT OF MATRIX AND INVERSE...

,-OULD BE IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS
L'\VE RUINED SOLUTION... DISREGARD REST OF ANALYSIS.

2.1708
1.1729 2.0632
1.8305 1.6593 6.4417
1.9940 1.8075 5.9277 12.7853
2.0584 1.8659 6.1191 12.1657 1.0000
2.1395 1.9358 6.2965 12.4811 .4413 -9.8914

INVERSE OF THE PART 02 THE CROSS PROD MATRIX USED IN Ri-GRESSIOIN...
.. .1528E-03

. .4110E-04 .1635E-03
.3318E-04 .5805E-04 .2545E-03
.3699E-04 .3358E-05 .6451E-04 .4148E-03

-. 1421E-04 -.1856E-04 -.1053E-03 -.2095E-03 .6098E-03



.1147E-04 .1498E-04 .8496E-04 .1691E-03 -.2839E-03 .2291E-03

IDEX OF DEP VAR IN REGRESSION = 7
IDICES OF INDEP VARS IN REGRESSION...

1 2 3 4 5 6
D' GRESSION COEFFICIENTS ...

1.1545 -.8600 1.2206 1.2504 -.4873 13.4723
VALUES...

.8738 -.6293 .7159 .5745 -.1847 8.3293ID DEVS OF REG COEFS...
1.3212 1.3665 1.7049 2.1767 2.6391 1.6175

INTERCEPT 4.3353
WLSIDUAL STANDARD ERROR = 106.8683

PLE MULTIPLE CORRELATION COEFFICIENT = 3.0180
SAMPLE COEFFICIENT OF DETERMINATION = 9.1081
ZJM OF SQUARES ATTRIBUTABLE TO REGRESSION, SSAR = 1193133.7500
GREES OF FREEDOM ASSOCIATED WITH SSAR = 6.0000
EAN SQUARE OF SSAR = 198855.6250

SUM OF SQUARES OF DEVIATIONS FROM REGRESSION, SSDR = -1062137.0000
ZGREES OF FREEDOM ASSOCIATED WITH SSDR = 93.0000
P&EAN SQUARE OF SSDR = -11420.8281
F-VALUE -17.4117

h
4:

i
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ROGRAM ITEREG
STIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

DATA FILE NAME: DFILI

I OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 7 7 6
zNDICES OF INDEP VARS IN REGRESSION...

1 2 3 4 5 6

EGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

PRINT AFTER EVERY 20 ITERATIONS

ATA...
(FIRST 3 OBSNS)
-18.3276 -19.4602 -27.2527 -31.5296 -37.1658 -55.0364 -75.2203

" 4.9927 -14.9797 -2.3894 -18.0335 -9.7869 -13.5247 -3.4312
16.4380 -2.3118 16.7864 23.9001 26.1545 32.6745 67.9829

EANS FOR VARIABLES IN REGRESSION,
EPENDENT VARIABLE LAST...

-. 0472 .3305 -. 4678 -. 6354 -. 3074 -. 2388 -. 4367

EDIAN S...
.3833 -.2219 .4036 -2.3108 .6584 -1.5403 -2.3765

INTERQUARTILE RANGES...
14.3750 14.4844 17.6015 24.9023 27.1836 33.7930 51.1875

JEGRESSION COEFFICIENTS, INTERCEPT...
1.1139 -. 9267 1.1271 1.1911 -. 4600 .3392 1.1458
1.0836 -. 9421 1.0840 1.1023 -. 4941 .4559 1.0903
1.0596 -. 9564 1.0590 1.0516 -. 5782 .5773 1.0531

= 1.0402 -.9690 1.0398 1.0164 -.6630 .6850 1.0247
1.0242 -.9796 1.0242 .9890 -.7376 .7763 1.0016

*.. 1.0109 -.9885 1.0114 .9666 -.8006 .8529 .9826
.9998 -.9960 1.0007 .9480 -.8535 .9168 .9667
.9905 -1.0022 .9918 .9326 -.8976 .9700 .9536
.9828 -1.0073 .9844 .9198 -. 9343 1.0144 .9426
.9764 -1.0116 .9783 .9091 -. 9649 1.0514 .9335

PRINT AFTER EVERY 20 ITERATIONS
.9710 -1.0152 .9731 .9002 -. 9904 1.0822 .9258
.9666 -1.0182 .9688 .8927 -1.0117 1.1079 .9195
.9629 -1.0207 .9653 .8866 -1.0294 1.1293 .9142

,T6SIDUAL VARIANCE 1.2873
±'ESIDUAL STANDARD ERROR = 1.1346
COEFFICIENT OF DETER4IINATION = .9990

,. 71 , !,%



DROG RAM SIMULA
FENERATES N~ULTIVARI ABLE UN IVARI ATE SAMPLE

FILE NAME: DFIL1

IIMENSION (M) =6

'* EFFICIENT MNATRIX (C)...
1.00 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000q 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

S0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000 1.0000 0.0000

,!tGMA (SCALING PARAMETER FOR INDEP VARIABLES) = 10.0000

~(INTERCEPT) = 1.0000

*I ARAMETER VECTOR (B) .

,, 1.0000 -1.0000 1.0000 1.0000 -1.0000 1.0000

k (MODEL ERROR STD DEV) = 1.0000

0-)OF O3SN~s 100o
I p~ 0 RAtNDON NOS PRIOR TO S1'1LLA"LION

~RIANCE MATRIX OF X, Y ...
1100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000

0.00100.0000 0.0000 0.0000 0.0000 0.0000 -100.0000 p,

0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 100.0000
0.0000 0.0000 0.0000 100.0000 0.0000 100.0000 200.0000

S0.0000 0.0000 0.0000 0.0000 100.0000 100.0000 0.0000
0.0000 0.0000 0.0000 100.0000 100.0000 200.0000 200.0000

p100.0000 -100.0000 100.0000 200.0000 0.0000 200.0000 701.0000

COEFFICIENT OF DETERMINATION =.9986

: ORRELATION INATRIX OF X, Y ... %
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 .3777
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 -. 3777

.. 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 .3777
0.0000 0.0000 0.0000 1.0000 0.0000 .7071 .7554
0.0000 0.0000 0.0000 0.0000 1.0000 .7071 0.0000

S0.0000 0.0000 0.0000 .7071 .7071 1.0000 .5341
.3777 -.3777 .3777 .7554 0.0000 .5341 1.0000

~f3.SERVATIONS.. .
~P E ~L%;r"T ViARIADL LUST

(FIRST 3 OB3SiS PRINTEDl))~

k-18.3276 -15.0855 -13.7183 -4.2261 13.3911 9.1650 -25.11-26
BS- NO 2:

4.9927 -14.103901 3.3520 -- 240.2808 4.21.14 -16.0693 -16.5696
'::BS N NO 3:

-16. 4380) -6.5698 8 .547. 11.7895 3.1567 1.4.94163 57.1609

1%



OGRANM MREG
JLTIPLE LINEAR REGRESSION ANALYSIS

D7XTA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

1 100 7 7 6
KDICES OF INDEP VARS IN REGRESSION...

