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INTRODUCTIONp

One of the reasons often given for employing humans in

systems is their supposed abilities to react appropriately and

flexibly in failure situations. On the other hand, one seems to

hear increasingly about failure situations being aggravated by

'human erroru. The apparent inconsistency of these two

observations can cause one to wonder what role the human should

actually play [Rasmussen and Rouse, 1981].
.-

This question has led the authors and their colleagues to '

the pursuit of a series of investigations of human problem

solving performance in fault diagnosis tasks. Using three
different fault diagnosis scenarios, several hundred subjects

(mostly maintenance trainees) have been studied in the process of

solving many thousands of problems. The results of these studies

have motivated the development of several mathematical models of

human problem solving behavior. The three tasks, results of ten

experiments, and five models are reviewed in this report.

Besides trying to assess problem solving abilities, i
considerable effort has also been invested in studying

alternative methods of training humans to perform fault diagnosis

tasks. One issue that has been particularly intriguing concerns

the extent to which humans can be trained to have general,

context-free problem solving skills. From a theoretical point of

view, it is of fundamental interest to know whether skills are

context-free or context-specific. From a practical perspective,

this issue is perhaps even more important in terms of training

. . .. .-, - , .. ,.. , ., ., ... .. .-. , ., .. .. , .- .,....".. -... .-.. j .. ... "
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personnel to serve in multiple domains (e.g., to diagnose faults

in a wide variety of systems). This report considers the extent

* to which the studies discussed here have provided an answer to

the context-free versus context-specific question.

The overall goal of this research has been to determine an

* appropriate role for humans in failure situations andr to develop

* methods of training humans to fill that role. In a final section

of this report, the variety of results presented here will be

- used as a basis for proposing how these issues should be

* resolved.

*2 %.
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FAULT DIAGNOSIS TASKS

Three types of fault diagnosis task were used in this

research. Two types involve computer simulations of network

representations of systems in which subjects are required to find

faulty components. The third type involves troubleshooting of

real equipment. The three types of task represent a progression

from a fairly abstract simulation that includes only one or two

basic operations, to a somewhat realistic simulation and,

finally, to real equipment. 'p

In considering alternative fault diagnosis tasks for initial

studies, one particular task feature seemed to be especially

important. This feature is best explained with an example. When
trying to determine why component, assembly, or subsystem A is N

producing unacceptable outputs, one may note that acceptable

performance of A requires that components B, C, and D be

performing acceptably since component A depends upon them.

Further, B may depend on E, F, G, and H while C may depend on F

and G, and so on. Fault diagnosis in situations such as this

example involves dealing with a network of dependencies among

components in terms of their abilities to produce acceptable

outputs. The class of tasks described in this paragraph was the

basis for the task chosen for initial investigations. Because

this type of task emphasizes the structural properties of systems

(i.e., relationships among components), the acronym chosen was

TASK which stands for Troubleshooting by Application of

.. % p % ~ *'. ~ * **~ -. . .
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structural Knowledge.

TASK involves fault diagnosis of graphically displayed

networks. An example of TASK 1 is shown in Figure 1. These

networks operate as follows. Each component has a random number

of inputs. Similarly, a random number of outputs emanate from

* each component. Components are devices that produce either a 1

or 0. An output of 1 denotes an acceptable output; 0 an

* unacceptable output. All outputs emanating from a component

carry the value produced by that component.

A component will produce a I if: 1) All inputs to the

component carry values of 1 and, 2) The component has not failed.

* If either of these two conditions are not satisfied, the

components will produce a 0. Thus, components are like AND

gates. If a component fails, it will produce values of 0 on all

the outputs emanating from it. Any components that are reached

* by these outputs will in turn produce values of 0. This process

continues and the effects of a failure are thereby propagated

throughout the network.

* I A problem begins with the display of a network with the

outputs indicated, as shown on the righthand side of Figure 1.

Based on this evidence, the subject's task is to "test"

connections between components until the failed component is

found. The upper lefthand side of Figure 1 illustrates the

Imanner in which connections are tested. An * is displayed to

indicate that subjects can choose a connection to test. They

enter commands of the form Ocomponent 1, component 2' and are

*.%..%...:-.x-.p:,. . .v v .- .\ .W..V
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then shown the value carried by the connection. If they respond

to the * with a simple 'returno, they are asked to designate the

failed component. Then, they are qi.in feedback about the

1correctness of their choice (1). And then, the next

randomly-generated problem (i.e., totally new) is displayed.

In the experiments conducted using TASK 1, computer aiding

i was one of the experimental variables. The aiding algorithm is

discussed in detail elsewhere [Rouse, 1978a]. Succinctly, the

computer aid is a somewhat sophisticated bookkeeper that uses the

structure of the network (i.e., its topology) and known outputs

to eliminate components that cannot possibly be the fault (i.e.,

by crossing them off). Also, it iteratively uses the results of

tests (chosen by the subject) to further eliminate components

from future consideration by crossing them off. In this way, the

factive* network iteratively becomes smaller and smaller.
TASK 1 is fairly limited in that only one type of component

is considered. Further, all connections are feed-forward and

thus, there are no feedback loops. To overcome these

* limitations, a second version of TASK was devised.

Figure 2 illustrates the type of task of interest. This

task is somewhat similar to TASK 1 in terms of using an

acceptable/unacceptable dichotomy, requiring similar commands

from subjects, and so on. Only the differences between TASK 1

(1) In the earlier experiments, subjects were not allowed to
continue if their choice was incorrect; in the later
experiments, they were instructed to continue until the failure
was found.
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and TASK 2 are explained here.

A square component will produce a 1 if: 1) Al inputs to

the component carry values of 1 and, 2) The component has not

failed. Thus, square components are like AND gates. A hexagonal

component will produce 1 if: 1) AUI input to the component

carries a value of 1, and 2) The component has not failed. Thus,

hexagonal components are like OR gates. For both AND and OR

components, if either of the two conditions is not satisfied, the

component will produce a 0.

