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Preface

In this thesis, techniques are presented which will aid

in the study of scattering from a loaded four arm planar V.

equiangular spiral antenna. Extensive use was made of the

references listed in the bibliography and the serious

reader is encouraged to study those references. By under-

standing the content of the references, and therefore the

structure on which this thesis is built, the reader should

be able to extend the techniques described here to other

equiangular spiral antennas and possibly to other frequency

independent antennas.

I would like to acknowledge my thesis advisor, Dr. A. J.

Terzuoli for extending to me the flexibility required in

this creative effort. I wish also to thank my wife, Kelly,

for her multifaceted support. :

Stephen Charles Moraites
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Abstract

This thesis presents analytical and numerical techniques

for analyzing the scattering from a planar equiangular spiral

antenna loaded at its terminals. The scattering matrix for

, *the loaded antenna is derived as a function of the antenna

load impedance. This derivation is the result of an analytical

-p study of the voltage/current relationship at the antenna

terminals along with an application of a multiport analysis

of the scattering problem. A numerical technique is also

developed that utilizes at different wavelengths common

elements of the generalized impedance matrix of the moment

method solution. This technique provides for rapid computation -

of the scattering properties of the spiral antenna across a

band of frequencies. I .
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CHAPTER I

Introduction

This thesis pertains to the electromagnetic scattering

properties of a loaded four arm planar equiangular spiral

/. antenna,

The spiral antenna is one of a class of antennas with

frequency independent properties (17). As a radiating

device, its properties have been measured (4), analyzed

(17), and exploited (9;21). As a scatterer however, no

published work has yet fully characterized this structure. '

This thesis addresses two questions on the problem of

determining the scattering properties of the loaded four

arm planar equiangular spiral:

I. What effect does the antenna load have on the
scattering properties?

2. How can the special geometry of the symmetric, -:
self complementary, equiangular spiral be used

* in the numerical analysis of this scatterer?

These two questions will be dealt with, respectively, in this

.. thesis by accomplishing the following:

1. An expression is derived which gives the
scattering matrix of the antenna as a function
of antenna load impedance. The expression is
in terms of theoretically determined parameters
and numerically determined parameters (from the
method of moments.)

2. Techniques are developed that decrease the
computation time of the numerically determined
parameters. These techniques are developed
from the special geometric properties of the
antenna.

-. .-
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The importance of antenna scattering theory lies in its

applicability to remote prediction of antenna parameters,

field measurements, radar cross section studies, and electro-

magnetic compatibility. Previous work pertaining to antenna

scattering is readily found in the literature. Various

approaches to studying antenna scattering are

1. spherical mode expansion of the incident field
(3:317-329)

2. multiport systems analysis (6:107-125)

" -" 3. equivalent circuit analysis (5:1-23)

4. receiver antenna current analysis (5:1-23) N

5. numerical computation; e.g. moment method
solution of the field equations (6)

Green's work (5) provides a survey of approaches I through 5

and is a standard reference on the subject.

This thesis approaches the problem of antenna scattering

* by describing the scattering situation as a multiport system

whose parameters are found both analytically and through

numerical computation. A complete analysis of the multiport

requires a knowledge of the port parameters that relate the
r.'

"" port currents to the port voltages. Chapter 2 of this thesis

, presents the derivation of the port parameters for the four

arm planar equiangular spiral antenna. Also within Chapter 2

is information on the radiation properties of the antenna

that is pertinent to the subsequent scattering analysis.

. Chapter 3 formulates the problem of scattering by a loaded

four arm spiral. Here the measurement port is added to the

multiport system and the readcicship among the various port

2
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parameters is explained. The end result of Chapter 3 is an

expression for the scattering matrix as a function of the

scattering antenna load impedance. This expression is in

r. terms of scattering matrices of the antenna with its terminals

shorted in various ways. Each of thesE, "shorted" scattering

matrices can be computed numerically using the method of

moments.

Chapter 4 briefly explains the moment method as applied

S . to the spiral antenna. Techniques are developed that exploit

the very special geometry of the planar equiangular spiral r. -

* and allow one to compute the scattering properties of the

antenna over a band of frequencies with a minimum of compu-

- tation time.

Chapter 5 is the conclusion and includes suggestions on

*the implementation of the analytical tools provided by this

thesis.

3
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CHAPTER 2

The Spiral Antenna

Geometry '..

A four arm planar equiangular spiral antenna is drawn

in Figure 2.1. The spirals forming the edges of the arms

are described by the polar equation 2.1 (4:182; 17:14)

O=E 0+[tan(A)]Lnp (2.1)

or

p=a exp[a(O-S)] (2.2)

where p and 0 are standard polar coordinates and the remain-

ing constants are parameters that determine the expansion

rate and angular position of the spiral. From the form of

equation (2.1), it is apparent that two angles, Oo and A

* completely define the geometry of an infinite spiral. The

performance of an antenna whose geometry is entirely deter-

mined by angles is independent of frequency (17:13). If the

arms of an infinite spiral antenna are truncated so as to be

physically realizable, the spiral structure still performs

.. in an antenna sense -- as the infinite structure does,

provided that the frequency of operation remains within

-:i certain bounds.

4. -
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Bandwidth

Frequency independent performance of the infinite spiral

antenna means 1) the antenna terminal impedances are indepen-

dent of frequency; and 2) the radiation pattern is independent

of frequency (17:13). Over the bandwidth of the truncated

spiral antenna, the antenna's impedance and pattern will be

treated as independent of frequency. Using the frequency

bounds stated by Mosko (9:98), the upper limit is given by

Xu=rd, and the lower limit by xL =7d 2 /3 where d, and d2are as

shown in Figure 2.1. (These bounds permit multimode operation).

Thus the antenna shown in Figure 2.1 has a 6 to 1 frequency

range.

Terminal Impedances

Before considering terminal impedances of a four terminal

spiral antenna, one should be familiar with the impedance rela-

tionship of single port planar complementary antennas. (Planar

complementary antennas are a pair of structures that when

superimposed, one on the other, exactly fill a plane with no

* overlap.) Given two such antennas:

" ZZ c=n2/4=(6O)2 (2.3)

where Z and Zc are the input impedances of an antenna and its

complement (2:S371), and n. is the characteristic impedance

. of free space. If an antenna is its own complement, then

Z=Zc =60r. Deschamps extended this relationship to multi-

Lterminal, self complementary structures (2). Referring to

6
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Figure 2.2, which shows the voltage and current conven-

tions for a four terminal spiral antenna, the relationship

between voltages and currents is, from Deschamps,

UO rCO CI C2 31rLO
U I 3 C0 CI C2 1 (2.4)
U 2 C2 3 COC o 1V21
LU 3 1 CI2 C3 CojL3

or

. [u]--[&][L ] (2.5)

Application of Deschamps' work to a four arm planar equi-

angular spiral antenna requires evaluation of the following

transformation:

Po 11 1 o-'.

