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Influence of Alzo3 on Properties of

Yttria Stabilized erconIa—Al203 Composites

1. Introduction

1,2 and ultrafine powders have

The use of improved processing techniques
reduced sintering temperatures for zirconia from >1700°C to (MOO'C?_6
Microstructures resulting from this lower temperature sintering show smaller
and more uniform grain sfzes, with resultant higher strengths and fracture
toughness?'8

Additives such as Mg0, Si0,, Fe,05, B,0;, TiD, and Bi,03 have been
investigated as sintering aids for zirconia?’10 various theories as to the
mechanism by which these intentionally added impurities enhance the
densification have been advanced!!:12 Most involve a segregation of the
impurities to the grain boundaries, where a comparatively low melting
eutectic may be formed, resulting in liquid phase assisted stnterlng!0
Another non-conflicting analysis contends that a major effect of the grain
boundary impurities is to increase the pore drag force, minimizing pore-grain
boundary breakaway and entrapped poroslty!°'|3

Use of A|203 as an additive to the yttria-stabilized zirconia (YSZ)

4-6,14,15 .04 found to be an

system has been investigated by many authors
effective sintering aid. Bernard's6 analysis of the mechanism of Al203
assisted densification of YSZ held that A13* substituted for zr4* in the YsZ
lattice (to = 0.1 mol%) thus enhancing the sintering rate by accelerated

cation diffusfon. Butler and Drennan!4

proposed that the presence of A1203
particles in a YSZ microstructure would scavenge the grain boundaries of SiO2
fmpurities, enabling faster grain boundary movement and therefore enhanced

densification. Buchanan and Vilson5 noted the presence of an intergranular

I1quid phase with Al,0, added to YSZ and a nonlinear relationship between
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density and sintering time at different temperatures, indicative of particle

rearrangement in the presence of an intergranular liquid phase. Buchanan and
Wilson also noted excessively large Alzo3 particles (with respect to the YSZ

grain size), often with significant adjacent porosity.

The well documented strength enhancement of Zr02 ceramics by a
transformation toughening process is considered to be due to the mechanisms
oF|6: 1) energy absorption near an advancing crack tip resulting from a
martensitic (tetragonal! + monoclinic) phase transFormationV'18 and 2)
nucleation of matrix cracks and residual stresses due to particles which are
transformed upon cooling before the specimen is loaded!9 This toughening
process has been found to take place, by Tsukuma et al., in 2 - 3.85 mol% YSZ
with up to 40 wt% A|203 added?o The authors attributed an observed increase
in strength and fracture toughness with added A1203 content to suppression of
crack initiation within the YSZ.

Matsui et al.?l have addressed the phenomenon whereby the tetragonat -+
monoclinic transformation is hindered by a small grain size microstructure
(grains < 0.5 um). This phenomenon has been speculated to occur as a result
of 1) progression of the transformation being interrupted by grain
boundaries; and 2) difficulty in nucleation of the monoclinic phase due to
the small grain size. A shear deformation often accompanies the
transformation due to the cooperative movement of ions, hence a critical
grain size is required for the transformation to take place. Another effect,

22

which has been noted by Rao,"~ is that u-A|203 particles can plastically

deform in response to matrix strains in the partially stabilized ZrO2

lattice.
In this study the effect of increasing amounts of submicrometer A|203
additions on the structure, rupture moduius, fracture toughness, and dc

conductivity of a 4.5 mol% YSZ was investigated. The sfze and distribution
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of the Alzo3 phase regions and other microstructural features of the

composite structure as a function of added A1203 were also studied.

BN

11. Experimental

’
o
»
i
0l

The starting powder used in this study was an 8.0 wt% (4.5 mol%) yttria-
stabilized zirconia (YSZ), typical lot analysis and average particle size
distribution for which is given in Table 1. X-ray diffraction analysis of
the powder revealed only the cubic phase. The primary additive to the YSZ
was a 0.03 um A1203 floated powder, but other A1,03 precursors including
oxalate [AIZ(C204)3], hydroxide powder or gel [AI(OH)3]. were initially
investigated, as shown in Table 2. After Scott et a!.? residual chlorine
present in the YSZ powder was reduced in concentration from 1.0% to =0.05% by
washing with distilled water.

