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INTRODUCTION :5-:
W
: One of the reasons often given for employing humans in ?ﬁ
systems 1is their supposed abilities to react appropriately and &
flexibly in failure situations. On the other hand, one seems to fg
hear increasingly about failure situations being aggravated by ;E;
*human error”. The apparent inconsistency of these two :E?
observations can cause one to wonder what role the human should ‘i}
actually play [Rasmussen and Rouse, 1981]. ;2;
o
This question has led the authors and their colleagues to ;?i
the pursuit of a series of investigations of human problem ;;
solving performance in fault diagnosis tasks. Using three ;F
! different fault diagnosis scenarios, several hundred subjects };;
: (mostly maintenance trainees) have been studied in the process of :E?
‘ solving many thousands of problems. The results of these studies i;
. have motivated the development of several mathematical models of p
human problem solving behavior. The three tasks, results of ten ;ﬁ-
? experiments, and five models are reviewed in this report,. ﬁ%
Besides trying to assess problem solving abilities, f?;
; considerable effort has also been invested in studying i;;
alternative methods of training humans to perform fault diagnosis ;i
‘ tasks. One issue that has been particularly intriguing concerns 'f;
the extent to which humans can be trained to have general, §§
context-free problem solving skills. From a theoretical point of E&‘
view, it is of fundamental interest to know whether skills are iﬁ
context-free or context-specific. From a practical perspective, i

: this issue is perhaps even more important in terms of training
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personnel to serve in multiple domains (e.g., to diagnose faults

in a wide variety of systems). This report considers the extent

to which the studies discussed here have provided an answer to

the context-free versus context-specific question.

The overall goal of this research has been to determine an
appropriate role for humans in failure situations and, to develop
methods of training humans to f£ill that role. In a final section
of this report, the variety of results presented here will be

used as a basis for proposing how these issues should be

resolved.
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PAULT DIAGNOSIS TASKS 53

Three types of fault diagnosis task were used in this i§§

research. Two ¢types involve computer simulations of network Qﬁ
representations of systems in which subjects are required to find ;:;

faulty components. The third type involves troubleshooting of Hiu

real equipment. The three types of task represent a progression égﬂ

from a fairly abstract simulation that includes only one or two T

basic operations, to a somewhat realistic simulation and, ;;3

§ finally, to real equipment. 35

i TASK

In considering alternative fault diagnosis tasks for initial ﬂij

l studies, one particular task feature seemed to be especially fﬁ
E important. This feature is best explained with an example. When ;i{
i trying to determine why component, assembly, or subsystem A is g§.
! producing unacceptable outputs, one may note that acceptable :;;
: ! performance of A requires that components B, C, and D be :ii
: performing acceptably since component A depends upon them. Li;
! Further, B may depend on E, F, G, and H while C may depend on F il
: and G, and so on. PFault diagnosis in situations such as this Sﬁi
E . example involves dealing with a network of dependencies among é;
! . components in terms of their abilities to produce acceptable gh
E outputs, The class of tasks described in this paragraph was the Eé:
: basis for the task chosen for initial investigations. Begause é?ﬁ
! this type of task emphasizes the structural properties of systems ;Qi
(i.e., relationships among components), the acronym chosen was EE

TASK which stands for Troubleshooting by Application of g:

!
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Structural Knowledge.

TASK involves fault diagnosis of graphically displayed
networks. An example of TASK 1 is shown in Figure 1. These

. networks operate as follows. Each component has a random number

of inputs. Similarly, a random number of outputs emanate from
each component. Components are devices that produce either a 1

or 9. An output of 1 denotes an acceptable output; @ an

' unacceptable output. All outputs emanating from a component

carry the value produced by that component.

A component will produce a 1 {if: 1) All inputs to the
component carry values of 1 and, 2) The component has not failed.
If either of these two conditions are not satisfied, the
components will produce a 8. Thus, components are like AND
gates., If a component fails, it will produce values of & on all
the outputs emanating from it. Any components that are reached
by these outputs will in turn produce values of 8. This process
continues and the effects of a failure are thereby propagated

throughout the network.

A problem begins with the display of a network with the
outputs indicated, as shown on the righthand side of Figure'l.
Based on this evidence, the subject's task is to "test"
connections between components until the failed component is
found. The upper lefthand side of Figure 1 illustrates the
manner in which connections are tested. An * is displayed to

indicate that subjects can choose a connection to test, They

enter commands of the form "component 1, component 2" and are
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f then shown the value carried by the connection. If they respond é;i
to the * with a simple "return", they are asked to designate the :;
failed component. Then, they are gi.2n feedback about the g%
ecorrectness of their choice (1). And then, the next Eé
’ ?randomly-genetated problem (i.e., totally new) is displayed. éf
| e
o In the experiments conducted using TASK 1, computer aiding Eﬁi
% was one of the experimental variables. The aiding algorithm is ;i“
; discussed in detail elsewhere [Rouse, 1978a]. Succinctly, the !?'
' computer aid is a somewhat sophisticated bookkeeper that uses the E
structure of the network (i.e., its topology) and known outputs 53
b to eliminate components that cannot possibly be the fault (i.e., ;:
; by crossing them off). Also, it iteratively uses the results of %E;
: tests (chosen by the subject) to further eliminate components S;j
from future consideration by crossing them off. In this way, the f?
"active"™ network iteratively becomes smaller and smaller. %
' TASK 1 is fairly limited in that only one type of component .é

is considered. Further, all connections are feed-forward and

§ thus, there are no feedback loops. To overcome these
E limitations, a second version of TASK was devised. f%
: , Figure 2 illustrates the type of task of interest. This ééi
? task is somewhat similar to TASK 1 in terms of wusing an 35
i ; acceptable/unacceptable dichotomy, requiring similar commands E?
i from subjects, and so on. Only the differences between TASK 1 ;?
A fj;
(1) In the earlier experiments, subjects were not allowed to e
continue if their choice was incorrect; in the later R
experiments, they were instructed to continue until the failure S
was found. 353
A
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An Example of TASK 2

Figure 2.




page §
and TASK 2 are explained here.

A square component will produce a 1 if: 1) All inputs ¢to
the component carry values of 1 and, 2) The component has not
failed. Thus, square components are like AND gates. A hexagonal
component will produce 1 if: 1) Any input to the component
carries a value of 1, and 2) The component has not failed. Thus,
hexagonal components are 1like OR gates. For both AND and OR
components, if either of the two conditions is not satisfied, the

component will produce a 8.