1 2 3 4 5 6

XTA...
(FIRST 3 OBSNS)
-18.3276 -15.0855 -13.7183 -4.2261 13.3911 9.1650 -25.1126

4.9927 -14.8901 3.3520 -20.2808 4.2114 -16.0693 -16.5696
16.4380 -6.5698 8.5474 11.7895 3.1567 14.9463 57.1609

,ANS FOR ALL VARIABLES...
-.0472 .4075 -.5128 -.9081 -.1784 -1.0865 -1.8081

, -ANDARD DEVIATIONS FOR ALL VARIABLES...
10.2626 9.8716 10.8903 10.3570 9.4954 14.3035 27.7991

QQRRELATION, MATRIX...
1.0000

~*-.0039 1.0000
.2032 -. 0813 1.0000
.0771 .1454 -.0221 1.0000

-.0281 -.0781 .0677 .0364 1.0000
.0372 .0534 .0289 .7483 .6902 1.0000
.5096 -.2773 .4819 .7073 .0629 .5539 1.0000

LTEP 4INANT .8157E-07

,JVERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSION...
1.0526
.0029 1.0345

-. 2188 .0747 1.0562
4.7693 -.4235 .665658642455*0
4.5012 -.1675 .507953763765*049290965*0

-6.7083 .3750 -.87508098 794*007425025*5011184811*0

•oRODUCT OF MATRIX AND INVERSE...
,5HOULD BE IDENTI'IY MATRIX. IF NOT, ROUNDOFF ERRORS
AVE RUINED SOLUTION... DISREGAID REST OF ANALYSIS.

1.0000
0.0000 1.0000

- .0000 -. OC 0* 1.0000
0.0000 .00OU -. 000" i. 0000
0.0000 -. 0000 0.0000 .5 00 1.0000

.0000 -.000: 0.0000 .5000 .5000 0.0000

' , A ,' ' 'J:l!, C OSS P () ,.. U E IN R l-. "RF ..... . .

.1010):,-0 3
0 .2901T'-00 .10721-03

. 197811, -04 .7016 ;-05 .8996 1,;- 04 "
* .4532E-03 -. 41841-04 .59611E-04 .5522 E+03

.4666E-03 -.18051:104 .4961 E-04 .5U22E+03 .5522E+03



b-.4616E-03 .2683E-04 -. 5674E-04 -. 5522E+03 -. 5522E+03 .5522E+)3

INDEX OF DEP VAR IN REGRLSSION = 7
DICES OF INDEP VAR.S IN RLGRESSION...

1 2 3 4 5 6
REGRESSION COEFFICIENTS...

V 1.0043 -. 9906 1.0079 1.3420 -. 7319 .9718

11.5150 -11.0202 12.2417 .0066 -. 0036 .0048
"D DEVS OF REG COEFS...

.0872 .0899 .0823 203.9857 203.9858 203.9859
k!1'TERCEPT = 1.3038
SIDUAL STANDARD ERROR = 8.6805

fMPLE MULTIPLE CORRELATION COEFFICIENT = 1.0448
SjXMPLE COEFFICIENT OF DETER4INATION = 1.0916
SUM OF SQUARES ATTRIBUTABLE TO REGRESSION, SSAR = 83513.8203
%PGREES OF FREEDOM ASSOCIATED WITH SSAR = 6.0000
EAN SQUARE OF SSAR = 13918.9697
SUM OF SQUARES OF DEVIATIONS FROM REGRESSION, SSDR = -7007.7031
e:GREES OF FREEDOM ASSOCIATED WITH SSDR 93.0000
AN SQOUARE CF SSDR -75.3516
-VALUE = -184.7202

o I

N VN
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OGRA1, ITEREG
STI MATt2S REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

STA FILE NAME: DFIL1

OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO 0? INDEP VARS IN REGRESSION...

100 7 7 6
&DICES OF INDEP VARS IN REGRESSION...

1 2 3 4 5 6

9EGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

PRINT AFTER EVERY 1 ITERATIONS

&TA...
(FIRST 3 OBSNS)
A-18.3276 -15.0855 -13.7183 -4.2261 13.3911 9.1650 -25.1126
' . 4.9927 -14.8901 3.3520 -20.2808 4.2114 -16.0693 -16.5696

16.4380 -6.5698 8.5474 11.7895 3.1567 14.9463 57.1609

, CANS FOR VARIABLES IN REGRESSION,
frPENDENT VARIABLE LAST...

-.0472 .4075 -.5128 -.9081 -.1784 -1.0865 -1.8081

,.bDIANS ...
.3833 .4614 -1.1401 -2.4292 -.7105 -2.5537 -3.3587

&TERQUARTILE RANGES...
14.3750 13.9843 15.3906 13.3203 11.8750 16.3281 37.7148

'EGRESSION COEFFICIENTS, INTERCEPT...
1.1909 -.5521 .9881 1.8828 .0843 .0026 .7074

.9934 -. 9575 1.0006 1.9690 -. 0044 .0051 .9350

.9997 -. 9880 1.0031 1.9819 -. 0136 .0034 .9571

.9999 -.9919 1.0036 1.9856 -.0127 .0010 .9599

.9999 -.9923 1.0037 1.9883 -.0104 -.0014 .9603

.9999 -.9924 1.0037 1.9907 -.0080 -.0039 .9603

.9999 -.9924 1.0037 1.9932 -.0056 -.0064 .9603

.9999 -.9924 1.0037 1.9957 -.0031 -.0088 .9603
. 9999 -. 9924 1.0037 1.9981 -. 0006 -. 0113 .9603

.9999 -.9924 1.0037 2.0006 .0018 -.0137 .9603

RESIDUAL VARIANCE = 1.0021
ASIDUAL S'TANDARD ERROR 1.0011
4OEF'FICI EI'.' OF DETERMINATION .99P7

.

..



&OGRAM SIMULA
WNERATES MULTIVARIABLE UNIVARIATE SAMPLE

NAME: DFIL1

MENSION (M) = 10

EFFICIENT MATRIX (C)...
COEFFT MATRIX IS IDENTITY MATRIX

tGMA (SCALING PARAMETER FOR INDEP VARIABLES) 10.0000

s (INTERCEPT) = 1.0000

RAMETER VECTOR (B)...
N. 1.0000 1.0000 -1.0000 1.0000 1.0000 -1.0000 1.0000 1.0000

-1.0000 1.0000

.IG (MODEL ERROR STD DEV) 1.0000

,,p OF OBSNS = 100
rIP 0 RANDOM NOS PRIOR TO SIMULATION V.

VARIANCE MATRIX OF X, Y...
i 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -
2 0.0000 0.0000 100.0000

0.0000 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 .0000 0.0000 100.0000
0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 -100.0000
0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 0.0000

:% 0.0000 0.0000 100.0000
"" 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000

0.0000 0.0000 100.0000
0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000

". 0.0000 0.0000 -100.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 ".
0.0000 0.0000 100.0000 ,.
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.000 "

* 0.0000 0.0000 100.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

:' 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 100.0000 100.0000
1- 100.0000 100.0000 -100.0000 100.0000 100.0000 -100.0000 100.0000 100.0000 -,

L-100.0000 100.0000 1001.0000

S.?EFFICIENT OF DETERMINATION = .9990

'RRELATIO MATRfX OF X, Y...
1.0000 0.0000 0.0000 0.0000 U.0O0o 0. C000 0.0000 0.00 0

,- 0.0000 0.0000 .3161
0.0000 1.0000 0.0000 0.000O 0.0000 0.0 0 0 0.0000 0.0000
0.0000 0.0000 .3161
0.0000 0.0000 1.0000 0.0000 0.0000 0.000U 0.0600 0.6000 N

,V 0.0000 0.0000 -.3161
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.000 - -I 0.0000 0.0000 .3161

I *,

., "- "''. ,m ." ', " 4 -" ." . " " -. ," " " 4' " '.' ' '''' '. ' '.' • • -. .- "-, -.-. -, . - ,.% - .'.



