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PREFACE Vi)

«\\ .‘ J., o
\,,,) i
The Air Force SINCGARS VHF~FM radlo is a frequency-hopping .?3
anti-jam radio which utilizes an electrically short antenna to Fh
minimize aerodynamic drag on airborne platforms. The development of

optimally efficient, electronically tuneable antennas for this radio

NGy
is of interest. Although the antenna groundplane is -ﬁJ‘
platform—dependent, it is usually small compared to an rf wavelength. 'j?‘

-!).,.ﬂ
A circular groundplane provides a standardized groundplane geometry Lﬁ'
with which to model and evaluate candidate antennas. Accordingly, a E?ﬁ

NTN
VHF antenna range with an 8 ft. diameter circular groundplane has been 9;*

T T ! e
constructed at The MITRE Corporation to evaluate candidate antennas. f}%ﬁ
Wt

The electrical properties of a monopole element at the center of a ;&%
circular groundplane of finite -adius are of interest to this program tgt,
for (a) qualifying the antenna range; (b) establishing antenna ;%;é
standards with which to measure test antennas; and (c) modeling Lo
e Al

candidate antennas. Qu# survey of the literature revealed that qﬁ;
although this antenna has the simplest geometry of any monopole j%::'

RGAY
antenna, its properties are neither well understood nor standardized, ;xnx

M
particularly for groundplane radii which are small or comparable to a ﬁ;
wavelength. Theuptésent paper attempts to address this deficiency. - - A ;
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M. Welner wrote Sections 1 = 5. S. Cruze contributed to Section
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Section 3.4; edited program RICHMD1 in Appendix B2 and program .
AWADALLA in Appendix B5; and wrote program BARDEEN in Appendix Bl,
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W. Wilson contributed to Sections 2.3 and 3.3. J. E. Kriegel of

The MITRE Corporation derived the correct form of the continued
fractions given in Eqs. 3.5-4 and 3.5-5 and contributed to the
evaluation of the limits in Eqs. 3.,3-22--3.3-24, W. C. Corrieri
skillfully performed the measurements discussed in Section 5. K.

Pamidi contributed to the development of Eq. 3.3-16.

The authors are grateful to Prof. Alfred Leitner of Rensselaer
Polytechnic Institute for helpful conversations regarding his method
of oblate spheroidal wave functions; Prof. Jack Richmond of Ohio State
University for helpful conversations and a magnetic tape of his method
of moments program; and Prof. Kamal Awadalla of Menoufia University
(Egypt) for helpful correspondence including a listing of his program
for the method of moments combined with the geometric theory of

diffraction.

After the authors had obtained results using the integral equation
method and the method of oblate spheroidal functions, it was possible
to confirm the correctness of Prof. Richmond”s method of moment

results which were subsequently published in the open literature (see

Ref. [2]).
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38 This document has been prepared by The MITRE Corporation under
i} Project No. 6480, Contract F19628-84-C-0001. The contract is sponsored
'}: by the Electronic Systems Division, Air Force Systems Command, Hanscom
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z#: SECTION 1

N,

;\‘ INTRODUCTION

il

"%

}ﬁ; Monopole antennas are commonly employed in airborne and ground-based
- communication systems at a wide range of frequencies. The electrical

;#3 properties of such antennas are dependent upon the geometry of both the
':m ) monopole element and the groundplane. Typically, the monopole element may
2:3 be electrically-short (length much less than a quarterwave) or

- near-resonant (length approximately a quarterwave) and may be thin (length
5*; to radius ratio much greater than 104) or relatively thick (length to

,f§ radius ratio of 101 to 104). In addition, the groundplane dimensions may
}z vary from a fraction of a wavelength to many wavelengths. Therefore it is
%} desirable to know how the input impedance and radiation pattern of the

z?: antenna change as the dimensions of the monopole element and the

%:: groundplane vary. The directional gain on or near the radio horizon (the
%:ﬂ groundplane is assumed to be horizontal) is of particular interest since

the maximum operational range of a communications system often depends upon

! the directivity on the radio horizon.

" This study is restricted to a monopole geometry consisting of a

‘:i vertical cylindrical element at the center of a perfectly conducting,

%?: infinitely thin, circular groundplane in free space. This geometry is of
A interest because 1ts radiation pattern is uniform in the azimuthal

wh direction and because its electrical characteristics are a function of
primarily only three parameters, namely, the element length, the element
radius, and the groundplane radius, when each is normalized to the
excitation wavelength. For these reasons this geometry is conducive to

‘ﬁ . analysis, experimental verification, and standardization.
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A typical feed for the monopole antenna is a coaxial line whose inner
conductor 1is connected through a hole in the groundplane to the vertical
monopole element and whose outer conductor is connected by means of a
flange to the groundplane. Typically, the inner conductor diameter is
equal to the monopole element diameter and the outer conductor diameter is
equal to the groundplane hole diameter. Unless stated otherwise, such a
feed will be assumed in this study. The ratio of the coaxial line”s outer
to inner conductor diameters affects the antenna”s input impedance, but only
significantly for a relatively thick monopole element on a very small

groundplane.

For the idealized case of a groundplane of infinite extent and of
infinite conductivity, the monopole antenna may be modeled by the method of
images as a dipole with one-half the input impedance and double the peak
directivity of the dipole. The infinite groundplane prevents monopole
radiation into the hemisphere below the groundplane but allows a radiation
pattern identical to that of the dipole in the upper hemisphere. However,
for a monopole element mounted on a groundplane of finite extent, the outer
edge of the groundplane diffracts incident radiation in all directions and
consequently modifies the currents on the groundplane and vertical element
from those of an infinite groundplane. At the outer edge of the
groundplane, the currents on the top and bottom faces of the groundplane
are equal in magnitude but opposite in direction because the net current
must be zero at the edge. Outer edge diffraction becomes increasingly
significant with decreasing size of the groundplane because of increasing
magnitude of the currents on the groundplane faces at the outer edge. Edge
diffraction can alter the input impedance by more than 100% and directive
gain in the plane of the groundplane by more than 6 dB from the values for

a groundplane of infinite extent.
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Theoretical models exist for predicting the effects of diffraction by
the outer edge of the groundplane. The exlsting models may be classified
into two categories distinguished by whether the current distribution on

the monopole element is initially known or is unknown.

When the monopole element is very thin and not too long, its current
distribution is approximately sinusoidal and independent of the radius of
the groundplane. Consequently, the element”s current distribution can be
initially specified and only tkLe groundplane”s current distribution need be
determined. For this category of monopoles, the theoretical models
reported in the literature consist essentially of Bardeen”s integral
equation method for the groundplane radius small compared to a
wavelength(l), Richmond”s method of moments (groundplane only) for the
groundplane radius not too large compared to a wavelength(z), Leitner and
Spence”s method of oblate spheroidal wave functions for the groundplane
radius comparable to a wavelength(3)-(5), Tang”s scalar theory of
diffraction(6) and the geometric theory of diffraction (GTID) for the
groundplane radius large compared to a wavelength, and Storer”s variational
method for the groundplane radius very large compared to a
wavelength(7)’(8).

When the monopole element is relatively thick, its current distribution
is no longer sinusoidal and consequently the current distribution on both
the monopole element and the groundplane need to be determined as a
function of the groundplane radius. For this category of monopoles, the
theoretical models reported in the literature consist essentially of
Richmond”s method of moments for the groundplane radius not too large
compared to a wavelength(z) and Awadalla-Maclean”s method of moments
(monopole element only) combined with the geometric theory of diffraction
for the groundplane radius large or comparable to a wavelength(g)’(lo).
Thiele and Newhouse have also reported a model which combines the method of
moments with the geometric theory of diffraction but their computer program

(1),

is unavailable
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Each of the existing models is valid for different and sometimes

overlapping sets of limited values of groundplane radii. Some of the
models require extensive numerical computation. For these reasons, the
collection of models taken as a whole has several deficiencies. 1In the
open literature, results for input impedance and directive gain have never
been assembled as a continuous function of groundplane radius for the
entire range of values froﬁ zero to infinite wavenumbers. In regions where
models overlap, it is sometimes unclear which models are more accurate. In
some models, numerical results have been reported for only a few values of
groundplane radius. In one model (Bardeen”s integral equation) the base of
the monopole element has not been allowed to be in the same plane as the
groundplane which is the present case of interest. Computer programs are
not avallable for some of the older models because the models were
developed before the advent of computers. One of the most versatile of the
models (Richmond”s method of moments) gives only the input impedance but
not the radiation pattern. In one model (Leltner and Spence”s oblate
spheroidal wave functions), one of the published algorithms for computing
the eigenvalues is incorrect. Finally, extensive numerical results for
small groundplanes and for resonant monopoles with finite groundplanes are

not found in the open literature.

This paper attempts to correct these deficiencies. Computer programs
and numerical results are presented for all of the models. The induced emf
method is utilized to determine the Lnput impedance of a thin idealized
monopole element in the absence of a groundplane. In Bardeen”s integral
equation method, the excitation function for the groundplane currents is
extended to include the singularity which occurs when the base of the
monopole element is in the same plane as the groundplane. Richmond”s
method of moments is extended to give the far-field radiation pattern. In
Leitner and Spence”s method of oblate spheroidal wave functions, the

published continued~fraction algorithm for computing the eigenvalues is
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corrected. Numerical results for input impedance and directive gain are

presented as a continuous function of groundplane radius for arbitrary
radius. Numerical results of varlous models are compared and the suspected
best available results are identified. Extensive numerical results are
given for small groundplanes and for resonant monopoles on finite
groundplanes. New experimental data is presented and compared with

numerical results.

Circuit representations of the monopole antenna are developed in
Section 2. Theoretical models and numerical results are presented in
Section 3 for the case in which the current dilstribution on the monopole
element 1is initially known. In Section 4, theoretical models and numerical
results are presented for the case in which the current distribution on
both the monopole element and groundplane are initially unknown. The
theoretical models are compared with experimental data in Section 5.
Computer printouts of directive gain and the far-field elevation pattern
are given in Appendix A. Computer programs of the theoretical models are

given in Appendix B.
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:g CIRCUIT REPRESENTATION
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A

2.1 Geometry and Coordinate Systems

Consider a monopole element of length h and radius b which is located

I

]

K in free space at the center of an infinitely thin circular groundplane of
radius a and of infinite conductivity (see figure 1). The groundplane

) radius, when expressed in wavenumbers, is given by

k)

X .'v‘
-

el

€ = ka (2.1-1)

where

gy .
e R e =

k = 271/ A = wavenumber (m_l)
A = excitation wavelength (m)
The monopole element and groundplane have current distributions in real

time given by

R I(z,t) = Re[I(2)ed ¥t], 1(p,t) = Re[1(P)eI¥ ] (2.1-2)
P where

% w = radian frequency of the excitation = 2mc/ A (rad/sec)

W ¢ = wave velocity in free space = 2.9979 x 102 w/s

¢ : 1(z),I1(P) = element and groundplane current amplitude distributions,
-{ regspectively (amp)

)

Y

A field point P(r, 8, §), expressed in spherical coordinates, is shown
in figure 1. The field is uniform in the azimuthal direction §. The

-
e e N g

relationships between spherical, cylindrical , and oblate spheroidal

.

-

;: coordinate systems are shown in table 1. 1In the far-field, the elevation
1 angle 8 18 related to the oblate spheriodal angular coordinate 1n by

l

‘ n—~+ cos O as the spheriodal radial coordinate £ —»o00.
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Figure 1. Monopole Element at the Center of a Circular Groundplane
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TABLE 1

Spherical, Cylindrical, and Oblate Spheroidal Coordinates

SPHERICAL CYLINDRICAL OBLATE SPHEROIDAL
(r,8,0) (p, z, 9 (&,7,9)

radius r pP=r sin & p= a[(l-nz)(1+§2)]1/2
elevation ] z =71 cos O z=ané

azimuth ) ¢ , ¢

Note 1: In Table 1, the notation §,7 is that of Leitner and Spence (L+S),
Franklin Institute Journal, Vol. 249, No. 4, pp. 299-321, April 1950. This
notation is related to that of Abramowitz and Stegun (A+S), "Handbook of
Mathematical Functions”, National Bureau of Standards, Applied Mathematical
Series, No. 55, p. 752, June 1964 by

2 1/2
145 = Gpys ~ 1)

2 \1/2
Toas = (1 s
Note 2: The cylindrical coordinates (p, z, §) are related to the rectangular

coordinates (x, y, z) by

X = p cos ¢
y=psind
z= 2z
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2.2 Directive Gain and Input Impedance

At a far-field observation point P(r, 8, §), the numeric directive gain
d(9,¢) of the antenna is defined as the ratio of its radiated power density
s(8,0) to its radiated power density averaged over all directions. The
radlated power density averaged over all directions is equivalent to the
power density radiated by a hypothetical "isotropic” antenna. Accordingly,
the directive gain d(8,0) expressed in spherical coordinates with the

origin at the antenna, is given by

s(8,0)

21T w
(1/4m) f f 5(8,0) sin 6 do df
o ‘o

d(e,) = (2.2-3)

For antenna patterns which are uniform in the azimuthal direction, such as for

the antenna geometry of figure 1, Eq. (2.2-3) reduces to

d(e) = —25® . 25D g (2.2-4)
s(8) sin 6 d6 s"(n) dn
/ /,
where
5(8) = (1/2) JiT e, Ingl? = (1/2/ ¢ [H, 1Byl

HO’ Ee = far-field magnetic and electric field intensities,
respectively

8" (1), d° (M)
Jﬂo/i)

The numeric directive gain d(8,0) is related to the directive gain D(6,0)

radfation power density and directive gain, respectively,
{n oblate spheroidal coordinates

wave Iimpedance in free space

expressed in dBi by

D(e,9) = 10 log, . d(e,0) (dBi) (2.2-5)

The total time-averaged radiated power Pto of the antenna is given

tal
by

10
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Piotal = f f s(8,0) r? sind do dé

0 0
T 1
- et fs(O) sin® d@ = 27r? f 8"(n) dn (2.2-6)
0 -1

The antenna radiation resistance R, referred to the complex amplitude
I1(z=0) of the antenna base current, is defined by
R=2p, /11(z=0)]? (2.2-7)
total
Subgtituting Eqs. (2.2-6) and (2.2~7) into Eq. (2.2-4),

d(8) = s(8) 8mrl/[RI1(2=0)]2] = s~(7) 8m2/[RIT(z=0)|%] = d" (M)
(2.2-8)

The antenna input impedance, 2 is given by

in’

z]ln = V(2z=0)/I(z=0) = Rin + j Xin (2.2-9)
where

v(z=0)

complex amplitude of the excitatlion voltage across the
aperture of the coaxial line feed to the antenna (volts)
Rin = input resistance (ohms)

Xy = input reactance (ohms)

The input reslstance Rin is related to the radiation resistance R by

Rin = R + Rohmic (2.2-10)

where Rohmic i{s the ohmic loss resistance of the antenna for finite

conductivity of either the monopole element or the groundplane. 1In the

present paper, Rohmic = 0 because the monopole element and groundplane are
agsumed to be of infinite conductivity. Accordingly,

R = R » R

(n = Q (2.2-11)

ohmic
Equation (2.2-11) Is a statement that the antenna is assumed to have an

efficiency of unity.
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) 2.3 Relationship Between Radiation Resistance and Directive Gain

rs. on the Horizon

e

“n

;.

!:. For a vertical monopole element with a finite groundplane, the

(] far-fiel' radiated power density on the radio horizon, s(8 = 7/2),

;_ determined only by the current distribution on the monopole element (and

%

*‘} not the groundplane current) since only the vertical monopole element has a
\\‘

{{ component of electron acceleration which iIs normal to the radio horizon.

O (This statement Is not true for a groundplane of infinite extent since then

a far-field point on the radio horizon is on the groundplane.) Identical

3%

monopole elements with identical current distributions, but mounted on

2T LA &

X

groundplanes of different finite radii, will consequently have identical

-

far-field radiated power densities on the radio horizon. Accordingly,

,;5 86(9 =7T/2) = so(e =7/2); identical monopole element, identical
f%} element current distribution, groundplane of finite extent
,; .
L. (2.3-1)
w
o where the subscript € denotes the radius in wavenumbers of the groundplane
L,: of arbitrary but finite extent (€ < 00) and the subscript O denotes a
. groundplane of zero extent ( € = 0).
J

d; If Eq. (2.2-8) is substituted into Eq. (2.3-1) and the quantity

o

Ny s(0 = 7T/2)|I(z-0)|2/87rr2 is computed, one obtains the following
.ﬂ' relationship between radiation resistance R and numeric directive gain on
: - the horizon d(8= 7/2):

N

I
v

J,: d€(9 =7/2) R, = dy(8=7/2) Ry = constaat;

identical monopole elements, identical element current

e distributions, groundplane of finite extent (2.3-2)
=

‘,-.

