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In’ihis paper we—study the steady-state behavior of siaé?s that can
sustain mechanical, electromagnetic, and thermal effects. examine a class
of boundary-value problems for a guasilinear system of functional differential
equations that is derived from a very general model for such materials. .!Iv71€/
propose a physically reasonable constitutive theory which leaves this system
amenable to modern methods of partial differential equations. The principal
agsumption is a modified version of the strong ellipticity condition.” In~Part
I we\provaagxistence results for the general system u r some special
physical assumptions (rigidity and hyperelasticity). ¢ formulation admits
non~local interactions caused the magnetici'self-field'kaenerated by the
deformed, conducting body. In ‘Part Ilraiﬁhhow%the existence and regularity of
solutions of a system of functional ordinary differential equations arising
from a semi-inverse problem in a more comprehensive physical situation.
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SIGNIFICANCE AND EXPLANATION

In this paper we study the steady-state behavior of solids that can
sustain mechanical, electromagnetic, and thermal effects. Our goal is to
formulate very general assumptions on the counstitutive equations that are
physically reasonable, yet leave the resulting mathematical problems
tractable. The models we propose admit the following types of nonlinear
behavior which are of particular interest when materials are subjected to
large electromagnetic fields and sustain large currents.

1. Nonlinear Coupling: We investigate the abstract mathematical problems

that occur when we assume a very general coupling of the various physical
fields of the material. For instance, we assume that the dielectric
displacement 4 depends not only on the electric field g but also on the
deformation gradient F, temperature, temperature gradient g, and magnetic
field h. We make similar assumptions about the stress tensor T, magnmetic
induction h, heat flux vector g, and electric current . The assumption
which makes such problems tractable is a modified version of the “"strong
ellipticity condition”.
2. Nonlocal Self~-Interactions: The Maxwell's equation

carl h = §

implies that a current in one part of a body will generate a magnetic field in
a distant part of the body. Since we allow ] to depend on the entire list
of independent variables, the magnetic field at any point will depend on the
global values of the other variables. And, since all of our dependent
variables depend on h, this problem will be spread to the entire system of

equations. We use compactness method to handle these nonlocal problems.

In Part I we handle very general mathematical problems under special
physical assumptions (rigidity and hyperelasticity) and in Part II we handle a
special mathematical problem (a semi~inverse problem) under general physical

conditions.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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STEADY~STATE PROBLEMS OF NONLINEAR ELECTRO~MAGNETO-THERMO-BLASTICITY' ;;fjﬂ

Robert C. Rogcrs1 and Stuart S. Antman? ahrﬁ

TR

Part I. The General Theory é;ﬁ:?

1. Introduction ; :§\<

In this paper we study a class of boundary value problems for a quasilinear ’“ma;

system of functional-differential equations describing the steady-state behavior é;éig

of solids that can sustain mechanical, electromagnetic, and thermal effects. We EE;;E

treat partial differential equations in Part I and ordinary differential ”I%H:

equations in Part II. Our primary goals are to show that there is a simple way t’ :;;

to formulate the governing equations, which illuminates the physics and promotes 'E?ng

the analysis of the equations, to actually analyze important classes of problems, '»‘LE

and to contribute to the development of an effective constitutive theory for such 22%:3;

materials by showing how our physically and mathematically natural constitutive :;Szﬁ
AN

restrictions support existence and regularity theories for our problems. The
problems we study are simple enough to be tractable, interesting enough to

possess a very rich class of solutions, and yet complicated enough to require new

approaches, both in the formulation and treatment of electromagnetism in solids

and in the use of techniques of nonlinear analysis. ::::::
Y
Our constitutive equations give the stress, heat flux, dielectric f&giz
»
G
displacement, magnetic induction, and electric current as arbitrary functions of 4 f%i,
R
e
’sqme of the results reported here were developed in the doctoral dissertation of _fﬁF
Rogers (1984). LN
NRON
1Purtially sponsored by the United States Army under Contract No. DAAG29-80-C- ) QY
0041. This material is partially based upon work supported by the National kait‘
Science Foundation under Grant No. DMS~8210950, Mod. 1. Q&E*

zpartially supported by National Science Foundation Grant No. DMS-8503317.
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the deformation gradient, temperature, temperature gradient, electric field, and
magnetic field. Thesgse constitutive functions must of course be invariant under
rigid motions. 1In order to reduce the governing equation to ordinary
differential equations for our semi~inverse problems of Part II, we further
require that the bodies under study have some material symmetry. Our basic
constitutive assumption is that the constitutive equations satisfy the Strong
Ellipticity Condition. Originating in the theory of partial differential
equations, this condition proves to be eminently natural on physical grounds.
Indeed, this condition, when precisely formulated, is equivalent to the
requirement that each component of the dependent constitutive variables is a
strictly increasing function of the corresponding component of the independent
constitutive variables (when the other components of the independent variables
are held fixed). Roughly speaking, a typical consequence of this assumption is
that a change in the temperature gradient produces a far more pronounced change
in the heat flux vector than it does in the stress, dielectric displacement, and
magnetic induction. Thus the Strong Ellipticity Condition implies a very mild
uncoupling in the constitutive equations. True uncouplings, such as the
independence of stress, dielectric displacement, and magnetic induction on the
temperature gradient, may be interpreted as consequences of the Clausius-Duhem
version of the Second Law of Thermodynamics. But we have no need for such true
uncouplings anywhere in our analysis. 1Indeed, wherever the Clausius-Duhem
inequality is more restrictive than the Strong Ellipticity Condition, we have no
need for its consequences, and wherever it is less restrictive, it is inadequate
for our needs. We supplement the Strong Ellipticity Condition with compatible
growth conditions.

Rather than adhering to the classical tradition, (followed at least in part

by Toupin (1956), Fano, Chu, & Adler (1960), Penfield & Haus (1967), and DeGroot
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& Suttorp (1972) and others), of deriving or motivating the constitutive
equations of alectromagnetism from discrete microscopic models, we employ the
phenomenological approach of continuum mechanics and simply lay down general
constitutive laws. We thereby gain great economy and generality in our
formulation of electromagnetism. (Cf. Truesdell & Toupin (1960).)

For simplicity and clarity in our mathematical analysis, it is crucial not
only that we give Maxwell's equations a material (Lagrangian) formulation, but
also that we introduce new variables in place of the dielectric displacement,
magnetic induction, etc. 1In this regard we are merely extending to the theory of
electromagnetism in deformable media the methodology that has proved most natural
and successful for boundary value problems of nonlinear elasticity.

In the overwhelming majority of texts on continuum mechanics the emphasis
placed on the gpatial formulation of the governing equations and, in particular,
on the use of the Cauchy stress tensor overshadows that placed on the material
formulation and on the use of the Piola-Kirchhoff stress tensors. (We define
thege stress tensors in Section 3.) The reason for this emphasis ia largely
historical: The two most highly developed branches of continuum mechanics are
Newtonian fluids and linear elasticity. The constitutive equations for a
homogeneous Newtonian fluid are especially simple in a spatial formulation.
Moreover, in this formulation the constraint of incompressibility (valid for
liquids) has an elegant characterization as the linear equation expressing the
vanishing of the divergence of the velocity field defined over points in space.
(In contrast, incompressibility is characterized in a material formulation by the
nonlinear equation requiring the Jacobian of the deformation gradient to equal
unity.) For problems involving nonhomogeneous fluids or fluids with free
surfaces, there are compensating disadvantages requiring some version of a
material formulation, possibly disguised, for their successful treatment. 1In
linear elasticity there is no distinction hetween material and spatial
formulations, although the derivation of these equations from a nonlinear spatial
formulation is much more difficult to carry out than that from a nonlinear
material formulation. The advantages of a material formulation are evident for
the boundary value problems of nonlinear solid mechanics: (i) The prescription
of constitutive equation for the first Piola-Kirchhoff stress tensor in terms of
the past history of deformation is natural and does not suffer from complications
due to nonhomogeneity. (ii) The governing equations are posed on a fixed region
of space, the region occupied by the body in a reference configuration, rather
than on the unknown and possibly moving region actually occupied by the body.
These factors have not, however, proved to be compelling in shifting the emphasis
of texts towards material formulations because there have been so few studies of
nonlinear boundary value problems of solid mechanics. (Cf. Antman (1978, 1979,
1983), Ball (1977, 1982).)




Maxwell's equations have been posed almost exclusively in spatial
coordinates because the most important case of the vacuum can be posed in no
other way and because in the second most important case of a rigid medium there
is no essential distinction between material and spatial coordinates. Moreover,
the most actively cultivated field of electromagnetism in deformable media is
that of magnetohydrodynamics. For the reasons mentioned in our comments on fluid
dynamics, many problems for this theory are most easily set in spatial
coordinates. Only recently has the use of material coordinates begun to appear
in treatments of electromagnetism in media. (Cf. Walker, Pipkin, & Rivlin
(1965), Hutter (1975), Pao & Hutter (1975), Hutter & van de Ven (1978), McCarthy
& Tiersten (1978), and Maugin (1981).) These authors have also introduced new
fields suitable for material coordinates in place of the classical fields.

The large deformation of solids in the presence of large electromagnetic
fields is a problem of growing technological importance'(cf. Moon (1978, 1984)).
Awareness of this importance is evidenced by the number of papers recently
devoted to this subject. (Cf. Parkus (1979), Ambartsumian (1982), Maugin
(1983).) To our knowledge, ours is the first mathematical analysis of general
nonlinear boundary value problems in this area.

Much of the previous work in the electromagnetism of deformable solids can
be divided into two general areas: the development of a general theory governing
such media and the solution of specific nonlinear problems. General theories of
the dynamics of deformable solids have been proposed by Fano, Chu & Adler (1960),
Toupin (1963), Dixon & Eringen (1965), Pao & Hutter (1975), and Maugin & Eringen
{(1977). These developments consist in the derivation of some form of Maxwell's
equation and asgsociated forms of the electric body force, body couple, and
internal energy supply from some discrete model of the material. Comparisons of
various theories are to be found in Penfield & Haus (1967), DeGroot & Suttorp
(1972), Hutter & van de Ven (1978), and Pao (1978). Our work is more closely
related to the static theories of Toupin (1956) and Brown (1966). Specific
problems for general nonlinear dielectrics were solved by Toupin (1956), Eringen
(1963), Verma (1964), Pipkin & Rivlin (1960), and Singh & Pipkin (1966) via the
inverse methods of modern nonlinear elasticity. (Singh & Pipkin also provide a
review of the earlier work.) There is an extengive literature on gpecific
nonlinear materials with polynomial constitutive equations and associated
problems (cf. Jordan & Eringen (1964) and Pipkin & Rivlin (1966)). Maugin (1981)
reviews the modern work on wave motion in magnetizable deformable solids and
includes both general nonlinear and specific (approximate) constitutive
equations.




2. Notation

The Buclidean 3-space 33 is defined to be abstract 3-dimensional real

inner-product space. Its inner product, the dot product, is the natural source
of the geometric properties of the space. We interpret 23 as physical space.
We listinguish B from IP, the gspace of triples of real numbers equipped with
any norm (which is necessarily topologically equivalent to the Euclidean norm).
But we assign no natural geometrical significance to the norm on R

Vectors, which we define to be elements of !3, and vector-valued functions

are denoted by bold-face, lower-case Latin letters. Second-order tensors, which

form the space Lin of linear operators from B> into itself, are denoted by
bold-face upper-case Latin letters. The subspace of Lin consisting of
symmetric second-order tensors is denoted Sym. 1Its subset of positive-definite
tengors is denoted Psym. The group SL(3) of all members of Lin with
positive determinant is denoted Lint. Scalars and scalar-valued functions are
denoted with light-faced letters. Elements of R® for n > 1 and functions
with values in R® are denoted by bold-face sanserif lower-case Latin letters
and by bold-face lower-case Greek letters.

We employ the Ayadic notation of Gibbs (cf. Gibbs & Wilson (1901)), which we
now describe. (This notation is both admirably suited for treatment of problems
in curvilinear coordinates and completely compatible with modern invariant
formulations of linear algebra in E2.) The dot product of vectors u and y
is denoted y°v. The cross product of two vectors y and y is denoted y~y.
The value of the second order tensor A at u is denoted A*y. The traanspose

* *
A of A is defined by y°*(A*w) = u°(A *°v) for all 3 and y. We

» *
accordingly write A °*v = v*A. A is gymmetric if A = A and skew if

A=<-A. If A is gkew, there is a unique vector a, called the axial vector

of A, such that A*y = a~y for all v e 33. The dyadic product uv of
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vectors 3 and y is defined to be the second-order tensor satisfying

(gy)*w = (y°wiu for all y. Thus (gx). = V4 and tr(yy) = yevy where tr
denotes trace. The product (A*B) of tensors is defined by (A°B)°y = 3°(B°¥)
for all y. Thus A°(py) = (A°n)y and (uy)*(A) = u(y°*A). We set

AtB = tr(a°B"). Hence trA = L:A = A:l =R :l=trd,

(8y):(xy) = (B°x)(x°y), and A:(gy) = u*A*¥Y = (uy):A. (I denotes the identity
tensor.) It is easy to see that ":" is an inner product on Lin. We
accordingly define the norm |Q| of A by |Q| = v’?é. If a and b are unit
vectors, then |abl] = 1 so that ab is a unit tensor. 1In this case we can
represent any tensor A by the orthogonal decomposition

A = (a*A*b)ab + (A - (a*A*b)ab] where a°A*b is the component of A along

ab and ([A - (a°A°blabl is the projection of A onto the orthogonal

complement of ab. If {3} anda {pj} are each bases for B>, then {zkbj}
is a basis for Lin. Thus we can use all of our dyadic identities to construct
the familiar componential formulas for all the expressions we have introduced in
the invariant form. Repeated indices are summed over their obvious ranges.

