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2': "/ This report forms the user’s guide for Version 4.0 of NPSOL, a set of Fortran subroutines
f:: @ designed to minimize a smooth function subject to constraints, which may include simple bounds
{ on the variables, linear constraints and smooth nonlinear constraints. (NPSOL may also be used for
s unconstrained, bound-constrained and linearly constrained optimization.) The user must provide
TSR subroutines that define the objective and constraint functions and (optionally) their gradients. All
e matrices are treated as dense, and hence NPSOL is not intended for large sparse problems.
“‘} . NPSOL uses a sequential quadratic programming (SQP) algorithm, in which the search direc-
g tion is the solution of a quadratic programming (QP) subproblem. The algorithm treats bounds,
‘ linear constraints and nonbinear constraints separately. The Hessian of each QP subproblem is
a positive-definite quasi-Newton approximation to the Hessian of the Lagrangian function. The
) - steplength at each iteration is required to produce a sufficient decrease in an augmented Lagrangian
b ) ; ; :
:‘1 ) merit function. Each QP subproblein is solved using a quadratic programming package with several
e featurefs that improve the efficiency of an SQP algorithm. 3—% e - I o & Tai. 5;7;,., e )
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1. PURPOSE 1

1. PURPOSE

NPSOL is a collection of Fortran 77 subroutines designed to solve the nonlinear programming
problem: the minimization of a smooth nonlinear function subject to a set of constraints on the
variables. The problem is assumed to be stated in the following form:

NP minimize F(z)
sER"

z
subjectto £ < ¢ A,z } < u,

c(2)

where F(z) (the objective function) is a nonlinear function, A, is an m, X n constant matrix of
general constraints, and ¢(z) is an my-vector of nonlincar constraint functions. (The matrix A,
and the vector ¢(z) may be empty.) The objective function F and the constraint functions are
assumed to be smooth, i.e., at least twice-continuously differentiable. (The method of NPSOL will
usually solve NP if there are only isolated discontinuities away from the solution).

Note that upper and lower bounds are specified for all the variables and for all the constrainis.
This form allows full generality in specifying other types of constraints. In particular, the i-th
constraint may be defined as an equality by setting £; = u;. If certain bounds are not present, the
associated elements of £ or u can be set to special values that will be treated as —oo or -+oc.

If there are no nonlinear constraints in NP and F is linear or quadratic, the QPSOL or LSSOL
packages (Gill et al., 1984a, 1986a) will gencrally be more efficient than NPSOL. If the problem is
large and sparse, the MINOS package (Murtagh and Saunders, 1982, 1983) should be used, since
NPSOL treats all matrices as dense.

The user must supply an initial estimate of the solution to NP, and subroutines that define
F(z), c(z), and as many first partial derivatives as possible; unspecified derivatives are approxi-
mated by finite-differences. .

NPSOL is based on subroutines from Version 1.0 of the LSSOL constrained linecar least-squares
packege; the documentation of LSSOL (Gill et al., 1986a) should be consulted in cénjunction with
this report. NPSOL contains approximately 15,000 lines of ANSI (1977) Standard Fortran, of which
47% are comments.
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2 User’s Guide for NPSOL 4.0

2. DESCRIPTION OF THE ALGORITHM

Here we briefly suinmarize the main features of the mcthod of NPSOL. Where possible, explicit
reference is made to the names of variables that are parameters of subroutine NPSOL or appear in
the printed output.

At a solution of NP, some of the constraints will be active, i.e., satisfied exactly. An active
simple bound constraint implies that the corresponding variable is fixed at its bound, and hence
the variables are partitioned into fixed and free variables. Let (' denote the m X n matrix of
gradients of the active general linear and nonlinear constraints. The number of fixed variables will
be denoted by ngx, with nyp (nga = n — ngx) the number of free variables. The subscripts “FX”
and “FR” on a vector or matrix will denote the vector or matrix composed of the components
corresponding to fixed or free variables.

A point z is a first-order Kuhn-Tucker point for NP (see, e.g., Powell, 1974) if the following
conditions hold:
(i) z is feasible;
(ii) there exist vectors £ and X (the Lagrange multiplier vectors for the bound and general
constraints) such that

g=CM+¢, (1)

where g is the gradient of F evaluated at z, and £; = 0 if the j-th variable is free.

(iii) The Lagrange multiplier corresponding to an inequality constraint active at its lower
bound must be non-negative, and non-positive for an inequality constraint active at
its upper bound.

Let Z denote a2 matrix whose columns form a basis for the set of vectors orthogonal to the
rows of Ciy; i.e., CppZ = 0. An equivalent statement of the condition (1) in terms of Z is

ZTgrn =0.

The vector ZTg.x is termed the projected gradient of F at x. Certain additional conditions must
be satisfied in order for a first-order Kuhn-Tucker point to be a solution of NP (see, e.g., Powell,
1974).

The method of NPSOL 4.0 is a sequential quadratic programming (SQP) method. For an
overview of SQP methods, see, for example, Fletcher (1981), Gill, Murray and Wright (1981) and
Powell (1983).

The basic structure of NPSOL involves major and minor iterations. The major iterations
generate a sequence of iterates {z;} that converge to «, a first-order Kuhn-Tucker point of NP. At
a typical major iteration, the new iterate & is defined by

€=z +ap, (2)

where z is the current iterate, the non-negative scalar a is the step length, and p is the search
direction. (For simplicity, we shall always consider a typical iteration and avoid reference to the
index of the iteration.) Also associated with each major iteration are estimates of the Lagrange
multipliers and a prediction of the active set.

The scarch direction p in (2) is the solution of a quadratic programming subproblem of the

form
minimize g7p + -;-pTH P
[

i P ()
subject to £ < { A,p } < 1,

Anp

RS R T W Tel L SR
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2. DESCRIPTION OF THE ALGORITHM b

' where g is the gradient of F at z, the matrix H is a positive-definite quasi-Newton approximation

Lol to the Hessian of the Lagrangian function (see Section 2.3), and Ay is the Jacobian matrix of ¢
t"’l'}« evaluated at z. (Finite-difference estimnates may be used for g and Ay; see the optional parameter

“Derivative Level” in Section 5.2.) Let £ in NP be partitioned into three sections: Ly, L, and
¢, corresponding to the bound, linear and nonlinear constraints. The vector £ in (3) is similarly
partitioned, and is defined as

-
oy
L,
s
F“?‘i"
© v

¥l
T
=

lB = tn - T, l-l. = tb - A,_:B, B.Ild ZN = tN - C,

)

b ) :f, where ¢ is the vector of nonlinear constraints evaluated at . The vector i is defined in an analogous

gL ¥ fashion. '
The estimated Lagrange multipliers at each major iteration are the Lagrange multipliers from

o ‘(T\ the subproblem (3) (and similarly for the predicted active set). (The numbers of bounds, general

W { linear and nonlinear constraints in the QP active set are the quantities “Bnd”, “Lin” and “N1ln”

alt in the printed output of NPSOL.) In NPSOL, (3) is solved using subroutines from Version 1.0 of

; "‘,' o the LSSOL package (Gill et al., 1986a). Since solving a quadratic program is itself an iterative

s & procedure, the minor iterations of NPSOL are the iterations of LSSOL. (More details about solving

the subproblem are given in Section 2.1.)

.«\ ‘., Certain matrices associated with the QP subproblem are relevant in the major iterations. Let

-::‘. 3 the subscripts “FX” and “FR” refer to the predicted fixed and free variables, and let C denote the

;;3 m x n matrix of gradients of the general linear and nonlinear constraints in the predicted active

' i set. First, we have available the TQ factorization of Cyy:

V CenQen =(0 T), (4)

R

RN where T is a nonsingular m x m reverse-triangular matrix (i.e., t;; = 0 if i + j < m), and the

; non-singular ngy X npp matrix @,y is the product of orthogonal transformations (see Gill et al.,

R 1984a). Second, we have the upper-triangular Cholesky factor R of the transformed and re-ordered

?.Jq E\ Hessian matrix N

*t;;,.“; RTR = H, = QTHQ, (5)

$

:":E E}: where H is the Hessian H with rows and columns permuted so that the free variables are first, and

)

Q is the n x n matrix

& k Qz(Q" I) ©

with I, the identity matrix of order ny. If the columns of Q.5 are partitioned so that

S
-
-5

-l

F‘:; an=(z Y),

oS the n, (n; = npp — m) columns of Z form a basis for the null space of C¢pr. The matrix Z is used

+ 3EsezEs) |38ian
i

\l
.&.“'- to compute the projected gradient Z7g,, at the current iterate. (The values “Nz”, “Norm G£”, and
“Norm Gz” printed by NPSOL give n, and the norms of g,5 and Z Tgn.)

> A theoretical characteristic of SQP methods is that the predicted active set from the QP

E subproblem (3) is identical to the correct active sct in a neighborhood of £; In NPSOL, this feature
s is exploited by using the QP active set from the previous iteration as a prediction of the active |
:.:‘ - set for the next QP subproblem, which leads in practice to optimality of the subproblems in only :
. L: one iteration as the solution is approached. Separate treatment of bound and linear constraints in ‘
{:.' NPSOL also saves computation in factorizing Cep and Hyg. |
""Q' !

k!

............

SRS Tk
S

e T e ey

Al
P 4
P

X
',
2]
r's
2
P
"
f)
‘.(‘
v
»
P
!
L,
4-,
X,
l’{
P v
‘o
Y,
-
‘;’
it
L ]

s
-

-

':{":’\ -

>,

-
>



4 User’s Guide for NPSOL 4.0

Once p has been computed, the major iteration proceeds by determining a steplength «v that
produces a “sufficient decrease” in an augmented Lagrangian merit function (sece Section 2.2).
Finally, the approximation to the transformed Hessian matrix Hg is updated using a modified
BFGS quasi-Newton update (sce Section 2.3) to incorporate new curvature information obtained
in the move from z to .

On entry to NPSOL, an iterative procedure from the LSSOL package is executed, starting with
the user-provided initial point, to find a point that is feasible with respect to the bounds and linear
constraints (using the tolerance specified by “Linear Feasibility Tolerance”; sce Scction 5.2).
If no feasible point exists for the bound and linear constraints, NP has no solution and NPSOL
terminates. Otherwise, the problem functions will thereafter be evaluated only at points that are
feasible with respect to the bounds and linear constraints. The only exception involves variables
whose bounds differ by an amount comparable to the finite-difference interval (see the discussion
of “Difference Interval” in Section 5.2). In contrast to the bounds and linear constraints, it
must be emphasized that the nonlinear constraints will not generally be satisficd until an optimal
point is reached.

Facilities are provided to check whether the user-provided gradients appear to be correct (see
the optional parameter “Verify” in Section 5.2). In general, the check is provided at the first
point that is feasible with respect to the linear constraints and bounds. However, the user may
request that the check be performed at the initial point. '

In summary, the method of NPSOL first determines a point that satisfies the bound and linear
constraints. Therecafter, each iteration includes: (a) the solution of a quadratic programming
subproblem; (b) a linesearch with an augmented Lagrangian merit function; and (c) a quasi-
Newton update of the approximate Hessian of the Lagrangian function. These three procedures
are described in more detail in the next three subsections.

2.1. Solution of the quadratic programming subproblem

The search direction p is obtained by solving (3) using subroutines from the LSSOL package (Gill
et al., 1986a), which was specifically designed to be used within an SQP algorithm for nonlinear
programming,

The method of LSSOL is a two-phase (primal) quadratic programming method. The two
phases of the method are: finding an initial feasible point by minimizing the sum of infeasibilities
(the feasibility phase), and minimizing the quadratic objective function within the feasible region
(the optimality phase). The computations in both phases are performed by the same subroutines.
The two-phase nature of the algorithm is reflected by changing the function being minimized from
the sum of infeasibilities to the quadratic objective function.

In gencral, a quadratic program must be solved by iteration. Let p denote the current estimate
of the solution of (3); the new iterate 7 is defined by

p=p+oad, (7)

where, as in (2), o is a non-negative step length and d is a search direction.

At the beginning of each iteration of LSSOL, a working set is defined of constraints (general
and bound) that are satisfied exactly. The vector d is then constructed so that the values of
constraints in the working set remain unaltered for any move along d. For a bound constraint in
the working set, this property is achieved by setting the corresponding component of d to zero,
i.e., by fixing the variable at its bound. As before, the subscripts “FX” and “FR” denote selection
of the components associated with the fixed and free variables.

T e "

2 1 ) 'y Q) S\
s didgiadg O OF

.



SR 4 <

g i: A 2. DESCRIPTION OF THE ALGORITHM 5
v
) “ Let C denote the submatrix of rows of
NS
;;I::? A,
v IS
G:“G’ ,ﬁ ( AN )
5,:::: g
e
"'. v corresponding to general constraints in the working set. The general constraints in the working
v set will remain unaltered if
R A WA
:: Cerdea = 0, (8)
AR
S -C which is equivalent to defining dgy as
A
el den = Zd, 9)

for some vector d;, where Z is the matrix associated with the T'Q factorization (4) of Crg.

The definition of d; in (9) depends on whether the current p is feasible. If not, d is zero except
for a component < in the j-th position, where j and v are chosen so that the sum of infeasibilities
is decreasing along d. (For further details, see Gill et al., 1986a.) In the feasible case, d, satisfies
the equations

‘r‘:'
2

|

.- Rrdez = _ZTqPR7 (10)
[ ::). ::{i where R is the Cholesky factor of ZTHy Z and q is the gradient of the quadratic objective function
*:3 ‘ (g = g + Hp). (The vector ZTqe, is the projected gradient of the QP.) With (10), p + d is the
’_t‘-, minimizer of the quadratic objective function subject to treating the constraints in the working
ﬂ set as equalities.
j j:} ) If the QP projected gradient is zero, the current point is a constrained stationary point in
:.'J "'," the subspace defined by the working set. During the feasibility phase, the projected gradient will
SRS usually be zero only at a vertex (although it may vanish at non-vertices in the presence of constraint
Fr dependencies). During the optimality phase, a zero projected gradient implies that p minimizes
" 3 L the quadratic objective function when the constraints in the working set are treated as equalities.
" In either case, Lagrange multipliers are computed. Given a positive constant § of the order of
BN the machine precision, the Lagrange multiplier u; corresponding to an inequality constraint in the
: ‘W NG working set at its upper bound is said to be optimal if p; < § when the j-th constraint is at its
g L upper bound, or if 4; > —6 when the associated constraint is at its lower bound. If any multiplier is
y non-optimal, the current objective function (either the true objective or the sum of infeasibilities)
' can be reduced by deleting the corresponding constraint from the working set.
’ .7 *‘ If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero,
v no feasible point exists. The QP algorithm will then continue iterating to determine the minimum
Y )’ sum of infeasibilities. At this point, the Lagrange multiplier u; will satisfy —(1 + 6) < p; < & for
LY an inequality constraint at its upper bound, and —6 < pu; < 1+ 6 for an inequality at its lower
bound. The Lagrange multiplier for an equality constraint will satisfy |p;] <1+ 6.
e ;2 The choice of step length o in the QP iteration (7) is based on remaining feasible with respect
:‘:\ M to the satisfied constraints. During the optimality phase, if p + d is feasible, o will be taken as
‘0.\ unity. (In this case, the projected gradient at § will be zero.) Otherwise, o is set to o,,, the step
" :\i to the “nearest” constraint, which is added to the working set at the next iteration.
P t Each change in the working set leads to a simple change to Cgy: if the status of a general

constraint changes, a row of Cy, is altered; if a bound constraint enters or leaves the working set,
a column of Cry changes. Explicit representations are recurred of the matrices T, Q;; and R, and
of the vectors Q7q and QTy.
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6 User’s Guide for NPSOL 4.0

2.2. The merit function

After computing the scarch direction as described in Section 2.1, each major iteration proceeds by
determining a steplength « in (2) that produces a “sufficient decrease” in the augmented Lagrangian
merit function

LlaAs) = Fla) - T n(ai(e) - ) + 5 3 pileia) - o), (11)

where z, A and s vary during the linesearch. The summation terms in (11) involve only the
nonlinear constraints. The vector A is an estimate of the Lagrange multipliers for the nonlinear
constraints of NP. The non-negative slack variables {s;} allow nonlincar inequality constraints to
be treated without introducing discontinuities. The solution of the QP subproblem (3) provides a
vector triple that serves as a direction of search for the three sets of variables. The non-negative
vector p of penalty parameters is initialized to zero at the beginning of the first major iteration.
Thereafter, selected components are increased whenever necessary to ensure descent for the merit
function. Thus, the sequence of norms of p (the printed quantity “Penalty”; see Section 6) is
generally non-decreasing, although each p; may be reduced a limited number of times.

The merit function (11) and its global convergence properties are described in Gill et al.
(1986b).

2.3. The quasi-Newton update

The matrix H in (3) is a positive-definite quasi-Newton approximation to the Hessian of the La-
grangian function. (For a review of quasi-Newton methods, see Dennis and Schnabel, 1983.) At the
end of each major iteration, a new Hessian approximation H is defined as a rank-two modification
of H. In NPSOL, the BFGS quasi-Newton update is used:

_ 1
H_H_sTHs

1
HssTH + ;/Tsny' (12)

where s = £ — z (the change in z).

In NPSOL, H is required to be positive definite. If H is positive definite, H as defined by (12)
will be positive definite if and only if yTs is positive (see, e.g., Dennis and Moré, 1977). Ideally, y
in (12) would be taken as y., the change in gradient of the Lagrangian function

v =9 - Avun — 9+ Afpn, (13)
where u, denotes the QP multipliers asociated with the nonlinear constraints of the original

problem. If yTs is not sufficiently positive, an attempt is made to perform the update with a vector
y of the form

my
y=y, + Zwi (a‘i(f)ci(i) - ai(l‘)ci(z)),

=1
where w; > 0. If no such vector can be found, the update is performed with a scaled y,; in this
case, “M” is printed to indicate that the update was modified.

Rather than modifying H itself, the Cholesky factor of the transformed Hessian H, (4) is

updated, where Q is the matrix from (3) associated with the active set of the QP subproblem. The
update (12) is equivalent to the following update to Hy:

_ 1 1
Hy=Hg - ———HosqsTHy + ——youl, 14
Q Q s'qusQ @8q3ollq y£sq YoVq (14)
where y, = QTy, and s, = QTs. This update may be expressed as a rank-one update to R (see
Dennis and Schnabel, 1981).

