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SIGNIFICANCE AND EXPLANATION

In this paper we study the steady-state behavior of solids that can

sustain mechanical, electromagnetic, and thermal effects. Our goal is to

formulate very general assumptions on the constitutive equations that are

physically reasonable, yet leave the resulting mathematical problems

tractable. The models we propose admit the following types of nonlinear

behavior which are of particular interest when materials are subjected to

large electromagnetic fields and sustain large currents.

1. Nonlinear Coupling: We investigate the abstract mathematical problems

that occur when we assume a very general coupling of the various physical

fields of the material. For instance, we assume that the dielectric

displacement d depends not only on the electric field 0 but also on the

deformation gradient Z, temperature, temperature gradient %, and magnetic

field h. We make similar assumptions about the stress tensor T, magnetic

induction h, heat flux vector 2, and electric current 1. The assumption

which makes such problems tractable is a modified version of the "strong

ellipticity condition".

2. Nonlocal Self-Interactions: The Maxwell's equation

crl h

implies that a current in one part of a body will generate A magnetic field in

a distant part of the body. Since we allow I to depend on the entire list ...

of independent variables, the magnetic field at any point will depend on the

global values of the other variables. And, since all of our dependent

variables depend on h, this problem will be spread to the entire system of

equations. We use compactness method to handle these nonlocal problems. -

In Part I we handle very general mathematical problems under special

physical assumptions (rigidity and hyperelasticity) and in Part 1I we handle a

special mathematical problem (a semi-inverse problem) under general physical

conditions.

The responsibility for the wording and views expressed in this descriptive
summary lies with 1RC, and not with the authors of this report.
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STrADY-STATI PRfBLEMS OF NONLINEAR ZLECTRO-MAGNETO-THERMO-ELASTICITY

Robert C. Rogers and Stuart S. Antman2

Part I. The General Theory a

1. Introduction

In this paper we study a class of boundary value problems for a quasilinear

system of functional-differential equations describing the steady-state behavior

of solids that can sustain mechanical, electromagnetic, and thermal effects. We

treat partial differential equations in Part I and ordinary differential

equations in Part 11 Our primary goals are to show that there is a simple way--

to formulate the governing equations, which illuminates the physics and promotes

the analysis of the equations, to actually analyze important classes of problems,

and to contribute to the development of an effective constitutive theory for such '

materials by showing how our physically and mathematically natural constitutive

restrictions support existence and regularity theories for our problems. The

problems we study are simple enough to be tractable, interesting enough to

possess a very rich class of solutions, and yet complicated enough to require new

approaches, both in the formulation and treatment of electromagnetism in solids
and in the use of techniques of nonlinear analysis.

Our constitutive equations give the stress, heat flux, dielectric

displacement, magnetic induction, and electric current as arbitrary functions of

Some of the results reported here were developed in the doctoral dissertation of V
Rogers ( 1984).

1Partially sponsored by the United States Army under Contract No. DAAG29-80-C- AA
0041. This material is partially based upon work supported by the National $

Science Foundation under Grant No. DMS-8210950, mod. 1.

2Partially supported by National Science Foundation Grant No. DMS-8503317.
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the deformation gradient, temperature, temperature gradient, electric field, and

magnetic field. These constitutive functions must of course be invariant under

rigid motions. In order to reduce the governing equation to ordinary

differential equations for our semi-inverse problems of Part I1, we further

* require that the bodies under study have some material symmetry. Our basic

constitutive assumption is that the constitutive equations satisfy the Strong

Ellipticity Condition. originating in the theory of partial differential

equations, this condition proves to be eminently natural on physical grounds.

indeed, this condition, when precisely formulated, is equivalent to the

requirement that each component of the dependent constitutive variables is a

strictly increasing function of the corresponding component of the independent

constitutive variables (when the other components of the independent variables

are held fixed). Roughly speaking, a typical consequence of this assumption is

that a change in the temperature gradient produces a far more pronounced change

in the heat flux vector than it does in the stress, dielectric displacement, and

magnetic induction. Thus the Strong Ellipticity Condition implies a very mild

uncoupling in the constitutive equations. True uncouplings, such as the

independence of stress, dielectric displacement, and magnetic induction on the

temperature gradient, may be interpreted as consequences of the Clausius-Duhem

* version of the Second Law of Thermodynamics. But we have no need for such true

uncouplings anywhere in our analysis. Indeed, wherever the Clausius-Duhem

inequality is more restrictive than the Strong Ellipticity Condition, we have no

* need for its consequences, and wherever it is less restrictive, it is inadequate

for our needs. We supplement the Strong Ellipticity Condition with compatible

growth conditions.

Rather than adhering to the classical tradition, (followed at least in part e

by Toupin (1956), Fano, Chu, &Adler (1960), Penfield &Haus (1967), and DeGroot

-2-
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&Suttorp (1972) and others), of deriving or motivating the constitutive

equations of electromagnetism from discrete microscopic models, we employ the

phenomenological approach of continuum mechanics and simply lay down general

constitutive lavs. We thereby gain great economy and generality in our 4

formulation of electromagnetism. (Cf. Truesdell & Toupin (1960).)

For simplicity and clarity in our mathematical analysis, it is crucial not

only that we give Maxwell's equations a material (Lagrangian) formulation, but

also that we introduce new variables in place of the dielectric displacement,

magnetic induction, etc. in this regard we are merely extending to the theory of

electromagnetism in deformable media the methodology that has proved most natural

and successful for boundary value problems of nonlinear elasticity.

In the overwhelming majority of texts on continuum mechanics the emphasis
placed on the spatial formulation of the governing equations and, in particular,
on the use of the Cauchy stress tensor overshadows that placed on the material
formulation and on the use of the Piola-Kirchhoff stress tensors. (We define
these stress tensors in Section 3.) The reason for this emphasis is largely
historical: The two most highly developed branches of continuum mechanics are ** ~
Newtonian fluids and linear elasticity. The constitutive equations for a
homogeneous Newtonian fluid are especially simple in a spatial formulation.
Moreover, in this formulation the constraint of incompressibility (valid for ~ ~
liquids) has an elegant characterization as the linear equation expressing the i.

vanishing of the divergence of the velocity field defined over points in space.
(In contrast, incompressibility is characterized in a material formulation by the
nonlinear equation requiring the Jacobian of the deformation gradient to equal
unity.) For problems involving nonhomogeneous fluids or fluids with free
surfaces, there are compensating disadvantages requiring some version of a
material formulation, possibly disguised, for their successful treatment. In
linear elasticity there is no distinction between material and spatial
formulations, although the derivation of these equations from a nonlinear spatial
formulation is much more difficult to carry out than that from a nonlinear
material formulation. The advantages of a material formulation are evident for
the boundary value problems of nonlinear solid mechanics: Wi The prescription
of constitutive equation for the first Piola-Kirchhoff stress tensor in terms of
the past history of deformation is natural and does not suffer from complications
due to nonhomogeneity. (ii) The governing equations are posed on a fixed region
of space, the region occupied by the body in a reference configuration, rather
than on the unknown and possibly moving region actually occupied by the body.
These factors have not, however, proved to be compelling in shifting the emphasis
of texts towards material formulations because there have been so few studies of
nonlinear boundary value problems of solid mechanics. (Cf. Antman (1978, 1979,
1983), Ball (1977, 1982).)

-3-



Maxwell's equations have been posed almost exclusively in spatial

coordinates because the most important case of the vacuum can be posed in no
other way and because in the second most important case of a rigid medium there
is no essential distinction between material and spatial coordinates. Moreover,
the most actively cultivated field of electromagnetism in deformable media is
that of magnetohydrodynamics. For the reasons mentioned in our comments on fluid
dynamics, many problems for this theory are most easily set in spatial
coordinates. Only recently has the use of material coordinates begun to appear
in treatments of electromagnetism in media. (Cf. Walker, Pipkin, G Rivlin
(1965), Hutter (1975), Pao & Hutter (1975), Rutter & van de Ven (1978), McCarthy
& Tiersten (1978), and Maugin (1981).) These authors have also introduced new
fields suitable for material coordinates in place of the classical fields.

The large deformation of solids in the presence of large electromagnetic

fields is a problem of growing technological importance (cf. Moon (1978, 1984)).

hwareness of this importance is evidenced by the number of papers recently %

devoted to this subject. (Cf. Parkus (1979), Ambartsumian (1982), Maugin

(1983).) To our knowledge, ours is the first mathematical analysis of general N

nonlinear boundary value problems in this area.

Much of the previous work in the electromagnetism of deformable solids can
be divided into two general areas: the development of a general theory governing
such media and the solution of specific nonlinear problems. General theories of
the dynamics of deformable solids have been proposed by Fano, Chu & Adler (1960),
Toupin (1963), Dixon & Eringen (1965), Pao & Rutter (1975), and Maugin & Eringen
(1977). These developments consist in the derivation of some form of Maxwell's
equation and associated forms of the electric body force, body couple, and
internal energy supply from some discrete model of the material. Comparisons of
various theories are to be found in Penfield & Haus (1967), DeGroot & Suttorp
(1972), Hutter & van de Ven (1978), and Pao (1978). Our work is more closely
related to the static theories of Toupin (1956) and Brown (1966). Specific
problems for general nonlinear dielectrics were solved by Toupin (1956), Eringen "'.,-.
(1963), Verma (1964), Pipkin & Rivlin (1960), and Singh & Pipkin (1966) via the
inverse methods of modern nonlinear elasticity. (Singh & Pipkin also provide a
review of the earlier work.) There is an extensive literature on specific
nonlinear materials with polynomial constitutive equations and associated
problems (cf. Jordan & Eringen (1964) and Pipkin & Rivlin (1966)). Maugin (1981)
reviews the modern work on wave motion in magnetizable deformable solids and ...

includes both general nonlinear and specific (approximate) constitutive
equations.

"%
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2. Notation

The Euclidean 3-space 3 is defined to be abstract 3-dimensional real
P .. *dj

inner-product space. Its inner product, the dot product, is the natural source

of the geometric properties of the space. We interpret X3 as physical space.

We Aistinguish 3 from 3, the space of triples of real numbers equipped with

any norm (which is necessarily topologically equivalent to the Euclidean norm).

But we assign no natural geometrical significance to the norm on R3.

Vectors, which we define to be elements of 3 , and vector-valued functions -..

are denoted by bold-face, lower-case Latin letters. Second-order tensors, which

form the space Lin of linear operators from 3 into itself, are denoted by

bold-face upper-case Latin letters. The subspace of Lin consisting of

symmetric second-order tensors is denoted Sym. Its subset of positive-definite

tensors is denoted Psym. The group SL(3) of all members of Lin with

positive determinant is denoted Lin+ Scalars and scalar-valued functions are

denoted with light-faced letters. Elements of Rn  for n > I and functions

with values in lin  are denoted by bold-face sanserif lower-case Latin letters

and by bold-face lower-case Greek letters,

We employ the dyadic notation of Gibbs (cf. Gibbs & Wilson (1901)), which we

now describe. (This notation is both admirably suited for treatment of problems

in curvilinear coordinates and completely compatible with modern invariant."

formulations of linear algebra in 93 .) The dot product of vectors u andv

is denoted a*. The cross product of two vectors a and 2 is denoted ^-"" -

The value of the second order tensor at is denoted . The transpose

of is defined by v (A ") for all j and v. We

accordingly write A *v v*A. A is s if A A A and skew if

A -A If A is skew, there is a unique vector a, called the axial vector

of A, such that A*v - a-v for all v c 3 The dyadic product uv of

-5- ..



vectors and v is defined to be the second-order tensor satisfying

1 &X)'* (X.L)v for all X. Thus (ucy) vu and tr(l&) = )3,2 where tr

denotes trace. The product (A.A) of tensors is defined by ( , ),Z -

for all _. Thus 4.(ja) - (l°a)v and I a)*(A) w We set

A:B - tr(A*B*). Hence trA- I:A - A:I - A.I - trA ,

1: (' 1(z.), and 6:(Rv) ) ** v - ():.. ( denotes the identity

tensor.) It is easy to see that ":" is an inner product on Lin. We

accordingly define the norm I of A by JAI A-/A:A. If a and b are unit -

vectors, then labi = I so that ab is a unit tensor. In this case we can

represent any tensor A by the orthogonal decomposition

A (aAb)ab + [A - (a.A*b where a*A'b is the component of A along

ab and [A - (a*L.b)ab] is the projection of A onto the orthogonal

complement of ab. If {k } and { j} are each bases for 3, then {zj"

is a basis for Lin. Thus we can use all of our dyadic identities to construct

the familiar componential formulas for all the expressions we have introduced in

the invariant form. Repeated indices are summed over their obvious ranges.

The (Giteaux) differentials of u P f(2) at a in the direction of and

of j . E( ) at a in the direction of are defined to be the vector

[1 )/ ] .b and the tensor [ (I)/a] given by

(2.1) [af(a)/au].b = f(a+tb) 0

(2.2) [3la()/au OB = d F(A + tB)It 0

Other differentials are defined similarly. If U w F(U) and V GV)

are (Frechet) differentiable, then V w F(G(V)) - H(V) is also, and its

differential satisfies the chain rule:

(2.3) [.lQ)/3V] :B = ( ))/Q W :{ [a( ll/W] :},

(The braces can be omitted from the right side of (2.3).) Our notational scheme

embodied in (2.1) and (2.2) causes the chain rule (2.3) to have a form analogous

-6-
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to that for scalar functions. As we shall see in the next chapter this virtue is

counterbalanced by the increased complexity of defining and representing the

action of the classical differential operators grad, div, curl on tensor

functions.