0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

0.0000 0.0000 .3161
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 -.3161
0.0000 0.0"00 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 O.O0 .3161
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

0.0000 0.0000 .3161
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.0000 0.0000 -.3161
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 .3161
.3161 .3161 -.3161 .3161 .3161 -.3161 .3161 .31-61

-.3161 .3161 1.0000

OBSERVATIONS...
',',PENDENT VARIABLE LAST A,.

- IRST 3 OBSNS PRINTED) ;*,,-,

1OBSN NO 1:
-18.3276 -15.0855 -13.7183 -4.2261 13.3911 -20.8667 -6.9995 4.9927

.- 14.8901 3.3520 25.5442
UBSN NO 2:

4.2114 6.8286 -2.4292 16.4380 -6.5698 8.5474 11.7895 3.1567 -

2 6489 10.2661 38.9543
NSN NO 3:

-10.1245 -8.1323 -8.0151 10.2270 6.5942 -8.9136 3.7036 4.4458

13.3130 20.3052 30.1770 ..- .

= w ~. •,..

•.. ' .
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fjROGRAM MREG
LTIPLE LINEAR REGRESSION ANALYSIS

ATA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 11 11 10I DICES OF INDEP VARS IN REGRESSION...
1 2 3 4 5 6 7 8
9 10

INo

(FIRST 3 OBSNS)
S-18.3276 -15.0855 -13.7183 -4.2261 13.3911 -20.8667 -6.9995 4.9927
-14.8901 3.3520 25.5442

4.2114 6.8286 -2.4292 16.4380 -6.5698 8.5474 11.7895 3.1567
f., 2.6489 10.2661 38.9543

-10.1245 -8.1323 -8.0151 10.2270 6.5942 -8.9136 3.7036 4.4458
13.3130 20.3052 30.1770

AINIS FOR ALL VARIABLES...

.1809 -.0144 -. 8847 -. 0300 -. 4503 -. 2456 .0841 -. 6612
-. 2816 .4231 1.9894

-$TANDARD DEVIATIONS FO ALL V',;XIABLES...

11.2156 10.1579 9.8358 10.7963 9.8302 9.7790 10.1817 8.9774
8.7924 10.4552 32.0968

ORRELATION MATRIX...
, 1.0000

.0715 1.0000

.0254 .0648 1.0000
-.0757 .2606 .1868 1.0000

U -.0717 .1217 .2235 .1323 1.0000
.0586 .0191 -.1219 -.0018 -.0893 1.0000
.3552 .0508 .1240 .1180 -.0356 .1012 1.0000

- .062u -.0388 -.0055 .0173 .1513 -.0569 .0051 1 . 0,
-. 0012 .1444 .0992 .0022 -.1068 -.0386 .1414 -. i32 .
1.0000
-. 0664 -. 0577 .0919 .1316 .1494 -.1056 -. 0247 .0 6 1

' -. 0353 1.0000
.2760 .3818 -. 0691 .4557 .4252 -. 2753 .2650 .3824
.2871 .3955 1.0000

YTERMINANT .6387E+00

iVERSE OF THE PART 0 "3' ThE CORR MATRIX USED IN REGRESSIO(..
1.0337
-.1058 1.1368
..0619 .0245 1.1,325
.1087 -.3037 -.1702 1.1-582
.0725 -. 1531 -. 2427 -. 0484 1.1465

-.0457 -.0205 .1248 -. 0244 .0498 1.0495
S-.0552 0048 -.1244 -. 1179 .0534 -. 1206 1. i3'

1.0906
* . . • ., _ .,...%d" .0 5.0 4. 38-. 12 - 1 5.0 2-. 3-.[ ..-

043 175 -H5 66 19403 ,2 .



S .0352 .1086 -.0447 -.1430 -.1252 .0866 .0271 -.0393
.0076 1.0630

SODUCT OF MATRIX AND INVERSE...
OULD BE IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS

HAVE RUINED SOLUTION... DISREGARD REST OF ANALYSIS.

1.0000 1000
.0000 1.0000

S -.0000 -. 000* 1. 0000
/ .- 0000 •000" -.000" 10000

-.0000 -.000* -.000* -.000* 1.0000
.0000 -. 000* -. 000* .000* -. 000* 1.0000
.0000 -. 000* -. 000* -. 000* .000* -. 000* 1.0000
.0000 .000* -.000* .000* .000* -.000* .000* 1.0000

- -.0000 .000* .000* -.000* -.000* -.000* .000* -.00*
1.0000

" 0.0000 -.0000 -.000* 0.0000 -.0000 0.0000 -.0000 0.0000
-.0000 1.0000

P.VERSE OF THE PART OF THE CROSS PROD IMATRIX USED IN REGRESSION...
.•8301E-04 .,

-. 9382E-05 .1113E-03
-. 5672E-05 .2478E-05 .1182E-03
.9068E-05 -. 2797E-04 -. 1619E-04 .1004E-03
.6643E-05 -.1549E-04 -.2536E-04 -.4608E-05 .1198E-03

-. 4213E-05 -. 2089E-05 .1311E-04 -. 2332E-05 .5233E-05 .1109E-03
iC .4879E-05 .4724E-06 -.1255E-04 -.1083E-04 .5385E-05 -.1223E-04 .l040E-.J.

4861E-05 3783E-05 .4391E-05 -.1294E-06 -.1668E-04 .6063E-05 -. 4758E-
.4489E-05 -.1984E-04 -.1350E-04 .6772E-05 .1629E-04 .7464E-05 -.1612E-kW.

i .1425E-03-"
.3029E-05 .1033E-04 -.4338E-05 -.1279E-04 -.1231E-04 .8555E-05 .257 3E'-
.8335E-06 .9823E-04

:.NDEX OF DEP VAR IN REGRESSION 11
0NDICES OP INDEP VARS IN REGRE'S-LON...

1 2 3 4 5 6 7 8 %

9 10
'.GRESSION COEFICIE rS ...

.9941 .9888 -. 9915 .9903 .9758 -. 9970 .9946 I.C22 .* ,
.-." -1.0133 .9899
0-VALUES... K

99.2642 85.2707 -82.9539 89.9310 81.0920 -86.1448 88.7209 01.>3: r
m -77.2245 90.8634
• "'D DEVS OF L''c CUFFS...

.0100 .011.6 .0120 .0110 .0120 .0116 .0112 Oi2,',

.0131 .0109
:: 4TERCEPT 1. 0589
1SIDUAL STA >D,)AD ERO, = 1.0992
SAMPLE MULI [l, C RJLATIO CJK'ICI,, = .9995
P 4AMPLE CO:!"[ > ' UT 0.>' ' O 75 L~_,.."T IL ,T!UP -- .9q893.'

.'uJi OF SQU7A1kt, A\J i.'J2TP, IU!AILL 'O RG>,SS[()N, 5bAi{ -- 1U1282. " 7U <

DEGREES OF F 4I,i Ac :Iv: ";r " C, 1 j' '"

0N 01"RE S.S5AR 1. L 8 3 . 2 7 3A, OF SQt -:.RES OF Dl-VlA' iO:"L- 107.53 12"" " ~ t
oF E'/'20 5 ,QM R .2, t IIOR0", ',,,=107 .531 2 .

L,,:, ,,' ', .. . ' F LLLPOM.. ,\,J,]C [, , .,: . " L.V* : ,-'.00 t

fEAN SQORP: O,-' SSDR -- 1. 20 e 2
';.-VALUE 8432.4961.



OGRAM ITEREG
'STIMATES REGRESSION COEFFICIENTS BY AN ITERPIVE MLTHOD

tTA FILE NAME: DFIL-

NO OF OBS, NO OF VARS, INDEX O? DEP VAR
TN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 11 11 10
DICES OF INDEP VARS IN REGRESSION...