Full details concerning the Hessian update are given in Gill et al. (1986c).
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3. SPECIFICATION OF SUBROUTINE NPSOL
The formal specification of NPSOL is the following:

SUBROUTINE NPSOL ( N, NCLIN, NCNLN, NROWA, NROWJ, NROWR,

A, BL, BU,

CONFUN, OBJFUN,

INFORM, ITER, ISTATE,

C, CJAC, CLAMDA, OBJF, GRAD, R, X,
IW, LENIW, W, LENW )

INTEGER N, NCLIN, NCNLN,
NROWA, NROWJ, NROWR, INFORM, ITER, LENIW, LENW
INTEGER ISTATE(N+NCLIN+NCNLN), IW(LENIW)
REAL 0BJF
REAL A(NROWA,*»), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),

C(*), CJAC(NROWJ,*), CLAMDA(N+NCLIN+NCNLN), GRAD(N),
R(NROWR,*), X(N), W(LENW)

EXTERNAL CONFUN, OBJFUN

Note: Here and elsewhere, the specification of a parameter as REAL should be interpreted as working
precision, which may be DOUBLE PRECISION in some installations.

3.1. Formal parameters

N

NCLIN

NCNLN
NROWA

NROWJ

NROWR

BL

(Input) The number of variables in the problem, i.e., the dimension of X. (N must
be positive.)

(Input) The number of general linear constraints in the problem. {NCLIN may be
zero.)

(Input) The number of nonlinear constraints in the problem. (NCNLN may be zero.)

(Input) The declared row dimension of the array A. NROWA must be at least 1 and
at least NCLIN.

(Input) The declared row dimension of the array CJAC. NROWJ must be at least 1
and at least NCNLN.

(Input) The declared row dimension of the array R. NROWR must be at least N.

(Input) A real array of declared dimension (NROWA, *), where the second dimension
must be at least N. A contains the matrix A, of general linear constraints in the
problem specification NP (Section 1). The i-th row of A, i = 1 to NCLIN, contains the
cocfficients of the i-th general linear constraint. If NCLIN is zero, A is not accessed
and may be dimensioned (1,1).

(Input) A real array of dimension at least N+ NCLIN+ NCNLN that contains the lower
bounds for all the constraints, in the following order (which is also observed for BU,
CLAMDA and ISTATE). The first N elements of BL contain the lower bounds on the
variables. If NCLIN > 0, the next NCLIN elements of BL contain the lower bounds for
the general linear constraints. If NCNLN > 0, the next NCNLN elements of BL contain

ke m m =&
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the lower bounds for the nonlinear constraints, In order for the problemn specification
to be meaningful, it is r(‘qmr(d that BL(j) < BU(j) for all 5. To specify a non-cxistent
lower bound (i.c., £; = ~oc), the value used must satisfy BL(j) < ~BIGBND, where
BIGBND is the value of tho optional paramcter Infinite Bound, whose default value
is 10'® (see Section 5.2). To specify the j-th constraint as an equality, the user must
set BL(j) = BU(j) = f3, say, where |3| < BIGBND.

(Input) A rcal array of dimension at least N+ NCLIN+ NCNLN that contains the upper
bounds for all the constraints, in the same order described above for BL. To specify a
non-existent upper bound (i.e., u; = 00), the value used must satisfy BU(j) > BIGBND.

(User-defined subroutine) The name of a subroutine that calculates the vector
c(z) of nonlincar constraint functions and (optionally) its Jacobian for a specified
n-vector . CONFUN must be declared as EXTERNAL in the routine that calls NPSOL.
For a detailed description of CONFUN, sce Section 4.2.

(User-defined subroutine) The name of a subroutine that calculates the objective
function F(z) and (optionally) its gradicnt for a specified n-vector z. OBJFUN must
be declared as EXTERNAL in the routine that calls NPSOL. For a detailed description
of OBJFUN, sce Section 4.1.

(Output) An integer that indicates the result of NPSOL. (A short description of
INFORM is printed if Major Print Level > 0.) The possible values of INFORM are:

INFORM Meaning
<0 The user has set MODE to this negative valuc in CONFUN or OBJFUN (see
Section 4).
0 The iterates have converged to a point X that satisfics the first-order

Kuhn-Tucker conditions to the accuracy requested by the optional pa-
rameter Optimality Tolerance (sce Section 5.2), i.e., the projected gra-
dient and active constraint residuals are negligible at X.

1 The final iterate X satisfies the first-order Kuhn-Tucker conditions to the
accuracy requested, but the sequence of iterates has not yet converged.
NPSOL was terminated because no further improvement could be made
in the merit function.

2 No feasible point could be found for the linear constraints and bounds.
The problem has no feasible solution. See Section 7 for further com-
ments.

3 No feasible point could be found for the nonlinear constraints. The prob-
lem may have no feasible solution. See Section 7 for further comments.

4 The limiting number of iterations (determined by the optional parameter
Major Iteration Limit; sec Section 5.2) has been reached.

6 X does not satisfy the first-order Kuhn-Tucker conditions, and no im-
proved point for the merit function could be found during the final line
search.

7 The user-provided derivatives of the objective function and/or nonlinear

constraints appear to be incorrect.

9 An input parameter is invalid.

(Output) The number of major itcrations performed.
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ISTATE

(Input) An integer array of dimension at least N + NCLIN + NCNLN. ISTATE nccd not
be initialized if NPSOL is called with a Cold Start (the default option; sce Section
5.2). The ordering of ISTATE is the same as that described above for BL, i.c., the
first N components of ISTATE refer to the upper and lower bounds on the variables,
components N + 1 through N + NCLIN refer to the upper and lower bounds on Az,
and components N + NCLIN + 1 through N + NCLIN + NCNLN refer to the upper and
lower bounds on ¢(z). When a Warm Start option is chosen, the components of
ISTATE corresponding to the bounds and linear coustraints define the initial working
set for the procedure that finds a feasible point for the linear constraints and bounds.
The active set at the conclusion of this procedure and the components of ISTATE
corresponding to nonlinear constraints then define the initial working set for the first
QP subproblem. Possible values for ISTATE(j) are

ISTATE(7) Meaning
0 The corresponding constraint is not in the initial QP working set.
1 This inequality constraint should be in the working set at its lower bound.
2 This inequality constraint should be in the working set at its upper
bound.

3 This equality constraint should be in the initial working set. This value
must not be specified unless BL(7) = BU(j). The values 1, 2 or 3 all have
the same effect when BL(j) = BU(j).

Other values of ISTATE are also acceptable. In particular, if NPSOL has been called
previously with the same values of N, NCLIN and NCNLN, ISTATE already contains sat-
isfactory values. If necessary, NPSOL will override the user’s specification of ISTATE,
so that a poor choice will not cause the algorithm to fail.

(Output) If NPSOL exits with INFORM = 0 or 1, the values in the array ISTATE
correspond to the active set of the final QP subproblem, and are a prediction of thé
status of the constraints at the solution of the problem. Otherwise, ISTATE indicates
the composition of the QP working set at the final iterate. The significance of each
possible value of ISTATE(j) is as follows:

ISTATE(j) Meaning

-2 This constraint violates its lower bound by more than the feasibility
tolerance (see the optional parameters Linear Feasibility Tolerance
and Nonlinear Feasibility Tolerance in Section 5.2). This value can
occur only when no feasible point can be found for a QP subproblem.

-1 This constraint violates its upper bound by more than the appropri-
ate feasibility tolerance (see the optional parameters Linear Feasi-
bility Tolerance and Nonlinear Feasibility Tolerance in Section
5.2). This value can occur only when no feasible point can be found for
a QP subproblem.

0 The constraint is satisfied to within the feasibility tolerance, but is not
in the working set.

1 This inequality constraint is included in the QP working set at its lower
bound.

2 This inequality constraint is included in the QP working set at its upper
bound.
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T"s:ﬁ: 3 This constraint is included in the QP working set as an equality. This .
"l . value of ISTATE can occur only when BL(j) = BU(j). i
R c (Output) A real array of dimension at least NCNLN. If NCNLN = 0, C is not accessed, i
"&,". and may then be declared to be of dimension (1), or the actual parameter may be a
4 , any convenient array. If NCNLN > 0, C contains the values of the nonlinear constraint - |
qﬂ—a functions ¢;, { = 1 to NCNLN, at the final iterate. |
i'." CJAC . (Input) A real array of dimension (NROWJ,*), where the second dimension must be i
:ll at least N. If NCNLN = 0, CJAC is not accessed, and may then be declared to be of
Bl d .ension (1,1), or the actual parameter may be any convenient array. ;
% : In general, CJAC need not be initialized before the call to NPSOL. However, if Deriva-

. tive Level = 3, the user may optionally set the constant clements of CJAC (see Sec-
*ix tion 4.3). Such constant elcments need not be re-assigned on subsequent calls to ::
‘5‘:3 CONFUN. "
“’;‘ (Output) If NCNLN > 0, CJAC contains the Jacobian matrix of the nonlinear con-
= straint functions at the final iterate, i.e., CJAC(1, ) contains the partial derivative of
',_’ the i-th constraint function with respect to the j-th variable, i = 1 to NCNLN, 7 = 1
: to N. (See the discussion of CJAC under CONFUN in Section 4.2.)

CLAMDA (Input) A real array of dimension at least N + NCLIN 4+ NCNLN. CLAMDA need not be
initialized if NPSOL is called with the (default) Cold Start option. With the Warm
Start option, CLAMDA must contain a multiplier estimate for each nonlinear constraint
with a sign that matches the status of the constraint specified by the ISTATE atray

o,

/ o (as above). The ordering of CLAMDA is the same as that given above for BL. If
‘_::; the j-th constraint is defined as “inactive” by the initial value of the ISTATE array,
:ﬁ CLAMDA(7) should be zero; if the j-th constraint is an inequality active at its lower
B bound, CLAMDA(j) should be non-negative; if the j-th constraint is an ifiequality active
) at its upper bound, CLAMDA(j) should be non-positive.

Yok @

(Output) CLAMDA gives the QP multipliers from the last QP subproblem. CLAMDA(j)
should be non-negative if ISTATE(j) = 1 and non-positive if ISTATE(j) = 2.

P

OBJF (Output) The value of the objective function F(z) at the final iterate.

-
r.r
-

0BJGRD (Output) A real array of dimension at least N that contains the objective gradient
(or its finite-difference approximation) at the final iterate.

R (Input) A real array of declared dimension (NROWR,*), where the second dimension
must be at least N. R need not be initialized if NPSOL is called with a Cold Start
option (the default), and will be taken as the identity. With a Warm Start, R must
contain the upper-triangular Cholesky factor of the initial approximation of the Hes-
sian of the Lagrangian function, with the variables in the natural order. Elements not
in the upper-triangular part of R are assumed to be zero and need not be assigned.

sy
L e

-

o

(Output) If Hessian = No (the default; see Section 5.2), R contains the upper-
triangular Cholesky factor of QTHQ, an estimate of the transformed and re-ordered
Hessian of the Lagrangian at X (see (5) in Section 2). If Hessian = Yes, R contains
the upper-triangular Cholesky factor of H, the approximate (untransformed) Hessian
of the Lagrangian, with the variables in the natural order.
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i X (Input) A rcal array of dimension at lcast N. X must contain an initial estimate of
the solution.

(Output) X contains the final estimate of the solution.

.

", "
L

3.2. Workspace parameters

M Iv (Input) An integer array of dimension LENIW that provides integer workspace for
) NPSOL.
g: LENIW (Input) The dimension of IW. LENIW must be at least 3N + NCLIN + 2 NCNLX,
W
' W (Input) A real array of dimension LENW that provides real workspace for NPSOL.
R: LENW (Input) The dimension of W. If there are no general linear constraints and no nonlin-
A ear constraints (i.e., NCLIN = 0 and NCNLN = 0), LENW must be at least 20N. If there are
no nonlinear constraints (i.e., NCNLN = 0), LENW must be at least 2 N> +20N+11 NCLIN.
. Otherwise, LENW must be at least 2N? 4 N«NCLIN + 2N«NCNLN + 20N + 11NCLIN +
ﬁ 21 NCNLK.
o If Major Print Level > 0, the required amounts of workspace are printed. As an alternative
3. . to computing LENIW and LENW from the formulas given above, the user may prefer to obtain
' appropriate values from the output of a preliminary run with a positive value of Major Print
ﬁ Level and LENIW and LENW set to 1. (NPSOL will then terminate with INFORM = 9.)
.‘.—
I\-
"~
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4. USER-SUPPLIED SUBROUTINES

The user must provide subroutines that define the objective function and nonlinear constraints.
The objective function is defined by subroutine OBJFUN, and the nonlincar constraints are defined
by subroutine CONFUN. On every call, these subroutines must return appropriate values of the
objective and nonlinear constraints in OBJF and C. The user shounld also provide the available
partial derivatives. Any unspecified derivatives are approximated by finite differences; see Section
5.2 for a discussion of the optional parameter Derivative Level. Just before ¢ither OBJFUN or
CONFUN is called, each clement of the current gradient array OBJGRD or CJAC is initialized to a
special value. On exit, any element that retains the given value is estimated by finite differences.

For maximum reliability, it is preferable for the user to provide all partial derivatives (see
Chapter 8 of Gill, Murray and Wright, 1981, for a detailed discussion). If all gradients cannot be
provided, it is similarly advisable to provide as many as possible. While developing the subroutines
OBJFUN and CONFUN, the Verify parameter (see Section 5.2) should be used to check the calculation
of any known gradients.

4.1. Subroutine 0BJFUN

This subroutine must calculate the objective function F(z) and (optionally) the gradient g(z).
The specification of OBJFUN is

a0

o

SUBROUTINE OBJFUN( MODE, N, X, OBJF, OBJGRD, NSTATE )
INTEGER MODE, N, NSTATE

REAL O0BJF

REAL X(N), OBJGRD(N)

Parameters:

MODE (Input) This parameter is set by NPSOL to indicate the values that must be assigned
during each call of OBJFUN. MODE will always have the value 2 if all components of the
objective gradient are specified by the user, i.e., if Derivative Level is either 1 or 3
(see Section 5.2). If some gradient elements are unspecified, NPSOL will call 0BJFUN
with MODE = 0, 1 or 2.
If MODE = 2, compute OBJF and the available components of OBJGRD.
If MODE = 1, compute all available components of OBJGRD; OBJF is not required.

If MODE = 0, only OBJF needs to be computed; OBJGRD is ignored.

(Output) If for some reason you wish to terminate the solution of the current prob-
lem, set MODE to a ncgative value, e.g., —1.

(Input) The number of variables, i.e., the dimension of X. The actual parameter N
will always be the same Fortran variable as that input to NPSOL, and must not be
altered by OBJFUN.

(Input) An array of dimension at least N containing the values of the variables z for
which F must be evaluated. The array X must not be altered by 0BJFUN.

OBJF (Output) The computed value of the objective function F(z).

OBJGRD (Output) The available components of the gradient vector g(z), i.e., 0BJGRD(j) con-
tains the partial derivative F/dz;.

NSTATE (Input) If NSTATE = 1, NPSOL is calling OBJFUN for the first time. This parameter
setting allows the user to save computation time if certain data must be read or
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-
calculated only once. If there are nonlinear constraints, the first call to CONFUN will
' occur before the first call to OBJFUN,
e 4.2. Subroutine CONFUN
& This subroutine must compute the nonlinear constraint functions c(z) and (optionally) their gradi-
ents. (A dummy subroutine CONFUN must be provided if all constraints are linear.) The i-th row of
& the Jacobian matrix CJAC is the vector Ve¢; = (8¢;/821,0¢;/3%3,...,0c¢;/82,)T. The specification
of CONFUN is

SUBROUTINE CONFUN( MODE, NCNLN, N, NROWJ,
NEEDC, X, C, CJAC, NSTATE )

r
%5 INTEGER MODE, NCNLN, N, NROWJ
INTEGER NEEDC(»)

~ REAL X(N), C(*), CIJAC(NROWJI,»)
\\.
) Parameters:

MODE (Input) This parameter is set by NPSOL to indicate the values that must be assigned
‘!: during each call of CONFUN. MODE will always have the value 2 if all clements of the
E Jacobian are available, i.e., if Derivative Level is either 2 or 3 (see Section 5.2).

If some elements of CJAC are unspecified, NPSOL will call CONFUN with MODE = 0, 1,
< or 2:

s If MODE = 2, only the elements of C corresponding to positive values of NEEDC need to
be set (and similarly for the available components of the rows of CJAC).

i If MODE = 1, the available components of the rows of CJAC corresponding to positive
values in NEEDC must be set. Other rows of CJAC and thc array C will be
e ignored.
;:43 If MODE = 0, the components of C corresponding to positive values in NEEDC must be
e set. Other components and the array CJAC are ignored.
[
(Output) If for some reason you wish to terminate the solution of the current prob-
! lem, set MODE to a negative value, e.g., —1.
NCNLN (Input) The number of nonlinear constraints, i.e., the dimension of C. The actual
:'-': parameter NCNLN is the same Fortran variable as that input to NPSOL, and must not
) be altered by CONFUN.
N (Input) The number of variables, i.e., the dimension of X. The actual parameter N
-Iﬂ is the same Fortran variable as that input to NPSOL, and must not be altered by
% CONFUN.
by NROWJ (Input) The leading dimension of the array CJAC. NROWJ must be at least 1 and at
w. least NCNLN.
NEEDC (Input) An array that specifies the indices of the elements of C or CJAC that must
‘:$ be evaluated by CONFUN. NEEDC need not be checked if the user always provides all
Je values, since the unneeded values are ignored.
- X (Input) An array of dimension at least N containing the values of the variables X for
ﬁ which the constraints must be evaluated. X must not be altered by CONFUN.
c (Output) An array of dimension at least NCNLN that contains the appropriate values
o of the nonlinear constraints. If NEEDC(i) > 0 and MODE = 0 or 2, the value of the i-th
gj constraint at X must be stored in C(i). (The other components of C are ignored.)
-“ e l \"'}‘" 3 ' " \ N e 1'..1'j1: o ﬂﬁ e :'.c‘.a.‘..._} R
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cJAC (Output) A real array of declared dimension (NROWJ,#*), where the second dimnen-
sion must be at least N, containing the appropriate clements of the Jacobian matrix
evaluated at X. (Sce the discussion of MODE and CJAC above.)

The parameter NSTATE has the same meaning as for OBJFUN.