The (GAteaux) differentials of u® f£(u) at a in the direction of ) and

~ A~

of U» F(U) at A in the direction of B are defined to be the vector

(3g(a)/3ul*b and the tensor [JF(a3)/dUl°*B given by

(2.1) [9£(2)/3u b = $¢ £(a + tB) |

(2.2) (3E(R)/3U1*B = 4 E(A + tB)|

t=0 '

Q

?

Other differentials are defined similarly. 1If g» E(U) and ¥ » G(V)

~ ~~

are (Fréchet) differentiable, then Vv » F(G(V)) = H(V) is also, and its

~T~ e ~

R

differential satisfies the chain rule:
(2.3) [9H(A)/3V]:B = [3§(§(§))/3g]:{[39(5)/3!]:§} .
(The braces can be omitted from the right side of (2.3).) Our notational scheme

embodied in (2.1) and (2.2) causes the chain rule (2.3) to have a form analogous
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to that for scalar functions. As we shall see in the next chapter this virtue is
counterbalanced by the increased complexity of defining and representing the
action of the classical differential operators grad, diw, curl on tensor
functions.
'\
; We denote n copies of a function space X by X itself. The distinction
will be clear from the context: Thus a statement of the form w ¢ Lp(B ) is to
imply that this LP(B) is the space of all measurable vector-valued functions

~ A,

2D B> z " wiz) € B> such that f [g(z)-g(g)]p/zdv(g) <o,
B

The norm of a Banach space X is denoted 1+ ,X}.
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3. Formulation of the Governing Equations
In this and the next section we formulate the equations for steady-state

problems of electro-magneto-thermo-elasticity. There are several different

-", .,

i'l‘

4 "‘
’

‘

-
s

theories that are at least formally equivalent in the classical nonrelativistic

’
oA
e o, 0

setting we employ. (Cf. Hutter & van de Ven {(1978) and Pao (1978).) Comparisons
of the various theories is made difficult by the fact that the same symbol used
in different theories has different meanings. Fortunately, the mathematical form
of the governing equations expressing the balance of linear momentum, the balance
of energy, Maxwell's laws, and the conservation of charge is the same for all
these theories. We shall refer to the various fields that occur in our equations
by their traditional names, realizing that their precise physical significance
inheres in the slots they occupy in the equations for a specific theory.

To make our presentation as transparent as possible, we assume that all the
functions and boundaries that appear are smooth enough for all the classical
operations that appear to make sense. (A careful treatment of these issues
without such blanket smoothness assumptions can be modelled on that of Antman &
Osborn (1979).) Of course, we abandon this optimistic formalism when we
afterwards analyze our specific boundary value problems.

3

We identify a material body with the closure B of a domain in E° and we

identify material points of the body with their positions 2z in B. For each

z in B let y(z) denote the position of 2z in some deformed

configuration. The (transposed) deformation gradient F and the right Cauchy-

Green deformation tensor € for the configuration y are defined by

»
(3.1) E=23y/%, ¢=E°E.
We require that no two distinct material points simultaneously occupy the

same position in a given configuration. Thus each map y must be one-to-one.

Since this global condition is so difficult to treat, we ignore it and content




ourselves with the local condition that the deformation Yy merely preserve
orientation, i.e., that

(3.2) det £ > 0,

where det denotea the determinant.

Let X(z) denote the logarithm of the absolute temperature at position y

in space. (It is finite-valued if and only if the absolute tewperature is
positive-valued.) We set E(x) = 3K(x)/3x- Let ;(x) and g(x) denote the

electric and magnetic fields at y. We set

(3.3) AMz) = X(y(z)), glz) = A(z)/3z = glylz)) R(z) ,

~

e(z) = el(y(z))*E(z), h(z) = hiy(z))E(z) .

~

4, &, and h are the material logarithmic temperature gradient, aelectric

field, and magnetic field. (We shall soon see that ¢ and h can be

represented in terms of gradients. Consequently they transform in (3.3) just
like g.)

Let E(x) denote the effective Cauchy stress, i.e., the sum of the

mechanical Cauchy stress and the Maxwell stress. i(z) measures force per unit
actual area at y. (There are several versions of E, depending on alternative
representations and decompogsitions of the Lorentz force and torque.) Let ;(x)
denote the heat flux per unit actual area at y. Let §(z), g(x). i(x) be the

dielectric displacement, magnetic induction, and current density at Y- Then we

introduce material versions of these fields by
(3.4) T(z)" = det E(2)E ‘(z)*Ty(zn" ,
glz) = det E(z)E '(z)*gy(z)), etc.

T is the effective first Piola-Kirchhoff stress.

For simplicity let us assume that the body force and heat source have purely -:i:;:,
ASSAN

electromagnetic origin. Then the local form of the balance of forces, the S}f&i
At

balance of energy, and Maxwell's equations for a steady state are n f
. ~ -~ . -.’
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“ (3.5) Div z + 'g = 9' ' %:‘z'::'
,‘ 13 »
v (3.6) Divg + joa=0, S
o il So
(3.7) Divd=o0o,
W \i’l
X (3.8) Divb =0, ;:*j:
“l‘ : ,;‘-,‘4
’ (3.9) Curl g = 0, i"
(3.10) Curlph = 3 . ;
p]
1 The material divergence Div of a tensor is defined by Green's Theorem ot
5 (3.11) |/ Tepda = [Diveyav
ap 4 s
ot
> i
where PC B and n is the unit outer normal to P. 1In (3.5) f represents -'-,‘.::-::,
- -:'; "'A
. body forces of electromagnetic origin not absorbed by the Maxwell stress. Since S,
~ LY
w o
every term in the usual prescriptions of the lorentz force is a divergence, we ‘ ,’
L fq:"n -F
‘“_‘ could absorb this force entirely into the Maxwell stress and hence into the :-:-’._-ﬁ
- effective stress. We accordingly take £ = 0. (Cf. Hutter & van de Ven (1978).) : :
The term j*e in (3.6) is the Joule heating. 1In (3.7) 0 represents the free - =
£
¢ - N
) . i i . ,5?! %
- charge. We regard it as an assigned function of 2 :\
SR
\.“ The balance of torgque has the local form ; ""
‘ * * Lol LA
(3.12) L=1F - ET Sy
AJ o#: “
3 '...'.-
+ where L is a skew tensor depending upon the electromagnetic fields and the {;.'j-:?_
< Rk
SABLS
« choice of the Maxwell stress tensor. We assume that (3.12) is identically 'J‘.;-t"
L] o Bp
~ satisfied when the constitutive functions, to be introduced in the next section, .
. are substituted into (3.12). Hutter & van de Ven (1978) show that it is
N
. permissible to take L = O.
- Equations (3.9) and (3.10) imply that there exist scalar functions ¢ and
- SR
j: Y, called the electric and magnetic scalar potentials such that ' '.’_q
‘ —_— R
; (3.13) e = 39/3z ,
)
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(These formulas justify the

as is shown in standard books on electromagnetism.

remarks following (3.3).)
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4. Congtitutive Equations

Of all the variables that have appeared only 0 is prescribed. The
remaining variables are related by constitutive equations. As our independent
constitutive variables we choose
(4.1) I = (E,g/2,e/h)
because they are physically reasonable and mathematically convenient. The domain
of F is tint, the domain of g:8/h is k3, and the domain of A is R. We
first suppose that g,d,b,] depend on these variables and on gz. Thus j-g,
appearing in (3.6), likewise depends on (4.1). We finally prescribe T and [
to depend on (4.1) and z so that they satisfy (3.12). Henceforth we shall have
no need for (3.12). Thus we have constitutive functions i,é,é.é,i,é such that
(4.2) T(z) = T(I(z),z), etc.

The functions i, etc., must be invariant under rigid motions, i.e., be frame-
indifferent. (Cf. Truesdell & Noll (1965).) We do not pause to exhibit the
specific representations of the constitutive functions that are necessary and
sufficient for frame-indifference because we have no need for them in our
analysis.

For simplicity, we assume that our constitutive functions are continuously

differentiable.
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5. Potentials

It il convenient in our analysis to employ the potentials ¢ and ¥
instead of @ and h as the fundamental variables defining the electromagnetic
state. @ is expressed as the gradient of ¢ in (5.15). If the current
1 =0, then h is likewise expressed as the gradient of ¥ by (5.16). We
seak conditions ensuring that } can be expressed in terms of
{5.1) (E,g,),99/3%,39/3g) = A
when the current is not zero. Note that each entry in A except A is a
gradient. Let us substitute our comstitutive egquation for J into (3.14) to
obtain

(5.2)  h(g) - 3(g)/3g = [ [4(n(x),L(x),X) ~ (x - 2)]]x - z| avix) = x(n,2) (2)
B

~ " A

vhere I = (E,g.A,8). Wow in the classical form of Ohm's Law, i depends only

on the electric field. More generally, if 3 is independent of h, then (5.2)
giveas an explicit representation for h in terms of A, There are a variety of
results available for the case that 3 depends on h. Typical is the following:

5.3. Theorem. Let & > 1 and let B 1lie in the ball BY of radius Y and

center Q. Let A be fixed in L, (B). Suppose that there are positive numbers

u, 8, T with 37 < a such that

(5.4) 3Lz ] < wr s D™,
(5.5) |33(I,z) /3| < 8¢1 + [I]%) .

If Y and 0 are small enough, then (5.2) has a unique solution of the form
(5.6) hiz) = 3Y(z)/9z + k(A)(2)

where L (B)> A ®» k(8)(*) € L (B) is continuous and compact.

Proof. It suffices to take B = BY. We use the following amalgamation of

results of Sobolev and Kantorovich (cf. Sobolev 1950, §6) and Kantorovich &

Akilov (1977, Chap. XI, §3): 1If f ¢ LB(BY)' with 8 2 1, then there is a

-
)

.
v

-
a8,
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continuous function Y + x(B,Y) that strictly increases from 0 to =

increases from 0 to > such that

(5.7a) 'nch(BY)l < K(B'Y)lf'LB(BY)'
where

£(x)
(5.7b) = 5 avig) ,
z

v=wo if 8>3, v<38/(3 -B) if B < 3. Moreover K is compact (and

continuous) from LB(BY) to Lv(ny)'

We wish to show that h » k(h,Z,*) is a contraction from La(BY) to

PO
LN

itself. Let h ¢ La(ny)' We first identify f of (5.7) with (the components

e A

of) j(h,Z)(*) and chose B = a(1 + C)-1- (Then B < 3 if and only if

S
&

a - 37 € 3.) Then (5.4) ensures that j ¢ LG(BY). Since 38(3 - B)-1 > a when

B <3, we can take V = a in this case. Thus (5.7) implies that
# x(h,L)(*) maps Lc(BY) into itself.
We now gshow that Rk » k(h,Z,*) is a contraction. Let hyh, € Lu(ny)'
§h = hy - Qz. Then
|85,/ by, L) (&) | = |k(hy/E)(2) - k(B, ) (%)

33
I35 (thy(®) + (1 = £)h, (%), E(x),x)| | Shtx) |

<[ = av(x)

BY |£" ’.‘.l

where t € [0,1]. We now identify £(x) with the numerator of the integrand in
the right-most term of (5.8). We henceforth suppress the arguments of the
functions appearing in this numerator. Let us choose B and v as above,

noting that 8 < a. ¥rom (5.7), (5.8), and the H5lder inequality we then obtain
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S Since aB/(a - 8) = B, condition (5.5) implies that 33/35 € Lys/(a-8) 'By) ®°

o
.

»
-,

that the rightmost term of (5.9) is well defined.

B
X We now prove the compactness of A » k(4,°). The compactness of K *{‘ N
. A
X o A
. introduced in (5.7b) implies that the mapping \3
, S
...;h‘,;-i
. [ / 3% A (x -2 ] -
) (5.10) (B)2 4k (zw av(z)] e L (B ) RO
' L B, Ix-2® Y e
~ AN
is compact. Condition (5.4) ensures that (h,L) » j(h,I,*) takes I‘u(ay) to e
3 LB(BY). By the properties of Nemytskii operators (cf. Krasnosel'skii (1956, &E::If_?
N '.\.‘.":"F.‘
> Sec. 1.2), this mapping is continuous. Since ,‘:::::.‘-:: |
W
~ ~ »
¢ JOOV(x)/3z + kA, %), L(X)X) ~ (5 - 2av(x) - X
’ Ly(B,) 2 A v 3 = x(4,2) Pt
) B, % - =l Y
é “ o t':
. RV
ST
is the composition of a compact with continuous operators, it is compact. DO NN
It follows from (5.5) and the properties of x that we can make the
: coefficient of 18h,I ! in the right most term of (5.9) less than unity by
~ fixing © and taking Y semall enough or by fixing Y and taking 0 small ;
) enough or by taking each small enough. The Contraction Mapping Principle ensures
I
: that (5.2) has a unique solution giving h as a continuous function of A. The
composite function obtained by substituting this solution h into 5()3,2_,') has
f value denoted by k(A,z). ,‘::_';:.
- :f\:\
o> -3
. A number of related results, including some for unbounded domains, can be G
Y
oy "
based on the techniques presented by Sobolev (1950, §§6,9), Stein (1970, Ch. V), . .
. b:‘.“'
'. :':.':- -‘
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and Kantorovich & Akilov (1977, Chap. XI). Note that Theorem 5.4 says that (5.6)
is valid provided the dependence of 3 on h becomes weaker as the body B
becomes larger.