-
2
X b !
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:3 In Eqs. (2.3-1) and (2.3-2) the condition of identical element current
::' distributions for groundplanes of different radii is generally not
' satisfied by monopole antennas. The element current distribution I(z) is
a; generally dependent upon the groundplane current I(P) which in turn is a
g? function of the groundplane radius. However, for monopole elements which
W are sufficiently thin electrically and not too long, the element current
' distribution I(z) is approximately sinusoidal and independent of the

;‘9 groundplane current I(pP) (see Section 3.1). Expressions for d°(9=77/2) and
'é Ro’ for elements with a sinusoidal current distribution, are determined in
Ty Section 3.2. Substitution of those expressions into Eq. (2.3-2), for the
. case of an infinitely thin monopole element (b=0), yields
)
J d(® =m/2) R = (N/4m [1 - cos(kh)]z/sinz(kh); b=0,
;“- sinusoidal element current distribution, groundplanes of
‘3 finite extent (2.3-3)
:i: vhere

~§. N = wave impedance of free space = 376.73 ohms

,f{ h = length of the monopole element
:ﬁ The condition b=0 may be removed from Eq. (2.3-3) without substantially
.fg altering the result since the radiation pattern and radiation resistance of
t:g electrically thin elements, which are not too long, are weakly depeadent
"f upon the element radius (see Section 3.2).

K 2.4 Characterization of Currents

The characterization of the currents on the monopole element,

ii groundplane, and coaxial line feed is illustrated in figure 2. The

zéf physical realization, circuit representation, and two circuit idealizations
}; of the currents are shown in figures 2(a), 2(b), 2(c), and 2(4d),

a respectively. 1In Fig. 2(b), the coaxial line excitation of Fig. 2(a) is
’wj replaced by equivalent electric and magnetic currents on a conductor

:éﬁ completely enclosing the coaxial line. 1In Fig. 2(c), the normalized

—

S

-

ferrite attenuation distance hl/A.<< 1 is idealized to be zero. In Fig.
2(d), the magnetic frill M¢ is assumed to be negligible.
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Groundplane and Coaxial Line Feed
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Characterization of Currents on Monopole Element,

(a) Physical realization

(b) Circuit representation

(¢) Idealization of circuit (hj/A=0)
(d)

Idealization of circuit (hy/A=0, kb; < 1,

I(z) or 1I{pP) is initially known)
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i;: The currents of interest are the element current I(z) (positive 1in the
f . + z direction), the return current Ir(Z) on the outside of the coaxial line
:E: outer conductor (positive in the + z direction), the current Ibot(p) on the
:ij bottom face of the groundplane (positive in the + P direction, and the
Z}: current Itop(p) on the top face of the groundplane (positive in the
‘_7 negative P direction). A net groundplane current I(p) (positive in the
‘ﬁi: positive P direction) is defined as
=
2 HORS NNOERNNG (2.4-1)
nj; In the physical realization of the currents [figure 2(a)], lossy
':i ferrite toriods are mounted along the outside of the coaxial line outer
:}q conductor. Such a procedure is commonly utilized on antenna ranges to
T!; reduce the radiation or pickup of unwanted signals from currents induced on
‘Ft the outside of the transmitter or receiver coaxial cables. For a
iz sufficient number of ferrite toroids near the termination end of the
1-; coaxial line, the return current Ir(z) is approximately zero at distance
- greater than the l/e attenuation distance h1 from the termination end of
N the line. In this paper, the ferrite toroids are assumed to be
(QQ sufficiently lossy so that
J h, << A (2.4-2)
zf' where A is the excitation wavelength.
i:i The radil of the outer and inner conductors of the coaxial line are b1
SR and b, respectively, where b is also the radius of the monopole element.
iti The wall thickness of the coaxial line outer conductor 1s assumed to be
:§3 much less than its diameter. Consequently, the return current Ir(z) occurs
gLF at the radial cocrdinate p = bl'
W
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55' The constraints on the various currents are:

?'Q element I(z=h) = O (2.4-3)
;‘j groundplane 1(p=a) = O (2.4-4)
‘?f coaxial line Ir(z)==0, -0< z <—h1 (2.4-5)
?': element—-groundplane I(z=0) = -1(P=b) (2.4-6)
“EH groundplane-coaxial line 1 ©=b,) = 1I_(2z=0) (2.4-7)
ey bot 1 r

Yyl

1!

ﬁ%. The element and groundplane constraints are a consequence of an open

circuit at the end of the element and the groundplane. The coaxial line

!;j constraint is a consequence of the lossy ferrites. The element-groundplane
“'; constraint 1s a consequence of conservation of charge (Kirchhoff”s cu: ~ent
:'ﬁt law) at a node. The groundplane-coaxial line coastraint is a consequence
v !u.
hi of conservation of charge along a conductor.
gt
iy . (12)
(1 By the use of the equivalence principle the coaxial line feed
,g?é excitation may be replaced by equivalent tangential field excitations
i defined along a surface completely enclosing the coaxial line. At field
‘f$4 points external to this surface the equivalent field excitations will give
4
.;ﬂ* the same field as the original source excitation. 1In the circuit
?ﬁ‘ representation of the monopole anteana currents [figure 2(b)], the coaxial
‘.f» “
J aperture excitation is replaced by an equivalent surface magnetic current
S&; density (magnetic frill) Mb which sits on top of a thick groundplane of
)
¥ f radius bl' The magnetic frill M¢ is deflned to be positive in the positive
'E\' azimuthal direction and is given by

[~
=5 = V(0)/[P1n(b,/b)], b P < b
k22 My = (2.4-8)
Koo 0 , pP<b, P>Db
'.,";'g 1
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ki Eq. (2.4-8) is derived as follows. The radial field E of the coaxial
- line aperture, assuming a TEM mode excitation, is given by
g v(0)/P1n(b /b), b <PL by
., E, = (2.4-9)
0 . P< D
4
4t
ﬂi where V(0) is the positive voltage at z=0 across the aperture with the
g. ’ coaxial outer conductor at zero potential. By the equivalence
t -
principle(lz), an aperture field may be replaced by a magnetic frill M
‘? which sits on top of a groundplane congruent with the aperture surface and
X which is defined as
)
)
;:‘- — — — .
{ v = tangential * " (2.4-10)
Ey
b & — —
& where n is8 the outward normal to the aperture surface and E is
'8 tangential
% the tangential field at the aperture surface. Substituting Eq. (2.4-~9)
& into Eq. (2.4-10),
: M=(a E)xa E 0y = u3M 2.4-11)
E: Cip Bp) 5 =~ B = UMy 2
‘H
- where M¢ is given by Eq. (2.4-8). Eq. (2.4-8) agrees with the result
e obtained by Richmond‘?).
o
‘
:2 In the circuit representation of figure 2(b), the net groundplane
o current I(p) is the same as defined by Eq. (2.4-1) with the additional
" current constraint
4
:
; Ibot(p) =0, 0<p< b1 (2.4-12)
.{
i
]
)
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y If the circuit representation of the monopole antenna in figure 2 is

0, 2 now idealized by setting the ferrite 1/e attenuation distance hl/A==0, then

Ir(z)zO for z < 0, h1/}\= 0 (2.4-13)

Consequently, the coaxial line outer conductor may be removed from the

;pq circuit as shown in figure 2(c). The groundplane - coaxial line current
ety
Al constraint of Eq. (2.3-7) 1is not disturbed by such an idealization. Since
a J it has already been assumed that h,<< A, the idealization h1= 0 does not
AN
SR appreciably alter either the radiation pattern or the input impedance of
?‘k the monopole antenna provided that the monopole length h >> hl' Finite
}:5 currents, on an aperture which is small compared to the excitation

M
’lﬁg wavelength, contribute little to the far-field and input impedance
%l (compare with the results for an electrically-small dipole). Experimental
5%’. radiation patterns and measurements of input impedance (see Section 5)

ﬁﬁ: confirm that the use of lossy ferrite toroids along the coaxial line outer
» ".~'
‘ﬁg: conductor yields results which are in close agreement with theoretical
Et : results for the circuit idealization condition of Eq. (2.4-13) -- even for
a1l electrically-small groundplanes.

Eﬂ:: In the idealization of the monopole antenna circuit, the magnetic frill
REh
R~ M¢ may be removed [figure 2(d)] without appreciably altering the radiation
;), pattern or input impedance, provided that

3

R kb, << 1

A conditions for neglecting magnetic frill

f 4 I(z) or I(p) is initially known (2.4-14)
N
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b The condition kbl << 1 correspouds to the condition for TEM mode excitation ;
[ of the coaxial line and for negligible power being radiated from the
L)
¥ coaxial line aperture. If either I(z) or I(P2) is initially known then the
o
: one which is not known may be determined from the other without requiring a
j knowledge of the original coaxial line excitation or its equivalent ~-
: provided that the field radiated by the known current distribution is the
7y
b predominant field incident on the conductor whose current distribution is
S unknown. When neither I(z) nor I(P) is known, then the original source
VI
H excitation or its equivalent (in this case, the magnetic frill M¢) must be
specified to determined the unknown radiated fields.
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SECTION 3

MODELS IN WHICH THE CURRENT DISTRIBUTION ON THE MONOPOLE
ELEMENT IS INITIALLY KNOWN

3.1 Boundary Conditions

The current amplitudes, 1(z) and I(P), on the monopole element and
groundplane, respectively, are generally complex and initially unknown
quantities (see figure 1). Consider now the case where the current
distribution on the monopole element is assumed to be sinusoidal. For such

a case and for the waveform dependence given in Eq. (2.1-2),

1(0)

1(z) = SIntin)

sin[k(h~z)], 0 <2< h (3.1-1)
where

h = monopole length (m)
k = 27/ A = wavenumber (m-l)

I(0) = current amplitude of the monopole base current at z=0 (amp)
From Eq. (3.1-1)

arg I(z) = constant, 0 { z< h (3.1-2)

Although a sinusoidal distribution of current is not possible even for

an infinitely thin antenna, Eq. (3.1-1) is most likely a fair approximation
to the current if the monopole element is sufficlently thin electrically
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;>-' and not too long.(n) For a center-fed dipole of radius b and total

0 length 2h, Elliot(u') gives examples where the current distribution is

‘4

3“.: approximately sinusoidal and is of approximately constant argument for

. -~ -

,-"_-r:- b/A= 1.0 x 10 4 and h/A = 0.125, 0.25. However for b/A = 1.0 x 10 4 and
h/ A= 0.375, 0.5 Elliot demonstrates that the current distribution is no
.t;; longer sinusoidal near the center of the dipole nor is arg z approximately 1
% -

% constant. Balants(13) shows that for b/A= 2.0 x 10 4 and h/A = 0.25, 0.5

.‘. the current distribution is not sinusoidal near the center of the dipole.

1304 -

BeD Elliot and Balanis also demonstrate that for b/A = 1.0 x 10 2 and h/A =

§;.' 0.125, 0.25, 0.375, 0.50 the current distribution is nelther sinusoidal nor

£y

l:" of constant phase and that the deviations from Eqs. (3.1-1) and (3.1-2)

o increase with increasing values of h/A and b/A . On the basis of the above
P results, it appears that Egqs. (3.1-1) and (3.1-2) are approximately valid
* for the conditions

A

[

N -4

2 b/A< 107, h/)\s 0.25 (3.1-3)
,\'

;‘-’ In addition to the coanstraint on I(z) given by Eq. (3.1-1), assume that
Y

a the return current Ir(z) on the outside of the coaxial line outer conductor
T

_:..;,. (see figure 2) is given by

vy

Lin 4)

‘ I(z)=0, z2< 0 (3.1-4)

\(‘

o

:",:: The constraint of Eq. (3.1-4) corresponds to the idealized condition that
!-,l

"‘.'.' the ferrite toroilds have a 1/e current attenuation distance h1 given by

!’-_:1 h /As 0 (3-1-5)

pl :

b

oyl It should be noted that Eqs. (3.1-4) and (3.1-5) do not alter the
constraint Ir(z=0) = Ibot(p= bl) given by Eq. (2.3-7) nor do they impose
‘.. any constraints on Ibot(p= bl) where Ibot(p: bl) is the curreat on the

Q}: bottom of the groundplane at a radius equal to that of the outer conductor.
0

22

w--u"fw-'-‘-

A T N
-(‘_ﬁ_.'




3
o
"
‘e
R
:!,. Combining the current constraints given by Eqs. (3.1-1) and (3.1-4)
¥ with those given by Eqs. (2.4-3) - (2.4-7) and Eq. (2.4-12), the current
’ constraints on the monopole antenna are given by
‘E element I(z) = [1(0)/sin(kh)]sin[k(h-2z)], O £z<h (3.1-6)
‘e.: groundplane IP=a) =0 (3.1-7)
;‘ I,.(P =0, 0<P< b (3.1-8)
-‘:’ coaxial line Ir(z)z 0, z2<0 (3.1-9)
; element-groundplane 1(z=0) = -I({P=b) (3.1-10)
‘ groundplane-coaxial line Ibot(p) = Ir(z-O) (3.1-11)
'. In Section 3, it will be assumed that all models satisfy the currenmt
:‘ constraints given by Eqs. (3.1-6) - (3.1-11). The results are expected to
i, be approximately correct if the monopole element is electrically
: 4:: sufficiently thin and not too long [Conditions (3.1-3)] and if the ferrite
:E toroids are sufficiently lossy [h1/)\<< 1, idealized by Condition (3.1-5)].
> For these conditions, the circuit representatlion of the monopole antenna is
) shown in figure 2(d).
,:
\( For the current constraints of Eqs. (3.1-6)-(3.1-11), the total
}'}, magnetic and electric field intensities H(tOtal) —A(total) at an arbitrary
". field point P(x,y,z) external to the element excitation source points are
-_‘ simply the vector sum of the fields resulting from the element current and
< the current induced on the groundplane by the fields incident from the
2
{": element.
g Accordingly,
W —ﬁ(total) 8_1‘{('3) +ﬂ(g)r€(e)’—-§(e)] current constraints of
y , Egs. (3.1-6)-(3.1-11) (3.1-12)
o —(total) _-3(e) +~E(g)[E(e) sy -
@
. ‘\
N
:;. 23
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where

~§(e),—E(e) = magnetic, electric field intensities, respectively, generated
by the element current

-ﬁ(g)’—E(g) = magnetic, electric field intensities, respectively, generated
by the groundplane current induced by the element incident
fields.

)‘.
“j The element fields H(e) ( )

(g) (g)

are determined in Section 3.2. The
groundplane fields H are determined in Sections 3.3 - 3.8 for

groundplane radii of various extents.

3.2 Induced EMF Method, Groundplane of Zero Extent

 r el o

Concept of a groundplane of zero extent

e

Consider a monopole antenna excited by a coaxlial line whose outer

' conductor of radius bl is terminated by free space rather than by a

R~ groundplane [figure 3(a)]. The groundplane for such an antenna is denoted
» as being of "zero extent”. As was shown in Section 2.4, the coaxial line
‘j excitation may be replaced by an equivalent magnetic current (frill) M¢

* sitting on top of a thick groundplane of radius p= b1 [figure 3(b)]. For
sufficiently lossy ferrite torolds along the outside of the coaxial line,
the current on the exterlor of the coaxial line outer conductor may be
neglected [figure 3(c)]. The magnetic frill may be removed from the

circuit without appreciably affecting the results since kb, << 1 for the

1
assumed sinusoidal current distribution on the monopole element [see Eq.

A
.

.

(3.1-3) and the discussion concerning the circuit idealization of figure

o2 la

(S

2(d)]. Finally, the groundplane of radius b1 may be removed from the

.

