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ABSTRACT
Solitary and periodic internal waves are shown to exist tn swirling
flow. Incompressible, inviscid fluids in a richt cylinder of infinite length
and finite radius até ;:onsidered. ‘Variational techniques are used to
demonstrate that the Euler equations possess solutions that represent
progressing waves of permanent form. Moreover, internal solitary wave

solutions are shown to arise as the limiting forms of internal periodic waves

as the period length becomes unbounded.
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SIGNIFICANCE AND EXPLANATION

The study of vortex breakdown gives rise to an interest in waves in
swirling flow. Our interest is centered on the existence of both solitary and
periodic internal waves. In this report a model physical problem is studied
in a mathematically exact formulation. We restrict our attention to an
incompressible, inviscid fluid swirling through a right cylinder of infinite
length and finite radius. Our theory, which is not restricted to small
amplitudes, predicts both waves of elevation and depression, depending on the
angular velocity (swirl) distribution and the velocity distribution at
infinity. Just as for the classical surface solitary waves, these internal
solitary waves are single;crested, symmetric, and decay exponentially away
from the crest. Hence they represent disturbances of essentially finite
extent. Variational techniques and the theory of rearrangements are used to
demonstrate these qualitative features. Moreover, we show that the solitary
internal wave arises as a limit of peviodic internal waves of increasing wave

lengths. __
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SOLITARY AND PERIODIC WAVES IN SWIRLING FLOW

Scott A. Markel

1. Introduction

The interest in waves of finite amplitude and permanent form in swirling flow arises
from the study of vortex breakdown. This is the rapid change in structure which can occur
in swirling flow. An example of this is vortex breakdown above a triangular wing. The
reader is referred to the book by Van Dyke (1982) which contains excellent photographs of
vortex breakdown.

We restrict our attention to an incompressible, inviscid fluid swirling through a
right cylinder of infinite length and finite radius. The waves studied in this paper are
the analogues in a swirling flow of the internal solitary and periodic gravity waves
discussed in Bona, Bose, Turner (1983). For this reason we will call them solitary and
periodic waves. The variational approach used here closely follows the approach used in
Bona, Bose, Turner (1983). Their introduction contains a survey of the literature on
internal and solitary waves. The papers of Benjamin {1962) and Pritchard (1970) discuss
the theory of vortex breakdown. Pritchard also describes various experiments in rotating
flows in which solitary waves were observed.

In section 2 the idealized physical model is described and the governing equations
are derived. The main item of interest in this paper is the apparent difficulty arising

from the singularity of the governing equations along the axis of the underlying

Sponsored by the United States Army under Contract No. DAAG29-B0-C-0041.
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cylindrical domain. The existence theory can be readily adapted to cover the singular
case. The existence results for internal periodic waves are given in section 3. Both the
case where the speed of propagation is specified and the case where the wave energy is
specified are considered. Since the governing equations are singular along the axis of
the cylindrical domain, standard elliptic theory is not applicable there. By restating
the problem in a higher dimensional space, the desived regularity of solutions is
achieved. This is proved in section 4 and uses an idea due to Ni (1980). Section 5
begins with a discussion of a priori bounds satigsfied by the periodic solutions. These
bounds are independent of the period length and are found in section 4 of Bona, Bose,
Turner (1983). A method due to Amick (1984) is used to obtain the exponential decay of
peviodic waves from crest to trough. The final vesult of section 5 is the existence of
internal solitary waves. They are shown to arise as the limiting forms of internal
peviodic waves as the period length becomes unbounded. A specific example of swirling
flow is discussed in section 6 and is shown to yleld governing equations which fall within
the limits of our theory.

The author wishes to thank Prof. Robert E.L. Turner for his many helpful suggestions.

2. The Governing Equations

To investigate the existence of internal waves in swirling flow, an idealized

physical model is considered. Attention is restricted to an incompressible, inviscid - }‘
fluid swirling thvough a right cylinder of infinite length and finite vradius. Two-~ ) i:f
dimensional flows will be our domain of intevrest by assuming the flows to be iﬁ ;

axisymmetric. We will use cylindrical coordinates with the z-axis as the axis of the

cylinder and », ¢the radial distance from the center of the cylinder. The radius of the

cylinder is taken to be a, and thus the boundavry is given by

{ta,8,2) : & « [0,2n]), z < R}. s
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A primary flow, ; = (U,v,W), 1is postulated, in which the radial velocity U |is
zero. We also essu;; that, in the primary flow, the angular and axial velocities, V and
W, are functions only of r.

We seek waves of permanent form whose velocity of propagation, in the direction of
increasing z, is C. Hence we take our coordinate system to be moving downstream at
speed ¢ 8o that our waveform will be stationary. W(r) is replaced by

W(r) = w(r) - c.

Let ; = (u,v,w) denote the velocity field of a steady, incompressible flow.

Incompressibility implies V-& = 0; thus there is a Stokes stream function Y(r,z} such

that

-¥ ¥
z -—
T " U W, (2.1)

We normalize U so that y(0,z) = 0. In the primary flow, with g = (0,v(r), W(r)), we
have the stream function
Y(r) = frsw(s)ds (2.2)
For steady, axisymmetric flow the Euler gquntions in cylindrical coordinates are
pluu, + wa, = TV = -p_
o(uvr + wv, + 33) =0
p(uwr + wwz) - -Pz'
where P 1is the pressure and p is the constant density (Yih, 1979).
Denoting the vorticity of the velocity field by ; = 7 x ; = (E,n,z) and the total
P 1|¢|2

Bernoulli head by H = > +—|q

2 , it can be shown that a x = VH. Applying Kelvin's

theorem to a circuit around a particular stream surface 1y = constant, we see that

rv = X(¢) for some function XK. From ; x ; = VH, it follows that H 1is also a
> 1

function of (. We can also calculate (m)e “nhnE=u-w - (wrr- el R wzz).