4.3. Constant Jacobian elements

If all constraint gradients (Jacobian elements) are known (i.e., Derivative Level = 2 or 3; see
Section 5.2), any constant elements may be assigned to CJAC one time only at the start of the
optimization. An element of CIJAC that is not subsequently assigned in CONFUN will retain its initial
value throughout. Constant elements may be loaded into CJAC either before the call to NPSOL
or during the the first call to CONFUN (signalled by the value NSTATE = 1). The ability to preload
constants is useful when many Jacobian elements are identically zero, in which case CJAC may be
initialized to zero and non-zero elements may be reset by CONFUN.

Note that constant nonzero clements do affect the values of the constraints. Thus, if CJAC(¢, )
is set to a constant value, it need not be reset in subsequent calls to CONFUN, but the value
CJAC(i, 7)*X(7) must nonetheless be added to C(3).

It must be emphasized that, if Derivative Level < 2, unassigned elements of CJAC are not
treated as constant; they are estimated by finite differences, at non-trivial expense. If the user does
not supply a value for Difference Interval (see Section 5.2), an interval for each component of z
is computed automatically at the start of the optimization. The automatic procedure can usually
identify constant elements of CJAC, which are then computed once only by finite differences.
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‘:ﬁ. 5. OPTIONAL INPUT PARAMETERS
. n Several optional parameters in NPSOL define choices in the problem specification or the algorithm
Lo logic. In order to reduce the number of formal parameters of NPSOL, these optional parameters
' have associated default values (see Scction 5.2) that are appropriate for most problems. Therefore,
\ / -:.j the user needs o specify only those optional parameters whose values are to be different from their
f::.: tS default values. The remainder of this scction can be skipped by users who wish to use the default
W values for all optional parameters. A complete list of optional parameters and their default values
! ﬁ is given in Section 5.3.
:ﬂ: ) Each optional parameter is defined by a single character string of up to 72 characters, including
a':: one or more items. The items associated with a given option must be separated by spaces or equal
E‘::; § signs (=). Alphabetic characters may be upper or lower case. The string
(N
= Print level = §
." % is an example of an optional parameter.
) ) For each option, the string contains the following items.
::l,. A 1. The keyword (required for all options).
e E 2. A phrase (one or two words) that qualifies the keyword (only for some options).
| 9 3. A number that specifies either an INTEGER or a REAL value (only for some options).
;‘; ry Such numbers may be up to 16 contiguous characters in Fortran 77’s I, F, E or D
' :i formats, terminated by a space.
‘) Blank strings and comments are ignored and may be used to improve readability. A comment begins
LIS with an asterisk (*) and all subsequent characters are ignored. If the string is not a comment and
is not recognized, a warning message is printed on the specified output device (see Section 8.5).
Py Synonyms are recognised for some of the keywords, and abbreviations may be used.
i y & The following are examples of valid option strings for NPSOL:
N .
‘5 j NOLIST
J:: varm start
) g COLD START
.:'.! Verify Constraint gradients
W) Start OBJECTIVE check at variable 9
;:. o Stop constraint check at variable = 20 * The ‘=’ is optional
.:: }Q" Linear Feasibility tolerance 1.0E-8 * for IBM in double precision.
o CRASH TOLERANCE = .002

* This string will be completely ignored.
Hessian Yes
Iteration limit 100

A
Fix

-y
-
>
L4

S

5.1. Specification of the optional parameters

. < Optional parameters may be specified in two ways, as follows.
R e
1. -\_: ¢ Using subroutine NPFILE and an external file
e, The subroutine NPFILE provided with the NPSOL package will read options from an external
4 E options file, and should be called before a call to NPSOL. Each line of the options file defines a
::" ) single optional parameter. The file must begin with Begin and end with End. (An options file
::: $ consisting only of these two lines corresponds to supplying no options.)
:‘i' wH
o
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The specification of NPFILE is

SUBROUTINE NPFILE( IOPTNS, INFORM )
INTEGER IOPTNS, INFORM

e

IOPTNS must be the unit number of the options file, in the range [0, 99}, and is unchanged on exit

from NPFILE. INFORM need not be set on entry. On return, INFORM will be 0 if the file is a valid

options file and IOPTNS is in the correct range. INFORM will be set to 1 if IOPTNS is out of range, g

and will be set to 2 if the file does not begin with Begin or end with End. :
An example of a valid options file is

Begin

Print level = §

Verify Objective Gradients
End

The call
CALL NPFILE( 5, INFORM )

will read an options file on unit 5.

e

e Using subroutine NPOPTN

The second method of setting the optional parameters is through a series of calls to the subroutine
NPOPTN provided with the NPSOL package. The specification of NPOPTN is ¥

SUBROUTINE NPOPTN( STRING )
CHARACTER*(») STRING

STRING must be a single valid option string (see above), and will be unchanged on exit. NPOPTN
must be called once for every optional parameter to be set. An example of a call to NPOPTN is

CALL NPOPTN( ’Print level = 5’ )

e Use of the Nolist and Defaults option

In general, each user-specified optional parameter is printed as it is read or defined. By using the
special parameter Nolist, the user may suppress this printing for a given call of NPSOL. To take
effect, Nolist must be the first parameter specified in the options file; for example

SN

Begin
Lo Nolist
F Verify Objective Gradients
e End .
e 3
E;‘::: Alternatively, the first call to NPOPTN, before or after a call to NPSOL, must be
Gy

CALL NPOPTN( ’Nolist’ ).

All parameters not specified by the user are automatically set to their default values. Any
optional parameters that are set by the user are not altered by NPSOL, and hence changes to the
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options are cumulative. For example, calling NPOPTN( ’Print level = b’ ) sets the print level
5 for all subscquent calls to NPSOL until it is reset by the user. The only exception to this

ritle is permitted by the special optional parameter Defaults, whose effect is to reset all optional

parameters to their default values (see Section 5.3). For example, in the following situation

CALL NPSOL ( ... )

c
CALL NPOPTN( ’Print level 5’ )
CALL NPOPTN( ’Iteration limit = 100? )
CALL NPSOL ( ... )

c

CALL NPOPTN( ’Defaults’ )
CALL NPSOL ( ... )

the first and last runs of NPSOL will occur with the default parameter settings. However, in the
second rum, the print level and iteration limit are altered.

5.2. Description of the optional parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the
keyword, any essential optional qualifiers, the default value, and the definition. The minimum
valid abbreviation of each keyword is underlined. If no characters of an optional qualifier are
underlined, the qualifer may be omitted. The letter a denotes a phrase (character string) that
qualifies an option. The letters i and r denote INTEGER and REAL values required with certain
options. The number ¢ is a generic notation for machine precision, and €, denotes the relative
precision of the objective function (the optional parameter Function Precision; see below).

Central Difference Interval r Default values are computed

If the algorithm switches to central differences because the forward-difference approximation is not
sufficiently accurate, the value of r is used as the difference interval for every component of z.
The use of finite-differences is discussed further below under the optional parameter Difference
Interval.

Cold Start Default = Cold Start
Warm Start

This option controls the specification of the initial working set in both the procedure for finding
a feasible point for the linear constraints and bounds, and in the first QP subproblem thereafter.
With a Cold Start, the first working set is chosen by NPSOL based on the values of the variables
and constraints at the initial point. Broadly speaking, the initial working set will include equality
constraints and bounds or inequality constraints that violate or “nearly” satisfy their bounds
(within Crash Tolerance; sce below). With a Warm Start, the user must set the ISTATE array
and define CLAMDA and R as discussed in Section 3. ISTATE values associated with bounds and
linear constraints determine the initial working set of the procedure to find a feasible point with
respect to the bounds and linear constraints. ISTATE values associated with nonlinear constraints
determine the initial working set of the first QP subproblem after such a feasible point has been
found. NPSOL will override the user's specification of ISTATE if necessary, so that a poor choice of
the working set will not cause a fatal error. A warm start will be advantageous if a good estimate of
the initial working set is available—for example, when NPSOL is called repeatedly to solve related
problems.

LI e T I e ) " ey
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s
\r.i.r'
‘::: Crash Tolerance r Default = .01
‘ This value is used in conjunction with the optional parameter Cold start (the default value).
ke When making a cold start, the QP algorithm in NPSOL must select an initial working set. When
o j r > 0, the initial working sct will include (if possible) bounds or general inequality constraints that
o lie within 7 of their bounds. In particular, a constraint of the form aJT:c > | will be included in the
L Y . - “ . . . .
N initial working set if |afz ~ U} <r(1+|l]). fr <0orr>1, the default value is used.
" A Derivative Level 1 Default = 3
""1“ This paramecter indicates which derivatives are provided by the user in subroutincs OBJFUN and
o CONFUN. The possible choices for ¢ are the following.
‘ :’.-{ i Meaning
uny
3 All objective and constraint gradients are provided by the user.
:; y 2 All of the Jacobian is provided, but some components of the objective gradient are
J”’ not specified by the user. -
| ﬂ:":: 1 All elements of the objective gradient are known, but some elements of the Jacobian
;l-. matrix are not specified by the user.
)
- 0 Some elements of both the objective gradient and the Jacobian matrix are not specified
e by the user.
;{-‘.‘f\j The value i = 3 should be used whenever possible, since NPSOL is more reliable and will usually
be more efficient when all derivatives are exact.

If i = O or 2, NPSOL will estimate the unspecified components of the objective gradient,

- using finite differences. The computation of finite-difference approximations usually increases the

- N total run-time, since a call to OBJFUN is required for each unspecified element. Furthermore, less
: accuracy can be attained in the solution (see Chapter 8 of Gill, Murray and Wright, 1981, for a

*sj:‘: discussion of limiting accuracy).

o~ If ¢ = 0 or 1, NPSOL will approximate unspecified elements of the Jacobian. One call to
J CONFUN is needed for each variable for which partial derivatives are not available. For example, if
. v the Jacobian has the form

o _ TR T

V?}: = 7 7 =

A . % 7 »

g's )

: TR T T

-‘.:-:. where “#” indicates an element provided by the user and “?” indicates an unspecified element,
2y 4':_ NPSOL will call CONFUN twice: once to estimate the missing element in column 2, and again to
::T-} estimate the two missing elements in column 3. (Since columns 1 and 4 are known, they require
;;:.; no calls to CONFUN.)

. At times, central differences are used rather than forward differences, in which case twice as
_ many calls to 0BJFUN and CONFUN are needed. (The switch to central differences is not under the
::::‘ user’s control.)

3 |

N Difference Interval r Default values are computed
Lo This option defines an interval used to estimate gradients by finite differences in the following
‘ A circumstances:

E;S 1. For verifying the objective and/or constraint gradients (see the description of Verify, below).

»
p :‘*'\
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2. For estimating unspccified elements of the objective gradient or the Jacobian natrix.

In gencral, a derivative with respect to the j-th variable is approximated using the interval §;, where
8; = r(1+4|£,;]), with & the first point feasible with respect to the bounds and linear constraints. If
the functions are well scaled, the resulting derivative approximation should be accurate to O(r). See
Gill, Murray ard Wright (1981) for a discnssion of the accuracy in finite-difference approximations.

If a difference interval is not specified by the user, a finite-difference interval will be computed
automatically for each variable by a procedure that requires up to six calls of CONFUN and OBJFUN
for cach component. This option is recommended if the functiou is badly scaled or the user wishes
to have NPSOL determine constant elements in the objective and constraint gradients (see the
descriptions of CONFUN and OBJFUN in Section 4).

Feasibility Tolerance r Default = (/e

The scalar r defines the maximum acceptable absolute violations in linear and nonlinear constraints
at a “feasible” point; i.e., a constraint is considered satisfied if its violation does not exceed r.
If r < 0, the default value is used. Using this keyword sets both optional parameters Linear
Feasibility Tolerance and Nonlinear Feasibility Tolerance to r. (Additional details are
given below under the descriptions of these parameters.)

Function Precision ' r Default = €29

This parameter defines €,, which is intended to be a measure of the accuracy with which the
problem functions F and c can be computed. The value of € should reflect the relative precision
of 1+ |F(z)|; i.e., €5 acts as a relative precision when |F| is large, and as an absolute precision when
|F| is small. For example, if F(z) is typically of order 1000 and the first six significant digits are
known to be correct, an appropriate value for ¢; would be 1.0E-6. In contrast, if F(z) is typically
of order 10~ * and the first six significant digits are known to be correct, an appropriate value for
€z would be 1.0E-10. The choice of €, can be quitc complicated for badly scaled problems; see
Chapter 8 of Gill, Murray and Wright (1981) for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However,
when the accuracy of the computed function values is known to be significantly worse than full
precision, the value of €, should be large enough so that NPSOL will not attempt to distinguish
between function values that differ by less than the error inherent in the calculation.

Hessian No Default = No
Hessian Yes

This option controls the contents of the upper-triangular matrix R (see Section 3). NPSOL works
exclusively with the transformed and re-ordered Hessian Hg (5), and hence extra computation
is required to form the Hessian itself. If Hessian = No, R contains the Cholesky factor of the
transformed and re-ordered Hessian. If Hessian = Yes, the Cholesky factor of the approximate
Hessian itself is formed and stored in R. The user should select Hessian = Yes if a warmn start
will be used for the next call to NPSOL.

Infinite Bound Size r Default = 10'°

If » > 0, r defines the “infinite” bound BIGBND in the definition of the problem constraints. Any
upper bound greater than or equal to BIGBND will be regarded as plus infinity (and similarly for a
lower bound less than or equal to —BIGBND). If r < 0, the default value is used.

Infinite Step Size r Default = max(BIGBND, 10'?)

If r > 0, r specifies the magnitude of the change in variables that is treated as a step to an
unbounded solution. If the change in z during an iteration would exceed the value of Infinite
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) )
(?j Step, the objective function is considered to be unbounded below in the feasible region. If » < 0,

the default value is used.
K.
¢ : Iteration Limit : Default = max(50,3(n + m,) + 10my) .
\ )
\;‘-: See Major Iteration Limit below. :
r‘
- Linear Feasibility Tolerance 2} Defaunlt = /e

Nonlinear Feasibility Tolerance r2 Default = /e

" The scalars v, and 7 define the maximum acceptable absolute violations in linear and nonlinear

e constraints at a “feasible” point; i.e., a linear constraint is considered satisfied if its violation does .

ks - not exceed r,, and similarly for a nonlincar constraint and r,. The default values are used if r, or -

Ty is non-positive.

"y On entry to NPSOL, an iterative procedure is executed in order to find a point that satisfies the !

! b linear constraint and bounds on the variables to within the tolerance r;. All subsequent iterates :

1 -;. will satisfy the linear constraints to within the same tolerance (unless r; is comparable to the

& finite-difference interval). .
" For nonlinear constraints, the feasibility tolerance r, defines the largest constraint violation .
A that is acceptable at an optimal point. Since nonlinear constraints are generally not satisfied

;' until the final iterate, the value of Nonlinear Feasibility Tolerance acts as a partial termi-

oD nation criterion for the iterative sequence generated by NPSOL (see the discussion of Optimality
w Tolerance).

i These tolerances should reflect the precision of the corresponding constraints. For example,

h if the variables and the coeflicients in the linear constraints are of order unity, and the latter are
28 correct to about 6 decimal digits, it would be appropriate to specify r, as 1078,

» -
:\-::‘ Linesearch Tolerance r Default = 0.9 :
,-‘":: The value r (0 < r < 1) controls the accuracy with which the step a taken during each iteration
approximates a minimum of the merit function along the search direction (the smaller the value
o] of r, the more accurate the linesearch). The default value 7 = 0.9 requests an inaccurate search,

” i‘j and is appropriate for most problems, particularly those with any nonlinear constraints.
__\:i If there are no nonlinear constraints, a more accurate search may be appropriate when it is ;
.(-::. desirable to reduce the number of major iterations—for example, if the objective function is cheap .
S to evaluate, or if a substantial number of gradients are unspecified.
:Z{. Major Iteration Limit 3 Default = max(50,3(n + m.) + 10m,)
:::\»: Iteration Limit
L Iters
_; Itns
e The value of i specifies the maximum number of major iterations allowed before termination.
:\:-f: Setting i = 0 and Major Print Level > 0 means that the workspace needed will be computed
=5 and printed, but no iterations will be performed.
.
_:!:: Major Print Level i Default = 10
Print Level
:r::i The value of i controls the amount of printout produced by the major iterations of NPSOL. (See
i} also Minor Print Level, below). The levels of printing available are indicated below.
A
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1 Output
0 No output.
1 The final solution only.
5 One line of output for each majo: iteration (no printout of the final solution).
>10 The final solution and one line of output for each iteration.
>20 At each major iteration, the objective function, the Euclidean norm of the
nonlinear constraint violations, the values of the nonlinear constraints (the
array c), the values of the linear constraints (the array A z), and the current
values of the variables (the array z).
> 30 At each major iteration, the diagonal elements of the matrix T associated with
the T'Q factorization (4) of the QP working set, and the diagonal elements of
R, the triangular factor of the transformed and re-ordered Hessian (5).
Minor Iteration Limit i Default = max(50,3(n + m, + my))

The value of i specifies the maximum number of iterations for the optimality phase of each QP
subproblem.

Minor Print Level 1 Default = 0

The value of i controls the amount of printout produced by the minor iterations of NPSOL, i.e., the
iterations of the quadratic programming algorithm. (See also Major Print Level, above.) The
following levels of printing are available.

1 Output
0 No output.
1 The final QP solution.
5 One line of output for each minor iteration (no printout of the final QP solu-
tion).
>10 The final QP solution and one brief line of output for each minor iteration.
>20 At each minor iteration, the current estimates of the QP multipliers, the current

estimate of the QP search direction, the QP constraint values, and the status
of each QP constraint.

> 30 At each minor iteration, the diagonal elements of the matrix T associated with
the TQ factorization (4) of the QP working set, and the diagonal elements of
the Cholesky factor R of the transformed Hessian (5).

Nonlinear Feasibility Tolerance r Default = /e

See Linear Feasibility Tolerance, above.