We now suppose that i is such that h admits a representation of the form
(5.6). We substitute (5.6) into the right side of (4.2) to get
(5.11) T(z) = i(g(g).g(g).l(g),30(5)/35,3!9(5)/85 + i(_A_,g).g). etc.

Our governing equations are obtained by substituting (5.11) into (3.5)-

(3.8):

(5.12) Div® =0,
(5.13) Div § + 3°(3¢/92) = 0 ,
(5.14) pivd=o,
(5.15) Div é =90,

where the arguments of the constitutive functions, decorated with carets, are
indicated in (5.11). Equations (5.12)=(5.15), having six scalar components, form
a quasilinear system of partial functional differential equations for the six
unknown components of y,A,9,¥. All other variables we have introduced can be
expressed in terms of these.

Toupin (1956) took the polarization E and magnetization E as independent
constitutive variables. One of the goals of our paper is to exhibit the
mathematical advantages of choosing d,b,j to be dependent constitutive
variables and choosing ¢ and h to be independent constitutive variables. In
this regard we generalize formulations of Pao & Hutter (1978), Jordan & Eringen

(1964), and EBrsoy & Xiral (1978) inter alia.
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6. Ellipticity and Growth Conditions
Our basic constitutive assumptions are expressed in terms of the quadratic
form
(6.1) wld,5,8,7)
ATOT/IE) A + At(IT/3g) g + A1 (IT/3g) oy + A1 (3T/3p) ey
+ £ g/AEN R + £ (0g/3g) % + £ (3g/98)°n + £+ (3g/oh) ey

+ @ (QI/AE) 1A + 32 (OY/dg) k + 2+ (33/3g) ey + ue (3Q/3p) ey

~

+ 3*(3B/AE)sA + ¥+ (3h/3g) et + ¥+ (3b/g) ey + ¥+ (3B/AR)°Y -

If o(A.5.8.8) > 0 V(A 5.8.8) # (R,2,0,0), them (T,q,4,bB) is said to be

gtrictly monotone. The use of this attractive mathematical restriction would

deprive the theory of much of its physical versatility. Among its adverse
consequences (discussed in detail by Antman (1983)) is that the uniqueness
theorems it implies effectively prevent the buckling of a column of such a
material however slender under a compressive load however large.

We can eliminate this kind of unigueness in the mechanical response while
preserving it fully in electromagnetic response and partially in the thermal
response by weakaning the strict monotonicity condition. If w(xs,t,u,y) > 0

¥(r,8,t,8.¥) # (0,0,9,9,0), then we say that (T,q,4,b) satisfies the (strict

form of the) restricted strong ellipticity condition., (Note that A equals the

dyadic product xg if and only if A has rank 1.) In Section 8b we discuss the

physical significance of the restricted strong ellipticity condition. If

A A A A

w(xg 5,8,5,8/8,8) > 0 ¥(£,8.84,85,84) # (R,0,0,0,0), then (T,9,d,b) satisfies

the (strict form of the) strong ellipticity condition. This condition is the

generalization to elliptic systems in divergence form of the Legendre-~Hadamard

IO
condition of the calculus of variations. PR
LS
Nt
D At
In this paper we shall atudy the strong ellipticity condition and its :;ﬁ};
RN
et

restricted form. Our subject is insufficiently developed to determine whether 2
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phenomena permitted by the strong ellipticity condition, but prohibited by its
restricted form, are observed (cf. Sec. 8b). The intuitive content of these
conditions is described in Section 1. Most special theories of material behavior
of electro-magneto~thermo-elasticity satisfy the restricted strong ellipticity
condition because many of the “off-diagonal®™ terms in (6.1) are zero. (But
recent work on the study of plastic effects and phase changes treates theories of
elastic solids for which even 55:(3i/3§):£5 need not be positive for xg # Q.
Cf. Bricksen (1980).)

We now study the behavior of the constitutive equations at extreme values of
their arguments. The conditions we impose must be consistent with the strong
ellipticity condition. Since our work is just a generalization of that of Antman
(1983), we omit an extensive commentary. In Sections 8 and 11 we describe more
specific conditions appropriate for special problems.

Recall that
(6.2} I = (r,g/,\,e,h) .

Let a and ¢ be unit vector fields depending on I,y,z. The strong
ellipticity condition implies that

3(a°T°g)

(6.3a) ETEFEF25-> 0 if a and ¢ are independent of a°*Fe¢c ,

3g-a)

37;;5; > 0 if

(6.3b)

14

is independent of g°a ,

JEUY

(6.3c) >0 if

1]

3(eca) is independent of e-a ,

3(bea)

Taar > 0 if

(6.34) is independent of h-a .

14

Moreover, if a and ¢ are independent of g'g'g, then
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(6.4) D(ag) = {a*F°c € Ridet F > 0} ‘
is either an open half-line, or the whole line, or empty and can then be written
as

(6.5) Dlag) = (£ (ag),t (ag)) .

t

We suppress the dependence of ! and £ on I,y,z. The facts motivate the

following

6.6, Hypothesis. Let a and ¢ be unit vector fields depending on I,y,z. 1If

Mag) is an open half-line or the whole line and if a°Fec » a*Tec is strictly

increasing, then

(6.7a) -,a,','g'g Al _a_g_"yg-g > zt(gg) for fixed I - ((a°FPec)ac,0,0,0,0),y,2 .

If gea ® g°a is strictly increasing, then

(6.7b) gea +t® as g'a * t® for fixed T - (0,(g°a)a,0,0,0),y/Z -

If ecan» é'g is strictly increasing, then

(6.7¢c) é'z +t® as e'a+t* for fixed I - (0,0,0,(e%a)a,0),y.2 - :

If heaw é'g is strictly increasing, then , .;"
(6.74) R *+* as h'a * t= for fixed I - (2,0,0,8,(Rea)e).g.E -

If »ag) is a half-line, which happens exactly when the cofactor of a*Fsc

in det ¥ does not vanish, then 30(ag) is a point (either £+(g,g) or

l-(,,_g))- Then (6.7a) implies that we can define a function ::::.-.‘
' AR
(6.8) ac » §lac) € {-1,1) e
N
such that PN
PS ‘~:‘-VP;"

(6.9) S(aclasTec + ~» as a-Fec + 3D(ac) :

for fixed I - ((a°*P°c)ac,0,0,0,0),y,2 « Note that det F + 0 so the local

~ " Aere ~

volume ratio shrinks to 0 as a*Fec + 3D(ac).
We now complement Hypothesis 6.6 in a way that promotes the analysis of Part
'y S ‘\_‘\
II by describing the behavior of the constitutive function T as more than one Y

component of I are allowed to vary. ey,

7’
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6.10. Hypothesis. Let z be fixed. Let {ET' T=1,...,9} Dbe a basis for

Lin consisting of dyadic products of unit vectors, which may depend on T,x.z-

» »
and let {E.} be the basis dual to {E,}. Let E:E » T:E  be strictly

increasing for each T. Let {_I_'n} be a sequence of states such that the

2*(§T) formed from {_I:n} are actually independent of n. let the set of

integers {1,...,9} be written as a disjoint union aUbUc UdUeU{ with

. WK S A e S b 4 A A R BB Ty

» *
(6.11a) BD(ET) # 4 and 6(51)2(-!11'5)351 +-= for Te€a,

(6.11b) D(E.) # ¢ and E :E * 3D(E,) for T €b,

i (6.11c) 3D(E,) # ¢ and En:B € compact subset of (L-(ET),2+(§T)) fortec ,
- (6.11a) D(E.) # 6 for T ed,
(6.11e) 3D(E.) =4 and E :E € compact subset of (2-(51),2+(gt)) for T €e ,
. (6.11£) 3D(E) =6 for T € .

If a # ¢, then

~ *
(6.12a) S(EIT(L ,2):E > - ¥T e a UbUc; for each t in d either
~ »
lE Bl > = or S(ENI(L ,z):E + ==
If b # ¢, then

~ *
(6.12b) either (i) S(ET(T ,2):E * - VT eaUdUec Ud or else

(ii) 9t ea Ud sguch that |E :E | + = and dr ea UbUc Ud

V.S, et e et

L J
such that |T(T ,z):E_| + =,

Moreover, the dualization obtained by respectively replacing the statements

~ *
] E:E; * 30, (B, |E B, + =0 ST(T ,2):E, > -~

~

i appearing in (6.11), (6.12) by their opposites

~ *
* », E 351. + av(gr)l sg(zn'ﬁ)zst + ®

{ lgnzgrl n

18 also valid.

The statement containing (6.12b) may be loosely interpreted thus: If there
are fibers compressed to zero length in some directions, then either the material

is squeezed out with an infinite stretch in another direction or else it is

N ~-20-
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prevented from doing so by infinite compressive gtresses in all other directions.
The other statements have similar interpretations. The whole hypothesis
effectively says that extreme behavior in one direction must be accompanied by
extreme behavior in some other direction. This observation is used in Part II to
establish reqularity results by showing that behavior could be extreme in only
one direction and therefore cannot be extreme. It would be easy to generalize
Hypothesis 6.7 to account for extreme couplings between the mechanical,
electromagnetic, and thermal effects, but the intuitive evidence for such a
generalization is not compelling.

It is important to note that the transformations (3.3) and (3.4) ensure that
the Maxwell stress contains terms with (det E)'1 as factors. These terms could
compete with the "purely mechanical part of this stress"” when det E is small.
Our constitutive hypotheses on the effective stress control this competition.
They say that the material response in large compression is dominated by that for

purely mechanical response.




Teteldl PR Y

\fN S,

P rd

7. Boundary Conditions. The Principle of Virtual Work

At a boundary point z € 3B we may prescribe the position x(z) or merely
subject it to certain constraints, such as the requirement that it be confined to
a fixed surface. To account for the varied possgibilities it is convenient to
describe such boundary conditions in the language of holonomic constraints. We
accordingly specify
(7.1) g(z) = ¥(z,x) for each z ¢ 3B
where i is a given function continuously differentiable in r € R?, which
represents the set of generalized coordinates for y(z). The rank of dy/dr is
the number of degrees of freedom of gz. Equation (7.1) restricts y(z) to a
manifold. The set of vectors x“(g) of the form [3i(5,£)/3gj'£?(5) for

L 3

r (z) € R° form the tangent space to this manifold at y(z). The elements

x'(g) of this tangent space are called virtual displacements. We complement

(7.1) by specifying the projection of the traction I*n on this tangent space:
* - -
(7.2) (n*T - t)e(3y/9r) = 0 at each z ¢ 3B

~ A~

where i is a given function of y‘z), A(z), o(z), ¥(z), z and possibly other

~

variables. Thus
(7.3) (n°1" -yt =0 on 3B .

At each z € 3B we also prescribe
(7.4a,b) either A(z) = X(z) or gl(z)°n(z) = Y(y(z),M2z),e(2z),¥(2),2) ,
(7.5a,b) either ol(z) = ¢(z) or d(z)en(z) = S(y(z), (2),0(2),¥(2),2) ,
(7.6a,b) either W¥(z) = $(z) or b(z)en(z) = §(x(£).k(g).v(§),¢(5)15) .
Let X”.v”,wﬁ be arbitrary continuous functions on 9B that respectively vanish
where (7.4a), (7.5a), (7.6a) hold. They are virtual fields. Then in analogy

with (7.3) we have

(7.7) (gen - Y + (gen - Drot 4+ (pen - Brvt =0 on 0B

-22-
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Our fundamental equations of balance are the integral versions of (3.5)=-

(3.7), which are to hold over "almost all" nice subbodies of B. These equations

can be supplemented by appropriately weakened forms of the boundary conditions we
have just listed. Antman & Osborn (1979) show (strictly speaking, for the purely
mechanical problem) that when all the integrals make sense as Lebesgue integrals,
then these equations and boundary conditions are equivalent to the Principle of

Virtual Work

(7.8) [ 2ecagt oz + gea*/az) + 3 (20%/2g) + Be(avtraz1av
B

-J (S'z# + 0 - aphyav
B

# #

- IB (g-x# + Y e Tt 4 Buhaa
]

v
.
o

for all reasonably nice fields x*,k#,v#-w# having the boundary behavior

a
I

o,

specified above. Equation (7.8) is just the weak formulation of our boundary
value problem consisting of (5.12)=(5.15) subject to (7.1), (7.2), (7.4)=(7.6).
The arguments of é, etc., are given in (5.11). t}

In many circumstances the deformation of a body subjected to the action of
external electromagnetic fields changes the ambient fields. Thus there would be
a complete coupling between the fields interior and exterior to the body. Since
our goal is to study the role of the constitutive assumptions of Section 6, we
are avoiding such coupled problem by restricting electromagnetic boundary

conditions to (8.5) and (8.6). Methods for treating fully coupled problems would

be similar to those of Section 5.

¢
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8. General Bxistence Theorems

‘: In this section we obtain existence theorems for two important special ’ggé

. classes of problems, which can be readily treated by means of recent results for . “_:1
Wt

3 elliptic systems. For the first problem we assume that there is neither thermal £§§
")

; nor electrical conduction and that there is a stored energy function; thus this %%?ﬁ
.Y.J' -

N reduced problem admits a variational formulatinn. For the second problem we ljii

; assume that the material is rigid. The restricted strong ellipticity condition ;&;‘
’? then reduces to a monotonicity condition, which is capable of handling our E;%S

nonlocal operators.

a. Conservative Problems

We assume that the material does not conduct electricity so that the

- constitutive function Jj = 0. Thus the Joule heating is zero (cf. (5.13)).