The overall problem is generated by randomly connecting

components. Connections to components with higher numbers (i.e.,

feed-forward) are equally likely with a total probability of p.

Similarly, connections to components with lower numbers (i.e,"

feedback) are equally likely with a total probability of 1-p.

The ratio p/(l-p), which is an index of the level of feedback,

was one of the independent variables in the experiments to be

discussed later. OR components are randomly placed. The effect

of the ratio of the number of OR to AND components was also an

independent variable in the experiments.

TASK I and TASK 2 are context-free fault diagnosis tasks in

that they have no association with a particular system or piece

of equipment. Further, subjects never see the same problem

twice. Thus, they cannot develop skills particular to one

problem. Therefore, one must conclude that any skills that

subjects develop have to be general, context-free skills.

" 44' .. .. .. ... ... .. . .. . , , . ,-. ., ", -. . , .....- ,
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However, real-life tasks are not context-free. And thus,

ne would like to know if context-free skills are of any use in

ontext-specific tasks. In considering this issue, one might

irst ask: Why not train the human for the task he is to

prform? This approach is probably acceptable if the human will

in fact only perform the task for which he is trained. However,

with technology changing rapidly, an individual is quite likely

to encounter many different fault diagnosis situations during his

career. If one adopts the context-specific approach to training,

then the human has to be substantially retrained every time he

changes situations.

An alternative approach is to train humans to have general

skills which they can transfer to a variety of situations. Of

course, they still will have to learn the particulars of each new

situation, but they will not do this by rote. Instead, they will

use this context-specific information to augment their general

fault diagnosis abilities. .4

The question of interest, then, is whether or not one can

train subjects to have general skills that are in fact

transferrable to context-specific tasks. With the goal of

answering this question in mind, another fault diagnosis task was

designed [Hunt, 19791 Hunt and Rouse, 1981]. The acronym chosen

for this task was FAULT which stands for Framework for Aiding the

Understanding of Logical Troubleshooting.

:, -,. - ..,., .,. ,., .. ... ..,., ..,.,.,. . .. ..,.. ., ,. . ., ., ,.. -,., -:..,,, A ,
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Since FAULT is context-specific, one can employ hardcopy

schematics rather than generating random networks online such as

used with TASK. A typical schematic is shown in Figure 3. The

subject interacts with this system using the display shown in

Figure 4. The software for generating this display is rather

general and particular systems of interest are completely

specified by data files, rather than by changes in the software

itself. Thus far, various automobile, aircraft, and marine

systems have been simulated.

FAULT operates as follows. At the start of each problem,

subjects are given rather general symptoms (e.g., will not light

off). They can then gather information by checking gauges,

asking for definitions of the functions of specific components,

making observations (e.g., continuity checks), or by removing

components from the system for bench tests. They also can

replace components in an effort to make the system operational

again.

Associated with each component are costs for observations,

bench tests, and replacements as well as the a priori probability

- of failure. Subjects obtain this data by requesting information

about specific components. The time to perform observations and

tests are converted to dollars and combined with replacement

costs to yield a single performance measnre of cost. Subjects

are instructed to find failures so as to minimize cost.

Zx-q
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As with TASK, computer aiding was an independent variable in

ne of the experiments with FAULT [Hunt, 1981 Hunt and Rouse,

982b]. The aiding scheme monitors subjects for inferential

rrors (i.e., seeking information that, by structural inference,

is already available) and provides context-specific feedback

concerning how the appropriate inference could be made. Aided

subjects were also allowed to test the validity of hypotheses by

asking the computer whether or not a particular component was in

the feasible set of possible failures given the information

collected up to that point.

The experiments involving real equipment required subjects

to diagnose failures in four and six cylinder engines typical of

those used in modern general aviation aircraft [Johnson, 19801

Johnson and Rouse, 1982bJ. The five problems chosen for study

represented four engine subsystems: electrical, ignition,

lubrication, and fuel. More specifically, the five problems

studied were: 1) an open starter lead, 2) a defective spark plug

wire, 3) an obstructed oil fitting, 4) a defective spark plug,

and 5) an obstructed fuel line.

Subjects were required to observe malfunctioning (but

operating) engines and, by appropriately choosing tests, identify

the source of the problem. They were supplied with all of the

tools and test equipment necessary to diagnose any fault that

they might encounter. Technical manuals and related information

were also available.
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mEASURES OP PERFORMANCE

In the series of experiments to be discussed in the next

section, the subjects' instructions varied as the series

progressed. While the initial experiment emphasized minimizing

the number of tests to diagnose the failure correctly, later

experiments stressed minimum time and cost. All three of these

measures reflect the prducgt of fault diagnosis. While such

measures may appropriately gauge the overall goals of fault

* diagnosis, product measures do not provide much insight into the

2rcs of fault diagnosis [Duncan and Gray, 1975; Brooke, et

al., 1980]. Much finer-grained process measures are needed to

*provide the desired insights into human behavior. In this

section, the way in which this issue was addressed is reviewed.

Dns~~nions Qf Perfrmance

Analyses of the results of the initial experiments with TASK

* were limited to product measures, typically adjusted for problem

difficulty by normalizing with respect to optimal performance.

These measures appeared to be satisfactory until experiments with

FAULT were conducted. It was then found that the product

measures were much too sensitive to individual differences among

* problems and subjects.

This realization led to the development of a variety of

fine-grained process measures [Hunt and Rouse, 1981]. One pair

of these measures considers diagnostic costs greater than optimal

* (the minimum) and partitions these suboptimal costs into two
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categories: errors and inefficiency. Errors are defined as

actions that do not reduce the size of the feasible set of

failures (i.e., non-productive actions). Inefficient actions are

productive but not as productive as possible. Another

fine-grained measure is the expected (as opposed to actual)

information gain (in bits) per action. A third measure reflects

subjects' allocation of expenditures among the types of action

available.