The overall problem is generated by randomly connecting
components. Connections to components with higher numbers (i.e.,
feed-forward) are equally likely with a total probability of p.
Similarly, connections to components with lower numbers (i.e.,
feedback) are equally likely with a total probability of 1l-p.
The ratio p/(l-p), which is an index of the level of feedback,
was one of the independent variables in the experiments to be
discussed later. OR components are randomly placed. The effect
of the ratio of the number of OR to AND components was also an

independent variable in the experiments.

EAULT

TASK 1 and TASK 2 are context-free fault diagnosis tasks in
that they have no association with a particular system or piece
of equipment. Further, subjects never see the same problem
twice, Thus, they cannot develop skills particular to one

problem. Therefore, one must conclude that any skills that

subjects develop have to be general, context-free skills.,

v
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However, real-life tasks are not context-free. And thus, § ’
A
ne would 1like to know if context-free skills are of any use in 3
ontext-specific tasks. 1In considering this issue, one might Sé
first ask: Why not train the human for the task he is to E;v
perform? This approach is probably acceptable if the human will :;
in fact only perform the task for which he is trained. However, Erf
with technology changing rapidly, an individual is quite 1likely 3§
to encounter many different fault diagnosis situations during his 2
career. If one adopts the context-specific approach to training, i&
then the human has to be substantially retrained every time he gg
changes situations. !%%
o
An alternative approach is to train humans to have general Egﬁ
skills which they can transfer to a variety of situations. Of éi;
course, they still will have to learn the particulars of each new }éf
situation, but they will not do this by rote. Instead, they will £§
use this context-specific information to augment their general ?Ei
fault diagnosis abilities, f:
The question of interest, then, is whether or not one can %d
train subjects to have general skills that are in fact ‘*{
transferrable to context-specific tasks. With the goal of Ei
answering this question in mind, another fault diagnosis task was gﬁ'
designed [Hunt, 1979; Hunt and Rouse, 198l1]. The acronym chosen hf‘
for this task was FAULT which stands for Framework for Aiding the é%
E Understanding of Logical Troubleshooting. ii?
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: Since FAULT is context-specific, one can employ hardcopy
schematics rather than generating random networks online such as
N used with TASK. A typical schematic is shown in Figure 3. The
. subject interacts with this system using the display shown in
Figure 4. The software for generating this display is rather
general and particular systems of interest are completely
specified by data files, rather than by changes in the software
itself. Thus far, various automobile, aircraft, and marine

systems have been simulated.

FAULT operates as follows. At the start of each problem,
subjects are given rather general symptoms (e.g., will not light
off). They can then gather information by checking gauges,
asking for definitions of the functions of specific components,
making observations (e.g., continuity checks), or by removing
% components from the system for bench tests, They also can
replace components in an effort to make the system operational

again,

Associated with each component are costs for observations,
3 bench tests, and replacements as well as the a priori probability
of failure. Subjects obtain this data by requesting information

about specific components. The time to perform observations and

tests are converted to dollars and combined with replacement
costs to yield a single performance measure of cost. Subjects Sf

are instructed to find failures so as to minimize cost,
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As with TASK, computer aiding was an independent variable in
bne of the experiments with FAULT [Hunt, 1981; Hunt and Rouse,
1982b). The aiding scheme monitors subjects for inferential
Fttots (i.e., seeking information that, by structural inference,
is already available) and provides context-specific feedback
concerning how the appropriate inference could be made. Aided

subjects were also allowed to test the validity of hypotheses by

asking the computer whether or not a particular component was in
the feasible set of possible failures given the information

collected up to that point.

Real Equipment

The éxperiments involving real equipment required subjects
to diagnose failures in four and six cylinder engines typical of
those used in modern general aviation aircraft [Johnson, 1988;
Johnson and Rouse, 1982b)}. The five problems chosen for study
represented four engine subsystems: electrical, ignition,
lubrication, and fuel. More specifically, the five problems

studied were: 1) an open starter lead, 2) a defective spark plug

wire, 3) an obstructed oil fitting, 4) a defective spark plug,

and 5) an obstructed fuel line.

Subjects were reguired to observe malfunctioning (but o
operating) engines and, by appropriately choosing tests, identify :35
the source of the problem. They were supplied with all of the §§
tools and test equipment necessary to diagnose any fault that g;

they might encounter. Technical manuals and related information

were also available.
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MEASURES OF PERFORMANCE

In the series of experiments to be discussed in the next
gsection, the subjects' instructions varied as the series
progressed. While the initial experiment emphasized minimizing

the number of tests to diagnose the failure correctly, later

experiments stressed minimum time and cost. All three of these

measures reflect the product of fault diagnosis. While such
measures may appropriately gauge the overall goals of fault
diagnosis, product measures do not provide much insight into the
process of fault diagnosis [Duncan and Gray, 1975; Brooke, et
al., 1980}, Much finer-grained process measures are needed to
provide the desired insights into human behavior. In this

section, the way in which this issue was addressed is reviewed.
Dimengions of Performance

Analyses of the results of the initial experiments with TASK

were limited to product measures, typically adjusted for problem
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difficulty by normalizing with respect to optimal performance.
These measures appeared to be satisfactory until experiments with

FAULT were conducted. It was then found that the product

R PR B R

Ay

measures were much too sensitive to individual differences among

problems and subjects.

1

AN

This realization led to the development of a variety of

NAIAY

fine-grained process measures [Hunt and Rouse, 198l1]. One pair

Ta
»

of these measures considers diagnostic costs greater than optimal

fr e "',' B

(the minimum) and partitions these suboptimal costs into two
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2
| categories: errors and inefficiency. Errors are defined as rjf
; B
actions that do not reduce the size of the feasible set of 3
Lty
BN,
failures (i.e., non-productive actions). Inefficient actions are X
-\.:_x ‘
productive but not as productive as possible. Another Sexd
¥,
fine-grained measure is the expected (as opposed to actual) 13
Ny
information gain (in bits) per action. A third measure reflects &;_
subjecté' allocation of expenditures among the types of action ;i&

2
ot

available.