L -I1 -I (2.6)
o".I -I - ""

where

" &m =n0 14sin(mr14) m=1,2,3

o =0

The reader should refer to reference 2 for details of the

derivation of equations (2.4) and (2.6). The evaluation of

equation 2.6 yields

"" =(2.7)

"- -
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Figure 2.2. Terminal Voltage and Terminal Current Convention

From a mathmatical point of view, the system of equations 2.4

has meaning only on a hyperplane imbedded in four-space. In

the derivation of equation 2.4, the requirement was made that

. ui=O and -Lii=-O. Therefore, there are only three independent

coordinates of the vector space spanned by [u]or [L] . It -

. will prove useful to apply a transformation of coordinates

that allows one to arbitrarily fix the value of one transformed

component of [L] to some convenient value. The transformation

is a simple rotation in four-space about the origin. Its

physical interpretation is shown in Figure 2.3. The four

terminal currents are represented by the vector [i] Now

- define branch currents [I] such that

Lo 1 0 0 -r :::

i 1A 0 0 1 (2.8)
L20 -1 1 0'.12

H 8.*-**.-.... .-.-..



erminals numbered clockwise 0 thru 3S
Ot0 100

TJIV 3  V,
-. -- V2 --- 7

K :03 L2 2 32

* Figure 2.3. Branch Current and Branch Voltage Conventions.

or

[L ]=[T) [iJ (2.9)

And since the matrix relating [L] to [I] is of rank three,

the complete solution for [I] can be expressed as (9:211,219)

" Io  I Lo

I, i~o + 'L
= + (2.10)

LI 3- +l -i +LO_

which shows that [13 1may be arbitrarily fixed.

To simplify the subsequent analysis, the voltage vector

NIj will be transformed also. A new vector as shown in

Figure 2.3 is defined by

9
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1 -1 (2.11)

V, 0 1 -1 0 U2

or

[VI - [TlF[u] (2.12)

Equations (2.5), (2.9) and (2.12) can be rewritten as

[VI=[ZI 1I (2.13)

where

[Z1=[T J I[T] "

Evaluating (ZI:

Zo Zi Z2 Z3

ZZ 0 Z (2.15)

2Z3 Z0 LZ.'" ~~~z2 z 3 oz ";
Z Z2 Z3 ...

where

2, 2
Z 2 2 -3- (2.16)

The physical system described by equation 2.13 is shown in

Figure 2.3.

Radiation Modes

By proper phasing of the terminal currents,[i] , one

.-.. can obtain radiation patterns that are suitable for direction

finding systems (9). Selection of three orthogonal phase

schemes for the terminal currents leads to three independent

modes of radiation. Two of the modes are shown in Figure 2.4.

10i 4..-4 -"-":*44* ~ ~ . . - . . -..- *4.4 - .. '. ~ ~ 1~



qr MODEl -J

MODE 2o

Figure 2.4. Radiation Patterns of Four Arm Spiral in Plane'
Perpendicular to Plane of Antenna. Phase of

Source: (9;92)Terminal Currents Shown to Right of Patterns.

Feed Point Configuration

To obtain the two modes shown in Figure 2.4, one must

choose a method of feeding the antenna. Either mode could

be created by feeding the structure with two balanced trans-

mission lines. Figure 2.5 shows a feed method for either

mode. This method, however, cannot be used if both modes

are simultaneously required. If both modes are required,

than the feed method shown in Figure 2.6 can be used.

Physically, this method can be realized by running a coax

cable to each terminal and connecting the outer conductors

together. The impedance, Z, in the figures represents the .

internal impedance of the source as seen from the antenna.

11-.
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pMODE I MODE 2

jE 

L

4~ >Z

Figure 2.5. Antenna Feed Networks for Single M~ode
Operation.

-E* E

Figure 2.6. Antenna Feed Network for Multi-mode
Operation. l!ode 2 Shown. Other Modes are
Created by Changing Generator Phases.

I, 12
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When receiving energy from space, the antenna also sees an

impedance, Z, caused by the receiver input impedance and

the transmission line between the receiver and the antenna.

Throughout this thesis, the impedance seen at the antenna by

looking back through the transmission line and into any

receiver circuitry is called the antenna load impedance.

Chapter 3 is devoted to the effect of this load impedance on

the antenna's scattering properties. The input impedance for

a multiterminal antenna depends on the mode being radiated

(9:100). From reference 9, or by use of equation 2.4, mode 1

antenna impedance is 133 ohms. Mode 2 antenna impedance is

94 ohms. This is the impedance seen by each generator (and

generator impedance) in Figure 2.6.

Radiation Pattern

In free space, a planar spiral antenna radiates on both

sides of the plane of the antenna. This thesis, however,

deals with an antenna mounted on the surface of an absorbing

cavity. Such antennas are constructed to eliminate reflec-

*: tions from structures behind the antenna. The polarization .

is elliptic such that the electric vector rotates as the

spiral expands (17:40).

%'%
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CHAPTER 3

N The Loaded Spiral Scatterer

The theory of scattering from a loaded four arm equi-

angular spiral antenna will be developed from more general

K cases of electromagnetic scattering. The formulation of the

theory follows Harrington (8) but is modified so as to

pertain to backscattering only.

Scattering, No Load

Consider a measurement antenna and the environment

around it as a single port network shown in Figure 3.1. By

removing any scatterer of interest from the environment and

relating Vr to Ir, a specific ratio, Z rr is obtained. Under

scatterless conditions:

VO/I =Zr (3.1)

-*. Where the superscript indicates no scatterer of interest

* is present.

+ Antenna
V plus

Environment

Figure 3.1. Single Port Representation of Scattering
*2 Situation.

14
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Z0  is the input impedance of the measurement antenna. Nowrr
S

if a scatterer is placed in the environment, the voltage V r

and the current Ir are related by

vs/I =Zs  (3.2)r r rr

Within the network of Figure 3.1, a wave is radiated from

"" the measurement antenna, impinges on the scatterer and is

scattered, with some of the scattered energy appearing as

a voltage,AVr , at the terminals of the measurement antenna:
a".o -

r.