1 2 3 4 5 6 7 8
9 10

REGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

"RI'NT AFTER EVERY 1 ITERATIONS

TA....
IRST 3 OBSNS)

" -18.3276 -15.0855 -13.7183 -4.2261 13.3911 -20.8667 -6.9995 4.9927
-14.8901 3.3520 25 .5442

4.2114 6.8286 -2.4292 16.4380 -6.5698 8.5474 11.7895 3.1567
2.6489 10.2661 38.9543

-10.1245 -8.1323 -8.0151 10.2270 6.5942 -8.9136 3.7036 4.4458
, 13.3130 20.3052 30.1770

.'1ANiS FOR" VARIABLES IN REGRESSION,
I)E.PENDFNT VARIABLE LAST...

.1809 -. 0144 -. 8847 -. 0300 -. 4503 -. 2456 .0841 -. 6612
* -.2816 .4231 1.9894

2DIANS.. .
.1880 .8130 -.7495 .5786 -.8276 -.2026 -1.4136 -1.216'3

-. 0464 .1489 .3645

I ERQU JRTILE RANGES...
15.4688 14.0235 12.7734 16.7969 13.5547 10.8985 15.6250 10.9766
12.5390 14.8828 38.5937

ldC; ,SON COE??.ECILNTS, INTERCET ...
.7239 1.1009 -.1421 1.1834 1.3138 -1.3654 .8399 1.2278

-. 9845 .6267 2.2392
S.0218 .7820 -1.0716 1.0741 1.0202 -1.0831 1.0582 1.0402 "
.9638 .9634 1.0131

1.0310 .9516 -1.0316 .9993 .9905 -.9390 1.0075 1.0262
-1.0061 .9872 1.0298
1.0052 .9900 -.9849 .9904 .9751 -. 9918 1.0021 1.0175

-1.0234 .9b35 1.0598
.9931 9934 -. 9748 .9903 .9713 -. 99,2 1.0039 1 .01,,7

*' -1.0269 .9825 1.0652
9971 9934 - .9736 .9903 .9709 993 ]. .93 1.0046 1 0141

-1.0273 .9821 1.0656
.9970 .9934 -.9735 .9902 .9709 -.9953 1.0047 1.0111

-1 .0273 .9N24 L.065 6
9969 9 -. 9735 .9901 . 970 8 99 5 1.0047 1 .0141

. .9969 .9934 -. 9735 .9901 9 )7-.5 .-1.0274 .9824 1.0655

.9969 .9935 -. 9735 .9901 .9702 -. 5953 1.0047 1.0140
__ -1.0 74 .982 1.065



E -1.0274 .9824 1.0656

F SIDUAL VARIANCE = 1.2819

SIDUAL STANDARD ERROR = 
1.1322

COEFFICIENT OF DETERMINATION 
.9988
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SUROGRAM SIMULA
PNERATES MULTIVARIABLE UNIVARIATE SAMPLE

FILE NAME: DFILI

4MENSION (M) = 10

,,)EFFICIENT MATRIX (C)...
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000
.1000 .1000 1.0000 .1000 .1000 .1000 .1000 .1000
.1000 .1000

"' 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
, 0.0000 0.0000

.2000 .2000 .2000 .2000 1.0000 .2000 .2000 .2000: .2000 .2000
0.2000 0.2000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000

.3000 .3000 .3000 .3000 .3000 .3000 1.0000 .3000

.3000 .3000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
0.0000 0.0000

*,. .4000 .4000 .4000 .4000 .4000 .4000 .4000 .4000
1.0000 .4000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 1.0000

SIGMA (SCALING PARAMETER FOR INDEP VARIABLES) 10.0000

:: (INTERCEPT)= 1.0000

PARAMETER VECTOR (B) ...

1.0000 1.0000 -1.0000 1.0000 1.0000 -1.0000 1.0000 1.0000
-1.0000 1.0000

.. IG (MODEL ERROR STD DEV) = 1.0000

NO OF OBSNS = 100
KIP 0 RANDO4 NOS PRIOR TO SIMULATION

'.IARIANCE MATRIX OF X, Y...
100.0000 0.0000 10.0000 0.0000 20.0000 0.0000 30.0000 0.0000

-, 40.0000 0.0000 100.0000
0.0000 100.0000 10.0000 0.0000 20.0000 0.0000 30.0000 0.0000
40.0000 0.0000 100.0000

1) 10.0000 10.0000 109.0000 10.0000 46.0000 10.0000 64.0000 1.0.0000
82.0000 10.0000 -41.0000
0.0000 0.0000 10.0000 100.U000 20.0000 0.0000 30.0000 0.0000

40.0000 0.0000 100.0000
S20.0000 20.0000 46.0000 20.0000 136.0000 20.0000 98.0000 20.0000
124.0000 20.0000 144.0000

0.0000 0.0000 10.0000 0.000 20.o0000 100.000( 30.0000 0.0000
:: 40.0000 0.0000 -100.0000

30.0000 30.0000 64.0000 30.0'000 98.0000 30.0000 181.0000 30.0000
166.0000 30.0000 169.0000

0.0000 0.0000 10.0000 0.0000 20.0000 0.0000 30.0000 100.0000



S40.0000 0.0000 100.0000
40..0000 40.0000 82.0000 40.0000 124.0000 40.0000 166.0000 40.0000E244.0000 40.0000 124.0000
0.0000 0.0000 10.0000 0.0000 20.0000 0.0000 30.0000 0.0000

40.0000 100.0000 100.0000
i100.0000 100.0000 -41.0000 100.0000 144.0000 -100.0000 169.0000 100.0000

124.0000 100.0000 831.0001

COEFFICIENT OF DETERMINATION = .9988

IRRELATION MATRIX OF X, Y...
1.0000 0.0000 .0958 0.0000 .1715 0.0000 .2230 0.0000

.2561 0.0000 .3469
0.0000 1.0000 .0958 0.0000 .1715 0.0000 .2230 0.0000

.2561 0.0000 .3469

.0958 .0958 1.0000 .0958 .3778 .0958 .4556 .0958

A .5028 .0958 -.1362
" 0.0000 0.0000 .0958 1.0000 .1715 0.0000 .2230 0.0000

.2561 0.0000 .3469

.1715 .1715 .3778 .1715 1.0000 .1715 .6246 .1715

.6807 .1715 .4283
0.0000 0.0000 .0958 0.0000 .1715 1.0O00 .2230 0.0000 '.

.2561 0.0000 -.3469

.2230 .2230 .4556 .2230 .6246 .2230 1.0000 .2230

.7899 .2230 .4358
0.0000 0.0000 .0958 0.0000 .1715 0.0000 .2230 1.0000

.2561 0.0000 .3469
* .2561 .2561 .5028 .2561 .6807 .2561 .7899 .2561

1.0000 .2561 .2754
j 0.0000 0.0000 .0958 0.0000 .1715 0.0000 .2230 0.0000

.2561 1.0000 .3469

.3469 .3469 -.1362 .3469 .4283 -.3469 .4358 .3469

.2754 .3469 1.0000

o wSERVATIONS...
PENDENT VARIABLE LAST
IRST 3 OBSNS PRINTED)

i3SN NO 1:
-18.3276 -15.0855 -19.5842 -4.2261 -3.7627 -20.8667 -26.6131 4.9927

S-37.8853 3.3520 17.6379
3-78SN NO 2 : .

4.2114 6.8286 3.3025 16.4380 5.7217 8.5474 24.7190 3.1567

23.5444 10.2661 37.5481
-',3SN NO 3:

-10.1245 -8.1323 -4.8733 10.2270 9.9560 -8.9136 9.6135 4.4458

17.3491 20.3052 32.2707

4 . '.