2
1, l'l
«
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1 The usefulness of these process measures motivated a

L4
2%

¥
[

comprehensive investigation of performance measures [Henneman, E:F
1981; Henneman and Rouse, 1982]. A throrough review of the iﬁ;
literature, as well as consideration of previous experience with ﬁgé
TASK and FAULT, produced a set of twenty candidate measures. Féf
These measures were evaluated using data from two of the later _fﬁ
experiments. Correlation, regression, and factor analyses were %ﬁ;
employed. ii:
1 SN
' The results were unequivocal. Among the twenty measures, NN
there are only three unique dimensions: time, errors, and EET
'inefficiency. Thus, a single product measure such as time or ;ﬁ%
cost does not adequately describe human performance. This result Qif
also showed that the choice of process measures of errors and ﬁ;ﬁ
inefficiency, as well as the product measure of time, for the fi;
earlier studies with FAULT was very appropriate. §§é
. g
; The emergence of errors as one of the primary dimensions of éﬁl
diagnostic performance led to three studies of human error and f

the development of a general methodology for analysis and




AN 4N L W L I N WA R TPy G TP TR S PR T SR U N v T T Sk AN PSR R B ad i e bt WA e b Bia A% ATa dia aka MG AV 8B afa Ri. aka #k AR Tt sb. ab. sb

! page 16 7
N '_\
E classification of human error |[van Eekhout and Rouse, 1981; éj
i Johnson and Rouse, 1982a; Rouse and Rouse, 1982b]. An early '
N version of this methodology was used to analyze the resuvlts of i‘é
3 the first real equipment experiment and produced changes in the yg
i training methods that were subsequently shown to reduce ;e
R substantially the frequencies of certain types of human errors. ,;f
E These results are reviewed in a later section. E;
It is interesting to consider the extent to which problem Eﬂ

solving performance is correlated with a priori characteristics :ﬁ;

of subjects rather than the effects of training. To explore this t?

issue, the performance of subjects on TASK, FAULT, and real 5;

equipment was correlated with twelve measures of ability, g:

aptitude, and cognitive style [Henneman, 1981; Henneman and -3

Rouse, 1982]. Results of standard scholastic aptitude tests were ﬁi

used as ability measures. A mechanical reasoning test was ?%

- employed to obtain a measure of aptitude. Two dimensions of ;5
E cognitive s8tyle were considered: impulsivity-reflectivity (via ?f
: Matching Familiar Pigures Test [Kagan, 1965]) and field é%
» dependence~independence (via Embedded Pigures Test [Witkin, et. :{
! al., 1971]). Ef::
-
E Results indicated that cognitive style was a much better i
E Predictor (Pearson's r ~ 0.5) of problem solving performance than Ei
t: were the measures of ability and aptitude. It should be noted, ﬁ
F however, that the trainees whose data was employed in this j?
é analysis had to meet certain standards of ability and aptitude E&
: 2
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(but not style) in order to be accepted into the training program

hich was studied. Thus, the fairest conclusion seems to be that

ognitive s8tyle becomes dominant once minimum standards of

ability and aptitude are met,

Detailed statistical analyses of the cognitive style results
*;ete performed by partitioning trainees into impulsive and
reflective groups, as well as field@ dependent and independent
groups, and using analyses of variance with dependent measures of
time, errors, and inefficiency [Rouse and Rouse, 1982a]. The
strongest conclusion to result from this analysis was that

impulsives made significantly more errors. Several interesting

comparisons with results published in the cognitive style

literature were also found,

A further analysis of performance changes over time
indicated that reflective field independents were the best
problem solvers, although the superiority of field independents
over field dependents tended to decrease as experience was gained
(Hunt, et al., 1981]. One can conjecture that the pattern
recognition abilities of field dependents required more time to

adapt to new problem domains; however, they did eventually

adapt, On the other hand, the effects of impulsivity were not
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compensated for with practice.
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EXPERIMENTS I;;;_:'J
e
]
Using the three tasks and variety of performance measures :?;
N
described in the last two sections, ten experiments were ';;'
performed involving over 368 subjects who solved over 24,000 ';
r' v
fault diagnosis problems. Over 90% of the subjects were trainees tgt:
.
in an PAA certificate program in aircraft powerplant maintenance. :*q
s
The remainder were students or former students in engineering. ":
In this section, the statistically significant results of these gﬂ$
experiments will be reviewed. RS
Experiments one through five focused on problem solving ;f;
performance with TASK. Experiments six through eight considered iﬁ;
& the relationships Dbetween TASK and FAULT performance. lﬁi
Experiments nine and ten studied transfer of training from TASK ,ﬁ%.
and/or FAULT to real equipment. Eﬁf
‘ ‘ Experiment QOne P
| H The first experiment utilized TASK 1 and considered the Eif
} .
; effects of problem size, computer aiding, and training. Problem &
\'m'
E H size was varied to include networks with 9, 25, and 49 .
| components. Computer aiding was considered both in terms of its 33.
b direct effect on task performance and in terms of its effect as a ;:f
training device [Rouse, 1978a]. ,é:
RS
l. ,
Eight subjects participated in this experiment. The EE:
\)
experiment was self-paced. Subjects were instructed to find the . ~:$
fault in the minimum number of tests while also not using an f
excessive amount of time and avoiding all mistakes., A transfer .




-——

o

S

Dl = N gk g gh pa gt an Sl BNEE

C -y o,

- s W &« & T v, 1. &

page 19

of training design was used where one-half of the subjects were

trained with computer aiding and then transitioned to the unaided

task, while the other one-half of the subjects were trained

without computer aiding and then transitioned to the aided task.

Results indicated that human performance, in terms of

average number of tests until correct solution, deviated from

optimality as problem size increased. However, subjects
performed much better than a "brute force"™ strategy which simply
traces back from an arbitrarily selected # output, This result
can be interpreted as meaning that subjects used the topology of
the network (i.e., structural knowledge) to a great extent as

well as knowledge of network outputs (i.e., state knowledge).

Considering the effects of computer aiding, it was found
that aiding always produced a 1lower average number of tests.
However, this effect was not statistically significant. Computer
aiding did produce a statistically significant effect in terms of
a positive transfer of training from aided to unaided displays
for percent correct. Specifically, percent correct was greater
with aided displays (98% vs. 89%) and subjects who transferred
aided-to-unaided were able to maintain the level of performance

achieved with aiding.

Experiment Two

This experiment utilized TASK 1 and was designed to study
the effects of forced-pacing [Rouse, 1978a). Since many of the
interesting results of the first experiment were most pronounced

for large problems (i.e., those with 49 components), the second
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experiment considered only these large problems. Replacing
problem 8ize as an independent variable was time allowed per
problem, which was varied to include values of 386, 68, and 90

seconds. The choice of these values was motivated by the results

of the first experiment which indicated that it would be
difficult to solve problems in less than 30 seconds consistently
while it would be relatively easy to solve problems in less than

99 seconds.

This variable was integrated into the experimental scenario
by adding a clock to the display. Subjects were allowed one
revolution of the clock in which to solve the problem. The
circumference of the clock was randomly chosen from the three
values noted above. If subjects had not solved the problem by
the end of the allowed time period, the display was erased and

they were asked to designate the failed component,

As in the first experiment, computer aiding and training
were also independent variables. Twelve subjects participated in
this experiment. Their instructions were to solve the problems

vithin the time constraints while avoiding all mistakes.

