FOREIGN TECHNOLOGY DIVISION

MAGNETIC SOLITON, HOMOTOPY AND HIGGS THEORY

by

Li Yuanjie and Lei Shizu

Approved for public release; Distribution unlimited.
HUMAN TRANSLATION

FTD-ID(RS)T-0076-86 24 April 1986

MICROFICHE NR: FTD-86-C-001750

MAGNETIC SOLITON, HOMOTOPI AND HIGGS THEORY

By: Li Yuanjie and Lei Shizu

English pages: 9

Source: Huazhong Gongxueyuan Xuebao, Vol. 11, Nr. 6, 1983, pp. 65-70

Country of origin: China
Translated by: SCITRAN
F36657-84-D-0165

Requester: FTD/TQTR
Approved for public release; Distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY:
TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION WPAFB, OHIO.
GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.
Magnetic soliton, Homotopy and Higgs theory

Li Yuanjie Lei Shizu

Abstract

The two- and three-dimensional nonlinear Higgs field ϕ is used as an example to investigate the theory of magnetic soliton and the connection between the homotopy theory and Higgs theory. It is verified that, in a spontaneous and symmetrical breaking, because of the symmetry of electromagnetic gauge subgroup, there exists correspondence between the conservation of magneton and the incomplete symmetry of secondary order.

A. Soliton solution and Homotopy theory

Soliton is a stable finite energy solution of the classical Lagrange equation of motion. There are four kinds of stable soliton and their corresponding dimensions are $D=1, 2, 3, 4$, respectively. Soliton is arising from nonlinear field theory. We studied and discussed the 2- and 3-dimensional ϕ^4 theory in this paper.

(1). Spinor

The Lagrangian density is represented by

$$L = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} + \frac{1}{2} (D_\mu \phi)^* D^\mu \phi - \frac{1}{4} \lambda (\phi^4 - \frac{m^2}{\lambda})^2,$$

and the field equation is

$$\partial^\nu F_{\nu \alpha} = i_\alpha = -\frac{1}{2} i e (\phi^4 \partial_\alpha \phi - \phi \partial_\alpha \phi^4) + e A_\alpha \phi \phi^4,$$ \hspace{1cm} (1)

$$D_\nu D^\nu \phi = -4 \phi (\phi \phi^4 - \frac{m^2}{\lambda}).$$ \hspace{1cm} (2)

The condition of finite energy requires $D \phi \rightarrow 0 \quad \text{at} \; r \rightarrow \infty$. Equation (2) yields a cylindrical symmetry solution:

$$\phi = f(r) e^{i\nu}, \; f(r) \rightarrow (1 - Ce^{-\nu/r}) \frac{m}{\sqrt{\lambda}}.$$
The existence of a stable soliton is indicated by a localization of energy around \(r=0 \) (see Figure 1). Examine

\[F_{\mu \nu} = \partial_\mu A_\nu - \partial_\nu A_\mu, \]

where \(F_{\mu \nu} \) is an antisymmetry tensor. \(F_{\mu \nu} \) is the only independent nonzero term and its resulting flux on the \((x_1, x_2)\) plane is

\[\Phi = \int_{S_+}^{} \mathcal{A}_1 dx_1 dx_2 = \int_{S_+}^{} (\partial_1 A_2 - \partial_2 A_1) dx_1 dx_2 \]

\[= \int_{S_-}^{} A_1 dx_1 = \frac{1}{\epsilon} \int_{S_-}^{} \partial_1 \theta dx_1 = \frac{1}{\epsilon} \int_{S_0}^{} \partial \theta. \]

where \(A_1 = \frac{1}{\epsilon} \partial_\theta \) is derived from the boundary condition \(D_\phi \phi = 0 \).