;? Moreover, (5.2) reduces to
5 (8.1) b = /3 . b
i We assume that one of the following conditions holds: ' E?h:
~ i Y
\ i) g,P,Y depend only on g,\,z and the boundary value problem (5.13), (7.4) b S:
™ has a weak solution A in a suitable Sobolev gpace. (In part (b) below, we show ._;
3 how a slight strengthening of our hypotheses ensures the existence of )\.) s
.§ ii) The boundary value problem (5.13), (7.4) has a solution A independent of
. the fields F, 9¢/3z, 3¥/3z. Thig situation would occur if § =0 when g=0

and if ) is prescribed to be constant A, on 03B, for then the boundary value
ff problem would admit a solution A =i, on all of B.

»

iii) The constitutive functions T,d,b are independent of g and 2.

¢

In cases (i) and (ii) we can substitute the solution A and its gradient Sl

N )
Ped
52A0

N
g into (5.12), (5.14), (5.15), (7.1}, (7.2), (7.5), (7.6). Since A is known, 2:
]
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its presence in these equatione merely changes the dependence of the constitutive
functions on g. 1In case (iii), these equations are unaffected by the solution
A,

We assume that 0 is a prescribed function of g. We finally assume that
there is a stored energy function W depending on F,g,A,8/h/g with W
continuously differentiable in F,e,h, continuous in g and A, and measurable
: in gz, for all values of the remaining arguments, such that
(8.2) T = W/9F, 4 = 34/, b = W/ .

(The Clausius-Duhem inequality would deliver a specific thermodynamic function
for W and show that it would be independent of g.) The discussion following

assumptions (i), (ii), (iii) motivates us to suppress the dependence of W on

A s A a9

g and 1, their effects being absorbed by the dependence of W on z.
' We suppose that the body force £ is conservative so that there is a

function (y,z) ™ Uly,z), with U(+,z) continuously differenciable for all z

in B and with U(y,*) measurable for all y € g}, such that

(803) z = -3U/ax .

We suppose that E,3,B of (7.2), (7.5), (7.6) are conservative so that there is

a function

g £ x 2 x 2% x 9B 5 (y,e,h.z) » Vig.ehz)

? with V(¢,*,°,z) continuously differentiable for all gz in 3B and with

| V(y,e/h,*) measurable for all y,g,h, such that

:_ {(8.4) g = IV/3Y, I = av/3e, B = /3 . :'.'_::T:_‘:‘._'i

: (The domain of V{(y,8,h,°) may be taken to be the closure of §;§E€

t B\(z ¢ 3B:x“(5) =9, 9“(5) =0, W”(g) = 0}, (See Section 7.) V could i
conceivably depend on g and ). We suppress any such dependence in accord with ﬁ

“ the policy we have adopted above. :\-\}i{

&,
\‘s}_
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We finally assume that 3B is bounded and has a locally Lipschite
continuous graph. Moreover, we require that the supports of v“,w’, and the
components of x' be nice enough to ensure that the boundary conditions (7.1),
(7.5a), (7.6a) are assumed in the sense of trace when y,9,¥ lie in Sobolev
spaces of the form w;(a) with p > 1. (Necessary conditions for these
properties are not known. See the discussion of Antman & Osborn (1979).)

Under these conditions the weak form of the Euler-Lagrange equations for the
functional

AN TRP 1
(8.5) I(y,e,¥) = [ [W(-a—z- (2), 37 (2)0 3, (z),2) + U(y(g),2) + o(g)e(z)]av(z)
B ~ ~ ~

~

+ [ vig(z),elz),¥(z),z)da(z)
9B

for y,9,¥ satisfying (7.1), (7.5a), (7.6a) have exactly the form of (7.8) with
X' = 0. (Of course, many authors take a variational principle, such as this, as
the starting point for the derivation of the governing equation for
electromechanical interactions. See, e.g., Toupin (1956), Brown (1966), Nelson
(1979).,)

Let gx denote the cofacéor tensor of E. W is said to be polyconvex (cf.

Ball (1977)) if it can be written in the form

WE,e,h,2) = QEE ,det E,8,h,z)

~T o~

with Q(e¢,*,*,*,*,2) convex on Lin X Lin X (0,®) x !3 x B for each z € B.

The work of Ball (1977) shows that if W is polyconvex, then (10.2) satisfies
the restricted strong ellipticity condition of Section 6. To account for (6.7)
we require that

(8.6) Q(E,gx.s.s,n,z) +® ag §+0.

8.7. Theorem. Let W be polyconvex and satisfy (8.6). Let there be numbers

k>0, p?2 qg>p/(p=-1), r>1 and functions w € L (B) and

=26~
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X € L,(3B) such that
(8.8) QUEE 18,2:008) > 0(z) + XUEIP + |E1T + 67 + |g|P + |n|?)

for all z ¢ B,

(8.9) Uly,z) > w(g) for all gz e B , .'.V

‘;.
(8.10) g € Lp/(p_1)(8) ' ‘; ::})
(8.11) Vig,®,¥,2) > x(z) for all z € 3B .

Let 9B have the properties specified above. Let

(8.12) W= {(gw,¥) € W(BIE € L (B), det E ¢ L(B) ,

are satisfied in the sense of trace where they are prescribed

‘O_n_ 33 o}

I1f there exists an element (y.,o.,¥.) € # such that I(y.,9,.¥,) < =, then
P LASTAL Suc Bt MYV 2en

there exists an element (¥,?,¥) that minimizes I on W.

The proof of this theorem is effected by making minor adjustments to that of
Ball (1977) and is accordingly omitted. (Further developments of Ball's theory,
useful for our class of problems, are given by Ball & Murat (1984}, Dacorogna

(1982), and the references cited therein.)

b. Rigid Conductors

We now study the effects of the conduction of heat and electricity, but

confine our attention to rigid bodies, for which F is constrained to be the
identity 1. We accordingly take the virtual displacement x#, appearing in

(7.8), to be 0. This choice ensures that the First Piola-Kirchhoff stress

tensor, which now is the Lagrange multiplier maintaining the constraint of

rigidity, does not enter into (7.8). We drop F from the list of variables FOOANA
S A N

NN

constituting A in (5.1) and from the arguments of the constitutive functions i:,\?
A )

<+
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g,4/b,] (cf. (5.11)). Our boundary value problem reduces to (5.13)-(5.15),
(7.4)-(7.6), whose weak form is the suitably specialized version of (7.8).
We assume that the restricted strong ellipticity condition holds. Thus
(gre,h) ¥ (&(g,l,g,g,g). é(g.l,g.g,g), ig(g.l.g.p,.g)) is strictly monotone.
This condition prohibits certain kinds of nonuniqueness.

Since hysteresis frequently is associated with nonuniqueness and since
hysteresis is one of the most important phenomena of ferromagnetism, it might
appear that our use of the restricted strong ellipticity condition precludes us
from dealing with ferromagnetic materials. But molecular theories of
ferromagnetism (cf. Tebble (1969)) suggest that hysteresis is associated with
constitutive equations with nonlocal effects. If we accept such theories, then
to account for ferromagnetism it is necessary to generalize the form of our
constitutive functions before relaxing the ellipticity conditions. We do not
attempt such a generalization here: Our analysis should be regarded as merely
applying to paramagnetic materials. We do, however, examine nonlocal operators
that are introduced by the mathematical approach we use to handle electric

currents. Some of the methods we use can be applied to more general kinds of
nonlocal behavior.

We now outline an existence theory that can be applied directly to our
specialized version of (7.8). We first present the theory in an abstract form in
order to facilitate a comparison of it with presentations in the mathematical
literature. Afterward we make the requisite identifications.

Let B, as before, be the closure of a domain in R3. We assume that 9B
has a locally Lipschitz continuous graph. A typical point in B is denoted g.
Let u(z) = (u,(2),.c.,u (2)). For p ¢ (1,#), 1let the operator
(8.13) L (B)" x Lp(s)"" s (u,9v/9z) # Xk(u,3v/92) (*) € (L, (817

take bounded sets into bounded sets. Let

3Im r 21(5’2'5'5) € R3
(8.14) R xR xR xB > (§,n,z,z)» ¢ i=,000m,

8Y(g,n,2.2) € R

N

(8.15) R* x 3B 5 (£,2) » Y (E,2) € R, i=1,...,m

satisfy




22 8% b d'e 8ty L 8'n 0a 0" SR RABA R R0ty )’ A A% 3 e A \e g+ / N g6 BN p b gt b g b ¢'a
o b . h® 2, . ! . - b, AV N R NS ‘e bR e B

(8.16a) Yor almost all g in B, the functions gi’(n'.',g), Bi(',',ng) are

continuous and for all §,n,i, the functions 51(5_,3'5_:'), B*(E_.g.g,-)

. are measurable. (These are the Carathéodory conditions.)

(8.16b) For almost all g € 3B, the functions Yi('.g) are continuous and for
all §, the functions Yi( E/*) are measurable on 3B (with respect
to two-~dimensional lLebesgue measure).

(8.16c) There exist a constant cq > 0 and a function k4 ¢ I..p.,(B) (with
p* = p/(p = 1)) such that

lat e, 185 e < o el + ]P0+ (2P 4 x (2
for i = 1,.0e,m a= 1,2,3.
The HSlder inequality then implies that the functions

a (u(e), '5'2 (*), klu, 73_2')(‘):')0 B (u, Té' (*), k(u, 3_5')(')")

are in L, (B) for all u,v € (w;)‘“. It follows that the functional

1 ag_ N du awi
(8.17) alu,w) = [ 1] a (ulz), 37 (2), k(u, 3)(2),2) * 5= (2)
B i ~ ~ ~
i du - du
+ 1 8Mulz), 57 (2), k(u, 37 (), 2w, (2)]av(z)
i ~ ~

is well defined for all u,w, € w;(B).

We shall prescribe wu4,...,u, respectively on subsets S4,...,S, of 3B.
We assume that these subsets are measurable. Let V be the closed subspace of
[w;(B)]m containing [:?;(B)]m that consists of functions (wg,...,w;) for
vhich wy =0 on Sy,eee,wy =0 on S, in the sense of trace. Let 4 be a

~20-
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given element of [w;(B)]m. We require that u, agree with \'i, on 31, etc.,
in the sense of trace by seeking solutions u of our equations in [w;(B)l“‘ for
which u - §_ € V. (This prescription of boundary conditions enables us to avoid '
the very delicate questions of whether functions defined on § 1,...,Sm can be
extended to functions in w;(B).)
Since V 2 w # a(u,w) is a bounded linear functional for each u in

w;(B), the Riesz Representation Theorem enables us to write

(8.18) a(u,w) = <A(u),w> ,
where <v,w> = f v'w av. If the gl are continuously differentiable and if u
B o
is twice continuously differentiable on B and vanishes on 38, then (“::
A=

Afn) = A1(2)n-nhm(_u_)) where

: u . du g Ou u
(8.19) a*(w) = -piv a"(u, 370 k(u, 37.2)(2),2) + B7(w, 5 k(u, 37 2)(2),2) .

Let ug set n = (111,...,3“'). Our basic abstract result is the following:

8.20. Theorem. Let 9B have a locally Lipschitz continuous graph. Let

p € (1,). Let (8.16) hold. Suppose that

a(v,v)
(8.21) v, vi +® ag Iy,Vl + » for v eV,
(8.22) ) [gi(ﬁ_.p_ +0,8,z) - si(E NsE,z)leg, > 0¥ = (g ,eeenp) #0
i

(8.23a) )',gi(_g_rl\_ts_:z)'n [lnl + |ﬂ.|p-1} + @ as |ﬂ| >
i

for_almost all 2z in B and for bounded §,n. If B is unbounded, let the
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3 following stronger restriction hold: There is a number ¢, > 0 and a function ¥ Q:'.
9 L \ +
oo
LASY,
ko, € L,(B) such that Wora
, 2 € oa®) sscn e s
+
- (8.24b) L ate e, > e InP-x (2 . o,
rE bttt 2'- 2'~ -
;fr.:»}
et
Define k by :;{ng
- S
(8.25) Wa(BY1™ 5w # k(u)(*) = k(u,du/3g)(e) P
¥ a PRSI
where k is defined in (10.13). Let X, be the characteristic function of a )',-Z*.-‘
[ead.
R
set C in B. For every subdomain C of B with compact closure in B let ?\.{
L.".‘ -
(8.26) WBI™ 2 ww x (HR(wI(e) € (L ()7 N
be compact. Then for every £ € v' and for every u € [W;,(B)]m there exists E‘xj
. ’~~‘~::
a ue [W;,(B)]'u with u -4 € V such that ‘\::E::.*
o
(8.27) <A(u),v> = <£,v> Vv eV,
. The proof of this theorem is obtained by making minor adjustments to those ::*-',:...
: of Brezis (1968) (cf. Lions (1969, p. 297)) and Browder (1977). We note the N
- following points: In a bounded domain the operator A is of the "calculus of N
) variations type" because of its monotonicity in the local values of its highest .:,'.\::-?
order derivatives and because of its compactness (through k) in the global e id
) values of the highest order derivatives. Since our integral operator (7.6) for -
\ constant electric currents is not compact on unbounded domains, we had to use the é.:\.:‘-_'-.
. theory of Browder (1977) based upon the compactness of (8.26) to support our ::"::":
. intended applications. r -.}-.
AR
We identify the variables appearing in Theorem 8.20 with those used in the A
. e
" problem outlined at the beginning of this subsection. In particular, we set “_{.’,\::
F. .’-:_:._-
(8.28) u= (39,9, k(w)(+) = k(a , A, =E az' az)‘ ) . .‘-;:;3..:
el
" :"P;i
: where k is defined in (5.6). We identify the variables appearing in (8.17) :f.‘:,"':_,
~a . -~ .~~
5 with those of (7.8):
du
1 - ~ -~ )
(8.29) a (ulz), 37 (2),k(W(z),2) = g(-a—:‘;(g),ug),%%(g),g-g(g) + h(_A_)(,g).,g)
du ~ :.r,_:,‘r
2 - ~ - afl 9 W S
a (u(z), ) (z),k(u)(z),2) 9(35‘5"“5"35‘5"35‘5) + h(A)(g)'z) :2:;:_1
Ly L)
3 = 3 3 5
a (u(z), -52 (2),k(u)(2),2) = b(—(z).k(z).-a-%(g) T}(z) + h(A)(z),z) U .'i‘p
~ ~ :.
.:;‘_.’::.
-31- -A‘Q ‘-
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i 1 - ~ (1) ) )