AV =VS-V0  (3.3)

A measure of the scatterer's effectiveness in reflecting

energy back to its source is AZr, the scattering impedance.

AZr AV r/lr  (3.4)

The familiar measure, radar cross section,a , is related to

AZ r as follows (7:167)
oa.

_ 2XR 2  2
a =4T- AZ (3.5)

fo =, r

where

R distance from scatterer to measurement antenna
o characteristic impedance of free space

..- t = effective length of measurement antenna
X = wavelength of incident energy

In the analysis to follow, a is an inadequate measure of the

scatterer since phase information is lost in its definition.

SNote that the development so far also assumes some fixed

15
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polarization for both the incident and scattered energy,

the two being not necessarily the same. A more complete

description of the scatterer is a scattering matrix (8:619) .
PPi s
which relates the incident field E to the scattered field E

[ESIR exp(jkr) S 11 S12 [Ell, (3.6)
ER exp(jkr) = S S EJ

where the subscripts refer to two orthogonal polarizations.

Smn and AZr are related by

S exp(2jkR) AZr (3.7)Smn = ro

* Note that the dependence of AZr on m and n; that is, on the

polarization of interest, is not explicit but is just as

definite as in the S parameters.

Loaded Single Port Scattering

Now, returning to the network representation of the

scattering problem, one can conceptualize the antenna scat-

tering problem by adding an additional port to represent the

terminals of the scatterer as in Figure 3.2.

IS.

~AV r _ Vs n Z L  o

Figure 3.2. Single Port Scatterer Added to Network of Fig3.1

16
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A matrix equation relating the port parameters is (7:166) ON

AV AZrr Zrs Ir= (3.8)

where AVr is defined in equation 3.3 and the Z variables

are standard open circuit impedance parameters. If the

scatterer is loaded with ZL at its port, then V =-ZLIs and

equation 3.8 can be solved for the scattering impedance,

AZ (ZL):
r 'L [ z mr

AZ rs sr~AZ (ZL)= = Zrr Z + (3.9)
.r ss L

Loaded Two Port Scattering

If the scatterer has two ports, the relationship among

the port parameters is (8:618)

AV A z z z I
r  rr ri r2 r

V, ir z Z1 z 1 (3.10) A .
,1V 2 Z2r Z, 21 , I 2

or, making use of the load relations, Vi=-ZLii, and solving

for the scattering impedance:

AVr 11 Li 12~ rz Irl
AZ (Z z =- &Zr Li L2 Ir rr-[r rJzZ J ZJ (3.11)

where

Z -=Z. = the open circuit impedance parameter betweenri ir the measurement antenna and port i

Zij = open circuit impedance parameter between port i and j

7 = load impedance at port i
AV =V s -V °

r r r

17
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V ZL

:'2 -

2- L 2°

4 Figure 3.3. Network Representation of Scattering by a Two
Port Scatterer Loaded with ZLl and ZL2.

¢-. Equations 3.10 and 3.11 can be used to represent the loaded

four arm spiral antenna only if a definite terminal-to-port
iI I

assignment is made and only if no self complementary two port

theory (2:S377) is applied. (Because all the terminals meet

oi at a point, the feed configuration at one port, however it's

defined, will affect the feed configuration of the other port

when the complement of the antenna is considered. The four

terminal equiangular spiral is not a self complementary two

.. port structure.)

. Multiterminal Loaded Scattering
Z6

As explained in Chapter 2, a feed system more versatile

than the two port may be required. The network representing

the four terminal scattering system is shown in Figure 3.4.

18
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T P- Y.-

V 0 %

+ -ZL 
i.

. ._ Figure 3.4. Network representation of Scattering 
by a Four ,.

• " Terminal Loaded Structure. (Measurement port on left) .-

*.' -. Making use of equation 2.3, one can arrive at the system of .--j

: equations describing Figure 3.4.-

-rr Zr Zr r r r

orZ Zo Z i Z ZL 
T0

. "V 1J Z ir Z o Z i Z 2 I i] ( 3 .1 2 ) '

V2  JZ Z2  Z 3  Z 0  Z1  t" "''.-
r 

+ r,+

ZL 2  'rLrL I z~z k

ZL 

3

""and 

'[ 2 ] lZ +Z Z ZZ Z z ZZ- Z Z l iZZ I

Term0r ina Loade Li utue 2 Mauen por Lon let

Vr Z -Z Z +Z +Z Zi -Z r211
-T ior 3 L 0 L Li Z2 Z 311
r, Z 3 L2 0 L3 Z2 1, L3 .12)

" - IZ Z-Z o Za Z -Z a Zo+Z +ZL ,.-'

iL'

V2r L Lo 2 Z 3 L3 0 Lo L3

19 
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Parameter Study

Before proceeding further to express equations 3.13 and

3.14 into more practical forms, one can gain insight into

antenna scattering by considering the meaning of the various

terms in the preceeding equations. With reference to equation

3.8, the parameter Z is related to the scattering antenna -- F. rs.-

power gain G (8:620):

G=CZ rs12  (3.15)

where the constant of proportionality includes measurement

antenna parameters, distance, etc. so that G is a character-

istic only of the scattering antenna's radiation properties.

Another parameter, AZrr is the value of AZrwhen ZLOO.

'A Z rr= r (0) (3.16)

In the analysis to follow, Z and its multiport counterparts

- are unknown quantities and it is convenient to omit them from

the equation. (Using the method of moments, described in

* .Chapter 4, calculation of Zrs requires the introduction of

generators and wires in the antenna model. This addition is

undesirable.) Solving for Z in terms of open and shortt% rs '-

circuited scattering impedance yields

Z2 S =Z (AZr(oo) - AZ (0)) (3.17)
rs ss r r

Substitution and further manipulation lead to expressions

similar to those derived by Green (5:24-26):

20



G=C Zr() - AZr(O) (3.18)

ZLAZr (0) + Z ssAZr(O)

AZ r (ZL)=- r ss r (3.19)
Zss L

Ssr[AZ AZ(O)I(ZL Z
AZ (ZL )=AZ (Zss) + - A (3.20)

r r (Z5 5 + Z *)(Z + ZL)
ss ss ss L

Equation 3.20 allows one to define a structural and antenna

component of the scattered field. AZr(Z of the right

hand side is termed the structural component and the remainder

" of the right hand side is termed the antenna component since

it goes to zero when the antenna load impedance ZL equals the

conjugate of the antenna input impedance, Z .