Fifty gram batches were prepared by adding 0-7.5 wt% AI203 to the washed
YSZ and ball milling for 12 h. Polypropylene jars and zirconia ballis were
used to minimize contamination, and a dispersing agent [2 m| Menahden (Z-3)
fish oil] was added to each batch along with 200 ml of a 60:40 volume
solution consisting of isopropancl and distilled water. A binder mixture
consisting of 3 wt% PVA and 3 wt% carbowax 4000 was then added and milled for
an additional 1.5 h immediately precedent to spray drying of the suspension,
Petlets 1.6 cm in diameter and approximately 1.2 mm thick, and 3.1 x 0.4 x
0.4 cm bars were cold pressed at 220 MPa and 280 MPa respectively. The
samples were fired in a MoSi, resistance furnace on Zr0, setters in air
ambient. Sintering was carried out in the range 1200-1350°C for 0.5-24 h.

Sintered densities were measured by water displacement and He pycnometer

techniques and theoretical densities were calculated using the cell

dimensions determined from X-ray powder diffraction of the fired samples.

The theoretical densities of samplies containing Alzo3 additions are given in




v
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Table 3. These were calculated using a series mixing formula since the
solubility of A|203 in YSZ is quite Iow?'6

Samples prepared for modulus of rupture tests (bars 2.5 x 0.4 x 0.2 cm)
were polished on the side of tensite stress during breaking. Polishing was
carried out with 45,30,15,6,1 and 0.25 um diamond paste after initial
grinding on a 70 um diamond wheel. The lengthwise edges along the polished
side were beveled at 45° and the resulting faces (#0.5 mm) were also
polished. Strength values were determined with an Instron model 1125
strength tester equipped with a jig for four-point loading. Inner and outer
spans on the jig were 2.3 and 1.2 cm, respectively, and a strain rate of
0.1 mm/min was used. Fracture toughness (ch) measurements were made with a
Tukon microhardness tester using the Vickers and Knoop indenters at loads (P)
of 2.0, 2.5 and 3.0 kg to obtain values for the crack size, Co and modulus of

elasticity to hardness ratio (E/H), respectively. This loading range is

considered adequate for the crack sizes measured according to Nihara et al?34
The fracture toughness calculations were made from the Formula:245
_ 172 3/2
ch- 0.016 (E/H) P/Co (1)

A (Dupont 1090) Thermal Analyzer System was used to measure the thermal
expansion of the samples. DC resistivity measurements were made with a
(Beckman L-8) Megohmmeter up to %300°C; above 300°C, measurements were
continued using a (Hewlett Packard 4276A) LCZ Meter at 100 Hz to minimize
ionic polarization effects. Coupling of the data from the two temperature
regimes resulted in a linear curve. Samples were electroded with Pt paste
fired at 1100°C prior to measurement.

Microstructures of the polished and thermally etched samples were
analyzed using SEM (JEOL 35C) (ISl DS130), STEM (Vacuum Generators HBS), TEM
(Phillips 4007 E.NM.) and EDS (Kevex)(EDAX) microanalysis techniques. X-ray

diffraction analyses were carried out on fired samples ground to -100 mesh

s 1,.:.':,.-:'-'.‘;'-.'.; .
S \‘ s “'d‘

o, o
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(also on fired pellets, fracture and polished surfaces) using a (Philips
3100) X-ray Generator with a (APD 3520) Diffractometer Control System. Scan
speeds of 0.5 - 2.0° 26/min were used. Grain size measurements were made
from SEM photomicrographs of thermally etched and polished samples, using the

256

Mendelsohn line intercept method? TEM samples were prepared by grinding and

L. polishing a 3 mm diameter sample to %70 um thickness, followed by dimple

grinding the center to =15 um and finally by Ar ion milling.
hi Raman spectra were performed in a pseudo-backscattering arrangement with
d LV cm'l resolution using a homemade 1 m double monochromator with 200 mm

siits. Laser excitation was provided by the 514.5 nm line of an argon-~ion

laser (Spectra-Physics).