We denote n copies of a function space X by X itself. The distinction

will be clear from the context: Thus a statement of the form w C L p(B) is to

imply that this Lp (B) is the space of all measurable vector-valued functions
•w 1]p/2v z "'"

X3 : D a zww(z) e 23 such that f Ew(z)-(z) <-p/2 •-
B

The norm of a Banach space X is denoted t.,XI.

. 4, .

.t. ,.
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3. Formulation of the Governing Equations

In this and the next section we formulate the equations for steady-state

problems of electro-magneto-thermo-elasticity. There are several different

theories that are at least formally equivalent in the classical nonrelativistic

setting we employ. (Cf. Hutter & van de Ven (1978) and Pao (1978).) Comparisons

of the various theories is made difficult by the fact that the same symbol used

in different theories has different meanings. Fortunately, the mathematical form

of the governing equations expressing the balance of linear momentum, the balance --

of energy, Maxwell's laws, and the conservation of charge is the same for all

these theories. We shall refer to the various fields that occur in our equations

by their traditional names, realizing that their precise physical significance

inheres in the slots they occupy in the equations for a specific theory.

To make our presentation as transparent as possible, we assume that all the

functions and boundaries that appear are smooth enough for all the classical

operations that appear to make sense. (A careful treatment of these issues

without such blanket smoothness assumptions can be modelled on that of Antman &

Osborn (1979).) Of course, we abandon this optimistic formalism when we

afterwards analyze our specific boundary value problems.

We identify a material body with the closure B of a domain in Z3 and we

identify material points of the body with their positions z in B. For each

z in B let y(A) denote the position of z in some deformed

configuration. The (traspos deformation radient F and the right Cauchy-

Green deformation tensor P for the configuration y are defined by..

(3.1) F=a z, C F F

We require that no two distinct material points simultaneously occupy the

• same position in a given configuration. Thus each map X must be one-to-one.

Since this global condition is so difficult to treat, we ignore it and content

%. o

. . . . . . . . . . . . . . . . . . . .- o ..
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ourselves with the local condition that the deformation X merely preserve

orientation, i.e., that

(3.2) det F > 0 ,

where det denotes the determinant.

Let X(X) denote the logarithm of the absolute temperature at position y

in space. (It is finite-valued if and only if the absolute temperature is

positive-valued.) We set S1W1 - 3algl/3x. Let O(X) and h(X) denote the

electric and magnetic fields at y. We set

(3.3) )(z) =  X(z)), 2(z) - () /z S %(Y(z))F(z) ,

e(z) - e(X(z)).F(z), h(z) - h(X( z ) . .* -:|

2' e, and h are the material logarithmic temperature gradient, electric

field, and magnetic field. (We shall soon see that % and h can be

represented in terms of gradients. Consequently they transform in (3.3) just

like •)

Let T(X) denote the effective Cauchy stress, i.e., the sum of the

mechanical Cauchy stress and the Maxwell stress. T(X) measures force per unit

actual area at . (There are several versions of T, depending on alternative

representations and decompositions of the Lorentz force and torque.) Let Z(Z)

denote the heat flux per unit actual area at X. Let d(X), b(X), I(X) be the

dielectric displacement, magnetic induction, and current density at X. Then we %'.

introduce material versions of these fields by

(3.4) T(z) = det F(z)F (z)*T(X(z)) , .

s(z) =det F(z)F (z) * 5(X(z)) etc. :-:.

Tis the effective first Piola-Kirchhoff stress.

For simplicity let us assume that the body force and heat source have purely

electromagnetic origin. Then the local form of the balance of forces, the

balance of energy, and Maxwell's equations for a steady state are

.*% -.. - .* ,,-* * .. .. .. . .. . '. -.-.. ,.- -. , . .- .. " * .• . ., .,,, , , .- .. . "

,~?..*p .. ** * **. . . .- . . * .... .. ...... .. o......,....
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(3.5) Div + f 0

(3.6) Div q + - 0 ,

(3.7) Div 4 - ,

(3.8) Div b -0,

(3.9) Curl

(3.10) Curl 3 ,

The material divergence Div of a tensor is defined by Green's Theorem

(3.11) f T'd -JD Dv Z dv
ap P L

where P C 8 and n is the unit outer normal to P. In (3.5) f represents

body forces of electromagnetic origin not absorbed by the Maxwell stress. Since

every term in the usual prescriptions of the Lorentz force is a divergence, we

could absorb this force entirely into the Maxwell stress and hence into the

effective stress. We accordingly take f - 0. (Cf. Rutter & van de Ven (1978).)

The term 1*e in (3.6) is the Joule heating. In (3.7) a represents the free %

charge we regard it as an assigned function of z.

The balance of torque has the local form

(3.12) L -T*F " T

where d is a skew tensor depending upon the electromagnetic fields and the ...

choice of the Maxwell stress tensor. We assume that (3.12) is identically

satisfied when the constitutive functions, to be introduced in the next section,

are substituted into (3.12). Rutter & van de Ven (1978) show that it is

permissible to take L - 0. *.

Equations (3.9) and (3.10) imply that there exist scalar functions q and

4, called the electric and magnetic scalar potentials such that

(3.13) e - '/! , 'I.,

'I,,

* -10-
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* .----------------------------- 
. - - -

* - ...

,..~ /
,.. % .4

(3.14) h(s) - (p)/~ + f [4(u) A (u - z)]j~ - ~V3 dv(~) ,

S I
as is shown in utan4ard books on electromagnetism. (These formulas justify the

remarks following (3.3).)
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4. Constitutive Equations

Of all the variables that have appeared only a is prescribed. The

remaining variables are related by constitutive equations. As our independent

constitutive variables we choose

(4.1) r _-- ,,,~eh

because they are physically reasonable and mathematically convenient. The domain

of F is Lin+, the domain of is X3, and the domain of A is R. We

first suppose that Sd,b,i depend on these variables and on 1. Thus .e,

appearing in (3.6), likewise depends on (4.1). We finally prescribe T and

to depend on (4.1) and Z so that they satisfy (3.12). Henceforth we shall have

no need for (3.12). Thus we have constitutive functions Td,,, such that

(4.2) Tz) - T(z),z), etc.

The functions T, etc., must be invariant under rigid motions, i.e., be frame-

indifferent. (Cf. Truesdell & Noll (1965).) We do not pause to exhibit the

specific representations of the constitutive functions that are necessary and

sufficient for frame-indifference because we have no need for them in our

analysis.

For simplicity, we assume that our constitutive functions are continuously

differentiable. \

-12-"
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5. Potentials

It is convenient in our analysis to employ the potentials q and .

Instead of e and h as the fundamental variables defining the electromagnetic

state. I is expressed as the gradient of 9 in (5.15). If the current

- 0, then b is likewise expressed as the gradient of * by (5.16). We U
seek conditions ensuring that b can be expressed in terms of

(5.1) 1Zg , /, 3 ,8/ 1 A

when the current is not zero. Note that each entry in A except X is a

gradient. Let us substitute our constitutive equation for I into (3.14) to

obtain

(5.2) h(z) - a,1 )/a- f d(h(x),E-x),x) A (x - Z)]x- zj 3 dvx) = k(h,E-(z)

where Z-(J ,, ). Row in the classical form of Ohm's Law, depends only

on the electric field. More generally, if is independent of h, then (5.2)

gives an explicit representation for h in terms of A. There are a variety of

results available for the case that j depends on h. Typical is the following:

5.3. Theorem. Let a > I and let 8 lie in the ball . of radius Y and

center Q. Let A be fixed in L= (8). Suppose that there are positive numbers

' .j, 8, C with 3C < a such that

, (5.4) 1 1 < (1 + I
(5.5) * 8(1 +

If y and e are small enough, then (5.2) has a unique solution of the form ,

* (5.6) h(z) - 34'(z)/az +. k(h)(z) tf*.I

here (8))() (B) is continuous and compact.

Proof. It suffices to take S - B . We use the following amalgamation of

A4 - Yresults of Scholar and Kantorovich (cf. Sobolev 1950, 16) and Kantorovich &""

Akilov (1977, Chap. XI, 13): If f C L(B), with 1, then there is a
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continuous function y + K(B,y) that strictly increases from 0 to * a Ys '

increases from 0 to - such that

(5.7a) IKf,LV(B )I 4 C(BY)If,L(BEy)I

where
f(x)

(5.7b) WHO(z f 1dv(z)

V if B > 3, v < 3B/(3 - B) if 8 3. Moreover K is compact (and

continuous) from L (B ) to L (B~)

We wish to show that 3 w ](jZs1 is a contraction from LCB Y) to

itself. Let h e LU(B ). We first identify f of (5.7) with (the components
A -1

of) 1(h,E)(.) and chose B - a(1 + )-. (Then B 4 3 if and only if

A -1
a - 4 3.) Then (5.4) ensures that C £ L CE ). Since 3BO( - 0) > a when

• ( 3, we can take V - a in this case. Thus (5.7) implies that .

h ' klh,t)(-) maps LaCBy) into itself.

We now show that 1 * )S ( ,Z,) is a contraction. Let e LCEy),
rF."

-" h1 h 2. Then

(5.8) l~k 1 b1 )~l l(~,)z)-~J~,)f)

(thl(X) + (I t)h (x),E(x),x)II b(x ) .

h- 1 -2 -- ,~l8~~
f dv(x)

where t c [0,11. We now identify f(x) with the numerator of the integrand in
f.

the right-most term of (5.8). We henceforth suppress the arguments of the

functions appearing in this numerator. Let us choose B and V as above,

noting that B < a. From (5.7), (5.8), and the H8ider inequality we then obtain

-14- -
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IC K(O,Yl~l],/h,LaB/lcs.)(B¥)118h,L,,(By)I

Since cMO/(a - 0) - B, condition (5.5) implies that al/ah c L (BY) so

that the rightmost term of (5.9) is well defined.

We now prove the compactness of w 1(,. The compactness of K

introduced in (5.7b) implies that the mapping

j AX ( - )

(5.10) L o(y,) 3 .'z [ x - dv(Q)] C (By

Y °- a -

is compact. Condition (5.4) ensures that (h, 1 ) * 1(hZ,.) takes L (B ) to

L 8 (By). By the properties of Nemytskii operators (cf. Krasnosel'skii (1956, .

Sec. 1.2), this mapping is continuous. Since

j(a*(;)/3f + Js(A,;),L),S) Q S - 7)dv(,) ,
- ,,t Y x _.A13 -. :,.

is the composition of a compact with continuous operators, it is compact. 0

It follows from (5.5) and the properties of K that we can make the

coefficient of 1h,L in the right most term of (5.9) less than unity by

fixing e and taking Y small enough or by fixing y and taking 0 small

enough or by taking each small enough. The Contraction Mapping Principle ensures

that (5.2) has a unique solution giving h as a continuous function of A. The

composite function obtained by substituting this solution h into k(h,E,.) has

value denoted by k(A,z) '

A number of related results, including some for unbounded domains, can be

based on the techniques presented by Sobolev (1950, 116,9), Stein (1970, Ch. V),

.V %• o o
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and Xantorovich & Akilov (1977, Chap. XI). Note that Theorem 5.4 says that (5.6)

is valid provided the dependence of i on h becomes weaker as the body 5

becomes larger.

We now suppose that i is such that J admits a representation of the form

(5.6). We substitute (5.6) into the right side of (4.2) to get

A 
A

(5.11) T(z) - T(F(z),3 (z),A(z),a,(z)/3z,3*(z)/3z + M(_,z),z), etc.

Our governing equations are obtained by substituting (5.11) into (3.5)-

(3.8)t

(5.12) Div T - 0

(5.13) Div + = 0
* p-. %

(5.14) Div d-0

(5.15) Div - 0 ,

- where the arguments of the constitutive functions, decorated with carets, are

indicated in (5.11). Equations (5.12)-(5.15), having six scalar components, form

a quasilinear system of partial functional differential equations for the six

.. unknown components of , All other variables we have introduced can be

0 4%'

* expressed in terms of these.

Toupin (1956) took the polarization and magnetization as independent

- constitutive variables. One of the goals of our paper is to exhibit the

* mathematical advantages of choosing d,b,a to be dependent constitutive

variables and choosing j and h to be independent constitutive variables. In

this regard we generalize formulations of Pao & Hutter (1978), Jordan & Eringen

(1964), and Ersoy & Kiral (1978) inter alia.

S-16- , ""
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V. SVP

6. Zllipticity and Growth Conditions

Our basic constitutive assumptions are expressed in terms of the quadratic

form

(6.1) ) , A) A

A: O ,E, ,h+ >2 0 a / ) + At O ae) + At(,, )  s o

" to (35/F):A + to(ai/al2)Ot + t-(3a2 /a.)*U + to(aZ/ah)ov

" uo(ad/aF)tA + u'(a3d/aZ)9t + uo(ad/3e) -2 + u(~/h*

V*(ab/a)zA +V*(k/aZ)ot + A90OO + toa/h-

if >(,uM~ 0 ~ 6~then (T,%,d,b) is said to be

strictly monotone. The use of this attractive mathematical restriction would .'.

deprive the theory of much of its physical versatility. Among its adverse

consequences (discussed in detail by Antman (1983)) is that the uniqueness

theorems it implies effectively prevent the buckling of a column of such a

material however slender under a compressive load however large. -

we can eliminate this kind of uniqueness in the mechanical response while

preserving it fully in electromagnetic response and partially in the thermal :Z
response by weakening the strict monotonicity condition. If w(rs,t,u,v) > 0

( (0,2,2,2,Q), then we say that (T,%,db) satisfies the (strict

form of the) restricted strong ellipticity condition. (Note that A equals the

dyadic product if and only if has rank 1.) In Section 8b we discuss the

physical significance of the restricted strong ellipticity condition. If

*(", , > 0 V( ,j,[I, 2 , 3 ) ' (2,Q,0,0,O), then (T,%,d,b) satisfies

the (strict form of the) strong ellipticity condition. This condition is the

generalization to elliptic systems in divergence form of the Legendre-Hadamard

condition of the calculus of variations.