Referring now to equation 3.10 describing the two port

representation, Z rand Z r2 are related to the radiation

properties from their respective ports of the scattering

antenna. When I =0, the voltage at the measurement antenna is
r

V=I + I
r 1 r; i 12 Zrz (3.21)

so

G=CII Z + I Zr 2  (3.22)

Again, solving for Zri in terms of open and short circuited

scattering impedances:

Z = Z zLAZr(O) -AZr(00o,)] (3.23)

I--

21
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Z Z [zAz . (3.24)

therefore

G=C -4z 1 [Az(o) -AZr(0oo-)]I I + -4z 2 [AZ roo) - r 0,) 1 (3.25)

Further manipulation of the two port equations yields

rAZ r(ZLi ,ZL2

z L ZL Z (oo,oo)+ZsZL2 AZ(0') +Z sZL AZ(' O) +(Z-Zx)AZ(O'O) (3.26)

(Zs+Z n XZ +ZL2)Z'

where

Z s = Z z 
= 22 of equation 3.10

Z(Z 1 2= Z 21 of equation 3.16

Note the assumption that the ports are defined such that
S=Z22 and Z 2=Z It can be shown from equation 2.13

1 1 2 21 2 2 1

that the two port impedances are real. Therefore, a conjugate

" load impedance is real and equal to some Zi . Thus

• r.(...)z [ Z(e,o) + AZ(o,oo)1 + zi[Az(oo,oo)+ Z(0,0)] (3.27).. z Z i Z]'  (3.27) '..
S1 2(Z s+Zi) i'

which is the structural component of the scattered field for

the particular terminal to port assignment. Note that, unlike

a single port scatterer, a two port scatterer does not have

a unique structural scattering component since the terminal

configuration and so the conjugate load, Zi, can vary.

22



I . Referring finally to equations 3.13 and 3.14 describing

the more general loaded four terminal structure, the transfer

impedances Z ri are analogous to their two port counterparts:

Z 2 =Z [AZ - (3.28)ro Iool

.Z z --Z [AZ r  -AZr1 ] (3.29) ..;

0Z2 =Z 0 [AZr - AZ0 ] (3.30).

Z2 =Z[AZ -
(3.31)

r 0 j A Zrj

:':: and .- _

G I r + Z + I r + rZ0 (3.32)

In order to express equation 3.13 in terms not containing c.

- Zri , one can make use of the results of Chapter 2 and let ,.-

* 13 I=0. Also, the last equation of the system of equationsI.1

3.14 can be dropped since V 3=-(V 0+V1+V2). Appendix A..

Z2 2-= 0 Azr 0 .r

, .. contains the details of the algebra. The following results ... ;

. apply to the case where ZLi=ZL i=0 ,,2,3 and use is made of

" the equality between Z1 and Z3 of equation 3.12: .'

23 rrAzr1
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ZL =

Z L AZ 10011+AZrIAZI -

r ZL  z
ZL I

4. .,

+FI[AZ - AZ 00]

+FI[AZ r j 0 AZr 1001 
S.

! ~F 1 AZr( ] - AZr[ ] ,.0+F L

AZr +]."

00- .l](.3

where 
4-

I F1 = ZO(ZL (ZO ZI))2 /D=Zd/(ZL ZI)
- F = 2(Zo+Z[(ZL-Z) 2 -zl/D

D = [ZL+(Zo+Z ) [ZL-Z]

SEquation 3.33 expresses the scattering impedance, AZr as a

,.* function of the antenna load impedance, ZL. The expression .

is in terms of analytically determined parameters Zi from

" equation 2 16~ and numerically determined parameters AZ []ri',
-* " r

., Since, as will be explained in Chapter 4, the scattering !"

*matrix of equation 3.6 is the representation of the scatterer

* most easily obtained, equation 3.33 can be rewritten in scat-

tering matrix notation. From equation 3.7, each element of ,'-%

' S is related to its corresponding A Zr by the same factor.

0 C-]
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As a result, the matrix S is a function of the antenna load -

impedance and is equal to I

ZL
SZLI +s~ -I~ - Ss[000 0000 0

+ Is - s[]} -- -{ ) - 4 ] + - } (3.34)

where F and F are as in equation 3.33.

Regarding the concept of structural and antenna components

of the scattered field, each radiation mode will have its own

input impedance (9:100) therefore, the proper conjugate

matched load will depend on the mode under consideration.

Since a single impedance value for Z cannot provide a match
L

j for all modes simultaneously, the concept of a structural

component does not have the meaning it had for the single

port.

-I10

A-N.
,.. . -
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CHAPTER 4

Field Computation

Formulation of the Problem

The end objective of the field computation at hand is to

have a numerical value for a complex matrix S (equation 3.6)

that expresses the magnitude and phase of the scattered

electric field at a point in space. The problem of obtaining

this end objective is divided into three subproblems:

1. Select the incident field
a. wavelength -
b. polarization

2. Find the induced surface current on the scatterer

3. Compute the electric field due to the surface
current

Then, by making use of equation 3.6, the scattering matrix,

S, can be computed. The numerical technique used to accomplish

the necessary computation is the moment method. Throughout I'

this thesis, Newman's Electromagnetic Surface Patch (ESP)

code (12) is the implementation of the moment method that is

used as a reference. If one makes use of this code directly,

*then subproblem I is normally taken care of by the required

inputs to the code. The solutions to subproblems 2 and 3

and the computation of S are standard outputs. If one needs

to make use of the techniques explained in this chapter,

however, then some reorganization of this code is required.

For this reason, the three subproblems are identified and

explained seperately. Since the rational for choosing a

26
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method of solving each subproblem is based on the subsequent
step, the subproblems will be explained in reverse order. L

Computation of the Fields

From field equivalence theorems (18:518,519), the

p electromagnetic field reflected from the surface, S, of a

material body is equivalent to the field generated by appro-

priate surface currents on S in free space. In the case of

a thin, flat, perfect conductor, the equivalent surface

currents on the two flat sides may be considered equal and

* coincident. A single electric surface current on the open

surface of a zero thickness plane can be used to find the

reflected fields if the single current is the vector sum

of the two surface currents of the flat plate (11:784). The

electric field from a surface current s (7) is given by

:"r) =ISr(F,7')Js (')ds' = L ( Fs(')) (4.1)

". where

r is the free space Green's function
r is symbolic for the complete set of spatial coordinates
L is a linear operator relating surface current to the
electric field

. J is assumed known as an expansion of subsectional basis

functions (6:11):

N

is = (4.2)
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where each J is defined only over a small patch of the entire
1 4h

surface and I. is the complex amplitude. If J. is chosen as

a sinusoidal spatial variation in the current density, then

equation (4.1) is known in closed form (15;18:370,401).