In fact, substituting \(\phi = |\phi| e^{i\theta} \) into \(\partial_\phi |\phi| = 0, A_1 = \frac{1}{\epsilon} \partial_\theta \), one obtains

\[e^{i\theta} \partial_\phi |\phi| + |\phi| e^{i\theta} \partial_\theta = i\mathcal{A}_1 |\phi| e^{i\theta}. \]

Because of the cylindrical symmetry in the \(S_- \) annulus, \(\partial_\mu |\phi| = 0 \), we have \(A_1 = \frac{1}{\epsilon} \partial_\theta \). Then,

\[\Phi = \frac{1}{\epsilon} 2\pi a = \frac{2\pi}{\epsilon} \quad (a = 0, \pm 1, \pm 2, \ldots). \]

In Homotopy theory, change of variable by the following means

\[\int_{S_-}^{} A_1 dx_1 = \frac{1}{\epsilon} \int_{S_0}^{} d\theta \]

can be regarded as a mapping \(\phi: x \in S_- \rightarrow \phi(x) \in S_- \), \(\phi \) maps annulus \(S_- \) in two-dimensional space onto \(n \) multiple annuli in \(\phi \) configuration. Its corresponding Homotopy set is \(\{n\} \), therefore, there is topological character \(n \). It is a measure of the magnitude of the magnetic
flux (in units of $\frac{2\pi}{e}$). The topological invariance of the field configuration can be described by the Homotopy group $(U(1)) = n (n = 0, \pm 1, \pm 2, \ldots)$.

(2). Magnetic monopole

In this case, the Lagrangian density of the field is written as

$$L = -\frac{1}{4} F_{\mu\nu}F^{\mu\nu} + \frac{1}{2} \partial_\mu \phi \partial_\nu \phi - \frac{1}{4} \lambda (\phi^2 - \frac{m^2}{\lambda})^2,$$

the field equation is

$$D^\nu F_{\nu \phi} = -e \phi \partial_\phi D_\phi \phi,$$

$$D^\nu D_\nu \phi = -\lambda \phi (\phi^2 - \frac{m^2}{\lambda}).$$

If we choose a stable finite energy solution, imposing boundary condition $D_\phi \phi = 0$. Equation (4) yields a spherical symmetry solution:

$$\phi^* = -\frac{x}{r} \frac{m}{\sqrt{\lambda}},$$

and there is a stable soliton—magnetic monopole at $r = 0$ (see Figure 2). Following t'Hoof's method to construct a free gauge electromagnetic field, we obtain

$$F_{\mu\nu} = \partial_\mu \phi \partial_\nu \phi - \frac{1}{e} \epsilon_{\mu\nu\rho\sigma} \partial_\rho \phi \partial_\sigma \phi,$$

$F_{\nu \phi}$ can be written as

$$F_{\nu \phi} = M_{\nu \phi} + H_{\nu \phi},$$

where
\[M_{\nu} = \partial_{\alpha} B_\beta - \partial_{\alpha} B_\beta', \quad \delta' = \Phi'/\langle \Phi \Phi' \rangle^{1/2}; \]

\[B_\nu = \delta' A_\nu; \quad H_{\nu} = \frac{1}{e} \varepsilon_{\alpha\beta\gamma} \delta' \partial_\beta \delta_\gamma. \]

\[F_{\nu} = \partial_{\alpha} B_\beta - \partial_{\alpha} B_\beta' + \frac{1}{e} \varepsilon_{\alpha\beta\gamma} \partial_\beta \delta_\gamma. \]

then

The antisymmetry of \(M_{\mu\nu} \) and \(H_{\mu\nu} \) can easily be proved.

and

\[M_{\nu} = \frac{1}{e} \varepsilon_{\alpha\beta\gamma} \delta' \partial_\beta \delta_\gamma = \frac{1}{e} \varepsilon_{\alpha\beta\gamma} \delta' \partial_\beta \delta_\gamma \]

\[= - \frac{1}{e} \varepsilon_{\alpha\beta\gamma} \delta' \partial_\beta \delta_\gamma. \]

hence, the conserved current is

\[K_\nu = \frac{1}{2} \varepsilon_{\mu\nu\rho} \partial_\rho \varepsilon^{\alpha'} = \frac{1}{2} \varepsilon_{\mu\nu\rho} \partial_\rho H^{\alpha'}. \]

and charge conservation is

\[M = \frac{1}{4\pi} \int k_d^3 x. \]