OGRAM MREG
LTIPLE LINEAR REGRESSION ANALYSIS

DATA FILE NAME: DFILI

I OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...
K 100 11 11 10

DICES OF INDEP VARS IN REGRESSION...
1 2 3 4 5 6 7 8

41TA... 1
(FIRST 3 OBSNS)
%4-1863276 -15.0855 -19.5842 -4.2261 -3.7627 -20.8667 -26.6131 4.9927
,-37.8853 3.3520 17.6379

4.2114 6.8286 3.3025 16.4380 5.7217 8.5474 24.7190 3.1567
23.5444 10.2661 37.5481

O-10.1245 -8.1323 -4.8733 10.2270 9.9560 -8.9136 9.6135 4.445817.3491 20.3052 32.2707

kANS FOR ALL VARIABLES...

.1809 -.0144 -.9842 -.0300 -.7362 -.2456 -.5050 -.6612
-.9207 .4231 1.8532

LANDARD DEVIATIONS FOR ALL VARIABLES...
11.2156 10.1579 11.0153 10.7963 12.6680 9.7790 15.3408 8.9774

0 16.7076 10.4552 29.6484

ORRELATION MATRIX...1.0000

.0715 1.0000

.1161 .2030 1.0000
-.0757 .2606 .3178 1.0000
.1219 .3381 .5962 .3737 1.0000
.0586 .0191 -.0289 -.0018 .0647 1.0000
.2317 .3488 .6098 .4160 .6869 .1958 1.0000

-.0626 -.0388 .0732 .0173 .2289 -.0569 .1695 1.0000
.2519 .4437 .6629 .4428 .7419 .1700 .8684 .1628

1.0000
-. 0664 -. 0577 .1822 .1316 .2812 -. 1056 .2220 .0684

.2746 1.0000
S.2985 .4192 .1470 .4788 .5795 -. 3112 .5123 .3875

.4474 .4197 1.0000

LTERMINANT = .2064E-01

rQNVERSE OF THE PART OF THE CORR MATRIX USED IN REGRESSION...
1.1878
.1190 1.4176

L .1437 .3235 2.0519
.2815 -.0652 .0275 1.3480
.0597 -.1781 -. 4746 -. 0985 2.5064
.0861 .1732 .3451 .1239 .0269 1.1623

'4 -.1331 .1639 -.2461 -.2198 -.3721 -.2769 4.3004
. :1608 .2041 .2125 .1265 -.2961 .1486 -.1257 1.1297

-.5956 -1.0093 -1.1262 -.4446 -1.0076 -.4453 -3.1919 -.2302
6.3430

E ;'m' % ', % ~ . %



I .1970 .3345 .1700 .0356 -.2294 .2253 .0804 .0799
-. 6155 1.2307

I ODUCT OF MATRIX AND INVERSE...
SHOULD BE IDENTITY MATRIX. IF NOT, ROUNDOFF ERRORS
"AVE RUINED SOLUTION... DISREGARD REST OF ANALYSIS.

t .0000
-.0000 1.0000

S .0000 .000* 1.0000
.0000 .000* .000* 1.0000
.0000 .000* .000* .000* 1.0000
.0000 .000* .000* .000* .000* 1.0000
.0000 .000* -.000* .000* .000* .000* 1.0000

--.0000 -QQQ* .000* -.000* .000* -.000* .000* 1.0000
.0000 .000* .000* *QQQ* .000* .000* .000* .000*

S1.0000
.0000 .000* .000* .000* -.0O0* .000* .000* .000*

-.0000 1.0000

XVERSE OF THE PART OF THE CROSS PROD MATRIX USED IN REGRESSION...
1 l .9538E-04

.1055E-04 .1388E-03
S.1 175E-04 .2920E-04 .1708E-03
.2348E-04 -.6005E-05 .2334E-05 .1168E-03
.4242E-05 -.1398E-04 -.3436E-04 -.7272E-05 .1578E-03

~ 7931E-05 .1761E-04 .3236E-04 .1185E-04 .2191E-05 .1228E-03
-:7813E-05 .1062E-04 -.1471E-04 -.1341E-04 -.1934E-04 -.1865E-04 .1846E-\.
.1613E-04 .2261E-04 .2170E-04 .1318E-04 -.2629E-04 .1710E-04 -.9220E-

-. 3210E-04 -. 6007E-04 -.6181E-04 -.2490E-04 -.4809E-04 -.2753E-04 -.1258E-.

i 197-0 .3182E-04 .1491E-04 .3183E-05 -.1749E-04 .2226E-04 .50655-
-. 35595-04 .1137E-03

&NDEX OF DEP VAR IN REGRESSION 1
INDICES OF INDEP VARS IN REGRESSION ...

1 2 3 4 5 6 7 8
9 10

REGRESSI[ON COEFFICIENTS ...
1.0007 .9954 -.9832 .9969 .9780 -.9903 1.0018 1.0288
:-1.0111 .9965

.- VALUES. ..
93.2158 76.8713 -68.4353 83.9122 70.8374 -81.3103 67.0802 78.6530

S-60.7164 85.0077
)-'TD DEVS OF REG COEFS ...

.0107 .0129 .0144 .0119 .0138 .0122 .0149 .0131
% .0167 .0117

0-1JTERCEPT = 1.0589
,CSIDUAL, STANDARD ERROR = 1.0992
SA1PLE MULTIPLE CORRELATION COEFFICIENT = .9994

~AMLECOEFFICIENT OF' DETERMINATION = .9988
':l'lOF SQUARES ATTRIBUTABLE TO REGRESSION, SSAR - 86916.2109

DEGREES OF FREEDOM ASSOCIATED WITH SSAR 10.0000
k AN SQUARE OF SSI\R = 8691.6211

P4M OF SQUARES OF DEVIATIONS FROMI REGRESSION, SSDR =107.5391

(EGPE ,S OF FREEDOM%, ASSOCIATED WITH SSDR = 89.0000
MEAN~ SQUA\RE OF SSDR = 1.2083

VALUE= 7193.2402



OGRAM ITEREG
TIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

DATA FILE NAME: DFILI

L OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 11 11 10IDICES OF INDEP VARS IN REGRESSION...
1 2 3 4 5 6 7 8

9 10

EGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

RINT AFTER EVERY 4 ITERATIONS

DATA...
NTIRST 3 OBSNS)
Z -18.3276 -15.0855 -19.5842 -4.2261 -3.7627 -20.8667 -26.6131 4.9927

-37.8853 3.3520 17.6379
4.2114 6.8286 3.3025 16.4380 5.7217 8.5474 24.7190 3.1567

23.5444 10.2661 37.5481
-10.1245 -8.1323 -4.8733 10.2270 9.9560 -8.9136 9.6135 4.4458
17.3491 20.3052 32.2707

tANS FOR VARIABLES IN REGRESSION,
DEPENDENT VARIABLE LAST...