‘i

circuit without appreciably affecting the results since a finite current on

an electrically-small conductor does not radiate appreciable power compared

¥

. Pl i
TR R R 'Y

to the power radiated by a monopole element of length h >> b The circuit

1°
idealization of a monopole antenna with a groundplane of zero extent is

therefore an electrically thin monopole element with no groundplane [figure

3(d)].
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L The near-fields, far-fields, and input impedance of an electrically

thin monopole element are derived and summarized in the rewnainder of

\
@Q Section 3.2. The input impedance is derived by the induced emf method.
W Near-fields

y

y Consider a monopole element of length h with a sinusoidal current

L distribution I(z”) = [I(0)/sin(kh)] sin [k(h-z")]. 0 £ z° < h, at points

Q(x", y7, z7) on the surface of the element (figure 4). For an

electrically-thin element with a known current distribution, the fields at

als

arbitrary points P(x, y, z) external to the element may be determined

almost exactly be approximating the source points to lie on the element

LT

axis, t.e., Q(x”, y7, z7)=Q(0, 0, z7). For the current waveform of

Eq. (2.1-2), the magnetic vector potential'zhis given by(16)

o o, PN

1(0) h
— A A Uo —
A(X,v,2) =u A = u ——mi—— f sinjlk(h~z")]| exp(-1kP dz~
zz z 4msin(kh) 0 79 (3.2-1)
8 where -7
" u, = permeability of free space = 4 x 10 ' henries/m
- = ~32 -2 2 1/2
o PQ = [(x-x")" + (y-y7) +/( ) ] p
' 2 2 2,1/2 2.1/2
- [x +y + (z=27)7] [P+(ZZ)]
)'
[ N 7~ Fal
' up, Ugsu, = unit vectors in the radial, azimuthal, and axial
b‘ cylindrical directions, respectively,
L 2
A The magnetic and electric fleld intensities, H and E; respectively, are
\
v given by
b
T wd
" _l? 1 (Vx::) /l} 1 BAZ
&Y = - == BEY -
- o ¢ Mo 3p (3.2-2)
-
»al
B\ -
4
O
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Figure 4. Monopole Element Geometry
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e E = — = -u +
jwe (VxH) ==y, jue "3z “z Jwe TP p (PHy)
Q (3.2-3)
- where €, = permittivity of free space = 8.854 x 10-12 farad/m
.‘, —~ -
; Exact closed form expressions of A, H, E and radiation resistance were
.h: first obtained for an infinitely thin element by Brillouin(17) and are
:: summarized by Stracr_on(ls). The magnetic and electric fields are given by
g
¢ . 1 1(0) . B} _
3 H¢ TPsin(kh exp( jkro) cos(kh) exp(-jkr)
[ - -
2 gz sin(kh) exp( jkr)] (3.2-4)
- e - 3107 (z-h) exp(~Jkry) 2 cos(kh) exp(-jkr)
- P 4npgin(kh) r r
'-,( + sin(kh) 3 | _z exp(-jkr)]
[y az kr
;- - 3 1(0)n (z=h) exp(-jkro) _ .z cos(kh) exp(-jkr)
K. 4npgin(kh) r, r
’i 2 2
¥ -

+ sin(kh) exp(-jkr)| 1 z_ _ iz (3.2-5)
N kr 3 2
o kr r
-
S -
';: E = - I(0)n exp( jkro) _ cos(kh) exp(-jkr)
N z 47 sin(kh) r T
.:{ (o]
< , sin(kh) 3 [ exp(-jkr) :H
N oz r
.3
-1 - -3 107N exp(~Jkr ) _ cos(kh) exp(-jkr)
W] 47T sin(kh) r r
. _ 2z sin(kh) exp(—-jkr)| j + 1 (3.2-6)
O 2 3 '
X0 r kr
S
S
A.
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where

7 = k/W€ = wave impedance of free space = 376.73 ohms
2.1
r, = (02 + (z-m)?)t/2
r = (P2 + z2)1/2

Eqs. (3.2-4) - (3.2-6) are identical to the results given by Stratton
[52 = h, 61 =0, £=h,d=kh, r, =7 , 1y =71, I = -1(0)/(sin (kh)]
after the substitution of -j for j to account for the exp (-jwt) waveform
of Stratton instead of the exp(jwt) waveform of Eq. (2.1-2). The fields
given by Egs. (3.2-4) - (3.2-6) are exact for an infinitely-thin element
and are almost exact for an electrically-thin element with the same

slnusoidal current distribution.

Consider a field point P at a sufficiently large radial distance r
which satisfies both the far radiation zone and Fraunhofer diffraction

conditions given by

h << r, kr >> 1; far radiation zone conditions (3.2-7)
kh2/2r << 27; Fraunhofer diffraction condition (3.2-8)

For these conditions,
exp(-Jkr_)a exp[-kj(r-h cos®)], h << r, (kh’/2r) < 27
l/rozl/r, h<r
z -h=z =1rcosf, h Kr (3.2-9)

(1/kr) - (22/xe3) - (§22/r2)m -5 cos?®, kr >> 1

(j/rz) + (1/kr3)z(j/r2), kr >> 1
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For the approximations of Eq. (3.2-9), the "exact” fields given by
Fqs. (3.2-4) - (3.2-6) reduce to the far-fields given by

j 1(0) exp(-ikr) [
H, = exp (jkhcos®) - cos(kh) - j cosP sin(kh)
9 N s
0} 47rr sin® sin(kh) (3.7-10)
j T(0)Ncosh exp(-ikr) [
F = : 1 - cos(kh) - j cosf® sin(kh)
g .
P 4rr sinP® sin(kh) (3.9-11)
-1i I(0) 1] exp(-ikr) [ .
E = - - 1 ~ cos(kh) - j cosh sin(khﬂ
z 47 r sin(kh) (3.7-17)
The resultant electric field F =qbﬁp + G;Rz reduces in the far field to
— VaN
E = uGEG’ far-field (3.2-13)

where

_ 1 1(0) 71 exp(-ikr) [ .
Ee = 47t sin® sin(kh) 1 cos(kh) i cosh sin(kh)]

The time-averaged Poynting vector S = (1/2) (¥ x_;3 =

. ~
(1/2) (GB Eg X uo HO) = G} s(8) with a time-averaged radfated power densitv
s(8) given by

e (2 ) 2 nlteyl” e .
s(R) = IR 17/(2m) (’7/?)|H¢)| S et e (3.2-14)
where
2 7
f(g)za[COS(kh cosA) - COS(kh;] + [sin(kh cos®) - cos O sin(kh)]
sin A

Tte direction of maximum radiated power is A = 7T/2 rad.
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Substituting Eq. (3.2-14) into Eqs. (2.2-6) and (2.2-7), the radiation
resistance R, referred to the base-current, is given for an infinitely thin

element by

mw
n _/0- f(8) sin® dé

R = 5 (ohms)
87 sin” (kh)
= 1 [cin(2kh) - sin’(kh)], b=0 (3.2-15)
4msin” (kh)
(19) Z a4t
where Cin(z) = modified cosine integral = d/. . (l-cos t).
0

The result given for the definite integral of Eq. (3.2-15) 1is readily
obtained by letting t = cos 6 and noting that

where x = 1+t and y = 1-t.

Substituting Eqs. (3.2-14) and (3.2-15) into Eq. (2.2-8), the numeric
directive gain d(8) 1is given by

d(8) = £(8) . (3.2-16)
Cin(2kh) - sin“(kh)

where f(8) is defined in Eq. (3.2-14).
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For electrically-short monopole elements (kh << 1) and for 7= 376.73
=~ 1207 ohms, Eqs. (3.2-14) - (3.2-16) reduce to

4 2
£(0) = —— (KW SI0 <y (3.2-17)
2 2 .2

s(9) = 13 11€0)] (kh)z sin® n<< (3.2-18)

16 mr
R =5 (kh)> (ohms), kh << 1, b = 0 (3.2-19)

3 si 29

d®) = = % h <1 (3.2-20)

2

The relative power radiation pattern s(9)/smax = s(8)/s(m/2), radiation
resistance R, and the directive gain (directivity) d(8) are tabulated in
Appendix Al, Tables Al-1, Al-14, Al1-26, Al-38 for h/A = 1/4, 1/10, 1/40,
and 1/100, respectively. The numeric directive gain pattern d(8) for a
quarterwave monopole element [see figure 8(a) in Section 3.9] is similar to
that of a half-wave dipole except that its peak directivity is less (1.88
dbi vs. 1.76 dBi) and its 3 dB beamwidth is more (94 deg vs. 78 deg).

Input Impedance

N
N
&Y

=

LR T TN
RO

r

The input impedance may be determined by the induced emf method
introduced by Brillouin(17). With reference to figure 4, the input

impedance Zin is given by(zo)

h
Zin = "(I/Im) fIz(p= b, z = 27) EZ(P=b, z=2")dz", b> 0
0
(3.2-21)

where

Im = 1(0)/sin(kh).
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'J The induced emf method 18 indeterminate for collinear current elements

- unless the elements are of radius b > 0. For sufficiently thin elements,
i‘:":: the current Iz is given by Eq. (3.1-1) and the electric near field l':‘.z is
‘:" given almost exactly by Eq. (3.2-6). Substituting Eqs. (3.1-1) and (3.2-6)
g., into Eq. (3.2-21),

f;';a‘

}

i
: h exp(-jkr )

o = in - - o

Wi Zin = Trsin(kn) f dz” sin{k(h-z )]l T,

0

3‘ _ cos(kh) exp(-jkr) + sin(kh) d [ exp(-jkr) ]]
; r z r (3.2-22)
AN where
& r = [b2(z-n)?]t/?

v ‘ r = (b2 + z’2)1/2

\\ Each of the three terms of the integrand of Eq. (3.2-22) may be integrated
o, by the methods summarized by Stratton(ls). However, the third term of the
T integrand should first be integrated by parts.

*\ Accordingly,
N

%

R
J

N Zio =Ry tIX =2 +2Z,+ 2, (3.2-23)
3%
W where
"}\’* h
) -
] 2. = —A0 [ 4z sin[k(h-z)] XPCIKT) L 4 x
' L 4nstn®(kh) T L.
oy sin 0 o (3.2-24)
¥
) 7 1 1
T R, = Cin(x,) + —— Cin(x,) - Cin(x,)
N 1 P z(kh) 2 1 2 2 3
o sin (3.2-25)
:; X, = '72 [ > Si(x)) +% S1(x,) - S1(x,) | (3.2-26)
A 4ngin” (kh)
NS
4
4.
oK
o
...
k.. 33
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7 = in ~dz” sin[k(h-z7)] cos(kh) exp(-jkr) = R2+ sz
2 4ﬂsin2(kh) r
0 (3.2-27)
R, = nz = 312(2“) [S1(x,) = $1(x,)]
4rtgin” (kh)
+ cos2(kh) [-Cin(x,) + —— cin(x,) + —— Cin(x,)] ! (3.2-28)
3 2 2 2 1
X, = 772 - 812(21‘“) [Cin(x,) - Cin(x,) + In(x,/x,)]
4rnsin” (kh)
2 (kn)
+ 508 X (si(x,) + Si(x,) - 2 Si(x,)] (3.2-29)
2 1 2 3
h
2, = -0 (477 sintk(h-2z")] sin(kh) -O[eXp(-Ikr) ]=R+ X
3 4ﬂsin2(kh dz r 3 3
0 (3.2-30)
n sinz(kh)
R3 = 5 [kin(xl) + Cin(xz) -2 Cin(x3)
4risin” (kh) 2
+ +
. 2(x1 x2) (sin x1 sin x2) _ 4 x3 sin x ]
2 2 2 2 2
X + X, + 2(kb) X3 + (kb)
sin(2kh) 2(x1 + xz) (cos x1 - cos x2)
- e |si(xy) - si(x)) - 5 5
x| + X, + 2(kb)
(3.2-31)
U 1n2 (kh)
X, = 5 s = S1(x,) + Si(x,) ~ 251(x,)
4risin” (kh)
2(x1 + xz) (cos X + cos xz) 4 X3 COS X5
+ 72 2 - 2
X + X, + 2(kb) X4 + (kb)
sin(2kh) _
+ ————Z—————-[ Cin(xl) + Cin(xz) + ln(xl/xz)
Z(x1 + xz) (sin X - sin xz)
- 3 3 7 (3.2-32)
X, + Xy + 2(kb)
34
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where

s X =

»
]

gl : Cin(x)

Si(x) =
Summing Eqs. (3

it
i Rin

_-»ﬁs.-,,-
P S

in

e
2

et £

e (3

LS

:ﬁ‘i-
R

9

where x

k[ (b2 + h2) /2 4 p)
(o2 + h2y2 < n)
kb

x
modified cosine integral(lg) =./r -g%— (l-cos t)
0

2
L = k(b

X
sine integral(lg) = ~/0‘ _8in t dt
t
2-23) - (3.2-32),
n
3 Cin(xl) + Cin(xz) -2 Cin(x3)
4ngin” (kh)
sin(2kh) [(x1 + xz)(cos X, = cos x2) ‘
2 2 2 2
x1 + x2 + 2x3
2 (x1 + x2)(sin X, + sin x2) sin Xq
sin” (kh) 3 3 3 -
X
x1 + x2 + 2x3 3
(3.2-33)
e e— Si(x,) + Si(x,) - 2 Si(x,)
4nsin2(kh) , 1 2 3
+ -
sin(2kh) [(xl Xy)(sin x, = sin x)) ]
2 2 2 2
x1 + x2 + 2x3
2 (x1 + xz)(cos X, + cos xz) cos X,
sin” (kh) -
x2 + x2 + 2x2 x3
1 2 3
(3.2-34)
+ 0 HY2 4oy, x, = k[(b® + w2 -, x, = kb.
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R,
>0
o
LK
:: For b=0, Eqs. (3.2-33) and (3.2-34) reduce to
- n [ 2
, Rin = Cin(2kh) - sin (kh) , b=0 (3.2-35)
'}"' 4nsin”(kh)
wh -
i
" n [ sinz(kh)
hog X, = —— | $i(2kh) - ———=—"— |, b—0 (3.2-36)
3 in 2 kb
= 4rsin” (kh) |
W
45
-.:{ Eq. (3.2-35) agrees with the result for radiation resistance given by
; Eq. (3.2-15). A comparison of Eq. (3.2-33) with Eq. (3.2-35) reveals that
o the input resistance is relatively insensitive to the monopole element
B4 radius b for kb < 1. The input resistance given by Eq. (3.2-35) is
’:-‘ plotted in figure 5. For kh =7/2 radians, Rin = 19.4 ohms.
L)
1f The 1input reactance is sensitive to the element radius b as seen in
W Eq. (3.2-36). For b = 0, the input reactance is given by
D Ca
5
S -ohms, kh #nmr, n=1, 2, 3 ...
TR
\ X = = .2
{n , b=20 (3.2-37)
25 o ohmg, kh = nm, n =1, 2, 3 ...
-3
it From Eq. (3.2-36), resonance ()(m = 0) occurs for
(kh) ~nm+ [kb Si(2n7r)]l/2 n=1, 2,3 (3.2-38)
:".7 resonance — ’ L '
@
v The input resistance at resonance, for kh given by Eq. (3.2-38), is found
from Eq. (3.2-35) to be
ey n Cin(20m
o =~ - 3.2-39
:: (Rin)resonance 4 kb Si(2nm 1 ( )
Wy
S Minima of input resistance occur for kh given by
o
4 1
"y o~ = « L=
;N' (kh)minima ~ (N + 3 ym, N 1, 2, 3, ... (3.2-40)
;-
n
.
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The input resistance at these minima element lengths is found from

e
. Eq. (3.2-35) to be
\‘

"
> (R, ) ~—D— [y=1 + fn[(2N + 1)7] (3.2-41)
1 in“minima 47

\
’ where

;' Y = Euler”s constant = 0.57721

Ix
L. The accuracy of Eq. (3.2-40) increases as N —» 0,
1

é Summary of Results

¢ The input impedance and directive gain properties of quarterwave and
af electrically-short monopole elements with groundplanes of zero, large, and
Wy
iy infinite extent are compared in Table 4 of Section 3.9. The peak

- directivity is approximately 3 dB less with groundplanes of zero extent

A _—=

-~ than with groundplanes of large extent. However, the directive gain on the
N
.1 horizon is approximately 3 dB more with groundplanes of zero extent than

with groundplanes of large but finite extent. The radiation resistance
with groundplanes of zero extent is approximately one-half that with

groundplanes of large extent.

Unlike dipole elements in free space whose first resonance occurs for
2 dipole half-lengths approximately equal to a quarterwave, monopole elements

with groundplanes of zero extent have a first resonance for an element

PP RPN

length approximately equal to a half-wave.
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3.3 1Integral Equation, 0 < ka < 2.75

In Section 3.2 the fields generated by the monopole element were
determined. These fields impinge on the groundplane and induce a
groundplane current. For sufficiently small groundplanes, the fields
generated by the groundplane current may be determined by Bardeen’s

integral equation method(l).

In this method a cylindrically symmetrical electromagnetic wave
(generated by the element) 1s incident on the groundplane disc. The
fields generated by the induced groundplane current are required. The
solution depends upon solving an integral equation of the first kind.
For groundplane radii of arbitrary radius, the integral equation is
not readily solvable because it contains two integrals. However, for
sufficiently small groundplane radii, Bardeen neglects one of the

integrals so that the integral equation may be solved explicitly.