Following Benjamin (1962) or Squire {1956), we arrive at

2 0(0) - KK'(y) = 2
HU) - KRG =y - T b

Define I = % Kzz then
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where ' denotes differentiation with respect to . Equation (2.5) is the fundamental
equation describing our model problem. The corresponding kinematic conditions are

$(0,z) = ¥(0) = 0 and Yla,z) = ¥{a), (2.6)
for z «¢ R and the asymptotic condition is

vir,z) » ¥(x) as |z| + = (2.7)
for r ¢ (0,a,). ¢ represents a flow connected to the primary flow at infinity and for
which I and H are constant on stream surfaces. H and I are not immediately known
as functions of ¢y, however in principle they may be determined from the primary flow.
For example, if W(r) = 4, a congtant, and c = 4 - e, then by (2.2) ¥(r) = crz/z
which may be inverted. The inverse is R(Y¥) = %1)1/2. The "circulation™ I is then
expressed as a function of the stream function value ¥ by I{¥) = I{R(Y¥)). Since I is
constant on stream surfaces, its value at a point (ro,e,zo), in the flow corresponding
to ¢, 1is determined by tracing the stream surface with value w(ro,zo) to infinity
1

where I can be determined by I(¥) = I{R(¥)}. H is determined from H = % + ;lal and

the equation of radial equilibrium in a steady cylindrical flow : P = pv2/r. This is
obtained from (2.3). See the example in section 6 for details on how to determine I(V)
and H(Y) for a specific problem.
Define the perturbed stream function ¢(r,z) by
v{r,z) = ¥(r) + yol(r,z), (2.8)

where Yy 1is a normalizing constant. 1In the primary flow we have

Yre -
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Hence, the form of H' |is
1
R (V)

H'(Y) = fv (¥ -

1
er FC]) Y () + (] .

By following stream surfaces to infinity and remembering that H 1is constant on gtream

surfaces, we find that
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1 . R {Y)
Vo mpop v o) =Y+ e [ -1

R(Y + vo)
+__R_2_u)_[' (,*YQ)-M]
R2(Y + o) rr R(Y + vo)
Y
r{¥)
- ['rr(‘) - R(!)]' (2.9}

For further details on the derivation of (2.9) see Benjamin (1971), where an analogous
problem in stratified flow is considered.
Equation (2.9) can be written as the nonlinear eigenvalue problem
=Le + hi{r,p) = Af(r,q)

where (2.10)

Q»
~
»N

1 2, 3
L= “ra’ *

r oz

~

The constant A is an eigenvalue parameter proportional to c'z, where c 18 a velocity
scale for the primary flow in the travelling coordinates introduced earlier; eg.

c = sup W(r). The supplementary conditions are
0<r<a

9(0,z) = g{a,z) = 0, z ¢R,
{2.11)
¢lr,z) + 0 as ‘zl + o, r ¢ (0,a].

In this paper it will be shown that, under suitable conditions on £ and h, the
boundary value problem (2.10, 2.11) has solitary wave solutions. By a "“solitary wave"
solution we mean a solution ¢ which is even in z, monotone for z > 0, and rapidly
convergent to zero as Izl + » In the course of obtaining solitary wave solutions it
will be shown that there are solutions ¢ of (2.10) which vanish at r = 0 and r = a,

which are even, periodic functions of =z with pericd 2k, and which are monotone for

Z ¢ [0,k]. These will be called periodic waves.

3. Periodic Waves
In this section we prove the existence of periodic solutions (),¢) of the boundary

value problem
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-Lol(r,z) + h(r,e(r,z)) = A (r,elr,z)) in @,
(P) (3.1)
9(0,2) = ¢la,z) =0,

where L is given by (2.10) and Q= {(r,z) : r ¢ (0,a), z ¢ R}.

We make the following hypotheses on f and h.
Hypothesis (H)}:
(HI): The function f has the form

t fo(r) + f1(r,t) r € (0,a], t >0

- f(r, - t) r ¢ [0,a), t <O

fir,t) =

with fo,f1 H8lder continuous on bounded r sets and £1 Lipschitz continuous in t on
bounded sets. We further assume that fo >0 for r ¢ (0,a), f,(r,t) = of{t), uniformly
for r « [0,a], as t + 0; and that there exist constants m,n > 1 and «,8 > 0 such

that for t » 0

at™ < £,(r,£) <A + .

(HII): The function h has the form

t ho(r) + h1(r,t) r ¢ (0,a], t >0
h(r,t) =
- hi(r, - t) r e {(0,a], t <O

with ho,h, H8lder continuous on bounded r sets and h1 Lipschitz continuous in ¢t

2
4 + la in {0,a] with
dr

on bounded sets. Let eg be the lowest eigenvalue of - 3
Dirichlet data. A lower bound for eq is given in lemma 3.4. For h we further assume

3h 3h
that ;: is continuous, 3; > e where e > - eo, and that there exist constants o » 0

and ¢' such that for t » 0,

m m
o't < h1(t,t) < ot ,
and

I te,e)l < a0+ ™,
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where m,n, and 4 are the constants in (HI). The first inequality implies h,(r,t) = E‘
o(t), uniformly for r ¢ {0,a], as t =+ 0. o

Finally we define the functions

t t
F(r,t) = 2f f(r,s)ds, F (r.t) = 2f £,(r,8)ds
0 0
(3.2)
t t
B(r,t) = 2/ h(r,s)as, H (r,t) = 2[ h (r,s)ds.
0 0
(HIII): The last hypothesis is,
For each A > o/a, where o and o appear in (HI) and (H1Il), there is a
8 ¢ (0,1) such that
AP (r,t) = H (r,t) < 8(Af (x,t) - h (r,t})t.
' We now want to find solutions of (P) which are periodic in z with period 2k.
; Let
Q 5= [tr,2) : £ € (0,a), 2z ¢ (-k,k)}. (3.3)
’

The subscript 2 here is to distinguish the set from higher dimensional analogues to be
I introduced later. The problem (P) can be formulated in two ways. The first is a
constrained problem (PC):
solve (P)

subject to | -:; {|vw|2 + H(r,q)} drdz = R (PC) (3.4)

.2

" s b & & 0® 2

where R > 0 1is a given constant.

The second is a free problem (PF):

. solve (P) h
(PF)} (3.5}
where ) is a given congtant.

-

(PC) corresponds to specifying the "energy"” of a wave, while (PF) corresponds to

specifying its velocity.