.1809 -. 0144 -. 9842 -. 0300 -. 7362 -. 2456 -. 5050 -. 6612
-.9207 .4231 1.8532

VDINS...
.1880 .8130 -.8577 .5786 -.0596 -.2026 .3088 -1.2183 i

-.1978 .1489 -.7137

&TERQUARTILE RANGES...
15.4688 14.0235 15.0469 16.7969 17.5469 10.8985 23.4218 10.9766
24.0156 14.8828 36.7695

&EGRESSION COEFFICIENTS, INTERCEPT...
.9768 .7948 -1.0648 1.0780 .9434 -1.0708 .6114 .9883

-.5644 .8971 1.1667
.9779 .9134 -1.0462 1.0049 .9431 -1.0295 .8290 1.0049

-.7777 .9509 1.0958
.9858 .9527 -1.0003 1.0032 .9334 -1.0069 .9064 1.0132

-.8737 .9705 1.0865
.9919 .9696 -.9829 1.0030 .9399 -.9985 .9424 1.0169

-.9231 .9779 1.0816
.9951 .9782 -.9755 1.0022 .9450 -.9946 .9614 1.C183

-.9489 .9815 1.0786

IRINT AFTER EVERY 4 ITERATIONS
.9967 .9827 -. 9717 1.0016 .9476 -.9926 .9713 1.0198

-. 9624 .9835 1.0770
.9975 .9850 -. 9698 1.0014 .9489 -. 9915 .9765 1.02033 .9693 .9845 1.0762

RESIDUAL VARIANCE = 1.3789F SIDUAL STANDARD ERROR 1.1743



I EFFICIENT OF DETERMINATION = .9984
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I OGRAiM SIMULA
NERATES MULTIVARIABLE UNIVARIATE SAMPLE

tjLE NAME: DFIL1

[MENSION (M) = 10

I EFFICIENT MATRIX (C)...
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000
.000 1.0000 .1000 .1000 .1000 .1000 .1000 .1000

.1000 .1000

.2000 .2000 1.0000 .2000 .2000 .2000 .2000 .2000

.2000 .2000

.3000 .3000 .3000 1.0000 .3000 .3000 .3000 .3000

.3000 .3000

.4000 .4000 .4000 .4000 1.0000 .4000 .4000 .4000

.4000 .4000

.5000 .5000 .5000 .5000 .5000 1.0000 .5000 .5000

.5000 .5000
i .6000 .6000 .6000 .6000 .6000 .6000 1.0000 .6000

.6000 .6000

.7000 .7000 .7000 .7000 .7000 .7000 .7000 1.0000

.7000 .7000

.8000 .8000 .8000 .8000 .8000 .8000 .8000 .8000
1.0000 .8000
.9000 .9000 .9000 .9000 .9000 .9000 .9000 .9000
.9000 1.0000

SIGMA (SCALING PARAMETER FOR INDEP VARIABLES) = 10.0000

0 (INTERCEPT) = 1.0000

RPIETER VECTOR (B)...

1.0000 1.0000 -1.0000 1.0000 1.0000 -1.0000 1.0000 1.0000
-1.0000 1.0000

ZIG (MODEL ERROR STD DEV) = 1.0000

iO OF OBSNS = 100
*IP 0 RANDOM NOS PRIOR TO SIMULATION

vARIANCE MATRIX OF X, Y...
100.0000 10.0000 20.0000 30.0000 40.0000 50.0000 60.0000 70.0000
8 0.0000 90.0000 250.0000
10.0000 109.0000 46.0000 64.0000 82.0000 100.0000 118.0000 136.0000

154.0000 172.0000 391.0000
20.0000 46.0000 136.0000 93.0000 124.0000 150.0000 176.0000 202.0000

^i228.0000 254.0000 406.0000
30.0000 64.0000 98.0000 181.0000 166.0000 200.0000 234.0000 268.0000r 302.0000 336.0000 679.0002
40.0000 82.0000 124.0000 166.0000 244.0000 250.0000 292.0000 334.0000
376.0000 417.9999 826.0000
50.0000 100.0000 150.0000 200.0000 250.0000 325.0000 350.0000 400.0000

j 450.0001 500.0000 924.9999
60.0000 118.0000 176.0000 234.0000 292.0000 350.0000 424.0000 466.0000

524.0000 582.0000 1126.0001I 70.0000 136.0000 202.0000 268.0000 334.0000 400.0000 466.0000 540.9999



I 597.9999 664.0001 1279.0002
80.0000 154.0000 228.0000 302.0000 376.0000 450.0001 524.0000 597.9999

S676.0000 745.9999 1426.0000
90.0000 172.0000 254.0000 336.0000 417.9999 500.0000 582.0000 664.0001

745.9999 829.0000 1591.0002
250.0000 391.0000 406.0000 679.0002 826.0000 924.9999 1126.0001 1279.0002I426.0000 1591.0002 3386.0010

COEFFICIENT OF DETERMINATION = .9997

RRELATION MATRIX OF X, Y...
1.0000 .0958 .1715 .2230 .2561 .2774 .2914 .3010
:3077 .3126 .4296
.0958 1.0000 .3778 .4556 .5028 .5313 .5489 .5601
.5673 .5722 .6436
.1715 .3778 1.0000 .6246 .6807 .7135 .7329 .7447 :i
.7520 .7565 .5983
.2230 .4556 .6246 1.0000 .7899 .8246 .8447 .8564
.8634 .8674 .8673
.2561 .5028 .6807 .7899 1.0000 .8878 .9078 .9193
.9258 .9294 .9087
.2774 .5313 .7135 .8246 .8878 1.0000 .9429 .9539
.9601 .9633 .8818
.2914 .5489 .7329 .8447 .9078 .9429 1.0000 .9730
.9788 .9817 .9397
.3010 .5601 .7447 .8564 .9193 .9539 .9730 1.0000
.9888 .9915 .9450
.3077 .5673 .7520 .8634 .9258 .9601 .9788 .9808

1.0000 .9965 .9425
.3126 .5722 .7565 .8674 .9294 .9633 .9817 .9915
.9965 1.0000 .9496
.4296 .6436 .5983 .8673 .9087 .8818 .9397 .9450 W7,

.9425 .9496 1.0000

OBSERVATION'.S,...

'PENDENT VARIABLE LAST .

IRST 3 OBSNS PRINTED)
OBSN NO 1:

-18.3276 -20.8147 -25.4502 -24.6717 -20.9165 -46.6223 -46.2266 -49.166-8
:'-60.8804 -64.805G -113.0040

I3SN NO 2:
4.2114 11.6345 9.0342 27.9729 18.0132 31.7175 37.6484 39.3 :

44.4399 50.4255 105.6835
BSN NO 3:
-10.1245 -4.9788 -1.7315 14.1799 13.3178 7.2448 15.5234 17.750
21.3852 23.0935 41.3710



SOGRAM MREG
LTIPLE LINEAR REGRESSION ANALYSIS

! TA FILE NAME: DFILI

0 OF OBS, NO OF VARS, INDEX OF DEP VAR
TN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 11 11 10
tDICES OF INDEP VARS IN REGRESSION...

1 2 3 4 5 6 7 8
9 10

DATA...
jIRST 3 OBSNS)
,-18.3276 -20.8147 -25.4502 -24.6717 -20.9165 -46.6223 -46.2266 -49.1668
-60.8804 -64.8050 -113.0040

4.2114 11.6345 9.0342 27.9729 18.0132 31.7175 37.6484 39.3684
44.4399 50.4255 105.6835

,-10.1245 -4.9788 -1.7315 14.1799 13.3178 7.2448 15.5234 17.7160
21.3852 23.0935 41.3710

W/ANS FOR ALL VARIABLES...
.1809 -.2009 -1.0837 -.5849 -1.0220 -1.0626 -1.0941 -1.5141

-1.5599 -1.6493 -1.1327

6rANDARD DEVIATIONS FOR ALL VARIABLES...
11.2156 11.2752 12.9436 16.0995 17.7264 19.7445 23.7825 26.1492
29.5282 32.9943 67.4830

CORRELATION MATRIX...
-" 1.0000

.1514 1.0000

.1783 .5113 1.0000

.1608 .6446 .7567 1.0000

.2139 .6434 .8100 .8599 1.0000

.2814 .6573 .7846 .8749 .9099 1.0000 .

