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ABSTRACT

Solitary and periodic internal waves are shown to exist in swirling

flow. Incompressible, inviscid fluids in a right cylinder of infinite length

and finite radius are considered. Variational techniques are used to

demonstrate that the Euler equations possess solutions that represent

progressing waves of permanent form. Moreover, internal solitary wave

solutions are shown to arise as the limiting forms of internal periodic waves

as the period length becomes unbounded.
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SIGNIFICANCE AND EXPLANATION
PP .

The study of vortex breakdown gives rise to an interest in waves in

swirling flow. Our interest is centered on the existence of both solitary and r

periodic internal waves. In this report a model physical problem is studied

in a mathematically exact formulation. We restrict our attention to an

[" incompressible, inviscid fluid swirling through a right cylinder of infinite

length and finite radius. Our theory, which is not restricted to small

amplitudes, predicts both waves of elevation and depression, depending on the

angular velocity (swirl) distribution and the velocity distribution at

infinity. Just as for the classical surface solitary waves, these internal

solitary waves are single-crested, symmetric, and decay exponentially away

from the crest. Hence they represent disturbances of essentially finite

extent. Variational techniques and the theory of rearrangements are used to

demonstrate these qualitative features. Moreover, we show that the solitary

internal wave arises as a limit of periodic internal waves of increasing wave

lengths.
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SOLITARY AND PERIODIC WAVES IN SWIRLING FLOW I'

Scott A. M~arkel

1. introduction

The interest in waves of finite amplitude and permanent form in swirling flow arises

*from the study of vortex breakdown. This is the rapid change in structure which can occur

in swirling flow. An example of this is vortex breakdown above a triangular wing. The

reader is referred to the book by Van Dyke (1982) which contains excellent photographs of

vortex breakdown.

We restrict our attention to an incompressible, inviscid fluid swirling through a

*right cylinder of infinite length and finite radius. The waves studied in this paper are

- the analogues in a swirling flow of the internal solitary and periodic gravity waves

discussed in Bona, Bose, Turner (1983). For this reason we will call them solitary and

* periodic waves. The variational approach used here closely follows the approach used in

* Bona, Bose, Turner (1983). Their introduction contains a survey of the literature on

*internal and solitary waves. The papers of Benjamin (1962) and Pritchard (1970) discuss%

* the theory of vortex breakdown. Pritchard also describes various experiments in rotating

flows in which solitary waves were observed.

In section 2 the idealized physical model is described and the governing equations

are derived. The main item of interest in this paper is the apparent difficulty arising

* from the singularity of the governing equations along the axis of the underlying

- Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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cylindrical domain. The existence theory can be readily adapted to cover the singular

• case. The existence results for internal periodic waves are given in section 3. Both the
.. *-.

case where the speed of propagation is specified and the case where the wave energy is

specified are considered. Since the governing equations are singular along the axis of

the cylindrical domain, standard elliptic theory is not applicable there. By restating

the problem in a higher dimensional space, the desired regularity of solutions is '.

achieved. This is proved in section 4 and uses an idea due to Ni (1980). Section 5

begins with a discussion of a priori bounds satisfied by the periodic solutions. These

bounds are independent of the period length and are found in section 4 of Bona, Bose,

Turner (1983). A method due to Amick (1984) is used to obtain the exponential decay of

periodic waves from crest to trough. The final result of section 5 is the existence of

internal solitary waves. They are shown to arise as the limiting forms of internal

periodic waves as the period length becomes unbounded. A specific example of swirling

flow is discussed in section 6 and is shown to yield governing equations which fall within

the limits of our theory.

The author wishes to thank Prof. Robert E.L. Turner for his many helpful suggestions.

2. The Governing Equations

To investigate the existence of internal waves in swirling flow, an idealized

physical model is considered. Attention is restricted to an incompressible, inviscid

fluid swirling through a right cylinder of infinite length and finite radius. Two-

dimensional flows will be our domain of interest by assuming the flows to be

axisymmetric. We will use cylindrical coordinates with the z-axis as the axis of the

cylinder and r, the radial distance from the center of the cylinder. The radius of the

cylinder is taken to be a, and thus the boundary is given by

f(a,O,z) : r [0,2f], z . R1.

-2-
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A primary flow, q ( (U,V,W), is postulated, in which the radial velocity U is i

zero. We also assume that, in the primary flow, the angular and axial velocities, V and

W, are functions only of r.

We seek waves of permanent form whose velocity of propagation, in the direction of

increasing z, is c Hence we take our coordinate system to be moving downstream at

*speed c so that our waveform will be stationary. W(r) is replaced by

W~r =(r) -c

Let q - (u,v,w) denote the velocity field of a steady, incompressible flow.

Incompressibility implies V.q 0; thus there is a Stokes stream function g(r,z) such

that

z r
- U, - w. (2.1)
r r . -

We normalize t so that ip(O,z) = 0. In the primary flow, with ( (0,V(r), W(r)), we

have the stream function

r _

-I(r) f sW(s)ds (2.2)
0

For steady, axisymmetric flow the Euler equations in cylindrical coordinates are

2
_~u + v_ X) - -P -

r(U +Wz r r.-.