The analysis of both problems is based on variational technigues and the theory of

rearrangements of functions. 1In each problem a critical point ¢ of a suitable

(SR SR
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functional will be found and shown to be a solution of a weak formulation of the
problem. 1In addition, ¢ can be taken to be even in z, nonnegative, and nonincreasing

on z ¢ [0,k] for each ¥. The following definition is used.

Definition 3.1: Let ¢ = ¢(r,z) be continuous on ﬂk’z and periodic in 2z with
period 2k. For each r 1let u(g,Y.r) denote the Lebesque measure of the set
{z : @(r,z) > v}. A function ; which is even in 2z, nonnegative, nonincreasing on
z ¢ [0,k] for each r and satisfies u(;,y,r) = u(|e|.Y,x) is called the

symmetrization of ¢. If ¢ = ¢ we call it symmetrized.

The analysis will be carried out in the Hilbert space Hk = Hk((O,a) x R) defined
as follows: let c: denote the C~ functions which have support where v ¢ (0,a) and
which are periodic in 2z with period 2k. Define

2 1 2 2
= ) oy {I9a]® + h;(r)u } draz. (3.6)
%,2
The Poincare inequality (see lemma 3.4)

1 2
f ;1Vu|2drdz > e u” draz (3.7)

/
.2 8,2

LS

together with ho(r) >e > -e a consequence of (HII), show that nk is a norm.

Ol

Let K be the completion of C: in this norm; the space H

% is a Hilbert space with

k
inner product
1
(u,v)k = [ oy [Puewv + ho(r)uv} drdz. (3.8)
.2
If ¢ 1is a continuous linear functional on H its value at u is denoted by <g,u>.
The use of symmetrized functions is not needed in showing the existence of periodic
solutions, however it is vevry important in getting the estimates in section 5 which are
used to show that a solitary wave can be obtained as the limit of perviodic waves with

increasing period. For the construction of g, using piecewise linear functions and an

approximation process, and the properties of §, the reader is referred to the appendix




of Bona, Bose, Turner (1983). A version of the following lemma can be found in Polya,

Szego (1951).

Lemma 3.2: Suppose G(r,u) is even in u and continuous for (r,u) ¢ (0,a] x R. Then,
for u plecewise linear and u, #0 a.e.,
| 6lr,u)draz = [  G(r,u)ards. 3.9)
%2 2
Lemma 3.3: Suppose p(r) is positive and measurable on [0,a)] and u is piecewise
linear and 2k periodic in z with u, # 0 a.e. Then
[ pto)|wl?araz > | p(r)]w|arde. (3.10)
nk,2 nk,2
Proof: The case p = 1 is found in Polya, Szego (1951). By continuity we may assume
p ¢ Cz([o,a]) and u ¢ c:. Let q? = p with q (r) > 0. Consider
|V(qu)|2 - q2|Vu|2 + qiu2 + 2qq uu .
Then
2 2 2 2
f qrq(u )rdrdz = -f (qrrqu + q0 )drdz.
.2 %,2
8o

2 2
[ plw| araz = lqvul “arae

{
B, 2 8,2

lV(qu?l drdz - f (qiu2 + 2qrqutu)drdz

/
%,2 %,2

| 9(quy| 24raz + i qtrquzdrdz.

[
%.2 %, 2

~

Since the symmetrization is in 2z and since gq 18 a positive function of r, sﬁ = gu.

By lemma 3.2, with G(r,u) = qrt(r)q(r)uz(r,z).

2 2 3
jgk q, , qu drdz = f q,,9u drdz. E%

.2 .2 SR
R

- R




~ 2
) -
o
s Ld
‘ -.I
x Finally, o
N 2 2 2 $-:"
s [ plw|®draz = | |V(qu)|"draz + [ q quidraz ::.‘-f_
v ,2 %,2 %,2 )
'( 'v'
» A a i
> f IV(qu)Izdrdz + [ q"quzdrdz 3
L. %,2 B2 2y
\" \...v
_:. ~ 2 ~2 N
2 = [  [vtaw|®ardz + [ q quiarar o
:~ Qk,z %(12 '.'-‘.'.
2
= | p|vu| “draz.
.2
- Lemma 3.4: For u ¢ Hk the constant eq in the Poincare inequality (3.7) satisfies
- e > 4n2+3 .
X ° 4a2 ~F
= s
. A
. Proof: By continuity we assume u ¢ c:. Using the calculation in the proof of lemma 3.3 ff%
: Y
— ~°. 4
with q = 1//r, fr;
1 2 u_y2 302 L=e
[ = |w]%daraz = | jv(5=)|"araz + [ =5- grae 3
: r vr “3
- %,2 %,2 %,2
o 2 2 3 2
- 25 Taraz v 25 [ L-ares
- 4
g 2 % 2 %2
. 2
i =42 1 12 e
- 42 9 . e
\.‘_-.:
T J Ldew P jep N
R Along with H,, the spaces C”, C , L°{Q), and W {Q) will be used for various S
- ‘.‘ tw
.. b

domains. The reader is referred to Adams (1975) or Gilbarg, Trudinger (1983). Here and

3

in what follows C denotes a positive constant independent of k. The constant changes

;f from one inequality to another.
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lemma 3.5: The following relation holds, '
o

1,2 P
!i‘t cw ”‘k,z’ cL ”’k,z" p ¢ {2,w). 7

PR

Proof: From the Poincare inequality and Sobolev imbedding theorem,
i/p

4 i = ( |ulParaz) 2¢p<w
LR 2y 2
cc(f  [Iw)? + u?)araz)/?
.2
:' = C fhal
G1e2

g (9,2

1/2

- cc/af 1 {Iml® o?larar)
2

"
- 1 2 1
. <c (J ;{|w|2+ hyu }a:rclz)/2
.. 2
" i .
= C ulk

_: A further consequence of the Poincare inequality is, for u ¢ “k'
o
.

|u|;‘: <c | % |vu|2drdz. (3.11)
y %,2
X For convenience we will often use
- fu=[ u(r,z)draz. (3.12)

.2

. — 2 .'_
g If u ¢ Hk' tu//r € L (Qk'z) and v ¢ Hk' then -
> (u,v), = [ 1 {wew + n_(riuv} o

e x 0 S
X (3.13) o
- 1 e
" = " [-1u + ho(r)u}v, ‘.~:..-
- - -~
': {-'-A\
Y -1- Y

"'." ﬁf,‘
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where the boundary terms cancel on z = £ k due to periodicity. Thus we define a weak
periodic solution of (P) as a pair (\,¢), o € I!k, satisfying
1 1
o), + f; h(z,elv = Af — £(r,0)v (3.14)
for all v ¢ Hk. The integrals in (3.14) exist by virtue of (HI), (HIX), lemma 3.5, and

lemma 3.6.