Although Bardeen gives a general formulation of the solution for
the resulting single integrand integral equation,his only explicit
results are for the case when the incident wave 1s generated by an
infinitely thin dipole element whose base is at a non-zero height
above the center of the groundplane. Bardeen restricted his solution
to elements at a non-zero height above the groundplane in order to
avold having a source point (the base of the element) at a near-field
point of interest which, for the integral equation method, includes
the center of the groundplane. The total field is then given by the
vector sum of the incident field and the induced field [see Eq.
3.1-12].
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The present case of interest is a monopole element whose hase is
in the plane of the groundplane, 1.e., at a vertical height v=0 ahove
the center of the groundplane (see figure 6). For this case, the
total magnetic field may be determined by first evaluating the field
with the element at an arbitrary height v > 0 and then by evaluating
the resulting expression in the lim v—0. By such a procedure, an
indeterminate expression is avoided for the field generated by the

induced groundplane current.

(total)

Accordingly, the total magnetic field intensity H¢ [see Fq.
(3.1-1.2)] in the limit v—0 is given by
11 m{OtADL 4 Hée) + lim Hég) (3.3-1)
v—0 v—0 v—0
where Hée) and Hég) are the magnetic field intensities generated by

the element and groundplane currents, respectively. Tn the following
evaluation of the two terms of Eq. (3.3-1), the flelds are assumed to
have an ejwt time dependence [see Fq. 2.1-2] unlike the e-jwt time

dependence assumed by Bardeen.

The first term of Fq. (3.3-1) is given exactly, for an infinftely
thin element, by [see Eq. 3.2-4)

1im Hée) = Z7ﬁ§§%%%%ﬁj— [exp(-jkro) - cos(kh) exp(-ikr)

1z sin(kh) exp(—jkr{}

= (3.3-2)
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ji In the far-field, Eq. (3.3-2) reduces to [see Fq. (3.2-10)]

hD (e)
- 1im H0 = A [j exp( ikh cos®) + i cos(kh) + cosh sin(kh)]

- v—0 far-field (3. 1 -3)
:.."')

o~ where

= R () WS

R o 47rr sin® sin(kh)

%

;', The second term of Fq. (3.3-1) may be evaluated by utilizing

;:: Bardeen”s Eq. (31) for Hég) which he obtained as a solution to his

‘ -

' single integrand integral equation. For an {nfinitely thin element
o) and for sufficiently small groundplanes (ka<1l), Hég) is given by

}3 Bardeen”s Eq. (31) as

-:Q

L

3 a

= (8) Ive

IN) H¢ = sgn(z) —— F(s) K(s) ds, ka <1

i\: kp 0 (3.3-4)
N

where

o - kA, -1k,

- K(s) = e stnh(kBl) sinh(ks) - e sinh(kRo) sinh(ka)
::i sinh(ka)

i +, z _>_ 0

. sgn(z) =

[ -1, z<0

) "I

X ﬂ €, ~ permittivity of free space (farad/m)

)

- 2 2.1/2
; A1 - jB1 = {p2 + [-ja + z sgn(z)]z}l/ = [r - sgn(z) 2ira cosP - a ] /
2 2.1/2
R A, - 3B, = 02 + (=35 + z sen(2)12}/% = 1" - sgn(z) 21irs cosd - s /
Ry

>, s = dummy variable with the dimension of length

“1

o

f: F(s) = excitation function related to the radial electric
L near-field intensity Ege)lz o Which fs incident on the
Y =

) groundplane.
o s
'

~
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28
;r The second term of Fq. (3.3-1) is therefore given by
<
1
() ~wg, )
.‘;4 lim H¢ = ggn(z) -——k—p—-“‘— lim F(s)K(s) ds, ka S]
&N v—0
B v—0
[}

. a

v -jweo

= sen(z) — 53— [l{m F(s)] K(s) ds, ka < 1
::§ o tv—o (3.3-5)
X
! The excitation function F(s) is given by Bardeen”s Ea. (35) as

o0
o 2 2.1/2
- .2 p h(p) sin[s (p - k) ] _
o F(s) = / 7 I 172 dp (3.3-6)
< 0 (v )
b where
p = dummy variable with the dimensions of (length)—l

o

?i h(p) = function of the radial electric near-field intensity
fﬁ Eée)|z=0 which is incident on the groundplane.
LY

‘ The function h(p) is given by Bardeen”s Fq. (33) as

[e o]

" - gl -
o Ry lpmo = [ M) J1(pp)  dp (3.3-7)
_.-?‘ 0

~n

> where Jl(x) = Bessel function of the first kind.

oL
5}: The electric fleld intensity Eée)lz=0 incident on the groundplane
_:. is given by

=

)
©, -

" (e)

7 2O L o ¢ LUx (9x A% (1.1-8)
> P z=0 p tw uo(o z=0

~
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%) where
Ei
- A(e) = magnetic vector potential generated by the monopole
b
- source points
-
H, = permeability of free space (henry/m)
Gb = unit vector in the cylindrical radial direction

The magnetic vector potential A(e) for the element base at an

S arbitrary height v is given by(lé)
h
al®) -3 (ﬂo/m/ (&) (1/5Q) exp(-ikPQ) dé (3.3-9)
' 0
% where
L |
A
'_-" A
- u, = unit vector along the z axis
3 ?6'= distance from source point Q to field point P
‘ =102+ (z - £ - Y2, ax, v, £)moc0, 0, £).
1(£) = monopole current distribution = [I(0)/sin(kh)] sinfk(h-£]T.
: In order to facilitate the evaluation of h(p) in Fq. (3.3-7), it
is convenlent to express the factor (1/P0) exp(-ikP0) in terms of
Bessel functions. Using Sommerfeld”s formula(ZI) and the dummy
& variable p introduced in Fq. (3.3-6),
C:‘- -
" — /72
o~ JkPQ Jo(pp ) exp [ -l z-¢-vl n?- k } p dp,
-y - v = 2
‘ﬁ Pq (pz _ k2> 1/
X 0
W
% - (m/2) < arg ng:“;7_  (m/2), -7m<arg k <O
N =

(1.3-10)

-f'_ "‘\ - -
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K Substituting Eq. (3.3-10) into Fq. (3.3-9),
h 0
B /2 2'
«s — 1(0) J (pp) exp[— |z -£- vl /p° -k
(e):== ”o ~ _ o .
, A i sin(kRy Uz J44 sinlk(§ -h)) 5 2. 172 p dp;
P} o A (p” =~ k)
{
'.5' 7 2
- - (7m/2) < arg Vp© - k" £ (7/2), -T< argk O (3.3-11)
; Since we are interested in evaluating E;e) 2=0" consider the case
N.‘ ’ -
’
- z < ¢ + v. Substituting Eq. (3.3-11) for such a case into Fq. (3.3-8)
- and noting that
" -~ 3 (pp)
e (e) o o
) A u = A and ——— = - pJ.(pp),
o~ z z dp 1
C 2
l{::i g(e) = L 8L
' 7 P 12z=0 —jwﬂoeo dzop z=0
d 00
4
' 2 /2 2
" = 1(0) pJ,(pp) exx{z-V) P - k] R(p) dp
—jl&ﬂwéosin(kh) 2=
) ° 3.3-12
Iy where 3. )
¥ h
o /2 2
' B(p) =f sin[k(h - £)) eXp[—f T~k j\df
J 0
N
P ~ I
s . __kexp [ -hwp" - kz] + \4)7 - k2 sin(kh) - k cos(kh)
o 2
F‘l
P (3.3-13)
Y Substituting Eq. (3.3-13) into Eq. (3.3-12) and letting z=0,
0
L 2 2 2 2
.l ~ -k - -k
o O T 1(0) dp 3, (pp) & [e "
;: P |,=0 —jAﬂ’weo sin(kh)
g 0
g
5: + \42 - k2 sin(kh) - k cos(kh) 1 (3.3-18)
< -
%8
i
o
3
N 45
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?‘7

il

o

' Comparison of Eq. (3.3-14) with Eq. (3.3-7) vields

il

" 1(0) ke (MFV W

29 h(P) * —z7we sin(kn)

i °

"::‘ \/—'

O 2 2 /2 2
'A: + sz - k2 sin(kh) e vYp k - k cos(kh) e VP k ]
A (3.3-15)

,\ Substituting Eq. (3.3-15) into Eq. (3.3-6)

' F(s) = ——2Ck [T + sin(kh) T, - cos(kh) 1,]

) 2

#’

" m k (3.3-16)
¢ where

¢ = 1(0)

,.1.; i Aﬂweo sin(kh)

‘ I = P e—(h +v) Vp -k sin(s p2 - k2) dp

1 2 .2\ 1/2

0 (o &

- * S22

[ I, = p sin(s 42 - k2) e VP Tk dp

b~ 0

e 0 5 3

-“1 - R

o I = p sin(s p2 - k2) e~ VP k dp

_‘.{ﬁ 3 2 2\ 1/2

ol 0 (p -k )

e

:“:: In integrals 1,, 1,, I,, we introduce a change in varfahle p to y given by
M.

ey

e

~ y = (02 - k2 Y2 _(m2) < arg y < (1/2) (3.3-17)
WY

Y

"" where the condition on y follows from the conditions of Fq. (3.3-10),
.

2

e

o i
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From Integral 2.663.1 of Ref, [22], it follows that I1 is given by

o0

- =(h + v)y _

1, = fe (h + v)y sin(sy) dy = 2 — [=(h + v) sin(sy)
ik (h+ v)"+s

_ ~k(h + v)
- s cos(sy)] | = ¢ 5 3 [-3(h + v) sinh(ks) - s cosh(ks)]
(v+h) +5s

ik (3.3-18)

From Integral 2.667.5 of Ref. {22}, 1t follows that 12 is given by

o _ VY S2 _ v2

I2 = /y sin(sy) e vy dy = 5 ||-vY + ——2——-—?—> sin(sy)
v+ s v+ s

jk

) o0
- sy + L cos(sy)
2+ 2
s+ v ik
- e =jkv

2 2
= —————-[kv sinh(ks) - 3jks cosh(ks) - iv_- s ) sinh(ks) - 2 vs COSh(kS‘]

32+ v2 sz+ v2

(3.3-19)

From Integral 2.663.1 of Ref. {22] 1t follows that I, 1s glven by

3

® o0
13 = / sin(sy) e-vy dy = e-vy[ -V 51;(8_‘/; - 8 cos(sy) ]
Jie ik

s+ v

(3.3-20)

2, 2

- e—jkv [ = j v sinh(ks) - s cosh(ks)
s+ v

Consider now the limits of I, I,, and 14 as v—0.

~-ikh

e
1lim I1 = ——3— [} h sinh(ks) - s cosh(ks)) (3.3-21)
v—0 h™+ s
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- b

)

1im I, = - Tké(s) sinh(ks) + —J X cosh(ks)

N v—0 2 8
. 5
'S + jn‘zé (s) sinh(ks) - | sin;\(ks) -8 (8) cosh(ks)
y s
. (3.3-22)
.
« lim I, =  376(s) sinh(ks) + —<25n(ks) (3.3-23)

v—0
: where(23)
Y 1
s d(x) = Dirac delta function = lim v
8 m 2 2
\ v—0 v+ X

b 1, a < X <b

< [6(x-x°) dx = 1/2, a = X, <bora<d<x=b
. “a 0, x <aorx >b
a o o
A - (x) = d [6(x)] _ lim 3 1 v | lim | 1 2 vx
£ 6" () =3x v—0 3x T F 2 vl (207)
4
) In Eqs. (3.3-22) and (3.3-23), those terms containing the product
0(s) sinh(ks) may be set equal to zero since from Fq. (B. 2-12) of Ref.
\ (23], x 8(x) = O.
2‘
¥ The lim F(s) is found by substituting Fgs. (3.3-21)-(3.3-23) into Fq.

VvV —
4
K}
‘ (3.3-16).
I
' Accordingly,
(
¢ - jkh

2Ck e [-1 h sinh(ks) - s cosh(ks)]
lim F(8) = = 5 5

' v—0 h“+ s
X
> + 2C sin(kh) -3 k cosh (ks) _ 1 sinh (ks) _ g737(s) cosh ("s\]
y m s 2
¢ S
= 4+ —2C k cos(kh) cosh(ks) (1.3-24)
LY m s
.
.Y
>,

¥,
)
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The magnetic field intensity generated by the groundplane current, for
the case v—0, is found by substituting Eq. (3.3-24) into Eq. (3.3-5). The
total magnetic field is explicitly determined bv numerical evaluation of Fqgs.
(3.3-1) - (3.3-5).

In the far-field, the factor K(s) and the parameters A Ays Bys By, inm

Eqs. (3.3-4) and (3.3-5) reduce to a simpler form.

In the far-field when r »x, then a <{ r and s < r. For these

conditions,

/2 _

la ]

- sgn(z) ja cosh,
ar (3.3-25)

Al - jBlz[rz - sgn(z) 2jra cos & - azc0829]1

1/2 r - sgn{z) is cosAh,

s Kr (3.3-26)

A2 - szzz[rz - sgn(z) 2jra cos 6 - szcosze]

Equating real and Imaginary parts in Eqs. (3.3-25) and (13.3-26)

B1 = ggn(z) a cos 6, a <«Kp (3.3-28)
32 = ggn(z) s cos B, s KKp (3.3-29)

Substituting Eqs. (3.3-27), (3.3-28), (3.3-29) into Fqs. (3.3-4) and (3.3-5),
the far-field magnetic field intensity due to the groundplane current, for

the case v—0, 18 given by

-jweo exp(-jkr) a

(g) - . - 1
I{TOHO %t sin® I{TOF(S) g(s) dg; far-field, ka
v o v (3.3-30)
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where

sinh(ka cosB®) sinh(ks) - sinh(ks cosP) sinh(ka)

8(s) = sinh(ka)

and lim F(s) 1s given by Fq. (3.3-24)

v—0

Eq. (3.3-30) can be reduced further by utilizing the properties of the
Dirac delta function given by Eq. (B.2-7) of Ref. [23] and the relation

a 1
f 87 (x) £(x) dx = - —— £7(01).
A _

It follows that Eq. (3.3-30) reduces to

(2) 2A a ~jkh
lim H & = o ds g(s) - f-i h sinh(ks) - s cosh(ks)]
(} b 2 2
v—0 0 h™ + s
+ sin(kh) -3 cosh(ks) + 1 sinh(ks) + cos(kh) cosh(ks)
s 2 s
ks
B sinh(ka cos 8) - cos A sinh(ka) |, N
Aosin(kh)[ sinh(ka) ], far-field, ka i 1
(3.3-31)
where Ao and g(s) are defined in Eq. (3.3-3) and Eq. (3.3-30),

respectively.

The total far-field magnetic field intensity generated by the
element and groundplane currents, for the case v—0, is found by
substituting Eq. (3.3-3) and Eq. (3.3.-31) into Fq. (3.3-1). The
(total) 1

resulting expression for 1lim H
v—0

8 in a form suitable for
computer evaluation.
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{qai The radiated power density s(8), directive gain d(8), and

S

::ﬁ radiation resistance R are found from Eqs. (2.2-4) and (2.2-7). These
o quantities are computed in program "BARDEEN" in Appendix Bl. Computer
{iﬁ printouts of the relative power radiation pattern s(9)/smax. radiation
‘%i resistance R, and the directive gain d(®) are given in tables (Al-1 -

bR Al-13), (Al-14 - A1-25), (Al-26 - Al-37), (Al-38 - Al-49) for
- normalized element lengths h/A = 0.25, 0.1, 0.040, 0.01, respectively,

s : and normalized groundplane radii = 0, 0.25, 0.50, ... 3.0 wavenumbers.
i
Jh The radiation patterns have no appreciable change in shape for

groundplane radii 0 < ka<1.75 and resemble that of a dipole in free

’Jq space with peak gains approximately in the direction of the horizon
ﬁq and with directivities less than that of a dipole whose total element
gi' length is twice that of the monopole element length. For a

€V_ quarterwave monopole element, the directive gain on the horizon

29 deceases from 1.88 dBi for ka = 0 to 1.23 dBi for ka = 1.75.