(uv +w v + ! 0 (2.3)
r z r

p(uw + ww ) - -P "k"r a a p

where P is the pressure and p is the constant density (Yih, 1979). -

Denoting the vorticity of the velocity field by = V x q - (E,n,C) and the total

Bernoulli head by H q-- + -Iq 2, it can be shown that q x * = vH. Applying Kelvin'sP 2
theorem to a circuit around a particular stream surface 4 - constant, we see that

rv - K(O) for some function K. From q x w- V , it follows that H is also a

function of I,. We can also calculate (w) . n -u z  r r r 4r
+ 

$zz
"

Following Benjamin (1962) or Squire (1956), we arrive at
2 (40 Krr OP1-4 + 1 (2.4)

r HU) - K'(,) = 'rr - r 'zz (24
Define I x 2 K2 then2

4- + 'bzz , r
2 H

' - V, (2.5)

-3-
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where * denotes differentiation with respect to J. Equation (2.5) is the fundamental

equation describing our model problem. The corresponding kinematic conditions are

0(0,z) T YO) - 0 and f(a,z) = (a), (.

for z c t and the asymptotic condition is

I(r,z) + T(r) as IZI + (2.7)

for r c [O,a,]. represents a flow connected to the primary flow at infinity and for

which I and H are constant on stream surfaces. H and I are not immediately known

as functions of *, however in principle they may be determined from the primary flow.

For example, if Wlr)- d, a constant, and c - d - c, then by (2.2) T(r) - cr /2

which may be inverted. The inverse is R(Y) = - " . The "circulation" I is then

expressed as a function of the stream function value Y by I(T) = I(R(T)). Since I is

constant on stream surfaces, its value at a point (r0 ,@,z0 ), in the flow corresponding

to ip, is determined by tracing the stream surface with value P(r0 z0 ) to infinity

where I can be determined by IY) = I(R(Y)). H is determined from H = p q and

the equation of radial equilibrium in a steady cylindrical flow : Pr - v /r. This is

obtained from (2.3). See the example in section 6 for details on how to determine M(Y)

and H(M) for a specific problem.

Define the perturbed stream function V(r,z) by

"(r,z) = Y(r) + yq(r,z), (2.8)

where y is a normalizing constant. In the primary flow we have

1 2
r Yr = r H'(Y) - I'Y)rr r

Hence, the form of H* is
H IV) I 2(rr ) V - (YT ) + I,(Y)

2 (T) RR) r

By following stream surfaces to infinity and remembering that H is constant on stream

surfaces, we find that

-4- "-
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Y Op O + 9P~ + 'Y4 yip) 2RCYrr r r zz R2 -+]

2 Y ))
+ R R() + -) r
+ 2 [ (9 rr + ) )

R (T + Y9) rrRY-

C (2.9)

For further details on the derivation of (2.9) see Benjamin (1971), where an analogous

problem in stratified flow is considered.

Equation (2.9) can be written as the nonlinear eigenvalue problem

-Lp + h(r,j) - )f(r,q)

where (2.10)
2 2

2 r ar 2
r ,-z

The constant A is an eigenvalue parameter proportional to c " 2 , where c is a velocity

.* scale for the primary flow in the travelling coordinates introduced earliert eg.

" c sup W(r). The supplementary conditions are
04r~a

9(0,z) - V(a,z) - 0, z c R,
(2.11)

ip(r,z) + 0 as 11 -,.-, r 4 Co,a].

In this paper it will be shown that, under suitable conditions on f and h, the

boundary value problem (2.10, 2.11) has solitary wave solutions. By a "solitary wave"

solution we mean a solution i which is even in z, monotone for z > 0, and rapidly

convergent to zero as IzI * -. in the course of obtaining solitary wave solutions it

will be shown that there are solutions i of (2.10) which vanish at r - 0 and r - a,

which are even, periodic functions of z with period 2k, and which are monotone for

z c 10,k]. These will be called periodic waves.

3. Periodic Waves

In this section we prove the existence of periodic solutions (X,T) of the boundary

value problem
-5-
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-L~p r, z) + h (r, 4p r, z))  Xf (r,,p r, z) in SI, ()1.}"

(P (3. 1)

where L is given by (2.10) and 0 - Jlr,z) .: r c (0,a), z c R1. .

Hypothesis (H) -".'-"

(HI): The function f has the form

f (or) + f (r,t) r (0[,a), t :4 o0--

0.
-f(r, - t) r -E [0,a] , t < 0 .

-.4

with f0,fl H81der continuous on bounded r sets and f I Lipschitz continuous in t on

bounded sets. we further assume that f0 > 0 for r c (0,a), f (r,t) o(t}, uniformtly '..

-'-oII

that for t 0 0 ,-Z

ath L fl (r,t) r d( + tn n.