The condition \(\varepsilon + \Omega \) as \(x \to \infty \) leads to

\[\frac{\partial}{\partial t} M = \frac{1}{4\pi} \int \frac{\partial}{\partial t} k_d^3 x = \frac{1}{4\pi} \int \frac{\partial}{\partial x} \varepsilon_k^3 x = \frac{1}{4\pi} \int s_k^3 \varepsilon_k^3 d^3 x = 0. \]

Obviously, \(M \) is conserved.

We use the Homotopy theory to further study the meaning of \(M \) and start with

\[M = \frac{1}{4\pi} \int \varepsilon_{\mu\nu\rho} \partial_\rho (\delta' \partial_\delta \delta_\delta') d^3 x \]

\[= \frac{1}{4\pi e} \lim_{x \to \infty} \int \varepsilon_{\mu\nu\rho} \partial_\rho (\delta' \partial_\delta \delta_\delta') (d^3 x)'. \]

\(x \) is parametrized in the \(S^2_R \) annulus such that \(x = x(\xi, \eta) \)

\[(d^3 x)' = \frac{1}{2} \varepsilon_{\mu\nu} dx'^\mu dx'^\nu \]

\[= \frac{1}{2} \varepsilon_{\mu\nu} \frac{\partial x}{\partial \xi^\mu} \frac{\partial x}{\partial \eta^\nu} d^2 \xi. \]
then

\[4\pi e M = \lim_{n \to 2} \int_{S_n} \varepsilon_{x'y'z'} \frac{\partial \phi}{\partial x'} \frac{\partial \phi}{\partial y'} \frac{\partial \phi}{\partial z'} \frac{1}{2} \frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial y} \frac{\partial \phi}{\partial z} \, dx \, dy \, dz \]

\[= \lim_{n \to 2} \int_{S_n} \varepsilon_{x'y'z'} \phi \partial \phi^2 \partial^2 \phi^2 \, dx \, dy \, dz, \]

where, \(\varepsilon_{x'y'z'} = 2. \)

Note that \(\varepsilon_{x'y'z'} \) is the square of the integrated function.

Hence

\[4\pi e M = \lim_{n \to 2} \int_{S_n} \sqrt{\varepsilon} \, dx \, dy \, dz = 4\pi d, \]

or

\[M = d \frac{1}{e}, \]

\(d \) is the number of times the unit sphere \(S_1 \) is covered by \(\phi(\xi) \) when \(S_2 \) is covering once by \(\phi(\xi, \xi_1) \).

Corresponding to mapping \(\phi \), we have

\[\xi \in S_2 \rightarrow \phi(\xi) \in S_1, \]

let us define the Homotopy set \([\phi]\) of \(\phi \) as \([d]\). Then \(d \) is the topological charge and \(M \) is the topological charge in units of \(e \).

From previous discussion, we found that the stability of soliton assures the conservation of magneton. Magneton \(M \) is determined by the free gauge electromagnetic field \(F \), and the topological charge \(d \) is the magneton number in units of \(\frac{1}{e} \). Both Homotopy theory and classical soliton solution provide description of magneton and its conservation.

The former is simple and conclusive. It indicates that conservation is related to the topology of the field configuration rather than the symmetry of \(L \). In addition, there is no continuous transformation amongst the Homotopy set \([\phi]\). This is an indication of topological invariance which consists of some form of quantization. In fact, the isolated topological charge is a phenomenon of quantization.

B. Soliton solution and Higgs theory
Higgs theory treats magneton and its conservation. It describes the mechanism of obtaining a Higgs particle and a massive gauge vector Boson through the process of vacuum spontaneous symmetry breaking.