IIl. Results and Discussion

Property data obtained on the sintered YSZ samples containing the
different size (0.3-10um) A1203 powders (0.325 wt%) al) showed an increase in

density (2.0 to 5.0%), MOR (10 to 50%) and K (25 to S50%) compared to the

fc

base YSZ sample. The magnitude of the increase was found to be inversely

proportiona)l to the particle size of the A1203 precursor. Hence, in terms of

T
v..'lllqlfl.

optimum densification and properties, the 0.03 um floated A1203 powder was
determined to be the most effective additive to the YSZ, a result to be
expected in view of the similarity in particle size. SEM photomicrographs in
Figure 1 show morphologies and particle sizes of the YSZ and 0.03 um floated
A1,05 powders (the main alumina additive used).

Figure 2 shows densification behavior for the YSZ + A|203 (0.325 wt1)
N samples as a function of sintering temperature and soak time. The minimum
time for achieving >39% ThD was found to be 1.5 hours at 1350°C. but,

although fully dense, these samples showed evidence of discontinuous grain

growth. Examination of the sintered microstructures to determine the
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sintering time and temperature necessary to achieve full densification with
minimal discontinuous grain growth found 8 h at 1300°C to be an optimal
condition?® Data for the YSZ + A1,0, (0-7.5 wt®) samples sintered under
these conditions (1300°C/8 h) are given in Table 3. Fired densities >39% ThD
and shrinkages s25% were achieved. Density and grain size effects as a
function of soak time were previously reported?

Microstructures resulting from selected samples in Table 3 are shown in

n e e o

Figure 3 for polished and thermally etched sections of the YSZ + A1203
% (0-5.0 wt%) samples. Average grain sizes (0.2-0.3 um) were equivalent, but
: the distribution was distinctly more bimodal for the higher content AIZO3
t samples. Also, there was an absence of twinning in any of the YSZ grains, an
b effect normally observed in martensitically transformed monoclinic grains.

This could result from the small size of the grains or to the absence of a

monocl inic phase.

Figure 3 also shows A|203 inclusions as apparently discrete grains, of
size equivalent to the YSZ grains, and fitting into the YSZ matrix with no
obvious reaction zones. Lower magnification photomicrographs, however,
revealed clustering of the A1203 grains (Figure 4), the volume dispersion of
the inclusions (dark areas in the photomicrographs) increasing with A|203
content (0-5.0 wt%). Since the starting size of the A|203 powder was
0.03 um, it is evident that coalescence of the A|203 particles must have
occurred, either during the powder processing phase or as segregation of the
A'203 phase during sintering. The presence of discrete A1203 grains in the
0.325 wt% A1203-YSZ microstructure (Figure 4b) also demonstrated the |imited
solubility of Al,0; in the YSZ structure.

Modulus of rupture data obtained on 4-point bend specimens are given in
Figure 5 for the YSZ—A1203 (0-7.5 wt%) composite samples. Data points for

each composition represented the mean of =20 samples with a range of plus or
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minus one standard deviation, as shown. Even with the spread in data points, ;:j
[SPy o

the MOR values showed a clear trend towards higher values (from a base of i:E
oo

=270 MPa for the YSZ sample) with increasing A1,05 content. oG
S

DA

Fracture toughness data on the YSZ-A1203 composite samples are shown in 33

: 1A

A
el

Figure 6. As with the MOR data, a small maxima was present at 0.325 wt$%

A1,03, (=5.5 MPa-m'/2 up from 4.5 MPa-m'/2 for the YSZ sample), followed by a E&E
more pronounced increase in the fracture toughness to w9f‘|Pa'ml/2 at 3.25 wtl ;EE
A'203. The more pronounced effect of the A1,0; additions on the fracture Ll
toughness compared to the rupture modulus reflects the greater sensitivity of ff
the measured MOR to flaws present in the tensile surface of the test iif
specimens. o