Results of this experiment indicated that the time allowed
bPer problem and computer aiding had significant effects on human
performance. A particularly interesting result was that
forced-paced subjects utilized strategies requiring many more
tests than necessary (i.e., greater than self-paced subjects by a
factor of approximately four). It appears that one of the

effects of forced-pacing was that subjects chose to employ less
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N

; structural information in their solution strategies, as compared E;
i to self-paced subjects. While computer aiding resulted in :ﬁ
aiénificantly fewer tests (6.99 vs, 3.33) and a greater percent g&:

E correct (89% vs. 88%), there was no positive (or negative) §§
! transfer of training for forced-paced subjects, indicating that BE

m

~
]

3 subjects may have to be allowed to reflect on what computer

_,
s

aiding is doing for them if they are to gain transferrable P

’

skills. In other words, time pressure can prevent subjects from

(R PR o
. . .
NN

studying the task sufficiently to gain skills via computer

aiding.

Experiment Three

Experiments one and two utilized students or former students

in engineering as subjects. To determine if the results obtained Ef,

were specific to that population, a third experiment investigated

the fault diagnosis abilities of forty trainees in the fourth

semester of a two-year FAA certificate program in aircraft e

powerplant maintenance [Rouse, 1979%a].

The design of this experiment was similar to that of the ,;?

first experiment in that TASK 1 was utilized and problem size,

computer aiding, and training were the independent variables.

However, only transfer in the aided-to-unaided direction was

considered. Further, subjects' instructions differed somewhat in -

that they were told to find the failure in the least amount of e

o R A
s

time possible, while avoiding all mistakes and not making an bﬁ
U

excessive number of tests.

........................................
....................
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As in the first experiment, performance in terms of average
number of tests until correct solution deviated from optimality
as problem size increased. Computer aiding significantly
decreased this deviation (0.60 vs, 1.71, or 65% Dbetter).
considering transfer of training, it was found that aided
subjects utilized fewer tests to solve problems without computer
aiding, particularly for the larger problems (l.11 vs, 2.12
tests greater than optimal). A very specific explanation of this

phenomenon will be offered in a later discussion,

Experiment Four

Experiment four considered subjects’ performance in TASK 2
[Rouse, 1979b]. Since the main purpose of this experiment was to
investigate the suitability of a model of human decision making
in fault diagnosis tasks that include feedback and redundancy,
only four highly trained-subjects were used. The two independent
variables included the aforementioned level of feedback (i.e.,
p/(1-p)) and the ratio of number of OR to AND components in a

network of twenty-five components.

The results of this experiment indicated that increased
redundancy (i.e., more OR components) significantly decreased the
average number of tests (3.47 va. 4.91) and average ¢time until
correct solution (63.3 s8ec vs. 101.7 sec) of fault diagnosis
Problems., While there were visible trends in performance as a
function of the 1level of feedback, this effect was not
significant. The reason for this lack of significance was quite

Clear. Two subjects developed a strategy that carefully
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considered feedback while the other two subjects developed a

strategy that discounted the effects of feedback. Thus, the

average across all subjects was insensitive to feedback 1levels.

One of the models to be described later yields a fairly succinct

explanation of this result,

Experiment Five

The purpose of this experiment was to investigate the

performance of maintenance trainees in TASK 2, while also trying

to replicate the results of experiment three. Porty-eight
trainees in the first semester of the previously noted FAA

certificate program served as subjects [Rouse, 1979c].

The design involved a concatenation of experiments three and
four. Thus, the experiment included two sessions. The first
session was primarily for training subjects to perform the
simpler TASK 1. Further, the results of the first session, when
compared with the results of experiment three, allowed a direct

comparison between first and fourth semester trainees.

The second session involved a between-subjects factorial
design in which level of feedback and proportion of OR components
were the independent variables, Further, training on TASK 1
(i.e., unaided or aided) was also an independent variable. Thus,
the results of this experiment allowed assessment of transfer of

training between two somewhat different tasks.
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As in the previous experiments, TASK 1 performance in terms
of average number of tests until correct solution deviated from
optimality as problem size increased and, the deviation was
substantially reduced with computer aiding (8#.57 vs. 1.53, or
63% better). Computer aiding also resulted in faster solutions
(6.5 sec vs, 62.1 sec). However, unlike the results from
experiment three, there was no positive (or negative) transfer of
u training from the aided displays. This result as well as
subjects' comments led to the conjecture that the first semester

students perhaps differed from the fourth semester students in

»

terms of intellectual maturity (i.e., the ability to ask why
computer aiding was helping them rather than simply accepting the

aid as a means of making the task easy).

«¥aVa"s s AT

On the other hand, TASK 2 provided some very interesting

N transfer of training results, In terms of average time until

2

correct solution, subjects who received aiding during TASK 1
training were initially significantly slower in performing TASK
2. However, they eventually far surpassed those subjects who
received unaided TASK 1 training., This initial negative transfer
(138 slower) and then positive transfer (20% faster) is an

interesting but puzzling phenomenon.

Experiment Six

This experiment considered subjects' abilities to transfer
8kills developed in the context-free TASK 1 and TASK 2 to the
context-specific FAULT. Thirty-nine trainees in the fourth

semester oOf the ¢two-year FAA certificate program served as
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subjects [Bunt, 1979; Hunt and Rouse, 198l1].

The design of thib experiment was very similar to previous
experiments except the transfer trials involved FAULT rather than
the context-free tasks. The FAULT scenarios used included an
automobile engine and two aircraft powerplants, one of which was
unfamiliar to trainees. Both TASK 1 and TASK 2 were used for the
training trials. Overall, subjects participated in six sessions

of ninety minutes in length over a period of six weeks.

As noted earlier, since 1initial analyses of the results
indicated a very substantial degree of inter-subject and
inter-problem variability, it was decided to employ more
fine-grained measures for FAULT. One of these fine-grained
measures involved partitioning subjects' suboptimality (i.e.,
expenditures greater than optimal) into those due to errors and
those due to inefficiency. Another measure was the expected
information gain (in bits) per action. A third measure reflected
the subjects' allocation of expenditures among observations,

bench tests, and unnecessary replacements,

Use of these fine-grained performance measures led to quite
clear conclusions, Trainees who had received aided training with
TASK 1 were consistently able to achieve significantly better
performance on the powerplant problems ($513 vs. $578 for cost
due to inefficiency), especially for problems involving 1less
familiar powerplants. It was found that their suboptimality in
terms of inefficiency could be attributed to their focusing on

high cost, low information gain actions (i.e., bench tests and
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replacements) to a much greater extent than the optimal solution.