The usefulness of these process measures motivated a

comprehensive investigation of performance measures [Henneman,

1981; Henneman and Rouse, 19821. A throrough review of the

literature, as well as consideration of previous experience with

TASK and FAULT, produced a set of twenty candidate measures.

These measures were evaluated using data from two of the later

experiments. Correlation, regression, and factor analyses were

employed.

The results were unequivocal. Among the twenty measures,

there are only three unique dimensions: time, errors, and

inefficiency. Thus, a single product measure such as time or

cost does not adequately describe human performance. This result

also showed that the choice of process measures of errors and

inefficiency, as well as the product measure of time, for the

earlier studies with FAULT was very appropriate.

The emergence of errors as one of the primary dimensions of

diagnostic performance led to three studies of human error and

the development of a general methodology for analysis and

;-77
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classification of human error [van Eekhout and Rouse, 1981;

Johnson and Rouser 1982a; Rouse and Rouse, 1982b]. An early

version of this methodology was used to analyze the results of

the first real equipment experiment and produced changes in the

training methods that were subsequently shown to reduce

substantially the frequencies of certain types of human errors.

These results are reviewed in a later section.

Predict±z hLa-gure"

It is interesting to consider the extent to which problem

solving performance is correlated with a priori characteristics

of subjects rather than the effects of training. To explore this

issue, the performance of subjects on TASK, FAULT, and real

equipment was correlated with twelve measures of ability,

aptitude, and cognitive style [Henneman, 19811 Henneman and

Rouse, 1982]. Results of standard scholastic aptitude tests were

used as ability measures. A mechanical reasoning test was

employed to obtain a measure of aptitude. Two dimensions of

cognitive style were considered: impulsivity-reflectivity (via

Matching Familiar Figures Test [Kagan, 19651) and field

dependence-independence (via Embedded Figures Test [Witkin, et.

al., 1971]).

Results indicated that cognitive style was a much better

predictor (Pearson's r - 0.5) of problem solving performance than

were the measures of ability and aptitude. It should be noted,

however, that the trainees whose data was employed in this

analysis had to meet certain standards of ability and aptitude
p. 'a-

:=
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(but not style) in order to be accepted into the training program

which was studied. Thus, the fairest conclusion seems to be that

cognitive style becomes dominant once minimum standards of

ability and aptitude are met.

Detailed statistical analyses of the cognitive style results

were performed by partitioning trainees into impulsive and

reflective groups, as well as field dependent and independent

groups, and using analyses of variance with dependent measures of

time, errors, and inefficiency [Rouse and Rouse, 1982a]. The

strongest conclusion to result f rom this analysis was that

impulsives made significantly more errors. Several interesting

comparisons vith results published in the cognitive style

literature were also found.

A further analysis of performance changes over time

indicated that reflective field independents were the best

problem solvers, although the superiority of field independents

over field dependents tended to decrease as experience was gained

[Hunt, et al., 19811. One can conjecture that the pattern

recognition abilities of field dependents required more time to

adapt to new problem domainsi however, they did eventually

adapt. On the other hand, the effects of impulsivity were not

compensated f or with practice.
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EXPERIMENTS *

Using the three tasks and variety of performance measures

described in the last two sections, ten experiments were

performed involving over 300 subjects who solved over 24,000

fault diagnosis problems. Over 90% of the subjects were trainees V
in an FAA certificate program in aircraft powerplant maintenance.

The remainder were students or former students in engineering.

In this section, the statistically significant results of these

experiments will be reviewed.

Experiments one through five focused on problem solving

performance with TASK. Experiments six through eight considered

the relationships between TASK and FAULT performance.

Experiments nine and ten studied transfer of training from TASK

and/or FAULT to real equipment.

The first experiment utilized TASK 1 and considered the

effects of problem size, computer aiding, and training. Problem

size was varied to include networks with 9, 25, and 49

components. Computer aiding was considered both in terms of its

direct effect on task performance and in terms of its effect as a N

training device [Rouse, 1978a].

Eight subjects participated in this experiment. The

experiment was self-paced. Subjects were instructed to find the

fault in the minimum number of tests while also not using an

excessive amount of time and avoiding all mistakes. A transfer
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of training design was used where one-half of the subjects were

trained with computer aiding and then transitioned to the unaided

task, while the other one-half of the subjects were trained

without computer aiding and then transitioned to the aided task.

Results indicated that human performance, in terms of

average number of tests until correct solution, deviated from

optimality as problem size increased. However, subjects

performed much better than a abrute force" strategy which simply

traces back from an arbitrarily selected 0 output. This result

can be interpieted as meaning that subjects used the topology of

the network (i.e., structural knowledge) to a great extent as

well as knowledge of network outputs (i.e., state knowledge).

Considering the effects of computer aiding, it was found

that aiding always produced a lower average number of tests.

However, this effect was not statistically significant. Computer

aiding did produce a statistically significant effect in terms of

a positive transfer of training from aided to unaided displays

for percent correct. Specifically, percent correct was greater

with aided displays (98% vs. 89%) and subjects who transferred V

aided-to-unaided were able to maintain the level of performance

achieved with aiding.

This experiment utilized TASK 1 and was designed to study

the effects of forced-pacing [Rouse, 1978a]. Since many of the

interesting results of the first experiment were most pronounced

for large problems (i.e., those with 49 components), the second

,- -.
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experiment considered only these large problems. Replacing

problem size as an independent variable was time allowed per

problem, which was varied to include values of 30, 60, and 90

seconds. The choice of these values was motivated by the results

of the first experiment which indicated that it would be

difficult to solve problems in less than 30 seconds consistently

while it would be relatively easy to solve problems in less than

90 seconds.