Evaluation of the expansion data showed a decrease in the thermal {g

expansion coefficient (over the range from room temperature to 1000°C) of the o

l"n-.
[
A

R I

YSZ with increasing A1203 additions. Calculated coefficients of thermal

expansion were 11.30 x 10-6 'C—l for the YSZ + 0.325 wt?% A|203 sample and

10.73 x 107% *C”! for the 3.25 wt3 Al1,0; sample. This change would be '{2
expected for the composite material since Alzo3 has a significantly lower ::

gy v
i

thermal expansion (7.2 x 1078 ‘C'l)27 than the YS5Z. No microcracking was S
observed around the A|203 inclusions, which might have resulted from the E:i
tensile state of the surrounding YSZ matrix due to the thermal expansion SE{
—

mismatch. ’
Figure 7a shows a representative TEM photomicrograph (200kX) of the YSZ :f;
{base sampie) grain boundary structure and triple point regions. The EZE
accompanying microdiffraction pattern in Figure 7b (obtained from the !;
condensed beam condition) of the [Ti1] axis shows the tetragonal-like E;;
structure of the grain, although a few grains were also indexed as cubic. SE
The lack of full tetragonality is indicated by the fact that all the expected !;
(211) diffraction spots were not present. Similar to Butler and Drennanl4 LE;
-3
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A|203 grains in the TEM samples (0.325 wt% A|203) were found to contain
relatively electron-opaque spherical inclusions of YSZ as illustrated in
Figure 7c. The inclusions could be resolved and identified by EDS analysis
to a high degree of confidence, since the beam diameter on the (Vacuum
Generators HB5 Field Emission) STEM was ~0.5 nm. TEM analysis of the A|203
regions indicated the presence of "grain boundary dislocations" as
illustrated in Figure 7d. This type of defect can be associated with the
crystal lographic mismatch ordinarily seen at grain boundaries. However, with
the dislocation lines propagating some distance into the Alzo3 grain this
defect state is indicative of deformation occurring within the A1203 grains
in response to the strains generated in the YSZ matrix?2

Figure 8 shows representative EDS [STEM) spectra from YSZ grain centers
(Figure 8a) and from triple point regions (figures 8b, 8c and 8d) for the
YSZ, 0.325 and 3.25 wt? A1203 respectively. 0Data from the analysis of the
spectra are collected in Table 4. For the composition ranges studied, the Zr
content (wt%) remained relatively constant in the grain centers, but
decreased in the triple points with increasing Al203 additions. for Y, the
trend noted was slightly increased concentration in the grain center with
added A|203 and little change in the triple point concentration. Taken
together, the decrease of Zr in the triple point regions and increase of Y in
the YSZ grains would suggest a stabilizing role for Al203 in the YSZ
structure.

The YSZ grains revealed only marginally detectable amounts of Al within
the grains in line with the indicated low solubility of A‘203 in YsZ. In
contrast, the Al concentration in the triple point regions increased
significantly as the Al,05 content was increased. The level of Si detected
was slightly higher than expected from the bulk spectrochemical analysis but

within the accuracy of the EDS technique. The Si content in the triple
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- points also increased with added Al,0;, refiecting both a concentration of

LA RN
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¢
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the impurities in the intergranular region and a greater affinity of Si02 for

ﬂ;"

-
ty-

A1203 compared to Zr02!4 The increased concentration of Si and Al in the

“y
. 2’
I-'-'

(4
<«

triple point regions would indicate the formation of a more glassy

intergranular phase with added A|203.