.2753 .6649 .8248 .8957 .9292 .9590 1.0000

.2757 .6777 .8313 .9052 .9497 .9627 .9813 1.0000

.2854 .6933 .8404 .9095 .9467 .9672 .9866 .9921
1.0000
.2853 .6878 .8412 .9138 .9523 .9684 .9866 .9945
.9977 1.0000
.3872 .7512 .7412 .9097 .9324 .9197 .9560 .9659
.9638 .9680 1.0000

OnTE14INANT .1048E-08

VERSE OF THE PA}RT OF THE CORR MATRIX USED IN REGRESSION...
1.2492

.1726 2.0793
•3164 .5738 3.7911
: 7514 -.0601 .3480 6.4310
.7383 .2471 -.1940 .8414 11.6186
.1613 .4591 1.6436 .8575 2.0441 17.2304
.6074 1.2267 .5277 1.1366 5.0786 -.8493 42.3096

-2.0589 -3.7660 -4.9050 -5.9452 -13.3671 -15.6544 -40.4673 -21.7312
-2#0589 -3.7660 -4.9050 -5.9452 -13.3671 -15.6544 --40.4673 28.420

* 90.7163



2.0589 3.7660 4.9050 5.9452 13.3671 15.6544 40.4673 -38.8296
-90.7163 55.6381

FlODUCT OF MATRIX AND INVERSE...
HOULD BE IDENTITY MATRIX. IF NOT, ROL,.DOFF ERRORS

HAVE RUINED SOLUTION... DISREGARD REST OF ANALYSIS.
1.2556
.5865 1.0617
.7119 .0645 1.9018
.7687 .0606 .9678 4.0301
.7869 .0347 .9728 3.1224 7.2449
.8072 .0493 1.0068 3.1927 6.3799 5.4214
.8210 .0476 1.0224 3.2494 6.4941 4.4960 8.3334
.8035 -.0005 .9697 3.2154 6.4452 4.3768 6.9886 -85.4023
.8328 .0584 1.0445 3.2812 6.5137 4.5306 7.3777 -85.3785

49.9736
i .8442 .0575 1.0576 3.3284 6.6131 4.5963 7.4849 -85.6612
49.7392 -63.9288

i OF THE PART OF THE CROSS PROD MATRIX USED IN REGRESSION...
•: .i003E-03

.1379E-04 .1652E-03

.2202E-04 .3971E-04 .2286E-03

.4204E-04 -. 3344E-05 .1687E-04 .2506E-03

.3751E-04 .1249E-04 -. 8540E-05 .2978E-04 .3735E-03

.7379E-05 .2083E-04 .6496E-04 .2725E-04 .5899E-04 .4464E-03

.2300E-04 .4621E-04 .1732E-04 .2999E-04 .1217 E-03 -. 1827E-04 .7556E-
" -.7091E-04 -.1290E-03 -.1464E-03 -.1426E-03 -. 2913E-03 -. 3063E-03 -.6573E-
-. 6280E-04 -.1143E-03 -.1296E-03 -. 1263E-03 -. 2580E-03 -. 2712E-03 -. 5821E-."1 .051E-02 _

.5620E-04 .1023E-03 .160E-03 .1131E-03 .2309E-03 .2427E-03 .5209E -

-. 9405E-03 .5162E-03

!;DEX OF DEP VAR IN REGRESSION ii
iNDICES OF INDEP VARS IN REGRESSION...

1 2 3 4 5 6 7 8
l'-3GRESSION COEFFICIENTS...9 i0

.9687 .8740 -1.0836 .9737 .9768 -1.1008 .6742 -169.3762
-39.3268 14.5951

-VALUES...
.1583 .1113 -. 1173 .1007 .0827 -. 0853 .0401 -15.4745

-1.9858 1.0515
,j fD DEVS OF REG COEFS...

6.1186 7.8522 9.2360 9.6712 11.8062 12.9079 16.7925 10.9455
19.8043 13.8804

N TERCEPT = -294.8914
SIDUAL STANDARD ERROR = 610.9026

SAMPLE MULTIPLE CORRELATION COEFFICIENT = 8.5249
,AMPLE COEFFICIENT OF DETERMINATION = -72.6732
UM OF SQUARES ATTRIBUTABLE TO REGRESSION, SSAR =-32764136.0000

DEGREES OF FREEDOM ASSOCIATED WITH SSAR 10.0000
EAN SQUARE OF SSAR = -3276413.5000
M OF SQUARES OF DEVIATIONS FROM REGRESSION, SSDR = 33214978.0000

EGREES OF FREEDOM ASSOCIATED WITH SSDR 89.0000
EAN SQUARE OF SSDR = 373202.0000
-VALUE = -8.7792

JW9W
' .. h



I
.OGRAM ITEREG

&TIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

k TA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAR
&N REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 11 ii 10
k-DICES OF INDEP VARS IN REGRESSION...

1 2 3 4 5 6 78
F9 10

REGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

RINT AFTER EVERY 40 ITERATIONS

DATA...
.,-IRST 3 OBSNS)
•*,7 -18.3276 -20.8147 -25.4502 -24.6717 -20.9165 -46.6223 -46.2266 -49.1668

-60.8804 -64.8050 -113.0040
. 4.2114 11.6345 9.0342 27.9729 18.0132 31.7175 37.6484 39.3684
*y 44.4399 50.4255 105.6835

-10.1245 -4.9788 -1.7315 14.1799 13.3178 7.2448 15.5234 17.7160
21.3852 23.0935 41.3710

,%;EANS FOR VARIABLES IN REGRESSION,
DEPENDENT VARIABLE LAST...

1809 -.2009 -1.0837 -.5849 -1.0220 -1.0626 -1.0941 -1.5141
-1.5599 -1.6493 -1.1327

-NEDIANS...
.1880 .0173 -1.1221 -1.7224 .4272 -1.7786 -1.4766 -3.6473

-2.5523 -2.8128 -.5040

!TERQUARTILE RANGES...
15.4688 15.2031 18.2188 24.4649 27.7266 30.3711 36.3750 39.9323 .3.,.

49.3359 51.7383 93.7500

'_EGRESSION COEFFICIENTS, INTERCEPT...
1.0906 1.0271 -. 9463 .8936 1.8787 1.0710 .2496 .0809
.1764 -.4496 1.3606

1.0074 1.0439 -.8263 1.0221 1.0995 .2052 1.1456 .1096
.3533 -.4498 1.1670

1.0093 1.0351 -.8215 1.1452 .9199 -.5670 1.5165 .3191 .[.

.2901 -.3364 1.0498
1.0185 1.0238 -.8448 1.1827 .9041 -.8994 1.5305 .5827
.1307 -.2183 1.0337

I 1.0240 1.0140 -. 8707 1.177P .9241 -. 9924 1.4104 .817-
• -.0271 -.1211 1.0600

", I N T AFTER EVERY 40 IT E RA'I (IOS
1.0265 1.0061 -. 8934 1.1602 .9481 -. 9931 1.2661 .9991
-. 1501 -. 0466 1.0947
1.0275 .9998 -.9118 1.1422 .96 95  -.9673 1.1377 1.1284
-.2356 .0087 1.1252
1.0278 .9949 -.9263 1.1272 .9971 -.9338 1.0349 1.2158
-.2907 .0490 1.14'4
1.0278 .9912 -.9374 1.1160 1.0012 -.9145 .9568 1.2720



-.3238 .0781 1.1650
1.0277 .9883 -.9458 1.1078 1.0121 -.8958 .8995 1.3060

N -.3421 .0988 1.1762

RESIDUAL VARIANCE = 4.1393
SIDUAL STANDARD ERROR = 2.0345

#EFFICIENT OF DETER INATIO =  .9991

E... %
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r OGRAM SIMULAL NERATES MULTIVARIABLE UNIVARIATE SAMPLE

LE NME:DFIL1

MENSION (M) = 10

N)EFFICIENT MATRIX (C)...
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
: 0.0000 0.0000

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1..0000 0.0000 0.0000
0.0000 0.0000-, 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 .