Optimality Tolerance r Default = €%8

The parameter r (eg < r < 1) specifies the accuracy to which the user wishes the final iterate to
approximate a solution of the problem. Broadly speaking, r indicates the number of correct figures
desired in the objective function at the solution. For example, if r is 107 % and NPSOL terminates
successfully, the final value of F should have approximately six correct figures.
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b+
:‘:-\‘ NPSOL will terminate successfully if the iterative sequence of z-values is judged to have con-
< verged and the final point satisfies the first-order Kuhn-Tucker conditions (sce Section 2). The
o sequence of iterates is considered to have converged at « if
o allpll < Vr(1 +|lz]}), (15e)
N where p is the search direction and a the step length from (2). Anp iterate is considered to satisfy
)] the first-order conditions for a minimum if
.0 T
127 gerll < V7 (1 + max(1 + | F(z)|, |lgexll) (15b)
o and
- [res;| < ftol for all j, (15¢)
- where ZTg,, is the projected gradient (see Section 2), gep is the gradient of F(z) with respect
AhN to the free variables, res; is the violation of the j-th active nonlinear constraint, and ftolis the
b Nonlinear Feasibility Tolerance.
‘o Start Objective Check At Variable k Default = 1
( Start Constraint Check At Variable k Default =1
A Stop 0Objective Check At Variable l Default = n
\1
R Stop Constraint Check At Variable I Default = n
'\( These keywords take effect only if Verify level > 0 (see below). They may be used to control
e the verification of gradient elements computed by subroutines OBJFUN and CONFUN. For example,
if the first 30 components of the objective gradient appeared to be correct in an earlier run, so
that only component 31 remains questionable, it is reasonable to specify Start Objective Check
- At Ceclumn 31. If the first 30 variables appear linearly in the objective, so that the corresponding
- gradient elements are constant, the above choice would also be appropriate.
* Verify Level 1 Default = 0
J
L)
.:-::j Verify No
ot Verify Level -1
B
- Verify Level 0
< Verify Objective Gradients
_{{ Verify Level 1
::"‘:: Verify Constraint Gradients
:;-_.':: Verify Level 2
o Verify
s Verify Yes
A Verify Gradients
e Verify Level 3
J These keywords refer to finite-difference checks on the gradient elements computed by the user-
- provided subroutines OBJFUN and CONFUN. (Unspecified gradient components are not checked.) It
_:-." is possible to specify Verify Levels 0-3 in several ways, as indicated above. For example, the
o nonlinear objective gradient (if any) will be verified if either Verify Objective or Verify Level
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5. OPTIONAL INPUT PARAMETERS 28

1 is specified. Similarly, the objective and the constraint gradients will be verified if Verify Yes
or Verify Level 3 or Verify is specified.

If 0 < i < 3, gradients will be verified at the first point that satisfies the lincar constraints and
bounds. If : = 0, only a “cheap” test will be performed, requiring one call to OBJFUN and one call
to CONFUN. If 1 < ¢ < 3, a more reliable (but more expensive) check will be made on individual
gradient components, within the ranges specified by the Start and Stop keywords described above.
A result of the form “0K” or “BAD?” is printed by NPSOL to indicate whether or not each component
appears to be correct.

If 10 < 1 < 13, the action is the same as for i — 10, except that it will take place at the
user-specified initial value of z.

We suggest that Verify Level 3 be specified whenever a new function routine is being de-
veloped.

5.3. Optional parameter checklist and default values

For easy reference, the following sample NPOPTN list shows all valid keywords and their default
values. The default options Function Precision, Linear Feasibility Tolerance, Nonlinear
Feasibility Tolerance and Optimality Tolerance depend upon ¢, the relative precision of the
machine being used. The values given here correspond to double precision arithmetic on IBM
360 and 370 systems and their successors (€ &~ 2.22 x 107!¢). Similar values would apply te any
machine having about 16 decimal digits of precision.

» List of optional parameters.

Central Difference Interval ? * Computed automatically
Cold Start *

Crash Tolerance .01 *

Derivative Level 3 *

Difference Interval ? * Computed automatically
Function Precision 8.2E-16 * %9

Hessian No *

Infinite Bound 1.0E+10 * Plus infinity
Infinite Step 1.0E+10 =

Linear Feasibility Tolerance 1.5E-8 * e

Linesearch Tolerance 0.9 *

Major Iteration Limit 50 * or3(n+m.)+10m,
Major Print Level 10 *

Minor Iteration Limit 50 * or3(n+m,+my)
Minor Print Level 0 *

Nonlinear Feasibility Tolerance 1.5E-8 *» e

Optimality Tolerance 5.4E-12 =+ %

Start Objective Check 1 *

Start Constraint Check 1 *

Stop Objective Check ? * n

Stop Constraint Check ? *x n

Verify Level 0 * Cheap test

R T "R R T N N N S B ) L)




FJ.‘
;f‘\'
X :
o 2 User's Guide for NPSOL 4.0
08
T,
ey 6. DESCRIPTION OF THE PRINTED QUTPUT

. The level of printed output from NPSOL is controlled by the user (see the descriptiens of Major
% Print Level and Minor Print Level in Section 5.2). If Minor Print Level > (), output is
™ obtained from the subroutines that solve the QP subproblem. For a detailed description of this
information the reader should refer to the user’s guide for LSSOL (Gill et al., 1986a).

When Major Print Level > 5, the following line of output is produced at every major
L iteration of NPSOL. In all cases, the values of the quantities printed are those in effect on completion
0 of the given iteration.
Wy

)

.:-5 Itn is the iteration count.

j'.‘ ItQP is the sum of the iterations required by the feasibility and optimality phases

3,'1:: of the QP subproblem. Generally, ItQP will be 1 in the later itcrations, since
theoretical analysis predicts that the correct active set will be identified near

‘i:i‘ the solution (see Section 2).

iy

*‘ ' Note that ItQP may be greater than the Minor Iteration Limit if some it-

:‘; erations are required for the feasibility phase.

A Step is the step o taken along the computed search direction. On reasonably well-
7 behaved problems, the unit step will be taken as the solution is approached.
\:{: Nfun 1s the cumulative number of evaluations of the objective function needed for
'}’ﬁ the linesearch. Evaluations needed for the estimation of the gradients by finite
S5% differences are not included. Nfun is printed as a guide to the amount of work

A< . .

k4 required for the linesearch.

o Merit is the value of the augmented Lagrangian merit function (11) at the current

: . iterate. This function will decrease at each iteration unless it was necessary

-{‘::- to increase the penalty parameters (see Section 2.2). As the solution is ap-
:;: proached, Merit will converge to the value of the objective function at the

b solution.

J If the QP subproblem does not have a feasible point (signified by “I” at the

B end of the current output line), the merit function is a large multiple of the |

,5_; constraint violations, weighted by the penalty parameters. During a sequence

Ko of major iterations with infeasible subproblems, the sequence of Merit values

3 .'; will decrease monotonically until either a feasible subproblem is obtained or

NPSOL terminates with INFORM = 3 (no feasible point could be found for the
nonlinear constraints).

A | S~~~

If no nonlinear constraints are present (i.e., NCNLN = 0), this entry contains
Objective, the value of the objective function F(z). The objective function

A will decrease monotonically to its optimal value when there are no nonlinear i
- constraints. ’
Bnd is the number of simple bound constraints in the predicted active set. i
I\ . . 3 13 . 3
e Lin is the number of general linear constraints in the predicted active set.
ro : : . . . .
o Nln is the number of nonlinear constraints in the predicted active set (not printed \
e if NCNLN is zero). é
4 Nz is the number of columns of Z (see Section 2.1). The value of Nz is the number
o of variables minus the number of constraints in the predicted active set; i.e., 1
o Nz = N — (Bnd + Lin + Nln). X
e
e
4 a
- Q
e
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t

Norm Gf is the Euclidean norm of ggp, the gradient of the objective function with respect
! to the frce variables, i.e., variables not currently held at a bound.

Norm Gz is ||Z%g..ll, the Euclidean norm of the projected gradient (see Section 2.1).
v Norm Gz will be approximately zero in the neighborhood of a solution.
;k: Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond Hz is a lower bound on the condition number of the projected Hessian approxima-

tion H, (H, = ZTH.4Z = RTR,; see (5) and (10) in Section 2). The larger

g this number, the more difficult the problem.

Cond T is a lower bound on the condition number of the matrix of predicted active
) constraints.
'j\' Norm C is the Euclidean norm of the residuals of constraints that are violated or in the

predicted active set (not printed if NCNLN is zero). Norm C will be approximately

33 zero in the neighborhood of a solution.

“

) Penalty is the Euclidean norm of the vector of penalty parameters used in the aug-

” mented Lagrangian merit function (not printed if NCNLN is zero).

<

ﬁ‘ Conv is a three-letter indication of the status of the three convergence tests (15a)-
(15¢) defined in the description of the optional parameter Optimality Toler-

- ance in Section 5. Each letter is “T” if the test is satisfied, and “F” otherwise.

+4 The three tests indicate whether: (a) the sequence of iterates has converged;

Y

(b) the projected gradient (Norm Gz) is sufficiently small; and (c) the norm of
the residuals of constraints in the predicted active set (Norm C) is small enough.

By
i If any of these indicators is “F” when NPSOL terminates with INFORM = 0, the
user should check the solution carefully.

o M is printed if the quasi-Newton update was modified to ensure that the Hessian
Chy approximation is positive-definite (see Section 2.3).

I is printed if the QP subproblem has no feasible point.
! c is printed if central differences were used to compute the unspecified objective

and constraint gradients. If the value of Step is zero, the switch to central
differences was made because no lower point could be found in the linesearch.

::i (In this case, the QP subproblem is re-solved with the central-difference gra-
~u dient and Jacobian.) If the value of Step is non-zero, central differences were
computed because Norm Gz and Norm C imply that X is close to a Kuhn-Tucker

= point.
y

When Major Print Level = 1 or Major Print Level > 10, the summary printout at the
”n end of execution of NPSOL includes a listing of the status of every variable and constraint. Note
A that default names are assigned to all variables and constraints.

The following describes the printout for each variable.
- Variable gives the name (VARBL) and index j (j = 1 to N) of the variable.
State gives the state of the variable in the predicted active set (FR if neither bound is
. in the active set, EQ if a fixed variable, LL if on its lower bound, UL if on its upper
o bound). If the variable is predicted to lie outside its upper or lower bound by
. more than the feasibility tolerance, State will be “++” or “~-" respectively.
- (The latter situation can occur only when there is no feasible point for the
o bounds and linear constraints.)

r-}*'. “:-.P:;
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i i
" Value is the value of the variable at the final iteration. o
i Lower bound is the lower bound specified for the variable. (“None” indicates that BL(j) < d
i —BIGBND.) =
o

e Upper bound is the upper bound specified for the variable. (“None” indicates that BU(j) > .
k. BIGBND.) :
Lagr multiplier is the value of the Lagrange multiplier for the associated bound constraint. This

will be zero if State is FR. If X is optimal, the multiplier should be non-negative m

';: if State is LL, and non-positive if State is UL. E
i:’ Residual is the difference between the variable “Value” and the nearer of its bounds

% . .

,:: BL(7) and BU(j). v
e d

The printout for general constraints is the same as for variables, except for the following:

.‘:’ Linear constr is the name (LNCON) and index i (i = 1 to NCLIN) of a linear constraint. :-‘3

J Nonlnr constr is the name (NLCON) and index i (i = 1 to NCNLN) of a nonlinear constraint. =

-
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X 7. INTERPRETATION OF THE RESULTS

! The input data for NPSOL should always be checked (even if NPSOL terminates with the value
) INFORM = 0!). Two common sources of error are uninitialized variables and incorrect gradicnts,

v which may cause underflow or overflow on some machines. The user should check that all compo-

:;1 nents of A, BL, BU and X arc defined on entry to NPSOL, and that OBJFUN and CONFUN compute all

relevant components of 0BJGRD, C and CJAC.
In the following, we list the different ways in which NPSOL is terminated and discuss what

E further action may be necessary.

" Termination Discussion and Recommended Action

g

A4 . . . .

=) Underflow A single underflow will always occur if machine constants are computed automat-

ically (as in the distributed version of NPSOL; see Section 8). Other floating-point

:': underflows may occur occasionally, but can usually be ignored.
-t Overflow If the printed output before the overflow error contains a warning about seri-
_ ous ill-conditioning in the working set when adding the j-th constraint, it may
f,: be possible to avoid the difficulty by increasing the magnitude of the optional
- parameter Linear Feasibility Tolerance or Nonlinear Feasibility Toler-
ance, and rerunning the program. If the message recurs even after this change, the
Y offending linearly dependent constraint (with index “;”) must be removed from
N the problem. If overflow occurs in one of the user-supplied routines (e.g., if the
nonlinear functions involve exponentials or singularities), it may help to specify
i‘ tighter bounds for some of the variables (i.e., reduce the gap between appropriate
¢; and u;). If overflow continues to occur for no apparent reason, contact the
authors at Stanford University.
ot INFORM =0 The iterates have converged to a point X that satisfies the first-order Kuhn-Tucker
t conditions to the accuracy requested by the optional parameter Optimality tol-
erance (see Section 5.2), i.e., the projected gradient and active constraint residuals
9 are negligible at X.
The user should check whether the following four conditions are satisfied: (i) the
7 final value of Norm Gz is sngmﬁcantly less than that at the starting point; (ii)
': during the final major iterations, the values of Step and ItQP are both one; (iii)
& the last few values of both Norm Gz and Norm C become small at a fast linear rate;
and (iv) Cond Hz is small. If all these conditions hold, X is almost certainly a local
acs minimum of NP. (See Section 9 for a specific example.)
o> INFORM =1 The point X satisfies the Kuhn-Tucker conditions to the accuracy requested, but
. the sequence of iterates has not yet converged. NPSOL was terminated because no
- further improvement could be made in the merit function.

This value of INFORM may occur in several circumstances. The most common
situation is that the user asks for a solution with accuracy that is not attainable
with the given precision of the problem (as specified by Function Precision; see

Section 5.2). This condition will also occur if, by chance, an iterate is an “exact”

. Kuhn-Tucker point, but the change in the variables was significant at the previous

i iteration. (This situation often happens when minimizing very simple functions,
such as quadratics.)

If the four conditions listed above for INFORM = 0 are satisfied, X is likely to be a
solution of NP regardless of the value of INFORM.

I Ny
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,2:‘ INFORM = 2 NPSOL has terminated withont finding a feasible point for the lincar constraints
<* and bounds, which means that no feasible point exists for the given value of Linear
iy Feasibility Tolerance. The user should check that there are no constraint .
0 redundancies. If the data for the constraints are accurate only to an absolute
‘:j. precision g, the user should ensure that the value of the optional parameter Linear ;
::-t Feacibility Tolerance is greater than o. For cxample, if all elements of A are of s
’,A oruer unity and are accurate to only three decimal places, Linear Feasibility
Tolerance should be at least 103, X
:‘ o INFORM =3 There has been a sequence of QP subproblems for which no feasible point could -
:.:' be found (indicated by “I” at the end of each terse line of output). This behavior
n:l will occur if there is no feasible point for the nonlinear constraints. (However, ‘.‘
:!: there is no general test that can determine whether a feasible point exists for a set .
of nonlinear constraints.) If the infeasible subproblems ocenr from the very first
‘W major iteration, it is highly likely that no feasible point exists. If infeasibilities K
P> occur when earlier subproblems have been feasible, small constraint inconsistencies N
_-:‘.’ may be present. The user should check the validity of constraints with negative
.: values of ISTATE. If the user is convinced that a feasible point does exist, NPSOL 4
-, should be restarted at a different starting point. =3
‘ INFORM = 4 If the algorithm appears to be making progress, Major Iteration Limit may be
“‘: too small. If so, increase its value and rerun NPSOL (possibly using the Warm L
::f Start option). If the algorithm seems to be “bogged down”, the user should check -
,:\\.: for incorrect gradients or ill-conditioning as described below under INFORM = 6.
y Note that ill-conditioning in the working set is sometimes resolved automatically '
by the algorithm, in which case performing additional iterations may be helpful. :
-::: However, ill-conditioning in the Hessian approximation tends to persist once it
\-,; has begun, so that allowing additional iterations without altering R is usnally in- \
b3 advisable. If the quasi-Newton update of the Hessian approximation was modified '
o during the latter iterations (i.e., an “M” occurs at the end of each terse line), it
_ .) may be worthwhile to try a warm start at the final point as suggested above. »
iy INFORM = 6 A sufficient decrease in the merit function could not be attained during the final ]
'_‘:' linesearch. This som.etimes occurs because an overly stringent accuracy has been
:.: requested, i.e., Optimality Tolerance is too small. In this case the user should :"
:w apply the four tests described under INFORM = 0 above to determinc whether bl
AT or not the final solution is acceptable (see Gill, Murray and Wright, 1981, for a
- discussion of the attainable accuracy).
:j'_; If many iterations have occurred in which essentially no progress has been made,
::,‘é or NPSOL has failed completely to move from the initial point, subroutines OBJFUN
‘_‘:\ or CONFUN may be incorrect. The user should refer to the comments below under K
o INFORM = 7 and check the gradients using the Verify parameter. Unfortunately,
-_ there may be small errors in the objective and constraint gradients that cannot
}' be detected by the verification process. Finite-difference approximations to first -
Z S"- derivatives are catastrophically affected by even small inaccuracies. An indication Ry
*;: of this situation is a dramatic alteration in the iterates if the finite-difference
oy interval is altered. One might also suspect this type of error if a switch is made to
X central differences even when Norm Gz and Noxrm C are large. !
e Another possibility is that the search direction has become inaccurate because of
:::' ill-conditioning in the Hessian approximation or the matrix of constraints in the
o) ‘
;;: v
e .
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INFORM =7

INFORM =9

P S ". .)' »r
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working set; either form of ill-conditioning tends to be reflected in large values of
ItQP (thc number of iterations required to solve each QP subproblem).

If the condition estimate of the projected Hessian (Cond Hz) is extremely large,
it may be worthwhile to rerun NPSOL from the final point with the Warm Start
option. In this situation, ISTATE should be left unaltered and R should be reset to
the identity matrix.

If the matrix of constraints in the working set is ill-conditioned (i.e., Cond T is
extremely large), it may be helpful to run NPSOL with a relaxed value of the
Feasibility Tolerance. (Constraint dependencies are often indicated by wide
variations in size in the diagonal elemecnts of the matrix T, whose diagonals will
be printed for Major Print Level > 30.)

Large errors were found in the derivatives of the objective function and/or nonlin-
ear constraints. This value of INFORM will occur if the verification process indicated
that at least one gradient or Jacobian component had no correct figures. The user
should refer to the printed output to determine which elements are suspected to
be in error.