_ B (u(z), 3z (2) . k(u)(g),2) = -o(a—é(g),l(z)a;;'(g).;:(g) + h(A)(2),2) , E‘:?"?’
" B%(utz), 32 (R).K(w) (g),8) = 9(8) , N
w g
83(9_(z), = (2),k(u)(z),2) = 0, ‘»
iz "sq‘,r
. 1 \
1 - o
Y (9_15) - "Y(Nz):v(z).*(g) 'Z) At
o

‘.
Y2(u,z) = -8(A(z),9(z),¥(5),2) , wa

u.z) = -B(A(z),0(2),9(z),2) . L

We identify w with (A’,Q',ﬁ'). Note that hypothesis (8.22) is ensured by the

-
45 restricted strong ellipticity condition. We then have
3 8.30. Theorem. Let g,d.,5.0,7,8,8 satisfy the hypotheses of Theorem 8.20 with
- the identifications (8.28) and (8.29). Then (7.8) with x# =0 is satisfied for :}uf%
f; air (\Yetxh in v :
g The question of regularity of solutions for the types of systems described l

in this section remains open. Giaquinta (1983) gives partial regularity results ,
% for more restricted systems. However, it is by no means clear how much
3 regularity is physically reasonable for either of the more general types of
? problems presented here. Ball (1982) suggests that discontinuous solutions of
; problems such as those treated in (8.7) can be used to model rupture of solid
E bodies. In addition, we suggest above that operators such as {8.13) can be used
" in constitutive equations to model the nonlocal behavior of ferromagnetic
vi materials, and the physical evidence of so-called "domain structures” (cf. Tebble
ﬁ (1969)) suggests that highly discontinuous magnetic fields are to be expected
7 from a good model of such materials. giﬁh
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Part II. The Semi~Inverse Problem AAY

'
Ef DAY,
' 9. Pormulation of the Semi-Inverse Problem - ‘.'
¥ > VI
I
! Let {{ ,i,/i;} be a fixed right-handed orthonormal basis for 5’ ana -
) e
b let x = (s,0,z) be the set of cylindrical polar coordinates for B3 defined by :: o
a XA
~ = { .
(9.1) £ = z(x) = sk, (8) + 2k, (0) ~,,
where Wh
(9.2) %4(8) = cos 05, + ain 03,, k,(8) = -sin 01, + cos 8f,, k,(6) = i, . S

Let x denote the usual inverse of g so that (9.1) is equivalent to

x= _;:_'( z). Bach triple x also identifies a material point. We set

~

(9.3) x(x)

(zZ(x)), etc.

We consider semi-inverse problems in which },i’,; ,E have the form

XYY Y,

" (9.4a) X(x) = w (s)e (x) + [wy(8) + a,,0 + a,,2]e,(x)
::: with
- (9.4b) 2,(x) = cos W(x)i, + sin w(x)i,,

R___ &

2,(%) = -sin w(x)i, + cos w(x)i,, 85(x) = £, ,

E (9.4¢) Wix) = walx) + 6508 + Gy ,
' (9.44) X(x) = wy(s) ,
h (9.4e) F(x) = wg(s) + ag,0 + agqz ,
(9.4£) htx) = h, (s)k () . ~
(Here i is summed from 1 to 3.) We shall make constitutive assumptions on i --
i to ensure that 75(5) (cf. Sec. 5) has the form "
(9.49) V(x) = wg(s) + ag,8 + agaz . )
. We take the body to be :
i (9.5) B = z((a,1) x [-0,8] x {-2,2])
- with 0<a<1, 0<0©0<=%x,2Z>0, Then B is a cylindrical tube (possibly
slit) if © = 7 and is a sector thereof if O < . Por simplicity we do not .\-o
I A

treat the interesting and technically complicated case that a = 0; the methods
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for doing so are virtually identical to those used by Antman (1983). The

deformations defined by (9.4a-c) constitute "family 2" of Truesdell & Noll (1965,

Sec. 59). The other functions of (9.4) are so specified as to ensure that our
final problem consists of ordinary functional differential equations.

The chain rule implies that

- y . ay x
(9.6a) E(z(x)) = 3= (z(x)) = 37 (x) * 3~ (z(x))
- [:;(3)31(5) ;jw1(s)w5(:)gz(§) + wi(s)e,lk,(8)
+ 87 (0,0, (818, (0 + 03,0,1K)(0) + [0, ()g,(x) + Oy e 1K,
(9.6b) glz(x) = :—; (Z(x)) = wila)k () ,
(9.6c) e(z(x)) = g—f (F0) = wile)k,(0) + a8 X (0) + a_ k. ,
(9.64) 3—: (g(;)) = wi(8)ky(8) + agys”'ky(0) + ok, .

The representation (9.6a) reduces (3.2) to the requirement that

{(9.7a) (350843 = 023032)(v1/s)w§ >0 a.e.

8ince wy is a radial distance, we require that

(9.7b) wy(s) > 0 for s € [a,1],

whence (9.7a) reduces to

(9.7¢) (a22a33 - 023032)w§ >0 a.e.

FPor simplicity we require that

(9.74) wij >0 a.e.

the opposite case corresponds to an eversion (cf. Antman (1979)) and provides no
further technical difficulties.

Note that the components of (9.6), (9.4d,f) with respect to the indicated
base vectors and dyads are independent of 6 and z. (It is easy to show that
{9.4a) and (9.4e) are the most general forms whose gradients have this
property.) We denote the ordered set of the components of I corresponding to

(9.4), (9.6) by the single symbol

.~ .~
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(9.8) Y(s) = (Y1(')l'°'IY15(')) .t:‘f:?:
0."L\-s:‘
-1 e
wi(s),w,(8),wi(8),0:,8 ,0ca,h (s),h,(8),h.(8)) . DN
4 157N T WA eT52" 175307 52 3
We define the physical components of the dependent constitutive variables by L;aﬁ'i
- ~ PS a . L.'-?'
(9.9a,b) Tij.(l") = 21‘(5)-3(3.5)-51(?), qj(lls.) 2 g(_l'_cg)q‘sj(e) ’ :
(9.9¢c,q) dj(l.s) g g({,g)'gj(e), bj(lrﬂ) B E(L,Q)'Ej(lps) ’
{(9.9%9e) jj(l") E 1(1'5)'5j(e)

when [ has the form corresponding to (9.4) and (9.6), assuming that the

constitutive functions I, etc., are such that these constitutive functions for

the physical components depend only on Y and 8. These representations are

valid when the constitutive functions I, etc., are hemitropic and depend on 2

h
b
3
\
» only through s. They are also valid for special forms of aeolotropy. It then

follows that J°9¢/3z depends only on Y and s. We also assume that o0 ::::};
depends only on 8. ..E:i
We now obtain an alternative representation for h in terms of 3y/3g N

. .
el $
:,

directly for the gsemi-inverse problem; the specialization of the rasults of
Section 5 does not yield the new representation. Substituting (9.4f) and (9.%e)
into (3.10) we get

(9.10) 0 = 3,(x(s),8) ,

(9.11) (shy(s)]' = 835(1(s),8), hi(s) = ~3,(x(s),8) .

Thus h mst have the form
1 Ve
(9.12a,b) hy(s) = wi(s), hy(s) = 87 '[ag, = [ tiz(x(t),t)ae} ,
8

1.
(9.12¢) hy(s) = agy + [ 3,(x(t),t)dt .
8

-35-
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Therefore h can be written as the sum of the gradient of (9.4g) and an integral y
operator (cf. (5.2)).

Condition (9.10) may be regarded either as a restriction on Y or else as
being identically satisfied by virtue of choosing the conatitutive function 3,
to be the zero function, in which case the material is incapable of conducting
electricity in the radial direction. In the former case we assume that (9.10)
can be uniquely solved for wg in terms of the other elements of y:

(9.13) wils) = eg(y (8),8) ,

where 1: stands for all the components of Y except wi. A sufficient
condition for (9.13) to be equivalent to (9.10) is that wg » 31(1,3) be
strictly increasing and assume both negative and positive values. That this
function be strictly increasing is ensured by the strict monotonicity of

e» 3(2,5). Equations (9.10) and (9.13) are also equivalent in the important
special case that 31(1,5) has the same sign as wg, which occurs, e.g., if
i(ﬁ,g) = J(I,z)e where J is a positive-valued scalar function. In this case
(9.13) reduces to wé = 0.

Let
(9.14) W= (Wypeen,Wg), Q= “’22""’“63) .

By controlling the dependence of 32 on 33 and h2 and h3 we can imitate
the development of Section 5 to show that (9.12b,c) can be uniquely solved for
h, and h; in terms of the other variables. Thus we can replace these

equations with

(9.15a) hy(s) = ™ [ag, + Ky(u(+),a,8)] ,
(9. 15b) nyls) = agq + Kyluls),a,s) .

Alternatively we may observe that (9.12b,c) is equivalent to an initial
value problem for h,,hj. If we assume that there is a number p > 1 such

that 32(1j°),°) and 33(130),°) are integrable on [a,1] when Y € LP([a,1])



AR YR

and that there is a number X(w,3) such that
u’gﬂ |93, (x(8),8)/3ng] < K(w,a)

when Yy € Lb( [a,1]), then the standard theory of ordinary differential equations
(cf. Hale (1969, Secs. I.5, 1.6)) implies that (9.12b,c) has a unigque absolutely
continuous solution on [a,1], which we can represent by (9.15a,b). Note that
this result does not require restrictions like those of Theorem 5.3 on the size
of 33/32 and on the size of the domain. The Arzel;-nlcoli Theorem implies that
Wal(a, 1)) 5 w(e) » kplu(),8,°), Kylwl*),a,*) € C%(la,1]) are compact (when this
construction of h, and h, is used).

We henceforth assume that the representation (9.15) is valid and that «,
and k3 have this compactness property.

We are now ready to write down the governing equations for our semi~-inverse

problem when the only body force, the lorentz force, is absorbed into the

effective stress and when the only heat source is that of (3.6), due to Joule

heating., Let 1 184 be the axial vector corresponding to L. Let us set
(9.16) i = (51,ooo,€6), _11 bl (\‘\1.“2,0,7\4,“5,0)

with

(9.17a) i(!'o!pgt_v_(')l') = (T11'V1T21'T31OQ1vd1vb1) ’

(9.17b) Nylw',w,8,v(¢),8) = Tyqwj + u22-'1'1'22 + 0y9Thy o

(9.17¢c) ﬂz(i"llg'_v_(°)l3) H 23 .

(9.174) n4(!' L'_v_“_l.!_(')l') £ 0525-132 + 053j3 ’

(9.17¢) ngls) = -0 ,

where the arguments of the constitutive functions appearing on the right sides of
(9.17a~d) are Y,s and with every h1,h2,h3 appearing on these right sides

replaced by wg, 662'-1 + Ky(v(*),a,8), Bgy + K3(v(*),a,8) respectively. Note

the definition of 22. In line with the remark following (3.12) there is no loss
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of physical content in taking n, = £3 = 0. We d0 so because it simplifies the
ensuing analysis. Then by using the componential form of (3.12), we reduce the
governing equation (5.13)-(5.16) to the following system of ordinary-functional
differential equations for w,a:

(9.18) (£)' = s = 0

where the arguments of i and E\_ are w',w,a,w(°*),s. (We have introduced our
constitutive functions in (9.17) with the argument v(°¢) 8o as to avoid
confusion in Section 10 when we take certain partial derivatives of these
functions.)

If (9.10) is equivalent to (9.13), then wg is completely determined by the
other components of w and &, which can be found from the remaining equations
and side conditions. We accordingly discard the fifth equation of (9.18), which
is
(9.19) (s3y)' = 80 .

We regard this equation as determining the ¢ necessary to maintain the semi-
inverse state (9.4). This interpretation of (9.19) smells fishy, but is in fact
quite reasonable: Consider, e.g., constitutive equations of the form

Jq = Jey, d, = De,
where J and D are positive-valued scalar functions. Then (9.13) and (9.19)
require that 0 = 0. Thus when (9.10) is equivalent to (9.13), we shall simply
ignore (9.19), regarding (9.18) as the suitably truncated system. We shall
comment on boundary conditions below.

If 31 is the zero function, then we need take no action with respect to
(9.19).