Experiment Seven

The purpose of this experiment was to replicate experiment
s8ix using first semester rather than fourth semester maintenance
trainees. Sixty trainees participated. The design of the

experiment was very similar to experiment six except that only

TASK 1 training was used. Further, one of the aircraft
powerplant scenarios was changed to allow inclusion of a more

sophisticated system [Hunt and Rouse, 1981].

The results for the first semester trainees were mixed with
a substantial positive transfer of aided training in terms of
inefficiency ($469 vs. $1266) and a slight negative transfer of
training in terms of expected information gain (8.51 vs. #.53
bits/action). However, as with the fourth semester trainees,
inefficiency could be attributed to inappropriate choices of high

cost, low information gain actions.

Experiment Eight

AThis experiment considered the effects of computer-aided

training with FAULT. Thirty-four first semester maintenance
trainees participated in ten problem solving sessions over a ten
week period. Half of the subjects received aiding while the
other half did not. The two groups were initially matched on the
basis of TASK 1 performance. Problems on PFAULT included six
different automobile and aircraft systems, some of which were

unfamiliar to subjects [Hunt, 1981; Runt and Rouse, 1982b].
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The results of this experiment indicated that aiding
decreased suboptimality in terms of inefficient actions for both
the familiar (4.20 vs., 4.73) and unfamiliar (4.47 vs, 4.99)
systems, Aiding significantly reduced the frequency of errors
for the unfamiliar systems (0.40 vs. 0.83). (It is important to
note that the aiding was designed to reduce errors; benefits in
terms of decreased inefficency were only a by-product of aiding.)
Considering transfer from PAULT to TASK, subjects trained with

aided PAULT had a lower frequency of errors with TASK (B.08 vs,
0.20).

Experiment Nipe

The purpose of this experiment was to evaluate the transfer
of training with TASK 1, TASK 2, and FAULT to real equipment
[Johnson, 1980; Johnson and Rouse, 1982b]. Thirty-six fourth
semester trainees participated as subjects. Each subject was
allocated to one of the three training groups. Groups were
balanced with respect to various a priori measures (e.g., grade
point average). One group was trained using a sequence of TASK 1
and TASK 2 problems. Another group was trained with FAULT. The
third group, the control group, received *traditional"
instruction including reading assignments, video taped lectures,
and quizzes. The transfer task involved the aforementioned five

problems on two real aircraft engines.

Performance measures for the real eguipment problems
included an average performance index based on a fine-grained

analysis of each action, overall adjusted cost (based on the

- -
-------

LRI ... D L T N e S L RS St JOICIR I G S RN
R S N S L, A S S S R P o,
- S c L) - . 3 N

-
> v
e

W7

v

i

TEXL

[ RS A 2N -4

D0k ARRRS) FARTID

4
0o a
A



e‘o 2l 0% AN R ety Al Rta LR SR e Rl e T M Al e A A e T M A e € N S A e O R A Sl e W TN R 8 AP B AV W e (0B DM D kN e A Lor S B, nion o <A ane

Y

page 28 :Tc

ey’

: manufacturer's flat-rate manual), and an overall rating by an éit

observer. Results indicated that traditional instruction was -

h only superior if explicit demonstrations were provided for the g{

exact failures to be encountered (i.e., three of the five real 52

' equipment problems). Otherwise, there were no significant ;j§

differences among the three training methods. ;%

o

More specifically, for the average performance index, which ;:j

) ranged from 1.P to 5.8, the three problems which were explicitly !ﬁ
demonstrated yielded 4.4 for traditional instruction and 3.8 for .

TASK and FAULT; the ¢two problems that were not explicitly ¥

demonstrated yielded the non-significant difference of 4.4 for -;?

traditional instruction and 4.2 for TASK and FAULT. Thus, ?i

training with the computer simulations was as useful as ;i_

P traditional training as 1long as the latter form of instruction :li

j was general in nature (i.e., did not provide "cookbook" solutions ESE

: for particular problems). %&

Experiment Ten &

e

This experiment also considered transfer to real equipment, éf

and compared a combination of TASK and FAULT to traditional :?

instruction. Twenty-six fourth semester maintenance trainees .ﬁ?

. served as subjects. One half of the subjects were trained with ESf

TASK/FAULT where FAULT was somewhat modified to include ,é:

information on how tests are physically made and how results §§

- should be interpreted. The other half of the subjects received f;‘f‘

traditional instruction similar to that in experiment nine

[Johnson and Rouse, 1982b]. T
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Based on the same performance measures as used for oy
R experiment nine, it was found that the TASK/FAULT combination was X

: equivalent to traditional instruction for all five problems, even -3;
those for which explicit solution sequences had been provided ;&
within the traditional instruction. More specifically, the by
average performance index was 4.2 for traditional instruction and ]
3.9 for TASK/PAULT, a difference which was not statistically b
significant. Thus, somewhat generalized training was found to be
competitive with problem-specific training. The full N

- implications of this result will be discussed in a later section.
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MODELS OF HUMAN PROBLEM SOLVING \ﬁ
3
The numerous empirical results of the experimental studies ﬁi
discussed above are quite interesting and offer valuable insights ?%
> into human fault diagnosis abilities. However, it would be more ii
useful if one could succinctly generalize the results in terms of é}
‘-' 3
theories or models of human problem solving performance in fault -

diagnosis tasks (2). Such models will eventually be useful for

S AN,

: predicting human performance in fault diagnosis tasks and, N
é perhaps for evaluating alternative aiding schemes and training %E
methods. More immediately, however, the models discussed here E;

were of use for interpreting research results and defining the ﬂé
directions of the investigations. E;Z

’ Models of Complexity R
o

It is interesting to consider why some fault diagnosis tasks ;?

take a long time to solve while others require much less time. df
Intuitively, it would seem to relate to problem complexity. This é:

led to an investigation of alternative measures of complexity of E;E

fault diagnosis tasks [Rouse and Rouse, 1979]. %g

A study of the literature of complexity led to the ;;

development of four candidate measures which were evaluated using &i

the data from experiments three and five. It was found that two g

\ particular measures, one based on information theory and the Eg
. :5

(2) Por a review of the literature on models of human problem
solving, especially for detection, diagnosis, and compensation
for system failures, see Rouse [1982c].
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%

H other based on the number of relevant relationships within the ‘$§
&

problem, were reasonably good predictors (Pearson's r = 0.84) of

L

Y

human performance in terms of time to solve TASK 1 and TASK 2

;*?i

: problems. The success of these measures appeared to be explained ?Ef
} by the idea that they incorporated the human's understanding of EE;
E the problem and specific solution strategy as well as the éé;
i properties of the problem itself. Thus, complexity should be ii&
i viewed as related to both the problem and problem solver. i;
' -
E One can look at the task of fault diagnosis as involving two ‘4%
v phases. First, given the set of symptoms, one has to partition i&:
: the problem into two sets: a feasible set (those components ?gf
which could be causing the symptoms) and an infeasible set (those ‘3;
components which could not possibly be causing the symptoms). Eﬁ,
Second, once this partitioning has been performed, one has to §§
choose a member of the feasible set for testing. When one L
obtains the test result, then the problem is repartitioned, with §§
the feagible set hopefully becoming smaller. This process of Eg
partitioning and testing continues until the fault has been %é;

localized and the problem is therefore solved.