As a first step, the user should check that the code for the objective and constraint
values is correct—for example, by computing the function at a point where the
correct value is known. However, care should be taken that the chosen point fully
tests the evaluation of the function. It is remarkable how often the values z = 0 or
z = 1 are used to test function evaluation procedures, and how often the special
properties of these numbers make the test meaningless.

Special care should be used in this test if computation of the objective function
involves subsidiary data communicated in COMMON storage. Although the first
evaluation of the function may be correct, subsequent calculations may be in error
because some of the subsidiary data has accidentally been overwritten.

Errors in programming the function muy be quite subtle in that the function
value is “almost” correct. For example, the function may not be accurate to full
precision because of the inaccurate calculation of a subsidiary quantity, or the
limited accuracy of data upon which the function depends. A common error on
machines where numerical calculations are usually performed in double precision
is to include even one single-precision constant in the calculation of the function;
since some compilers do not convert such constants to double precision, half the
correct figures may be lost by such a seemingly trivial error.

An input parameter is invalid. The user should refer to the printed output to
determine which parameter must be re-defined.
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" 8. IMPLEMENTATION INFORMATION u
i 8.1. Format of the distribution tape d
, The source code and example program for NPSOL are distributed on a magnetic tape containing '
3] 12 files. The tape characteristics are described in a docuinent accompanying the tape; normally o
“:{' they are 9 track, 1600 bpi, unlabeled, ASCII, 80-character records (card images), 4800-character N
blocks.
: The following is a list of the files and a summary of their contents. For reference purposes we
" give a name to cach file. However, the names will not be recorded on unlabeled tapes. The MACH, /'-..
:: LSCODE and NPCODE files are composed of several smaller source files described in Section 8.3. fn
oy
" o
:3' File  Name Type  Cardst Description -3
1. DPMACH FORTRAN 450 Double-precision source file 1: MCSUBS
., 2. DPLSCODE  FORTRAN 8250 Double-precision source files 2-5: BLAS,...,0PSUBS ﬁ
X 3. DPNPCODE  FORTRAN 6880 Double-precision source files 6-8: CHSUBS, ..., SRSUBS --»:;
A 4. DPLSMAIN  FORTRAN 260 Double-precision source file LSMAIN
y : 5. DPNPMAIN  FORTRAN 500 Double-precision source file NPMAIN ::
6. LSMAIN DATA 6  Options file for LSMAIN Y]
_.‘ 7. NPMAIN DATA 14 Options file for NPMAIN
n 8. SPMACH FORTRAN 450 Single-precision source file 1 H
_: 9. SPLSCODE  FORTRAN 8250 Single-precision source files 2-5 R
: - 10. SPNPCODE  FORTRAN 6880 Single-precision source files 6-8
" 11. SPLSMAIN  FORTRAN 260 Single-precision version of file 4 ' N
12. SPNPMAIN  FORTRAN 500 Single-precision version of file § i
i f 1 Approximate figure.
b5 N
5 One MACH, one LSCODE and one NPCODE file should be selected for any given installation. \E:
DPMACH, DPLSCODE and DPNPCODE are intended for machines that generally require double precision
’ computation. Examples include IBM Systems 360, 370, 3033, 3081, etc.; Amdahl 470, Facom, i
1 Fujitsu, Hitachi, and other systems analogous to IBM; DEC VAX systems; Data General MV /8000; E
o ICL 2900 series; recent PRIME systems; DEC Systems 10 and 20; Honeywell systems; and the
:;" Univac 1100 series. ﬁ
1' SPMACH, SPLSCODE and SPNPCODE are intended for machines for which single precision is suit- i
: ably accurate for numerical computation. Examples include the Burroughs 6700 and 7700 series:
" the CDC 6000 and 7000 series and their Cyber counterparts; and the Cray-1 and Cray-2. F
Y Y
‘ 8.2. Installation procedure :
X 1. Obtain the appropriate MACH, LSCODE and NPCODE files from the tape. u.
_ 2. If necessary, edit the subroutine MCHPAR according to Section 8.5.
:V 3. Decide whether or not to split the LSCODE and NPCODE tape files into source files BLAS through o
‘4 SRSUBS as suggested in Section 8.3. f‘:
: 4. Compile all the routines that were originally in the LSCODE and NPCODE files together with
! those from MACH. Run them in conjunction with the main program NPMAIN from either file 5 -
X or file 12. Check the output against that in Section 9. E
B
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8.3. Source files

NPSOL has been written in ANSI (1977) Fortran and tested on an IBM 3081K computer using the
IBM Fortran 77 compiler VS Fortran. Certain unavoidable machine dependencies are confined to
. the routine MCHPAR.

- The sourc: code is divided into 8 logical parts. For ease of handling, these are combined into
the MACH, LSCODE and NPCODE files on the distribution tape, but for subsequent maintcnance we
recommend that 8 separate files be kept. In the description below we suggest a name for each
file and summarize its purpose. We then list the names of the Fortran subroutines and functions
involved. The naming convention should minimize the risk of a clash with user-written routines.

[
-

|

File 1. MCSUBS Computation of machine-dependent constants.
MCHPAR  MCEPS MCENV1  MCENV2 MCSTOR

ke
\

ae? |

File 2. BLAS Basic Linear Algebra Subprograms (a subset).

DASUM DAXPY DCOPY DDOT DNRM2 DSWAP DSCAL IDAMAX
These routines are functionally similar to members of the BLAS package (Lawson et al.,
1979). If possible they should be replaced by authentic BLAS routines. (Versions may
exist that have been tuned to your particular machine.)

3
- DGEMV  DGER1
These routines are functionally similar to members of the Level 2 BLAS packages (Don-
X garra et al., 1985).
DCOND DDIV DDSCL DLOAD DNORM DSsQ DSWAP ICOPY
IDRANK ILOAD
% These are additional utility routines that could be tuned to your machine. DLOAD is used

the most frequently, to load a vector with a constant value.

DROT3 DROT3G DGEAPQ DGEQR DGEQRP  DGRFG
These linear algebra routines are used to compute and update various matrix factoriza-
tions in NPSOL.

L ~ 4

rd

File 3. CMSUBS  General utility routines.

CMALF CMALF1  CMCHK CMFEAS  CMPRT CMQMUL  CMRSOL  CMRSWP
CMRIMD CMTSOL

s

i

File 4. LSSUBS  Least-squares routines.

Qi LSADD LSADDS LSBNDS LSCHOL LSCORE LSCRSH LSDEL LSDFLT
) LSFEAS LSFILE LSGETP LSGSET LSKEY LSLOC LSMOVE LSMULS
LSOPTN  LSPRT LSSETX LSSOL

File 5. 0OPSUBS  Option string handling routines.

oy OPFILE OPLOOK OPNUM OPSCAN OPTOKN OPUPPR
]
File 6. CHSUBS  Derivative checking routines.
:::' CHCORE  CHFD CHKGRD CHKJAC
™
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File 7. NPSUBS  Nonlincar optimization routines.

NPCHKD NPCORE NPCRSH NPDFLT NPFEAS NPFILE NPGQ NPIQP
NPKEY NPLOC NPMRT NPOPTN  NPPRT NPSETX  NPSRCH  WPUPDT
NPSOL

File 8. SRSUBS Linesearch routines.
SRCHQ SRCHC

8.4. Common blocks

Certain Fortran COMMON blocks ace used in the NPSOL source code to communicate between sub-
routines. Their names are listed below.
CMDEBG LSDEBG NPDEBG LSPAR1 LSPAR2 NPPAR1 NPPAR2 SOL1CM
SOL3CM SOL4CM SOLS5CM SOL6CM SOLMCH SOL1NP SOL4NP SOLSNP
SOL6NP SOL7NP SOL1LS SOL3LS SOL1SV

8.5. Machine-dependent subroutines

The rontine MCHPAR in the MACH file may require modification to suit a particular machine or a
non-standard application.

At the beginning of NPSOL, MCHPAR is called to assign the machine-dependent constants and
the standard input and output unit numbers. These parameters are stored in the array WMACH(15)
in the labeled COMMON block SOLMCH, and are defined as follows.

WMACH(1) is NBASE, the base of floating-point arithmetic.
WMACH(2) is NDIGIT, the number of NBASE digits of precision.
WMACH(3) is EPS, the floating-point precision.

WMACH(4) is RTEPS, the square root of EPSMCH.

WMACH(5) is RMIN, the smallest positive floating-point number.
WMACH(6) is RTMIN, the square root of RMIN.

WMACH(7) is PMAX, the largest positive floating-point number.
WMACH(8) is RTMAX, the square root of RMAX.

WMACH(10) is NIN, the file number for the input stream:.
WMACH(11) 1s NOUT, the file number for the output stream,

Within routine MCHPAR. the machine constants are set in one of two ways, depending upon the
vilue of the Laneal vierable HDWIRE, which is set in-line.
[: HD% IRE 1~ FALSE. (the value set for the distributed copy of MCHPAR), the machine constants

arecageiteod antomatically for the machine being used. If HDWIRE is . TRUE., machine constants
apge peate ot TBAY 360370 Senes are assigned directly to the elements of WMACH.

Betooo weivctme the method of assigning the machine constants, you should note the following.
Ih. oogvitar of the machine constants will always generate a single arithmetic underflow, and
b appropnate remedial action may need to be taken if your machine traps underflow.

fr . < as<iotosweplement the inline assignment of machine constants for a machine other than
aeotron e TBAY 0N 370 Senes, MCHPAR must be modified as follows.

I ¢ tanee the an hine assignment of HDWIRE from .FALSE. to .TRUE..
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2. Set the values of WMACH appropriate for the machine and precision being used. The vulues of
NBASE, NDIGIT, EPSMCH, RMIN and RMAX for several machines are given in the following table,
for both single and double precision; RTEPS, RTMIN and RTMAX may be computed using Fortran
statements. The values NIN and NOUT depend on the machine installation.
For each precision, we give two values for EPSMCH, RMIN and RMAX. The first value is a For-
tran decimal approximation of the exact quantity; use of this value in MCHPAR should cause
no difficulty except in extreme circumstances. The second value is the exact inathematical
representation.

Table of machine-dependent parameters

163 (1-16714)

21070(1_2—98)

2127(1_2-82)

21023(1_2—61 )

IBM 360/370 CDC 6000/7000 DEC 10/20 Univac 1100 DEC Vax
Single Single Single Single Single
NBASE 16 2 2 2 2
NDIGIT 6 48 27 27 24
EPS 9.54E-7 7.11E-15 7.46E-9 1.50E-8 1.20E-7
16-5 2—47 2—27 2—26 2-—23
RMIN 1.0E-78 1.0E-293 1.0E-38 1.0E-38 1.0E-38
16-65 2-—975 2-129 2—129 2—128
RMAX 1.0E+75 1.0E+322 1.0E+38 1.0E+38 1.0E+38
1663(1_16-6) 21070(1_2-48) 2127(1_2—27) 2127(1_2—27) 2127(1_2—24)
IBM 360/370 CDC 6000/7000 DEC 10/20 Univac 1100 DEC Vax
Double Double Double Double Double
NBASE 186 2 2 2 2
NDIGIT 14 96 62 61 56
EPS 2.22D-16 2.53D-29 2.17D-19 8.68D-19 2.78D-17
16—13 2-95 2—62 2-60 2—55
RMIN 1.0D-78 1.0D-293 1.0D-38 1.0D-308 1.0D-38
16—-65 2—915 2-129 2—1025 2—128
RMAX 1.0D+76 1.0D+322 1.0D+38 1.0D+307 1.0D+38

2127(1_2—56)
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9. EXAMPLE PROBLEM

This section describes one version of the so-called “hexagon” problem (a different formulation is
given as Problemn 108 in Hock and Schittkowski, 1981). The problem is to determine the hexagon
of maximum area such that no two of its vertices arc more than one unit apart (the solution is not
a regular hexagon). The corresponding sample main program and output from NPSOL are given
in the Appendix.

All constraint types are included (bounds, lincar, nonlinear), and the Hessian of the Lagrangian
function is not positive definite at the solution. The problem has nine variables, non-infinite bounds
on seven of the variables, four general linear constraints, and fourteen nonlinear constraints.

The objective function is

F(z) = —z22¢ + 127 — T3%7 — T5Ts + T4T9 + T3Z3.
The bounds on the variables are
2,20, -1<23<1, 2520, 2620, z7>0, z3<0, and =z9 <O

Thus,
Lp =( 0, —o0, -1, —o0, 0, 0, 0, —o0, _OO)T

T
ug=(o00, o0, 1, o0, o0, o0, oo, 0, 0).

The general linear constraints are

23 -2; 20, z3—2,20, z3—242>0, and z4—z52>0.

Hence,
0 -1 1 0o 0 o 0 0 0 O o0
0 - 1 0 0 0 o0 o0
{, = y A= 0 ! 0 and u, = *®
0 0 0 1 -1 0O o0 0 0 O oo
0 0 o 0 1 -1 0 0 0 o0 0o

The nonlinear constraints are all of the form ¢;(z) < 1, fori = 1,...,14; hence, all components
of £ are —oo, and all components of uy are 1. The fourteen functions {c;(z)} are

cai(z) = 23 + 23, cz2(z) = (22 — 21) + (27 — z6)?,
ca(z) = (25 — 7,)* + 75, ce(z) = (21 — 24)* + (26 — 24)%,
cs(z) = (21 — 25)* + (26 — 29)*, co(z) = 23 + 2F,
cr(z) = (23 — 22)* + 23, cs(z) = (24 — 22)? + (25 — 27)?,
co(T) = (z2 — 25)% + (27 — 29)?, c10(2) = (z4 — 23)% + 23,
cn (z) = (z5 — z3)? + =23, c12(z) = z3 + 23,

c13(2) = (z4 — 25)? + (T9 — 23)?, c14(z) = 2} + 23.
An optimal solution (to five figures) is

7 = (.060947, 59765, 1.0, .59765, .060947, .34377, .5, —.5, —.34377 )7,

r. 1

o
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* . . . . . . . .
and F(z ) = ~1.34996. (The optimal objective function is unique, but is achieved for other values
. . . . . * .
of 2.} Five nonlinear constraints and one simple bound are active at £. The sample solution ontput
is given later in this section, following the sample main program and problem definition.

Two calls are made to NPSOL in order to demonstrate some of its features. For the first call,
the starting point is:

zo = (.1, .125, .666666, .142857, .111111, .2, .25, —.2, —.25 ).

All objective and constraint derivatives are specified in the user-provided subroutines OBJFN1 and
CONFN1, i.c., the default option Derivative Level = 3 is used.

On completion of the first call to NPSOL, the optimal variables are perturbed to produce
the initial point for a second run in which the problem functions are defined by the subroutines
OBJFN2 and CONFN2. To illustrate one of the finite-difference options in NPSOL, these routines are
programmed so that the first six components of the objective gradient and the constant clements of
the Jacobian matrix are not specified; hence, the option Derivative Level = 0 is chosen. During
computation of the finite-difference intervals, the constant Jacobian elements are identified and
set, and NPSOL automatically increases the derivative level to 2.

The second call to NPSOL illustrates the use of the Warm Start option to utilize the final
active set, nonlinear multipliers and approximate Hessian from the first run. Note that Hessian
= Yes was specified for the first run so that the array R would contain the Cholesky factor of the
approximate Hessian of the Lagrangian.

The two calls to NPSOL illustrate the alternative methods of assigning default parameters. For
the first run, the parameters are read from the options file NPMAIN DATA supplied on the distribution
tape. In the second run, the parameters are modified using calls to subroutine NPOPTN. (There is
no special significance in the order of these assignments; an options file may just as easily be used
to modify parameters set by NPOPTN.)