X-ray diffraction spectra from the sintered YSZ-A|203 composite samples

NN

(0, 0.325, 3.25, 5.0 wt% A1203) are presented in figure 9. The spectra show

a small o(--Alzo3 (202) peak which increased with A1203 content. Splitting of

. e e,
‘. sty
! . S,
! el

.
e 3

the lower intensity peaks {(200) and (311)] was evident in the spectra. The

B
e

location of the peaks matched the multiplicity of crystaliographic planes for

a tetragonal phase [(002) peak intensity = %(200); (220) = %(202); (113) . j
= %(311)]. The x-ray data would indicate the presence of both cubic and ;‘f
tetragonal phases in the sintered specimens, a result which might be expected é;i
from the composition of the starting powders, since the phase diagram for the j‘
Y203-Zr02 system places the 4.5 mol% YSZ composition at 1300°C in the u};
cubic-tetragonal solid solution phase field. However, the lack of Ezi
discreteness between the (311) and (113) peaks, as well as the broadness of 5;
the peaks, suggest a continuum between the two phases rather than a mixture ',;
of discrete cubic and tetragonal grains?® This observation is supported by té.
the TEM electron diffraction analysis, since the tetragonal patterns observed i;
could be interpreted as emanating from distorted cubic grains. From the E¥;
x-ray data, the relative amounts of cubic and tetragona! phases were . ;
estimated. This data is presented in Figure 10, which shows an apparent ;ﬁ;
slight increase in the cubic phase (63 to 67 voi%) with added Alzoa, T;&
indicative of enhanced stabilization within the system and in agreement with Ef;
the EDS observations. Eii
O

The presence of the monoclinic phase was not detected by any of the T?A

above analytical techniques. This is supported by Raman spectra taken of the ZQZ
b
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4 : polished, fired surfaces of 0, 0.325 and 3.25 wt% Alzo3 specimens at room

temperature and at 10 degrees Kelvin, as can be seen in Figure {1. The low-

o

O
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temperature data was obtained to facilitate possible monoclinic phase
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formation since the further a material is taken below its martensitic

transformation temperature, the stronger is its tendency to transform?9 The

S room temperature spectra for all specimens showed distinct tetragonal peaks

» as well as broader cubic peaks, in agreement with Benner and Nagelberg?0 At

v
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low temperature, the cubic phase appeared to be more in evidence. No

’
2

- evidence of monoclinic phase was detected, either in the fracture or polished

3
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surfaces for compositions up to 3.25 wt% A'ZOS' X-ray diffraction spectra of

the fracture surfaces likewise did not reveal any trace of a monoclinic

presence up to 7.5 wt% Al203. The fact that a monoclinic phase was not

developed can be attributed to the small grain size (0.2 to 0.3 um) as

discussed by Matsui et a2l

From the x-ray diffraction data (Figure 9), lattice parameter values

’: were calculated as a function of A1203 content (0-7.5 wt%). These data are

presented in Table 5, which gives the ¢ and a lattice parameters, c/a ratios,

N cell volume, V, and equivalent cubic lattice parameter, 8, as well as the a

values calculated from the (111) peaks. A plot of these lattice parameter )

~ L
:,: changes as a function of Al,0; content is given in Figure 12. The lattice :
- parameter showed an initial decrease, which is consistent with the

- substitution of the smaller A13+ for zZr?* jons in the structure. However, f
i the absolute solubility of A|203 tn 4.5 mol% YSZ remains unresolved as the i;:

x-ray powder diffraction data did not exhibit a clear region within which the

; - lattice parameter did not change. The presence of discrete A|203 grains in Eig
: the microstructure at 0.325 wt% Al,0, content would indicate, however, that :Eé
: ' the solubility limit achieved was below this level. fﬁ
; Figure 13 gives dc conductivity data for the YSZ-Al,0; samples over the ig
- o

------ T N A SRS S SR W St S e D N T . “ T e e~ O S SRR ‘m et wm " et s e e
B 0 B S R T R A S A I S L S O A A




5
p
‘
l‘
1
q‘
)
ﬁ
q
|
s
4
b
]

.."'
>

13

.‘4 l.' »
”,

.ﬂ!E?;J.