References 10 and 11 explain the use of patches of sinusoidal

surface currents to model surfaces. The approach to finding

the total scattered electric field by solving for fields of

sinusoidal surface currents on small patches of the scatterer

requires that the surface to be modeled be subdivided into

patches. Appendix B explains how to subdivide the spiral

antenna.

Given, then,the functional form of J. and its amplitude,

, the fields from all surface patch currents are calculated

using the appropriate formula as in equation (4.1). The

total scattered field is just the vector sum of the fields

* generated by liJ. i=l to M, where M is the number of surface

patch currents.

Computation of Surface Currents

Reaction. The induced surface currents on a scatterer

are found by solving an integral equation. In this thesis,

the Electric Field Integral Equation (EFIE), is considered.

, The EFIE is a specific form of the Reaction Integral Equation

(RIE) (12:6). The moment method computer code used as a

- reference (12) makes use of the RIE.

Reaction is a measure of the effect of one electromagnetic

source upon another (16). In the special but pertinent case
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of only electric surface currents existing 
on a scatterer, VOL

the reaction between two sources "a" and "b" is

<Ja'Eb> = a 0 Eb d s (4.3)

.a

where Ja is the source (surface) current on "a" and Eb is

the field at "a" from a source at "b". Reaction is reciprocal

(16:1483):

4 <Ja Eb> = <JbEa> (4.4)

Moment Method. From Maxwell's equations, it is known that

j * the electric field tangential to a perfect conductor is zero. -

Specifically, the tangential electric field on the surface

of a spiral antenna is zero. If the electric field around an

antenna is decomposed into an incident and scattered field;

that is, if

E= + s (4.5)

then the boundary conditions imply

= Ti + T = 0 (4.6)
tan tan tan

or

-s T-i "Etan tan (4.7)
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Consider E to be radiated from some unknown surface

current on the antenna. Using the linear operator of

equation (4.1):

L('J is  (4.8)

Ss

Now applying equation 4.8 to equation 4.7:

[L(j s) tan tan (4.9)

The method of moments converts equation 4.9 into a system

of equations whose solution is an approximation to s (6).
S

Let the approximation to J be denoted by J . As a '.

di S S
measure of the correctness of J , the reaction between

" and a test source, Jt, is forced to equal the reaction

between the correct current, Js' and Jt That is, with the

aid of equation (4.9),

[L(*)]ta ds t  as (4.10)1 * LJ)tan fj tan

t

As explained in the beginning of this chapter by equation
4.2, js is expressed as a sum of subsectional basis functions:

jii (4.11)

i 1

Substituting this into equation 4.10,

J ids(4.12)
i f t " L(Ji)ds .... E

i t t
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where the "tangential" notation of equation 4.10 is dropped

since the dot product of the electric field with the test

current (which is defined to exist only on the surface of

the antenna) selects only the tangential component. Now M

linearly independent test sources, W. i=l to M can be defined

so that M linearly independent equations of the form of

equation 4.12 result. With the aid of the reaction notation,

this system is

<W ,(J )> <W,,L(J2 )> * * * <W,,L(JM)> I <-W ,Ei>

<W2 'L(J,)> <WL(J)> I <-WEi>

(4.13)

"<WM,L(J,)> * * * <WM,L(JM)> - _IM <-WM, Ei>_j

I or

[Z ](I) = [E)
g

The matrix in equation 4.13 is called the generalized impe-

"* dance matrix; its elements are generalized impedances (6:84).

The remainder of this chapter contains special techniques for

constructing and solving equation 4.13 specifically for the

*; planar equiangular spiral structure.

Antenna Symmetry. As shown in Appendix B, the number of

modes needed to represent the open circuited spiral structure

- is 4N where N is the number of modes per arm. The generalized

impedance matrix contains an element for every combination of

expansion and test modes. Therefore, since the number of test
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modes equals the number of expansion modes, there are (4N)2

elements in the matrix. By making use of the antenna symmetry,

however, one can reduce the number of unique elements to 4(N) 2.

While the generalized impedance matrix can be arranged arbi-

trarily, i.e., the modes can be numbered arbitrarily, consider U
the matrix shown in Figure 4.1. There the matrix is ordered

and partitioned to emphasize the arm to arm impedances.

* Submatrix Aij contains the N2 generalized impedances between

the test modes on the i arm and the expansion modes on the
th

3th arm. Because of the rotational symmetry of the antenna,

the submatrices on the same diagonal are equal. Thus there

are 4(N) 2 unique elements.

Matrix Symmetry. If the test modes are identical to the

expansion modes in both functional form and location, then

,WiL(j)> <i,L(W.)> (4.14)

and since reaction is reciprocal,

.(<i,L(W)> (<j,L(Ji)> (4.15)

1 J J.-1

from which it follows that

W. ,L(j)> <Wj L(ji)> (4.16)

L For a matrix with no special properties, symmetry obviously

implies that the number of unique elements in the generalized

impedance matrix is half that of a matrix without symmetry. ".-.

For the matrix represented in Figure 4.1 however, the
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Z A1, Az A2
" : I u , .

A1 I' A33; A,34, ," B,
i i

" 
I "% .

-Note:Matrix symmetry is contingent on test/expansion mode equality-
Figure 4.1. Generalizet Impedance i'arix Liihowing Effect of

Antenna Symmetry (by partitioning) and Matrix
Symmetry (by shading).

effect of symmetry is not obvious since the rotational symmetry

of the antenna has eliminated the need to compute any element A
below the diagonal -- except for submatrix Al . Though not

,- obvious, matrix symmetry does further reduce the number of
unique elements by a factor of two. The explanation is aided

U by Figure 4.1, where one can confirm that the elements of the

submatrace:s [A], [B], [C], and [D] obey the following equalities:

a. *= , . . .
a a i

b..=d..
%-c. 

,=c.

d. .=b..