In this paper we shall study the strong ellipticity condition and its

restricted form. Our subject is insufficiently developed to determine whether

-17- ,.
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phenomena permitted by the strong ellipticity condition, but prohibited by its

restricted form, are observed (cf. Sec. Sb). The intuitive content of these

conditions is described in Section 1. Most special theories of material behavior

of electro-magneto-thermo-elasticity satisfy the restricted strong ellipticity

condition because many of the "off-diagonal" terms in (6.1) are zero. (But

recent work on the study of plastic effects and phase changes treates theories of

elastic solids for which even rs:(8Z/aF):rs need not be positive for g .

Cf. Ericksen (1980).)

we now study the behavior of the constitutive equations at extreme values of

their arguments. The conditions we impose must be consistent with the strong

ellipticity condition. Since our work is just a generalization of that of Antman

(1983), we omit an extensive coimmentary. In Sections 8 and 11 we describe more

specific conditions appropriate for special problems.

Recall that

(6.2) r,_ FZXeh

Let t and c be unit vector fields depending on r,x,z" The strong

ellipticity condition implies that

(6.3a) > 0 if a and c are independent of a.e , .-

ac(g.a) ,

(6.3b) -. > 0 if a is independent of l.a

a(d-a)
(6.3c) a(e.a) > 0 if a is independent of e.a

d (ba)-- " "

(6.3d) ,h._ > 0 if a is independent of hea

Moreover, if a and c are independent of a.Fec, then

'" ~-18-'"""
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(6.4) C(J) { C R:det 0 > )

is either an open half-line, or the whole line, or empty and can then be written "'S'

as

(6.5) V(aC) - (L12)0t+a stc)) .--

We suppress the dependence of V and I on _f I . The facts motivate the

following

6.6. Hypothesis. Let a ad c be unit vector fields depending on r_,,. if

() in an open half-line or the whole line and if aO N a*TGC is strictly

increasing, then

(6.7a) T * + as aec + L (c) for fixed r -((a.Fc)ac,OOOO),X,.

If w. -a is strictly increasing, then

(6.7b) + t"± as ZOA + 0  for fixed r- (0,(g~t)a,0,2,0),fXz

if e9a .;a is strictly increasing, then

A
(6.7c) . ±. as, S' + +- for fixed r - (~~, aaO,,

If hea b*oa is strictly increasing, then

(6.7d) t.l + +- as bg + ±' for fixed r - (O,O,0,£,(hea)a),,,z

If AIK) is a half-line, which happens exactly when the cofactor of 4ES

in det r does not vanish, then 3V(g) is a point (either I (ac) or

I'(ac)). Then (6.7a) implies that we can define a function

(6.8) W 8(ac) C (-1,1)

such that

(6.9) (a ) . . - as a .Fc + 30(ac)

for fixed1 - ,,,,),y,z . Note that dot F * 0 so the local

volume ratio shrinks to 0 as a-i'c + MV(ac). .'-0

We now complement Hypothesis 6.6 in a way that promotes the analysis of Part

11 by describing the behavior of the constitutive function T as more than one

component of r are allowed to vary.
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6.10. Hypothesis. Let be fixed. Let {1, T - I,...,9) be a basis for

Lin consisting of dyadic products of unit vectors, which may depend on rx,E.

and let {EI be the basis dual to {j}. Let F:! £ T:! be strictly
______- -T i*

increasing for each T. Let {r ) be a sequence of states such that the

t(E ) formed from {r-I are actually independent of n. Let the set of r

integers {1,...,91 written as a disjoint union a U b U c U d U e U with

(6.11a) 3V(E ) ) 6 --and 6(E )T(r ,z):E m for T a.-
(IT)n T

(6.11b) MV(E T ) ' i and 1n:T 4 3V() for r E b ,

(6.11c) a(D €J and n] compact. subset of C£ ET) + for T c c,
%) 16Xt1 CT).(I )

(6.11d) aD(E )  fr T c d,.. "",

(6.11e) V%(E) ffiS and Xn:4TC compact subset of 1t(ET),L (ET)) for T c e

(6.11f) 3D(E) = g6 for T C , •.

if aldd then '""

(6.12a) a1E ) (+ T c o ma U b U cb fo f each ) (n ) forher each T n-Ct -T

If b '0, then

. (6.12b) either (i) 61E )+ -a VT f e d U r nUd or else r
T --n - ~

(ii) UT c a u d such that I n=. :E T and 3T e aU b U U d
such that (Ez):z l + .

'. .

n T_

moreover, the dualization obtained by respectively replacing the statements ...

A A

:E. 2b) + 3iD, T), n + 
( rV za u ) z, + oe

(i) T aU sc tha ( IT:ETI an r aUbU Ud

appeaing n (6.11), (6.12) by their opposites

IF,,:!,I + , Fn:K 4 V(i ), ~T ( ,z):, .

is also valid.

The statement containing (6.12b) may be loosely interpreted thus: If there

are fibers compressed to zero length in some directions, then either the material

is squeezed out with an infinite stretch in another direction or else it is

-20-
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prevented from doing so by infinite compressive stresses in all other directions.

The other statements have similar interpretations. The whole hypothesis

effectively says that extreme behavior in one direction must be accompanied by

extreme behavior in some other direction. This observation is used in Part II to

establish regularity results by showing that behavior could be extreme in only.. "

one direction and therefore cannot be extreme. It would be easy to generalize

Hypothesis 6.7 to account for extreme couplings between the mechanical,

electromagnetic, and thermal effects, but the intuitive evidence for such a ..

generalization is not compelling.

It is important to note that the transformations (3.3) and (3.4) ensure that

the Maxwell stress contains terms with (det Z)"1 as factors. These terms could

compete with the "purely mechanical part of this stress" when det Z is small.

Our constitutive hypotheses on the effective stress control this competition.

They say that the material response in large compression is dominated by that for

purely mechanical response.

. .

IN
%
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7. Boundary Conditions. The Principle of Virtual Work ...

At a boundary point z c 35 vs may prescribe the position ~() or merely

subject it to certain constraints, such as the requirement that it be confined to

* a fixed surface. To account for the varied possibilities it is convenient to V

* describe such boundary conditions in the language of holonomic constraints. We ~

accordingly specify

p J*
*(7.1) X(z) - (z,r) for each z £ 3

where is a given function continuously differentiable in r e R3, which

represents the set of generalized coordinates for X() The rank of 3j/3r is

the number of degrees of freedom of Z. Equation (7.1) restricts y(k) to a

*manifold. The set of vectors # (z) of the form E3X(z,r)/ar].r # (zE) for

r #(z) c £ form the tangent space to this manifold at Z). The elements

X (z) of this tangent space are called virtual displacements. We complement

(7.1) by specifying the projection of the traction To on this tangent space: 6

(7.2) (nOT -t)0(3-/9r) =0 at each z c 3

where is a given function of X') X(A), T(Z), *(A), Z and possibly other

variables. Thus

(7.3) (nOT t)-X #=0 on

* At each c £3B we also prescribe

*(7.4a,b) either A(z) - X(Z) or %(z)ea(Z) - (()Xz,,zJ()z

(7.5a,b) either lp(z) - i(Q) or d(z)*n(z) - 3(X(Z),X(z,,(Z,*Q),z)

* (7.6a,b) either 1Fz 4(z) or b(z)*n(z) R(~)Xz'9Z'()z

* Let A~yj be arbitrary continuous functions on 35 that respectively vanish

where (7.4a), (7.5a), (7.6a) hold. They are virtual fields. Then in analogy

with (7.3) we have

(7.7) (S*2 + y)X + (b-n- = 0 on 35

-22-



our fundamental equations of balance are the integral versions of (3.5)-

(3.7), which are to hold over "almost all" nice subbodies of B. Theme equations

can be supplemented by appropriately weakened forms of the boundary conditions we

* have just listed. Antman a Osborn (1979) show (strictly speaking, for the purely

* mechanical problem) that when all the integrals make sense as Lebesgue integrals,

then these equations and boundary conditions are equivalent to the Principle of

* ~Virtual Work ...

*(7.8) f Tt(ax /3:) + 00 /9z) +. de(39 /a:) + b.(a*~ /az))dv

f (f.X + ^PA 04 c)dv

-f (tiyj + X + 14 + B*)da

* for all reasonably nice fields XA Y, having the boundary behavior

specified above. Equation (7.8) is just the weak formulation of our boundary

value problem consisting of (5.12)-(5.15) subject to (7.1), (7.2), (7.4)-(7.6).

* The arguments of T, etc., are given in (5.11).

In many circumstances the deformation of a body subjected to the action of

* external electromagnetic fields changes the ambient fields. Thus there would be

* a complete coupling between the fields interior and exterior to the body. Since

our goal is to study the role of the constitutive assumptions of Section 6, we

are avoiding such coupled problem by restricting electromagnetic boundary

* conditions to (8.5) and (8.6). Methods for treating fully coupled problems would

be similar to those of Section 5.

-23-



S. General Existence Theorems s.

In this section we obtain existence theorems for two important special

classes of problems, which can be readily treated by means of recent results for

elliptic systems. For the first problem we assume that there is neither thermal

nor electrical conduction and that there is a stored energy functionj thus this

reduced problem admits a variational formulation. For the second problem we

assume that the material is rigid. The restricted strong ellipticity condition

then reduces to a monotonicity condition, which is capable of handling our

nonlocal operators.

a. Conservative Problems

We assume that the material does not conduct electricity so that the

constitutive function 0 9. Thus the Joule heating is zero (cf. (5.13)).

Moreover, (5.2) reduces to

(8.1) h-

We assume that one of the following conditions holds:

i) q,P,Y depend only on g,X,z and the boundary value problem (5.13), (7.4)

has a weak solution X in a suitable Sobolev space. (In part (b) below, we show

how a slight strengthening of our hypotheses ensures the existence of A.)

ii) The boundary value problem (5.13), (7.4) has a solution A independent of

the fields F, aq/az, 3i/9z. This situation would occur if - when -

and if X is prescribed to be constant Ao  on 3B, for then the boundary value

problem would admit a solution X = 0 on all of B.p 0

iii) The constitutive functions Tdb are independent of S and X.

In cases (i) and (ii) we can substitute the solution A and its gradient

S into (5.12), (5.14), (5.15), (7.1), (7.2), (7.5), (7.6). Since X is known,
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its presence in thes equations merely changes the dependence of the constitutive

functions on i. Zn case (iii), these equations are unaffected by the solution

Ao

We assume that a is a prescribed function of o We finally assume that

there is a stored energy function W depending on XZjgr j,, with W

continuously differentiable in X continuous in g and A, and measurable

in g, for all values of the remaining arguments, such that

(8.2) a w/, d - aW/8., b - BV/8h

(The Clausius-Duhem inequality would deliver a specific thermodynamic function

for W and show that it would be independent of S.) The discussion following

assumptions (i), (ii), (iii) motivates us to suppress the dependence of W on

S and A, their effects being absorbed by the dependence of W on

We suppose that the body force t is conservative so that there is a

function ( U(,) , with U(*,Z) continuously differenciable for all .

in B and with U(X,) measurable for all y e 3., such that" MI

(8.3) -

We suppose that , of (7.2), (7.5), (7.6) are conservative so that there is

a function

S3 x Z3 x Z3 x a5 a (Xeohoz) w V(l,e,h,z)

with V(*,*,o,$) continuously differentiable for all I in a5 and with

V(z,2d ,,' measurable for all y,,, such that

(8.4) , 3v/a3, ' - av l , a . 3v/ ..

(The domain of VIyg,3,*) may be taken to be the closure of

aB as\t (A) - 0, 90() 0, W - 0). (See Section 7.) V could

conceivably depend on g and A. We suppress any such dependence in accord with

the policy we have adopted above.
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Em

We finally assume that 88 is bounded and has a locally Lipschitz

continuous graph. Moreover, we require that the supports of #I* # and the

components of # be nice enough to ensure that the boundary conditions (7.1),

(7.5a), (7.6a) are assumed in the sense of trace when X,V,* lie in Sobolev

spaces of the form W (B) with p > 1. (Necessary conditions for these
p

properties are not known. See the discussion of Antman a Osborn (1979).)

Under these conditions the weak form of the Euler-Lagrange equations for the '

functional

*5 f M-1(z), ,( ,(z), it W), ) + U(,(:),Z) + ()9(Z),dv(,)

I. ,\ o..
+ f V(X(z),v(z),*(z),z)da(t)

for XT,* satisfying (7.1), (7.5a), (7.6a) have exactly the form of (7.8) with

X = 0. (Of course, many authors take a variational principle, such as this, as

the starting point for the derivation of the governing equation for

electromechanical interactions. See, e.g., Toupin (1956), Brown (1966), Nelson

(1979).)
x

Let F denote the cofactor tensor of X. W is said to be polyconvex (cf.