Fyl
A

¢
e

]
14

el

temperature range 25-800°C. The curves show two distinct slopes above and

.
-

below approximately 100°C. In the lower temperature regions, no differences

were detected in conductivity between the different samples, attributable to

Ny % %
oo

predominately electronic conduction in this region. However, above 100°C,

X 7o)

where ionic conductivity would be expected to predominate, the conductivity

.y

s 4

o,
v

first increased then progressiveiy decreased with AI203 content, as depicted

5

4
N

in Figure 14, with a maximum occurring for the 0.325 wt% A1203 sample. The

P
P

[l
A,
o W

b

observed increase (one-half order of magnitude) in conductivity with

temperature for this sample is consistent with the limited solubility

o
+ eit
P

“" ‘X . ' s
B

mechanism proposed since the associated defect-substitution of AI3+ for Zr4+

[ 4
At

would result in increased 02_ vacancies and higher oxygen ion mobility. The

5
E
.
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subsequent decrease in conductivity is consistent with the increased presence

R

of interstitial cations and discrete Al203 grains, both of which might be
expected to have a deleterious effect on oxygen ion mobility. In line with
these observations, calculated activation energies from Figure 13 were
approximately 0.9-1.0 eV for the ifonic conduction range and 0.46 eV for the

range below 100°C.

The absence of a monoclinic presence in the composite YSZ-A1203 i~
specimens, as determined by the various analytical techniques used in this E;E
investigation, would indicate that transformation toughening does not play a EEE
role in the increased strength and fracture toughness observed. Enhanced g;%
strength in the unmodified YSZ samples, relative to the cubic ysz3! must be j
attributed, therefore, to the small grain size (0.2-0.3 wm)3? and presence of 2:;

"
a tetragonal phase in the structure. !E:

With Al203 added, results showed discrete Al,0; grains within the -i

) composite matrix, deformation within these grains, and a decrease in Y203 t;a
content in the intergranular phase, indicative of enhanced phase stability !5;
within the system. The role of the Alzo3 in strengthening the composite ZEE
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samples would seem to be: 1) in presenting a barrier to crack propagation by
crack deflection around the dispersed, high modulus second phase, and 2)
crack arrest mechanisms associated with deformation within the Alzo3 grains.
Support for this interpretation is given in Figure 15 which shows SEM
photomicrographs of crack deflection around included A|203 grains within the
YSZ (5 wt% A|203) composite structure. The cracks were generated from

indentations made during the ch evaluations.

IV. Conclusions

1) Additions of up to 7.5 wt% A1,05 (of equivalent particle size) to
4.5 moi% yttria-stabilized zirconia (YSZ) resulted in accelerated
densification. Microstructures obtained consisted of well dispersed Alea
inclusions in the 0.2 to 0.4 um grain size YSZ matrix.

2) Noticeable increases in the moduius of rupture and ch values were
obtained with A'203 additions, maximally in the 3 to 5 wt% range.

3) X-ray diffraction and Raman spectroscopy data revealed the presence of
approximately 35 vol% tetragonal phase which decreased slightiy but remained
essentially stable with added A|203. The presence of a monoclinic phase was
not detected in either the polished or fracture surfaces of the sintered
specimens.

4) Mechanical strengthening of the YSZ—AI203 composites was attributed to
a combination of smali grain size, the presence of the tetragonal phase, and
the discrete AIZO3 inctusions presenting a barrier to crack propagation.
Transformation toughening does not appear to have contributed to the
strengthening.

5) DC conductivity data indicated enhanced fonic conductivity with less

than 3.25 wt% A'203 added.
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YSZ and Al,0

273

Precursor Properties
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*
YSZ

8 wt% Y

203

Average Particle Size: 0.03 um

Surface Area: 50 mz/gm

Crystalline Phase: Cubic

Impurities >0.02 wt%:

HFO
Al,04
Ca0

Mg0

wt
1.6
0.2

0.3

H20
C1
Nazo

Si0

Zircar Corp, Florida, N. Y.
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Properties of Alumina Powders and Additive Effects to YSZ

Table 2
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A)

8)

Q)

D) Al

Alumina
Precursor

AI(OH)3
4
Powder

(calcined)

” "
Al,(Cx0,4)4

(Oxolate)

Al(OH)3
L L]

Gel

{calcined)

203

Floated powder

0.03 um

Avg. P.S.