Thus if the upper right triangle of each submatrix is computed,

the inwer left triangles are obtained from the above set of

equ:litics. Although the number of unique elements is decreased

33 .1 .
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by choosing the test modes to be the same as the expansion

modes, the computation time for each unique element may

increase and outweigh any advantages offered by the symmetric

matrix. As explained in Appendix B, the moment method computer

code used as a reference (12) represents the modes by filaments

of current. The reaction, the generalized impedance, between

two modes is the weighted sum of the reactions among the

individual filaments. If the expansion modes are represented

by K filaments and the test modes are identical to the expan-

sion modes, then there are K2 filament to filament reactions

that require computation for each unique matrix element. If,

however, the test modes are represented by a single filament,

then there are only K reactions to compute for each unique

matrix element. So, while choosing the test modes to be

identical with the expansion modes will decrease the matrix

'- computation time by a factor of two by virtue of reciprocity

and symmetry, it will increase the time by a factor of K by

virtue of the number of test mode filaments. The net

increase, then, of time is a factor of K/2 over the single

filament test mode case.

Terminal Short Circuits. Chapter 3 explained the need for

the computation of the scattered field with the feed network

* configured as a short circuit between various combinations of

,* two terminals. The model for a short circuit between terminals

is explained in Appendix B. The modeling technique requires

the addition of one mode for each short. The generalized
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impedance matrix will be altered by the addition of a row

and a column containing the reactions between the shorting

mode and the modes of the open circuited antenna plus one

.1 element for the mode's self reaction. The generalized

impedance matrix for the short circuited antenna is shown

in Figure 4.2. Assuming that the matrix equation,

[Z gII]=[EI, for the open circuited antenna was solved, the
g

new equation can be solved with relatively few additional

calculations. Let

['0] [Z g 1[El] (4.17)
g

represent the solution to the open circuited antenna scat-

. tering problem, where [Z [El] is symbolic of the solution,
g

regardless of the method used to obtain it. If a new row

.iand column are added along with an additional unknown, 12,

- and an element, E2 , in the right hand side vector, then the

* new system is as shown in Figure 4.2. The corresponding

U equations are

[Z ][II + [B]1 2 = [El] (4.18a)
g

[C][Ill + D12 = E2  (4.18b)

Solving for '2 and [I,] yields

12 = [ (4.19)
D

and

[I] = [Z 91 [Ell - [Z I-[BI 2  (4.20)
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N a!L

Open I' - Ci rcui t .I

Impedance ZB L3 E,
Matrix i

Self Reaction of Shorting Mode hoting ?--X_ PI'm itce.

Figure 4.2. Generalizad Impedance Matrix of Spiral Antenna with one
Shorting Mode.

Applying equation 4.17 to equation 4.20, substituting into

equation 4.19 and solving again for 12 yields

; E2 [C][1 0]  "
12 -= (4.21)

D - [C][Z ]-(B]
g

and substituting into equation 4.20:

-1 E - C] (1 0
[I ] = [I ] - [ZI-IB] (4.22)

0 D - [C][Z ]- [B]

If the solution to the "short circuit" equation is obtained

without use of equations 4.21 and 4.22, the total number of

numerical computer operations is, assuming LU decomposition

and M modes, approximately 1/3 M3 (1:152-160). Making use
of equations 4.21 and 4.22, one can obtain the "short circuit"
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solution with approximately 2M 2 operations. Note that the

evaluation of [Z g]-[BI can be made along with other open

I circuit calculations.

Selection of the Incident Field

Wavelength. The scattering properties of the planar

* equiangular spiral structure can best be understood if its

- behavior over a range of wavelengths is known. By making

use of the special geometry of the planar equiangular

spiral one can avoid the need to recompute the entire

. generalized impedance matrix of equation 4.13 at each
different wavelength. The structure shown in Figure 2.1

* -.. represents an antenna with a 6 to I wavelength of operation

range. Modeling of this structure through the use of

equation 3.33 must be done within this range since the

assumptions about frequency independent input impedances are

not valid outside this range. Also, one must insure that the

p sizes of the monopole patches are no greater than one fourth

"" wavelength (See Appendix B). Within this band of wavelengths,

then, the following explanation is valid. *.

For the purpose of explanation, the modes of the open

" circuit spiral structure are grouped into sections, each

. . section comprised of the dipole modes on each arm correspond-

ing to the same radial distance. For instance, the innermost

four modes -- one on each arm -- are in section 1. The next

* four modes farther out along the arms form section 2, and so

on. (This assumes that only the current modes in the direction
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F Figure 4.3. 'patch Representation of Spiral Showing
Assignment of Patches into Sections for
Purpose of Illustrating the Scaling of
the r-rteralized Impedance Elements.VI
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of the spiral are of interest. If a transverse component

is also modeled, then each section will contain an additional

four modes.) Figure 4.3 illustrates the assignment of modes

into sections. Although two surface patches are associated

with each dipole, the section number is placed in the patch

in which the dipole begins. With this sectioning of modes

the generalized impedance matrix can be partitioned:

All A 1 2 *'** A

A2 1 A2 2

. (4.23)
•S

AN ANNJ

where A is the block of generalized impedances between the

modes in section i and section j:

Z! 1.(X) Z!2(X) Z0X X

ij i3 . .h.

A.i.(x)= Z?*(x) * (4.24)ZM ) ** Z .(x
ij ) .

where the superscripts of Z refer to the arm number as shown

* in Figure 4.3. The argument X emphasizes that the generalized

* impedances are computed for a specific wavelength of incident

i /radiation. The impedance entries in equation 4.24 are sums

of dipole filament to dipole filament impedances, each of

. -which is a sum of monopole filament to monopole filament

impedances (20:13). A closed form expression exists for

each such impedance (14). The exact expression is not of

,, 39 ",3
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interest here but its form is. In a lossless medium, the

generalized impedance between two monopoles can be expressed

as a function of two types of arguments:

Z = Z(4, T) (4.25)

both of which describe the geometry of the two monopoles.

" is symbolic for several variables all of which are linear

measures, and T is the angle between the two monopoles

(See Figure C.1.) Now for any x,

Z(, ) = Z(--x ,P) (4.26)

. .That is, the generalized impedance of two monopoles at some

X, is equal to the generalized impedance of two monopoles

scaled by x at a wavelength xX1 , assuming T remains constant.

Appendix C contains the details of the proof that the geometric

relationship between two monopoles is simply a scaled version

of the relationship between the adjacent set of monopoles.

The scaling factor, K, for adjacent sets of monopoles is a

function of the angular increment, A, between adjacent monopoles:

K = exp(aA) (4.27)

where a is defined in equation 2.2. Thus, noting that the

linear dimensions of the monopoles are implicit in the

' -~subscripts of equation 4.24, the elements of equation 4.24 and

the submatrices of equation 4.23 obey the following equalities:

°°,,
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ij

and

A ij(A,) = A(i+l)(j+l) (KX1 ) (4.29)

The relationship between two generalized impedance matrices

for two wavelengths related by a factor K is shown below.