Lemma 3.6: For u ¢ Hk and p > 2,

I%lulp <c luli. (3.15)

Proof: Let g = 1/p, then

1
felul® = i5Paie, .
r r'’L (9"'2)

From the proof of lemma 3.5,

2 <c (J {lw-“——)
':_:;Iz.“(nk 2 2

2
2 1/2
* =) 72,

Since p » 2, q < 1/2 and r" %9 <¢ et

Considering now the gradient term and integrating by parts as in the proofs of lemmas 3.3

and 3.4,
2 2
2 IV\xl 2 u
flv@E)4 = | - (g°+q) |
tq rzq r2q+2
2 2
IVul 2 u
<c - W Ir2q+2
coimt?
g’
Hence

2 2 2
FUvEDI? + 5 e g fleal’y o5 oo a2
b s r

and the result follows.

-12~
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First we consider the problem (PC). Por u ¢ B introduce

Atu) = f% {1 %]+ utr,w}
J(u) = %r(r,u)
where F and H are defined in (3.2) and for R > 0, let {3.16)

S(R) = {u ¢ H_ : Alu) = Rz}.

The assumptions on f and h, along with lemma 3.6, guarantee that the functionals A

and J are defined on B . One calls ¢ a critical point of J on S(R) {f the

(3
»

derivative of J 4is zero in directions tangent to S{R}, 1e. J'(p) 1is parallel to i

s'_‘}:
A'{9). A consequence of this is (3.14). :::-:'_.'
s
[
Theorem 3.7: let f and h satisfy (H). Then for each k > 0 (PC) has a solution
2w .
“k"k)' o € Hkﬁ c “5:,2)' such that _;_:’..
(1 Jle) = eup  Jlu), NS
u ¢ 8(R) T
(2) Ay >0 ana 'k>° in nk,z' o
{3) " - " (cf. definition 3.1).
Proof: Apart from regularity, the proof follows the lines of theorem 3.2 in Bona, Bose,
Turner (1983). Due to the 1/r singularity in the operator L (2.10), P elliptic
theory from Agmon, Douglis, Nirenberg (1959) is applicable only to regions
Q' = {{r,2) ¢ Q ,tr>ed 0}. Since ¢ is a weak solution of an elliptic equation,
”
9 € "2,p (0'), p ¢ (2,«»). By the Sobolev imbedding theorem and the Schauder theory, see
Gilbarg, Trudinger (1983), ¢ ¢ cz"“cﬁ'). e
.\. - "
SOt
Remark: 1In section 4 it is shown that ¢ ¢ cz'w(?lk g)s e, that ¢ is regular at r = 0. ;‘_:_
— ’ [SICAR
A
Now we turn to (PF). Let 1y be the smallest eigenvalue of the linear prablem ‘_-_:-‘
N
\‘_-.:.
N
-13- {_._:}
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-Lu + hj(rju = A, (r)u,
(3.17)
u € Hk.
Using separation of variables we see that yu has a corresponding eigenfunction v(r)

agsociated with the lowest eigenvalue of

1
Ve + " vt+ ho(r)v Afo(r)v,

(3.18)
v(0) = v(a) = 0.

In fact the equation is of limit point type at r = 0 with respect to L2 with the

weight 1/r, so the condition v(0) = 0 is superfluous. We can also use the change of

variables y = r2/2 to get

Eoty)v x?o(y)v
-y + =
YY 2y 2y '

where v{y) = v(r2/2) = v(r). The existence and positivity of v follow from arguments

like those used in the proof of theorem 3.7. We normalize v such that
a
{12+ n viar = 1. (3.19)
r r 0
0
For ) fixed define a functional M on H, by
Mtw) = me? ¢ [ L fu 0 - areaw ] (3.20)
IM'(u)l denotes the norm of the derivative M'(u) as a functional on He. A critical
point o of M, ie., <M'(p),v> =0 for all v ¢ Hk' is a weak solution of (PF) by
{3.14). Now we show (PF) has a symmetrized solution by first stating a technical result

from Bona, Bose, Turner (1983).

Proposition 3.8: Fix k > 0 and let M be a continuously differentiable functional on

Hy satlisfying:

(1) There are constants s, S >0 such that M(u) > 8 for lullk = s.

(2) M(0) = 0 and there exists a function w with uwuk > 8 such that M(w) < 0.
(3) For each g > 0 if (ui};;1 is a sequence satisifying g < M(ui) < 1/8, for
o«

all i, and "MI(ut)" +0 as 1 + », then there is a subsequence {ui }m=1 of

an
{“i}i=1 converging strongly in H, as m * =

-14~-




e

. e & 8

B a8 o v or

Dl P Rt

.l LI AN

15 I LIRS P

Let
= {y ¢ C([0:1l.ﬂk) : y(0) =0, y(1) = w}
and define
D =b (M) = nax .
LA u € Y([0,1))
(3.21)
b = inf by.
yeTl
Suppose Yn' n e l+, is a sequence of paths in I such that bY ¢b + 1/n. Then there

n

- +
is a subsequence (nj}j-1 of 3 and f?nction. uooey, ({0,1]) such that unj

converges strongly to u as j + », M(u) = b, and M'(u) = 0.

Theorem 3.9: Let ¢ and h satisfy (H) with o and o as defined. Let yu be the
lowest eigenvalue of (3.17). If 1) ¢ (0/a,u), then for each k > 0 (PF) has a solution
2,w
Py € Hkﬁ [ (lez) with
(&) u(vk) = inf bytu).
YeTl

(2) ’k>0 in 5‘(2,
’

-

(3) 'k - 'k'
Proof: The proof parallels that of theorem 3.4 in Bona, Bose, Turner (1983). One
constructs a sequence of minimizing paths consisting of symmetrized functions.