The results are typical of those obtained from NPSOL when solving well behaved (non-trivial)
nonlinear problems. The approximate Hessian and working set remain relatively well-conditioned.
Similarly. the penalty parameters remain small and approximately constant. The numerical results
illustrate much of the theoretically predicted behavior of a quasi-Newton SQP method. As z
approaches the solution, only one minor iteration is performed per major iteration, and the “Norm
Gz” and “Norm C” columns exhibit the fast linear convergence rate mentioned in Sections 6 and 7.
Note that the constraint violations converge earlier than the projected gradient. The final values of
the projected gradient norm and constraint norm reflect the limiting accuracy of the two quantities.
It is possible to achieve almost full precision in the constraint norm but only half precision in the
projected gradient norm. Note that the final accuracy in the nonlinear constraints is considerably
better than the feasibility tolerance, because the constraint violations are being refined during the
last few iterations while the algorithm is working to reduce the projected gradient norm. In this
problem, the constraint values and Lagrange multipliers at the solution are “well balanced”, i.e.,
all the multipliers are approxiinately the same order of magnitude. This behavior is typical of a
well-scaled problem.
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APPENDIX. SAMPLE PROGRAM AND OUTPUT
‘ TR I 2 R Y N g T T Y YT TR Y YR Y YR N T NSO FwYY
2 » FILE NPMAIN FORTRAN
" 3 %
e 4 % Sample program for NPSOL Version 4.0 February 1986.
Y B I LR R R R R T R T T T R N R R B Y TP PRI
6
7 IMPLICIT DOUBLE PRECISIOCN(A-H,0-Z)
8
& 9 % Set the declared array dimensions.
10 * NROWA = the declared row dimension of A.
11 % NROWJ = the declared row dimension of CJAC.
o 12 % NRCHR = the declared row dimension of R.
o 13 * MAXN = maximum no. of variables allowed for.
s 14 % MAXBND = maximum no. of variables + linear & nonlinear constrnts.
15 % LINORK = the length of the inteser work array.
16 % LHORK = the length of the double precision work array.
: 17
S 18 PARAMETER (NROWA = 5, NROWJ = 20, NROWR = 10,
19 $ MAXN = 9, LIKORK = 70, LWORK = 1000,
20 $ MAXBND = MAXN + NROWA + NROWJ)
l‘. 2'
2 22 INTEGER ISTATE(MAXBND )
é 23 INTEGER INORK(LIKORK)
24 DOUBLE PRECISION A(KNROWA MAXN)
25 DOUBLE PRECISION BL{MAXBND ), BU{MAXBND)
.‘: 2 DOUBLE PRECISION C(NROWJ), CJACINROWJ,MAXN), CLAMDA(MAXBND)
'_-:", 27 DOUBLE PRECISION OBJGRD{MAXN), RINROWR,MAXN), X{MAXN)
- 28 DOUSLE FRECISION WORK (LWORK )
2 EXTERNAL OBJFN1, OBJFN2, CONFN1, CONFN2
N 10
ﬁ 31 PARAMETER (ZERO = 0.0, ONE = 1.0)
32
33 % Set the actual problem dimensions.
34 % N = the nurxber of variables.
. 35 % NCLIN = tha number of general linear constraints (way be 0).
:- 36 % HCNLN = the number of nonlinear constraints (may be 0).
- 2 37
38 N =9
39 NCLIN = 4
g 40 NCHLN = 14
a1 KBHD = N + NCLIN + NCNLN
62
43 ® = ceemcmcccmeccccmeccmcmemcemeseeee—me——sceem———— -
o 4G # Acsign file numbers and the data arrays.
t".‘ 45 * NOUT = the unit numbar for printing.
. 45 * IOPTNS = the unit ramher for reading the options file.
47 % Boundds .ge. BIGBND will be treated as plus infinity.
48 % Bounds .le. - BIGBND will be treated as minus infinity.
5 49 A = the linear constraint matrix.
o 50 * BL = the lower bounds on x, a'x and cix).
51 % BU = the upper bounds on X, a'x and c(x).
52 % X = the initial estimate of the solution.
P L
el £4 NOUT =6
4 55 10FTNS = 5
s
.
R,
e
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"*'3-1
T
S 56 BIGBND = 1.0D+15
B 57
58 * Set the matrix A.
" ') \ 59
2)": 60 DO 40 J = 1, N
- 61 DO 30 I = 1, NCLIN
o 62 A(I,J) = ZERO
o> 63 30 CONTINUE
Sid 64 40 CONTINUE
’*{' 65 Al1,1) = -ONE
' 66 A(1,2) = ONE
[N 67 A(2,2) = -ONE
A 68 A(2,3) = ONE
"‘-’j\.'a 69 A(3,3) = ONE
N 70 A(3,4) = -OHE
2| 71 Al4,6) = ONE
o 72 Al4,5) = -ONE
e 73
7% # Set the bounds.
e 75
Ny 76 DO 50 J = 1, HBND
N 77 BL(J) = -BIGB\D
_;\ 78 BU(J) = BIGEND
) 79 50 CONTIMUE
A 80 BL(1) = ZERO
” 3 BL(3) = -ONE
ir €2 BL(5) = ZERO
83 BL(6) = ZERO
s; 84 BL(7) = ZERO
AL 85
SN &6 BU(3) = OME
el £7 BU(8) = ZERO
=0y X BU(9) = ZERO
¥ 89
90 * Set lower bounds of zero for all four linear constraints.
g 9
S 92 D0 60 J = N+, N#NCLIN
o 93 BL(J) = ZERO
o S4 60 CONTINUE
o 95
b{~."" 95 * Set upper bounds of ona for all 14 nonlincar constraints.
Dol 97
J $3 DO 70 J = N + NCLIN + 1, NBND
" 99 BU(J) = ONE
Y 160 70 CONTINUE
:‘,»_.:) 101
.'qﬁ 102 * Set the inftial estimate of X.
e 103
._;,'_.g 104 X1y = A
&S 105 Xt2) = .125
; 106 X(3) = .666666
VoL 107 X(4) = .142857
108 X(5) = .i111119
o 109 X(6) = .2
gak 110 X(7) = .25
h )'_- ‘
13 i
T ;
A
AP AP
.-':-'
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A ,h,"‘u
' ‘ﬂ“. -
‘.5
R 11 X(8) = -.2
u 112 X(9) = -.25 '
113
! o' 114
S 15 * ———
3.'-{ Py 116 # Read the options file.
A0 117 % cmeeeeeeeen
X 118
119 CALL NPFILE( IGOPTNS, INFORM )
s E 120 IF (INFORM .NE. 0) THEN
§.000 R 12 WRITE (NOUT, 3000) INFORM
Yo 122 STOP
Wy 123 END IF
2. 124
N 125 #  —meeeee ——
Ca, Y 125 # Solve the prcblem.
D 127 %  cecmmemee——- —
128
o B 12 CALL NPSOL ( N, NCLIN, NCNLN, NROWA, NROWJ, NROWR,
L5y ?‘-4 130 $ A, BL, BU,
e o 131 s CONFN1, OBJFNI1,
'4.-'_', 132 $ INFORM, ITER, ISTATE,
A 133 $ C, CJAC, CLAMDA, OBJF, OBJGRD, R, X,
ORI 134 $ IHORK, LIMORK, WORK, LWORK )
S 135
‘ : 136 IF (INFORM .6T. 0) GO TO 900
iy At 137
vy ) 138 #  ceemeeee
‘2‘-1 ',{ 139 % The following is for illustrative purposes only.
\'j (L 140 % A second run solves the same problem, but defines the objective
(i 141 % and constraints via the subroutines 0BJFH2 and CONFN2. Sowe
Ty, 162 * cbjective derivatives and the constant Jocobian elements are not
= 143 % supplied.
n 144 % We do o warm start using
0 145 # ISTATE (the working set)
tas % CLAMDA (the Lagrange multipliers)
ot 147 * R (the Hessian approximation)
) :.* 148 %* from the previcus run, but with a slightly perturbed startine
e o 149 # point. The previous option file must have specified
) 150 * Hessian Yes
; 151 * for R to be a useful zpproximation.
J [ 152 ¥ e e
P ! 153
AcSERS 154 DO 100 J = 1, N
% 155 X(J) = X{J) + 0.0
DI 156 100 CONTINUE
a2y e, 157
'_-"E e 158 # The previous parameters are retained and updated.
‘ 159
. 160 CALL NPOPTN( °* Derivative level 0')
st 161 CALL NFOPTH( '  Verify No')
2 - t52 CALL NPOPTH( °* Warm Start')
_ - 163 CALL NPOPTH( °* Major iterations 20°)
e 164
. . 165 CALL NFOPTN( °* Major print level 10°)
a1 -
g.:.
NI
S
')-:1 -t
Y
- L]
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-] 2" .
Fy
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LY S
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L)
L]
()
N 166
167 CALL NPSOL ¢ N, NCLIN, NCNLN, NROWA, NROWJ, NROWR,
N 168 $ A, BL» BU,
! 169 $ CONFN2, OBJFH2,
. 170 $ INFORM, ITER, ISTATE,
- 171 $ C» CJAC, CLAMDA, OBJF, OBJGRD, R, X,
Y 172 $ IKORK, LIWORK, WORK, LWORK )
173
174 1F (INFORM .GT. 0) 60 YO $00
175 5TOP
. 176
{ 177 % ~eeeccceee=
178 * Error exit.
179 % ~eeceeeeeee
15 150
5. 181 900 WRITE (NOUT, 3010} INFORM
’ 182 sToP
183
}‘ 184 3000 FCRMAT(/ ' NPFILE terminated with INFORM =*, I3)
L 13 3010 FORMAT(/ ' NFSOL terminated mith INFORM =', I3)
|} 186
,:: 187 = End of the example program for NPSOL.
[N, 1£3
) 189 END
i. I T L N G g T g P R T Y R T Y2 Y
191
192 SUBROUTINE OBJFNI( MODE, N, X, OBJF, OBJUGRD, NSTATE )
193 IMPLICIT DOUBLE PRECISION(A-MN,0-2)
i 196 DOUBLE PRECISION X{N), OBJGRD(N)
. 195
) 196 Wemmmmm—memm———
R - 197 # 0BJFNI computes the value and first derivatives of the nonlinear
i 158 % objective function.
199 Wrommmmmcccmaeones
200 OBJF = - X(2)%X(6) ¢ X(I)*X(7) - XU3)I%X(7) - X(5)*X(8)
2ot $ + X4 I%X(D) + X(3)%X(8)
3} 202
“,' 203 OBJGRD(1) = X(7)
; 204 OBJGRD(2) = - X(6)
'{ 205 OBJCND(3) = - X(7) + X(8)
] 206 OBJGRD(G4) = X($)
207 OBJGRD(5) = -~ X(8)
) 208 OBJGRD(6) = - X(2)
, 2c9 OBJGED(7) = - X(3) + X(1)
.j; 210 CBJGRAD(8) = - X(5) + X(3)
S 211 CBJGRD(9) = X(4)
§ 212
N 213 REYURN
vh 214
215 » End of OBJFNY.
216
j 217 END
< D18 HEF PP EIEPEIFFFII PRSI RIFERIIIFFIIIFIFIFIRIFIL R IR PR LR E IR0
< 219
.1 220 SUBROUTINE CONFN1{ MODE, NCNLN, N, NROWJ,
4
P
3
A3
N
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.. -
A
-'\-.‘h'

221 $ NEEDC, X, €, CJAC, NSTATE )

222

223 IMPLICIT DOUBLE PRECISION(A-H,0-2)

224 INTEGER NEEDC(#%)

225 DOUBLE PRECISION X(N), Ct#), CIJACI(NROWJ,*)

226

227 * ——

228 * CONFN1  computes the values and first derivatives of the nonlinear
229 % constraints.

230

231 * The zero elements of Jacobian matrix are set only once. This
232 * occcurs during the first call to CONFN! (NSTATE = 1),
233 =

234 PARAMETER (ZERO = 0.0, TNO = 2.0)

235

236 IF (NSTATE .EQ. 1) THEN

237

238 % First call to CONFNi. Set all Jacobian elements to zero.
239 % N.B. This will only work with “Derivative Level = 3°,
240

241 DO 120 J = 1, N

242 DO 110 I = 1, NCNLN

243 CJAC(I,J) = ZERO

269 110 CONTINUE

245 120 CONTINUE

246

247 END IF

248

249 IF (NEEDC(1) .GT. 0) THEN

250 cu1) = X1 )xx2 &+ X(6)%n2

251 CJAC(1,1) = THO*X(1)

252 CJAC(1,6} = THOX*X(6)

253 END IF

254

255 IF (NEEDC(2) .GT. 0) THEN

256 C(2) = (X(2) = XC1))nn2 + (X(7} = X(6))wn2
257 CJAC(2,1) = ~ THO*(X(2) - X(1))

253 CJAC(2,2) = TROR(X(2) - X(1))

259 CJAC(2,6) = - TWOR(X(T7) - X(6))

2690 CJAC(2,7) = THOX(X(7) - X(6))

261 END IF

262

263 IF (NEEDC(3) .GT. 0) THEN

264 c(3) = (X(3) = X(1))n%2 <+ X(6)#n2

265 CJAC(3,1) = ~ TRO*(X(3) - X(1))

2¢6 CJAC(3,3) = THOR(X(3) - X(1))

267 CJAC(3,6) = TWO*X(6)

268 END IF

<69

270 IF (NEEDC(4) .GT. 0) THEN

271 Ct4) = (X(1) = X(G))exn2 + (X(6) - X(8))nn2
272 CJAC(4,1) = THO*(X(1) - X(4))

273 CJAC(G,4) = - THOX(X(1) - X(4))

274 CJAC(G,6) = THO(X(6) - X(8))

275 CJAC(4,8) = - THOH®(X(6) ~ X(8))

Ly
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SN
303
» oy
276 END IF
At 277
hyts 273 IF (NEEDC(5) .GT. 0) THEN
" 279 c(s) 2 (X(1) - X(5))eN2  +  (X(6) = X(9))Inw2
“x. 260 CJAC(S5,1) =  TRO¥(X(1) - X(5))
5 281 CJAC(5,5) = - THO®(X(1) - X(5))
Ny 282 CJAC(5,6) =  THOM(X(6) - X(9))
RN 283 CJIACL5,9) = - THOX(X(6) - X(9))
. 284 END IF
o 285
"::' 22 IF (NSEDC(6) .GT. 8) THEN
o) 257 Cle) = X(2)%%2 ¥ X(7)wx2
Nl 298 CJACL6,2) =  THOWX(2)
o 289 CJACI6,7) =  THO*X(7)
\1 299 END IF
NG 291
292 IF (NEEDC(7) .GT. 0) THEN
- 293 N = (X(3) - X(2))#n2 ¢+ X(7)wu2
o 254 CJACI7,2) = ~ TWO®(X(3) - X(2))
W 295 CJACI7,3) = TRO®(X(3) - X(2))
-, 296 CJACI7,7) =  TUHO*X(7)
. e"ﬂ 297 END IF
:‘g 293
e 299 IF (NEERC(8) .6T. 0) THEN
» 300 cta) =T (X(4) - X(2))%%2  +  (R(8) - X(7)Iwx2
k, 301 CJAC(B,2) = =~ THO(X(4) - X(2))
“":5 202 CJAC(8,4) =  THOX(X(4) - X(2))
W 303 CJACIS8,7) = ~ THO®(X(8) - X(7))
W 104 CJAC(8,8) = THO®(X(8) -~ X(7))
T 305 END IF
o $ 306
) 397 IF (NEEDC(9) .GT. 8) THEN
308 c(9) = (X(2) - X(5})#x2 +  (X(7) = X(9))#n2
. 309 CJACE9,2) =  THO®(X(2) - X{(5))
P 310 CJACI9,5) = ~ THO®(X(2) - X(5))
o 311 CJACI9,7) = THOR(X(7) - X(9))
, :., 312 CJACL9,9) = ~ THORIX(7) - X(9))
et 313 END IF
AN 314
S 315 IF (NEEDC(10) .6T. 0) THEN
- 316 c(10) S (X(&4) = X(3)I#e2  +  X(8)ww2
J 317 CJAC(10,3) = ~ TWO®(X(4) - X(3))
i 318 CJAC(10,4) =  THO*(X(4) - X(3))
1s 319 CJAC(10,3) =  THO#*X(8)
S 320 END IF
S 321
i 322 IF (NEEDC(11) .6T. 0) THEN
' 32 c11) = (X(5) - X(3))%%2 + X(9)ww2
ke 324 CJACI11,3) = ~ THOR(X(5) - X(3))
¥ 325 CJAC(11,5) = TWOIX(5) - X(3))
o 326 CJAC(11,9) = TWO¥X(9)
S 327 END IF
e 128
P 329 IF (NEEDC(12) .6T. 0) THEN
TN 330 ct2) = X(4)xx¥2  + X(8)N2
.’J".',
n-‘:‘-“
AR
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u :31] CJAC(12,4) =  THO®X(4)
. 332 CJAC(12,8) =  THO®X(8)
,ﬁ : 333 END IF
1 . 334
3 335 IF (NEEDC(13) .6GT. 0) THEN
P 336 cu13) = (X(4) - X(5))#u2 + (X(9) - X(8))x2
o% b 337 CJAC(13,4) =  THO#(X(4) - X(5))
i 338 CJAC(13,5) = ~ THO*#(X(4) - X(5))
. 339 CJAC(13,8) = - THOK(X(9) - X(8))
Ve I 340 CJAC(13,9) = THOM(X(9) - X(8))
AT 351 END IF
s 352
"‘ . 343 IF (NEEDC(14) .GT. 0) THEN
hi) Y, 344 cl14) = XU5)%2 ¢ X(9)w#2
S 345 CJAC(14,5) =  TNO®X(5)
Ko ¥ 346 CJAC(14,9) = THOXX(9)
347 END IF
0 g;] 3‘38
SRy 349 RETURN
RN 350
% 351 End of CONFNI.
o) 352
0N 353 END
My - 355G RFPPFIIFFIREP 3333493333300 004000000000 0000300000000 0 0800803300 0000¢
g 355
" 356 SUBROUTINE OBJFN2( MODE, N, X, OBJF, OBJGRD, NSTATE )
AC A 357 IMPLICIT DOUSLE PRECISION(A-H,0-Z)
j Te 358 DOUBLE PRECISION  X(N), OBJGRD(N)
i L 359
\.7-1 360 ¥ew—ew
Ay 361 % 03JFNZ computes the value and some first derivatives of the
N 352 * nonlinear objective function.
a 3563 %
.~ 166
- 355 OBJF = ~ X(2)%X(6) + X(1)#X(7) = X(3)#X(7) - X(5)uX(8)
O 366 $ + X(Q)RX(9) + X(3)X(8)
367
L AT 368 OBJGRD(3) = - X(7) *+ X(8)
oy 369 OBJERDL7) = - X(3) ¢ X(1)
o 370 OBJGRD(8) = - X(5) + X(3)
J F 371
o 372 RETURN
&N S 373
o 374 * End of OBJFN2.
\\.i g 375
'SOCI 376 END
§'a } B77 RIFERI333333333 3305333303434 04 3380330000330 03003 2200300300000 8 00000000
Ky 378
379 SUBROUTINE CONFN2( MODE, NCNLN, N, NROWJ,
L.s 380 s NEEDC» X, C» CJAC, NSTATE )
ot 381
NSRS 382 IMPLICIT DOUBLE PRECISION(A-H,0-Z)
P 333 INTEGER NEEDC(#)
f - 384 DOUBLE PRECISION  X(N), C(%), CJAC(NROWJ,®)
2y Al 385
K
s
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L™
»-;1.‘;-5
L2
T 386 ¥--- -
387 = CONFNZ computes the values and the non-constant derivatives of
et 368 » the nonlinear constraints.
] 2 R e e T
{? 390 PARAMETER (THO = 2.0)
ey 391
: 362 IF (NEEDC(1) .GT. 0) THEN
A i 393 c) T X(1)#%2  + X(6)Nn2
He 394 CJAC(1,1) =  TWO®X(1)
' 395 CJIAC(1,6) =  THO*X(6)
L 396 END IF
oty 357
N 358 IF (NEEDC(2) .GT. 0) THEN
‘Q; 399 ci2) T (X(2) - XUT))N2  +  (X(7) = X(6))wun2
400 CIACI2,1) = - THOR(X(2) - X(1))
N 401 CJAC(2,2) =  TWO*(X(2) - X(1)) ‘
-~ 402 CJAC(2,6) = - THO¥(X(7) - X(6))
403 CJAC(2,7) =  THOR(X(7) - X(6))
oo 404 END IF
_“.J-f 4GH
e 406 IF (NEEDC(3} .GT. 0) THEN
e 407 c3) = (XU3) - X(1) )2+ X(6)wu2
2 408 CJAC(3,1) = - THO®(X(3) - X(1})
S 409 CJAC(3,3) =  TRO®(X(3) - X(1))
[ 410 CJAC(3,6) =  THO*X(6)
{» a1 END IF
o 412
e 13 IF (NEEDC(4) .6T. 0) THEN !
WR, 414 C(4) = (XU1) - X(4))HN2 +  (X(6) - X(8))x q
s;‘;.-. 415 CJAC(G,1) =  THO¥(X(1) - X(4))
\ a6 CJAC(G,4) = - THO®(X(1) - X(4))
305 417 CJAC(4,6) =  THOX(X(6) - X(8))
&) 418 CJAC(4,8) = - THORIX(6) - X(8))
419 END IF
o 420
K, azt IF (NEEDCI5) .GT. 0) THEN
4 ".3 422 c(s) = (X(1) - X(5))%u2 + (X(6) - X(9))x2
S 423 CJAC(5,1) =  THO*(X(1) - X(5))
- 424 CJAC(5,5) = - THO*(X(1) - X(5))
o 425 CJAC(5,6) =  THO®(X(6) - X(9))
. 426 CJAC(5,9) = - THO®(X(6) - X(9))
427 END IF
, 428
e 429 IF (NEEDC(6} .6T. 0) THEN
s 430 Ct6) = X(2)aR2 ¥ X(7)x2
b 431 CJAC(6,2) =  THO®X(2)
= 432 CJIAC(6,7) =  THO®X(7)
N 433 END XF
e 434
< 435 IF (NEEDC(7) .GT. 0) THEN
0 436 ct7) = (X(3) - X(2))%n2 4+ X(7)%%2
oy 437 CJAC(7,2) = - THOR(XI3) - X(2))
KN 438 CJAC(7,3) =  THOR(X(3) - X(2))
"y 439 CJACI7,7) =  TWOX(7)
v, 440 END IF
3
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2
L)

oA
S A

441
442
. 443
448

. 454
Py 455

5
&>

N 496

PR A S s s

IF (NEEDC(8)
C(8)
CJAC(8,2)
CJAC(8,4)
CJAC(8,7)
CJAC(8,8)