0.05, 10 um

(Bi-modal)

0.10 um

0.05 pm

0.03 um

Amounts

Added Microstructure

Effects on

0-3.25 wt%

0.325 wt%

0.325 wt%

0-7.5 wt%

Large inclusions
with porosity,

otherwise dense

Some porosity

present

Samples dense

Samples dense,
even at low

psi pressing

J.T. Baker Chemical Co., Phillipsburg, NJ

Pfaltz and Bauer,
Apache Chemicals,

R DA U P S
Sealtndnindei deaed adada 't ad 2’2 2 a2

Inc., Stamford, CT
Inc., Seward,

1
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. Table 3

Sintered Data for YSZ + A1203 Samples

Sample Diametrical
Composition Green Density ThD Fired ThD" Shrinkage
(wtd A1,0,) (g/em?) (g/cm’) 1 %
0.0 2.54 6.04 98.3 25.0
' 0.325 2.55 5.99 99.7 26.4
0.65 2.55 5.98 98.7 24.6
. 1.3 2.55 5.93 98.5 25.4
. 3.25 2.55 5.83 99. 1 25.7
5.0 2.43 5.81 98.5 25.2
7.5 2.39 5.74 95.9 25.8

' Sintering Temperature/Time: 1300°C/8 h
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Table 4

f’ .': sl:‘.

03

EDS Etemental Analysis of Grain Centers

’

and Triple Points from YSZ-AIZO3 TEM Specimens

S

-Z:J,!

nERTEE
7
.

wtd

Sample/Location Zr

=<

v

>
0.

YsZ  Grain 90.9 8.4 0.5 0.2
r Pt 84.6 12.6 2.1 0.7 -
0.325 Grain 90.3 8.8 0.7 0.2

Tr Pt 84.0 12.9 2.2 0.9 w3
3.25  Grain 89.7 9.1 0.9 0.3 e

Tr Pt 82.5 13.1 2.5 1.9

accuracy = 1.0 %
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Table §
Lattice parameters Derived from X-Ray Diffraction
of YSZ—AIZO3 Composite System
Composition c a {c/a) v _gg_' QQLLLLL.’
(wt % A|203) (nm) {nm) (nm)3 (nm) (nm)
0 0.51488 0.51108 1.0074 0.1345 0.51234 0.51425
0.325 0.51526 0.50980 1.0107 0.1339 0.51161 0.51130
0.65 0.51484 0.51012 1.0093 0.1340 0.51169 0.51177
1.3 0.51648 0.51060 1.0115 0.1346 0.51255 0.51255
3.25 0.51746 6.51174 1.0112 0.1345 0.51364 G.51381
5.0 0.51704 0.51064 1.0125 0.1348 0.51276 0.51291
7.5 0.51690 0.51074 1.0121 0.1348 0.51279 0.55284
.

a° calculated
L X ]

ao calculated

from unit cell volume

from (111) peaks
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List of Figures

Figure 1. SEM photomicrographs of as received YSZ (A) and 0.03 um float A|203 powders

(B) showing morphology and agglomerate structure.

figure 2. Densification behavior for YSZ + A1203(0,o325 wt%) sample as a function of

soak temperature and time at 1200-1350°C for 0.5 to 24 h.

Figure 3. SEM photomicrographs of polished and thermally etched sections of

(YSZ + Al203) samples (1300°C/8 h), showing grain size distribution and

AIZO3 inclusions (dark areas): (A) YSZ, (B) YSZ + A1203(0.325 wtl),

(C) YSZ + A|203(3.25 wt®%), (D) YSZ + A|203(5.0 wtk)

Figure 4. Lower magnification SEM photomicrographs of the samples in Figure 3,

showing dispersion of Al,0, grains in the YSZ-A1,0; composite.

Figure 5. Plot of MOR as a function of added A1203 content (0-7.5 wt%) for YSZ-AI203

composites.

Figure 6. Plot of fracture toughness as a function of added A1203 content (0-7.5 wt%)

for YSZ-A1203 composites.