(HII): The function h has the form

6

t h 0 (r) + h (rt) r E (0,a], t ) 0

f(r,t) 0 1. -

- h(r, - t) r E [0,a], t < 0

with h0 ,h H8lder continuous on bounded r sets and hI  Lipschitz continuous in t on

on bounded sets. Let e0  be the lowest eigenvaluetof f 2 + forin r0,a] withormly

Dirichlet data. A lower bound for e0  is given in lemma 3.4. For h we further assume "i

that rt s Continuous, t where e > - e and that there exist constants n 1a 0 d.:0suc

and f' such that for t > 0, )-'d.-

,m S

i)t f ho(r,t) aot

and "'

4..%.S h~r~t) Jt h (rh r (,t) r+ 0l t 0

h , -t - r. -'-"

2
-.. d. id.:-' .-- .- on bo-. nded st. Let e0  be the- - lowe -. - ig. a.ue of" -." -- -..'"'..''in'.- 0," with.-.''""'''.:. "-:.:'"- °

-- .- : .,- ,' '. '. " ". ' . .-. .-.-' -'''--' -'-.:'. .:'- . .. & -,'.:, ' "--'. ..-.2."..::..',--'..' . .' ,v -.,.''..-;-'-'dr''
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where sn, and d are the constants in (HI). The first inequality implies h1 (r,t) =

o(t), uniformly for r c [0,a], as t + 0.

Finally we define the functions

F(r,t) - 2f f(r,s)ds, F (r.t) = 2 f1(r,)ds
0 0

(3.2)
t t

H(r,t) = 2f h(r,s)ds, H(rt) 2 (r,s)ds.
0 0 "°

(HIII): The last hypothesis is, 0 s

For each A~ > a/a, where a and a appear in (HI) and (HII), there is a

e E (0,I) such that

XFl(rot) - Hl(rt) < e(Afl(rt) - hl(r't))t.

We now want to find solutions of (P) which are periodic in z with period 2k.

Let

k,2 - {(r,z) - r E (0,a), z 4 (-k,k)1. (3.3)

The subscript 2 here is to distinguish the set from higher dimensional analogues to be

introduced later. The problem (P) can be formulated in two ways. The first is a

constrained problem (PC):

solve (P)

subject to f 17401 + H(r, )1 drdz R. (PC) (3.4)

where R > 0 is a given constant.

The second is a free problem (PF):

solve (P) ~(PF) (3.5)

where X is a given constant. .3

(PC) corresponds to specifying the "energy" of a wave, while (PF) corresponds to

specifying its velocity.

The analysis of both problems is based on variational techniques and the theory of

rearrangements of functions. In each problem a critical point V of a suitable

-7-
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functional will be found and shown to be a solution of a weak formulation of the ..

problem. In addition, 9 can be taken to be even in z, nonnegative, and Tkonincreasing

on z [ [O,k] for each r. The following definition is used.

Definition 3.1: Let 9 T(r,z) be continuous on Q, 2  and periodic in z with

period 2k. For each r let U(T,y,r) denote the Lebesque measure of the set

(z : 9 (r,z) > y}. A function I which is even in z, nonnegative, nonincreasing on

z c 10,k] for each r and satisfies U(V,y,r) = U(II,y,r) is called the E

symmetrization of . If op we call it symmetrized.

The analysis will be carried out in the Hilbert space H = H ((O,a) x R) defined
k k

as follows: let C' denote the C' functions which have support where r C (O,a) and
k

which are periodic in z with period 2k. Define

ful2 = ~ 1 h (r)u2  drdz. (3.6)

The Poincare inequality (see lemma 3.4)

1U 2dd>e f u2 dr.(3.7)•e ;u drdz(3•7)

ak,2

together with h 0(r) > e > - e , a consequence of (HII), show that P Ik  is a norm.

Let Hk  be the completion of C in this norm; the space H is a Hilbert space with
copein k Hk

inner product

(u'v)k f f - {Vu.Vv + h (r)uv drdz. (3.8)

~k 2 Sk r 0 u...

If t is a continuous linear functional on R, its value at u is denoted by <£,u>.

The use of symmetrized functions is not needed in showing the existence of periodic

solutions, however it is very important in getting the estimates in section 5 which are

used to show that a solitary wave can be obtained as the limit of periodic waves with

increasing period. For the construction of , using piecewise linear functions and an

approximation process, and the properties of , the reader is referred to the appendix

-8--:
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of Bona, Bose, Turner (1983). A version of the following lemma can be found in Poly&,

Szego (1951).

Lemma 3.2: Suppose G(r,u) is even in u and continuous for (r,u) c (0,a] x R. Then,

for u piecewise linear and uz # 0 a.e.,

f G.(r,u)drdz =f G(r,u)drdz. (3.9)

Nk,2 %,2

Lemma 3.3: Suppose p(r) is positive and measurable on 10,a] and u is piecewise

linear and 2k periodic in z with uZ # 0 a.e. Then

f p(r)lVu2 drdz f p(r) Iul2 drdz. (3.10)

"k, 2 "k, 2

Proof: The case p I is found in Polya, Szego (1951). By continuity we may assume
2 2

p I C ([o,a] and u E Ck. Let q2 p with q (r) > 0. Consider
7212 2 2 2

IV(qu) -q Ivul' +qu +2qq uu.

Then

q q(u 2)rdrdz - f(~q 2 + qr2u 2)drdz.
r qqu & .r (qrrqu r ~u

"k, 2N,

so

Pu~dd f qVu,2drd.

dr, drd ffqu

-f IV(quj drz- (u 2q rqu ru)drdz

-2 2
f IV(qui) drdz + f q r qu drdz.2k 2 "k,"

Since the synetrization is in z and since q is a positive function of r, qu - qu.