This variable was integrated into the experimental scenario

by adding a clock to the display. Subjects were allowed one

revolution of the clock in which to solve the problem. The

circumference of the clock was randomly chosen from the three

values noted above. If subjects had not solved the problem by

the end of the allowed time period, the display was erased and

they were asked to designate the failed component.

As in the first experiment, computer aiding and training

were also independent variables. Twelve subjects participated in

this experiment. Their instructions were to solve the problems

within the time constraints while avoiding all mistakes.

Results of this experiment indicated that the time allowed

per problem and computer aiding had significant effects on human

performance. A particularly interesting result was that

forced-paced subjects utilized strategies requiring many more

tests than necessary (i.e., greater than self-paced subjects by a

factor of approximately four). It appears that one of the

effects of forced-pacing was that subjects chose to employ less

q.-
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structural information in their solution strategies, as compared

to self-paced subjects. While computer aiding resulted in

significantly fewer tests (0.99 vs. 3.33) and a greater percent

correct (89% vs. 80%), there was no positive (or negative)

transfer of training for forced-paced subjects, indicating that

subjects may have to be allowed to reflect on what computer

aiding is doing for them if they are to gain transferrable

skills. In other words, time pressure can prevent subjects from

studying the task sufficiently to gain skills via computer

aiding.

Zzpgimnt Three

Experiments one and two utilized students or former students

in engineering as subjects. To determine if the results obtained

were specific to that population, a third experiment investigated

the fault diagnosis abilities of forty trainees in the fourth

semester of a two-year FAA certificate program in aircraft

powerplant maintenance [Rouse, 1979a].

The design of this experiment was similar to that of the

first experiment in that TASK 1 was utilized and problem size,

computer aiding, and training were the independent variables.

However, only transfer in the aided-to-unaided direction was

considered. Further, subjects' instructions differed somewhat in

that they were told to find the failure in the least amount of

time possible, while avoiding all mistakes and not making an

excessive number of tests.

I' '2
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As in the first experiment, performance in terms of average

number of tests until correct solution deviated from optimality

as problem size increased. Computer aiding significantly

decreased this deviation (0.60 vs. 1.71, or 65% better).

Considering transfer of training, it was found that aided

subjects utilized fewer tests to solve problems without computer

aiding, particularly for the larger problems (1.11 vs. 2.12

tests greater than optimal). A very specific explanation of this

phenomenon will be offered in a later discussion.

Exriment F

Experiment four considered subjects' performance in TASK 2

[Rouse, 1979b]. Since the main purpose of this experiment was to

investigate the suitability of a model of human decision making

in fault diagnosis tasks that include feedback and redundancy,

only four highly trained-subjects were used. The two independent

variables included the aforementioned level of feedback (i.e.#

p/(l-p)) and the ratio of number of OR to AND components in a

network of twenty-five components.

The results of this experiment indicated that increased

redundancy (i.e., more OR components) significantly decreased the

average number of tests (3.47 vs. 4.91) and average time until

correct solution (63.3 sec vs. 101.7 sec) of fault diagnosis

problems. While there were visible trends in performance as a

function of the level of feedback, this effect was not

significant. The reason for this lack of significance was quite

clear. Two subjects developed a strategy that carefully

. , , , -. -* , .- . . . . . . , , . . -... _.. .'-]
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considered feedback while the other two subjects developed a

strategy that discounted the effects of feedback. Thus, the

average across all subjects was insensitive to feedback levels.

One of the models to be described later yields a fairly succinct

explanation of this result.

The purpose of this experiment was to investigate the

performance of maintenance trainees in TASK 2, while also trying

to replicate the results of experiment three. Forty-eight

trainees in the first semester of the previously noted FAA

certificate program served as subjects [Rouse, 1979c].

The design involved a concatenation of experiments three and

four. Thus, the experiment included two sessions. The first

session was primarily for training subjects to perform the

simpler TASK 1. Further, the results of the first session, when

compared with the results of experiment three, allowed a direct

comparison between first and fourth semester trainees.

The second session involved a between-subjects factorial

design in which level of feedback and proportion of OR components

were the independent variables. Further, training on TASK 1

(i.e., unaided or aided) was also an independent variable. Thus,

the results of this experiment allowed assessment of transfer of

training between two somewhat different tasks.

1 6
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As in the previous experiments, TASK 1 performance in terms

of average number of tests until correct solution deviated from

optimality as problem size increased and, the deviation was

substantially reduced with computer aiding (0.57 vs. 1.53, or

63% better). Computer aiding also resulted in faster solutions

(46.5 sec vs. 62.1 sec). However, unlike the results from

experiment three, there was no positive (or negative) transfer of

training from the aided displays. This result as well as

subjects' comments led to the conjecture that the first semester

students perhaps differed from the fourth semester students in

terms of intellectual maturity (i.e., the ability to ask why

computer aiding was helping them rather than simply accepting the

aid as a means of making the task easy).

On the other hand, TASK 2 provided some very interesting

transfer of training results. In terms of average time until

correct solution, subjects who received aiding during TASK 1

training were initially significantly slower in performing TASK

2. However, they eventually far surpassed those subjects who

received unaided TASK 1 training. This initial negative transfer

(13% slower) and then positive transfer (20% faster) is an

interesting but puzzling phenomenon.

Exzpimpnt i

This experiment considered subjects' abilities to transfer

skills developed in the context-free TASK 1 and TASK 2 to the

context-specific FAULT. Thirty-nine trainees in the fourth

semester of the two-year FAA certificate program served as

- .****-** **-* * -.I *..;** ~ ~ ,*~**-.~K- ~* *
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subjects [Hunt, 19791 Hunt and Rouse, 1981].

The design of thib experiment was very similar to previous

experiments except the transfer trials involved FAULT rather than

the context-free tasks. The FAULT scenarios used included an

automobile engine and two aircraft powerplants, one of which was

unfamiliar to trainees. Both TASK 1 and TASK 2 were used for the

training trials. Overall, subjects participated in six sessions

of ninety minutes in length over a period of six weeks.