(1). Spinor

For convenience, L is written in the following manner

\[L = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} + (D_i \phi)^* D^i \phi + m^2 \phi^* \phi - \lambda (\phi^* \phi)^2, \]

where the potential energy is

\[V(\phi) = -m^2 \phi^* \phi + \lambda (\phi^* \phi)^2. \]

At \[|\phi| = \frac{m}{\sqrt{2 \lambda}}, \] the expectation value of the quantum field is nonzero.

\[\langle 0 | \phi | 0 \rangle = \frac{m}{\sqrt{2 \lambda}}. \]

hence, vacuum spontaneous symmetry breaking occurs.

\[\phi = \frac{1}{\sqrt{2}} (\phi_1 + i \phi_2), \]

Rewriting

let \[\langle 0 | \phi | 0 \rangle = \frac{m}{\sqrt{\lambda}}, \langle 0 | \phi_1 | 0 \rangle = 0. \]

Define a field such that \[\phi_1 = \frac{\phi}{\sqrt{\lambda}}, \phi_2 = \phi_2, \] in vacuum

\[\langle \phi_1 \rangle = 0, \langle \phi_2 \rangle = 0. \]

The transformed \(L' \) contains covariant derivative, square and quadratic part of \(\phi \):

\[|D_i \phi|^2 + \frac{m_i^2}{2} (\phi_1^* + \phi_1^2) - \frac{1}{4} (\phi_1^* + \phi_1^2)^2 \]

\[= \frac{1}{2} (\partial^2 \phi_1^* + e A^* \phi_1^2) + \frac{1}{2} (\partial^2 \phi_2^* - e A^* \phi_2^2) + \frac{1}{2} e^2 \frac{m_i^2}{\lambda} A A^* \]

\[- m^2 \phi_1^2 - \sqrt{\lambda} m \phi_1^* (\phi_1^2 + \phi_1^* + \phi_2^2) - \frac{\lambda}{4} (\phi_1^* + \phi_1^2)^2. \]
In this equation, there is no \(\phi^2 \) term. The gauge field \(A_\mu \) has mass, however, its physical meaning is still not clear because of the presence of \(A \) and \(\phi \) terms. Let

\[
\phi'(x) = \exp\left(-i\xi/\frac{m}{\sqrt{A}}\right)\phi(x) = \frac{1}{\sqrt{2}}\left(\frac{m}{\sqrt{A}} + \eta(x)\right),
\]

\[B_\mu(x) = A_\mu - \frac{\sqrt{A}}{m}\partial_\mu\phi(x),\]

where

\[
\phi(x) = \frac{1}{\sqrt{2}}\left[\frac{m}{\sqrt{A}} + \eta(x)\right]\exp\left(i\xi(x)/\frac{m}{\sqrt{A}}\right)
\]

Under the transformation \(\phi \to \phi' \), \(D_\mu \phi \to D_\mu \phi' \),

\[
L' = \frac{1}{2} |D_\mu \phi'|^2 + \frac{1}{2} m^2 \phi'^2 - \frac{1}{4} \phi''^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}
\]

Note \(L \to L' \) as \(\phi \to \phi' \). SU(2) symmetry of \(L \) is breaking into U(1) symmetry associated with \(L' \). Symmetry of system's Lagrangian is broken. However a clear physical meaning of the scalar Higgs fields \(\phi' \) and free gauge potential \(B \) is assured. This is because vacuum spontaneous symmetry breaking and gauge field assure the direction of \(\phi' \) be fixed in dual space. \(\xi'(x) \) is absorbed by \(\eta(x) \) and the remaining term is \(\eta'(x) \) or \(\phi' \). Also \(B \) is a physically observable free gauge potential.

Let us discuss the relation between Higgs theory and classical soliton solution. We know the soliton solution is determined by equation of motion and boundary condition. On the other hand, Higgs theory states that equation of motion and boundary condition are invariant under SU(2) \(\to \) U(1) symmetry breaking.