By lemma 3.2, with G(r,u) qrr(r)q(r)u2 (r,z),

2
q qrrqU drdz - qrrqu drdz.

k,2 "k,2

-9-
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Finally, -

f PIu %1dd f IV(quiI drd + f qqu
2  zk, 2 "k,2, k,2 rr u rd

f IV(,",) 2drdz + 2 qrqu
2
drdz

"k,2 nk,2 

f j V(qu)l drdz + f q u drdz ''

PVu,2drd.
"k, 2k

Lemma 3.4: For u c H the constant e0  in the Poincare inequality (3.7) satisfies
k i

2
> 4z +3

0 4a2

Proof: By continuity we assume u E Ck. Using the calculation in the proof of lemma 3.3

with q = /r,

I Vu 2 2d
S r 2d f ]V( )

2
drdz + f 3u2 drdz

"k,2 "k, 2  "k,2 4r3

2 2 2f u__3f u--2 ~ -drdz +-- -drdz
a 2 r 42f r

4k, 2 k,2

412+3 1 2
- -u drdz.

2- r
4a k,2

Along with Jthe spaces C, C', LP(Q), and Wj'P[(l) will be used for various

domains. The reader is referred to Adams (1975) or Gilbarg, Trudinger (1983). Here and

in what follows C denotes a positive constant independent of k. The constant changes

from one inequality to another.

,10.
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L ma 3.5: The following relation holds,

H. C WC p c[2,-).

Proof: From the Poincare inequality and Sobolev imbedding theorem,

lug " [, I"u1drdz)1 / 2 4 p < .Lp"'k,2) "k,2 --"

1[V,12 u2 1/2

-C (f fju + drdz)

"k, 2

- C fEW 1,2

I Iaf VUI2 + ~2 ~1/2

'C C~u) U -u"d;d)
k, 2,

C c (f 1 nvui + h 0 u drdz)11

"k,

A further consequence of the Poincare inequality is, for u £ Hk,

lul 2 C f I. TY 2 drdz.

nk, 2

For convenience we will often use

fu f u(r,z)drdz. (3.12)

"k, 2

If u Hk , Lu/V e L2 (flk,2) and v H, then

(u'v)k f VuVv + hO(r)uvl

(3.13)

- .r i-Lu + hO(.)uIV,

-11-.

- --.- -- ....... ...-.
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where the boundary terms cancel on z - * k due to periodicity. Thus we define a weak RIM

periodic solution of (P) as a pair (A,q), 9 c l, satisfying . ,

+ f , h (r,)v f( ,)v (3.14)

for all v c . The integrals in (3.14) exist by virtue of (HI), (HI!), lemma 3.5, and

lemma 3.6.

Lemma 3.6: For u c , and p > 2,

Proof: Let q- 1/p, then

rI1Julp f 12p 1,-Arq rq L(11k 2 )

From the proof of lemma 3.5,

( C(f jV 12) + U1})112.
P-.q-~~% I-.CC 'I'q 2

r L "k 2 r

Since p 2, q ( 1/2 and r
"2
q 4 C r"

Considering now the gradient term and integrating by parts as in the proofs of lemmas 3.3

and 3.4,

2.I fv( -  .I U 2+-q=+ ) u ":: :

c -2q 2q+2

r r

24Cf'U2 ( 2 
r~.' 2q2

rr

22
{IV(~)I 4 C~- f F 7

1l - 1 C 2

rmr

-12- " ."
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First we consider the problem (PC). For u e Hk  introduce

A(u) - 11,a+ (r,u)} .1Wt/J(u) = [r ,.:

J(u) - f' F~r,u)

where r and H are defined in (3.2) and for R > 0, let (3.16)

S(R) - u c k t AMu) - R2 13
The assumptions on f and h, along with lema 3.6, guarantee that the functionals A

and J are defined on Hk . One calls V a critical point of J on S(R) if the _

derivative of 3 is zero in directions tangent to S(R), is. J'(q) is parallel to

A'(y). A consequence of this is (3.14).

Theorem 3.7: Let f and h satisfy (H). Then for each k > 0 (PC) has a solution

R 9 c2 ' a1 ,2 ), such that

(1) J9k)9 sup 3(u),
u C (R)

(2) X 0 and 9k > 0 in

(3) 9k #k (cf. definition 3.1).

Proof: Apart from regularity, the proof follows the lines of theorem 3.2 in Bona, Bose,

Turner (1983). Due to the 1/r singularity in the operator L (2.10), LP elliptic

theory from Agmon, Douglis, 1irenberg (1959) is applicable only to regions

n ' {(r,z) t '\2 : r > E > 01. Since 9 is a weak solution of an elliptic equation,

, (W''), p 4 (2,-). By the Sobolev imbedding theorem and the Schauder theory, see

Gilbarg, Trudinger (1963), V c C2,w

Remark: In section 4 it is shown that 9 E C
2
W(\ 2)- is. that is regular at r 0.

e-- that

Now we turn to (PP). Let v be the smallest eigenvalue of the linear problem

-13- ""-
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-Lii + h 0(Wu Xf ~0 (r)u,

(3.17)%
u fHk.