Ball (1977)) if it can be written in the form -. .

W(F,e,h,z) - n(F,F ,det P,e,h,z) -.

with f(',*,',*,e,z) convex on Lin x Lin x (0,-) x 3 x 3 for each z e B.

The work of Ball (1977) shows that if W is polyconvex, then (10.2) satisfies_'."

the restricted strong ellipticity condition of Section 6. To account for (6.7)

we require that

(8.6) n(EF,8,ehz) + as 6 + 0

8.7. Theorem. Let W be polyconvex and satisfy (8.6). Let there be numbers

k > 0, p ) 2, q > p/(p - 1), r > I and functions W C L1 (B) and

-0 .
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X C L 1(381 such that

(8.) f(E~52) )w(~ +k(IXI, + 4F1 8, + l*jp +. Ih~p)

for all je,

(8.9) U(X,X) > W(,) for all e'8

(8.10) a C Lp/(p_)(8)

(8.11) V(x,,,) > x(Z) for all e 38

Let 38 have the properties specified above. Let

(8.12) -(yv,) . . (8), dot F c Lr(B)
pq

det F > 0 a.e. for F - 3, /3: (7.1), (7.Sa), (7.6a)

are satisfied in the sense of trace where they are prescribed

on 38 •}

If there exists an element e,, W such that I(X1,i1,*1) < *, then

there exists an element (y,q, ) that minimizes I on W.

The proof of this theorem is effected by making minor adjustments to that of

Ball (1977) and is accordingly omitted. (Further developments of Ball's theory,

useful for our class of problems, are given by Ball & Murat (1984), Dacorogna

(1982), and the references cited therein.)-.

b. Rigid Conductors

We now study the effects of the conduction of heat and electricity, but '..

confine our attention to rigid bodies, for which F is constrained to be the

identity 1. We accordingly take the virtual displacement appearing in

(7.8), to be 0. This choice ensures that the First Piola-Kirchhoff stress

tensor, which now is the Lagrange multiplier maintaining the constraint of

rigidity, does not enter into (7.8). We drop X from the list of variables

constituting A in (5.1) and from the arguments of the constitutive functions
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* %,db, (cf. (5.11)). Our boundary value problem reduces to (5.13)-(5.15),
kI'

* (7.4)-(7.6), whose weak form is the suitably specialized version of (7.8).

We assume that the restricted strong ellipticity condition holds. Thus

(Z,e,h) w (%(ZX,e,h,z), (,.,,,e,h,z), is strictly monotone.

This condition prohibits certain kinds of nonuniqueness.

Since hysteresis frequently is associated with nonuniqueness and since
hysteresis is one of the most important phenomena of ferromagnetism, it might
appear that our use of the restricted strong ellipticity condition precludes us
from dealing with ferromagnetic materials. But molecular theories of .
ferromagnetism (cf. Tebble (1969)) suggest that hysteresis is associated with
constitutive equations with nonlocal effects. If we accept such theories, then
to account for ferromagnetism it is necessary to generalize the form of our
constitutive functions before relaxing the ellipticity conditions. We do not
attempt such a generalization here: Our analysis should be regarded as merely
applying to paramagnetic materials. We do, however, examine nonlocal operators
that are introduced by the mathematical approach we use to handle electric
currents. Some of the methods we use can be applied to more general kinds of
nonlocal behavior.

We now outline an existence theory that can be applied directly to our .

specialized version of (7.8). We first present the theory in an abstract form in

order to facilitate a comparison of it with presentations in the mathematical

literature. Afterward we make the requisite identifications. -.

Let B, as before, be the closure of a domain in R3. We assume that 38 -.-

has a locally Lipschitz continuous graph. A typical point in B is denoted z.

Let u(z) = (ul(z),...,u(z))• For p c (1,-), let the operator
Lp(a)3m[L()" "

(8.13) L (B)m x Lp(6) a (u,av/z) w k(u,3v/z)(.) c [L .B)J.

take bounded sets into bounded sets. Let

(8.14) R5 x R m x Rr x 5 a ( ,rl, ,z) W ... .. i = 1,...,m , \,B (C,n,4,z) C R

(8.15) 3px (,) w y(,z) { R, i x x..

satisfy
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(8.16a) For almost all 6 in 8, the functions ai(,.,ez), B ,, are

continuous and for all Cu_.j, the functions a i, ., ,n,, )

are measurable. (These are the Carathfodory conditions.)

(8.16b) For almost all c 8 38, the functions yi (.,) are continuous and for

,the fctions.Y i (,- are measurable on 38 (with respect
all ,tefucos

to two-dimensional Lebesgue measure).

(8.16c) There exist a constant cI > 0 and a function k I e L.(8) (with

p* - p/(p - 1)) such that

for i - 1,...,ml a - 1,2,3.

The H8lder inequality then implies that the functions

av a u 3V auW ), x (a), h(0_, )()', (u, (') , )',) "

are in Lp,(B) for all v (Wp)". It follows that the functional
p Wp

3u au

a Wiu(), 1 W , ku, z-(z),wi,()]dv(..

+ f I Yi(u(z))w. (z)da(z)

is well defined for all uw, W W(B).

we shall prescribe u1,...,u, respectively on subsets S1,...,m of 3B.

We assume that these subsets are measurable. Let V be the closed subspace of

EW(B)]m containing [W1(8)]m  that consists of functions (w1,...,w 3 ) for
p p

which w, - 0 on S1,...,wm 0 on Sm in the sense of trace. Let u be a
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given element of [Wl(B)]m. We require that u, agree with ui on S 1 , etc.,

in the sense of trace by seeking solutions u of our equations in [w I(B)m for
p

which u u V. (This prescription of boundary conditions enables us to avoid

the very delicate questions of whether functions defined on SI,...,Sm can be

extended to functions in WI(B).)
p

Since V a w W a(u,v) is a bounded linear functional for each u in

WI(8), the Riesz Representation Theorem enables us to write t.I.

(8.18) a(u,w) - A(u),w_>
im

where v,w)- f vow dv. If the a are continuously differentiable and if u
B

is twice continuously differentiable on 5 and vanishes on 3B, then i

A(u) - A (u),...,A (u)) where

au au au au

* (8.19) A iu) -Div a* u u + - 3u - 3u-- -

Let us set n= ..'...' m) Our basic abstract result is the following:

8.20. Theorem. Let 3B have a locally Lipechitz continuous graph. Let

p C (1,..). Let (8.16) hold. Suppose that

a(-v)
(8.21) Iv,Vl +  as lv, V+ for v£V,

-- '

(8.22) j[a(,i,n + PCZ) a _ _ _ > 0 VP0 " 0
iii

If B is bounded, let

(8.23a) _ --i + Inij] 4 as Il +a -'-

for almost all , in and for bounded go. If B is unbounded, let the
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following stronger restriction holdt There is a number c2 > 0 and a function,

k2 c LI(B) such that

(8.24b) ;0 , , ). k 2t -)

Define k b

(8.25) w (_).M(u)(.)W-S k(u,8u/8z)(.)

where k is defined in (10.13). Let XC be the characteristic function of a 4

set C in 8. For every subdomain C of B with compact closure in 8 let

(8.26) W(B)]m a u Xcl)klu)() e EL (C)lr
p - pOku()eE

be compact. Then for every f e V and for every a C [W (8)]m there exists

a. u ' [W;B]m with u - 1 CV such that

(8.27) <A(u),v - <bv> iv e V •

The proof of this theorem is obtained by making minor adjustments to those
of Bremis (1968) (cf. Lions (1969, p. 297)) and Browder (1977). We note the
following pointst In a bounded domain the operator A is of the "calculus of
variations type" because of its monotonicity in the local vglues of its highest
order derivatives and because of its compactness (through k) in the global
values of the highest order derivatives. Since our integral operator (7.6) for
constant electric currents is not compact on unbounded domains, we had to use the
theory of Browder (1977) based upon the compactness of (8.26) to support our
intended applications.

We identify the variables appearing in Theorem 8.20 with those used in the

problem outlined at the beginning of this subsection. In particular, we set

(8.28) u - ( , , ),.__.()- L ,  , , (' ,. -

z aza

where k is defined in (5.6). We identify the variables appearing in (8.17)

with those of (7.8):

(8.29) a (u-z), -:(, 'a, + h(A)(),,,) ,':

2 ( - - )+ hA

":...

A, ~ ~ ~ ~ ~ ~ ~ m h(zaz()Isu(),))(azWX~) A W +M ),z)
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1 au ) . -;(I-'s hA)s,~

2 au
B2(u(z), Q -a

3 u

B3 (u.(z), A (z),(u)(z),z) - 0 ,

'yIlu, z) ,-'(X) ,vl4l,$lzl) , 

2 -z =,-A(z), (lz),)z)

We identify w with (A ,V, A). Note that hypothesis (8.22) is ensured by the

restricted strong ellipticity condition. We then have
A _A* A _,

8.30. Theorem. Let SaP,,, satisfythe hypotheses of Theorem 8.20 with ®

the identifications (8.28) and (8.29). Then (7.8) with # 0 is satisfied for

all (X,,x ) in V.

The question of regularity of solutions for the types of systems described

in this section remains open. Giaquinta (1983) gives partial regularity results

for more restricted systems. However, it is by no means clear how much

regularity is physically reasonable for either of the more general types of

problems presented here. Ball (1982) suggests that discontinuous solutions of .

*. problems such as those treated in (8.7) can be used to model rupture of solid -.

*" bodies. In addition, we suggest above that operators such as (8.13) can be used

in constitutive equations to model the nonlocal behavior of ferromagnetic

materials, and the physical evidence of so-called "domain structures" (cf. Tebble

(1969)) suggests that highly discontinuous magnetic fields are to be expected

from a good model of such materials. .

-32-
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Part I1. The Semi-Inverse Problem

*9. Formulation of the Semi-Inverse Problem

Let { 1k' 3  be a fixced right-handed orthonormal basis for 33 and

let x -(s,O,z) be the set of cylindrical polar coordinates for 33 defined by

(9.1) z 2- sk1(0) + zk (6)

where

(9.2) k cok+snS 2  -sin el+ coo 2 3)-~

Let - denote the usual inverse of z so that (9.1) is equivalent to

x - (z). Each triple x also identifies a material point. We set

(9.3) y(x) SX(z(x)), etc.

We consider semi-inverse problems in which y~,),#, have the form

(9.4a) W C + (w (s) + a3 e+a j x

with

(9.4b) (xe coon W(E)i + sin ()

2(1) -- sin w(xE)j1 + coon w(1)12 '.3 3 (1) 13

(94)w(x) -w 2 (x) + c20+ OL2 3 z

(9.4d) X(x) - w4(s)

(9.4s) 9(x) -w 5(s) + c'520 + a53z

(9.4f) b(x) - h Wsk.(8)

(Here i is summed from 1 to 3.) we shall make constitutive assumptions on

to ensure that T(x) (of. Sec. 5) has the form

(9.4g) Z(x) -w 6(s) + a 2e+ a6 3 z

We take the body to be

(9.5) B - z(Ea,1] x E-0,01 x [-Z,zl)

*with 0 < a < 1, 0 < e 4 w, Z > 0. Then 8 is a cylindrical tube (possibly

slit) if e i and is a sector thereof if 8 < wr. For simplicity we do not .

treat the interesting and technically complicated case that a -01 the methods

-33-
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for doing so are virtually identical to those used by Antman (1983) The

deformations defined by (9.4a-c) constitute "family 20 of Truesdell & Noll (1965, 6

Sec. 59). The other functions of (9.4) are so specified as to ensure that our

final problem consists of ordinary functional differential equations.

The chain rule implies that

(9.6a) (__)) - x)) - (x) ))

F~z 3z) (Z() ax - 3zx)

- [w(s)el(x) + w (s)w'(s)e2(x) + w'(s)el(8)

+ -1 [aL22 w1(sWe 2(W + a 32 e 3]k21) + (a 23 w1(sWe 2(M) + a332 3%k(a v (s)e -3-2 231 -2- +a,3 3]J-3

(9.6b) I(Z(x)) " W - - W -,,(e).
+± -k () +a

(9.6c) i(W( )) - (;(L)) . v(S)C(e) + u52s e) + *,,-

(9 .6d ) ii - -,+ 6 3 - • 52-5-.

a- (z(.x)) - w4(s)k1 (O) + 6sk 2(e)+a3k3

The representation (9.6a) reduces (3.2) to the requirement that

(9.7a) (a22a33- 0 2 3 * 3 2 )(w 1/s)w! > 0 a.e.

Since w, is a radial distance, we require that

(9.7b) wl(s) > 0 for a e [a,1]

whence (9.7a) reduces to .~ %

(9.7c) (a2 2a 33  a 2 3a 32 )wi > 0 a.e.

For simplicity we require that

(9.7d) w1 > 0 a.e.,

the opposite case corresponds to an eversion (cf. Antman (1979)) and provides no

further technical difficulties.