=

h}i In table 5 of Section 3.9, the radiation resistances obtained by

A the integral equation method are compared with those obtained by the

;{ method of moments for a quarterwave element and groundplane radii

Al ,\-‘

{?; 0  ka < 3.0. The values, obtained by the integral equation method,
A differ from those obtained by the method of moments by less than
Tﬁ: 1% for 0 < ka < 1.75 and by less than 10Z for 0 < ka < 2.75. These
;‘§ results suggest that the integral equation method is accurate for
)
h groundplane radii 0 < ka < 1.75 and is useful for 0 < ka < 2.75. It
&g. 1s suspected that the best available results are obtained by the
? integral equation method for 0 < ka < 1.0.
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3.4 Method of Moments, 0 < ka <]4

In Section 3.3 it was shown that the integral
equation method, for determining the fields generated by the
groundplane current when the current distribution on the monopole
element is initially specified, is accurate only for groundplane radii
less than approximately 1.75 wavenumbers. In Section
3.5 it will be shown that the algorithms utilized in the oblate
spheroidal wave function methn? are accurate only for groundplane
radii no smaller than 3.0 wavenumbers. The question arises: What
method is accurate over a range of groundplane radii which includes
the region 1.75 < ka < 3.0?

We have found that Richmond”s method of moments(z) is the only
method in the present literature to be accurate over a range of
groundplane radii which includes the region 1.75 < ka < 3.0. Although
this method is primarily intended for use when the current
distribution on the monopole element is initially unknown, this method
is also applicable when the element is specified to have a sinusoidal

current dlstribution.

This method is discussed in Section 4.2. 1In this method the
element is subdivided into N equal segments and the groundplane is
subdivided into M concentric annular zones of equal width. The
unknown current distributions on the element and groundplane are
expanded as a series of N + M overlapping sinusoidal dipole modes
(sinusoidal-Galerkin method) each with an unknown current
distribution. The N + M currents are determined by inversion of a

(N + M) x (N + M) matrix. The numbers of subdivisions, N and M, are
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limited by the cost of computation time and by the precision of the

computer. The accuracy of the solution can be decreased appreciably
if either N or M is too small or too large. The method of moments
converges to a solution when an increase or decrease of unity in the
value of N or M does not appreciably alter the solution for input

impedance.

A particularly useful property of the sinusoidal - Galerkin method
is the sinusoidal current distribution which is imposed on the element
by setting N=1.

The input impedance and radiation pattern of thin quarterwave
elements (b/A = 10_6, h/A = 0.25), for groundplane radii 0 < ka < 14
wave numbers, were determined by Richmond”s method of moments by
utilizing MITRE programs "RICHMD1" and "RICHMD2" which are discussed
in Section 4.2 and listed in Appendix B5. With N=1, convergent

solutions were obtained for values of M given by:

M= 3, ka = 0.25

M=7, ka = 0.50

M= 16, ka = 0.75, 1.0 ..... 8.5
M=3%ka, ka=8.75, 9.0, ..... 14.0.

Computer printouts of the input admittance, groundplane current
distribution, radiation resistance, directive gain, and radiation

patterns are given in Appendix AS.

The input resistance and reactance -- as determined by the method
of moments or methods which give similar results —-- are plotted for

thin quarterwave elements on groundplanes of radii 0 < ka < 14 in
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figures 9 and 10 of Section 3.9. The directive gain on the horizon,

i peak directivity, and elevation angle of the peak directivity given by

! the computer printouts of Appendix A5 are plotted in figures 11 - 13

| of Section 3.9.

"

AY

' The input impedance of thin elements with a sinusoldal current .

b distribution were also determined for element lengths h/A = 0.1 and

” 0.025 and groundplane radli 0 < ka < 8.0 wavenumbers by utilizing

'q program RICHMD1 with N=1. The radlation resistance of these elements

)
is compared in figure 14 of Section 3.9 with those of a quarterwave

w

a element. In flgure 14 the radiation resistance is normalized to the

ﬁ value of radiation resistance of each element for ka = 0.

4

i

‘!

4 Values of the radiation resistance for quarterwave elements are

X determined in Appendix A5 by matrix inversion (program RICHMD1) and

. also by the far-field radiation pattern (program RICHMD2). The values

, determined by both methods differ by less than 1% for small
groundplane radii and differ by less than 3% for the larger

)

:: groundplane radii.

,' N

& The values of radiation resistance obtained from program RICHMD2

- are compared in table 5 of Section 3.9 with the values obtained by the

i

" integral equation method and the oblate spheroidal wave function

:‘ method. Richmond”s method of moments gives useful results over the

r entire range 0 < ka < 14 and gives good agreement with the integral

J equation method for 0 < ka < 1.75 and with the oblate spheroidal wave

? function method for 3.0 < ka € 6.5. Whereas the method of moments

F gives useful results in the regions 1.75 < ka < 3.0 and 6.5 < ka 5,14’

1

- the other methods fail in these regions. For ka > 14, Richmond’s
method of moments 1s not as useful because of increased computation

‘: time and decreased accuracy. It is suspected that for thin monopole
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elements the best available results are obtained by the method of
moments for 1.25 < ka < 2.75 and 6.75 < ka < 14. For relatively thick
monopole elements, Richmond”s method of moments gives the best
available results for groundplane radii 0 < ka < 14 as discussed in

Sectlon 4.2.
3.5 Oblate Spheroidal Wave Functlons, 3.0 < ka < 6.5

Oblate spheronidal coordinates (see table 1 in Section 2.1) are
particularly convenient for handling the boundary condltlons of the
magnetic field intensity on the groundplane. The requirement for
constant tangential magnetic fleld intensity across the upper and
lower hemispheres at the groundplane interface may be specified at all
points of the groundplane disc by a boundary conditfon at only the

oblate "radlal” coordinate £ = 0.

For groundplane radii of the same order of magnitude as the
excitation wavelength, Leitner aand Spence(3)-(5) utilized oblate
spheroidal wave functions to determine the grouadplane current induced
by a thin quarterwave element with a sinusoidal current distribution.
Leitner and Spence give numerical values of the grouandplane current
distribution, radiation resistance, and far-field power density (at
constant element base current) for groundplane radii ka = 3, 4, s,vﬁﬁf
wavenumbers. The complex current distributions on both the top and

bottom faces of the groundplane are reported.

In this section, we report the results of a computer program
"MONOPL," based on the theory of Leitner and Spence, which calculates
the directivity pattern and radiation resistance for groundplane radii
including the cases ka = 3, 4, 5, /42 wavenumbers. OQur results are
conslstent with (but not identical to) the results reported by Leitner
and Spence. The form of the solution, corrections, regions of
calculation validity, accuracy, and numerical results of program

MONOPL are discussed in the remainder of this section.

55




2‘
>

aaaan- oo ia ay ”mmmmmmwwvw

b

-5

)

A

g

)

% Form of Solution

e

For a quarterwave monopole (h = A /4), the far-fleld power density
a1

::. s”(M) and radiation resistance R, expressed in oblate spheroidal wave
'1.' functions, are given with reference to figure 1 of Section 2.1, by(s)
3]

' o0

i

o s (m = (120)/87%22) quse) 2 €f 1 LB, u, DIP (35D
2 =

'y

+ o0

0y - 1/2 4 ? -

R = (1/2m (uo/eo) € 2”/51 lel ohms (3.5-2)

o =1

-.._ where

-

'~‘ 1/2 -

(,uo/eo) = wave impedance in free-space (ohms)

X

0

':: € = ka = 2ma/ A = groundplane radius (wavenumbers)

a

uzl(ﬂ) = angular oblate spheroidal wave function of

) order one and degree [

2

Z 1

ol 2

v Ngl =/ u El(n)dn = norm of u“(n)

et

B -1

W

S /

N £y o 2,1/2

Z:: IR 25 | 3. .

: By = (G177 qup (26 [0y Nypapy ~ T 1)

3

vz The reader is referred to reference [3] for a definition of the oblate
Py . .

<% spheroidal wave functions Qs s 77} (&), and 2V£l(€)'
-
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?_f‘ Substitution of Eqs. (3.5-1) and (3.5-2) into Eq. (2.2-4) yields the
.'"“ directivity d° () given by
s
Ij 2
Mo o -
R da"(m)y = 2 | 2 B, umm)l / Z Ny I8yl (3.5-3)
ol £=1 £=1
Wy
Y
g:' Corrections
B -
v'(
;' : Problems were encountered in generating the eigenvalues of the
At
L oblate spheroidal wave functions. These problems were narrowed down
to the continued fractions that generate the eigenvalues. These
_"-j'.' continued fractions were derived from the recurrence relations which
;;':: in turn come from the differential equation. A discrepancy was
discovered between our derived continued fractions and the published
) continued fractions [3] . The corrected continued fractions appear
:'«:::: below.
" /-u even
_-(4m) (4-m) €°° )
. £m 2(2/3—1)+)»jZm + (£+m-2) (£-m-2) € 5
e 4(22—3)4-)2!“ +  (L+m=4) (p-m-4) €
-5)+
vy 6(2£-5) yzm +
A .
2
o + (£+m+2) (p-mb2) € 9
~* 2(2£+3)-)2m + (L4m+h) (L-m-4) € 9
o 4(21&+5)-)2m + (£+mt6) (£-mth) €’
' ¥7)-
‘..‘ 6(2L+7) )zm +
i
o
_.-‘ (3.5=4)
o
".-
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i- m odd
y . _~Utwl) gme) €’ )
im” T2y ¥ (Fne3) (-m-3) € ,
L 4(21_3)+)2m ¥ (4+m-5) (¢-m~5) €’
625+ 7, ™
(+mHl) (f-m+l) €2 )
2(2e+3)-7, ¥ (Fm3) (-m+3) € - )
£ 4257 ¥ (+mFS) (4-mk5) €°
6(2“'7)-72::1 +
(3.5-5)

The eigenvalues can also be expressed in terms of a series expansion,

which has the form

2k

(3.5-6)

The first two terms in this expansion were checked against the continued

fractions and were found to agree.

This 1s important, since the continued

fraction method by which values of the eigenvalues are ohtained depends upon

the accuracy of the roots Ym in equation (3.5-6).

Regions of Calculation Validity

A lower bound on the value of € = 2ma/)A for which the calculations are

valid depends upon the following equations [see Eqs. (34) and (4R) of

Ref. 3]:
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) (1) 2.1/2 S _ £ ,n

. v, (&) = (1+89) 2 ate for &=1/2€ (3.5-7)
! n=C,1

;g

2 and

o

p 2.-1/2 — 1

; g,(8) = (1+¢%) X b g for g=m/2¢ (3.5-8)
i n=0,1

‘B

n‘

where the prime indicates summation over alternate n, starting with n=0 if

’q (£~ 1) is even, with n=1 if (£ - 1) is odd.

'I

b,
b Eq. (3.5-7) is the expression for the first order radial spheroidal
(" wave function of the first kind. Eq. (3.5-8) is used in another
:j expression to obtain the first order radial spheroidal wave function
‘S of the second kind. As € becomes small, § becomes large, so more
9: terms are needed in Eqs. (3.5-7) and (3.5-8). In theory, Eq. (3.5-7)

and (3.5-8) converge for all real values of £ = T/2¢. Computationally,

<

Ly however, because of the finite accuracy of the computer, Eqs. (3.5-7)
f’ and (3.5-8) will not converge for all real values of

]

N §=m/2¢. To be on the safe side, we can restrict £ so that £ is less
:‘ than unity. With this assumption, we get the computational constraint
:‘ §=m/2€ < 1 which implies a lower bound on ¢ glven by € >m/2x~1.57.
b,

CQ An even tighter lower bound on € 1s obtained by observing what

9,

. happens in the algorithm that is used to obtain the eigenvalues. This
;j algorithm is not well behaved for values of € less than € = 2.5.

. Therefore € is lower bounded by € > 2.5. For accurate values of

:: radiation resistance, € is lower bounded by € > 3.0 (see table B of

; Section 3.9).
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An upper bound on € 1s obtained by observing what happens in the
continued fraction algorithm that is used to obtain the eigenvalues.
For values of € greater than 6.5, the series expansion for the
eigenvalues, given by Eq. (3.5-6), does not give an accurate enough
answer using only the first four terms. The resulting values for the
eigenvalue are far enough from the correct eigenvalues to cause the
continued fraction algorithm of Eqs. (3.5-4) and (3.5-5) to converge
to a root which is not the eigenvalue. As a consequence, erroneous
values of radiation resistance can be obtained for €> 6.5 (see table 5

of Sectfon 3.9).

Consequently, the range of € for which Leitner and Spence”s method
of oblate spheroidal wave functions 1s useful is 2.5 < € < 6.5. It is
suspected that the best available results are obtained by the method
of oblate spheroidal wave functions for 3.0 < € < 6.5.

Accuracy

There are many equations involved in the calculation of
directivity and radiation resistance. Some of these equations involve
series expansions. When we varied the number of terms in these
series, the radlation resistance was found to vary only in the fifth

or sixth significant figure,

Another problem that was mentioned previously was the accuracy by
which Eq. (3.5-6) computes the eigenvalues. Because of computational
reasons, only the first four terms in Eq. (3.5-6) were used. Because
of this, a raw eigenvalue 1is computed using Eq. (3.5-6), which is then
used as an initial guess in the continued fractions. The continued
fractions have many roots in )km° The number of roots is dependent
upon the number of fraction terms used in the continued fraction.

Only one of these roots however can be the eigenvalue. If the raw
eigenvalue is far enough from the correct eigenvalue then the
continued fraction will converge to a root which is not an eigenvalue.

This will produce wrong results.
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The eigenvalues that were computed were checked against published

- values(ZA). The computed values were found to be within the

. percentage error of the published values.

The computed values of directivity on the horizon and radiation

. resistance, for different values of groundplane extent, were found to
_ agree with the relationship given by Eq. (2.3-3) to at least five
places after the decimal point for the free space wave impedance

\ n = 376.73037 ohms.

Numerical Results

The far-field power density s”(7), radiation resistance R, and

directive gain d7(7) of quarterwave elements given by Egqs. (3.5-1),

; P e

(3.5-2) and (3.5-3), respectively, were numerically evaluated by
program MONOPL written in FORTRAN 77 language for use on a DEC
PDP-11/70 computer. The program listing is given in Appendix B3.
Numerical values were obtained for the cases 2.5 < ka 53JZE.

- =
Pa’ a2 23 &'

h: The computed eigenvalues are given in table 2. Computer printouts
i: of the directivity patterns are given in Appendix A3 for ka = 3, 4,
i 5, J42. The patterns are plotted in figure 8 of Section 3.9 as polar
g; graphs on the same linear scale. In these plots the total radiated
X power is held constant.
:&
' The directional gain on the horizon, radiation resistance and peak
% directivity are summarized in table 3.
A
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hﬁa 3.6 Scalar Diffraction Theory, Geometric Theory of Diffraction,
S 6.5 < ka < o0

e
?gﬁi For an element on a groundplane of sufficiently large radius,
% : Tang(6) utilized a scalar theory of diffraction to calculate the

?; far-field elevation pattern. For elevation angles near the horizon
g’; (8 =7/2) the far-field magnetic field intensity is determined by

2 linear extrapolation to the result for the element itself given by
t,' Eq. (3.2-10) with 8= 7/2 rad. Tang”s method for the radiation pattern
o is more accurate than that obtained by the variational method of

) Section 3.7 because it includes an additional term in the expansion
;Ei: for the total magnetic field intensity. Since the variational method
,'i? is useful for groundplane radii as small as ka=30 wavenumbers, Tang~s
lég method should be useful for even smaller groundplane radii provided
_: ka >> 1.
2

- {5 The geometric theory of diffraction (GTD) is another method which
L is applicable for sufficiently large groundplane radii. 1In GTD, the
f‘ y fields are determined by ray optics (an incident ray plus a reflected
:i;i ray) and diffraction by the edge. However, the effect of edge

éﬁié diffraction {s only approximated because in GTD the edge 1is treated
¢i; point by point as though it were a straight knife edge of infinite
Téﬁ extent. For this reason, GTD may be applied to an element at the

ﬁiﬁ center of a circular groundplane only when the groundplane is of

‘1ﬁ} sufficiently large radius. The method of GTD is reviewed by

ji; Balanis(27) who also gives a computer program for calculating the
£4¥: diffraction coefficient.