Proposition 3.8 quarantees that the critical point will be symmetrized.

Remark: Again we poatpone the regularity of ¢ at r = 0 until section 4.

4. Reqularity At r =0

In this section we obtain reqularity up to r = 0 where the equation

1
-(otr -zt vzz) + hir,q) = AM(r,) (4.1)

=15~
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is singular and standard elliptic theory breaks down. To extend the regularity of ¢

from c2,m(nk 2) to c2,m
L4

(Ek 2) we use an approach due to Ni (1980), which involves
’
restating the problem in 35.
Set ¢ = rzg. We will fix k for the entire section and suppress it. We then have

1
-= +
Lo = 0y "7 %% * %2

2 12 2
=ra) -7 (xg) +(xraq)
o2 .3 . 2

r 9y rg, T Gy

Hence (4.1) becomes

2 2
z) +M£L§_g).- Lﬂi%_‘ﬂ. (4.2)

3
et r c

_(grr
with boundary conditions
gla,z) = 0, g(r,k) = g(r,~k).
The operator which has replaced L is the Laplacian in cylindrical coordinates in 15 as
applied to functions with cylindrical symmetry. Since the nonlinear terms £ and h
have polynomial growth in (rzg), division by 2 is not a problem.
We define g in 15 to be axially symmetric with respect to the axis r = 0 (z-
axis) such that rzg|nk , =9 R . is the domain in R° generated by rotating
v

nk 2 around the axis r = 0. Note that r = 0 is not included in Qk 5°
’ ’
Lemma 4.1: g is a classical solution of (4.2) in the open set "k 5

[ 4

2
Proof: This follows immediately from knowing ¢ = r g|nk is a claassical solution of
2
’

(3.1) for r > 0.

We will use Lp(nk g) and wj'p(ﬂk g) to denote the P and wi'P aspaces in RS. we
’ r

omit the angular factor of the Jacobian, r3 31n261 8ing drde1 dezde3dz, in the

2

LA

int 4 B
ntegrals for Qk's

4

8 %y 4’
.
o's

"o s
!

2
PR
v *s

-]16=




2
Lemma 4.2: Por ¢ ¢ Hk and r g’ = 9,
B ,2

3

-
.'

v .

DA

LA
‘.l

2 2,3 2
{)vql +hg Jx araz tol, .

2
lglk -

o~
Y
S

484

/
%.s

LA

3 22
C Proof: |Wr g)|? ~ r'|vgl? + ar’gq_ + ax’g

and
2 2
[ @) arar = - [ xg'eras,
. %,s * %,s
" 80
- ) 3 2
. f py |V(:2g)|2drdz - f r” | vg| “araz.
’ Therefore, 2 nk's
2 1 2 2
l«plk = J' z {lVQl + ho(r)o } drdz
: .2
“ h 2
5 [!] 2
) = f ”Vg|223+—;(r ‘) araz
. .5
= {ng[2 + hogz} rdrde
X %,s
: 2
t . - lglk.
Theorem 4.3: g is a weak solution of ;
2 2 ERE
Af ) = hir,x7q) o
: ~Ag = (r,xr°g = nrd i By, (4.3) S
with gla,z) =0 for z ¢ (-k,k) and g periodic in z with period 2k. Bk,S = -}—i

{(0,z) : 2 ¢ (=k,K)} U ﬂk 5
’

Proof: The reader is referred to Ni (1980), where it is shown Ag does not produce a

distribution supported at r = 0.
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Lemma 4.4: Suppose u = ulr,z) ¢ w"z(nk 5) with u (a,z) = 0 for
r

z e (-k,k), q > 1, and 8 >3§. Then

(f  lul%Paraz)? <o |w|?Paraz)'2. (4.4)
B,s By,s

Proof: By continuity we agsume u ¢ CQ(Bk 5). The Sobolev inequality in 2 is
’
(U lec®%ra) cc(f vt ) 2arar) V2,
Consider Qk'z nk'z

lvcue®))? = Jou|3e28/a ,,% (“2)r (287211

2 e
+ B u2 r(2B/q) - 2.
2
q
Since
f B g2y Lf28) -1 B (1- 35) | o2, (2870) - 2 drdz,
%2 .
we have
/ -
! |V(ur8'q)|2dxdz = IVu|2r28/qdrd= +§ (1~ .s) f w2 i28/a) =2
Qk,z nklz nk,Z
< |Vu|2t28/thdz
%, 2
< sup r(ZB/q) -3 I |Vu|2r3drdz
[0,a) 2
’
- < C f |Vul2t3drd:.
The result follows immediately. .2

Now we state the main result of this section.

2,m,= 2 2,0~
Theorem 4.5: e C ( r ivalentl T o] .
Theorem 4.5: g « %) ©or equivalently o/r" ¢ (% ,2)

-18-
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Proof: By (H), |Af(r,t) - h(r,t)] <ctt] + |t]|™), and so the right hand side of (4.3)

is bounded:

2 2
AM(r,r g) - hix,r"q) < C(lgl + r2n-2|g|n)'

r2

Standard elliptic theory is applicable to (4.3) since we are now dealing with the

Laplacian. Lemma 4.2 shows g ¢ w1,2( ). For n < 7/3, a bootstrapping argument and

By,

the crude estimate c(|g| + r2™"2|g|™) < c(|g] + |g|™ give us g ¢ wz'p(sk g} for all
’
- p > 1. Invoking lemma 4.4 with p = 5/2, q = np, and § = (2n-2)p + 3,
I I (r2n-2|g|n)p rsdrdt <
: B.s
i if (2n-2) % + 35 % . 2% , ie. n > 8/5. Hence, for n > 8/5, the right hand side of
. (4.3) is in Ls/z(ax's). Thus, by elliptic theory, g ¢ wz's/z(sk s) for all n > 1. It
» ’
i follows from the Sobolev imbedding theorem that g ¢ LP(Bk s) for p ¢ [1,»). Since, by
’