Using separation of variables we see that pi has a corresponding eigenfunction v(r)

associated with the lowest eigenvalue of

-V +.Iv +h (r)v X r-,M
rr r r 0

(3.18)
v(O) =V(a) -0.

*In fact the equation Is of limit point type at r - 0 with respect to L2  with the

weight I/r, so the condition v(O) - 0 is superfluous. We can also use the change of

*variables y - r2 /2 to get

h ( y)v Xf(y)v

where v(y) = v(r2 /2) - v(r). The existence and positivity of v follow from arguments

like those used in the proof of theorem 3.7. We normalize v such that

For~~~~ .~fxddfn ucinl14 on H 2 + h V 2 1dr _ 1. (3. 19)

Foru) deoe thxe nr o h de riatveneu) a a functional on Hk Akrtia

point m of M4, ie. <M'(V),v> - 0 for all v c H4kI is a weak solution of (PF) by

* (3.14). Now we show (PF) has a symmetrized solution by first stating a technical result

* from Bona, Bose, Turner (1983).

Proposition 3.8: Fix k > 0 and let M4 be a continuously differentiable functional on

H1k satisfying:

(1) There are constants s, s > 0 such that 14(u) >s for lufi =s.
k

(2) M4(0) =0 and there exists a function w with Owfl k> s such that M4(w) 4 0.

(3) For each B > 0 if {u1 1  is a sequence setisifying < ( 1(u ) < 1/B, for

all t, and #M'(u~ )ff +0 as I * , then there is a subsequence u1 I' of
m

fu converging strongly in Hk as m +

-14- 0
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Let

r (y c cuoo,. ):Y(O) - 0, -y(1 - W1
k 

.

and define .. ..

b -b ()- max
u C Y([0,1])

(3.21)

b - inf by.

Suppose yn n C 3, is a sequence of paths in r such that b b + 1/n. Then there

is a subsequence {nj}; of 3+ and functions u c v (10,11) such that un

converges strongly to u as M(u) , b, and I'(u) - 0.

Theorem 3.9: Let f and h, satisfy (H) with a and a as defined. Let u be the

lowest eigenvalue of (3.17). If X c (o/a,), then for each k > 0 (PI) has a solution

2,w9 4E R £k) C (''(k.2) with

(1) 1 (. inf b (M),

(2) 9Fk > 0 in Sk2
(1 

9~k) - n

(3)

*Proof: The proof parallels that of theorem 3.4 in Bona, Bose, Turner (1983). one

constructs a sequence of minimizing paths consisting of symetrized functions.

Proposition 3.8 guarantees that the critical point will be symmetrized.

Remark: Again we postpone the regularity of 4 at r - 0 until section 4.

4. Regularity At r - 0

In this section we obtain regularity up to r = 0 where the equation

-" r + yz) + h(r,X) = lf(rT) (4.1)

(....T,

........... ' ............- ... .,.,................ ................... .. . .,. ..•,



is singular and standard elliptic theory breaks down. To extend the regularity of q

from c 2,w"'k,2  to C 2 ,w we use an approach due to Ki (1980), which involves

* 5* restating the problem in R

Set 9 r 2g. We will fix k for the entire section and suppress it. We then have

I +g
Vrr -r qr za

2 1 2 2
-(r g) -(r g) + (rg)rr r r Z

r 2grr +. 3rg, + r gzz.

Hence (4.1) becomes --
2 2

3 h(r r ci) Xf(r.r ci)(42

r r r Z)+ r2 2

with boundary conditions

g(a,z) - 0, g(r,k) - g(r,-k).

The operator which has replaced L is the Laplacian in cylindrical coordinates in RS as

applied to functions with cylindrical symmetry. Since the nonlinear terms f and h

have polynomial growth in (r2g), division by r2 is not a problem.

We define g in R to be axially symmetric with respect to the axis r -0 (Z-

2
axis) ~ ~ su. tht r k,5 is the domain in R5 generated by rotating

"k,2 around the axis r -0. Note that r -0 is not included in "k,5.

Lemma 4.1: g is a classical solution of (4.2) in the open set 'k,5

Proof: This follows immediately from knowing T r 2 is a classical solution of

(3.1) for r > 0.

*we will use Lp ("k,5 and Wj'~' (fl.,5) to denote the LP and Wj'P spaces in R5. We

3 2omit the angular factor of the Jacobian, r sin 6 sine drdO O2d63di h

integrals for al
k,5'

* -16-
'o.
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Lemma 4.2: For L and r 2g

glr( f 2 2.

2 -f fvq 2 og 2 T drdz I1 2
k. k

Proof: 19(r )12  r4 lv + 4r gg + 4r 2

and

f r 2 (_g__) drdz -- f rq2 drdz,

* ~so 5 k

f Y~ gVc) 2 drdz -f r IVgj dxdz.