}?ﬁ In Section 4.3, the method of moments combined with GTD yields
&EE: results for fnput impedance which are useful for groundplanes of radii
flég ka 2 6 wavenumbers and are accurate for ka > 8, Therefore, when the
ﬂ; element current distribution is constrained to be sinusoidal, the
: 25 method of GTD is expected to give useful results for groundplane radii
Al ka'z 6.5 wavenumbers over which range the method of oblate spheroidal
Py wave functions does not glve useful results.
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;$ 3.7 Variational Method, 30 { ka < ®©
;: For an element on a groundplane of very large radius
L (ka > 30 wavenumbers), differences in the input impedance and
;: radiation pattern from that for a groundplane of infinite extent may
()
be determined by utilizing a variational method of Storer(7)’(81
[
31 With reference to figure 1 of Section 2.1 and for a sinusoidal
~4 ' current distribution on the element given by Fq. (3.1-1), the input
impedance difference is given by Eq. (20) of [7] as
N
3
~
#e ) 1
72 -7 = ~j 7N exp(j2ka) 1 - cos(kh) 1+ exp[i(2ka + 37/4))
in 0 41ka sin(kh) (lm'ka)lfz
2 ka > 30 (3.7-1)
Qﬂ where
Zin = Input impedance for an element on a groundplane of
radius ka wavenumbers (ohms)
% Z°°= input impedance for the same element on a groundplane
of radius ka =o0Owavenumbers (ohms)
N = wave impedance in free space = 376.73037 ohms
]
< 1/2
\ Since (47ka) >> 1 for ka > 30, the input resistance difference
"
: Rin - Ruaa“d input reactance difference Xin - Xooare given
: approximately by
iz R - R | 1 - cos(kh) 2 sin(2ka) ka > 30
o in 0 = sin(kh) 47ka ’ ~ 3.7-2)
& .
- 1 - cos(kh) . cos(?ka)
3 X, - X z[ ———r ka1
4 in o0 sin(kh) J 47Tka ~ 3.7-1)
4
5
b
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) The maxima, nulls, and minima of Rin - R occur for values of ka given

) approximately by

b

£

9

~l

08
i, 1
Lo (2N + - ) (/2) (maxima)

A
- ka = N (7/2) (nulls) , N=0,1,2,.....
f:ij (2N + —%— Y(7/2) (minima)

Qfl

,.!-’ (3-7-4)

The input impedance Zin - %x>given by Eq. (3.7-1) is calculated in
V"‘

computer program "MONOSTOR" whose listing is given in Appendix B-4.

-,

o

XX

P

For very thin quarterwave elements, R°o= 36.54 ohms and

X°°= 21.26 ohms (see Section 3.8). The numeric directivity on the
P
}5 horizon, d(m/2), is related to the radiation resistance R = Rin by
>,
;¢i Eq. (2.3-2). Computer printouts of the maxima and minima of Rin - Raf
-
": Xin - Xooare given in Appendix A4. For very thin quarterwave
, elements, Appendix A5 also gives computer printouts of R{n’ xin’
4(m/2), and D(M/2) = 10 log ,, 4(mM/2).
zi;
e Differences in the far-field radiation pattern from that for a
W P
J ) groundplane of {nfinite extent are given in [8]. For the waveform of
!."
s Eq. (2.1-2) and an element sinusoldal current distribution I(z) (see
o
ﬂﬁa figure 1 of Section 2.1), the difference in the far-field magnetic
K field intensity is given by Eq. (6) of [8] as
1.1
e
N
UK
".7;
o
o
%)
!
LY
0l
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L - -

bl H¢ - H@'ka=oo= sgn 6 [ J 1(0) exp(-jkr) [l-cos(kh)] }

) sin(kh) 27mr - 2m/2

,-% - 2m

) r - _

#:: L/ exp[-jka(l-sin® ;:3;@] cosd do , ka > 30
. 3 0 (1-8inB® cosbd) (3.7-5)
K0 where

" HQ = far-field magnetic field intensity for an element on a
Pl

i; groundplane of radius ka wavenumbers (amp/m)

{; HOIka=oo = far-field magnetic field intensity for an element on a
= groundplane of infinite extent (amp/m)

o +1, 0 < 8 <m/2

5-’, sgn 6 = 0

-1, m/2 <8 LT

NP e

.

The magnetic field intensity H()lkasoois given by (see Section 3.8)

e

D

-

]

2o

T

3 I(0) exp(~-jkr) cos(kh cosf) - cos(kh) ], n<ce </
el - sin(kh) 27r sin A -
0’ ka=00

0, m/2 <8<

-

(3.7-6)

.y
AN

The far-field electric field intensity E(-) =77H¢ where HQ is given by

>

::' Eq (3.7-5) and 77 is the free-space wave impedance.

~

<

i

q One of the distinguishing features of the far-field radiation

j'; pattern for groundplane of large radii is the occurrence of a

-i‘ fine-structured lobing pattern, H¢ - “¢'ka=oo’ superimposed on the

:;. pattern for a groundplane of infinite extent. The lohing pattern,
given by Eq. (3.7-5), 1s symmetrical about the horizon (expect for a
:_: phase shift of Trad) with the most prominent lobes near the zenith and
I: nadir directions. The nth maximum of the lobing pattern in each

.

quardrant decreases with increasing values of n where n=1 corresponds
-

1 to the lobe nearest the zenith or nadir direction.
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The lobing structure is characterized in [8] by the elevation

th

angle On of the n  maxima, the angular separation A® between lobes,

the angle emax within which all prominent maxima occur, and the number

N of prominent lobes. The elevation angle Gn in radians is given

approximately by

0.59 (m/ka), n=1

. , ka > 30
(n + 0.75)(T/ka), n =2, 3, ,...N

(3.7-7)

The angular separation A® in radians is given approximately by

1.16 (m/ka), n=1

40 = , ka > 30 (3.7-8)

T/ka, n =2, 3, ....N

Prominent lobes are defined in [8] as lobes whose maxima are less than

one~fourth the amplitude for that of a groundplane of infinite extent.

The angle 8 1in radians is given approximately by

2/3
o~ 1.87 (m/ka)l/3 [ Ls cgsg‘;:; ] , ka> 30
max sin (3.7-9)
The number N of prominent lobes 1s determined by
emax = 91 + (AO)n=1 + (N-2)(At=))“§(1 , ka> 30 (1.7-10)

where ol,AG, and emax are given by Eqs. (3.7-7) - (3.7-9), respectively.

Solving for N,

N = (8 /(/ka)] - 0.25 = 1.87(n/ka) "/ * -0.25, ka 3 30

(3.7-11)
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3.8 Method of Images, ka = oo

For the idealized case of a monopole element mounted on a groundplane
of infinite extent and of infinite conductivity, the monopole antenna may
be modelled by the method of images as a dipole with one-half the input
(25) The

infinite groundplane prevents monopole radiation into the hemisphere helow

impedance and double the peak numeric directivity of the dipole.

the groundplane but allows a radiation pattern identical to that of the
dipole in the upper hemisphere.

In this section, it is assumed that the current has a waveform given by
Eq. (2.1-2) and a current distribution I(z) on the element and its image
(see figure 7) given by

[I(0)/sin(kh)] sin[k(h-z)], O €z < h (element)
I1(z) = (3.8-1)
[I(0)/s1n(kh)] sin{k(h+z)], - h £ z < 0 (image)

The near-fields, far-fields, and input impedance of an electrically-thin
element on a groundplane of infinite-extent are summarized in the rematinder

of this section.

Near-fields

The exact magnetic field intensity H = UQ ® and electric field
intensity F pﬁp + u F for an infinitely thin element are given with
reference to Fqs. (7- 15) and (7-17) of [25], as

3 1(0) exp(-ijl) + exp(-ijz) ~ 2 cos(kh) exp(—ikr)] .
47P sin(kh) 250

0, z<0
(3.8-2)
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) 1 11(0) (z-h) exp(—ijl) (z+h) exp(—ijz)
L7p sin(kh)[ R + R,
Ep = 4 - 2z cos(kh) exp(;jkr) ] , 2> 0 (3.8-3)
| 0, z<O0
) -i1 1(0) [exP("jkkl) , iy
4T sin(kh) R R
1 2
Ez = - 2 cos(kh) expi—jkr) ] L 2> 0 (3.8-4)
L 0, z<0
where
R, - 2 + (z-my2}/2
R, - 02 + (z+h)2]1/2

The magnetic field intensity at the top and hottom surfaces of the
groundplane are given by Eq. (3.8-2) as

- _J 1 - - -
H0|z=0+ 27Tpsin(kh)[éxP( ij3) cos(kh) exp( 1kpﬂ,
top of groundplane (3.8-5)
= q. -
H¢|z=0_ 0, bottom of groundplane (3.8-6)
where
R, - 02 + n2yl/2

The incremental gcroundplane current AI(P) contained within a differential
azimuthal angle d9 may be de. ermined from Fqs. (3.8-~5), (3.R-A), and
Ampere”s circuital law applied to a closed path along the top and hottom
surfaces of the groundplane along arc lengths within dfh. Since the

groundplane current I(P) is defined to be positive in the positive Pdirectfon

(see figure 1 of Section 2.1), the path is taken in the clockwise direction.




Accordingly,
~ — S —
AT(P) = (-ug “H + vy -H o pdb = =Ryl ,o0p + Pl =n 1P dd
(3.R-7)
The total groundplane current T(P) is given by
2r
I(p) = f AT(P) ab = 27p[-Rol o+ Hyl
0
i 1(0) [cos(kh) exp(-ikp) - exp(—ij3)] (3.8-8)
sin(kh)

Eq. (3.8-8) agrees with that given by Eq. (33) of [?].

Far-fields

For the far-field conditions given by Fqs. (3.2-7) and (3.2-8),

—_ A —
Egs. (3.8-2) - (3.8-4) reduce to the far-fields H=u¢ﬂ¢ and R=G;RQ=G;U"Q vhere,
with reference to Fq. (4-62) in [25], H¢ is given by

J 1(0) exp(-jkr) cos(kh cosB) - cos(kh)
sin(kh) 2nr sinf

H(h = (2.8-9)
0, m/2 <8 <™

],nﬁqinm

The time-averaged radiated power density s(@) =<n/2)l“¢'? is given hy

7110y (% £(8)
8% e sin’(kh)
s(8) = (3.82-10)
0, m/2 <8 <

, 0 <8 <M/

where
2

sin®

The direction of maximum radifated power is 8 = 71/? rad.

£(8) = [ cos(kh cos®) - cos(kh) J
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The input impedance of a monopole element of length h on a groundplane of
infinite extent is one-half that of a dipole of total length ?h in free space.
Accordingly, the radiation resistance R of an infinitely thin element on a
groundplane of infinfte extent is given by [compare with Fgs. (4-70) and
(4-79) in [25]]

. n Cin(2kh) + —;— sin(2kh)[S{(4kh) - 2 Si(2kh)]

s inZ (kh)

+ —%— cos(2kh)[2 Cin(2kh) - Cin(4kh)}}, h=0
(3.8-11)

where Si(x) and Cin(x) are the sine integral and modified cosine integrals,
respectively, which are defined following ®q. (3.2-32). Fq. (3.8-9) is also
approximately valid for thin elements (kb << 1). [For example, compare

Eqs. (3.2-33) and (3.2-35) for a thin monopole element Iin the absence of a

groundplane.]

Subst{tuting Fqs. (3.8-10) and (3.8-11) into Fq. (2.2-8), the numeric
directive gain d(8) is given by

d(e) = -——3%(9)— (3.8-12)
where
B = Cin(2kh) + _;_ sin(2kh) [S1(4kh) = 2 S1(2kh)]

+ —;— cos(2kh}[2 Cin(2kh) - Cin(4kh)]

For a quarterwave monopole element (kh=71/2), Fqs. (3.R-11) and (3.8-12)

reduce to
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R = AZT CinéZﬂ? = 36.5395 ohms; kh=7/2, b=0
(3.8-13)
2
£(0) = cos [(ﬂéz) cos8] , kh=71/2 (3.R-14)
sin™0
4 coszl(ﬂ/Z) cosh] 2
da(8) = . » kh=71/2
126 cin(2m)
(3.8-15)

The peak numeric directivity d(m/2) = 3.2818 corresponding to N(7/?)

10 log,, d(m/2) = 5.1612 dBi. The directional gain is plotted in
figure 8(f) of Section 3.9.

For an electrically short monopole element (kh << 1) and
N =~ 1207 ohms, Eqs. (3.8-11) and (3.8-12) reduce to

R = 10 (kh)Z, (kh) << 1 (3.8-16)

4
£(8) = —£§Dl- 5in28,  (kh) << 1 (3.8-17)
d(®) = 3 sin 8, (kh) << 1 (3.8-18)

The peak numeric directivity d(m/2) = 3.0 corresponding to N(m/2) =
10 log,, d(m/2) = 4.7712 dBi.

Input Impedance

The input resistance Rtn i1s given by Fq. (3.8-11) which is exact
for an infinitely thin element and approximately correct for thin

elements provided that the element current distribution is sinusoidal.

The input reactance X1n for thin elements (kb << 1) 1is given by
[compare with Eqs. (7-33) and (7-30) in [25]

74

. .-, At [,
oo :‘( "!’ ('-ﬁb-'{ -\"-,‘ -:"‘"'{J}\ 'C""-e"'\.‘h‘.""\(: B

PUNN. v




el madiTall i PEVA R EA Ao AV R Ratiile v Sab par et Bas e lind s St Be fat Sk Aok Sad 0.8 0 0002 B A S A 002 A 4 0 800 25 Sha Ais Rin 88

1

X = n S1(2kh) + cos(2kh)[S1(2kh) - —— S1(4kh)]

" in 4ﬂsin2(kh)
Lt
:é ~ sia(2kh)[In(h/b) - Cin(2kh) + —%— Cin(4kh) + —%— Cin(kbz/h)]
_%' (3.8-19)
,% For a quarterwave element, in the limit b—0, Eq. (3.8-19) gives an

. input reactance xin = 21.2576 ohms. In Eq. (3.8-19), X1n=0 for

b element lengths slightly less than kh = (2n-1)(7/2), n=1, 2, 3, ...,
1&3 which are approximately one~half the resonant lengths for a monopole

s: element with no groundplane [see Eq. (3.2-38)].

2 3.9 Summary of Results

<
3’ In Section 3 a sinusoidal current distribution {s assumed on the
§7 monopole element. Although such a current distribution is never

)S exactly realized even for an infinitely thin element (see Section 3.1),
ﬁ it is a useful approximation for sufficiently thin elements. For

'; example, for a quarterwave element of radius b=10—6A , the input

N impedances computed by determining the actual element current
’ﬁ distribution and that computed by assuming a sinusoidal current

J distribution differ by no more than 5% for groundplane radii
o ka = 6 - 14 (compare table 7 of Section 4.5 with tables A2-24 - A2-42

of Appendix A). The assumption of a sinusoidal element current

;& distribution allows for models which are coaputationally simpler in
:ﬁ determining input {mpedance and radiation patterns than the models

cj which follow in Sectifon 4. The results of these simpler models are
ﬁ. summarized in this section.

x

- The electrical properties of electrically-short and quarterwave
$; monopole elements on groundplanes of zero, large, and infinite extent
;ﬁ are compared in table 4 with the corresponding properties of
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o
&C electrically-short and half-wave dipoles. The peak directivity of a
) » quarterwave monopole is 1.88 dBi and 5.16 dB1 for groundplanes of zero
;$ and infinite extent, respectively. The directivity on the horizon of
\; a quarterwave monopole is 1.88 dBi and -0.86 dBi for groundplanes of
T; zero and very large but finite extent, respectively. Slightly smaller
l directivities are obtained for electrically-short elements than for
33 quarterwave elements.
bl
%
» The radiation resistances obtained by different methods are
" compared in table 5 for a thin quarterwave element on a groundplane of
;ﬁ radius 0 < ka < 8.5 wavenumbers. The suspected best available results
;é are obtained by‘the Integral equation method for 0 < ka < 1.0, by the
af method of moments (N=1) for 1 < ka < 3.0, by the oblate spheroidal
; wave function method for 3.00 < ka < 6.5, and by the method of moments
%}j (N=1) for 6.5 < ka < 14. The results obtained by the method of
EZ moments is In good agreement with the suspected best available results
S: obtained by other methods.
-
T The numeric directive galn patterns of a quarterwave element on
[2 groundplanes of radii ka = 0, 3, 4, 5, JZE: and o0 wavenumbers are
#ﬁ plotted in figure 8. These polar graphs of directive gain should not
be confused with the polar graphs of radiated power density plotted in
% Ref. [5] for constant base current. It should be noted that the peak
ig directivity and direction of peak directivity are not monotonic
lf functions of the groundplane radius.
3 The input impedance of a thin quarterwave element is plotted in
fi: figures 9 and 10 for groundplane radii 0 < ka € 14 wavenumbers. The
:% input resistance varies between 19.4 and 46.1 ohms and asymptotically
- approaches 36.5 ohms for increasingly large groundplane radii. The
’_. input reactance varies between — 00 and +32.5 ohms and asymptotically
'g approaches + 21.3 ohms for increasingly large groundplane radif.
i ;
s) 77 :
+ |
|

SR ey

- ~

el AR S e T S T S I R o
N Cow LW WU N P d $
. . ,-__\‘ ’,'L A b . ! rls ot

H
adtdl 4

PR R

I T Y G R R
‘.*HV \.*‘.'f{" .\.-.\ .