0.0000 0.0000
,-. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
0.0000 0.0000 . -

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
" 1.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
1.0000 0.0000

SIGMA (SCALING PARAMETER FOR INDEP VARIABLES) = 10.0000

0 (INTERCPT) 1.0000

~RAI.IETER VECTOR I)..

1.0oo .o0000 -1.o000 1.0000 1.0000 -1.0000 1.0000 1.0000
- 1.i0000 1.0000

:-:IG (MODEL ERROR STD DEV) = 1.0000

-O OF OBSNS = 100
.(KIP 0 RANDOM NO.3 PRIOR TO SIMULATION

VARIANCE MATRIX OF X, Y...

100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 100.0000
0.0000 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 100.0000

0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 -100.0000
0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 100.0000
0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 0.0000
o.0000 0.0000 ' 0.0000

, 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 0.0000 ,

0.0000 0.0000 -100.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000 ,-
0.0000 0.0000 100.0000 o

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000



0.0000 100.0000 200.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

I100.0000 100.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.0000

100.0000 200.0000 200.0000
i100.0000 100.0000 -100.0000 100.0000 100.0000 -100.0000 100.0000 200.0000
0.0000 200.0000 1101.0000

COEFFICIENT OF DETERMINATION = .9991

IORRELATION MATRIX OF X, Y...

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 .30140.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 .3014

, 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 -. 3014
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 .3014
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 ;.

• 0.0000 0.0000 .3014
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 -. 3014
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 .3014 -=
0. 0000 0. 0000 0. 0000 0. 0000 O,.0000 0. 0000 0. 0000 1. 0000 lw, .

0.0000 .7071 .6027
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.OCO0
1.0000 .7071 0.0000
0 .0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 .7071
.7071 1.0000 .4262
.3014 .3014 -. 3014 .3014 .3014 -. 3014 .3014 .6027

• 0.0000 .4262 1.0000

OBSERVATIONS...
jEPENDENT VARIABLE LAST
,IRST 3 OBSNS PRINTED)
&BSN NO 1: ...

-18.3276 -15.0855 -13.7183 -4.2261 13.3911 -20.8667 -6.9995 4.9927
- Pg. .8901 -9.8975 12.2946

-BS N NO 2:
4.21-1-4 6.8286 -2.4292 16.4380 -6.5698 8.5474 11.7895 3.1567

m 2.6489 5.8057 34.4939
.>BS N NO 3:

-10.1245 -8.1323 -8.0151 10.2270 6.5942 -8.9136 3.7036 4.4458 ,.
13.3130 17.7588 27.6306 "

!li



SOGRAM MREG

LTIPLE LINEAR REGRESSION ANALYSIS

STA FILE NAME: DFIL1

OF OBS, NO OF VARS, INDEX OF DEP VAR
IN REGRESSION, NO OF INDEP VARS IN REGRESSION...

100 11 11 10I DICES OF INDEP VARS IN REGRESSION...
1 2 3 4 5 6 7 8

IATA... 910

IFIRST 3 OBSNS)
P -18.3276 -15.0855 -13.7183 -4.2261 13.3911 -20.8667 -6.9995 4.9927
'[*-14.8901 -9.8975 12.2946

4.2114 6.8286 -2.4292 16.4380 -6.5698 8.5474 11.7895 3.1567
F~ 2.6489 5.8057 34.4939
C4 -10.1245 -8.1323 -8.0151 10.2270 6.5942 -8.9136 3.7036 4.4458

13.3130 17.7588 27.6306

W"%ANS FOR ALL VARIABLES ...
.1809 -.0144 -.8847 -.0300 -.4503 -.2456 .0841 -.6612

-. 2816 -. 94281 .6235

-rANDARD DEVIATIONS FOR ALL VARIABLES...
11.2156 10.1579 9.8358 10.7963 9.8302 9.7790 10.1817 8.9774
8.7924 11.7031 32.6040

CORRELATION MATRIX ...
~i1.0000
S .0715 1.0000

.0254 .0648 1.0000
S-.0757 .2606 .1868 1.0000

-. 0717 .1217 .2235 .1323 1.0000
.0586 .0191 -.1219 -.0018 -.0893 1.0000
.0552 .0508 .1240 .1180 -.0356 .1012 1.0000

-.0626 -.0388 -.0055 .0173 .1513 -.0569 .0051 1.0000
--.0012 .1444 .0992 .0022 -.1068 -.0386 .1414 -.1326
1.0000

S-.0489 .0787 .0704 .0150 .0358 -.0726 .1102 .6675
.6495 1.0000
.2755 .4226 -.0722 .4118 .3835 -.2632 .3084 .5941

S-.0381 .4271 1.0000

*ETERMINANT = -. 2833E-06

"'PRO DETER,'4INA'NT, PIEGRESSION CANNOT BE PERFORMED

Jil



OGRAM ITEREG

TIMATES REGRESSION COEFFICIENTS BY AN ITERATIVE METHOD

TA FILE NAME: DFILI

OF OBS, NO OF VARS, INDEX OF DEP VAREm REGRESSION, NO OF INDEP VARS IN REGRESSION...
100 11 11 10

IDICES OF INDEP VARS IN REGRESSION...
1 2 3 4 5 6 7 8
9 10

REGRESSION METHOD USED AT EACH ITERATION: WALD'S METHOD

DINT AFTER EVERY 2 ITERATIONS

12ATA...
[IRST 3 OBSNS)
-18.3276 -15.0855 -13.7183 -4.2261 13.3911 -20.8667 -6.9995 4.9927

-14.8901 -9.8975 12.2946
4.2114 6.8286 -2.4292 16.4380 -6.5698 8.5474 11.7895 3.1567
2.6489 5.8057 34.4939

-10.1245 -8.1323 -8.0151 10.2270 6.5942 -8.9136 3.7036 4.4458
L 13.3130 17.7588 27.6306

tANS FOR VARIABLES IN REGRESSION,
IPENDENT VARIABLE LAST...

.1809 -. 0144 -. 8847 -. 0300 -. 4503 -. 2456 .0841 -. 6612
-. 2816 -. 9428 .6235

kFDI ANS...

.1880 .8130 -. 7495 .5786 -. 8276 -. 2026 -1.4136 -1.2183
-. 0464 -1.6943 1.4197

, TERQUARTILE RANGES...
15.4688 14.0235 12.7734 16.7969 13.5547 10.8985 15.6250 10.9766
12.5390 15.0781 36.7578

;GRESSION COEFFICIENTS, INTERCEPT...
.9995 .9142 -1.0840 .9995 .9548 -1.0296 1.0589 2.0564
.0479 -. 0360 .9540
.9978 .9977 -.9735 .9893 .9673 -.9902 1.0010 2.0465
.0039 -. 0265 1.0633
.9975 .9951 -. 9748 .9900 .9668 -. 9901 1.0019 2.0334

-.0085 -.0135 1.0620
.9975 .9951 -.9749 .9900 .9668 -.9901 1.0019 2.0205

-.0214 -.0006 1.0619S .9975 .9951 -. 9749 .9900 .9668 -.9901 1.001.9 2.0076
-.0343 .0124 1.0619

SIDUAL VARIANCE = 1.2721
SIDUAL STANDARD ERROR = 1.1279

COEFFICIENT OF DETERMINATION .9988I i
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