END IF

IF (NEEDC(9)
c?)
CJAC(9,2)}
CJAC(9,5)
CJACL9,7)
CJAC(9,9)

END IF

IF (NEEDC(10)
C(10}
CJAC(10,3)
CJAC(10,4)
CJAC(10,8)

END IF

IF (NEEDC(11)
ccin
CJAC(11,3)
CJAC(11,5)
CJAC(11,9)

END IF

IF (NEEDC(12)
ci12}
CJIAC(12,%)
CJAC(112,8)

END IF

IF (NEEDC(13)
ct13)
CIAC(13,4)
CJAC(13,5)
CJAC(13,8)
CJAC(13,9)

END IF

IF (NEEDC(14)
C(14)
CJAC(14,5)
CJAC(14,9)

END IF

RETURN

.GT. 0) THEN
(X{G) - X(2))nx2 +

- THO*(X(&4) - X(2))
THOH(X(4) - X(2))

= THO*(X(8) -~ X(7))
THO*(X(8) - X(7))

6T. 0) THEN
(X(2) - X(5))nn2 +
THO*(X(2) - X(5))

= THOX(X(2) - X(5))
TRO¥(X(7) = X(9))

- THOX(X(7) - X(9))

.GT. 0) THEN
(X(4) - X(3))wxn2 +
- TWOX(X(&4) - X(3))
THO*(X(4) - X(3))
TWO*X(8)

6T. 0) THEN
(X(5} = X(3))un2 *
= TRO*(X(5) - X(3))
TROX(X(5) - X(3))
TRO*X(9)

.GT. 0) THEN
= X(G)wx2  + X(8)#n2
= THO*X(4)
= THO#X(8)

.6T. 0) THEN
(X(4) - X(5))%x2 +
TROX{X(4) - X(5))

= THO*(X(4) - X(5))

= THOX(X(9) - X(8))
THO¥(X(9) - X(8))

.GT. 0) THEN
= X(5)#%2  +  X(9)un2
= THO*X(5)
= TUORX(9)

End of CONFN2.

END

YR AL

(X(8) - X(7))nn2

(X(7) - X(9))un2

X(8)¥n2

X932

(X(9) - X(8))wn2

i
i
i
i
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46 User’s Gusde for NPSOL 4.0 T
OPTIONS file
BEGIN Options for NPSOL 4.0 Sawmple problem.
Verify Level 3
Major fterations limit 50
Major print level 5
Start constraint check at colun 1
Stop constraint check at column 2
Start objective check at columy 7
Stop objective check at colum ¢
Hesslan Yes ® Ready for the next rum.
End
SOL/NPSOL -~- Version 4.0 Feb 1986 .
=zsx=zzz==z=zs ====x i1 11 1 C"
|:\
Parameters
.......... k'."
Linear constraints..... 4 Linear feasibility..... 1.49E-08 COLD start....ccoccneee _:
Variables...ceseveecees 9 Infinite boud size.... 1.00E*10 Crash tolerance........ 1.00E-02
Infinite step size..... 1.00E*10
Nonlinear constraints.. 14 Optimality tolerance... B5.36E-12 Function precision..... 8.16E-15
Honlincar Jacobian vars 9 Nonlinear feasibility.. 1.49E-08
Nonlinear objectiv vars 9 Liresearch tolerance... 9.00E-01
EPS (machine precision) 2.22E-16 Derivative level....... 3 Verify level..cccvveess 3
Major iterations liwit. 50 Major print level...... S
Minor iterations liwit. 81 Minor print level...... 0
Workspace provided is IN¢ 703, NC 1000).
To solve probles we need INI( 59), MW 968).
Verification of the constraint gradients. .
The Jacobian seems to be ok. -
The largest relative error was 9.98E-09 In constraint 2 Y
)
Column X¢J) DXtJ) Row Jacobian Value Difference Approxn Itrs
..:.
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t 1.00E-01 1.31E-07 1 2.00000048E-01 2.00000048E-01 oK
1.28€-07 2 -4.99999523E-02 ~4.99999523E-02 oK
1.49€E-07 3 -1.13333189E*00 =1.13333189E%00 OK
1.38E-07 ) ~8.57139826E-02 ~8.57139826E-02 oK
{.40E-07 5 -2.22219229E-02 -2.22219229€E-02 oK

Column XtJ) DXtJ) Row Jacobian Value D fference Approxn

2 1.25E-01 V.28E-07 4 4.99999523E-02 4.99999523E-02 oK
1.33E-07 6 2.50000000E-01 2.50000000E-01 oK
1.49E-07 7 -1.08333194E*00 ~1.08333194E+00 oK
1.40E-07 8 -3.57140303E-02 ~3.57140303E-02 OK
1.63E-07 9 2.77780294E-02 2.77780294E-02 oK

10 Jacobian elewments out of the 10 set in cols 1 through
The largest relative error was 2.13E-11  in rom 9 column 2

Verification of the objective gradients.

The objective gradients seem to be ok.

Directional derivative of the objective
Difference approximation

1.20539630E-01
1.20539630E-01

- ah wt s wn

Itns

P

2 seem to be ok.

J XtJ) DX(J) 6(J) Difference approm Itns
7 2.50E-01 2.26E-06 ~5.666659%7E-01 -5.66665947E-01 oK 3
8 -2.00E-01 2.17E-06 5.55554986E-01 5.55554986E-01 oK 3
9 -2.50E-0Y 2.26E-06 1.42857015E-01 1.428570)15E-01 oK 3
3 Objective gradients out of the 3 set in cols 7 through 9 sneem to be ok.
The largest relative error mas 2.21E-11 in elewent 7

Itn I1tQP Step Niun Herit Bnd Lin NIn Nz Norm 6f Norm 6z Cond H Cond Hz Cond T
0 5 0.0E*00 © 1 =3.136917E-01 3 ] 1 5 8.8E-01 3.7E-01 1.E*00 1.E*00 1.E*00
1 9 1.0E%00 2 ~-1.075027E+00 1 [} 3 5 2.2E%00 1.5E*00 1.E%02 7.E*00 2.E+00
4 4 1.0E*00 3 -1.268553E400 1 ] L) 4 1.7E400 3.3E-01 9.E*00 1.E*00 2.E*00
3 2 1.0E%00 & -1.331667E%00 1 ] 5 3 1.9E%00 2.5E-01 4.E40t 2.E*00 2.E*00
4 1 1.0E400 5 ~1.349354E%00 1 ] 5 3 1.8E*00 4.5E-02 3I.E*01 1.E*00 2.E*00
5 1 1.0E%00 6 ~-1.349874E*00 1 0 5 3 1.8E*00 6.7E-03 3.E*01 2.E+00 2.E+00
6 1 1.0E+00 7 ~1.349913E£400 1 ] 5 3 1.8E00 S5.3E-03 3.E*01 2.E*00 2.E+00
7 t 1.0E*00 8 -1.369963E*00 1 ] 1) 3 1.8E00 1.2E-03 t1.E*02 2.EY0D 2.E*00
8 1 1.0E%00 9 -1.349963E%*00 1 0 5 3 1.BE*00 1.6E-04 1.E*02 3.E*00 2.E*00
9 ¥ 1.0E%00 10 -1.349963E400 1 0 5 3 1.8E*00 5.4E-06 3.E01 2.E*00 2.E+00
10 1 1.0E*00 11 -1.349963E+00 1 ] S 3 1.8E%00 2.0E-07 4.E*0) 2.E*00 2.E*00
1" 1 1.0E*00 12 -1.349963E+00 1 ] s 3 1.8E%00 1.1E-08 1.E+02 2.E*00 2.E*00

Exit HP phase. INFORM = 0 MAJITS = 11 NFUN = 12 NGRAD = 12

Exit NPSOL - Optimal solution found.

Norm C
8.8E-01
8.6E-01
1.3E-01
1.1E-01
1.6E-02
9.1E-06
5.7E-05
3.1E-00
9.0E-07
1.2E-08
6.4E~-11
4.7E-14

Penalty
0.0E%00
1.3E%00
1.3E400
1.3E%00
1.3E%00
1.3E400
1.3E%00
6.8E*00
6.8E%00
6.8E+00
6.8E*00
6.8E+00
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k X Final nonlinear objective value =  ~1,.3499%3 l
'v Ly, l
_('S-%. Calls to NPOPTN
%1 W
,f(,.{
u t Derivative level 0 i
[
W-“,) Verify No
) Harm Start
N Major iterations 20
;’ . Hajor print level 10
“":n..
“ -
weh
) 3':.'
L SOL/NPSOL --- Version 4.0 Feb 1986
1) (23t i st ittt ittt 2 E ¢ ¢ 1 1 4
.
Parameters
{;3 """"""
N Linear comatraints..... 4 “rear feasibility..... 1.49E-08 NARM start.......o00vee
Lt Variables......ccivvnne 9 Infinite bound size.... 1.00E*10 Crash tolerance........ 1.00E-02
Pt Infinite step size..... 1.00E%10
KOs
Nonlinear constraints.. 16 Crtimality tolerance... 5.36E-12 Function precision..... 8.16E-1%
¥ ' Honlincar Jacobian vars 9 Nonitinear feasibility.. 1.49E-08
" Honlinear objectiv vars 9 Linesearch tolerance... 9.00E-01
.n“- EPS (machine precision) 2.22E-16 Derivative level....... 0 Verify level........... -1
A
\“:‘.' Major iterations limit. 20 Major print level...... 10
\}\: Hinor lterations limit. 8t Minor print level...... 0
4" .\
Workspace provided is INC 70), MW( 1000).
To solve problem we need IN( 59), M( 968).
N
‘ﬂhn
'\‘:).*-_ The user sets 44 out of 126 Jacoblan elements.
At Each iteration, 82 Jacobian elements nill be estimated mmerically.
sb:.‘
s The user sets 3  out of 9 objective gradient elewents.
J Each iteration, 6 gradient elements will be estimated nuwerically.
-‘A_::,
.{:",ﬁ Computation of the finite-difference intervals
“:: - -—-
e
AN J X(J)  Forward DX(J) Central DX(J) Error est.
‘4' . 1 7.09E-02 1.935067€-06 1.935067€E-05 1.979764E-08
AR 2 6.08E-01 2.904821E-06 2.904821E-05 1.318833E-08
.\'-1‘\ 3 1.00E%00 3.613750€E-07 3.613750€E-06 0.000000E+00
'}-4_' 4 6.08E-01 2.904821E-06 2.904821E-05 1.318833E-08
> 5 7.09E-02 1.935067E-06 1.935067E-05 1.979766E-08
(" 6 3.54E-0) 2.446096E~-06 2.446096E-05 1.566159€E-08
.-:"\ 7 5.107-"¢ 2.728381€E-07 2.728381E~06 0.000000E+00
JLd
P N
|
h '_'\J.J
~ q”'f\
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o .n'}
o
<t q 8 ~4.90E-01 2.692244E-07 2.692244E-06 0.000000E*00
. 9 -3.34E-0% 2.409958E~06 2.409958E-05 1.589644E~-08
:$ 82 constant constraint gradient elements assismed.
S RN
-'.j . 0 comstant objective gradient elements assigned.
3
1 All missing Jacobian elements are constants. Derivative level increased to 2
- K
RIS Itn ItQP Step Nfun Merit Bnd Lin Nln Mz Horm Gf Norm 62z Cond H Cond Hz Cond T Norm € Penalty Conv
'\," 0 1t 0.0E+00 1 -1.349188E+00 1 0 5 3 1.8E400 1.5E-02 3.E*01 G.E*00 1.E*Q00 2.8E-02 2.2E+00 F FF
\.{ 1 t 1.0E400 3 -1.349963E400 1 0 5 3 1.8E*00 1.3E-03 {.E¥02 7.E*00 1.E*00 3.0E-04 3.0E*02 F FFM
WM 2 1 1.0E*00 G -1.349963E%00 1 0 5 3 $.8EY00 3.5E-04 6.EY01 6.E*00 2.E*00 7.BE-07 2.1:E+0) F FF
- 3 1 1.0E*Q0 5 -1.3499%3E¢00 1 0 5 3 1.8E%00 2.0E-04 B.E*01 3.E*00 2.E400 2.3E-08 7.7E+00 F FF
5’, A 4 t 1.0E%00 6 ~1.349963E¢00 1 0 5 3 1.8E400 7.4E-06 9.E*0V 3I.EY00 2.E+00 3.9E-08 7.7E400 F FF
5 1 1,0£400 7 -1.349963E+00 ) [} 5 3 1.8E%00 5.9E~07 2.E*%02 3.E400 2.E%00 4.0E-11 7.7E+00 F TT
- 6 1 1.0E*00 8 ~1.34993E+00 ) 0 5 3 1.8EY00 2.6E-09 6.E4O01 2.E*00 1.EY00 2.0E-13 7.7E400 T TY
, i
.':, :j-a Exit NP phase. INFORM = 0 MAJITS = 6 NFUN = 8 NGRAD = 7
.:,,: -
:‘:~ . Variable State Value Lower bound Upper bound Lagr multiplier Residual
.‘ ..Q
A "h' VARBL 1 FR 0.6094665E-01 0.0000000E+00 None 0.0000000E+00 0.6095E-01
‘ VARBL 2 FR 0.5976493 None None 0.0000000E+00 0.1000E*16
8] VARBL 3 uL 1.000000 ~1.000000 1.000000 ~0.6875429 0.0000E+00
T VARBL & FR 0.5976493 None None 0.0000000E*00 0.1000E+16
'_* ":. VARBL § FR 0.6094665E-01 0.0000000E*00 None 0.0000000E400 0.6095E-014
}." - VARBL 6 FR 0.3437715 0.000000CE*00 None 0.0000000E+00 0.3438
‘.' ' VARBL 7 FR 0.5000000 0.0000000E+00 None 0.0000000E+00 0.5000
F_-: VARGL 8 FR -0.5000000 None 0.0000000E*00 0.0000000E¢00 0.5000
IO VARBL 9 FR -0.3437715 None 0.0000000E*00  0.0000000E 00 0.3438
» Lincar constr State Value Lower bound Upper boud Lagr multiplier Residual
A "-' LHCON ¢ FR 0.5367026 0.0000000E+00 None 0.0000000E+00 0.5367
39 '_,\: thcon 2 FR 0.4023507 0.0000000E+00 None 0.0000000E*00 0.4024
X thcoN 3 FR 0.4023507 0.0000000E*00 Nore 0.0000000E+00 0.4024
3
-!.: LHCON ¢4 FR 0.5367027 0.0000000E+00 None 0.0000000E+00 0.5367
‘
~ g Honlnr constr State Value Lower bound Upper bound Lagr wmultiplier Residual
n P
.ﬂi MLCON % FR 0.1218933 Hone 1.000000 0.0000000E*00 0.8781%
x + NLCON 2 FR 0.312457 None 1.000000 0.0000000E+00 0.6875
;" ~) HLCON 3 uL 1.000000 None 1.000000 ~0.8318406E-01 ~0.1652€-12
J ¥} HLCON & UL 1.000000 None §{.000000 ~-0.3202625 -0.1104€-12
" - MICON 5 FR 0.4727152 None 1.000000 0.0000000E+00 0.5273
/! HLCOH 6 FR 0.6071847 None 1.000000 0.0000000E+00 0.3928
"y By HLCON 7 FR 0.4118861 None 1.000000 0.0000000E+00 0.5881
3 N NLCOH 8 uL 1.000000 None $.000000 -0.1992983 0.0000E*00
L“.: HLCON 9 UL 1.000000 None 1.000000 -0.3202625 -0.8382E-14
__-‘ NLCCHM 10 FR 0.4118861 Nore 1.000000 0.0000000E+00 0.5881
.“4.‘ HLeen 1 UL 1.000000 None 1.000000 ~0.8318406E-01 ~0.2665E-13
1S RN HLCOM 12 FR 0.6071847 None 1.000000 0.0000000E*00 0.3928
L~ :_‘. HLCON 13 FR 0.3124571 None 1.000000 0.0000000E+00 0.6875
',: % HLCOM 16 FR 0.1218933 None 1.000000 0.7""1000E*00 0.8781
‘&
- « Exit NPSOL - Optimal solution found.
P
) :: RS Final nonlinear objective value = =1.349963
K-
-, -
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INDEX

Ay (general linear constraint matrix), 1, 5, 21.
An (Jacobian of nonlinear constraints), 2, 5 (also
sec Jacobian matrix).
A, 7 (definition).
Accuracy
desired in optimal solution, 21-22, 27 (also see
Optimality Tolerance).
of finite-ditference gradients, 19.
of linescarch, 20.
of noulinear constraints at solution, 22, 27
{also sce Nonlinear Feasibility Tolerance).
of projected gradient at solution, 22, 27.
Accurate linesearch, when appropriate, 20.
Active constraints
definition, 2.
predicted, 3, 24.
residuals at solution, 8, 20, 22.
Active simple bound, 2 (also see Fixed variable).
Algorithm of NPSOL, description, 2-6.
a (step length in major iteration), 2, 4, 6, 22, 24.
choice of, 4, 6.
printed value, 24.
Amdahl 470, 30.
ANSI (1977) Fortran, 1, 30.
Approximate
gradients (see Finite-difference approxima-
tions).
Hessian of Lagrangian function, 3, 4, 8, 19, 21.
ASCII, 30.
Assignment of constant elecmeuts in Jacobian, 10.
Attainable accuracy, 18.
Augmented Lagrangian merit function, 4, 6, 20.
printed value, 24.
Automatic computation of finite-difference inter-
vals, 18-19.