Attt
ARSI REN
2 ¥} -8

.~
o

S

LY
Dl Y
W 9
! -~

! il



| A
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[
-
r

| BRI

\ Radiation Resistance (ohms)
[ Normalized
! " Groundplane Radius ,| Integral Equation| Oblate Spheroidal Moment
i:. 2 alz Method Wave Function Method Method
'.

- 0 *19.43

o 0.25 *19.48 19.49
L. 0.50 *19.62 19.62
::.: 0.75 *19,86 19.86
AN 1.00 %20,23 20.21
e 1.25 20.76 *20.71

1.50 21.51 *21.25
; 1.75 22.59 *22.44
i 2.00 24.15 *23.89
5"- 2.25 26.46 *25.99
b 2,50 29.95 27.32 *29,02
y 2.75 35.44 31.92 *33,24
t 3.00 44.60 *37.48 38.62
P 3.25 *43,01 44,12
by 3.50 *46. 06 47.57
E. 3.725 *45,55 47.35
"4" 4,00 *42,67 44,43
W 4.25 *39.23 40.58
4,50 *36.23 37.13

K, 4,75 *34.00 34.46
N 5.00 *32.57 32.68
ol 5.25 *31.93 31.70
s 5.50 *32.13 31.53
o 5.75 *33.23 32.26
_’) 6.00 *35.23 34.04
\ 6.25 *37,85 36.94
N 6.50 *40.33 40.56
2,‘;:4' 6.75 30.12 *43.53
e 7.00 30.09 *44,20
;» 7.25 *42,30
' 7.50 *39.10
7.75 *35.96
e 8.00 *33.50
e 8.25 *3].88
o 8.50 *31.16
.

el
::: *SUSPECTED BEST AVAILABLE RESULT

X
‘\jﬂ Table 5. Radiation Resistance of a Thin Quarterwave ?lenent at
:’: the Center of a Circular Groundplane of Radius '
X4 0<ka<8.5 Wavenumbers. (Sinuscidal current distribution

4

2y

:
A

assumed on element.)
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Elevation Directive Gain Patterns, for Any Azimuthal
Direction, of a Quarterwave Element Mounted on a
Groundplane of Radius a. (The patterns are polar graphs
on the same linear scale.)

79

Y AR RGN L - -
~ -J. '\ N N 'J*"..* A G o W A TN R,
. d ]

b ATER TR TN Gallh Jainli 2 B> iy W Bl X



sidoqunuaaeM ]S BN 3 (Q SNIpRY Jo sueTdpunoin
IBTNOIT) B JO I93U3) 3yl Ie JUSWRTT SABMIILIEN) UTYJ B JO 20URISTSIY UOTIRTPRY

¥2 "SNIGVH INVYId ONNOMD 0IZNYAUON

‘6 2an31g

on oe 02 LAY oot [X3 (14 0L 0s 0s or o¢ (X o 0
as T Ty OI T T  TY T TY T Y T T T T T T T I T T T T T T N T N T T T T T T TN T T Y YT T YT T T Y TRy

SARARAEAAS LAALSARAAS B T T T T T T T T T ] T

: | - -
- GOWLIN ININON { SNOLLONNS TYGIOB3IHES 31vIE0 ACHLIN INIROR 3
- p
£ _tlzll 3
- ]
F m m! b
r 3
3 p
e -
o i (01 = vz * 4
E vozy 3
; 4 3
C

F—

£

.z oy
AETEUUETI FUUTTETUVY FETETUUITY CUTTVRTENS FUS! " :-r:.:_::___..—_._pprL._:.-.:.—__._..:._rr.:».. _:_ T g..f.._rL.._::»

.
A PET R S Pt o e e M N o S ST o 4 B *y- . BT o S A ] I8 AR e - =3 r g .3
RSNy o SR Y T Lok Al L P .. T
rn| Soolid TG TNNIE SHESRORNCEY S R

oSt R
WHOINI ' .. ' ..
.
oo 8
ﬂ\.
I
. .n-l_
osz Ju'q
LS|
.\.«L
. Jh
- -~y
»
B 4
g 3
2
: 2
o
H
ost z
=]
g
3
2
oor
(1
13

®oN-o



siaqunuaseM #1>eNS(Q sSnIpey jo asueTdpunoin

IBTNOAT) B JO I23Ud) 3Y] jJe JU3WITH m>m3.umu.um50 uTryl, ® JO 3adueljoeady uﬂQGH ‘01 wh:wﬂh
Y/euZ ‘SNIAVYH INVY I1dONNO YD G3ZITVWHON
ort o'et [ %1} 0L 001 [N} 08 0L 08 K] oy oc 0z [ (]
T T - T T T T T T Y T T T T T r T T T T T T | 0°0E-
B 1 =N 'SININOW 40 GOH13IN B
— — o'0z-
e

Zz
- e b
cot- &
¥/ =4 b
i 1> .01 X (v/Q) ‘aZ ] 2
»
o
-
0 >
z
o
B m
e
—{ o001 z
e

—{ ooz

—{ oot

s Rl - . - = . i :
. iy v o . - X o3 k iy - o 4

1 L RO L R . ™ - W w ool o

WSl o ARSI - TP e By e b

LR I o =

Lp ooy s gl

81

J)'( ‘-"-fh‘ L,
" e

AB R

N

O

W

1% 4,
Pl
’»’
"
-2
ey
P

"
1 |'.‘

’
0

e

- nm
LN PR MO

nlfn.h:‘.t "

A

ltv

W\

DY)
,l.‘!h

SRR

b\{

.




-

-
* Y,

a3 PRI R CRUSTN e St Lo R

+ X,

The directive gain on the horizon, peak directivity, and elevation
angle of the peak directivity of a quarterwave element are plotted in
figures 11 - 13 for groundplane radii O < ka < 14 wavenumbers. The
directive gain on the horizon varies between +1.9 and -1.9 dBi and
asymptotically approaches -0.86 dBi for Increasingly large but finite
groundplane radii. The peak directivity varies between +1.0 and
+5.3 dBi and asymptotically approaches +5.2 dBi for increasingly large
groundplane radii. The elevation angle of the peak directivity varies
between 33 and 90 degrees and asymptotically approaches 90 degrees for

increasingly large groundplane radii.

The radiation resistances of thin elements of length h/A =0.25,
0.1 and 0.025 for groundplane radii 0 < ka < 8 wavenumbers are
compared in figure 14. The radiation resistance of each element is
normalized to {ts radiation resistance for a groundplane of zero
extent. The normalized radiation resistance, as a function of
groundplane radius, is approximately independent of the element
length. For an electrically-short, thin element (h/A £ 0.1) whose
length is small or comparable to the groundplane radius, the input
reactance (not shown) is approximately independent of groundplane

radius.
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SECTION 4

MODELS IN WHICH THE CURRENT DISTRIBUTIONS ON THF MONOPOLF
ELEMENT AND GROUNDPLANE ARE BOTH INTTIALLY UNKNOWN

4.1 Boundary Conditions

In Section 3 the total field at an arbitrary field point could be
expressed simply as the vector sum of an incident fl{eld and an induced
field [see Eq. (3.1-12)] because the incident field was specified from
the initially known current distribution on the monopole element. Tn
this section, such a procedure is not possible because the current
distributions on the element and groundplane are hoth initially
unknown. Instead, in this section, the total field is determined by
representing the unknown current distribution on either the element,
groundplane, or both by a finite series of overlapping modes with
unknown current amplitudes. The current amplitudes are determined hy
matrix inversion subject to boundary conditions comprising current

constraints and the excitation voltage across the coaxial 1line feed.

The antenna geometry 1s shown in figure 1 of Section 2.1. The
current waveform is given by Eq. (2.1-2). The models which follow iIn
this section are based on the current characterization and circuit

idealization in figure 2(c) of Section 2.4,

The coaxfal line feed and excitation voltage, which is not
explicitly shown in figure 1, is characterized in figure 2(c) by a
surface magnetic current density (magnetic frill) M¢ which sits on top
of a thick groundplane of radius b1 where b] 18 the radius of the
outer conductor of the coaxial line feed. The magnetic frill M0 is

defined over the groundplane by Fq. (2.4-R).
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Constraints on the various circuit currents of figure 2(c) are
given by Egs. (2.4-3) - (2.4-7). These constraints, together with the
magnetic frill, constitute the boundary conditions on the current

amplitudes.
4.2 Method of Moments, 0 < ka {14

When the element and groundplane current distribution are
initially unknown, the current distributions may be determined by a
sinusoidal-Galerkin moment method employed by Richmond(z). The

antenna geometry 1s shown in figure 1 of Section 2.

In the moment method, the element is divided into N equal segments

(see figure 15) of length d” given by
d” = h/N, N is a positive integer (4.2-1)

where h is the element length. The groundplane is divided into M

concentric annular zones (see figure 16) of width d given by
d = (a-b)/M > b, - b, M is a positive integer (4.2-2)

where a 1s the groundplane radius, b is the element radius, and b, is

the radius of the outer conductor of the coaxial line feed. The '
groundplane extends from the coaxial line inner conductor because of
the equivalent circuit representation in figure 2(b) of the coaxial
line excitation. The element current distribution I(z) and
groundplane current distribution I(P) are the sum of the current
distributions on each element segment and groundplane annular zome,

respectively, and are given by

N
1(z) = ) I (z2) (4.2-3)

n=1
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Figure 16. Groundplane with M Annular Zones of Width d
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(p) = Z (P (4.2-4)
m=1
where In(z) and I;(p) are the current distributions on the nth segment
and mth annular zone, respectively.

In the sinusoidal Galerkin method, the current distribution In(z)

on the nth element segment 1s approximated by

In sin[k(nd"-2z)] + In+1 sin{k[z-(n-1)]d"} .
sin(kd”) ?
(n-1)d” < z { nd”; n=1,2,3, ....N
(4.2-5)

In(z) ~

where In=1 = I(z=0) and IN+1 = 0.
The current distribution I;(p) on the m™" annular zone is approximated
by

I; sin{k[md+b-p]}} + I;—l sin{k[p-(m-1)]d-b}

VDRSS sin(kd) ;
b+ (m-1)d < p < bhmd; wel, 2, 3, ...M
(4.2-6)

= -T(2=0) and I = 0,

where Im 1 = -1 M+1

n=1

The current distribution on each segment and annular zone is
therefore the sum of two overlapping dipole modes except for the
segment and annular zone adjacent to the base of the element. The
"base” mode may be thought of as a dipole mode comprising an element
monopole mode (n=1) and a groundplane monopole mode (m=1) with
terminals along the circumference of the base of the element. The

element and groundplane dipole modes are functionally tied to each

other by means of the base mode amplitude constraint In=1 = ‘I;=1 =
I(z=0).
91
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The element and groundplane total current distributions are
¥ represented in Eqs. (4.2-3) - (4.2-6), as a series of N+M overlapping
of sinusoidal dipole modes with N+M unknown complex current amplitudes.
Wi The N+M amplitudes are determined in Richmond”s moment method by
inversion of a (NHM) x (N+M) matrix subject to the boundary conditions

discussed in Section 4.1. The constraint In=1= —1;31 reduces the
matrix size to (N+M-1) x (N+M-1).

-
K,

- e

The numbers of subdivisions, N and M, are limited by the cost of

-

computation time and by the precision of the computer. The accuracy

- un - .
=

0 of the solution can be decreased appreciably if either N or M is too

é small or too large. The method of moments coaverges to a solution

L4 when an increase or decrease of unity in the value of N or M does not

g appreciably alter the solution for input impedance.

g A method of moments computer program for a monopole element at the
center of a circular groundplane in free space was obtained from

? Prof. Richmond of Ohio State University. The program computes the

g‘ input impedance and the N+M complex current amplitudes on the element

¥ and groundplane for a voltage input V(0) = 1 volt. The progranm,

: written in FORTRAN IV language and in single precision, was edited and

K/

converted by The MITRE Corporation to double precision for use on a DEC
VAX 11/780 computer. A listing of the MITRE version, designated

“"RICHMD1", is given in Appendix B2.

-
. e

2
S

Our experience with this program suggests the following

M ES L

x

constraints on the use of the program. At least double precision is

required to give convergent results. Meaningful results were obtained

for element radii b/A > 107° and groundplane radil ka > 0.25. As a

‘r- rule of thumb, N=2-3 kh and M=2-3 ka give reasonably accurate and
f' convergent results. The amount of central processing unit (CPU) time
e on the VAX 11/780 computer is approximately 2 minutes for N+M = 20, 6
P
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ft: minutes for N+M=30, 34 minutes for N+M=60, and 50 minutes for N+M=75.
'“’ It is most likely that the CPU time could be considerably reduced if a
f’! more efficient method than the Crout method were employed for matrix
% inversion.

e The versatility of a sinusoidal - Galerkin method of moments is
illustrated by the case N=1. A sinusoidal current distribution is
imposed on the element by setting N=1 [see Eq. (4.2-5)].

"

" The element and groundplane current distributions obtained from

y .3 program RICHMDL can be utilized to obtain the far-fleld radiation

:"n pattern in the following manner.

'f

{ The magnetic field intensity _l-I‘(P) at a far-field point P(r, O, (i1}

and for an ejwt waveform is related to the magnetic vector potential

X Y (26)
kY. A(P) by
.)_:
— VaN -
e H(P) = -j(1/Mwu_ x A(P) (4.2-7)
A
} where Gr is a unit vector in the radial direction and 77 is the
N —
3 free-space wave impedance. The magnetic vector potential A(P) at the
) far-field point P resulting from a current source point Ux", ¥y, 27)
h = Q(b, b, z”) on the element or a source point Q(p7, m/2, 9°) on the
‘ groundplane (see figure 4) 1s given by(26)
V>
AP = (/am [ 3(Q) exp(-31F0) L/ av
3 v
)
/\ o~
j = [uo exp(-jkr) /4] fJ(Q) exp(jkur-OQ) dv (4.2-8)
v
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P

e

h where

iir PQ = [t2-2r /u\r-aa + x’2+y'2+z’2]1/2z_;- fx\r-(_)?), r > (x’2+y’2+z’2)]‘/2
[ ‘\\‘ /L}r(_)a = x” sin® cosd + y° sin® sind + z~ cos®

'\’ ‘ U, = permeability of free space = 47 x 1077 henry/m.