* ~~Therefore, k2k,

2 f f~,1.P2 + h (flip21 drdt -

k k,2r

+ _ 2 3

= 1{vg( 2 + h 0 g 2 r 3drdz

2

Theorem 4.3: g ia a weak solution of

- Xf(r,r 
2 g) - h~~

2 )
-bg ~ (TI S- i k,5(43

r
with g(a,z) -0 for z c (-k,k) and g periodic in z with period 2k. B k,5

{(O,z) :z (-k,k)) U)

Proof: The reader is referred to Ni (1980)o where it is shown Ag does not produce a

distribution supported at r -0.

-17-



4.

Lemma 4.4: Suppose u = u(r,z) w 1,2(Bk,5 with u (a,z) 0 for

z (-k.k), q 1 and Then .

(f lul c1/q 2 3 1/2. 4.4)

BBk, 5  k,5

Proof: By continuity we assume u E C'(B,5. The Sobolev inequality in 32 is
k,5

(f lur /~drdz)
1 / q r c(f IV(.r'/%I2 d-)2....

Coneider "k, 2  2

7(ur B/q)12 fVu,2r28/q +A (U2) r (20/q)-1

q

2 ",

8 2 128/q) - 2.

2ur
q

Since

8 r (28/q)- I drd 6 .8 (1_ 28 u2r(28/q)- 2 drdz
q Cu r qrz-1- q rdrz

e k, 2 rk, 2
we have

I q(urq)l2drdz f I 228/ m a  + _ (I. f u2 2 0/q) - 2 drdz

17u r iu r2/drdz"'""ek,2 k,2  "k,2

2 2B/q
4 f Ivul r drdz

(26/q) - 3 f Vu,2r3
(sup r - ~ lrdrdzEO,a] 2.,..

' C f IVu2 r drdz.

"k, 2
The result follows Immediately. ,2-.

No~w we state the main res~it of this section.

Theorem 4.5: g . C
2
'Y( 5 1 or equivalently T/r2 E C 2 ,

-18- -
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Proof: Bdy (), IXf(r,t) - h(rt)l 2 C(It + ItI'la) and so the right hand side of (4.3)

is bounded:
2 2M

)Af(r.r q) -htr.r q)I c1 + r2n-2~

r2 1 g , . "

Standard elliptic theory is applicable to (4.3) since we are now dealing with the H

Laplacian. Lemma 4.2 shows g c W
1
'
2
tk 5 ). For n < 7/3, a bootstrapping argument and

k,,p
the crude estimate C(I1 + r2 "2 gn) ( + Ign ) give us q C W '(k for all

p 1. Invoking lemma 4.4 with p 5/2, q -np, and B = (2n-2)p + 3,

f (r2n'21.1 l)P r3 drdz <Bk,S5r." '

if -n-2) + , is. n 8/5. Hence, for n ) 8/5, the right hand side of

(4.3) I in LS/
2
(5k,5). Thus, by elliptic theory, g c v 2

(
5

k
2  

for all n 1. It

follows from the Sobolev imbedding theorem that g e LP(B k,) for p [1,-). Since, by

2,
elliptic theory, g W (B ) for p c[1,-) a further application of the Sobolev

k,5

imbedding theorem gives g C C (B, By our assumptions on f and h,
2 ~~ 2 g)2,w-Af(r,r2 - ,~~2}- .-.

E C(B 5). The Schauder theory gives g c C2(B,). Our result
2 k,5 k,5

follows from noting that Bk,5 " k,5"

5. Solitary waves

As in Bon&, Bose, Turner (1983) it can be shown that ( a and Iklk is bounded

independent of k for both (PF) and (PC). The additional assumptions of a < 5 and

2acm < U are needed here, where m,a, and a appear in (H). Corollary 4.5 in Bona,

Bose, Turner (1983) gives a bound on Ig 2 independent of k. Since our solutions of

(PT) and (PC) are symmetrized in z, for k sufficiently large we can obtain the

following crude decay estimate

Ctlikk 1 + Nn-'k11/3"Ykr,,) 4C iZi1/3 (5.1)

for jzI < k. See lemmas 4.9 of Bona, Bose, Turner (1983) for details.

-19-
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Using this decay rate we can obtain exponential decay rates for Tk and Vqk. The

approach we use is due to Amick (1984). He used it to get exponential decay for solitary

waves, but it is easily adapted to periodic waves.

Lem 5.1: Let (Xk,qk), ok c H , be a solution of (P) from either theorem ,3.7 or~~k k

theorem 3.9. Suppose that for some q > 1,

ii  [kfl(r't) - h,(r,t)l 4 cotq

for It 1 and r c (0,a]. Then for k > ko IzI C k,

,k(r,z) 4 ce
- B1 z1  (5.2)

and

-S1:1I VyPk(r,z)j 4 CleXk / (5.3)1 k 1/2

where C and C' depend on aq,B, and ,I, B "7 [(e + eo) -1 -

Proof: As noted above, Xk 
< 

j. We now suppress the subscript k. Let b'-

2 2Xfl(r'r g) - hl(r'r g)."