Note that the components of (9.6), (9.4d,f) with respect to the indicated

base vectors and dyads are independent of 8 and z. (It is easy to show that

(9.4a) and (9.4e) are the most general forms whose gradients have this

property.) We denote the ordered set of the components of F corresponding to

(9.4), (9.6) by the single symbol
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(9.8) ")

- (s),w(s)w(s), w' 1s)2 2s'lw 1(s),h 32 s-l, 23 (s), 33

We define the physical components of the dependent constitutive variables by

(9.9sb) al T)js) e), l , - L( ).k (e)

(9.9cd) d(IXs) 2, d(-.())l" (), b b(r1 ')okI5"
A A

(9.98) ij1 1 ) ~z1 )*k~ (8)

when r has the form corresponding to (9.4) and (9.6), assuming that the

constitutive functions T, etc., are such that these constitutive functions for

the physical components depend only on 3 and s. These representations are "

valid when the constitutive functions T, etc., are hemitropic and depend on z - ..

only through a. They are also valid for special forms of asolotropy. It then

follows that l3./3z depends only on 3 and s. We also assume that a :.

depends only on s.

We now obtain an alternative representation for h in terms of 3*/z-

directly for the semi-inverse probleml the specialization of the results of -

Section 5 does not yield the new representation. Substituting (9.4f) and (9.9e) -

into (3.10) we get

(9.10) 0 - 1.l,)

(911 sh2(8)J' BJs3(1(s),s), h Ys) --J2(-1(8),8)

Thus h must have the form

(9.12a,b) hi(s) wg(s), h2(s) - (a - ti3(1t),t)dt] .

(9.12c) h3 (s) - + f 32 (-(t),t)dt • i -;

I:* A
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iJ

Therefore h can be written as the sum of the gradient of (9.4g) and an integral
I

operator (cf. (5.2)).

Condition (9.10) may be regarded either as a restriction on ) or else as MW

being identically satisfied by virtue of choosing the constitutive function J,

to be the zero function, in which case the material is incapable of conducting

electricity in the radial direction. In the former case we assume that (9.10)

can be uniquely solved for w in terms of the other elements of _s

* (9.13) w4(s) " ell1 ls),S) ,

where y stands for all the components of X except w . A sufficient

condition for (9.13) to be equivalent to (9.10) is that w w J(ys) be

strictly increasing and assume both negative and positive values. That this

function be strictly increasing is ensured by the strict monotonicity of

e W j(r,z). Equations (9.10) and (9.13) are also equivalent in the important

special case that jl(Y,s) has the same sign as wi, which occurs, e.g., if

j(rz) J(rz)e where 3 is a positive-valued scalar function. in this case

(9.13) reduces to w4 0.

Let

(9.14) w= (w1,...,w 6), ' -122,.63

By controlling the dependence of on and h2  and h3  we can imitate

the development of Section 5 to show that (9.12b,c) can be uniquely solved for

h2 and h3 in terms of the other variables. Thus we can replace these

equations with

(9.15a) h2(s) - s-[8 62 + K2(w(*),,s)]

(9.15b) h3 (s) = G63 + _3(w(&)'2-
s )

Alternatively we may observe that (9.12b,c) is equivalent to an initial

value problem for h2,h3. If we assume that there is a number p > 1 such

that J2(Y(*),*) and j3(y(*),*) are integrable on [a,1] when )_ c L([a,1])

* -36-
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and that there is a number Kl(Y.) much that
A 1 (s,)h' 4 My

*. when .1 C yl1a,1]), then the standard theory of ordinary differential equations

(cf. Hale (1969, Sees. 1.5, 1.6)) implies that (9.12b,c) has a unique absolutely

continuous solution on [a,1], which we can represent by (9.15ab). Note that

this result does not require restrictions like those of Theorem 5.3 on the size

of 3. /ah and on the size of the domain. The Arzela-Ascoli Theorem implies that

Vllla, 1)) a w(.) w K2 ((0),.,.), K3(.(),,.) C CO(Ea,1]) are compact (when this

construction of h2  and h3  is used). ) -

We henceforth assume that the representation (9.15) is valid and that C2  V

and K3 have this compactness property.

We are now ready to write down the governing equations for our semi-inverse

problem when the only body force, the Lorentz force, is absorbed into the

effective stress and when the only heat source is that of (3.6), due to joule

heating. Let 11e be the axial vector corresponding to L. Let us set

' (9.16) - - ( 1, 2̂,, 4,1;,o)

with
~(9.17a) (',/,_"). =(11,w1T21,T31qlb), i i

(9.17b) '+ a T + ,a,.,_ T

(9.17c) f 2 (-w'wv( ) 't3
A 

1
AA

(9.17d) f4(v',v,.,v(.),s) %S21 2 +

(9.17e) ;5(s) -o ,

where the arguments of the constitutive functions appearing on the right sides of

(9.17a-d) are ts and with every hl,h 2 ,h3  appearing on these right sides

I~replaced by w , a62s + I2(v(Iau), a + + C3 lvle),a,5) respectively. Note

the definition of C2" In line with the remark following (3.12) there is no loss
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of physical content in taking n 2 - 13 - 0. We do so because it simplifies the

ensuing analysis. Then by using the componential form of (3.12), we reduce the

governing equation (5.13)-(S.16) to the following system of ordinary-functional

differential equations for wG:

(9.18) (sA' - - 0

where the arguments of and TI are w ,!,w_.(.),s. (We have introduced our

constitutive functions in (9.17) with the argument v(.) so as to avoid

confusion in Section 10 when we take certain partial derivatives of these

functions.)

If (9.10) is equivalent to (9.13), then w is completely determined by the

other components of w and E, which can be found from the remaining equations

and side conditions. We accordingly discard the fifth equation of (9.18), which

is

(9.19) (ad 1 )' .

We regard this equation as determining the a necessary to maintain the semi-

inverse state (9.4). This interpretation of (9.19) smells fishy, but is in fact

quite reasonable: Consider, e.g., constitutive equations of the form

Jl -Je, d, - De 1

where J and D are positive-valued scalar functions. Then (9.13) and (9.19)

require that a - 0. Thus when (9.10) is equivalent to (9.13), we shall simply

ignore (9.19), regarding (9.18) as the suitably truncated system. We shall

comnent on boundary conditions below.

If JI is the zero function, then we need take no action with respect to

(9.19).

We now specify boundary conditions. Our prescription is compatible with the

formalism of Section 7. On the cylindrical face s -i of 38 we either fix

the outer radius:
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(9.20a) w1(1) - ;(1)

where ;1(1) is a given positive number or else we prescribe the traction:

where 9 1 (1) is a given number. (More generally, we could replace F 1(1) with

CIW(1),I ) where the new is a prescribed function. Since only minor

technical difficulties are introduced by such a replacement in this and other

such Neumann conditions, we do not bother to pursue such generality.) We fix the

deformation to within a rigid displacement by setting

(9.21) w2(1) - 0 ,

(9.22) W3 (1) - 0 •

On this face we either prescribe the temperature:

(9.23a) w 4 (1) - ;4(1)

where ;4(1) is a given number or we prescribe the heat flux:

(9.23b) F4 (w'(1),w(1) ,c,w(.),1) -.4(1)

where 4(1) is a given number. Finally we fix the data of the potentials q

and I by taking

(9.24) w5 (1) - 0,

(9.25) w6 (1) - 0 . -

n the cylindrical face s - a we prescribe alternative boundary conditions

expressed in an analogous notation:

(9.26a,b) wi(a) " ;(a) or 9i'(a),w(a),I,w(.),a) - i(a) for i - 1,...,6

where ;i(a), i - 1,...,6 and %(a), i - 1,3,4,5,6 are given constants and

where

(9.26c) 2 (a) E wl(a)T

with T a given constant. The form of Z2 (a) reflects its definition and the

fact that it is a torque. In conformity with the condition that w > 0, we

require that ;() > 1(a) when both these numbers are prescribed. Note that .
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(9.13) implies that

1

(9.27) ws(1) - ws(a) - f I 1((s),s)d
a

so we are not free to prescribe both w5(1) and w5 (a) when (9.13) holds.

To avoid dealing with the minor technical difficulties that can arise when

all boundary conditions are of the Neumann type, we assume that the temperature

is prescribed on at least one of the faces s - a and s - 1. We need make

no such provision for the variable w, because the growth conditions we shall

impose on our constitutive functions preclude any trouble with coercivity

ultimately due to Neumann conditions. If B is an entire tube, then 0 - w. If $

we require that x, , and * be continuous, then

(9.28) 022 - ±1, a 32 m 0, 52 = 0 62 -0 .01

we obtain various kinds of dislocations by suspending (9.28a,b). If B is a

sector of a tube, i.e., if 0 < w, or if B is a slit tube i.e., if 0 - but

with the faces 8 = -w and e - w not identified, then we can prescribe certain

* degenerate boundary conditions on the faces 0 - ±0. We likewise prescribe such

conditions on z ±Z.

We adopt the following alternative conditions for the faces 8 ±e:

(9.29a,b) a 22 = (22 or .

A 22 (w, _.1 f w1(s)T 2 2 (Y.(S),s)ds - ,22 [w1 ] f w 1 (s)Of 2 2 (s)ds

a a K.

where 022 is a given number and K22 is a given functional of w, having the

indicated form. In the argument I(s) of T22' h(s) is replaced by (9.12a)

and h2(s), h3 (s) by (9.15). It is easy to see that -ZA2 2 [w, ] is the

-40-resultant 
effective 

torque about 
e 3 on the material 

face 0 --0 needed 
to

. ., . ..- - .. . . ** ..- * . , ,. S. ," * ,- ,.. -%~ . . . * ,. ".. , , . . .. • .. .



iX r1

maintain the state (9.A) (cf. Rntuan (1983)). Similarly we prescribe

(9.30a,b) a3 62 0 f T3 (()s)ds 1[32

a

(9.31a,b) 05" 652 O SEI.1 fd2(.I(s),s)ds x 5
a

(9. 32a,b) 062 -62 or A 2 .0]If b2 (I(s),s)ds % 12

Here t has the form just described. -ZA32 1YAJ is the effective resultant

force in the e3-direction on the material face ar just 1-3 ~~132'X52I162 aejs

numbers.

For the faces z ±Z, we likewise prescribe

(9.33a,b) C23 -6 o v() 2 (s)s)ds X2 23 A2 3YA) f -w~)23 s 12 3Cv1]
a

(9.34a,b) U33 - 3 ~f sT33 1( s)ds 13
a

(9.35ab) 053 9 ~ o 5 3 15 )ds X 13

a

(9. 36a~b) a6 A6 or3 6 [y - f sb (()s)ds -163

-GA3 (,~J is the resultant effective torque about e6 and -3 t,) is the
_e A23 (YPJ 3-GA.

resultant effective force in the e -direction on the face z -Z.-3

N.W
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10. Consequences of the Strong Ellipticity Condition

in this section j and n- have the arguments listed in (9.17). Thus the

derivative of nI with respect to w1, say, is a pure partial derivative; no

differentiation with respect to v(*) is required.

Since aB/aw; - (a aF):ek 1, etc., definition (6.1) and the strong

ellipticity condition imply that

(10.1a) V(3 ). - + 2 1 2 + )k kv k) > 0

for all V (v,...,v6 ) + 0 when w, > 0. Slightly abusing the notation, we

likewise obtain

(10.1b) V* j- v > 0 VV + 0 when w, > 0 where

next we observe that

2a
(10.2) w1IcI a.F-c, n,= a-Tc

with + - A2' s - w 1 + (u 2 2 /s) 2 + a23 3' so that the strong ellipticity

condition implies that

(10.3) 31 1/
3w1 c a(3/awl) . (ac):(aT/3F):ac > 0 .

(Note that + and c are not independent of aeFc/lsIc).)

Suppose that 632 and S33 are prescribed. Set

(10.4) 3 a322 6 3 2 a 2 3, V a 3P22 + 633'23

(10.5) M = 33T22 - u3 2sT 23, N 22 + 63 3sT2 3

We solve (10.4) for 322 and a23 in terms of V and V and substitute the

resulting expressions into the arguments of 1 and N. The strong ellipticity

condition then implies that - -

a(4/3a 31/9v
(10.6) is positive-definite

The combination of (10.1b) and Hypothesis 6.6 supports a global implicit

function theorem (based on degree theory) that ensures that the function

-42-
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(10o.7a) x W . .. v.(•),1

has a strictly monotone inverse

(1O.7b) . ,

In particular, fl, which delivers wi is positive on its domain.
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11. *Growth Conditions and Function Spaces

We introduce some notation to be used in the rest of this paper. Let

C -1 A A AT A

(11.1) s22 - v1 T'2 , A23 2 1 =2 3 , .32 -" "T 32, 33 " 331
A -1 A AI;

1  
A

C52 -- 2 , 5 3 " 3 , ,6 2  - , ,6 3 . 3

.,voIv

the summation being taken over u = 2,3,5,6, V - 2,3. Let

(11.2) - (.._, "i:

We set

(11.3) <m4 
-  + Ti.U + .!#)sds

al(a)*4(a) - f(1)-j#(1) -w ]a(

4. IS~1V I #Uv 4."

A A A

where the arguments of , are w,w,csv(),s. Observe that

f Z-sds - Ij
a UV

The weak form of the boundary value problem of Section 9 is

(11.5) <m(w),w >- 0 "for all" .'..-

In the next section, we give precise interpretations to relatives of (11.5).

We pose the basic growth conditions in terms of a scalar function W, which

might be interpreted as a sort of stored energy function. It allows us to

replace standard Lp-spaces by related spaces better equipped to handle possible

aeolotropy.