" J(Q) = source surface current density at an arbitrary source point Q
‘:_-E on either the element or groundplane (amp/m)

z:; r = OP = radial distance between the origin 0(0,0,0) and the

YO far-field point P(r,9 ,¢)

% dv = differential surface area containing the current source

:: points Q (m2)

Yo

.,L Substituting Eq. (4.2-3) into Eq. (4.2-8), the far-field magnetic
j field intensity Hée) resulting from the monopole current distribution
j ;:: is given by

O

ey h

\
B (e) _ _J exp(-jkr) sin® - . -
:g:. H0 AT n§1 In(z ) exp(jkz“cosB) dz
J 0
e N
RO j exp(-jkr) .
: W) 4mmr sin® sin(kd”) [Z In exp( jnkd cose)]
¥ n=1
‘0 {'s
(LY
._1_.\_ [1-cos(kd’) cos(kd“cos®) - cos 8 sin(kd”)sin(kd cos®)
:t'::: + J cos(kd”) sin(kd” cos®) - j cos 8 sin(kd”) cos(kd’cose)]
::;{ N
\:?. -1 1, exp[3(n-2) kd’cosG]] [cos(kd’) cos(kd“cos 8)
* =

+ cos O sin(kd”) sin(kd“cos 8) -~ 1 + j cos(kd”) sin(kd"cos ©)
- J cos 8 sin(kd”) cos(kd cos 6)] (4.2-9)
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_::l":l
A
aﬁﬁ Substituting Eq. (4.2-4) into Eq. (4.2-8), the far field magnetic
2500
e field intensity Hég) resulting from the groundplane current
\
':f; distribution is given by

h"qr-"
1950

N ® . ~jexp-ikn) 1L X

.0 . g - - exp - ) o - - - -
Wy Hy LT r /f o 2 Ln(P7) explikp cos(4-0)]

) 0 =1

) |.: 0

0 cos 8 cos(0°-0) d¢~ dp-
bt (4.2-10)
K

Eq. (4.2-10) 1is not readily evaluated when Eq. (4.2-6) is substituted

'f,u into it. An approximate simplified solution can be found when each

3 )
Ajfx annular zone of the groundplane is subdivided into X smaller annular
:ﬁfh zones of width AP = d/X so that the current distribution in each
{, subdivided zone is almost constant and approximately equal to its
A'ﬁ average current. The total number J of subdivided annular zones on
D )
(ka the entire groundplane is given by
i *ﬁ
W
; J = XM (4.2-11)
:
Bl o The average current Iu in the uth subdivided zoune 1s given by
25

‘ 1
;.)-. 1 u APFD Ix; sin[k(md+b-p] + Ix;+1 sin{k[p~ (m-1)d - b]} .
: - I - — p,
l-.:;' u Ap (u-1)AP+ b sin(kd)
;:J [ b+ (m-1)d ] <P<(bimd) (4.2-12)

The current distribution I(pP) on the groundplane is therefore given

approximately by

J
1(p) = Z I, (4.2-13)

u=1
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R
i
%l. Substituting I (P~) for I_(P") in Eq. (4.2-10),
Mg 3
'
X *j (8) -3 eXP( jkr)
vl Hy™' ~ f 5= }_: I (p7)exp{ Jkpcos(d -0)]}cos® cos($ -0)dd dp’
):.}
3,
Y
o0
{0 J
> - _exp(-jkr)cos 8 -
/ 3 hmr sind ug L, [Jo{k sin8[(u-1)Ap +b]} - J {ksin®[u Af)+b]}]
b : (4.2-14)
it % -
where Jo is the Bessel function of the first kind, of order zero.
Pl (total)
N The total far-field magnetic field intensity H® i1s given by
N
Ca (toral) _ (e) ,  (g)
C H = 0,% + ¥ 4.2-15
: 0 Q ¢ ( )
e
N (e) (8) _ _
where H¢ and H0 are given by Eqs. (4.2-9) and (4.2-14), respectively.
". ".
‘ The time-averaged radiated power density s(8), directive gain
) d(9), and radiation resistance R are found from Eqs. (2.2-4),
o)
o and (2.2-7) where ué““l) is given by Eq. (4.2-15) and 1(2=0) = I _,.
PL.-Q
- Numerical evaluation of s(8), d(8), and R are implemented by means of
J MITRE computer program "RICHMD2" written in FORTRAN language for use
._-v::: on a DEC VAX 11/780 computer. A listing of program RICHMD2 {s given
O
:E_ix.:-' in Appendix B2.
el “:
n.“s
“- A discussion of the results obtained by the method of moments, for
.:-4:'.::: a sinusoidal current distribution on the element (N=1), 1is given in
'..N..'.!
R Section 3.4.
v'1— _0
i
Pt Computer printouts of the directive gailn and far-field radiation
.-' \n
DA pattern of the experimental monopole antennas discussed in Section 5
e
\}‘-' were obtained by the method of moments and are given in Appendix A2.
u-’:"
S
-
e
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The input impedance determined by the method of moments (N=4,
M=3ka) for a quarterwave element of radius b=10-6A and groundplane

radii 6 < ka < 30 wavenumbers is compared in table 7 of Section 4.5

- with that obtained by the method of moments combined with the

i; geometric theory of diffraction (GTD). For ka > 14, Richmond”s method
;5 of moments is inaccurate. In addition to the large CPU time required
N (greater than 30 minutes for ka > 14), convergent results are

5 difficult to obtain for ka > l4. It is most likely that the

;ﬁ usefulness of Richmond”s method of moments could be extended to

:. significantly larger groundplane radii if a more efficient method of

matrix inversion, different from the Crout method employed by

Richmond, were utilized. When the element current distribution is not

A,

assumed, Richmond”s method of moments presently gives the best

2 EL

available results for groundplane radii ka < 14 wavenumbers.

) ‘;‘» 9”

N The lower limit of ka, for accurate results utilizing Richmond”s

'jj method of moments, has not been firmly established. For an element

fis segment number N > 1, we have obtained useful results for ka as small
r as 0.25 wavenumbers but not for groundplanes of zero extent. For N=I,
5 accurate results were obtained (subject to the constraint of a

o sinusoidal element current distribution) for groundplanes of zero

jﬁ extent.
-/
f? The radiation resistance of various diameter resonant (zero 1lnput
::: reactance) elements is compared in figure 17 of Section 4.5 with the

:Q radiation resistance of an infinitely thin quarterwave element for
. groundplane radii 0 < ka < 8.5 wavenumbers. For ka — 0, the

:% radiation resistance of the resonant elements is apprecilably

:& different from that of the infinitely thin quarterwave element because

Eé an infinitely thin element on a groundplane of zero extent is resonant
2 for an element length equal to 0.5A and not 0.25 A [see Eq. (32-38)].
-

; The lengths and radiation resistances of various diameter resonant
{; elements, for groundplanes of radii 0.25 { ka < 7 wavenumbers, are i
|

plotted in figures 18 and 19 of Section 4.5.

-
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4.3 Method of Moments Combined with Geometric Theory of Diffraction,
8.5 { ka <

The method of moments, when used to determine the current
distributions on both the element and the groundplane, can require
considerable computation time for large groundplane radii. For
example, Richmond”s method of moments requires approximately one-half
hour of CPU time on the VAX 11/780 computer for a groundplane radius
ka=20 with N=4 element segments and M=60 groundplane annular zones
(see Section 4.2). Although it may be possible to reduce the
computation time by use of a more efficient program than the one

employed by Richmond, it is of interest to find an alternative method

for large groundplanes.

Awadalla and Maclean(g)’(lo) have reduced the computation time for
large groundplanes by combining the method of moments with the
geometric theory of diffraction (GTD). The element current
distribution is determined by the method of moments and the effect on

input impedance by groundplane edge diffraction is determined by GTD.

The antenna geometry 1s shown in figure 1 of Section 2.1. The
method of Awadalla and Maclean is described in [9] for determining the

input impedance and in [10] for determining the radiation pattern.

A fictitious magnetic edge current is defined and expressed in
terms of a GTD diffraction coefficient to account for diffraction by
the edge of the groundplane. The method of GTD is valid only for
sufficiently large groundplane radii. Unfortunately, this method, as
applied by Awadalla and Maclean, does not determine the groundplane

current distribution.

LA S
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oRy

%gg The groundplane current distribution is idealized by Awadalla and
v Maclean in determining the radiation pattern. The current

A distribution on the top of the groundplane is assumed to be that for
ié; an infinite groundplane but defined only over the finite extent of the
iﬁﬁ groundplane. The net current at the edge of the groundplane is set

. ’ equal to zero. This constraint satisfles the boundary condition given
:25 by Eq. (2.4-4) and requires, at the edge of the groundplane, that the
ﬁ ; current on the bottom of the groundplane be equal but in the opposite
ikﬁ: ’ direction to that on the top of the groundplane. The current

ot distribution on the bottom of the groundplane is then assumed to

ﬁ\i decrease linearly from the edge of the groundplane to zero at the base
o of the element.

e

‘M}: The method of moments employed by Awadalla and Maclean is not a
;fﬂ sinusoidal-Galerkin method. Consequently, one cannot impose a

§|§, sinusoidal current distribution on the element by setting the number
N of element segments N=1 as a test case for purposes of comparison with

other models.

A4
;3? A program listing was obtained from Prof. Awadalla and edited at The
};; MITRE Corporation. A listing of the edited program "AWADALLA" is
‘:j given in Appendix A5. Program AWADALLA is written in FORTRAN language
B for use on a DEC VAX 11/780 computer. The CPU time for N=30 element
g : segments is less than 10 seconds.
3
_f Program AWADALLA was utilized to obtain the input impedance,
;ﬁS directive gain, and far-field elevation pattern of a quarterwave
;&; element of radfus b=10"°A on groundplane of radii 8 < ka < 50
< wavenumbers. The results for input impedance are given in table 6.
1 - These results are compared in table 7 of Section 4.5 with those
té? obtained by the method of moments (N=4). Concerning input impedance,
5}( the method of moments combined with GTID gives useful results for
:¢2 ka‘z 6, accurate results for ka > 8, and the suspected best available

25

results for 14 < ka <00 .
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AL
\‘:a ! TABLE 6. INPUT IMPEDANCE OF A QUARTERWAVE ELEMENT OF RADIUS b=10 6)\ AT THE
:% CENTER OF A CIRCULAR GROUNDPLANE OF RADIUS 8 < ka < 50 WAVENUMBERS
3:'5' (Method of moments combined with geometric theory of diffractfion)
Wi
‘l,' g
' INPUT RESISTANCE INPUT REACTANCE
N ka (OHMS) (OHMS)
Ry 8 35.96 18.28
m 9 36.55 24 .45
N 10 41.45 21.82
YA 11 37.54 18.67
el 12 36.30 23.08
ik 13 40.49 22.51
e 14 38.44 19.17
15 36.36 22.18
A 16 39.72 22.82
O 17 38.99 19.70
yt 18 36.58 21.51
e 19 39.09 22.89
0 20 36.87 21.05
Ca 22 38.58 22.84
by 23 39.45 20.63
L 24 37.20 20.73
- 25 38.17 22.67
NG 26 39.48 21.06
PRe 27 37.55 20.56
28 37.87 22.46
: 29 39.41 21.40
é 30 37.88 20.47
31 37.67 22.19
:'u 32 39.27 21.68
Y 33 38.19 20.49
A 34 37.55 21.93
] 35 39.08 21.90
Sy 36 38.45 20.56
S 37 37.51 %;'82
i 38 38.87 .
TN 39 38.66 20.68
40 37.54 21.42
41 38.64 22.13
D e 42 38.82 20.86
{1 43 37.62 21.21
1y 44 38.43 22.14
KA 45 38.92 21.05
der 46 37.75 21.04
ALY 47 38.23 22.10
N 48 38.96 21.26
it 49 37.91 20.93
NS 50 38.06 21.99
P
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A sample computer printout of directive gain and the far-field
elevation pattern obtained by program AWADALLA for ka=20 is given in
Appendix AS5. Unfortunately, the idealizations, made by Awadalla and
Maclean in characterizing the groundplane current distribution, yield
unrealistic peak directivities and elevation patterns. For example,
for ka=49, a peak directivity of 7.5 dBi was obtained. This result
for a thin quarterwave element seems unlikely because a thin
quarterwave element with a sinusoidal current distribution and mounted
on a groundplane of infinite extent has a peak directivity of only
5.2 dBi.

The method of moments combined with GTD via the definition of a
fictitious magnetic edge current has also been reported by Thiele and
Newhouse(ll) for computing input Impedance and by Stutzman and
Thiele(zs) for computing the far-field radiation pattern. 1In the

(28)

method of Stutzman and Thiele , the far-field pattern is determined

without idealizing the groundplane current distribution.
4.4 Method of Images, ka= o0

For the idealized case of a monopole element mounted on a
groundplane of infinite extent and of infinite conductivity, a
monopole antenna of length h may be modelled by the method of images
as a dipole of total length 2h but with one-half the input impedance
and double the peak numeric directivity of the dipole (see
Section 3.8). The infinite groundplane prevents radiation into the
hemisphere below the groundplane but generates fields in the upper

hemisphere identical to those of a dipole.

A detailed treatment of the fields and input impedance of a dipole
is given in [13]. An excellent summary of the present
state of the art of dipole theory, including plots of input impedance
as a function of dipole length and dipole radius, is given in [14].
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4.5 Summary of Results

In Section 4, the current distribution on the element is
determined by the method of moments rather than being assumed as was
the case in Section 3. The determination of the element current

digtribution is particularly important for element radii b > 10_4A .

The essential difference, in the two models utilized in
Section 4, is the treatment of the groundplane current distribution.
In Richmond”s model, the groundplane current distribution is
determined by the method of moments. Useful results are obtained for
0 < ka < 14 wavenumbers. In the model of Awadalla and Maclean for
large but finite groundplanes, the input impedance is accurately
computed by the introduction of a fictitious magnetic edge current
determined by the Geometric Theory of Diffraction (GTD). However, in
that model the groundplane current distribution is not determined but
instead 1s idealized -- causing unrealistic peak directivities and

far-field radiation patterns.

The input impedances, determined by the method of moments and the
method of moments combined with GTD, are compared in table 7 for a
quarterwave element of radius b=10-6A. and groundplane radii
6 < ka < 30 wavenumbers. The suspected best available results for
input impedance are obtained by the method of moments for 0 < ka ¢ 8.5
and by the method of moments combined with GTD for 8.5 < ka < oo . The
method of moments combined with GID is inaccurate for ka < 8
(approximately 6% error in input reactance for ka=8 and 7% error in
input resistance for ka=6). Richmond”s method of moments is
inaccurate for ka > 14 (approximately 112 error in input reactance and
5% error in input resistance for ka=15). Richmond”s method of moments
would be useful for ka > 14 wavenumbers if a more efficient method

than the Crout method were employed for matrix inversion.
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The radiation resistance of various diameter resonant (zero 1lnput

reactance) elements is compared in figure 17 with the radiation
resistance of an infinitely thin quarterwave element for groundplane
radii 0 < ka < 8.5 wavenumbers. The radiation resistance of the
resonant elements is not too appreclably different from the
quarterwave element for ka > 1 wavenumber. However as ka —0, the
radiation resistances of the resonant elements become increasingly
different from that of the infinitely thin element because an
infinitely thin element on a groundplane of zero extent is resonant

for an element length equal to 0.5\ and not 0.25) [see Eq. (3.2-38)].

The lengths and radiation resistance of various diameter resonant
elements for groundplane of radii 0.25 < ka < 7 wavenumbers are
plotted in figures 18 and 19. For these groundplane radii, the
element resonant length hres/A.varies from approximately 0.22 to 0.34
wavelengths for element radii 10—7'5 b/ A < 10-2 wavelengths. The
resonant radiation resistance, for these groundplane and element

radii, varies from approximately 21 to 65 ohms.
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b SECTION 5

COMPARISON WITH EXPERIMENTAL RESULTS

N The input impedance and elevation patterns of several monopole
%ﬂ‘; ) antennas were measured, each at a different frequency within the

'*Rﬁ frequency band 30-254 MHz, on the MITRE Corporation VHF antenna range.
:Zﬁﬁ Each antenna consisted of a tubular element of radius b=0.25 in.

mounted at the center of a groundplane of radius a=4 ft. and fed by a

,a%h 50 ohm RG-214 coaxial cable with a type N panel connector and a 50 ohm
Eaha tapered adapter to the element. The length h of each element was

;ﬂﬁ* approximately a quarterwave. The exact length of each element length
";? was chosen to be resonant (input reactance = zero ohms) for a

Sl groundplane of infinite extent. On a groundplane of finite extent,
:Eg&; the input reactance is expected to asymptotically approach zero as
':&{ ka —» 00 .

“'ﬁ; The VHF antenna range is located on the roof of MITRE E-Building.
<V:i: The transmitting and receiving antennas are at a height 27 ft. above
;:é the roof and are separated by approximately 40 ft. A conducting fence
!

;)' 16 ft. high and 48 ft. wide is located on the roof midway between the
')}} transmitting and receiving antennas to minimize multipath reflections
*:: from the roof. Lossy ferrite toroids (Ferronics, Type B material,
‘fSﬁ 0.540 in. I. D. x 0.870 in 0. D. x 0.25 in.) are spaced along the

 <§{ receiving and transmitting cables to minimize currents on the outside
;;5{ | of the cables. Outside rf interference is reduced to at least 40 dB
-é . below the desired signal by the use of narrowband rf filters.
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The monopole test antenna was operated in the receiving mode to
obtain elevation patterns and on the same platform for input impedance
measurements. The monopole groundplane was supported by a 10 ft.

wooden vertical mast mounted on an antenna pedestal.

The input Impedance was measured with a Hewlett-Packard HP-8754A
Network Analyzer with a computerized printout. The measurement test
set-up is shown in figure 20. The predicted input impedance of each
experimental monopole antenna was determined by Richmond”s method of
moments utilizing program RICHMDl. The predicted and measured input
impedances are compared in Table 8. The measured input resistance
differs from predicted values by approximately 1-10% over a range of
normalized groundplane radii = 0.77 -~ 6.5 wavenumbers. The measured
input reactance differs by approximately 2-12 ohms from the predicted
values. Since some of the predicted values are near resonance, a

percentage comparison is not made for input reactance.

Measured elevation patterns of most of the test monopole antennas
specified in Table 8 are compared in figures 21 - 29 with theoretical
patterns predicted by the method of moments (see Appendix A2 for the
computer printouts). Allowing for some multipath distortion by the
VHF test range, the received patterns are in good agreement with the
predicted pattern. 1t should be noted the measured pattern for ka =
0.766 is not appreciably different from that predicted for the
monopole element itself. The effect of the groundplane on the shape

of the pattern 1s not readily apparent until ka 2 2.0.
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