If the generalized impedance matrix is

A I B (4.30)

[z () -----------------

C

then

L !.

oZg](KX)= (4.31)

* IiI iiI

where [A] contains the generalized impedances between (N-I)

sections. Thus, given that the matrix of equation 4.30 is

known, the matrix of equation 4.31 requires only the addi-

tional computation of [P], [Q] and [R].

Polarization. It is known from experimental work (4)

that the polarization of a wave radiated from a spiral antenna
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is elliptical with an axial ratio ranging from 0 to 1. This

fact suggest that the scattering analysis should proceed

P- using two orthogonal elliptically polarized waves as the

components of the incident and relected waves. Reinforcing

this idea is work by Wang (21) which showed the utility of

expressing the scattering properties of a spiral structure

in terms of left and right hand circularly polarized waves.

'V In Wang's work, the phase of the scattered field was easily

predicted only if the fields were expressed as circularly

polarized waves. The moment method computer code that is

used as a reference for this thesis (12), however, expresses

the field in terms of 0 and 4p components of a spherical

coordinate system. If we view the scattering matrix, [SL] ,

in the 0, D coordinate system as a linear operator, then the

scattering matrix, [Sc] , in the (e+j), (0-jP) coordinate

system is easily found to be

[Sc I = [B]-'[SL [B] (4.32)

where the columns of [B] are the vectors (1,j) and (1,-j),
.-. S...

that is, the new basis vectors (9:332). Therefore the

scattering matrix for a circularly polarized wave is

v. ~ISLII SLi2'.. ErS F FL(4.33)
Lc 9 -~S L21 SL2 -

where

S =scattering matrix element of equation 3.6 for aLij

U-nearly polarized (6,$) wave.
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CHAPTER 5

Conclusions

Techniques for analyzing the scattering properties of a

loaded four arm planar equiangular spiral antenna were pre-

sented. The two main results of this thesis are the deriva-

*. tion of the scattering equation for the loaded antenna in

Chapter 3 and the development of a technique to make use of

the moment method generalized impedance elements at different

wavelengths in Chapter 4. Implementing these techniques

requires a working knowledge of a moment method code like

that of reference 12 and some careful "bookkeeping".

Topic for Further Work

The result of Chapter 4, a technique that makes use of

- the same generalized impedances at different wavelengths, was

developed for a self complementary structure. A possible

extension of this work to large planar sections could be

developed by dividing a plane section into an equiangular

spiral and its complement and then applying the technique.
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Appendix A

Derivation of the Scattering Impedance

The objective of this appendix is to derive an expression %

for AZ r in terms of load impedances, port parameters, and

short circuited scattering impedances. The expression will

be developed from equation 3.12, repeated here

AV AZ Z Z Z Z I

0 r o r r1 2 3 0
-. V-, "

1 i r Z3 Z 0 1 2 1 1 (3.12)

V Z Z Z Z Z I

3 32r 1 2 3 0 3V3  Z r Z1  Z2  Z Z0°~ 13 I..

Solving for AV r yields

AV =AZ I +Z I +Z I +Z I +Z I
r rrlr roo ri , r2 2 r3 3 (A.1)

* and for AZ the scattering impedance

AV .1-I
:'r AZ r  - A + J (A.2)
Ar rr'• :. I I ."

r r

If, in equation A.1, Ir is set to zero and the other currents
I. are set equal to one another; I =I, then AV IZr . From

j0 rri'

equation 2.8, I.=I implies that all terminal currents are

zero. Therefore, AVr, which is a measure of the signal

received from the spiral, is zero and

Z -0 (A.3)
L.ri
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Referring now to equation A.2, AZr is a function of I. and
r 1

therefore of the load impedances. This functional dependance

will be denoted by

Z Li

Ar AZr ZL] (A.4)

Let Z Li=00 for all i.. Then all terminal currents are zero and,

from equation 2.10, the branch currents I11 t for all i. From

equation A.2 and A.3 then,

Id0

A Z =AZ (A.5)
rr rV

Now let I,=I130 in equation A."). From equation 2.8,

Uterminals 2 and 3 must be open circuited (ZL2Z ZL3= oo.if,

in addition to this constraint, ZLOZ =0 then V =0 and from
Lo L0

the second line of equation 3.12, I 0 -Z I /Z ~* Substituting *-or r 0

*into equation A.2 and solving for Z2  yields0or

Z = Z0 [AZ - (A.6)or 0 r'Zr --001

_in a similar manner, it can be shown that

= 2 00 [0[]- zt (A.7)
Zir Z (AZrK 00 fl'gI(A8

2r [Ar['] "Zr[']J (A.8)
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The load constraints on the branch voltages are -

(See Figure 3.4)

V zLO ( 3- O0 + Z L' (I Li ) (A.10)

V I Z Li I 1o0- 1 + Z L2 (
1 2 I) A.l

V 2 - Z2(I- 12) + ZL3(13 12) (A.12) '. .

V3  LJ3(I 213) + ZLO 0- 03 (.)

Making use of the load conditions, letting I130 (see

-. equation 2.10), and eliminating the last equation of the

systerp in equation 3.12 (since V 3=- (V 0 +V 1 +V2)) allows one to

express the system as

7Z+ +Z Z- zZIo Lo L i I Li 2

= - Z +Z Z Z-Z I (.4irI3Li0L i +zL2 I L2 1 A14

z z z -zZ +Z I

2~~ ~ ~ ~ ~ ~ rj23L L+L .2

Solving equation A.14 for [I] and substituting into equation

A.2 yields

z

AZ Z Li AZ Zro Zo r Aii+ ir A21 Z2r .
r L 2 rzJ

LZL 3]

Z r [Z orA 12+Z irA 22+ Z 2rA32(.5

zr2i[ or A12 + ir A22 + 2r A323(.5
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wherelia

A.i is the cofactor of the ijth Element of the matrix
in equation A.14

A is the determinent of the matrix equation A.14

ri. i

One can now solve for Z. in terms of Z ()with open and
ir r

short circuited loads at the terminals.