As noted earlier, since initial analyses of the results

indicated a very substantial degree of inter-subject and

inter-problem variability, it was decided to employ more

fine-grained measures for FAULT. One of these fine-grained

measures involved partitioning subjects' suboptimality (i.e.,

expenditures greater than optimal) into those due to errors and

those due to inefficiency. Another measure was the expected

information gain (in bits) per action. A third measure reflected

J* the subjects' allocation of expenditures among observations,

bench tests, and unnecessary replacements.

Use of these fine-grained performance measures led to quite

clear conclusions. Trainees who had received aided training with

TASK 1 were consistently able to achieve significantly better

performance on the powerplant problems ($513 vs. $578 for cost

due to inefficiency), especially for problems involving less

familiar powerplants. It was found that their suboptimality in

terms of inefficiency could be attributed to their focusing on

high cost, low information gain actions (i.e., bench tests and

.- '
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replacements) to a much greater extent than the optimal solution.

Zxirmant Smae

The purpose of this experiment was to replicate experiment

six using first semester rather than fourth semester maintenance

trainees. Sixty trainees participated. The design of the

experiment was very similar to experiment six except that only

TASK 1 training was used. Further, one of the aircraft

powerplant scenarios was changed to allow inclusion of a more

sophisticated system [Hunt and Rouse, 19811.
.4

The results for the first semester trainees were mixed with

a substantial positive transfer of aided training in terms of .

inefficiency ($469 vs. $1266) and a slight negative transfer of

training in terms of expected information gain (0.51 vs. 0.53 *

bits/action). However, as with the fourth semester trainees,

inefficiency could be attributed to inappropriate choices of high

cost, low information gain actions.

Zz~grimant, Right

This experiment considered the effects of computer-aided

training with FAULT. Thirty-four first semester maintenance

trainees participated in ten problem solving sessions over a ten

week period. Half of the subjects received aiding while the

other half did not. The two groups were initially matched on the ' y

basis of TASK 1 performance. Problems on FAULT included six

different automobile and aircraft systems, some of which were

unfamiliar to subjects [Hunt, 19811 Hunt and Rouse, 1982b].

. .,-. .-. - - . " -- . 2..'€ * ". "..'. .- 2 2 ' 2 - ".".--.- .- '. .- ." ." '".-- - .. € • , .- -" .'. ")''.'-.'. -. '. - -' .'.- . ". "*
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The results of this experiment indicated that aiding

decreased suboptimality in terms of inefficient actions for both

the familiar (4.20 vs. 4.73) and unfamiliar (4.47 vs. 4.90)

systems. Aiding significantly reduced the frequency of errors

for the unfamiliar systems (6.40 vs. 0.83). (It is important to

note that the aiding was designed to reduce errors; benefits in

terms of decreased inefficency were only a by-product of aiding.)

Considering transfer from FAULT to TASK, subjects trained with

aided FAULT had a lower frequency of errors with TASK (0.08 vs.

9.20).

izluartent Kima

The purpose of this experiment was to evaluate the transfer

of training with TASK 1, TASK 2, and FAULT to real equipment

[Johnson, 1980; Johnson and Rouse, 1982b]. Thirty-six fourth

semester trainees participated as subjects. Each subject was

allocated to one of the three training groups. Groups were

balanced with respect to various a priori measures (e.g., grade

point average). One group was trained using a sequence of TASK 1

and TASK 2 problems. Another group was trained with FAULT. The

third group, the control group, received "traditional"

instruction including reading assignments, video taped lectures,

and quizzes. The transfer task involved the aforementioned five

problems on two real aircraft engines.

Performance measures for the real equipment problems

included an average performance index based on a fine-grained

analysis of each action, overall adjusted cost (based on the

.... .. ~ ~ -, .. .. .- -. .- . -. , .. . , . . - . ... .-- , , , . -.:.
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manufacturer's flat-rate manual), and an overall rating by an

observer. Results indicated that traditional instruction was

only superior if explicit demonstrations were provided for the

exact failures to be encountered (i.e., three of the five real t

equipment problems). Otherwise, there were no significant

differences among the three training methods.

More specifically, for the average performance index, which

ranged from 1.0 to 5.0, the three problems which were explicitly

demonstrated yielded 4.4 for traditional instruction and 3.8 for

TASK and FAULT; the two problems that were not explicitly

demonstrated yielded the non-significant difference of 4.4 for

traditional instruction and 4.2 for TASK and FAULT. Thus,

training with the computer simulations was as useful as

traditional training as long as the latter form of instruction

was general in nature (i.e., did not provide "cookbook" solutions

for particular problems).

This experiment also considered transfer to real equipment,

and compared a combination of TASK and FAULT to traditional

instruction. Twenty-six fourth semester maintenance trainees

served as subjects. One half of the subjects were trained with

TASK/FAULT where FAULT was somewhat modified to include

information on how tests are physically made and how results

" should be interpreted. The other half of the subjects received

traditional instruction similar to that in experiment nine

[Johnson and Rouse, 1982b].
%.1

°"
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Based on the same performance measures as used for

experiment nine, it was found that the TASK/FAULT combination was

equivalent to traditional instruction for all five problems, even

those for which explicit solution sequences had been provided

within the traditional instruction. More specifically, the

average performance index was 4.2 for traditional instruction and

3.9 for TASK/FAULT, a difference which was not statistically

significant. Thus, somewhat generalized training was found to be

competitive with problem-specific training. The full

implications of this result will be discussed in a later section.

7
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MODELS OF HUMAN PROBLEM SOLVING

The numerous empirical results of the experimental studies

discussed above are quite interesting and offer valuable insights

into human fault diagnosis abilities. However, it would be more

useful if one could succinctly generalize the results in terms of

theories or models of human problem solving performance in fault

diagnosis tasks (2). Such models will eventually be useful for

predicting human performance in fault diagnosis tasks and,

perhaps for evaluating alternative aiding schemes and training

methods. More immediately, however, the models discussed here

were of use for interpreting research results and defining the

directions of the investigations.