BAD?, 23.

Badly scaled problems, 19.

Begin (in options file}, 15-16.

BFGS quusi-Newton update, 4, 6 (also see Ap-
proximate Hessian of Lagrangian function).

BIGBND. 8. 19 -20, 26.

BL. 7 8 (definition), 9, 26.

BLAS. 31.

Level 2, 31.

Bnd, 3, 24.

Bounds and lincar constraints, separate treat-
ment of, 3, 4, 8,9, 17.

BU. 8 (definition), 9, 268.

Burroughs 6700 and 7700, 30.

¢(z) (nonlinear constraints), 1, 3, 6.
printout of, 21.

C (predicted active set), 2, 3.

Crr, 2,3, 5.

¢ {array of nonlinear constraints), 10 (definition),
13.

¢ (printed indication of switch to central differ-
ences), 25. .

CDC 6000 and 7000,-30.

Central Difference Interval, 17 (definition).

Central differences, switch to, 25.

Cheap gradient test, 23.
Checklist of optional parameters, 23.
Cholesky factor, 3, 5, 6, 10.
CJAC, 10 (definition), 14.
CLAMDA, 10 (definition), 17.
Cold Start, 9, 10, 17 (definition).
Comment (in optional parameter specification),
15.
Common blocks, list of, 32.
Cond H, 25.
Cond Bz, 25.
Cond T, 25.
Conditions for optimality, 2, 8, 21-22, 25, 27.
CONFUN (uscr-provided subroutine)
calls needed for unspecified Jacobian elements,
18.
definition as parameter of NPSOL, 8.
specification, 13-14.
Constant Jacobian elements
assignment of 10, 14.
automatic computation of, 14, 35.
Constrained linear least-squares, 1.
Constrained stationary point for QP, 5.
Constraints
dependencices, resolution of, 27, 28-29.
nonlinear, specification by user (sce CONFUN).
status indicator (see ISTATE).
violation, maximum acceptable, 19, 20 (also
sec Linear Feasibility Tolerance and Nonlin-
ear Feasibility Tolerance).
Conv (printout of convergence test status), 25.
Convergence test, 21-22 (also see Optimality
conditions).
Cost
of automatic computation of finite-difference
intervals, 19.
of unspecified objective gradient elements, 18.
of unspecified Jacobian clements, 18.
Crash Tolerance, 17, 18 (also see Cold Start).
Cray-1 and Cray-2, 30.
Cyber, 30.

d (search direction in QP method), 4-5.
Data General MV /8000, 30.
DEC Systems 10 and 20, 30.
DEC VAX, 30.
Default values of optional parameters, checklist
of, 23.
Defaults (optional parameter), 16-17.
Dcpendencies, constraint, resolution, 27, 28-29.
Derivative
checking (see Verify).
finite-difference (see Finite-difference approxi-
mations).
specification (see Derivative Level).
Derivative Level, 3, 10, 12, 13, 14, 18, 35.
Diagonals
of R, printout, 21.
of T, printout, 21.
Difference Interval, 4, 14, 18.
use in approximating unspecified gradients, 19.
use in verification of gradients, 18.
Discontinuities, isolated, 1.
Distribution tape, format of, 30.
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Double precision
table of machine constants, 33.
version of code, 30.

DOUBLE, 7.

Effects of ill-conditioning, 27, 28-29.

End (in options file), 15--16.

EPS, 32.

¢« (machine precision), 17, 19, 32, 2

€z {function precision), 17, 19, 21, 27

EQ (printed counstraint status), 25.

Equality constraint, 1, 8.

Errors in gradients, 29.

Estimated Lagrange multiplier (see Lagrange
multiplier).

Example problem for NPSOL 34-35.

External file, use for option specification, 15-16.

F(z) (objective function), 1.

Facom, 30.

Failure in linesearch, 28.

Teasibility phase in QP method, 4, 5, 20.
selection of initial working set, 9.

Feasibility Tolerance, 19 (definition).

Finite-difference
approximations to gradients, 1, 3, 12.
checking of gradients (sce Verity).
intervals, automatic computation, 14, 19.
tradeoffs in computing, 18.

First-order Kuhn-Tucker conditions, 2, 8, 22, 27.

Fixed variable, 2, 4, 8.

Forinal parameters of NPSOL, 7.

Format of distribution tape, 30.

Fortran 77, 1, 31.

Fortran subroutines, naming convention, 31-32.

FR (subscript), 3 {(definition), 4 (also see Free

variable).

FR (printed constraints status), 25.

Free variable, 2, 3, 4.

Fujitsu, 30.

Function precision (see €g).

Function Precision, 17, 19 (definition), 27.

FX (subscript), 3 (dcfinition), 4

g(z) (objective gradient), 2
grR, 2.
Gabor, Zsa Zsa, 19.
Global convergence, 8.
Gradient
approximations (see Finite-difference approxi-
mations).
constraint (see Jacobian matrix).
of Lagrangian function, 6.
projected (sce Projected gradient).
specification by user (sce CONFUN and OBJFUN).

H (approximate Hessian of Lagrangian function),
3, 6, 19, 25,

Hg, 4, 6, 19, 25,

H, 19.

Hgz, 25.

HDWIRE, 32.

Hessian approximation (see Approximate Hessian
of Lagrangian function).

..* <‘_ _J‘ "‘\“‘."";.“

el e

Hessian, 19 (dcfinition).

Hessian, transformed and rcordered (sce Hg).
Hexagon example, 34.

Hitachi, 30

Honeywell, 30.

I (printout indicating infeasible QP subproblemn),
24, 25.
IBM
360/370 and 3033/3081, 30.
VS Fortran, 31.
ICL 2900 series, 30.
Identity matrix, in resetting Hessian, 29.
1l conditioning, effects of, 27, 28-29.
Implementation information, 30-33.
Inaccuracies, effect of, 28.
Inaccurate linesearch, 20.
Inconsistent linear constraints, treatment, 28.
Incorrect gradients, 8, 28 (also sce Verity).
Incquality constraints (nonlincar), treatment in
merit function, 6.
Infeasible problem
in QP subproblem, 5, 9, 24, 25, 28.
for bounds and linear constraints, 4, 8, 28.
for nonlinear constraints, 8, 28.
Infeasibilities, 4, 5, 24, 25.
Infinite Bound Size (BIGBND), 19 (definition).
Infinite lower or upper bound, 1, 8.
Infinite Step Size, 20 (definition).
INFORM, 8 (definition).
Initial working set in QP subproblem,
with Cold Start, 9, 17-18.
with Warm Start, 9, 17.
Input parameter, invalid, 8, 20
Installation procedure, 30.
Interpretation of results, 27-20.
Invalid input parameter, 8, 29.
IOPTNS (options file number), 15-186.
Isolated discontinuities, 1.
ISTATE, O (definition), 17.
printout, 25, 26.
ITER, 8 (definition).
Iteration Limit, 20 (definition).
Iters, 20.
Itn (printed value), 24.
Itns, 20.
ItQP (printed value), 24.
Iv, 11 (definition).

Jacobian matrix (nonlinear constraints), 2, 3, 8,
10, 14.
assignment of constant elements, 10, 14.
specification by user (sce CONFUN).
unspecified elements, 18.

Kuhn-Tucker conditions, first-order, 2, 8, 22, 27.
Keyword in option specification, 15.

¢ (lower bound vector), 1, 3, 7-8 (also see BL).
Lack of progress in major iteration, 28.
Lagr multiplier (printed value), 26.
Lagrange multiplier, 2, 3, 6, 10, 26,

of QP subproblem, 5, 21.

optimal, 5.
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A, 2, 6 (also sce Lagrange multiplier).
LENIW, 11 {dcfinition).
LENW, 11 (dcfinition).
Level 2 BLAS, 31.
Limiting accuracy, 18.
Lin, 3, 24.
Linear constr, %6.
Linear Feasibility Tolerance, 4, 9, 20 (defini-
tion).
adjustiment to avoid overflow, 27.
Linear least-squares code (see LSSOL).
Lines of code in NPSOL, 1, 30.
Linescarch, 4, 6, 20 (also see Step length).
effect of accuracy, 20.
routines for, 32.
Linesearch Tolerance, 20 (definition).
LL (printed constraint status), 25.
LNCON, 26.
Local mininum (sce Optimality conditions).
Lower bound (in printout), 26.
LSSOL, 1, 3, 4.

m (number of constraints in predicted active
set), 3.
m,, (number of general linear constraints), 1.
mp (number of nonlinear constraints), 1.
M (printed indicator of modified Hessian update),
6, 25, 28.
Machine constants
computation of, 32,
tables of, 33.
Machine precision (see ¢).
Major iteration, 2.
Major Iteration Limit, 8, 20 (definition), 28.
Major Print Level, 8, 11, 20 (definition), 24, 25.
Maximum acceptable constraint violations (see
Linear Feasibility Tolerance and Nonlin-
ear Feasibility Tolerance).
MCHPAR, 32 (also see Machine constants).
Merit function, 4, 6, 20, 24.
Merit (priuted value), 24.
Method
of NPSOL, description, 2-6.
QP, 4-5.
Minimum abbreviation (of optional parameter),
15.
Minimum sum of infeasibilities in QP, 5 (also see
Feasibility phase).
Minor iteration (within QP method), 2, 3, 4-5.
Minor Iteration Limit, 21 (definition).
Minor Print Level, 21 {definition), 24.
MINOS, 1.
MODE
in CONFUN, 13.
in 0BJFUN, 12.
Modification of quasi-Newton update, 6, 25, 28.
BN, 6.
Mutltiplier (see Lagrange multiplier).

n (number of variables), 1, 3 (also see N).

ngp (number of free variables), 2, 3.

nex (number of fixed variables), 2 (also see Bnd).
nz, 3, 24.

N, 7 (definition), 12, 18.

\ R AN R UA
ha0o,) .‘.A N v. W * Y lpl.

Naming convention, Fortran subroutines, 31-32.
Natural order of variables, 10.
NBASE, 32.
NCLIN, 7 (definition) (also sce m.).
NCNLN, 7 (definition), 13.
NDIGIT, 32.
NEEDC, 13.
Nfun (printed value), 24.
NIN, 32.
NLCON, 26.
Nln (printed value), 3, 24.
No feasible point
for bounds and linear constraints, 4, 8, 28.
for nonlinear constraints, 8, 28.
in QP subproblem, 5, 9, 24, 25, 28.
No progress in lincsearch, 8, 28.
Noiist option, 16.
Non-cxistent lower or upper bound, 1, 8.
None (in printout), 26.
NOUT, 32.
Nonlinear Feasibility Tolerance, 9, 20 (defini-
tion}, 21.
adjustment to avoid overflow, 27.
Nonlinear constraints
inequality, in merit function, 6.
predicted active set, 3.
specification by user (see CONFUN).
violated, residuals of, 25.
Nonlinear optimization, routines for, 32.
Nonlnr constr, 26.
Norm C, 25.
Norm Gf, 3, 25.
Norm Gz, 3, 25.
NP (problem statement), 1, 2.
NPFILE, 15-16.
NPOPTN, 16.
list, sample 16.
NPSOL
algorithm of, 2-6.
lines of code, 1, 30.
parameters of, T-11.
specification, 7.
solving related problems, 17.
NROWA, 7 (definition).
NROWJ, 7 {definition), 13.
NROWR, 7 (definition).
NSTATE, 12, 14.
Null space, 3.
dimension of (see nz).
Nz, 24.

Objective (printed value), 24.
Objective function (F(z)), 1.
precision of (see ¢g).
specification by user (see 0BJFUN).
0BJF, 10 (definition), 12.
0BJFUN (user-provided subroutine)
calls needed for unspecified gradient clements,
18.
definition as parameter of NPSOL, 8.
specification, 12-13. -
0BJGRD, 10 (definition), 12.
0K, 23.
Optimal
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Lagrange multiplier, 5.
solution (see Optimality conditions).
Optimality
conditions, 2, 8, 21-22, 25, 27.
phase, in QP method, 4, 5, 9, 21.
Optimality Tolerance, 20, 21-22 (definition), 25,
27.
Option-handling routines, 31.
Optional paramecters, definition, 15-23.
Options file, 15-16.
Ordering of variables, 10.
Orthogonal transformation, 3.
Output (see Printout).
Overflow, 27.

p (search direction in major iteration), 2, 4.
Parameters
of CONFUN, 13-14.
of NPSOL, 7-11.
of OBJFUN, 12-13.
Penalty parameters (in merit function), 6, 25.
Penalty (printed value), 25.
Phase 1 (sce Feasibility phase).
Phase 2 (see Optimality phase).
Phrase (to modify optional parameter), 15.
Positive-definite Hessian approximation (see Ap-
proximate Hessian of Lagrangian function).
Precision
function (see €g).
machine (see ¢€).
of linear constraints, relation to Linear Feasi-
bility Tolerance, 28.
Predicted active set (see Active constraints and
Working set).
Preloading constant Jacobian elements, 10, 14.
Primal method (for QP), 4.
Prime Systems, 30.
Print Level, 20 (definition).
Printout
control of, 20-21.
description, 24-26.
Prograinming errors, symptoms, 29.
Projected gradient
of nonlinear objective, 2, 3, 8, 21-22, 25.
of QP subproblem, 5.

Q, 3, 6.
QFR1 31 3.
Quadratic program
method of LSSOL, 4-5.
multipliers, 3, 5, 6.
subproblem, 2, 4-5.
Qualifying phrase (in optional parameter}, 15.
Quasi-Newton
approximation (see Approximate Hessian of
Lagrangian function).
update, 4, 6.
QPSOL, 1.

R,3

Rz, 5, 25.

R, 10 (definition), 19, 21.
Rank-one update to R, 6.
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Rank-two nodification (see Quasi-Newton up-
date).
REAL, 7.
Re-ordercd Hessian (see Approximate Hessian of
Lagrangian function).
References, 36.
Related problems, solved by NPSOL, 17.
Resetting
Hessian matrix, to overcome ill-conditioning,
29.
optional parameters to defaults, 16-17.
Residual (printed value), 26.
Residuals, constraint
allowed maximum at solution (see Linear Fea-
sibility Tolerance and Nonlinear Feasi-
bility Tolerance).
in optimality conditions, 22
Resolution of constraint dependencies, 27, 28-29.
Reverse-triangular matrix, 3 (also see T).
p (see Penalty parameters).
RMAX, 32.
RMIN, 32.
RTEPS, 32.
RTMAX, 32.
RTMIN, 32.

Scaling techniques, 19.
Search direction
in major iteration, 2, 4.
in QP subproblem, 4-5.
Separate treatment of bounds and linear con-
straints, 3, 4, 6, 9, 17.
Sequential quadratic programming algorithm (see
SQP algorithm).
o (step length in QP method), 5.
Single precision
table of machine constants, 33.
version of code, 30.
Singularities in objective function, 27.
Slack variables in merit function, 6.
Source files, list, 30.
Sparse problems, 1.
Specification
of CONFUN, 13-14.
of NPSOL, 7.
of OBJFUN, 12-13.
SQP algorithm, 2-4, 8.
Start Constraint Check, 22 (definition).
Start Objective Check, 22 (definition).
State (printed value), 285.
Status of constraints (see ISTATE).
Step (printed value), 24.
Step length
in major iteration (a), 2, 4, 6, 22, 24.
in QP method (o), 5.
Stop Constraint Check, 22 (definition).
Stop Objective Check, 22 (definition).
Sufficient decrease (see Step length).
Sum of infeasibilities
in QP, 4, 5.
of nonlinear constraints, 22, 25.
Synonyms (for optional parameters), 15.

T, 3,5, 21, 25,
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Tape ++ (printed constraint status), 25 (also see Infea-
characteristics, 30. sible problein).
format, 30.
Termination

criteria, 8, 20 (also see Optimality conditions).
user-controlled, 8 (see NODE).
TQ factorization, 3, 5.
Transforined and re-ordered Hessian (see Ap-
proximate Hessian of Lagrangian function).
Two-phase primal method for QP, 4.

u (vector of upper bounds), 1, 3, 8 (also see BU).
UL {printed constraint status), 25.

Unbounded objective function, 20.

Underflow, 27.

Univac 1100, 30.

Unspecified derivatives, 1, 18.

Update
of Hessian approximation (see Quasi-Newton
update).

of working set in QP method, 5.
Updating matrix factorizations, routines for, 31.
Upper bound (in printout), 26.
Upper-triangular matrix (see Cholesky factor).
User-requested termination (see MODE).
User-supplied subroutines, 12-14.

Valid option strings, examples of, 15.
Value (printed value), 26.

VARBL, 25.

Variable, 25.

Verification of gradients, 4, 18, 22-23, 29.
Verify, 4, 12, 22 (definition).

Veritfy Level, 22 (definition).

Vertex, 5.

Violations, constraint (see Infeasibilities).

¥, 11 (decfinition).
Warn start, example of, 35
Warm Start, 9, 10, 17 (definition).
Well scaled problems, 19.
WMACH, 32 (also see Machine constants).
Working precision (see ¢).
Working set, 3, 4, 9.

changes in, 5.

initial, in QP, 17-18.

Condition estimate (see Cond T).
Workspace parameters, 11.

z (vector of unknowns), 1, 2.
printout, 25.
X, 11 (definition), 12, 13.
¢ (Lagrange multipliers for active bounds), 2.

2 (solution of NP), 2, 3.

v,3.

Z (basis for null space), 2, 5, 24.
z grFr, 2’ 3.

Zero Jacobian elements, 14.

-- (printed constraint status), 25 (also see Infea-
sible problem).
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