11.6. Hypothesis. There are numbers q > p > 1, c1 > 0, c2 > 0, c3 > 0, C4 > 0

and a function R 15  It W(Ls) e R having the following properties:

-44-"
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(11.7) W(e,s) is strictly convex ,

(11.8) W(0is) - 0 ,

(11.9) W(,es) is invariant under the change of sign of any component of . ,

(11.10) 11IIIp - C2 < W(1,5) C 0 3 1 Yjq + 04

Let - be in affine function satisfying whatever Dirichlet conditions from

(9.20)-(9.26) are prescribed. Let & be a vector of the form a of (9.14) with

its entries taken to be 0 2 2 ,@0* whenever these numbers are prescribed in

(9.29)-(9.36) and otherwise taken to be arbitr&fy with a22 33 - a23a32 > 0.

L0 begnrtdfo 0*ada

Let 1 be generated from v and - .by (9.8), (9.12), (9.15). h.

(11.11) +(;, - (a - + - _ W(,s) - W(O ,)
%,. .. 4

when the arguments of the constitutive functions on the left side of (11.11) are ....

w' ,! ,w("a),s and with y and j expressed in terms of these variables by

(9.8), (9.12a), (9.15).

Remarks. Condition (11.9) is a sort of isotropy condition. Its provenance is

described by Antman (1983, eq. (7.7)). The mechanical terms from (11.11)

correspond to a certain stress power. This issue is likewise treated at great

length by Antman (1983).

We now introduce function spaces naturally associated with W. Let n be a

positive integer. We set

(11.12) G {.t a f sW(1(s),s)ds <

a(11.13) E=  (w,): it ,r G)

(11.14) En i {(y,.) ' Es nw ) 1 a.e., nwl(s) ) s, n(0 2 2 13 3 - M23"32) 1

(11.15) A - {(y.) C E, wj > 0, wI > 0 a.e., O22(33 -23 32 > O,

a fixed subset of {w(a),w(1),a_ is prescribed as in Sec. 91 ,

(11.16) An = A r En -

A is the set of admissible functions. Conditions (11.7)-(11.10) ensure that

W(*,s) satisfies the A2-condition of Orlicz space theory, whence it follows
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that G is a reflexive separable Ranach space satisfying

(11.17) Lq((aol)) C G C Lp((a1l))

(cf. Krasnosel'skii a Rutitskii (1958)). Since some components of . are

products of components of (Yo_), neither E nor E. is a Banach space. It is

easy, however, to construct a suitable Banach space for (c): Let I ce,) c Eno
lot Y_ be defined by (9.8) with (1,2 ... A6 ,) replacing (w2 ,..,w61 ,), and

let _ be defined by (9.8) with Ct1 replacing w1 . Define

(11.18) Yn = (((w.): f sW( .(s),s)ds < f, 9' )s6. a
11.19. Proposition Yn is a reflexive separable Banach space. En and A

are closed subsets of Yn" An is not empty if n is sufficiently large.)

. The proof of this result is identical to that of Antman (1983, Prop. 7.25.)

We now refine (11.11):

11.20. Hypothesis. There are positive constants c51c6 ,c7,',C8 1  depending on

W Vw2 1 such that

(11.21) (w. - wi) 1 + (v1 - I)I > c 5 (1wil p + lwl/sjP) " c6(1 + 11 1p - ) ,

where the arguments of t1,1; are those listed in (9.17).

The preceding hypotheses ensure that the material is not too weak! the

following hypothesis ensures that it is not too strong.

11.22. Hypothesis. Let the constitutive function introduced in (9.9) depend

only on I,s. Let a(x) and a(x) be vectors that are linear combinations of

I,'2, 3 with coefficients depending only on a and let a() Ind c(x) be

vectors that are linear combinations of k Vl2,3 with coefficients depending
only on s. Let a.F.ca* a.T.c, gra to ^-, esa w d", hoa . be strictly

increasing and let f (ac) be constant when has the form (9.6). Then there

are continuous functions (r,z) -T+(r, , 2 +(r,z), d+(r,z), b+( r*,z), p +(r,z)
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with !(E)ej'(r(z),)-;(,c 3 (r(s),z)eawr) etc*# depending only on a when

1 has the form corresponding to (9.4) and (9.6) such that

(11.23) * r:.)s , 8(ac) 4(r

OW if SV(ac) -g

+ A

'44.
+ +

when r has the form corresponding to (9.4) and (9.6). Let j ,f ,j be
exprossedL in terms of T+ . . L!L aa

expree s, ust an, , are epressed in terms of T,...

b(9.17) and (11.1). If- _*, e E, !hen aw . _(.) +iL 4 .
*y(s) + .-2#(s),

+ n+ -+

where the armentof , , are w'(s),w(s),cw('),s, is integrable on

a,1. M4oreover if w is confined to a subset of E corresponding to a

bounded subset of G, then the corresponding & a. I ) and m(l) generate

elements confined to a bounded subset of G*. In particular,

(11.24) 9+1 n^' ICn+ ICH I

where s (w(s),W(s),,w(.),s),... are in r1([,11) and are confined to a

bounded subset of LI when their arguments correspond to I's in a bounded

subset of G.

Condition (11.24) restricts the response of nI (as well as other

functions) in tension. We now formulate an hypothesis to control its behavior in -

compression. It furnishes a quantitative statement of how ;1 is influenced

more by changes in w, than by changes in wl. Let the function with values

t -1 A
TI( w1 WWd ,F,a,V(),s)---- be the composite function obtained from TI1  by using

(10.7b) to replace its first set of arguments w' with those of f in

(10.7b). Let f be f, with its arguments in the same order as those of n

11.25. Hypothesis. Let there be a number C > 0, an octuple , a scalar- ".

valued function w4 , a function j with values in R6, and a function v '.

-47- .
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with (v,) e A such that

%(11.26) C , 012203 - 23C32 ' /C, IW41 4 C, 1& 4
Yv',_e ,v( , -C C, C v,.=,_',) f or j - 2,...,6. ,

Then there is a number a > 0 (depending on C) such that

(11.27a) (0,M) 3 us# f(u,w4,j,a,v'(),s) is decreasing

(11.27b) (0,m) a ub* n 1(u,w4 ,jS,v(.),s) is increasing.

Moreover

(11.28) limsup f n (C .-. S J (C'w4(t) &(t),v(),t)dt,
C+O a 1a ~

I~

for each fixed x C (a,1].

The motivation for this hypothesis is given by Antman (1983). '"

Our final growth condition is

11.29. Hypothesis. There is a positive constant c9  such that

(1.30) IX22 1w1I + IXv3[wil cvL . '-

*%%
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12. Existence of Classical Solutions

in this section we prove that when the Strong Ellipticity Condition and

growth conditions hold, then a certain set of the boundary value problems posed

in Section 9 have regular solutions. We restrict the data prescribed in the

alternatives (9.29), (9.30), (9.33), (9.34) to be one of the following nine sets .I. \.

(12.1) ( 2 2 ," 2 3 ," 3 2 ," 3 3 ) '

222'223'*2'*3 22A23'33"2 33 ( 21 2 3' 32' 33 ) " "
A AA A

(a 2 2 '0 2 3 '0 3 2 'k 3 3 ), (A 2 2 ,A 2 3 '0 3 2 ,c 3 3 ), (A 2 3 '0 2 3 'A 3 21 0 3 3 )
A A A A

( 2 2 1 A2 3 ''3 2OA3 3 ), (d 22 1c"23 1 o3 25A33 )

because the unprescribed variables from (a2 22, 23 ,u32 ,c33 ) are then confined by

(9.7) to an open half-line or open half-plane. It then follows that the

corresponding An is a closed convex subset of Vn"

Since our present work generalizes that of Antman (1983), we emphasize only
those aspects that are novel. Ris work may be consulted for motivations and

further discussion of such matters as the data omitted in (12.1). Our
presentation also tacitly corrects some flaws in his arguments.

Our basic result is

12.2. Theorem. Let the monotonicity conditions (10.1), (10.3), (10.6) hold.

Let the Growth Rypotheses 6.6, 6.10, 11.6, 11.20, 11.22, 11.25, 11.29 hold. Let

one of the sets of data of (12.1) be prescribed. Then the corresponding boundary

value problems of Section 9 have classical solutions.

Proof.

Step I. Existence of a solution to a truncated variational inequality. We can

write

(12.3) <( ),> <n(w w),'*>

-49-* *- ~ . . . .. -. . .. .. . .



(12.4) <n(W AM2 ),2> - f{ wl)'(9),w2(s), 2(
a

A . 2 2.2" l w P'ls),w ls),al.(),s).i ls)}sds__-

+ a(a)*e(a) - I11)*v 1) .

E~k, (w] - N2])aij

where the last term is summed over P,= 2,3,5,6, V - 2,3.

Since An  is a closed convex subset of Yn' since (10.1) ensures that m 1*

is semi-monotone on An  in the sense that N.
(12.5) <n(,2) - n(w ,W),1 - W2 > > 0 V ,2 c An

and since + - K2 (w,-),K 3 (O,-) are compact by assumption, we can use Hypothesis
'--4

11.22 to show that m is an operator of the "type of the Calculus of Variations" , .-pi
(cf. Lions (1969)) from An to the dual space Yn of Yn . Thus m is pseudo-

monotone on An. Hypothesis 11.6 ensures that m is coercive. A theorem of

Brezis (1968) (cf. Lions (1969, p. 297)) then implies that for n sufficiently

large there exists an w-- c An satisfying the variational inequality

(12.6) 0 > <m(wn),w -w_ > w E An

Step II. Bounds on -""

0 0Let d i (_,) where (.,) is defined in Hypothesis 11.6. Let j
and Y correspond to and . Then (12.6) and (11.11) imply that

(12.7) 0 f {9.(w - er,) + n - )1sds
a

+ a&(a)*(w (a) -w(a)]

- U1 1 W [w11 - 01(a ] "J"

+"l'U {,gV[%-n] - Yv[Wn1l}(Un iv- &uv)

11
> f W(*Y(s),s)sds - f Wlils),s)sds- A
a a

where .j 1s - 1 s) ,!n(),s), etc., and. ',,-

-50- ., ,I.
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12.8) A - o(s)Ewa(s) - v(s)sds

a

+ DI)1. tC(1) ,(11)] - aj(a), E (a) - W(a)I

+ I Iuv wni I(%zuv - &v

In the following development we let C represent a positive constant

independent of n, which can always be estimated in terms of the available

data. The meaning of C can vary with each appearance. Note that (9.21)

implies that wn2(") - ;2(1) - 0. Conditions (9.26c) and (9.21), the positivity

of w.1 1, and the R1der inequality then imply that

(12.9) !a92(a)(w 2 (a) - w2 (a)I1

4 Cawnl(a)[lwn2 (a) - wn2(1)I + 13

< C f wnl(s)1w'2(s)sds + n,(1
a

' c'w~lw2n2 + oLI . ( 1 •..)

In this way, by using (9.21)-(9.26), the Hl5der and Poincar6 inequalities, and

the estimates (11.30) we find that

(12.10) A < C{1 + lyn,LI + wn,W I) ..

(For certain sets of data in (12.1), 1w Wl, I y nL I.) Combining (11.11)

with (12.7), (12.9) we obtain

(1., 1P < CO + IYLI + 1w W 1..

Next we take all the components of except w1  to equal the components

of W and we take w1 - w1 * Then (12.6) and (11.22) likewise yield

(12.12) 1w l .. CO + < 1McLI + Iw Iw. .

* Inequalities (12.11) and (12.12) imply that

(12.13a,b) I1n,LI P ( C, 1w 1gWI 1 C

* .o,-- 1 ,
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whence A < C. It follows from (12.7) that

1
(12.14) f W((s),s)sds < C

a

Thus, by the definition of the norm of G (by duality according to the theory of

Orlicz spaces), we obtain

(12.15) InGi <( C

We accordingly get corresponding bounds on all the components of w. except

wn2. an2 2, an2 3. To bound these variables we need a uniform positive lower bound

for wnl.

Step III. Inteqral inequalities. We now make judicious choices for W in

(12.6) in order to extract useful consequences Erom it.

If 1(1) is prescribed in (9.20b), then we let a < x ( 1, 0 < e < x -a,

and set

f Wnl(a) for a 4 a < x -e ,

((12.16) v(s) wnl(s) + Is - (x - C)]/e for x - 4 4 s 4 x ,

Wnl(s) + 1 for x < a <1

(12.17) w I (l(s),wn,...,W 6 ), _ - a U

Then v (w,a) C An, when w and a are given by (12.16) and (12.17).

Substituting (12.16), (12.17) into (12.6) and letting e + 0 we obtain

(12.18) -f 1nnllSlds

for almost all x in (a,1). Since the right-hand side of (12.18) is a

continuous function of x, we can assume that (12.18) holds for all x in

* (a,1).

-52-
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If on the other hand w1(1) is prescribed to equal ;11(1 by (9.20a), then

we require a more delicate construction. Let Pn be the set of all

y c (a,11 for which

(12.19) 
lim -I f W(s)ds

e+0 y-C

exists and exceeds 1/ne let P0  be its complement in Ea,11. (The theory of

differentiation ensures that (12.19) exists a.e. On PC, v1(s) 1/n a.e.

Below we show that the Lebesgue measure of 
P-n approaches 0 as n + . For

now, all we require is that Pn not be empty.)