It is interesting to consider why some fault diagnosis tasks

take a long time to solve while others require much less time.

Intuitively, it would seem to relate to problem complexity. This

led to an investigation of alternative measures of complexity of

fault diagnosis tasks [Rouse and Rouse, 1979].

A study of the literature of complexity led to the

* development of four candidate measures which were evaluated using

the data from experiments three and five. It was found that two

particular measures, one based on information theory and the

(2) For a review of the literature on models of human problem
solving, especially for detection, diagnosis, and compensation
for system failures, see Rouse [1982c].
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other based on the number of relevant relationships within the

problem, were reasonably good predictors (Pearson's r - 0.84) of

human performance in terms of time to solve TASK 1 and TASK 2

problems. The success of these measures appeared to be explained

by the idea that they incorporated the human's understanding of

the problem and specific solution strategy as well as the

properties of the problem itself. Thus, complexity should be

viewed as related to both the problem and problem solver.

Fru Sat RoAe*

One can look at the task of fault diagnosis as involving two

phases. First, given the set of symptoms, one has to partition

*the problem into two sets: a feasible set (those components

which could be causing the symptoms) and an infeasible set (those

components which could not possibly be causing the symptoms).

* Second, once this partitioning has been performed, one has to

choose a member of the feasible set for testing. When one

obtains the test result, then the problem is repartitioned, with

the feasible set hopefully becoming smaller. This process of

partitioning and testing continues until the fault has been

localized and the problem is therefore solved.

If one views such a description of fault diagnosis from a

purely technical point of view, then it is quite straightforward.

Components either can or cannot be feasible solutions and the

* test choice can be made using some variation of the half-split

technique. However, from a behavioral point of view, the process

is not so clear cut.
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Humans have considerable difficulty in making simple yes/no

decisions about the feasibility of each component. If asked

whether or not two components, which are distant from each other,

can possibly affect each other, a human might prefer to respond

Oprobably not" or 'perhaps' or "maybe".

This inability to make strict partitions when solving
complex problems can be represented using the theory of fuzzy

sets [Rouse, 1980, 1982d]. Quite briefly, this theory allows one

to define components as having membership grades between 0.0 and

1.0 in the various sets of interest. Then, one can employ

logical operations such as intersection, union, and complement to

perform the partitioning process. Membership functions can be

used to assign membership grades as a function of some

independent variable that relates components (e.g.,

"psychological distance'). Then, free parameters within the

membership functions can be used to match the performance of the

model and the human. The resulting parameters can then be used

to develop behavioral interpretations of the results of various

experimental manipulations.

Such a model was developed and compared to the results of

experiments one, two, and four in terms of average number of

tests to correctly diagnose faults in TASK I and TASK 2 [Rouse,

1978b, 1979b]. For TASK 1, the model and subjects differed by an

average of only 5%. For TASK 2, with the exception of one trial

where two of the subjects made many errors, the comparison was

comparable.
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Two particularly important conclusions were reached on the

basis of this modeling effort. First, the benefit of computer

aiding lies in its ability to make full use of 1 outputs shown in

Figures 1 and 2, which humans tend to greatly under-utilize.

Second, the different strategies of subjects in experiment four

can be interpreted almost soley in terms of the ways in which

they considered the importance of feedback loops.

It is useful to note here that these quite succinct

conclusions, and others not discussed here [Rouse, 1978b, 1979b],

were made possible by having the model parameters to interpret.

The empirical results did not in themselves allow such tight

conclusions.

While the fuzzy set model has proven useful, one wonders if

an even simpler explanation of human problem solving performance

would not be satisfactory. With this goal in mind, a second type

of model was developed [Pellegrino, 19791 Rouse, Rouse, and

Pellegrino, 19831. It is based on a fairly simple idea. Namely,

it starts with the assumption that human problem solving involves

the use of a set of situation-action rules (or heuristics) from

which the human selects, using some type of priority or control

structure [Newell and Simon, 19721 Waterman and Hayes-Roth,

1978; Rouse, 19803.

* .*4'
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Based on the results of experiments three, five, and six, an

ordered set of twelve rules was found that adequately describes

TASK 1 performance, in the sense of making tests similar to those

of subjects 89% of the time. Using a somewhat looser set of four

rules, the match increases to 94%. For TASK 2, a set of five

rules results in an 88% match. It was also found that the

rank-ordering of the rules was affected by training, with aided

training producing the more powerful rank-orderings.

The new insights provided by this model led to the

development of a new notion of computer aided training. Namely,

subjects were given immediate feedback about the quality of the

rules which the model inferred they were using. They received

this feedback after each test they made. Evaluation of this idea

within experiment six resulted in the conclusion that rule-based

aiding was counterproductive (36% more tests during training and

1590 more upon transfer) because subjects tended to misinterpret

the quality ratings their tests received. However, it appeared

that ratings that indicated unnecessary or otherwise poor tests

might be helpful. This hypothesis was tested and found to be

I true for FAULT in experiment eight.

-Fuzzy Rule*zhj*e Modul

All of the modeling results noted above were based on

problems involving TASK 1 and TASK 2. An attempt was made to

apply these models, especially the rule-based model, to describe

human performance using FAULT. Success was initially limited by

what Rasmussen (1981) would call a shift from topographic to

.- J
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symptomatic search strategies. In other words, once subjects

shift from a context-free to context-specific situation, they

attempt to use rules that map directly from the symptoms to the

solution. In many cases, this mapping process can be adequately

described by the earlier rule-based model. However, not

infrequently it appears that subjects utilize what might be

termed highly context-dominated rules, perhaps based on their

experiences prior to training.

