-R166 921 MWMCED HICNITECTURES FOR DIGITHL SIGNAL PROCESSORS

. ITRE CORP BEDFORD MA A L DEOUILLHRD ET AL. OCT 83
HTR-9647 RADC-TR-83-203 F19628-84-C-00!

UNCLASSIFIED F/G 9/2




A LTI

Lt

RN By

o

s

o .

-

iy

-

AAaa

20 =l

NL2S lis pue

CHART

MICROCOM




RADC-TR-85-203
Final Technical Report
October 1985

X

(o )

§ ADVANCED ARCHITECTURES FOR DIGITAL

<C SIGNAL PROCESSORS

5

| _DTIC
%@ELECT?é‘

o %'i MAY 0 61986
& / ~f E

‘\» ROME AIR DEVELOPMENT CENTER

. Air Force Systems Command

%= Griffiss Air Force Base, NY 13441-5700

86 5 5 Ovsg -

EA SN, CORGEINRE ISP P W Y S - AT Y




This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-85~203 has been reviewed aad is approved for publication.

APPROVED: %vv“a <£A—

STANLEY LIS
Project Engineer

FRANK J. REHM
Technical Director
Surveillance Division

FOR THE COMMANDER: % a ‘%

JOHN A. RITZ
Acting Chief, Plans Office

Tf vour address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (OCTS) Criffiss AFB NY 13441-5700, This will assist us in
maintaining a current mailing list,

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

HCaMS AT e et et et Sac et paidiai Anb Agf et g St Rt ot el AeA SO il Dl it Bk B Db T

) . . . -
. . .
3 , - .
ol L.
Aaa 2 a a o'l y o

.

v
PPN I SN

@

B S - oL e e T ) Tt R T o S T R
VOV IOV WIS IUE R ST WENERERT I IS TV EFSTE VS FEVET T CVSTE 7S VIV VOV FETS VRV VR UV W ST ST o A




I

IR i ety 1

. _. UNCLASSIFIED
SECUHITY CLASSIHICATION OF THIS PAGE

e M T LW I oY TR

AD-Rlbt 94 |

"“"—'"‘,""&r'.‘".‘ ey
o e LW

REPORT DOCUMENTATION PAGE

ta. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

R —
1. RESTRICTIVE MARKINGS
N/A

.‘a/ SECURITY CLASSIFICATION AUTHORITY
N/A

N/A

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

3 DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release; distribution
unlimited.

MTR 9647

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

S MONITORING ORGANIZATION REPORT NUMBER(S)
RADC-TR-85-203

64. NAME OF PERFORMING ORGANIZATION
MITRE Corporation

6b OFFICE SYMBOL
(if applicable)
D-82

7a NAME OF MONITORING ORGANIZATION
Rome Air Development Center (OCTS)

bc. ADDREYS (City, State, and ZIP Code)

Burlington Road
Bedford MA 01730

7b  ADDRESS (City, State, and ZIP Code)
Griffiss AFB NY 13441-5700

Ra NAME OF FUNDING / SPONSORING
ORGANIZATION
Rome Air Development Center

8b OFFICE SYMBOL
(If applicable)

OCTS

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F19628-84-C-~0001

BC ADDRESS (City, State, and ZIP Code)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO  INO NO ACCESSION NO
62702F MOTE 74 40

1 HTLE (Include Security Classification)
ADVANCED ARCHITECTURES FOR DIGITAL SIGNAL PROCESSORS

12 PYRSONAL AUTHOR(S)
A. L. Beguillard, D. 0. Carhoun, W, L. Eastman

tia TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Year, Month, Day) [15 PAGE COUNT
ina FrOM _Oct 83 ro0ct 84 October 1985 178

16 SUPPLEMENTARY NOTATION

N/A g

_‘7: . COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

[__ean | oroue | sus.crOup Signal Processing : Residue Number System(RNS)}

__‘__@‘___‘_ 03 Speech Recognition Autoregressive Spectral Estimation
17 09 Systolic Architecture Dynamic Time-Warping ¢ .2 ~

9 ABSTRACT (Continue on reverse tf necessary and identify by block number)

This report is concerned with the development and application of improved techniques for
digital signal processing, based on use of residue number system (RNS) to implement the
processing functions associated with isolated-word speech recognition. Specifically, the
use of RNS in combination and svstolic architectures for implementation of speech recogni-
tion algorithms was explored. The implementation of time-warping speech algorithm in RNS
is described.