In fact, when the equation of motion is under transformation \(\phi \to \phi' \),

\[
D_\mu \phi \to D_\mu \phi'
\]

let \(U = \exp\left(-i\xi/\frac{m}{\sqrt{A}}\right), \phi = U \phi' \), therefore

\[
D_\mu \phi = D_\mu \left(\exp\left(i\xi/\frac{m}{\sqrt{A}}\right)\phi'\right) = \partial_\mu \left(\exp\left(i\xi/\frac{m}{\sqrt{A}}\right)\phi'\right) - ieA_\mu \exp\left(i\xi/\frac{m}{\sqrt{A}}\right)\phi'
\]

\[
= \exp\left(i\xi/\frac{m}{\sqrt{A}}\right)\partial_\mu \phi' + \exp\left(i\xi/\frac{m}{\sqrt{A}}\right)i\frac{\sqrt{A}}{m}\phi' \frac{\partial \xi}{\partial x^\mu} - ieA_\mu \exp\left(i\xi/\frac{m}{\sqrt{A}}\right)\phi'
\]

\[
= \exp\left(i\xi/\frac{m}{\sqrt{A}}\right)D_\mu \phi' = U^* D_\mu U \phi'.
\]
from Equation (2), we have
\[D_i D^i \phi' = \lambda^i (\phi' \phi'^* - \frac{m^2}{\lambda}) \, . \]

Since \(D_i \phi = 0 \), it can be seen that
\[D_i \phi' = U D_i \phi \, . \]

As a result, the equation of motion and boundary condition are invariant under Higgs mechanism. This assures the invariance of the soliton solution. Based on a particular \(L \), Reference 1 discussed the correspondence between magneto-symmetry and incomplete symmetry of secondary order. In this section, we started with Higgs theory and obtained the same conclusion. Similar results may be obtained in \(D=3 \) dimensional case of magnetic monopole theory.

(2). Magnetic monopole

\(L \) is written as:
\[L = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} + \frac{1}{2} D_\mu \phi D^\mu \phi' - \frac{1}{4} \lambda (\phi' \phi'^* - \frac{m^2}{\lambda}) \, . \]

Based on the gauge condition of Higgs mechanism, the third component of \(\Phi \) in isospin space is chosen as the direction of Higgs field. That is, \(\phi = (0,0,1) \) then \(B_\mu = \phi_a \lambda^a = \phi^3 \), also
\[F_{\mu \nu} = \partial_\mu B_\nu - \partial_\nu B_\mu + \frac{1}{2} \epsilon_{\mu \nu \sigma} \partial_\sigma \phi \partial_\tau \phi' \]
\[= \partial_\mu B_\nu - \partial_\nu B_\mu \]

\(F_{\mu \nu} \) are the potential and free gauge electromagnetic field. \(F_{\mu \nu} \) satisfies the Maxwell's equations. The physical meanings of \(\hat{\psi} \), \(E_\mu \) and \(F_{\mu \nu} \) are assured by Higgs mechanism and they are physically observable particles. \(L' \) is written
\[L' = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} + \frac{1}{2} D_\mu \phi D^\mu \phi' - \frac{1}{4} \lambda (\phi' \phi'^* - \frac{m^2}{\lambda}) \, . \]
Transformation $L \rightarrow L'$ is a form of $SO(3) \rightarrow U(1)$ symmetry breaking. It can be proved that due to Higgs mechanism, equation of motion Eq. (4) and boundary condition are invariant, thus

$$D;D'\phi = -\lambda\phi(\phi^2 - \frac{m^2}{\lambda})D;\phi = 0.$$

Hence, the corresponding classical field soliton solution is also invariant. Once again, the connection between soliton solution and Higgs theory is observed.

References

Abstract

The two- and three-dimensional nonlinear Higgs field ϕ' is used as an example to investigate the theory of magnetic soliton and the connection between the homotopy theory and Higg's theory. It is verified that, in a spontaneous and symmetrical breaking, because of the symmetry of electromagnetic gauge subgroup, there exists correspondence between the conservation of magneton and the incomplete symmetry of secondary order.