If one views such a description of fault diagnosis from a
purely technical point of view, then it is qﬁite straightforward. e
Components either can or cannot be feasible solutions and the
test choice can be made using some variation of the half-split

technique. However, from a behavioral point of view, the process

is not 80 clear cut.
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1.

Humans have considerable difficulty in making simple yes/no E::

decisions about the feasibility of each component. If asked ’¢

whether or not two components, which are distant from each other, ;E

can possibly affect each other, a human might prefer to respond Sét

"probably not® or “perhaps®" or "maybe". %

N

This inability to make strict partitions when solving Q;

complex problems can be represented using the theory of fuzzy &i

sets [Rouse, 198¢, 1982d]. Quite briefly, this theory allows one &E;

to define components as having membership grades between 0.0 and E%

1 1.0 in the various sets of interest. Then, one can employ §§5

logical operations such as intersection, hnion, and complement to '7?

perform the partitioning process. Membership functions can be Ei;

used to assign membership grades as a function of some iﬁ

independent variable that relates components (e.g.., }ﬂ
*psychological distance®). Then, free parameters within the

membership functions can be used to match the performance of the &;

model and the human. The resulting parameters can then be used o

to develop behavioral interpretations of the results of various ;g

! experimental manipulations. é;’

| Such a model was developed and compared to the results of fﬁ

experiments one, two, and four in terms of average number of i;~

tests to correctly diagnose faults in TASK 1 and TASK 2 [Rouse, ftﬁ

1978b, 1979b)]. For TASK 1, the model and subjects differed by an g&

, average of only 5%. For TASK 2, with the exception of one trial EE

; where two of the subjects made many errors, the comparison was \fa

comparable. iéi

1
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N

Two particularly important conclusions were reached on the Egl
basis of this modeling effort. Pirst, the benefit of computer Qiﬁ
aiding lies in its ability to make full use of 1 outputs shown in hﬁj
W 3N

'I

7H

Figures 1 and 2, which humans tend to greatly under-utilize.

i

Second, the different strategies of subjects in experiment four

-

RN
n""

can be interpreted almost soley in terms of the ways in which

they considered the importance of feedback loops.

It is useful to note here that these gquite succinct -gi
conclusions, and others not discussed here [Rouse, 1978b, 1979b], E&;

were made possible by having the model parameters to interpret. 3i§

The empirical results did not in themselves allow such tight ]
conclusions. ;Ei?
Rule-Based Model £l
r' ~-. )

While the fuzzy set model has proven useful, one wonders if o

an even simpler explanation of human problem solving performance
would not be satisfactory. With this goal in mind, a second type
of model was developed [Pellegrino, 1979; Rouse, Rouse, and e
Pellegrino, 1988]. It is based on a fairly simple idea. Namely, ;ﬁ;
it starts with the assumption that human problem solving involves '}iw
the use of a set of situation-action rules (or heuristics) from

which the human selects, using some type of priority or control

structure [Newell and Simon, 1972; Waterman and Hayes-Roth, .
1978; Rouse, 1988]. R
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Based on the results of experiments three, five, and six, an Sf
ordered set of twelve rules was found that adequately describes ‘%{
TASK 1 performance, in the sense of making tests similar to those fz
1 of subjects 89% of the time. Using a somewhat looser set of four C:
rules, the match increases to 94%. For TASK 2, a set of five !g
rules results in an 88% match. It was also found that the 5
rank-ordering of the rules was affected by training, with aided Eé
training producing the more powerful rank-orderings. g;

The new insights provided by this model 1led to the
development of a new notion of computer aided training. Namely, ;5
subjects were given immediate feedback about the quality of the _sf
rules which the model inferred they were using. They received ;?
this feedback after each test they made. Evaluation of this idea Et
within experiment six resulted in the conclusion that rule-based ja
aiding was counterproductive (36% more tests during training and f,
159% more upon transfer) because subjects tended to misinterpret :i
the quality ratings their tests received. However, it appeared ﬁi
that ratings that indicated unnecessary or otherwise poor tests ig‘
might be helpful. This hypothesis was tested and found to be ﬁ?
true for FAULT in experiment eight. .fa
; 2
Fuzzy Rule-Baged Maodel o
o
All of the modeling rezults noted above were based on r;‘
problems involving TASK 1 and TASK 2. An attempt was made to E?T
apply these models, especially the rule-based model, to describe $i‘
: human performance using FAULT. Success was initially limited by gi
5 what Rasmussen (1981) would call a shift from topographic to fﬁ
| i
; =
&iii-l&:i:;;i-"’;;-‘.: N S R e e e e ---;-'i;l:'-;_*:;:'-:;:-;i:-;:'-.j‘




mwmwumwkuuuummmuw.u,n-..nm-a- MR s
V]

i

page 35 :5-._

: symptomatic search strategies, In other words, once subjects ;é

shift from a context-free to context-specific situation, they X‘

> attempt to use rules that map directly from the symptoms to the ;p

solution. 1In many cases, this mapping process can be adequately éi‘

described by the earlier rule-based model. However, not ;;

infrequently it appears that subjects utilize what might be Ef}

termed highly context-dominated rules, perhaps based on their §§5

experiences prior to training. ;i'

‘ =

. 1 This dichotomy between symptomatic and topographic problem ;ﬁ

solving was formalized in a fuzzy rule-based model [Rouse and éi

) Hunt, 1981; Hunt, 1981; Hunt and Rouse, 1982a]. This model :f

first attempts to find familiar patterns among the symptoms of éﬁ

i the fajilure (i.e., among the state variables of the system). If ;g

a match is found, symptomatic rules (S-rules) are used to map 5:

directly from symptoms to hypothesized failure. If there are no g&.