This dichotomy between symptomatic and topographic problem

solving was formalized in a fuzzy rule-based model [Rouse and

Hunt, 1981; Hunt, 19811 Hunt and Rouse, 1982a]. This model

first attempts to find familiar patterns among the symptoms of

the failure (i.e., among the state variables of the system). If

a match is found, symptomatic rules (S-rules) are used to map

directly from symptoms to hypothesized failure. If there are no

familiar patterns among the state variables, the model uses

topographic rules (T-rules) to search the structures (i.e.,

functional relationships) of the system. The rules chosen are

those with highest membership in the fuzzy set of choosable rules

which is defined as the intersection of fuzzy sets of recalled,

applicable, useful, and simple rules.

This model was evaluated using the data from experiment

eight. It was found that the model could exactly match

approximately 50% of subjects' actions and utilize the same rules

about 70% of the time. The evaluation of the model also provided

a clear demonstration of subjects shifting from S-rules to

T-rules when an unfamiliar system was encountered.
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.All of the models discussed thus far were devised for the

express purpose of providing direction to the studies with TASK,

FAULT, and real equipment. Of course, considerable effort was

also invested in attempting to generalize the model formulations.

Thus, the fuzzy rule-based model, for example, certainly appears

to be widely applicable. However, none of the models discussed

earlier here can really be thought of as describing all of human

problem solving.

The fifth and last model to be discussed here represents an

attempt to synthesize a model capable of describing human problem

solving in general [Rouse, 1982c]. This model is based on a

thorough review of the problem solving literature and, to a great

extent, the four earlier models. The model operates on three

levels: 1) recognition and classification, 2) planning, and 3)

execution and monitoring.

I Recognition and classification is the process whereby humans

determine the problem solving situations with which they are

involved. Familiar situations may invoke a standard "framew

[Minsky, 19751 while unfamiliar situations may lead to the use of

analogies or even basic principles of investigation. Planning

may involve the use of familiar Iscriptso [Schank and Abelson,

19791 or, if no script is available, require generation of

alternatives, imagining of consequences. valuing of consequences.

etc. [Johannsen and Rouse, 19791. Execution and monitoring

involves the S-rules and T-rules discussed earlier.

.1
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The model operates on the above three levels of problem

solving by recursively using a single mechanism that is capable

of recognizing both patterns of state information and patterns of

structural information. By recursively and constantly accessing

this single mechanism the model is capable of both hierachical

[Sacerdoti, 1974] and heterarchical [Hayes-Roth and Hayes-Roth,

1979] problem solving. Simultaneous operation on multiple levels

also allows the model to pursue multiple goals such as occur in

dynamic systems where the problem solver must coordinate both

diagnosing the source of the problem and keeping the system

operating.

A particularly interesting aspect of this model's behavior,

as well as that of humans, is its potential for making errors.

The model has two inherent possibilities for causing errors. The

first possibility relates to the model's recursive use of a

single basic mechanism. As the model recursively invokes this

mechanism. it needs a "stack" or some short-term memory for

keeping track of where it is and how it got there. If short-term

memory is limited, as it is in humans, the model may recurse its

way into getting lost or, pursuing tangents from which it never

returns. To constrain this phenomenon, it is more likely to

forget one's umbrella than to forget to go to work.

The second possiblity for causing errors is the matching of

irrelevant or inappropriate patterns. For example, the model, or

a human, may be captured by an inappropriate but similar script

or S-rule. As a result, the model may pursue an inappropriate

path until it suddenly realizes, perhaps too late to be able to

A.F
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recoup, that it has wandered far afield from where it thought it

was headed.

The fact that this model has inherent possibilities for

making errors, particularly somewhat subtle errors, provides an

interesting avenue for evaluating the model. Most models are

evaluated in terms of their abilities to achieve the same levels

of desired task performance as humans. A much stronger test

would involve determining if the model deviates from desired

performance in the same way and for the same reasons as humans.

The proposed model can potentially be evaluated in this manner.

However, this model has not yet been evaluated. Thus, at

this point, it should mainly be viewed as a synthesis of the wide

variety of experimental results and models reviewed here.

However, considering the breadth of the investigations upon which

it is based, including the extensive review of the literature,

this model should also be viewed as much more than conjecture.

Clearly, the next step should be evaluation of this model in a

variety of problem solving domains.

.4.
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DISCUSSION AND CONCLUSIONS P
The overall results of this program of research roughly fall

into three categories:

1. Results relating to human problem solving abilities

2. Concepts for training and aiding problem solvers

3. Implications for the role of humans in failure situations

In this final section of this report, the findings in these three

areas will be reviewed.

E h PrAn obm Salvnl AhilitL-i

Humans are not optimal problem solvers, although they are

rational and usually systematic. In general, their deviation

from optimality is related to how well they understand the

problem, rather than being solely related to properties of the

problem. More specifically, suboptimality appears to be due to a

lack of awareness (or inability when forced-paced) of the full

implications of available information. For example, humans have

a great deal of difficulty utilizing information about what has

nt failed in order to reduce the size of the feasible set.

Human problem solving tends to be context-dominated with

familiar, or even marginally familiar, patterns of contextual

cues prevailing in most problem solving. Humans can, however,

successfully deal with unfamiliar problem solving situations,

which is a clear indication that human problem solving skills

U
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cannot be totally context-specific. Their degree of success with

unfamiliar problems depends on their abilities to transition from

state-oriented to structure-oriented problem solving. Humans'

abilities in the latter mode are highly related to their

rank-ordering of rules rather than simply the number of rules

, available.

Thus, humans' cognitive abilities for problem solving are

definitely limited. However, humans are exquisite pattern

recognizers and can cope reasonably well with ill-defined and

ambiguous problem solving situations. These abilities are very

important in many real life fault diagnosis tasks. What are

-needed, then, are methods for overcoming humans' cognitive

limitations in order to be able to take advantage of humans'

cognitive abilities.