We now specify boundary conditions. Our prescription is compatible with the
formalism of Section 7. On the cylindrical face s = 1 of 9B we either fix

the outer radius:
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(9.20a) we(1) = 51(1)

where 51(1) is a given positive number or else we prescribe the traction:
(9.20b) Eqla! (1), 301,300+, 1) = E (1)

where 21(1) is a given number. (More generally, we could replace E,(1) with
E,(gﬁ1).g) vhere the new E, is a prescribed function. B8ince only minor
technical difficulties are introduced by such a replacement in this and other
such Neumann conditions, we do not bother to pursue such generality.) We fix the
deformation to within a rigid displacement by setting

(9.21) wy(1) = 0,

(9.22) wy(1) =0 .

On this face we either prescribe the temperature:

(9.23a) wall) = 34(1)
where 34(1) is a given number or we prescribe the heat flux:
(9.23b) Egte' (1), (1) a,w(e), 1) = E (1)
where 34(1) is a given number. PFinally we fix the data of the potentials ¢
and ¥ by taking
(9.24) wg(1) =0,
(9.25) wg(1) = 0 .

On the cylindrical face s = a we prescribe alternative boundary conditions
expressed in an analogous notation:
(9.26a,b)  wi(a) = W (a) or Eglw'(a),w(a),a,m(*),a) =F (&) for i=1,...,6
where Gi(a), i=1,...,6 and Ei(a), i=1,3,4,5,6 are given constants and
where
(9.26¢) Ey(a) = wylarr
with T a given constant. The form of Ez(a) reflects its definition and the

fact that it is a torque. 1In conformity with the condition that w{ > 0, we

require that 51(1) > G,(a) when both these numbers are prescribed. Note that

h

*

A
LY.
)

A 4
]

A




>0 8w WO

(9.13) implias that
1 N

(9.27) ws(1) = wgla) = [ eq(x"(s),8)ds
a

S0 we are not free to prescribe both wg(1) and wg(a) when (9.13) holds.

To avoid dealing with the minor technical difficulties that can arise when

all boundary conditions are of the Neumann type, we assume that the temperature
w, is prescribed on at least one of the faces s = a and s = 1. We need make
no such provision for the variable w4y Dbecause the growth conditions we shall
impose on our constitutive functions preclude any trouble with coercivity
ultimately due to Neumann conditions. If B is an entire tube, then O = x, 1If
we require that y, ¢, and Yy be continuous, then
(9.28) Gyy = 11, @3y = 0, Ggy = 0, gy = 0 .
We obtain various kinds of dislocations by suspending (9.28a,b). If B is a
sector of a tube, i.e., if O < w7, or if B is a slit tube i.e., if 0 =¥ but
with the faces 6 = -1 and 6 =1 not identified, then we can prescribe certain
degenerate boundary conditions on the faces 0 = 0. We likewise prescribe such
conditions on z = 3.

We adopt the following alternative conditions for the faces @8 = 10:

(9.29a,b) 622 = 022 or

1 1
Byylw,al = [ wy(s)Ty,(1(8),8)d8 = Kyplwy] = £ wi(8)%,,(8)ds
a

where 822 is a given number and 522 is a given functional of wy having the
indicated form. In the argument Y(s) of Tyye h1(s) is replaced by (9.12a)
and h,(s), hy(s) by (9.15). It is easy to see that -znzzuiéy is the

resultant effective torque about e

5 On the material face 6 = =0 needed to




maintain the state (9.4) (cf. Antman (1983)). Similarly we prescribe

~ 1 L]
(9.30a,b) Gy = 8y, or Ay,lw,al [ Tyo(Y(e),s)as = Ky, ,
a
. 1
(9.31a,b) agy = &g or Ag,lwal = [ d,(y(s),s)ds = K, ,
a

- 1

(9.32a,b) Ggy = 8gp Or Agylw,al f by(y(s),s)as = K¢, .

a

Here Y has the form just described. =-2A,,(w,a] is the effective resultant
force in the @,-direction on the material face 6 = -0, Ryp/K55/Rg, are just
numbers.

For the faces z = %Z, we likewise prescribe

1

(9.33a,b) Gy = &'23 or izalz,g_] H { sw1(s)i'23(_y_(a),s)ds = Kz3lw1} P
~ 1 ~
(9.34a,b) G3q = G35 or Agalw,al = [ 8Ty3(y(s),s)ds = Kyy
a
R 1
(9.35a,b) Ggy = &gy Or MAgylw,al = [ sdy(y(s),s)as = Kgy ,
a
. 1
(9.36a,b) agy = 8g3 Or Agylw,al = [ sby(y(s),s)as = K, .

-eizs {(w,a] 1is the resultant effective torque about e, and -9333 [w,a] is the

resultant effective force in the ga-direction on the face z = -Z.
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10. Consequences of the Strong Ellipticity Condition

In this section § and n have the arguments listed in (9.17). Thus the

derivative of 31 with respect to wy, say, is a pure partial derivative; no

differentiation with respect to v(¢) is required.

Since 9T/3w) = (31/3F):8.k,, etc., definition (6.1) and the strong
ellipticity condition imply that

(10.1a) 3_-(32_/31')03 = w((v +vwe +v.e

21 Vo182 * V320K VK ek Vely) > O
for all V = (V4,..esVg) $ 0 when wq > 0. Slightly abusing the notation, we

likewise obtain

]
(10.1b) ¥ o3 *v>0 Vy_+£ when w, > 0 where
i: (w%'w1Wi'w5'Va,wg'Wé) .
Next we observe that
2 -~ ~
(10.2) vilgl® = a°E°go ny = a°Teg

with a = e,, ¢ = wik, + (a,,/8)k, + a,.k,, 8o that the strong ellipticity

condition implies that

(10.3) 3;\1/3\11 = 35:(3%/8!11) (g):(aé/ag):zg >0 .

(Note that a and ¢ are not independent of a°*F+¢c/ el
Suppose that 532 and &,, are prescribed. Set

(10.4) o= a3y = G3x0530 V= 83585, + G330y3

(10.5) M= E3aTy = 8358Tpq0 N = F3,Tyy + Gy38Tpy -

We solve (10.4) for a,, and a,3 in terms of ¥ and v and substitute the

resulting expressions into the arguments of M and ﬁ. The strong ellipticity

condition then implies that

IM/3u  OM/3v
(10.6)

- - ) is positive-definite .
IM/du aN/3v
The combination of (10.1b) and Hypothesis 6.6 supports a global implicit

function theorem (based on degree theory) that ensures that the function
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(10.7‘) L» i(_. p!,&l!_(.)")

has a atrictly monotone inverse

(10.7b) i» _f_(s-l_!"_a_'l(. ),s) .

In particular, f,, which delivers wie is positive on its domain.




11. Growth Conditions and Function Spaces

We introduce some notation to be used in the rest of this paper. Let
(1.1 822 = 8 NyTy Ep3 % Wiy B3y = 87y, By = Ty,
G52 = 874 E5y = &y, T = 87 '0pn Ggy = By

zrag = I g0,
u,v

the summation being taken over u = 2,3,5,6, v = 2,3. Let
(11.2) W = (w,a) &

We set

+ ab(a)ew (@) = E(1)ew (1) - uz Atvila,

where the arguments of §,n,; are w',w,a,w(*),s. Observe that

Y

1. R
f £ aysds = ) Ay ioy, -
a uv

The weak form of the boundary value problem of Section 9 is
(11.5) <_n_l_(g),g‘> =0 "for all" Wy .
In the next section, we give precise interpretations to relatives of (11.5).

We pose the basic growth conditions in terms of a scalar function W, which
might be interpreted as a sort of stored energy function. It allo§s us to
replace standard Lp-spaces by related spaces better equipped to handle possible
aeolotropy.

11.6. Hypothesis. There are numbers q > p > 1, c4 > 0, cy > 0, Cqy > 0, C4 >0

1

and a function R'° > L v w(y,s) € R having the following properties:

RSy T
B
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(11.7) W(*,s) is strictly convex ,

(11.8) w(o,s) =0,

(11.9) W(*,s) 1is invariant under the change of sign of any component of Y ,

(11.10) eql1IP = ey < W(Y,8) € calx|T + of

Let w be in affine function satisfying whatever Dirichlet conditions from

(9.20)~(9.26) are prescribed. Let G be a vector of the form a of (9.14) with

its entries taken to be 522,... whenever these numbers are prescribed in

(9.29)=(9.36) and otherwise taken to be arbitrercy with GgaB33 = G383, > 0.

Let ) be generated from w and & by (9.8), (9.12), (9.15). Then

¥ +ne(w -0 +5o(a - &) > Wye) - Wii,e

(11.11) Eelw' -

when the arguments of the constitutive functions _on the left side of (11.11) are

w',w,0,w(*),s and with Y and ¥ expressed in terms of these variables by

(9.8), (9.12a), (9.15).
Remarks. Condition (11.9) is a sort of isotropy condition. Its provenance is
described by Antman (1983, eq. (7.7)). The mechanical terms from (11.11)
correspond to a certain stress power. This issue is likewise treated at great
length by aAntman (1983).

We now introduce function spaces naturally associated with W. Let n be a

positive integer. We set
1

(11.12) G = {y:/] swiyls),s)ds <=},
a
(11.13) E= {((w,2):y € G} ,
(11.14)  E = {(w,8) € Ez nw} > 1 a.e., nwqy(s) > s, n(ay8y3 = Gyq84,) > 1}, o
(11.15) Az ((wa) €E wj>0, wy>0 awee, 8,503 = G303y > 0,
a fixed subset of {w(a),w(1),a} is prescribed as in Sec. 9} , P
- S
(11.16) A= ANE, . R
R
A 1is the set of admissible functions. Conditions (11.7)=(11.10) ensure that .::,,.:::
'\*\-

W(*,s) satisfies the Az-condition of Orlicz space theory, whence it follows -




b AL

Y% .sv.;

» &
»

e aiaTa LA

X

NI TOOOTL -ald 2 of 2 S P AT NN AR LWLV & v W WA XY NUWUY UN VWY

that G is a reflexive separable Banach space satisfying
(11.17) Lyl(a,1)) C GCLP((an))
(cf. Krasnosel'skii & Rutitskii (1958)). Since some components of Y are
products of components of (w,a), neither E nor En is a Banach space. It is
easy, however, to construct a suitable Banach space for (w,a): Let Qidi) € En'
let Y' be defined by (9.8) with (¥,,...,%g,8) replacing (wy,...,wg.a), and
let Y be defined by (9.8) with w, replacing w,. Define

1

1
(11.18) ¥, = {(wa): [ ow(x*(s),8)ds <=, [ swW(y (s),8)ds < =} .
a a

11.19. Proposition. Vn is a reflexive separable Banach space. En and An

are closed subsets of Yane An is not empty if n is sufficiently large.)

The proof of this result is identical to that of Antman (1983, Prop. 7.25.)

We now refine (11.11):

11.20. Hypothesis. There are positive constants C5+CgrCq1Cgi€y depending on

31,;2, such that
(11.21) (wh = WHE, + (wy = wny > ccl|w!]P + |w,/8|P) = e (1 + |y|P°€) ,
1 1751 1 1My [ARAL] 1 6 X

where the arquments of 51,n1 are those listed in (9.17).

The preceding hypotheses ensure that the material is not too weak; the
tollowing hypothesis ensures that it is not too strong.

11.22. Hypothesis. Let the constitutive function introduced in (9.9) depend

only on y,s. Let a(x) and S(g) be vectors that are linear combinations of

£4/8,,8; with coefficients depending only on s and let g¢(y) and E(g) be

vectors that are linear combinations of Kq,K,0ky With coefficients depending

- 4

°§ be strictly

increasing and let l*(gs) be constant when F has the form (9.6). Then there

~ ~ ~ ~ ~ ~ ~
only on s. Let a'Fch aT'c, ga™ g'a, eat 4, heaw

are continuous functions (I,z) » 2’(2,; ' g+(£,5), g+(£,5). g+(235). p+(£,z)
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with 5(5)'3*([(5).5)',3(5_). g+(_1_'_(_z_),z)'§(5), etc., depending only on s when

I has the form corresponding to (9.4) and (9.6) such that

~ Slag)B T(LE) S if D(ag) 44,
(11.23) a'T ~ ~

las2(I,z)ec| if 3D(ag) =8 ,
g™ 3> lgdl g3 > 123l 2"E > 1B3l
¥ > |30l

when I has the form corresponding to (9.4) and (9.6). Let 5_"',1\_"',5_"' be

expressed in terms of g"',... just as §_,}l ,E are expressed in terms of T,...

n (9-17) and (11-1). If _w-p_“l' € E' then s » §_+'!_a(8) + ﬂ.‘..!#(’) + £+.2#(B)J

where the arguments of E"',p_"',_{" are w'(s),w(s),a,w(*),s, is integrable on

[a,1]. Moreover, if ® is confined to a subset of £ corresponding to a

bounded subset of G, then the corresponding (5_*,11_",5_*) and m(w) generate

elements confined to a bounded subset of G'. In particular,

€51 < €5, 1851 < €3, IN| < w*

where s » E':(_\!_'(s),!_(s),g,!(-),s),... arxe in L,({a,1]) and are confined to a

bounded subset of 1:.1 when their arquments correspond to y's in a bounded

subset of G.