- elliptic theory, g ¢ wz,p(sk 5) for p ¢ [1,=») a further application of the Sobolev
’

imbedding theorem gives g ¢ c1’”(3 By our assumptions on f and h,

x,5)°
2 2 _
. Af(r.r g) ; hir.e g) € c“(nk 5). The Schauder theory gives g ¢ cz""(sk 5). Our result
. . ,
- r
l follows from noting that Bk,s - “k,s'

5. Solitary Waves

As in Bona, Bose, Turner (1983) it can be shown that xk < u and is bounded

"k'k
" independent of k for both (PP) and (PC). The additional assumptions of m < 5 and
. 20/a < y are needed here, wvhere m,0, and a appear in {(H). Corollary 4.5 in Bona,

i Bose, Turner (1983) gives a bound on independent of k. Since our solutions of

lgklc2,w
(PF) and (PC) are symmetrized in 2z, for k sufficlently large we can obtain the

following crude decay estimate

Cro 1, (1+ Ioklz-1)1/3

qk(z,z) < 173
|2

(5.1)

.. .

for |z| < k. See lemma 4.9 of Bona, Bose, Turner (1983) for details.
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Lemma S5.1: Let (Ak,ok), L H

Using this decay rate we can obtain exponential decay rates for e and v.k. The
approach we use is due to Amick (1984). He used it to get exponential decay for solitary

waves, but it is easily adapted to periodic waves.

K’ be a solution of (P) from either theoredi 3.7 or

theorem 3.9. Suppose that for some q > 1,

| A £, oty - htr,e)] < cotq
for ftl <1 and r ¢ [0,a]. Then for k > ko, I:I < k,
ok(r,z) < Ce-slz' (5.2)
and
|79, (x,2)} < cre78lzl (5.3)

A 1/2
where C and C' depend on a,q,8, and ig 1 2,0 ° g = %-[(, + eo)(1 - —E)] .
c

Proof: As noted above, Ak < y. We now suppress the subscript k. Let

Xf1(r,r2g) - h1(r,rzg)

Q(r,q) = . Again we use

¢ - rqu
rz nk,z

where g satisfies (4.2),

lotr,g)| < cyg? 1f r?g < 1.
_%
1/3°
2 |2
rg<1 on [0,a) x [ko,k]. We can rewrite (4.2) as

For r ¢ [0,a), z ¢ [-k,k], (5.1) gives g(r,z) < For k, large enough

3
-Ve{r Vg) + hogr3 = Atogr3 + Q(r,g)r3 .
Multiplying by g and integrating over (0,a) x (z,k) gives, after an integration by

parts,
k a

£ el o nyg?ledarac - [ 1 repole?
z 0 z 0

r drdg

(5.4)
a 3 a 3 k a 3
= g gtr,x)g (r,k)r dr - f glr,z)g, (r,z)r ar + [ [ efr,g)gr’arag
0 z 0
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4 4is the smallest eigenvalue of the linear problem (3.17) and gz(r,k) < 0 since
g=gqg, 8O
Ay <2 2 2,3 a 3 k a 3
(- 2) [ [ {ivg]” + n g} arag < - [ gtr,zig (r.z)xar + | | etr,g)gr’arar.
LN 0 20
From the proof of lemma 4.2 and our Poincare inequality (3.7}

23 23
[ Mval®rarag > ey [ [ g'r arac.
Using this and the hypothesis on |Q], (5.5) becomes, for z e (k .k},

k a k a a
(1-2) [ [ (e + ngPrlaraz <, [ [ ¢%'rParar - | gtr,2)g,tr,0)c%ar.
¥z o z 0 0 z

From (HII) hotr) >2e>-e,, 80 let ¢, = (eo + e} - %). Then

3
k a a k a
23 3 -1 23
c, [ [ drardg + [ qlr,e)g (x,z)xr"ar < C, max lote,2)|T [ [ g*r arac,
z 0 0 z < ko z 0
for z ¢ (ko,k). Choose kg such that
c, q-1 [
c, max lgtr, 2119 1< c,( 153) <=3,
z <k k 2
0 0
Now for z ¢ (ko.k) we have
[+ k a a
;3_ I grlarag + / 9(tr=)§=(r.z)r3dr <0
20 0
As in Amick {1984), it follows that
k a -/c. z
N grlaraz <ce O
z 0 4

for z ¢ (k_,k). 8ince Ilg1 is bounded, we obtain
0 C2,m
glr,z) < cse-s"l

on [0,a) x [-k,k}, X > kg, where B8 = /E;Vz.
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Elliptic estimates (eg. LP estimates and the Sobolev inequalities) give local L”
bounds for Vg 1in terms of local L°° bounds for g. It follows that

|vgtr,z)] < CGe-Blzl.

We now show the existence of solitary waves for (PF) and (PC). They arise as the

limit of periodic waves as the period k + =,

Theorem 5.2: Assume f and h satisfy (H) and let a,0, and m be the constants
defined there. Let 1y be the lowest eigenvalue of the linear problem (3.17). Suppose
also that m < 5, 20/a < y, and |Xf1(r,t) - h1(r,t)| <ctd, for some q > 1, on

{0,a) x [-1,1}]. Then

(PC): Let R > 0 be given. For each k > 0 let (Ak,ok) be a solution of (PC) from

R2. Then there exists an increasing sequence of half periods

theorem 3.7 with A(mk)
k{j) » =, J « z+, and a solution (},¢) of (P) satisfying

(1) >0 and o = ¢ on §,
2
{2) A (g) =R,

n
(3) ol < c(rer™”,
c2,w

-3 1 1/2
(4) |ol., |vg] < ce 'z[, R=5 [fe+ e )1 - /) /

(s) llim Xk(j) =X, X e (0O,u),
j] @

(6} lim @k(j) = » uniformly in ¢2 on bounded subsets of Q.
j + ®

(PF): Let X « {a/a,u) be given. For each k > 0 let (X,wk) be a solution of (PF)

¥
from theorem 3.9. Then there exists an increasing sequence k{j) + =, j ¢ Z , as above,

and a solution (3*,q) of (P) satisfying (1), (4), and (6) as well as

-22-

1

.
»
L/

o]
sy

LYch

’

AN




P N T N Y N Y N N W e T W T Iy I S S e el RIS Rt R

E

S

Y

v e e

LA

b 0 Y

L
el Tl

(2') 11 <c{ lim s b} <,
w2 PR (31 'xk(3)

Sem
n w gu-xz4(“'1)

€C{§ +48), where 6 = 1
(Aa-a)(m-1)

I .
3") vlcz'w

Proof: The bounds derived up to this point enable one to extract a subsequence of
solutions converging to the desired solitary wave solution. As in lemma 4.7 of Bona,
Bose, Turner (1983), it can be shown that l@le” is bounded below by a positive constant
independent of k. It follows that ¢ > 0. For further details see theorem 5.1 in Bona,

Bose, Turner (1983).