Figure 7. TEM photomicrographs of YSZ—AIZO3 composite samples: (A) representative

photomicrograph of YSZ base sample showing grain boundary and triple point

regions, (B) Electron microdiffraction pattern of typical YSZ grain [111]

axis showing tetragonal-like structure, (C) YSZ spherical inclusions in

YSZ + A1203(3.25 wt%), (D) Al grain with internal and grain boundary

293

dislocations.

Figure 8. EDS (STEM) spectra of the YSZ-A1203 samples representing: (A) YSZ grain

center, (B) YSZ triple point, (C) triple point in YSZ + A1203(0,325 wtl),

(D) triplie point in YSZ + A1203(3.25 wt®)

Figure 9. X-Ray diffraction spectra of YSZ + A1203(0. 0.325, 3.25 and 5.0 wt%)

samples. Splitting of the major peaks indicates combined tetragonal and

cubic phases.
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.............................
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Figure 12.

Figure 13.

Figure 14,

Figure 15.
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Estimated volume fraction of cubic phase in 0-7.5 wt% Alzoa-vsz,
Raman spectra of YSZ + A1,05 (O, 0.325, 3.25 wt%) at (A) 298°K and (B) 10°K
showing primarily tetragonal and also cubic peaks.
Lattice parameter changes in the YSZ-A|203 samples as a function of added
A1,05 content
OC conductivity of YSZ-AIZO3 samples as a function of reciprocal
temperature
Variation of dc conductivity with added Alzo3 to YSZ at 600°C and 450°C for
0-7.5 wtk Al,0,.
SEM photomicrographs of YSZ + 5.0 wt® Al,0; at (A) 4.09 kX and (B) 12.4 kX

magnification showing crack deflection of indentation induced cracking

around included A1203 grains.
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Figure 1. SEM photomicrographs of as received YSZ (A) and %-

0.03 pum float Al_0. powders (B) showing morpholoay “le
and agglomerate étgucture. N
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at 1200-1350°C for 0.5 to 24 h.
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Figure 2. Densification behavior for YSZ + A1,05(0.0325 wt%)
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Figure 3. SEM photomicrographs of polished and thermally etched f:
sections of (YSZ + Al,03) sampies (1300°C/8 h), showing S
grain size distributién and A‘203 inclusions (dark areas): :}E
(A) YSZ, (B) YSZ + A\203(0'325 wt?), Y
- (C) YSZ + A1,05(3.25 wth). (D) YSZ + A1,03(5.0 wt®) o
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Figure 4. Lower magnification SEM photomicrographs of the
samples in Figure 3, showing dispersion of Al, o
. . ) 2¥3

grains in the YSZ-Alzo3 composite.
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Figure 7. TEM photomicrographs of YSZ-Al_0O, composite samples:
(A) representative photomicrog?agh of YSZ base sample
showing grain boundary and triple point regions,
(B) Electron microdiffraction pattern of typical YSZ grain
{111] axis showing tetragonal-like structure, (C) YSZ
. spherical inclusions in YSZ + Alzo (3.25 wt%), (D) A1203
grain with internal and grain bounéary dislocations.
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Figure 8. EDS (STEM) spectra of the YSZ-Al,0, samples representing:
(A) YSZ grain center, (B) YSZ tr?p?e point, (C) triple point

in YSZ + A|203(0.325 wt%), (D) triplie point in
YSZ + A1,04(3.25 wtt)
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Figure 9.

Samples: YSZ + 0-5.0 wt% Al504
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X-Ray diffraction spectra of YSZ + A|20 (0, 0.325,
3.25 and 5.0 wt%) samples. Splitting of the

ma jor peaks fndicates combined tetragonal and
cubic phases.
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Figure 11. Raman spectra of YSZ + Al,0, (0, 0.325, 3.25 wt%) e
at (A) 298°K and (B) 10°K saowing primarily
tetragonal and also cubic peaks.
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Figure 13. DC conductivity of YSZ'A|203 samples as a function
of reciprocal temperature
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