Condition (11.24) restricts the response of ;\1 (as well as other
functions) in tension. We now formulate an hypothesis to control ite behavior in
cowpression. It furnishes a quantitative statement of how v‘;, is influenced
more by changes in w, than by changes in w!,. Let the function with values
n:(5-1w1,w‘,_€_,g_,y_(° ),8) be the composite function obtained from 31 by using
(10.7b) to replace its first set of arquments w' with those of f in
(10.7b). Let f: be f, with its arguments in the same order as those of n:.
11.25. Hypothesis. Iet there be a number C > 0, an octuple o, a scalar-

valued function w,, a function £ with values in R®, and a function v

-47-
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with (v,a) € A such that

|
i
:}é (11.26) la] < ¢, Bp0033 = Gy3835 > ¥/C, |wg| < ¢, |E| <,
! (' w,a,v(),8) € C, |Ey(v' v a,v(*),8)] € C for 3 =2,...,6 . -
[ w5
v Then there is a number m > 0 (depending on C) such that '{.t,, o
(11.27a) (0,m) 2 unr f:(u.w4.§_,g,_z('),s) is decreasing , ‘ﬁ"‘;
SO
y (11.27b) {(o,m) 2 unr n:(u,w4,_z_,g,g_(-),s) is increasing. ¥
. e
F Moreover i;{{
v .::‘::.
', ‘1...-‘ S
\.. 1 Py -1 8 4 el
| (11.28) lmsup [ no(e + 8 [ f£.(e,w, (t),E(t),¥(*),t)at, -
- €40 a a Mo
wa(s),E(8),v(*),8)ds = = et
- [
for each fixed x € (a,1]. e
t" The motivation for this hypothesis ls given by Antman (1983). N ‘4
i .
;‘ Our final growth condition is -
L s 1IN
‘ 11.29, Hypothesis. There is a positive constant c¢g such that R4
o . '.-'\'.f::
::: (11.30) 1B, twqd] + |Byqlwyd] < colwy L b _::::x_:
. ehet
’ :ﬁ-§§$
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12. Existence of Classical Solutions

In this section we prove that when the Strong Ellipticity Condition and

. growth conditions hold, then a certain set of the boundary value problems posed
in Section 9 have regular solutions. We restrict the data prescribed in the

alternatives (9.29), (9.30), (9.33), (9.34) to be one of the following nine sets

. P e
ARt s
A e .
! SR
. ; =
o 3 < .

(12.1) (3220%23/9320%33) «
~ "~ ~ W -
(2153033213307 (By5rRy300350843)0 (3508, 3/R50055) & :i;;;’
L) A - -~ L) "o KAy
(852/023:%32/R33) 7 (RyprRp300350833) s (Ry3e05530R550053) & o

o

-~

(0320R234%32/R33) 0 (855/823/R35:R33)
because the unprescribed variables from (859,%33/%35,335) are then confined by
{(9.7) to an open half-line or open half-plane. It then follows that the
corresponding A, is a closed convex subset of Vn‘

Since our present work generalizes that of Antman (1983), we emphasize only
those aspects that are novel. His work may be consulted for motivations and
further discussion of such matters as the data omitted in (12.1). Our
presentation also tacitly corrects some flaws in his arguments.

Our basic result is

12.2., Theorem. Let the monotonicity conditions (10.1), (10.3), (10.6) hold.

Let the Growth Hypotheses 6.6, 6.10, 11.6, 11.20, 11.22, 11.25, 11.29 hold. Let

one of the sets of data of (12.1) be prescribed. Then the corresponding boundary

value problems of Section 9 have classical solutions.

Proof.

Step 1. Existence of a solution to a truncated variational inequality. We can

write
(12.3) @(w),wy> = <n(w,w),uy> .
-49-
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Y
A
1 a :‘g¢:
(12.4) a@'w?) ey = [ E(we),w?(8),a2,w2(0),8) s uj(s) SO
a s
PN
s 2 [ 2 2 2 . T
+ n((w") ' (8) W (8),a%,w (*),8) Wy (s)]}sds s
: == === N
' + af(a)ewy(a) = E(Newy (1) jooue
' £(a)ow, (a g vy TadI,
- ' s

2 - B 2 4 *‘
' + IAL, 7] - &, (willay, '-C: 4
where the last term is summed over u = 2,3,5,6, Vv = 2,3, ‘-—if
KL
Since An is a closed convex subset of Vn, since (10.1) ensures that m ?: ;,;7
) A5
. is semi-monotone on An in the sense that X ?'i:‘{
(12.5) <£(g1,9_2) - l(gz,gz),g1 - _a_)_2> >0 va‘,gz €A, P
4 G\
3 and since w * Kz(g_,- ),K3(9_,') are compact by assumption, we can use Hypothesis j‘.:,?-.::-
. e
. 11.22 to show that m is an operator of the "type of the Calculus of Variations" R
(cf. Lions (1969)) from A, to the dual space V: of Y,. Thus m is pseudo- ” ‘

monotone on An. Hypothesis 11.6 ensures that m is coercive. A theorem of L B

Brezis (1968) (cf. Lions (1969, p. 297)) then implies that for n sufficiently ' 5
large there exists an w, € An satisfying the variational inequality s ,.
~ C LA
(12.6) 0> <mfw ), ~w> W €A . :;:"::_:‘x

S A%
Step II. Bounds on Y_. Y
P =-n 'Jnfv

Let w =& = (w,8) where (W,8) is defined in Hypothesis 11.6. Let ¥ -
L] :.:‘,‘;1".:
and Y, correspond to é_ and w,+ Then (12.6) and (11.11) imply that .:‘\,‘;:\

° d :.’-'._:‘:
(12.7) 0> ,L {0 (wt = w') + 1 *(w, - w)lsds =
n'.:‘:._"';
+ ak(a)* (w (a) - w(a)] S
- ~n —— (w"q'\~‘

N
- PR AR
- E(Dew (1) = W(a)] ;;;-:f.-f

i I .\h
- + 1 {aylugl = Byylwyqltag,, - “ouv) iy
: " 1 R
X > [ Wy (s),s)sds - [ w(Y(s),s)sds - A RO
. a a ':-,-".r\‘

where § (s) = _E_(g;,(s).!n(s).gn,zn(-),s), etc., and
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1
- [ o(s)lwygls) = Wg(s)lsds
a

(12.8) A

+ B lw (1) = 5] - a(a)e [y (a) - U(a)]

ﬁ + 1 ‘uv["n1](“nuv = &uv) .
U,V

In the following development we let C represent a positive constant
independent of n, which can always be estimated in terms of the available
" data. The meaning of C can vary with each appearance. WNote that (9.21)
implies that wn2(1) - %2(1) = 0. Conditions (9.26c) and (9.21), the positivity
of wp4, and the HSlder inequality then imply that

- [
X (12.9) |a§_2(a) [wnz(a) - wz(a)]|

< caw q(a)[|w o(a) = w ()] + 1]
1
<cf wysr|wiyis)]|sds + cw ((1)
a

<
cl 'n‘\

% In this way, by using (9.21)=(9.26), the HSlder and Poincaré@ inequalities, and

w;‘szpl + Cvn1(1) .

the estimates (11.30) we find that

. 1
g (12.10) A<c{1+ 11“,1.9! + lwm,wpl} . ;
-' 1 -
b, . o
- (For certain sets of data in (12.1), |Wn1,Wp| < Clln,hpl-) Combining (11.11) :
with (12.7), (12.9) we obtain e
& p 1 S
12. 11 by ,LiT<c{t1+0y ,L} +10w _,Wwl}. sl
E. ( ) _'Y_nr P lnr p nt’ o } ::\:\{
Next we take all the components of E_ except ;1 to equal the components ;fﬁif
of @, and we take ;1 = %1. Then (12.6) and (11.22) likewise yield sl
1.p p-€ 1 EAANE
(12.12) lwm,wpl < c{1+ ly_ﬂ,l.pl + nwm,wpn} . :;:?::‘_.
| _'.
Inequalities (12.11) and (12.12) imply that ::Q):W
W,
1 oo d
(12.13a,b) DI AREX LAY >
S
e
o
.$'.:.\}
._;._,:.
Iyil

.
.
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whence A < C. It follows from (12.7) that

1
(12.14) [ w(y,(s),s)eds < C .
a

Thus, by the definition of the norm of G (by duality according to the theory of
Orlicz spaces), we obtain

(12.15) lxn,Gl £C.

We accordingly get corresponding bounds on all the components of v, except

Wn2¢ ®n22¢ Gpo3e To bound these variables we need a uniform positive lower bound

for Ynee

Step III. Integral inequalities. We now make judicious choices for E_ in

(12.6) in order to extract useful consequences from it.
1f E.(1) is prescribed in (9.20b), then we let a < x < 1, 0 <€ < x =a,
and set

wo(s) for a ¢ s< x-€,

oy, .

g

:i;’

53

v

(12.16) ;1(5) = wh(s) + [8~-(x=-¢€)]/e for x~-e< 8< x,

i

¢

P %

wn1(s) +1 for x< g < 1,

.
-,
s
e
oy
S
Oy
a“"
AR
>
Ly

o

~

(12.17) W= (W) w e ), B =0

né
Then w = (w,d) € A, when w and @ are given by (12.16) and (12.17).
Subgtituting (12.16), (12.17) into (12.6) and letting € + 0 we obtain

1
(12.18) X q(x) > £4(1) = [ sn  (8)ds
X

for almost all x in (a,1). Since the right-hand side of (12.18) is a
continuous function of x, we can assume that (12.18) holds for all x in

(a,1).

b
WA WARE AN
AR s.":\'}\‘_\‘:‘.
PR R . ™ oY
\. 5 -"\H"\} e, "“-r“-“‘




YNNIV

-

-

RN A A

‘gt 2 ot 48 gl P Fof CLTEE. VAR I CE TC A NN LR N Y TR AT

PSP S S SN L L) WA Y A I

If on the other hand wy(1) is prescribed to equal w,y(1) by (9.20a), then
we require a more delicate construction. Let Pn be the set of all

y € (a,1] for which

¥
(12.19) me™ [ v, (s)ds
€v0 y=€

exists and exceeds 1/n; let PC

n be its complement in [a,1]. (The theory of

differentiation ensures that (12.19) exists a.e. On P:. vaq(8) = 1/n a.e.
Below we show that the Lebesgue measure of Pﬁ approaches 0 as n + «, For
now, all we require is that P, not be empty.)

Let us choose y € Pn' x € (a,y) and
(12.20) 0 <A € wyqy) = wpqa(x) = %'(Y -x),
the rightmost term of which is positive by the definition of Pn‘ 8ince
(12.21) 8% w ,(8) + (y - 8)/n = ¢,(8)
is continuous, since on(y) - vn,(y) >w 1(y) - A, and since Qn(x) < wn1(y) -2
by (12.20), the intermediate value theorem ensures that the equation
(12.22) woplt) #+ X = w  (y) = (y = t)/n
has a solution th(l) € [x,y). Since ¢, is nowhere decreasing on [x,y], all
solutions of (12.22) lie in an interval, which is closed because ¢ is
continuous. Since t“(l) satisfies (12.22) and since y ¢ Ph, it follows that

there is a positive number 6, depending on LX) and y, such that

14
(12.23) Iy - tn(X)][rF1 +0}) < f wpe(s)ds = [y = £ . (M)]/n + 1,

Pn(l)
which implies that
(12.24) tn(l) +y as ) ¢+ 0 (for fixed n) .
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When w,(1) is prescribed to equal W.(1), we let y € P, x ¢ (a,y),
€ € (0,x -~ a) and take
wn1(s) for a<g<d< x~-¢,
wa(8) + [s - (x - €)lA\/e for x-¢ < 8¢ x,

(12.25) 31(5) z
wn1(s) +X for x< 8 < tn(A) .

{ Wpq(¥) = (y = 8)/n for t (A) <s<y.
We define E_ by (12.25), (12,17), observing that E_e An' We substitute this

@ 1into (12.6), let € + 0, and then let A + 0 to obtain

Y
(12.26) XEnq(x) > yE 4(y) = [ 8n,q(s)ds

X

for all y in P, and for all x € (a,y).

By the simpler, classical version of the process leading to (12.18) or
(12.26) we likewise obtain

1
(12.27) ®pg(X) = Epa(1) -f sn,4(s)ds, 3= 2,..0,6,
X

for almost all x in (a,1).
To be specific in the rest of our analysis, we suppose that 532 and 533
are prescribed. (Thus we can exploit (10.4)-(10.6).) By substituting

@ = (v ,a) with

(12.28a) @ = (a5, + G330 8oy = 350835,853)
and with
(12.28b) 3 = (B9 + AEyp, By + Adyq,835,833), A € R

into (12.6) we obtain from the arbitrariness of A that
(12.29a) Tyghgp(wp] = E3pAx500,) > Gk, [w 4] = F35R53 0w, 4]

GqpRpa (@] + G33An5(Wn] = B3Ry, [wyq] + B33A55(waq] &
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Step IV. Uniform lowar bounds for wpq,W,4,H,. Inequality (12.15) enables ue to

use the second part of Hypothesis 11.22 supported by (10.2), (10.3) to deduce
. from (12.18) that

(12030) ﬁn.‘(x) ? =C

for almost all x in (a,1}, and from (12.26b) that

(12.31) (%) > ¥E 4(y) = C —

for almost all y in Pn and for almost all x in (a,y). Since (12.30) and "':
“.’ W2

(12.31) yield essential lower bounds, we regard these inequalitiea as holding for ;"\-2'

. P‘}A‘-.""
all gsguch x and y. Since Ny = 0 = n,, and since (12.27) consequently implies
that ROLL

A A
.-,-I_»_
1 N
(12.32) (1= a)py(1) = [ sEpy(s)as for 3 =2,3, o5
a :
PO
S
R
we obtain from (12.15), (12.27), and Hypothesis 11.22 that el
R,
DALYt
(12.33) |8E (80|, |8E 5(8)] € C Vs € [a,1) . ::‘
v oy
Inequalities (11.26), (12.13b) enable us to deduce from (12.29) that there is a Iy ,
' 1
C > 0 such that :§$ ”
) i‘,
(12.34a) Tyahgaley] = T35R0510,]
1

z [ wm(s);l(xn(s),s)ds > =C,
a

(12.34b) 1832805 8,) + Ey3Rn300,3 ]

1 ~
2 [ wyq (eN(y, (8),8)a8] < C .
a

..;.‘.:-P

Sy

The analysis in the rest of this step relies critically on Hypothesis ::«.:i
6.10. We identify the basis (g} thus: 59
Koo

Sat.