6. Example

In the following specific example we show how the theory developed in the previous
sections is applied.

For the primary flow, 5 = (0,V(r),w(r)), we take W(r) = 4, V(r) = nrz, where 4
is a constant and @ is an angular velocity parameter. As noted by Pritchard (1970) and
Benjamin (1962), solitary waves do not exist when the flow is a rigid body motion,

Vv = Qr. 1In the following calculation V = Qr would nroduce a linear equation, while we
require a nonlinear equation. Since we are looking for permanent waves, say of velocity
<, travelling down the cylinder, we change to a coordinate system moving with velocity
C. This renders the wave form stationary; W(r) = 4 is replaced by W(r) =d-¢=c.

Using (2.2),

r _ cr2
¥(r) = [ sW(s)ds = —
0 2 2 2y
is the stream function for the unperturbed flow. Inverting this we have R = c Then
2
K(r) = rVv(r) = nr3 and in the primary (unperturbed) flow 1I{(r) = 5—%51 becomes
2 2.2
I1(¢) = 5%— 73. Hence %% - 138;!__ Defining o(r,z) by (2.8) where
c c
W(tlz) = ¥(r) + Yw(rlz)l {(6.1)

¢ is the gtream function for the perturbed flow, ¢ is the perturbed stream function

-23~
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and y is a normalizing constant to be chosen shortly. We note that 'rr - ;£ =0, so

from (2.9) we have

2
1 ) R(Y) _
“r % + 0zz) dY(V+Y°)[ 2 1]

Yo
r R (‘I+Yv)
2
129 2r2¥ c _
- 3 ($+y9) [~ - ) 1]
2
- lzg“’+Yv)[W = (¥ve)]
[+
1232
== 3 Yo(¥+Ye)
c
2 .
Cc
Hence
2
- g 60 % 2 2y 2
(°rr r Pt °zz) 2 o+ T @ ]- (6.2)

We have an equation of the form

1
-7 e, te,)+hire) = Air,e)

-(’rr r'r

where h(r,p) = 0, X = Eg— and f(r,¢) = rzq + %1 ¢2. Note that )\ 1is proportional to

92 and inversely propo:tional to c2, the square of the velocity of the wave of
permanent form relative to the velocity of the primary flow. choosing y by vy = ¢/2,
we have two cases. They correspond to ¢ > 0 and c < 0.

Consider first vy > 0. We remember that in deriving (2.9), (2.10) we followed stream
surfaces to z = + » and used the knowledge that the Bernoulli quantity, H, and the
"circulation®”, I, were constant on stream surfaces. So the f and h defined from
(2.9), (2.10) require that | takes its values in [0,¥(a)]. 1In our example this is
[o,caz/zl. Since (0,2) = ¢o{a,z) = 0, this requirement is implied by

wr = vr + Yo, >0 (6.3)
for (r,z) ¢ (0,a) x R. Using Vr = cr and Yy = ¢/2, we gee that (6.3) is equivalent to
9_ > =2r. 16.4)

T

The restriction (6.4) will certainly be satisfied if we can verify that for our solution
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te l < 2r, (6.5)
for (r,z) ¢ @ = [0,a) x R. In the perturbed flow the radial velocity
u{r,z) = = ;5-- - 1;5. We know our solutions are positive (¢ = ;) and have a profile
in z 1like ._22. In the region to the left of the crest, g > 0, 8o ulr,z) <0 and
we have a wave of depression. As stated above, f(r,t) = rlt + %1 tz = rzt + tz is, at
the moment, only valid for r ¢ {0,a] and t > 0 such that ¥(r) + yt 1lies in

[0,¥(a)]. So (r,t) must satisfy

2 2
Y(a) - ¥(r) _ 1 ca” _cxr y _ .22
0 <t < - Y(—z ——2) a‘-r®, (6.6)

2 as an odd function to t < 0, we see that condition (H)

However, by extending f1 = ¢
of section 3 is clearly satisfied with m = n =2, g=4d = %I = 1, and 0 = 2/3. These
conditions are satisfied without any restrictions on the values of ¢t > 0, 8o our
extension of £ = r2t + t2 outside of 0 < t < nz-rz is permissible.

Since the f and h derived for our example satisfy (H), theorems 3.7 and 3.9 give

the existence of z-~periodic solutions (1,9} of equation (3.1). In (PC} R > 0 1is

specified and in (PF) X ¢ (0,u) is specified. We know that ¢ = rzg, where gq ¢ c2
2
and r < a, 8o 9 = 2rg + r 9 Hence
2 a
I.r| <2rigl +r 'qu < 2r(1 + 2)lqlc1- 6.7)
From corollary 4.5 in Bona, Bose, Turner (1983), with N =R in (PC) and
5-m '
4(m-1)
Na= -‘J’—"-’—‘—— tn (PF), g1, < C(NeN?).
m=-1 ¢

A

Hence (6.6) will be satisfied if (1 + a/2)ig} 1 < 1. This can be accomplished if we
(o]

restrict R to R ¢ (O,Ro) for some Ry > 0 or if we restrict A to 1) ¢ (Xo,u) for

some Ao € (0,u). With these restrictions
/2

.