Q(r,g)- 1 g Again we use T r
2  

where g satisfies (4.2),
2

and :

IQ(r,g)l Clg' if r2 g <1

C2
For r 0 ,a], z E [-k,k], (5.1) gives g(r,z) - . For k0  large enough

2 I z
r g C I on [O,a] x [k0 ,k]. We can rewrite (4.2) as

-V.(r3Vg) + h0 gr
3 

= Xf 0 gr3 
+ Q(r,g)r

3

Multiplying by g and integrating over (O,a) x (z,k) gives, after an integration by

parts,
k a k a

f f {Ivgl 2 + hog 2 Ir3drdC - f f Af0g
2
r
3
drdC

:0 : 0 '.

(5.4)
a a k a

- f g(r,k)g z(r,k)r dr - f g(r,z)gk(r,z)r dr + f f Q(r,g)gr drd.
0 0 z 0

W

W
-20-
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is the smallest oigenvalue of the linear problem (3.17) and g (r,k) < 0 since p ,

9 - gso . ,
4q k a a ka

(1- fil 2  h () +-c g(rz)g (rz)r Ar + f f Q(r,g)gr drdC" (5.5) -

z:0 0 X 0

From the proof of lemma 4.2 and our Poincare inequality (3.7)fI91
1 flvgl 2 3adC 3 so f f g2 r drdC.

Using this and the hypothesis on IQJ (5.5) becomes, for z e (ko ,k),

f fka(0 r drdC 4 C, f f gq r drdC f Ica +13 a 3 (5.6)

z 0 z 0 0

From (1II) ho(r) • > - •. , so let C3 - (e + e)(1 - ) Then -. -.

k a a k(,) r=rd fka ;

c(3 f f g
2
r
3
drdC + f <(r~z)gz(rs:)r dr < C1  max Ig(r,z)l

' 
f g 2 r3 drd,.

z0 0 k0  z 0

for z c (kok). Choose k 0  such that

C2 q-1 C 3 -
0"C 1  max Ig(r,z)l 1 <-."

z k kOo 2 '-"

Now for z e (k ,k) we have
0

C k5 a.- f f 2 r 3rd. + f g (r,)g (r,z)r 3 < 0 (.7)
2 0 0 

.

As in AmLick (1984), it follows that

k a -1C3
f f g r drd < COa
:0 4

for z c (k ,k). Since Ig2 is bounded, we obtain

0 c2,w
g(r,z) C C5e

on 10,a) x 1-k,k), k > kO , where 0 V /c 3/2.

-21-
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4.!

Elliptic estimates (eg. LP  estimates and the Sobolev inequalities) give local L P.,
Se%

bounds for Vg in terms of local L bounds for g. It follows that ,.I .I4

jVg(r,z)l 4 C e-Blz %"*.
6

We now show the existence of solitary waves for (PF) and (PC). They arise as the

limit of periodic waves as the period k +

Theorem 5.2: Assume f and h satisfy (H) and let a,a, and m be the constants

defined there. Let p be the lowest eigenvalue of the linear problem (3.17). Suppose

*also that m < 5, 2a/a < jand hxf (r,t) h h(r.,t)I - Ct, for some q > 1,on

[O,a] x [-1,1]. Then

(PC): Let R > 0 be given. For each k > 0 let Xk'q'k~ be a solution of (PC) from

2
" theorem 3.7 with A(T) = R . Then there exists an increasing sequence of half periods

+

k(j) , j . Z , and a solution (X,i) of (P) satisfying

(1) > 0 and , on Q,

2
f2) A (c) = R

(3) C C(R+R)
C2

(4) l, lVj C-sz
,  

[(e + e M /] 2

2 0

(5) lim = ,, X (0,1),,
k(j) "

(6) lur rk-.) = ' uniformly in C
2  

on bounded subsets of I.

(PF): Let X {/ep) be given. For each k > 0 let (X,yk) be a solution of (PF)

from theorem 3.9. Then there exists an increasing sequence k(j) + -, j Z , as above,

* and a solution (1,T-) of (P) satisfying (1), (4), and (6) as well as

-22- (=.-.



r7; -~~ 0-,-77

(2') 1,2 (C c{lim lk(j)k(j)l <

5-mn
4(m-1)

W) II) 2,w ' C(V + 6n)
,  where 6 -

C Oaa M1)

Proof: The bounds derived up to this point enable one to extract a subsequence of

solutions converging to the desired solitary wave solution. As in lemma 4.7 of Bona,

Bose, Turner (1983), it can be shown that ITk I is bounded below by a positive constant
Llwr

independent of k. It follows that > ) 0. For further details see theorem 5.1 in Bona,

Bose, Turner (1983).

6. Example

In the following specific example we show how the theory developed in the previous

* sections is applied.