=§5= '..‘\'.\}
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! (12.3%) By = 24800 By = 84830 By ™ 84850 By = 02k, -

' - - - -

' g o 221%aky T %9pE3) 208055k, * 845ks) ,

~5 2= 2 =212 ' ~6 2= 2 -2 1/2
(8705, + 933 (3705, + a53)

] By = 8354 Bg ™ 83850 Bg = £3K; -
| The dual basis is given by
| LowEleay?

. (12.36) B = PR 8,(8,.k, - 83,.k,) ,

32 33
I ¢
(aza 243 2)V2 AN
E = 32_ _33__ o (a,k + s3 k) L""f
~ a2 432 S2late 33%3’ 7 Qe
32 33 .
* Ny -

’ E, = E for t45,6. R
. AR
: Thus ;'}\\'
) .}j. bt
°. t\u\. )
o (12.37) E:Eq = Wi EEp; = 00 E3E3 = 0) B3Ry = wyv3 o =

e - 2-2 = 2-1/2 - 252, 5 2.)-1/2 we

- E:Eg = wjl(ata,, +a,,) 77, EsEg = wyv(s%8 3 +3 33077, SRS

- -1- - / £ P
- ' . . - K

- g:g.’ woo 5.58 = g 032, 559 G3q ¢

A ~ - " ~ * -~ -~ * ~ - * A
- - a2 +a3 V2, (s%,2 +3.%) .,

. d 33 32 \d 32 33

2 T:E_ = —== M, T:E_ = N,

! ~ 8.2 + a2 Ve g@,2+3%
A 32 33 32 a3
~ * ~ - . -~ L) * A - ‘
3357 = T31, T’EB = Taz' 3.59 = T33 . ~\{‘~..
ARG
(We could alternatively take E, = e,c/ |g]| where ¢ is given by (10.2).) P.\,'.' i
-

. q;.:n' ’
! We now obtain a lower bound w: for w,, that is positive on (a,1]. ‘z"
N Suppose for the sake of contradiction that w,; have no such lower bound. Then v “:’l;";:‘

. ’ . ¥

[T 8¢

there would be an x in (a,1] and a subsequence w such that wm(x) + 0. .::::.;
e,
Then w,, * 0 uniformly on [a,x]. The representation of w,,(x) - w ,(a) as . f*-_‘.'lf.f:&.
an integral of ";11 over [a,x] shows that wi, + 0 in L,(a,x), whence 0, ::::-{._-
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has a further subsequence with wj, *+ 0 pointwise a.e. on [a,x]. It follows
from (12.15) that {1,5} C b, {2,3,4,6,7,8,9} C ¢ for almost all y ¢ (a,x].
Condition (12.34a) ensures that no alternative of (6.12b) is tenable for alwmost
all y ¢ [a,x]. Hence there is a function w: such that
(12.39) waq(8) > wi(8) > 0 Vs e (a,1] and W¥n .
Note that we can define w: by
(12.40) wils) = inf w_,(s) .
It follows that w: is nowhere decreaaing, for if x < y, then
(12.41) w:(y) - v:(x) = inf w (y) = inf w ,(x)
= inf wo,(y) + sup(-w,,(x))
> inf(w,4(y) = woq(x)) > 0
since w,, is nowhere decreasing. If i,(a) is prescribed, then
v:(a) - G,(a) > 0. Otherwise, we have yet to show that w:(a) > 0.
A simple version of the preceding arguments shows that there is a C > 0
such that
(12.42) u, > ¢ .
We now confront the weakness of (12.26) and (12.31) inhering in the
membership of y in Pn' which conceivably could be sparsely distributed over
{a,1].

12.43. lemma. Let w 1(1) = v1(1). The Lebesgue measure of P: approaches

0 as n+ =,

Proof. Were the conclusion false, there would be a C > 0 and a subsequence
{w,} such that the measure of P: exceeds C~', cCondition (12.15) implies that
for any € € (0.~% (1 - a)) there is a subsget Qe of (a +¢€,1] of measure

1 ~-a=~2 and a positive number C, such that the absolute value of each

component of In(s) except wﬁ,(s) is bounded by C, when 8 ¢ Qe' Now we

RS has a positive lower bound

choose € 80 small that the measure of Pﬁ N Q¢

AN R
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»
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(independent of n). We fix €. Since w 4 < w(1), inequality (11.24) iwplies
that
(12.44) {z w, M ds < C ,

n
80 that (12.34a) yields
(12.45) lfz" w,qM ds > =C .

n
The properties of (, and the alternatives of (6.12b) imply that there is a
sequence m  of numbers with m + ® as n+ ® sguch that M < -m  on RS,
But this inequality is incompatible with (12.45) if the measure of R: has a

positive lower hound independent of n. o

We next obtain a lower bound E: for £n1 that is continuous on [a,1).

This bound is given by (12.30) when 51(1) is prescribed. We prove this by

showing that for any z € [a,1) there is a positive real number h(z) such that
(12.46) Ehq(8) > ~h(z) ¥s € [a,z] .

By choosing a sequence of such £'s approaching 1 we obtain a sequence of
constant lower bounds for En whose graphs are horizontal line segments in the
(s,5u1)-p1ane. By Joining parts of these segments with straight lines we readily
congtruct a lower bound continuous on the half-open interval [a,1). Suppose
that for given z there were no such h(z). Then there would be a sequence

x, € [a,z] such that En1(xn) + - ags n+ ®, Then (12.31) would imply that
(12.47) Enqlyy) * = Wy, € P, N (z2,1] ,

so that 1 ¢ a for (!h(yn)ﬂin)' Since Yo is bounded by (12.15), (12.39),
(12.42), condition (6.12a) would imply that W™ (y,) *+ -», which is impossible by
an argument like that centered on (12.45). Thus there is a fuaction E:

continuous on [a,1) such that

(12.48) E q(8) > E3(s) ¥s ¢ [a,1], ¥n .
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We now obtain a lower bound for {wl}. Let £ be defined by (10.7). Then

(12.48) implies that
(12.49) waq(s) = £,(5,(8),v,(8),3,,%,(),8)

> £(E3(8) .8 5(8) 00 sE (8),0,(8),8,,w () ,8)

> min £,(E3(8),E,0(8),.0.) = ¥y (8) .

k<n

vn is continuous on [a,1). The equation (12.32), the bounds (12.33), and their
analogs for En4'£n5'en6' the embedding theorem, the bounds on ¥n and v,
and inequality (12.39) all show that on any compact subset of (a,1) the
sequence {On} is uniformly bounded, bounded below by a positive function,
equicontinuous, and decreasing. The Arzel;-nscoli Theorem implies that the whole
sequence *n converges uniformly on any compact subset of (a,1) to a
continuous limit function w', which is positive on (a,1). (If E1(1) is
prescribed, then *' is positive on (a,1); if §1(a) is prescribed, then

t' is positive on [a,1).) We thus have

8
(12.50) wpq(s) > %+£ viivae .

Step V. Classical solutions. Let 0 < € < % (1 - a). Let g be any piecewise
continuously differentiable function with g(s) = 0 for

se€ (a,a +€]JU [1=-¢,1] and with |g'] <.% ¢'. Set

(12-51) W1 = wn1 + - 1) !- ('1"'“1'...) .

Then for n sufficiently large, 'E_e An (since w' has a positive lower bound

on [(a +€,1 ~¢c]). We substitute (12.51) into (12.6) and use the arbitrariness

of g to obtain in place of (12.18) and (12.26) the equality

b4
(12.52) W () = yE 4(y) - f N, .(s)ds  ¥x,y € [a +€,1~-¢} .
x

I‘b?‘
S~

;f” ’
RS2

ety




We use f of (10.7) to convert (12.52), (12,27) into a form yielding an explicit
repregsentation for l’r’x‘ By the standard boot-strap argument it follows that

W, generates a twice continuously differentiable solution of (9.18) on .
[a +€,1 ~€] when n is sufficiently large. Indeed, if kX is a positive
integer, then the representations for w; supported by the estimates of Steps II

and IV show that w,; is uniformly bounded and equicontinuous on
ta +x 1,1 =x"'] and has a subsequence {l':'\,k} that converges uniformly on
fa+x~',1-x"" while %,,x converges in ®8. We assume without loss of
generality that {_vg;"k”} is subsequence of {!l'l.k}’ It follows that the

diagonal subsequence (w, ) converges in c‘( (a + €, -€}) x % toa

—n,n"—'n,n
limit (w,a) for every € € (0, % (1 - a)). It is easily verified that (w,a)
satisfies the differential equations (9.18) on (a,1). Next we replace (12.28a)
with

(12.52) G = (8,5, + Aigq, G pq = AG3pi855083) &

which is admissible for small negative ) by virtue of (12.42). Thus in place
of (12.29a) we obtain the corresponding equality. By letting n + @ through the
diagonal subsequence in this modification of (12.29a) and in (12.29b) we find
that (w,a) satisfies the obvious limit form, whence we obtain

(12.53) Rpplw] = Kpplwyl, Agylul = Kyglwyl -

We verify that other side conditions are met by a similar process.

If -5.1(1) is prescribed, we can carry out our construction of !4'1,): on
intervals of the form [a + k'1,1], thereby obtaining the equality corresponding
to (12.18) for the limit (w,a). Hence &q(w'(s),u(s),a,w(*),8) + £, (1) as
s+ 1,

From now on, {gn} is understood to stand for the diagonal subsequence

{w

—n,n} or a further subsequence thereof.
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We can now show that §{.,(1) is bounded below. Note that (10.2), (10.5)
imply that
(12.54) Npp = Vaiwigbng + 8@ 3, + @ 37 Yum, + vy .
Hypothesis 11.22 or estimate (12.34b) together with (12,39) imply that {|N |}
is bounded by a fixed integrable function of s on any compact subinterval of
(a,1]. Hypothesis 11.22 and estimate (12.34b) imply the same for |u|.
Hypothesis 11.22 alone implies the same for Enz' Our estimates for u,,v, and
our representation for ";42 then show that for each x € (a,1] there is a

number h(x) such that
1
(12.55) U nm(s)dsl < hi(x) .
x
Combining this estimate with the limiting equality
y
(12.56) ®y(x) = yEo(y) = sng(s)as for a<x<y< 1
x

corresponding to (12.26) we find that £4(1) > ==, which implies that £ ,(1)
is bounded below.

To show that
(12.57) Eq(w'(s),w(s),a,u(c),s) + E.'(a) as s * a
when £ 1(a) is prescribed, we require a positive lower bound for w,.(a) so
that we can choose an ‘_‘;_ with ;1 (a) < wn.,(a) for large enough n. Indeed,

using (12.56) in the limiting form of (12.6) we obtain

(12.58) 0 < [Eq(a) = E ()] lw,(a) = W, (a)]
8o that
(12.59) £qa) < £ (a) .
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k. We can now use (12.56) to conclude that (12.55) holds with x = a. Thus ¥k
E (12.60) Epi(8) € £ (@) +ccc. .;?',‘
B 0
We now prove the existence of a lower bound for w, (a). Since £, is : T
“ AN
s increasing in £,, we obtain from (12.59) that g%”ﬂ:
! O]
¥ . .
. ? - ]
0 (12.61) ';‘1(3) < f1(’ 1",“(3)0'“4(5):0'5“2(8):00'05"6(‘):!“('):3) . :‘E;::ES.;
‘ Now suppose for the sake of contradiction that there is a subsequence for which )
Y . -‘"’
X w,(a) + 0 as n + ». Estimate (12.39) ensures that ﬁgg,
&, b"' LN
- - - o
n (12.62) e q(8) > 87 Nu](8) > wi(s) > 2T ,(a) &;33:
for this subsequence for n sufficiently large. Property (11.27a) enables us to _ﬁhg?
] [
> deduce from (12.60), (12.61) that Eﬂtj'
» A N
t, - LOa
v (12.63) wiq(8) € £1(a™ N, (a),w 0 (8),000) A
. for 8 sufficiently close to a and for n sufficiently large. Hence . lr'?
e ¢
! :§
L. &t -1 8]
A (12.64) Woqi8) < w ,(a) + { £1(a' Vnela),wp,a(t),eclat . Hf:

Property (11.27b) then yields

3 A
RN

S
(12.65)  nq(s) € nfa™w (a) + 87 [ £] (a7 v (a) wy g (e) e )@t (8D 0l

n a
Es
N
\
But then (12.55) contradicts (11.28). It follows that w4 (a) > 1/C and that we
can consequently choose ;‘(a) to reverse the inequality in (12.58). Hence
o
} (12.57) holds. The demonstration that other Neumann conditions at a are
W
o satisfied is routine. These results complete the proof of Theorem 12.2.
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