Vlr,z) = ¥(x) + yolr,z) = c(r + ¢)/2, ¢ =

602)‘
A
has range in {[0,¥(a)], 1is a solution of (2.5) and gives, for each k > 0, a train of
depression waves. Since m= 2 <5 and 0 = ¢/2a < y, lemma 4.1 of Bona, Bose, Turner
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(1983) shows )\ < y when R 1is given. Inequality (5.1) guarantees that ¢ has

nontrivial z-dependence for k sufficiently large. Finally, theorem 5.2 gives the
existence of solitary wave solutions (},9) with ¢ = c(r2 + 9)/2. Since

|Xf1-h1| = Atz we know that the deviation of the velocity fields of these solitary waves
from the velocity field of the primary flow decays exponentially as |z| + @,

In the case ¢ > 0, the fluid is moving downstream as viewed from the stationary
waveform (W > 0). 1In considering the case y = ¢/2 < 0, we note that the change in sign
of ¢ corresponds to the fluid now moving upstream relative to the waveform (; < 0).
Hence, the cagse ¢ < 0 is just the reflection, in z = 0, of the case c¢ > 0.

Therefore, we again obtain a wave of depression.

Ay

-2

~26-




“

- ]

- o '.'

S RN

[N *

Oy 1

; )
WP

-,. {

. P”"g‘

- References ;Jﬂl

- e

. 1. Adama, R.A. 1975 Sobolev Spaces. Academic Press: New York. BN

» P Y

: ' 2. Agmon, S., Douglis, A. and Nirenberg, L. 1959 Estimates near the boundary for f;:;
solutions of elliptic partial differential equations satisfying general boundary ;%¢‘

conditions, I. Comm. Pure Appl. Math. 12, 623. W

¥ 3. Amick, C.J. 1984 Semilinear elliptic elgenvalue problems on an infinite strip with P
. an application to stratified fluids. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11(4), -

441.

g 4. Benjamin, T.B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mechanics ; .
o 14, 593. ‘

S. Benjamin, T. B. 1971 A unified theory of conjugate flows. Phil. Trans. R. Soc.,
London A 269, 587.

6. Bona, J.L., Bose, D.K. and Turner, R.E.L. 1983 Finite amplitude steady waves in
stratified fluids. J. Math. Pures Appl. 62, 389.

7. Gilbarg, D. and Trudinger, N.S. 1983 Elliptic Partial Differential Equations of
Second Order. Berlin: Springer-Verlag.

8. XKrasnoselskii, M.A. 1964 Topological Methods in the Theory of Nonlinear Integqral
Equations. New York: MacMillan.

9. Ni, W.M. 1980 On the existence of global vortex rings. Journal 4d'Anal. Math. 37,
208.

10. Nirenberg, L. 1959 On elliptic partial differential equations. Ann. Scuola Norm.
Sup Pisa Cl. Sci. 13(3), 115.

11. Polya, G. and Szego, G. 1951 Isoperimetric Inequalities in Mathematical Physics.
Annals of Math. Studies 27: Princeton Univeraity Press.

12. Pritchard, W.G. 1970 Solitary waves in rotating fluids. J. Fluid Mechanics 42,

61.
. 13. Rabinowitz, P.H. 1974 Variational methods and nonlinear eigenvalue problems.
o Eigenvalues in Nonlinear Problems. C.I.M.E., 141.
N
. 14. Squire, H.B. 1956 Rotating fluids. Surveys in Mechanics. (Ed. Batchelor and

Davies). Cambridge University Press.

15. vainberg, M.M. 1964 Variational Methods for the Study of Nonlinear Operators. San
Prancisco: Holden-Day.

16. Van Dyke, M. 1982 An Album of Fluid Motion. Stanford: The Parabolic Press.

. 17. Yih, C.-S. 1979 Fluid Mechanics. Ann Arbor: West River Press.

Vet at LT,

P /
.

0
'

- - - . -. . %o ) '-. S el . ~, *
-~ - . o . - » - - Il P . e ~ N
PR T RIS GG WL W8 T W o WA oy W A AP




-
»
f ]
.

S

&

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Y
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM o
y [T "REPORY NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER -:\“
) #2922 :::_:
; 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED .“-'\-
Summary Report - no specific e
Solitary and Periodic Waves in Swirling Flow reporting period S
6. PERFORMING ORG. REPORT NUMBER j:',-:::.
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) .
Scott A. Markel DAAG29-80-C-0041
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELLEMENT, PROJECT, TASK
w T
Mathematics Research Center, University of WOII:ESn'lt°';’in”n;;r"”1“"f Rs
610 Walnut Street Wisconsin Applied Analysis
Madison, Wisconsin 53706
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office March 1986
_ P.O. Box 12211 13. NUMBER OF PAGES
4 Research Triangle Park, North Carolina 27709 27
. . MONITORING AGENCY NAME & ADDRESS(if different from Controlling Otfice) 15. SECURITY CLASS. (of thie report)
UNCLASSIFIED
- Sa, DECL ASSIFICATION/ DOWNGRADING
- SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae aide if necessary and identify by block number)

Swirling flow, vortex breakdown, internal wave, solitary wave, periodic wave,
critical point, symmetrization, bifurcation

- 20. ABSTRACT (Contlnue on reverse side If necesssary and identify by block number)

. Solitary and periodic internal waves are shown to exist in swirling
flow. Incompressible, inviscid fluids in a right cylinder of infinite length
and finite radius are considered. Variational techniques are used to
demonstrate that the Euler equations possess solutions that represent

. progressing waves of permanent form. Moreover, internal solitary wave
golutions are shown to arise as the limiting forms of internal periodic waves
as the period length becomes unbounded.

DD ,"0n'3s 1473  ceoimion oF 1 NOV 68 1s cBsOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

-, - e - e C. PN - e
.. \‘ ~ -‘~"’.'v“‘-’.~~ FOERPE A SR LU L T T U T
. . '- et A e ) _ . . . et L R A L B

(AL ,' . \ ., -_‘ D AN .
208t '- K YA e
. L‘\ ~ '.A\"

. S et et et .
o PR PRI R e T N MR LI Yt Tl LR
')‘!_- A'_AhA_. htatad AP A .-.h.}_; ot adn e

e e
_ LRI IR P SO PN PEREPL G . N PO PR VT SR PR R LY &)




.

e

|

-,
Y
€

ey P T S

Ao,

Pai

“»

./

2 %m

.