Let us choose y C Pn, x c (a,y) and

(12.20) 0 < X 4 wn1 (y) - wn1 (x) - ( (y - x) ,nm

the rightmost term of which is positive by the definition of P.. Since

(12.21) s Wnl(s) + (y - s)/n =

is continuous, since 9n(y) wnl(y) > Wn1 (y) - X, and since qn(x) 4 Wn1(y) -

by (12.20), the intermediate value theorem ensures that the equation

(12.22) Wnl(t) + ) - wn(y) - (y - t)/n '

has a solution tn1) C Ix,y). Since n is nowhere decreasing on [x,y], all

solutions of (12.22) lie in an interval, which is closed because 9n is

continuous. Since tnlM) satisfies (12.22) and since y P n' it follows that

there is a positive number 0, depending on w., and y, such that

(12.23) +y - +8)< f wnl(s)ds = [y tn(k)]/n + X ,

P (X)n

which implies that

(12.24) tnl) + y as A 0 (for fixed a) •
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When w1(1) is prescribed to equal ;1( 1), we let y ( P., x e (a,y),

£ (O,x - a) and take

wnl(s) for a 4 s C x - ,

Wn(S) + Is - (x - C)]X/C for x - C C s C x ,(12.25) Wlls) =

Wnl(s) + X for x 4 s 4 tn(A) ,

Wnl(Y) - (y - s)/n for tn(X) <s < y

We define (_ by (12.25), (12.17), observing that w e An We substitute this

) into (12.6), let e + 0, and then let A + 0 to obtain

y
(12.26) X~nllX) ) Y nll) -f snnl(s)ds

for all y in Pn and for all x C (ay).

By the simpler, classical version of the process leading to (12.18) or

(12.26) we likewise obtain
1

(12.27) X"nj (x) - 9nj (1) - f annj(s)de, j " 2,...,6 ,
x

for almost all x in (a,1).

To be specific in the rest of our analysis, we suppose that 63 2 and 933

are prescribed. (Thus we can exploit (10.4)-(10.6).) By substituting

*-(an,) with

(12.28a) - 1n22 + a33' 'n23 - a32'032','33 )  
-.

and with

(12.28b) , (n22 + At23 2, an23 + X.53 3163 2163 3), A X R

into (12.6) we obtain from the arbitrariness of X that

(12.29a) 533A22[0nl - 6 3 2 A2 3 [2%1 " 33.22 [Wnl - 3 3 2X2 3 wn 1 ],

93 2A2 2 [En] + 63 3A23 [ n] , Q321 2 2 [wnl + 33 3X2 3(wn1] .
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Stejp IV. Uniform lower bounds for wnlwnilin . Inequality (12.15) enables us to

use the second part of Hypothesis 11.22 supported by (10.2), (10.3) to deduce

from (12.18) that

(12.30) x n(x) ) -C

for almost all x in (a,1], and from (12.26b) that

(12.31) 4 nl(x ) nl(y) - C

for almost all y in Pn and for almost all x in (a,y). Since (12.30) and

(12.31) yield essential lower bounds, we regard these inequalities as holding for -.

all such x and y. Since n2 - 0 n3- and since (12.27) consequently implies

that

NO

(12.32) (1 - a)9nj(l) -f s nj(s)ds for j = 2,3 ,
a

we obtain from (12.15), (12.27), and Hypothesis 11.22 that -.

(12.33) Isgn,.(sj Is~n3(s)I -C C Vs C Ea,1]

Inequalities (11.26), (12.13b) enable us to deduce from (12.29) that there is a

C > 0 such that

(12.34a) 
-322[ wn3 633A,214..

I f ,,,l();(.(s),s)dsl -C .
a

(12.34b)l% 2 rz 3 A[.J

v(G)N(8),s)dsI -C C

a

The analysis in the rest of this step relies critically on Hypothesis

6.10. We identify the basis ({g} thus:
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(12.35) .11 " 6*IJI' -2  1 91Z2' B3  " 81S3' 14 ' *211 ,

-2(33h2 - 32b3 )  -2,s32X,2 + 33k3)

- 2- 2 + 1/2 -6 2 -2 - 2 1/2
33 32 32 833)

41 Ji *931118 - 23b52' 119 -13 )S3

The dual basis is given by

2- 2 -21/2
(1 6s a 33 +832) k - I"

(12.36) z5M - 2 22(a-2 -2 33k2 s243)•
s(32 + 33 )

2-2 -2 1/2
* (s =32 833)

Z6 s- 2 2 Z2% 32k-2 +  ;33t3)
s(832 +33)

3 -1for T +5,6.

Thus

(12.37) : " W l 2 - 0, F:1 3 - 0, F' 4 - WIWI "

2- 2 - 2)-1/2 2-.2 - 2+1/2F:F 5 U l (a CI +aFZ33 + 32 F:6 w" 0(~ 32 + 0 3

7 38 32' E - 333 3

A* AA * A A * A ^

(12.38) T:E T, T:E T T -:. T13 T:- 1 T.. ,

2-2 -2 1/2 2-2 -2
,, (s 33 +032) , A . (5832 +833) .

-, 2 +--- -2 - 6 8 , 2
5: - T:- -2 -

832 +833) 832 + 833)

A A A A A A

T: " T T:E T T:E - T-7 31-- 32 '-9 33

(We could alternatively take E4  6 2 /Ic where c is given by (10.2).)

We now obtain a lower bound w f for w.l that is positive on (a,1..

Suppose for the sake of contradiction that wnl have no such lower bound. Then

there would be an x in (a,11 and a subsequence w such that w +(x) + 0.

Then wn + 0 uniformly on [a,x]. The representation of Wnl(x) - Wn1(a) as

an integral of [n, over la,x] shows that v 1 + 0 in L1 (a,x), whence w
,,"..,:
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has a further subsequence with Wnl * 0 pointwise a.e. on (ax]. it follows

from (12.15) that (1,5) C b, (2,3,4,G,7,8,9) - e for almost all y e (a,x].

Condition (12.34a) ensures that no alternative of (6.12b) in tenable for almost

all y e [a,x). Hence there is a function w such that

(12.39) wnl(S) ) w(s) > 0 Vs e (a,1] and Vn

Note that we can define w, by

112.401Is) -= nf wnllI).

*it follows that wis nowhere decreasing, for if x < y, then

(12.41) w1 (y) - wIx) - inf wnl(y) - inf wnl(x)

- inf Wni(y) + sup(-wni(x))

" unf(wnl(y) - Wnl(x)) ; 0

since wnl is nowhere decreasing. If ;l(a) is prescribed, then

w;(a) - 0 1 (a) > 0. Otherwise, we have yet to show that w;(a) > 0.

A simple version of the preceding arguments shows that there is a C > 0

such that

(12.42) Un > 1/C

We now confront the weakness of (12.26) and (12.31) inhering in the

membership of y in Fn, which conceivably could be sparsely distributed over

Is, ] •" .,.

12.43. Lemma. Let WnI(1) ; ,1). The Lebesue measure of Pc apro

0 as n +.

Proof. Were the conclusion false, there would be a C > 0 and a subsequence

(w such that the measure of Pn exceeds C • Condition (12.15) implies that

for any e e (0, 1 - a)) there is a subset e of [a + ,11 of measure

I - a - 2e and a positive number C s such that the absolute value of each

component of In(s) except v' (s) is bounded by Ce when s Now we

choose c so small that the measure of (I R has a positive lower bound
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(independent of n). We fix 6. Since wnl 4 ;(1), inequality (11.24) implies

that

(12.44) f wnl" c c ,
R
n

so that (12.34a) yields

(12.45) c nl,,ds 1 -C

n

The properties of 9 and the alternatives of (6.12b) imply that there is a

sequence of numbers with mn + a as n + a such that % ( -mn on Rc.

'But this inequality is incompatible with (12.45) if the measure of R c  has a.- i

positive lower bound independent of n. e

We next obtain a lower bound C1 for Fnl that is continuous on [a,1).

This bound is given by (12.30) when C(1) is prescribed. We prove this by

showing that for any z C (a,l) there is a positive real number h() such that

(12.46) En1(s) ) -h(z) Vs e (a,s] .

By choosing a sequence of such z's approaching 1 we obtain a sequence of

constant lower bounds for En whose graphs are horizontal line segments in the

(S,nl)-plane. By joining parts of these segments with straight lines we readily

construct a lower bound continuous on the half-open interval (a, 1). Suppose

that for given z there were no such h(z). Then there would be a sequence

Xn c [a,z] such that Cnllxn) + - as n + -. Then (12.31) would imply that

( (12.47) Cnllyn) + "A Vn E Pn r (z,1] , ,

so that I a for (w (yn),a). Since pn is bounded by (12.15), (12.39),

(12.42), condition (6.12a) would imply that %n(yn) + -, which is impossible by

an argument like that centered on (12.45). Thus there is a function E1

continuous on (&,I) such that

(12.48) CnI(S, ;0 EI(s) Vs e [a,1], Vn •
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We now obtain a lover bound for (w.9). Let fbe defined by (10.7). Then

(12.48) implies that

* (12.49) wis

I mf(C(s),~k(s),...) *n(s) .#

k( n

*nis continuous on [&,I). The equation (12.32), the bounds (12.33), and their

analogs for ~nDnlnu the embedding theorem, the bounds on and v.,

and inequality (12.39) all show that on any compact subset of (&,I) the

sequence {$)is uniformly bounded, bounded below by a positive function,

equicontinuous, and decreasing. The Arzela-Ascoli Theorem implies that the whole

sequence *, converges uniformly on any compact subset of (a, 1) to a

continuous limit function **, which is positive on (a,1). (if ~() i

prescribed, then is positive on (a,111 if ;Y(a) is prescribed, then

1'is positive on [&,I).) We thus have

(12.50) (a +' f
a

atem V. classical solutions. Let 0 < C < 1 a). Let g be any piecewise

continuously differentiable function with g(s) - 0 for%

9 c (a,a + el U (I - e,13 and with lg'I ( j.4 Set
(12.51) W, M wn + g, IE- (w

Then for n sufficiently large, W C An (since 4' has a positive lower bound

on (a + e,1 - el). We substitute (12.51) into (12.6) and use the arbitrariness 4

of g to obtain in place of (12.18) and (12.26) the equality .~.

% %4%

(12.52) xgni(X) - ynI(y) -f anil(s)ds Vx,y c [a + e,1 el3
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We use f of (10.7) to convert (12.52), (12.27) into a form yielding an explicit

representation for w. By the standard boot-strap argument it follows thatrre i o

generates a twice continuously differentiable solution of (9.18) on

[a + c,1 - e] when n is sufficiently large. Indeed, if k is a positive

integer, then the representations for w supported by the estimates of Steps II

and IV show that 4 is uniformly bounded and equicontinuous on

[a + k-1,1 - k- 1 1 and has a subsequence (w,} that converges uniformly on ,Z. k)

[a + k-1
1 - k-I1] while ak converges in Re. We assume without loss of

generality that {,1 is subseqence of , It follows that the

diagonal subsequence (w converges in C( [a + e,1 - e]) x R to a

limit (w,a) for every e c (0, (1 - a)). It is easily verified that (wa) %

satisfies the differential equations (9.18) on (a,1). Next we replace (12.28a)

with "" .

(12.52)-

(12.52)-- - (n22 + '33 , 'n23 - , ,

which is admissible for small negative A by virtue of (12.42). Thus in place

of (12.29a) we obtain the corresponding equality. By letting n + - through the

diagonal subsequence in this modification of (12.29a) and in (12.29b) we find

that ( satisfies the obvious limit form, whence we obtain

A A . .

(12.53) - 1
22(w1 , "23(16 - .

We verify that other side conditions are met by a similar process.

If 1(1) is prescribed, we can carry out our construction of w,k on

intervals of the form [a + k'1,11, thereby obtaining the equality corresponding

to (12.18) for the limit (w_,). Hence I 1 (v'(s),w(s),Gw(-),s) *'111) as

5+ 1. m m

From now on, (td} is understood to stand for the diagonal subsequence

f%_n~_  or a further subsequence thereof.

-. >-Go- ,. .



We can now show that Cn,1 1 is bounded below. Hote that (10.2), (10.5)

imply that

(12.54) n V wnw + s'l 32 + 3 + Vn~n)

Hypothesis 11.22 or estimate (12.34b) together with (12.39) imply that (IHnI}

is bounded by a fixed integrable function of a on any compact subinterval of

(a,1]. Hypothesis 11.22 and estimate (12.34b) imply the same for I1nI.

Hypothesis 11.22 alone implies the same for Cn2 our estimates for iinvn and

our representation for wn2 then show that for each x c (a,13 there is a

number h(x) such that

(12.55) If nnlS()4sI < h(x)
"

Combining this estimate with the limiting equality

y
(12.56) l(x) 1(y) - frs(s)ds for a < x < y <

x

corresponding to (12.26) we find that C1(l) > -, which implies that n1(1)

is bounded below.