For the primary flow, q- (0,V(r),W(r)), we take W(r) d, WO - , where d

is a constant and Q is an angular velocity parameter. As noted by Pritchard (1970) and

Benjamin (1962), solitary waves do not exist when the flow is a rigid body motion,

V - nr. In the following calculation V - Or would nroduce a linear equation, while we

require a nonlinear equation. Since we are looking for permanent waves, say of velocity

c, travelling down the cylinder, we change to a coordinate system moving with velocity

c. This renders the wave form stationary; W(r) - d is replaced by W(r) - d - c = c.

using (2.2),
r 

2

V(r)- f sW(s)ds -

0 2 2 29
is the stream function for the unperturbed flow. Inverting this we have R - . Thenc '

3 2 c
K(r) - rV(r) - ar and in the primary (unperturbed) flow I(r) - K2(r) becomes

2 2
4n 3 di 12Q02 y2
4IM - -3 3 Hence d 1 . Defining T(r,z) by (2.8) where
c c

*(r,z) - T(r) + yv(r,z), (6.1)

* is the stream function for the perturbed flow, is the perturbed stream function

-23-
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and y is a normalizing constant to be chosen shortly. We note that T rr " r so.

from (2.9) we have i:J

1 ~ ~~ dI_ rR(T)
( r r - r r + Z d fz R T 2 - I ]q

12n 2, 2 [IT2 c 1

" C r'( v Y ) ( c " ( + y p),

c

-2,' -p (r c q)

We have an equation of the form .'

4 .

-[Vr ---r r + qzz) + hlr,V) = flr,v)

6.1

where h(r,j ) - 0, X= - and f(r,T) - r2+ 2  Note that A is proportional to .c

S1 and inversely proportional to c2 ,  the square of the velocity of the wave of '

permanent form relative to the velocity of the primary flow. Choosing y by y s/2,

we have two cases. They correspond to c > 0 and c < 0.

Consider first y > 0. We remember that in deriving (2.9), (2.10) we followed stream _.i

surfaces to z TM + - and used the knowledge that the Bernoulli quantity, H, and the ''

"circulation", 1, were constant on stream surfaces. So the f and h defined from .

(2.9), (2.10) require that * takes its values in [0,T(a)]. In our example this isNI

[0,ca2/2). Since ip(0,z) V (a,z) = 0, this requirement is implied by .

r r + YVr > 0 (6.3) *'.

for (r,z) c (0,a) x R. Using T r cr and y - c/2, we see that (6.3) is equivalent to

r

The restriction (6.4) will certainly be satisfied if we can verify that for our solution

-24- 2
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.1,

".r < 2r, (6.5)

for Cr,z) c f - [0,a] x a. In the perturbed flow the radial velocity

u(r,z) - - - - - . We know our solutions are positive (9 - 9) and have a profile

- in z like e * In the region to the left of the crest, z > 0, so u(r,z) < 0 and
we have a wave of depression. An stated above, f(r,t) - r2t + 2 - r2t + is, at

. the moment, only valid for r c [0,al and t ) 0 such that 9(r) + yt lies in

[0,1(a)]. so (r,t) must satisfy
0 9 t T(a) - T(r) Irca2  cr 2  a2-r2 (6.6)

y .
1

.
2

.J *

However, by extending fl - t2  as an odd function to t < 0, we see that condition (H)

*- of section 3 is clearly satisfied with m - n - 2, a - d - 1, and 6 " 2/3. These
c

conditions are satisfied without any restrictions on the values of t ; 0, so our

extension of f - r2t + t2  outside of 0 4 t a2-r2  is permissible.

Since the f and h derived for our example satisfy (H), theorems 3.7 and 3.9 give

- the existence of z-periodic solutions (X,V) of equation (3.1). In (PC) R > 0 is
2 C2

specified and in (Pr) X c (O,U) is specified. We know that 4p r 2g, where g E C

2
and r 4 a, so 9r - 2rg + r g " Hence

r r

I C 2rigf + r2II C 2r(1 + ) ,gI. (6.7)

-rom corollary 4.5 in Bona, Bose, Turner (1993), with N - R in (PC) and

-rn
N .()4(m-1) 2•N" in (Pr), Igo I < C(N+N2). '

Hence (6.6) will be satisfied if (1 + a/2)1g 1 < 1. This can be accomplished if we

restrict R to R £ (0,c 0 ) for some R0 > 0 or if we restrict X to X c (O0,U) for

00* some 0 e (0,ij). With these restrictions

2 1/2. --0*(r,z) - 1(r) + yf(r,z) - c(r2 + 9)/2, c ,

has range in [0,1(a)], is a solution of (2.5) and gives, for each k > 0, a train of

depression waves. Since m - 2 < 5 and 0 - a/2a < Ma lemma 4.1 of ona, Bose, Turner

-25-
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(1983) shows X < u when R is given. Inequality (5.1) guarantees that has

I. nontrivial z-dependence for k sufficiently large. Finally, theorem 5.2 gives the

- existence of solitary wave solutions (X,T) with -= c(r2 + V)/2 . Since

Ixf 1-h11 = At2  we know that the deviation of the velocity fields of these solitary waves

from the velocity field of the primary flow decays exponentially as Iz .. -.

In the case c > 0, the fluid is moving downstream as viewed from the stationary -

waveform (W > 0). In considering the case y c/2 < 0, we note that the change in sign

of c corresponds to the fluid now moving upstream relative to the waveform (W < 0).

Hence, the case c < 0 is just the reflection, in z = 0, of the case c > 0.

Therefore, we again obtain a wave of depression.

p

.1.

-.5.
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demonstrate that the Euler equations possess solutions that represent
progressing waves of permanent form. Moreover, internal solitary wave
solutions are shown to arise as the limiting forms of internal periodic waves
as the period lenqth becomes unbounded.
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