( Z2 + Z2 + 2Zr Z
~r(1J A~r1mJ 2 2Z 0 + ZI)

00 Z2 + Z 2 + 2Z Z
r0o tZJ r 2r ir 2r (.7

AZ I- 2(Z 0 + Z1 )

and since Z3 j(Z 0 +Z1  +Z ),equation A.9 becomes3r or ir 2r

000 -i r or 2r or ir ir 2r
AZc} Zr(~ Z 2 Z+ 2 2 Z +z Z 2

Substituting equations A.6, A.7, A.8, A.16, A.17, and A.18

into equation A.15 results in the scattering impedance as

expressed in equation 3.33.
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Appendix B

Surface Patch Modeling

Functional Form

The moment method code used as a reference (12) represents

surface current as a sum of piecewise sinusoidal surface

monopoles. Two adjacent monopoles form a dipole and, as

; illustrated in Figure B.1, a reference direction is assigned

to the current flow. The moment method provides a solution

for the phase and magnitude of each dipole. Figure B.1 shows

six rectangular sinusoidal surface monopoles joined together

to form three overlapping surface dipoles. By adjusting the

magnitude and phase of each dipole, one can model a continuous

current. Each dipole is called an expansion mode since theII
current is "expanded" into a linear combination of these

modes. Non-rectangular surface currents are modeled similarly,

as shown in Figure B.2 (10). Note that in both Figures B.1

and B.2, the current goes to zero at the ends of the dipoles

so that no accumulation of charge needs to be accounted for.

Though not shown in the figures, there is generally also a

surface current running transverse to that shown in the

figures.

Numerical Treatment

If the surface monopoles are exact rectangles then the
% %

electromagnetic fields associated with them have closed form,

iii exact expressions (15). Otherwise, the fields are found by
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Figure B.1. Piecewise Continuous Sinusoidal Surtace Current
on Rectangular Patches."""

Source: (12)""""

Figure B.2. Non-rectangular Patch Showing Direction of

Surface Current.

Source: (12).

49

. .,-" ,., .

.2



integrating the fields from filamentary sinusoidal monopoles,

the fields from five filamentary monopoles are summed (12:27).

UAs expected, the number of integration intervals will affect

the field computation time. Work by Tulyathan (20:13) showed

that an integration interval of 0.07 times a wavelength is

adequate for representing a surface current. Additional

precision is obtained only with an increase in computation

time. For the antenna structure shown in Figure 2..1, four

intervals (five filaments) per segment is sufficient for

modeling the component of current in the direction of the

spiral. The length of the monopoles also affects both the

precision and time of the field calculation. Electromagnetic

modeling with monopoles as large as one fourth wavelength

yields good results (20:37). The largest patch then on the

spiral on which a monopole is superimposed should not exceed

one fourth wavelength. For the spiral antenna, the patch

length determines the number of monopole patches. The antenna

. of Figure 2.1 requires N patches per arm or 4N patches total.

Patch Construction

Two methods of subdividing the spiral structure into

monopole patches are discussed below.

Skinner constructed the arms of the antenna from quadra-

lateral (trapezoidal) patches whose corners are formed by the

intersection of radial lines and the spiral curves (19:38).

Figure B.3 illustrates this method. Note that the angle

between adjacent radials determines the size of each patch.

.5050 .
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When the self complementary property of the antenna is to be

modeled, the angle, A, must be a submultiple of 45 degrees

so that a rotation of 45 degrees brings the structure back

" 41on its complement. Although division of the arms could be

made at different angular increments (e.g. 450 for the

inner part and 22 0 for the outer part) frequency scaling

of the generalized impedance elements as explained in

Chapter 4 is more straightforward if a constant A is used.

If A =22 0, then the antenna of Figure 2.1 can be modeled

using 204 patches.

Instead of using straight radials to subdivide the

spiral, one can intersect the spiral with a family of

" orthogonal curves. The equation of the orthogonal curve

is given by equation B.1

p=a a expi- -(o - 6)] (B.1)

where all parameters and variables have the same value

"" and meaning as in equation 2.2. Note that the orthogonal

curve is also an equiangular spiral but it expands as .

becomes more negative.

Test Modes

As explained in Chapter 4, the testing functions can

also be thought of as surface currents in a reaction with

the expansion mode currents. For these testing mode currents,

.4-
one can choose the same or a different number of filamentary

monopoles to represent the testing modes as is used to
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represent the expansion modes. Regardless of the number,

the functional form of the testing currents in the reference

moment method code (12:21) is a piecewise continuous sinusoid.

Terminal Shorting Modes

So far, explanation of the expansion and testing modes

has been limited to those modes associated with the open

circuited model of the antenna. An additional mode is

created by placing a monopole on one arm at the terminal end

of the spiral and another monopole on the other arm as

illustrated in Figure B.4. The two monopoles together form

* a single dipole mode whose magnitude and phase can be solved

for as explained in Chapter 4. This technique simply provides

for the continuity of current from one arm to another.
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Appendix C

Equiangular Geometry

The purpose of this appendix is to show the relation-

ship between the geometry of two adjacent sets of monopoles

on an equiangular spiral. This will be done on a filament

to filament basis. Reference 14 provides an expression

for the mutual impedance between sinusoidal filamentary

monopoles. The expression is a function of the geometric

parameters shown in Figure C.1: z1 , z2 , ti, t2 and '.

Although reference 14 pertains to the general three dimen-

sional case, only the planar case is pertinent here.

*A
9. Z, i.,, .

ZI

C. •z.....

tz

Figure C.I. Filamentary Monopoles with Pertinent Geometric

Parameters Shown.
Source: (14)
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Figure C.2 shows two monopoles, I and J, and the adjacent

set, I+I and J+l, along with the lengths and angle corre-

sponding to those in Figure C.1. To support the text in

Chapter 4, it is sufficient to show that triangles AOB 2

and B 1 0 2 A 2 are similar triangles and that the sides of

AIOB 2 are K times the sides of B10 2A 2 where K is from

equation 4.27. The similar triangles A2PB2 , B2 PC2 , CPB1,
*•. ., .

and B1PA I imply that 0 1 =02 . Therefore 'Y=2-. Similar

triangles A2 PB, and B2 PA, imply that angle PA2 B, equals

angle PB 2A1 and that angle AB 2 C 2 equals angle BA 2 B2 .

Therefore, triangles AOB 2 and B10 2 A 2 are similar. And

since, by the equiangular construction (equation 2.2),

PB2 =KPA2 , then the equality AB 2 =KBA 2 is obtained. Thus

the scale factor of the two similar triangles A1 OB 2 and

B 10 2A2 is K.

Of

Btll

A/ B2/ -

1- '4

P A

Figure C-2. Adjacent Sets of Monopoles and Associated
Geometry.
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