ConceptsI f=L TriningD Aad Ai4dngand ?

Throughout this program of research, a variety of schemes

have emerged for helping humans to overcome the limitations

summarized above. These schemes have been evaluated both as aids

during problem solving and as training methods, with evaluation

occurring upon transfer to situations without the aids. As noted

in previous sections, three types of aid were developed and

evaluated.

The first type of aid was implemented within TASK and uses

the structure of the network to determine the full implications

of the symptoms, as well as each test, with respect to reduction

of the size of the feasible set. Basically, this aid is a

*.77
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bookkeeper that does not utilize any information which subjects ,%

do not haves it just consistently takes full advantage of this

information. 

The second type of aid was also implemented within TASK. It

evaluates each action by subjects, as they occur, and provides

reinforcement in proportion to the degree to which the action is

consistent with a context-free optimal strategy. For erroneous

(i.e., non-productive) actions, subjects receive feedback that

simply notes, but does not explain, their errors. For

inefficient (i.e., productive but far from optimal) actions,

subjects receive feedback denoting their choices as poor or fair.

Optimal or near optimal actions yield feedback indicating the

choices to be good or excellent.

The third type of aid was implemented in FAULT. This aid

monitors subjects' actions and checks for context-free

inferential errors (i.e., errors in the sense of not using the

structure of the FAULT network to infer membership in the
*- p..,

feasible set). While the aiding is context-free, it explains the

nature of the error within the context of the problem (i.e., in

terms of the structural implications of the previous actions

taken). Thus, the feedback received by subjects not only

indicates the occurrence of an error, but also includes a

context-specific explanation of why an error has been detected.

The first and third types of aid can both be viewed as

structure-oriented bookkeeping aids, while the second type of aid

is more strategy-oriented. The results of evaluating these aids

*s "*.
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were quite clear. The bookkeeping methods consistently improved

performance, both while they were available and upon transfer to

unaided problem solving. The strategy-oriented aid degraded

performance and resulted in negative transfer of training,

providing clear evidence of the hazards of only reinforcing

optimal performance.

In studies involving transfer from aided TASK to unaided

TASK, aided TASK to unaided FAULT, and aided FAULT to unaided

FAULT and unaided TASK, positive transfer of training was usually

found with the effects most pronounced for unfamiliar systems and

fine-grained performance measures. Thus, the evidence is quite

clear that humans can be trained to have context-free problem

solving skills that, at least partially, help them to overcome

the limitations discussed earlier in this section.

Considering transfer from TASK and/or FAULT to real

equipment, the results show that training based on simulations

such as TASK and FAULT are competitive with traditional

instruction, even when traditional instruction provides explicit

solution procedures for the failures to be encountered. However,

the issue is not really one for TASK versus FAULT versus

traditional instruction. The important question is how these

training technologies should be combined to provide a

amixed-fidelity' training program that capitalizes on the

advantages of each technology [Rouse, 1982b]. This

mixed-fidelity approach can provide trainees with problem solving

principles as well as procedures. Also, it can result in a

re-ordering of rules and not just the acquisition of more rules.

'Z
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Thus, this approach can also help humans to overcome the

previously discussed limitations. Finally, the mixed-fidelity

approach can lead to cost savings since a training program need

not rely solely on high-fidelity training devices.

Somewhat as a by-product of this research, a considerable

amount was learned about evaluation of training programs [Rouse,

1982a]. Perhaps surprisingly, most evaluation efforts in the

past have limited consideration to whether or not trainees learn

to use the training technology successfully. Few studies have

focused on transfer out of the training environment, and even .

fewer have looked at long-term on-the-job performance. Two of

the studies reported here concentrated on transfer to real

equipment; a study currently being planned will emphasize

on-the-job performance.

One of the key aspects of evaluation is the definition of

performance measures. The series of studies reviewed in this

report began with the use of rather global measures and evolved

to the use of very fine-grained measures where, for example,

human error was classified using six general and thirty-one

specific categories [Rouse and Rouse, 1982b]. It appears that

this detailed level of analysis is very necessary if inadequacies L

in training programs are to be identified and remedied.

Finally, it should be noted that the model-based approach

adopted for these investigations appears to have been a crucial

element in their success. The evolving set of models provided

succinct interpretations of results and, consequently, generated
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very crisp hypotheses which focused subsequent investigations.

Further, the models contributed to building an overall conceptual

view of human problem solving.

The aj JL BmnA in Failure siuati a

Based on the foregoing review of tasks. performance

measures, experiments, and models, it seems reasonable to

conclude with a discussion of the implications of these results

for defining the role of humans in failure situations. As noted

in the Introduction, there appears to be a tradeoff between the

benefits of humans' unique abilities and the cost of their

limitations. Resolving this tradeoff is tantamount to defining

the role of humans. gk

One approach to dealing with this issue is to attempt to

automate all fault diagnosis. Unfortunately, what this leads to

is automation of routine diagnostic tasks and the human having

responsibility for the more difficult problems. As a result,

humans perform diagnostic tasks much less frequently; however,

when humans must perform the diagnosis, the problem is likely to

be very difficult, perhaps even involving untangling of the

results of abortive attempts of the computer to diagnose the

failures. This is a clear violation of good human factors

engineering design principles.

A more appropriate approach is to emphasize computer aiding ""

rather than computerizing. Results reported here indicate that

computers can aid humans during training in terms of enhancing

general problem solving skills and, during diagnosis by

" ..., -, -. , . .. . - -. -. - ... -. , - ", "€ .'. -/ .,.'.,- '.,-..-.i j.. ,. - '. .'..ft
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performing bookkeeping functions and monitoring actions to assure

that choices are productive. This approach leads to a

perspective of humans controlling the problem solving process

$with sophisticated computer systems providing assistance. As aN

result, system designers can take advantage of human abilities

while avoiding the effects of human limitations.

-4

77.~
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