; familiar patterns among the state variables, the model uses EE;

topographic rules (T-rules) to search the structures (i.e., "
functional relationships) of the system. The rules chosen are

those with highest membership in the fuzzy set of choosable rules iﬁ

3 1 which is defined as the intersection of fuzzy sets of recalled, ??

E applicable, useful, and simple rules. éé

L . . i

i This model was evaluated using the data from experiment o

eight. It was found that the model could exactly match fﬁ

apprbximately 50% of subjects' actions and utilize the same rules Eg?

about 70% of the time. The evaluation of the model also provided gi;

a clear demonstration of subjects shifting from S~rules to ;?

T-rules when an unfamiliar system was encountered. f§$

N
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' 1 An Querall Model

. All of the models discussed thus far were devised for the
express purpose of providing direction to the studies with TASK,
FAULT, and real equipment. Of course, considerable effort was
also invested in attempting to generalize the model formulations.
Thus, the fuzzy rule-based model, for example, certainly appears
. to be widely applicable. However, none of the models discussed
| earlier here can really be thought of as describing all of human

1 problem solving.

The fifth and last model to be discussed here represents an
attempt to synthesize a model capable of describing human problem ?Q
) solving in general [Rouse, 1982c]. This model is based on a 52:

thorough review of the problem solving literature and, to a great

extent, the four earlier models. The model operates on three -;;

levels: 1) recognition and classification, 2) planning, and 3) éﬁ:
execution and monitoring. EL»

' ..
! Recognition and classification is the process whereby humans Eg'

; determine the problem solving situations with which they are a&

? involved. Pamiliar situations may invoke a standard “frame" 'f?

. [Minsky, 1975] while unfamiliar situations may lead to the use of ;
analogies or even basic principles of invgstigation. Planning :i

may involve the use of familiar "scripts®" [Schank and Abelson, \2

5 § 1979) or, if no script is available, require generation of g?
: ? alternatives, imagining of consequences. valuing of consequénces. E;

etc. [Johannsen and Rouse, 1979]. Execution and monitoring

; : involves the S-rules and T-rules discussed earlier.
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2
v The model operates on the above three 1levels of problem %ﬁ
solving by recursively using a single mechanism that is capable 22
of recognizing both patterns of state information and patterns of gi
structural information. By recursively and constantly accessing Qé
this single mechanism the model is capable of both hierachical 3;
: [Sacerdoti, 1974] and heterarchical [Hayes-Roth and Hayes-Roth, Eﬁ:
‘ ! - 1979] problem solving. Simultaneous operation on multiple levels ;Ei
| also allows the model to pursue multiple goals such as occur in %?‘
. dynamic systems where the problem solver must coordinate both ?é
diagnosing the source of the problem and keeping the system gﬁ
l : operating. ﬁi
? ::.
; A particu}arly interesting aspect of this model's behavior, ;&
g as well as that of humans, is its potential for making errors. gf
. The model has two inherent possibilities for causing errors. The T?
first possibility relates to the model's recursive use of a L-

single basic mechanism. As the model recursively invokes this :
mechanism. it needs a "stack" or some short-term memory for S
keeping track of where it is and how it got there., If short-term §§
memory is limited, as it is in humans, the model may recurse its EE
way into getting lost or, pursuing tangents from which it never .f%
returns. To constrain this phenomenon, it is more likely to ;&;
forget one's umbrella than to forget to go to work. éi
The second possiblity for causing errors is the matching of :g;

irrelevant or inappropriate patterns. For example, the model, or h;

- a human, may be captured by an inappropriate but similar script X

2 or S-rule. As a result, the model may pursue an inappropriate

path until it suddenly realizes, perhaps too late to be able to
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recoup, that it has wandered far afield from where it thought it

was headed.

The fact that this model has inherent possibilities for
making errors, particularly somewhat subtle errors, provides an
interesting avenue for evaluating the model. Most models are
evaluated in terms of their abilities to achieve the same levels
of desired task performance as humans, A much stronger test
would involve determining if the model deviates from desired
performance in the same way and for the same reasons as humans,

The proposed model can potentially be evaluated in this manner.

However, this model has not yet been evaluated. Thus, at
this point, it should mainly be viewed as a synthesis of the wide
variety of experimental results and models reviewed |here.
However, considering the breadth of the investigations upon which
it is based, including the extensive review of the 1literature,
this model should also be viewed as much more than conjecture.
Clearly, the next step ghould be evaluation of this model in a

variety of problem solving domains.
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1 DISCUSSION AND CONCLUSIONS

The overall results of this program of research roughly fall

into three categories:

b I W NN
-

1. Results relating to human problem solving abilities

¢ 2. Concepts for training and aiding problem solvers w3

-

3. Implications for the role of humans in failure situations

-

.(‘A."
Y

ey |0

| In this final section of this report, the findings in these three

7,
P

areas will be reviewed.

% 120

; Euman Problem Solving Abilities '
4 o
; Humans are not optimal problem solvers, although they are gﬁ
rational and usually systematic. In general, their deviation ¥

from optimality is related to how well they understand the Eg

problem, rather than being solely related to properties of the 'tﬁ

problem. More specifically, suboptimality appears to be due to a %j

lack of awareness (or inability when forced-paced) of the full 22
implications of available information. Por example, humans have Eé

a great deal of difficulty utilizing information about what has 3:

Dot failed in order to reduce the size of the feasible set. ES

2o

Human problem solving tends to be context-dominated with !E

familiar, or even marginally familiar, patterns of contextual gg

cues prevailing in most problem solving. Humans can. however, i§

r.

successfully deal with unfamiliar problem solving situations,

which is a clear indication that human problem solving skills

LIPS )
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%

&3

cannot be totally context-specific. Their degree of success with Y,
h*S ‘
unfamiliar problems depends on their abilities to transition from E%
state-oriented to structure-oriented problem solving. Humans' Mf:
h v

abilities in the 1latter mode are highly related to their b
rank-ordering of rules rather than simply the number of rules “;
available, Eﬁ
AN

t‘-;{
Thus, humans' cognitive abilities for problem solving are Q%

definitely 1limited. However, humans are exquisite pattern

. e - ..

070 ey v

DA

I AL
SO,

recognizers and can cope reasonably well with ill-defined and

v v
»
s

L 4 ". .
; f
.4 1 )

» ,1‘2' -

ambiguous problem solving situations. These abilities are very

important in many real life fault diagnosis tasks. What are

needed, then, are methods for overcoming humans' cognitive Pi*'

limitations in order to be able to take advantage of humans' 5;

cognitive abilities. _E?