To show that

(12.57) 11w_.s),wls),_,vi),s) l(a) as s + a

when [1(a) is prescribed, we require a positive lower bound for Wnl(a) so

that we can choose an w with wl(a) < wn1(a) for large enough n. Indeed,

using (12.56) in the limiting form of (12.6) we obtain

(12.58) 0 ( [ l(a) - (aw1 (a) - w1 (a)]

so that

(12.59) 9,(a) 4 ((a) •
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We can now use (12.56) to conclude that (12.55) holds with x - a. Thus

(12.60) Cnl(S) (a) + C 4 C

We now prove the existence of a lower bound for Wn1(a). Since fl is

increasing in 91, we obtain from (12.59) that

(12.61) wV'1 (s) C flls ( w

Now suppose for the sake of contradiction that there is a subsequence for which

wn(a) + 0 as n + -. Estimate (12.39) ensures that

(12.62) 1 wn(s) ) 51 WI(s) w w(s) ) a'wnl(a)

for this subsequence for n sufficiently large. Property (11.27a) enables us to

deduce from (12.60), (12.61) that

(12.63) wAl(S) C fI (a wnl(a),wn4lsla...)

for s sufficiently close to a and for n sufficiently large. Hence

8

(12.64) nls) C wnl(a) + f ft(a-1w I(a),wn4(t) .)dt

a

Property (11.27b) then yields

t. -1 -1 l~wla~nl) ' ' ) t w ~ s ' ' ) •
(12.65) nl (s ) 4nt(la w (a) + 9- f fl(12.5) ~I ni a I ( wnl (a),wn4(t)*...)ft~wn4(s),...)

But then (12.55) contradicts (11.28). It follows that w1 (a) P 1/C and that we

can consequently choose w1 (a) to reverse the inequality in (12.58). Hence

(12.57) holds. The demonstration that other Neumann conditions at a are

satisfied is routine. These results complete the proof of Theorem 12.2.

-62-

: . , , , ,. ....; - .. . .. . .. . .. . . . .. . , .. . , . . , . .- . . .. . , . . . . . .. . . . . :'



13. References

B. A. AMBARTSU4IAN (1982), Magneto-elasticity of thin plates and shells, Appl.
Koch. Rev. 35, 1-5.

S. S. ANTMMN (1978), A family of semi-inverse problems of nonlinear elasticity,
in Contemporary Developments in Continuum Mechanics and Partial Differential
Rquations, ed. by G. M. do la Penha & L. A. adeiros, North-Holland, 1-24.

S. S. ANT AN (1979), The eversion of thick spherical shells, Arch. Rational Mch.
Anal. 70, 113-123.

S. S. ANTMAN (1983), Regular and singular problems for large elastic deformations
of tubes, wedges, and cylinders, Arch. Rational Koch. Anal. 83, 1-52.
Corrigenda, ibid, to appear.

S. S. ANTKIN a 3. Z. OSBORN (1979), The principle of virtual work and integral
laws of motion, Arch. Rational Moch. Anal. 69, 231-262.

J. K. SALL (1977a), Convexity conditions and existence theorems in nonlinear
elasticity, Arch. Rational Mch. Anal. 63, 337-403.

J. K. BALL (1982), Discontinuous equilibrium solutions and cavitation in
nonlinear elasticity, Phil. Trans. Roy. Soc. London A306, 557-611.

J. K. BALL a F. MURAT (1984), W1 'p-quasiconvexity and variational problems for
multiple integrals, 3. Functional Anal. 58, 225-253.

H. BREZIS (1968), Equations et iniquatione non lin6aires dans lee 6spaces
vectoriel* en dualit&, Ann. Inst. Fourier 18, 115-175.

r. B. BROWDER (1977), Pseudo-monotone operators anad nonlinear elliptic boundary
value problems on unbounded domains, Proc. Natl. hcad. Sci. 74, 2659-2661.

W. F. BROWN, JR. (1966), Magnetoelastic Interactions, Springer.

B. DACOROGNA (1982), Weak Continuity and Weak Lower Semi-continuity of Non- "
Linear Functionals, Springer Lecture Notes in Mathematics 922.

S. R. DE GROOT G L. G. SUTTORP (1972), Foundations of Electrodynamics, North
Rolland.

R. C. DIXON a A. C. ERINGEN (1965), A dynamical theory of polar elastic
dielectrics, Int. J. Eng. Sci. 3, 359-398.

J. L. IRICKSEW (1980), Some phase transitions in crystals, Arch. Rational Mch.
Anal. 73, 99-124.

A. C. ZRINGEN (1963), On the foundations of electroelastodynamics, Int. J. Eng.
Sci. 1, 127-153. -,..

Y. 38OY a e. KIRAL (1978), Dynamic theory for polarizable and magnetizable I% .%

magnoto-electric thermoviscoalastic electrically and thermally conductive
anisotropic solids having magnetic symmetry, Int. 3. Ing. Sci. 16, 483-492. .1%

-63-

• *.s- ...... ... .. .. .. .. .. ,. . .'.. . .. . . . . . . .. . . . . . .. .*. *_. .. . .:.... /
JL Jk

le ,leee .,* ., ' . ., " .' ".", .'. - "" . . ..v ,", '.-..'. --.- . --"--".-
JA,-N-:: ::,:,, . .;,.. .-.. ..t.,.., .. :.. . .,.- , .

d--i., .mmi ... • - " '' " " -- " " " " ' L-*' _'L '.t



R. M. FANO, L. J. CRU, S R. B. ADLER (1960), Electromagnetic Fields, Energy, and
Forces, Wiley.

M. GIAQUINTA (1983), Multiple Integrals in the Calculus of Variations and
Nonlinear Elliptic Systems, Princeton Univ. Press.

J. W. GIBBS & E. B. WILSON (1901), Vector Analysis, Yale Univ. Press.

J. K. HALE (1969), Ordinary Differential Equations, Wiley-Interscience.

K. HUTTER (1975), On thermodynamics and thermostatics of viscous thermoelastic
solids in the electromagnetic fields. A Lagrangian formulation, Arch. Rational
Mech. Anal. 58, 339-368.

K. HOTTER & A. A. F. VAN DE VEN (1978), Field Matter Interactions in
Thermoelastic Solids, Springer Lecture Notes in Physics 88.

N. F. JORDAN & A. C. ERINGEN (1964), On the static nonlinear theory of
electromagnetic thermoelastic solids I, II, Int. J. Eng. Sci. 2, 59-114.

L. V. KANTOROVICH & G. P. AKILOV (1977), runctior-l Analysis, 2nd e4., (in .- *

Russian), Nauka, Moscow; Engl. transl. (198 ), Pergamon.

M. A. KRASNOSEL'SKII (1956), Topological Methods in the Theory of Nonlinear
Integral Equations, (in Russian), Gostekhteorizdat, English transl. (1964), :.
Pergamon Press. .. /

M. A. KRASNOSEL'SKII & Ya. B. RUTITSKII (1958), Convex Functions and Orlicz "
Spaces, (in Russian), Wizmatgiz; English transl. (1961), Hoordhoff.

J. L. LIONS (1969), Quelques M6thodes de Resolution des Problemes aux Limites
non Linfaires, Dunod, Gauthier-Villars.

G. A. MAUGIN (1981), Wave motion in magnetizable deformable solids, Int. J. Eng.
Sci. 19, 321-388.

G. A. MAUGIN, ed. (1984), The Mechanical Behavior of Electromagnetic Solid
Continua, Proc. IUTAM-IUPAP Symp., 1983, North Rolland.

G. A. MAUGIN & A. C. ERINGEN (1977), On the equations of the electrodynamics of
deformable bodies of finite extent, J. de MWcanique 16, 101-145.

M. F. McCARTHY & H. F. TIERSTEN (1978), On integral forms of the balance laws for
deformable semiconductors, Arch. Rational Mech. Anal. 68, 27-36.

F. C. MOON (1978), Problems in magneto-solid mechanics, in Mechanics Today, Vol.
4, edited by S. Nemat-Nasser, 307-390.

F. MOON (1984), Magneto-solid Mechanics, Wiley,

0. F. NELSON (1979), Electric, Optic, and Acoustic Interactions in Dielectrics,
Wiley.

* **....-

-64-

.................. ...
"

....-.



7. H. PAO (1978), Electromagnetic forces in detormable continua. Mechanics
Today, Vol. 4, Pergamon Press, 209-305.

Y. H. PAO & R. RUTTER (1975), Electrodynamics for moving solids and viscous
fluids, Proc. IEEE 63, 1011-1021.

B. PAP.KTJS, ad. (1979), Electromagnetic Interaction in Elastic Solids, C.I.8d..
4257, Springer-Verlag, Vienna.

P. PENFIELD & Re A. HAUS (1967), Electrodynamics of Hoving Media, M.I.T. Press.

R. C. ROGERS (1984), Analysis of the nonlinear equations describing the elastic
thermal, and electromagnetic behavior of solidsi Existence of solutions of semi-
inverse problems, Doctoral dissertation, University of Maryland.

Re. SINGH & A. C. PIlKiu (1966), Controllable states of elastic dielectrics, Arch.
Rational Mach. Anal. 21, 169-209.

S. L. SoBOLEV (Mo5), Applications of Functional Analysis in Mathematical
Physics, 'Leningrad State Univ. Press, English transl. 1963, Amer. Math. Soc.

Z. M. STEIN (1970), Singular Integrals and Differentiability Properties of *

Functions, PrInceton Univ. Press.

Re S. TUSSLE (1969), Magnetic Domains, Methuen a Co.

R. A. TOUPIN (1956), The elastic dielectric, 3. Rational mech. Anal. 5, 849-915.

Re A. TOUPIN (1963), A dynamical theory of elastic dielectrics, Int. J. Eng. Sci.
1, 101-126.

C. TRUESDELL & W. MOLL (1965), The Mon-linear Field Theories of Mechanics, \
Randbuch der Physik 111/3, Springer-Verlag.

C. TRUESDELL G R. A. TOUPIN (1960), The Classical Field Theories, Handbuch der
Physik, 111/1, Springer-Verlag.

P. D. S. VERNA (1964), Symmetrical expansions of a hollow spherical dielectric,
Int. J. Eng. Sci. 2, 21-27.

J. B. WALKER, A. C. PIPKIN, a R. S. RIYLIN (1965), Maxwell's equations in a
deformed body, Rend. Acc. Naze Lincei, Sere VIII 37, 674-676.

RCH: SSA: scr

-65-

Y..



SECURITY CLASSIFICATION OF THIS PAGE (IlhMn Data Hut6E-

REPORT DOCUMENTATION PAGE FRED s ucTINFOS1.OR REPORTTN NORMBER1%
2903U2. GOVT ACCESSION NO: . RECIPIENT*S CATALOG NUMBER

4. TITLE (and Subiftle) S. TYPE OF REPORT a PERIOD COVERED

STEY-STATE PBLMS OF NONLINAR Summary Report - no specific

ELECTRO-MAGT O-THERO-ELASTICITY reporting period
S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(s)

DMS-8210950, Mod. 1
Robert C. Rogers arnd Stuart S. A n DAAGZ-80-C-0041

DMS-8503317
1. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMEN. PROJECT. TASK

AREA 6 WOKUIT NUMERS
Mathematics Research Center, University of Work Unit Numbers 1 - Applied
610 Walnut Street Wisconsin Analysis and 2 - Physical
Madison, Wisconsin 53705 Mathematics

1I. CONTROLLIMG OFFICE NAME AND ADDRESS 12. REPORT DATE

January 1986
See Item 18 below. -1. NUMBER OF PAGES . .

65
14. MONITORING AGENCY KANE a ADDRESS(II dtflenut hrm ComitbolUl Office) iS. SECURITY CLASS. (of this report) .* .,

UNCLASSIFIED . "
S.L DECLASSI FIC ATI ON/DOWN GRADING

SCHEDULE

IS. DISTRIBUTION STAT9MIENT (of this Roport) .%

Approved for public release; distribution unlimited. '-

17. DISTRIBUTION STATEMENT (of the aboect sneted In Blok 20, it diflerent from Repnrt)

1S. SUPPLEMENTARY NOTES

U. S. Army Research Office National Science Foundation
' P. 0. Box 12211 Washington, DC 20550

Research Triangle Park
North Carolina 27709 9..-'*

19. KEY WORDS (Continue on fo vae aide It n caesm mid identify by block nusb.r)

electromagnetism polyconvex energy functions
semi-inverse problem electro-elastic coupling
compact operator equations magneto-elastic coupling . ,..-

global existence strong ellipticity condition
smooth solutions conducting rods thermo-elastic coupling

20. ABSTRACT (Continue an r verse side It nocessar mnd identity by block number)
In this paper we study the steady-state behavior of solids that can

sustain mechanical, electromagnetic, and thermal effects. We examine a class
, , ,I4

of boundary-value problems for a quasilinear system of functional differential

equations that is derived from a very general model for such materials. We

propose a physically reasonable constitutive theory which leaves this system

lamenable to modern methods of Dartial diffeential eauations. The princinal .

DO 1473 EDITION OF I NOV 6S is OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whens, Data ner.d)

- . ' .. ,........ .".....,,..
. , _ , . .;,. .. . .. : ... . ," . , ... .. .. .;. , , " ". v e " ,.",. . . . . . ..



20. ABSTRACT - cont'd.

assumption is a modified version of the strong ellipticity condition. In Part I

we prove existence results for the general system under some special physical

assumptions (rigidity and hyperelasticity). Our formulation admits non-local

interactions caused by the magnetic "self-field" generated by the deformed,

conducting body. In Part II we show the existence and regularity of solutions

of a system of functional ordinary differential equations arising from a semi-

inverse problem in a more comprehensive physical situation.

. 4 ,.

J,.

'.

• ar , • ° - . ° . .• ° • • ° . ° • . • ° . . " , • . . . . • ° . . ° . • •



211

(OF01