:

Concepts for ITraining and Aiding &;
g

Throughout this program of research, a variety of s8chemes e

have emerged for helping humans to overcome the limitations '??

summarized above. These schemes have been evaluated both as aids iﬁ

during problem solving and as training methods, with evaluation ;:?

occurring upon transfer to situations without the aids. As noted %g

in previous sections, three types of aid were developed and SE

evaluated. ;:?

3

The first type of aid was implemented within TASK and uses g&

the structure of the network to determine the full implications ﬁl

of the symptoms, as well as each test, with respect to reduction Efi

of the size of the feasible set. Basically, this aid is a i

......................
-----------
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bookkeeper that does not utilize any information which subjects aj%
do not have; it just consistently takes full advantage of this 5"

¥

information.

"‘
L &~
y " %l
U

AP
X0

ol 2

The second type of aid was also implemented within TASK. It

-~

evaluates each action by subjects, as they occur, and provides

LR #

reinforcement in proportion to the degree to which the action is

AN

2V,
¢ ’("?l'r [
)

roCs
<y

consistent with a context-free optimal strategy. For erroneous

»
~

(i.e., non-productive) actions, subjects receive feedback that
simply notes, but does not explain, their errors. For
inefficient (i.e., productive but far from optimal) actions,
subjects receive feedback denoting their choices as poor or fair.
Optimal or near optimal actions yield feedback indicating the

choices to be good or excellent.

The third type of aid was implemented in FAULT. This aid
monitors subjects' actions and checks for context-free

inferential errors (i.e., errors in the sense of not using the

structure of the PFAULT network to infer nembership in the

Te - "l
s
, .

E)

feasible set). While the aiding is context-free, it explains the

PR
¢ e
a 5

nature of the error within the context of the problem (i.e., in =
terms of the structural implications of the previous actions ;}
taken). Thus, the feedback received by s8subjects not only E;

: indicates the occurrence of an error, but also includes a ‘.}

context-specific explanation of why an error has been detected. ;ﬁ;

o

The first and third types of aid can both be viewed as iﬁﬁ

structure-oriented bookkeeping aids, while the second type of aid -;{

is more strategy-oriented. The results of evaluating these aids €§;~
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were duite clear. The bookkeeping methods consistently improved
performance, both while they were available and upon transfer to

unaided problem solving. The strategy-oriented aid degraded

i performance and resulted in negative transfer of training,
providing clear evidence of the hazards of only reinforcing

optimal performance.

In studies involving transfer from aided TASK to unaided
TASK, aided TASK to unaided FAULT, and aided FAULT to unaided
FAULT and unaided TASK, positive transfer of training was usually
found with the effects most pronounced for unfamiliar systems and
fine-grained performance measures. Thus, the evidence is gquite
clear that humans can be trained to have context-free problem
solving gkills that, at least partially, help them to overcome

the limitations discussed earlier in this section.

Considering transfer from TASK and/or FAULT to real

e "y e % '-"-".‘
e,

R N AR
L R

ot et e

equipment, the results show that training based on simulations

v

A such as TASK and PFAULT are competitive with traditional R
‘ instruction, even when traditional instruction provides explicit ézg
solution procedures for the failures to be encountered. However, ;?;
the issue is not really one for TASK versus FAULT versus ﬁé
traditional instruction. The important question is how these 5?‘
training technologies should be combined to provide a k:,
*mixed-fidelity" training program that capitalizes on the :f‘
, advantages of each technology [Rouse, 1982b]. This 3%:
; .mixed-fidelity approach can provide trainees with problem solving :iﬂ
principles as well as procedures. Also, it can result in a ;ég
re-ordering of rules and not just the acquisition of more rules. ; ;ﬁ;
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o

Thus, this approach can also help humans to overcome the ﬂ '
e

previously discussed limitations. Finally, the mixed-fidelity !
approach can lead to cost savings since a training program need g&i
"2

not rely solely on high-fidelity training devices. tig

Somewhat as a by-product of this research, a considerable .

_ amount was learned about evaluation of training programs [Rouse, ég;
1982a). Perhaps surprisingly, most evaluation efforts in the ;§§
past have limited consideration to whether or not trainees learn ,;
to use the training technology successfully. Few s8tudies have giz
focused on transfer out of the training environment, and even g;;
fewer have looked at long-term on-the-job performance. Two of ;:?
the studies reported here concentrated on transfer to real ;%?
equipment; a s8tudy currently being planned will emphasize ;ii
on-the-job performance. ngﬁ

One of the key aspects of evaluation is the definition of é%
performance measures. The series of studies reviewed in this ﬁﬁﬁ
report began with the use of rather global measures and evolved E&S
to the use of very fine-grained measures where, for example, E%:
human error was classified using six general and thirty-one %;f
specific categories [Rouse and Rouse, 1982b]. It appears that E$?
this detailed level of analysis is very necessary if inadequacies iﬁ;
in training programs are to be identified and remedied. ke

moa

Finally, it should be noted that the model-based approach ;?
adopted for these investigations appears to have been a crucial ﬁ;:
element in their success. The evolving set of models provided _:?
succinct interpretations of results and, consequently, generated ;ﬁg

KX
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very crisp hypotheses which focused subsequent investigations.
Purther, the models contributed to building an overall conceptual

view of human problem solving.

Ihe Role of Humans in Failure Situations

Based on the foregoing review of tasks. performance
measures, experiments, and models, it seems reasonable to
conclude with a discussion of the implications of these results
for defining the role of humans in failure situations. As noted
in the Introduction, there appears to be a tradeoff between the
benefits of humans' unique abilities and the cost of their
limitations. Resolving this tradeoff is tantamount to defining

the role of humans,

One approach to dealing with this issue is to attempt ¢to
automate all fault diagnosis. Unfortunately, what this leads to
is automation of routine diagnostic tasks and the human having
responsibility for the more difficult problems. As a result,
humans perform diagnostic tasks much less frequently; however,
when humans must perform the diagnosis, the problem is likely to
be very difficult, perhaps even involving untangling of the
results of abortive attempts of the computer to diagnose the
failures. This is a clear violation of good human factors

engineering design principles.

A more appropriate approach is to emphasize computer aiding
rather than computerizing. Results reported here indicate that

computers can aid humans during training in terms of enhancing

general problem solving skills and, during diagnosis by
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performing bookkeeping functions and monitoring actions to assure

. -

that choices are productive. This approach leads to a N
perspective of humans controlling the problem solving process i
with sophisticated computer systems providing assistance. As a nﬁi
result, system designers can take advantage of human abilities s

while avoiding the effects of human limitations. iy
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