20 DISTRIBUTION - AVAILABILITY OF ABSTRACT

TIUNCEASST DA INLIMITED SAME AS RPT I DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

2o NAME OF RESPONSIBLE tINDIVIDUAL

Stanlev Lis

22b TELEPHONE (Include Area Code)
(315) 330-4437

22¢ OFHICE SYMBOL
RADC (OCTS)

DD FORM 1473, 8a mar 83 APR edition may be used until exhausted

All other editions are obsolete

UNCLASSTFIED




" 0 te baS gt . ¢ - "™ TR
N ure" 2o L] Ay’ lg? be* Ag* N Y 3 A P 8 2™ 2'h ab ~ 120's. 2" Q ' g », 8 Vad ot gk a¥e ate AP

ABSTRACT

This report Is concerned with the developument and application of
improved techniques of digital signal processing, based on the use of
residue number systems (RNS), to lmplement the processing functions

, assoclated with isolated-word speech recognition. 1t constitutes
- final Aocumontation, €or fiscal year 1984, on MITRE Mission Oriented
Investigation and Experimentation (MOLE) project 7440: Advaaced

Architectures for Signal Processors.

Accession Tor

i NTIS I i1
DTIC 7. g
! Unannoo: 2 [j]
3 Justifi-. ]
o _——
‘ By .

Distrivus i/

Avail-»i.it~ 7Tades

e E S &

AVl L nui/for
Dist Special

|
- {

. .
L3
R

! LACACACA
'.- ; Y
< .

. » A
o

o e
.
v

'_"5




TABLE OF CONTENTS

Section
LIST OF ILLUSTRATIONS
LIST OF TABLES
1 INTRODUCTION AND SUMMARY

3 1.1 INTRODUCTION

i 1.2 SCOPE
- 1.3 SPEECH RECOGNITION FUNDAMENTALS
.
3 1.3.1 Preprocessing of the Speech
Waveform
1.3.2 Utterance Detection
1.3.3 Segmentation of the Utteraance
f 1.4 SPECTRAL PROCESSING FOR FEATURE EXTRACTION
1.4.1 Autoregressive Spectral
Estimation
1.4.2 The Itakura-Saito Distortion
Function

1.5 DYNAMIC TIME-WARPING

SUMMARY OF RESULTS

Page

viii

xi

11

13

17

20

T

F T e e e Y Y




NOa
T
SN,
SNt
KA
RO
P
NSRS
TABLE OF CONTENTS (Continued) SN
b.‘!.\ik" >
R
Hu
Gt
Section Page
2 USE OF THE ITAKURA-SAITO DISTORTION FUNCTION FOR 25
SPEECH RECOGNITION
2.1 INTRODUCTION 25
2.2 A FREQUENCY-INDEPENDENT FORMULATION 26
y 2.2.1 Gain Normalization 38
9 2.3 A MATCHED FILTERING INTERPRETATION 42
2.4 COMPUTATION IN A RESIDUE NUMBER SYSTEM 45
X 3 RESIDUE NUMBER SYSTEM IMPLEMENTATION OF A 47
.I DYNAMIC TIME-WARPING BASED SPEECH RECOGNITION
SYSTEM
- 3.1 INTRODUCTION 47
N 3.2 DYNAMIC TIME-WARPING ALGORITHM 49
3 3.2.1 DTW Path Constraints 51
3.2.2 DTW Path Computations 58
3.3 RNS IMPLEMENTATION OF DYNAMIC TIME-WARPING 63
ALGORITHM
3.4 QUANTIZATION IN A RESIDUE NUMBER SYSTEM 72
3.4.1 Introduction 72
3.4.2 The Quantization Function t(x) 73
3.4.3 Calculations 80
S 3.4.4 Choice of Moduli 84 RAERANER
3 A S
- . -‘.q
3.4.5 Conclusion 85 ;.;«.'*-":.-
. g

&




. > v oY T——y
e LA A A deft A S A A A P2 A

L]
- TABLE OF CONTENTS (Continued)
) Section Page
N 3.5 RNS IMPLEMENTATION OF THE SHORTEST PATH 86
- ALGORITHM
. 3.6 RNS RANGE AND SCALING 89
2 3.7 SIMULATION RESULTS FOR IMPLEMENTATION OF 90
- DTW ALGORITHM IN RNS
% 3.7.1 Simulation Test Set 90
’ 3.7.2 Effect of Input Scaling on 91
- Recognition Error Rate
» 3.7.3 Effect of Distortion Function 93
- Scaling on Recognition Error Rate
i 3.7.4 Effect of Quantization Threshold 93
on Recognition Error Rate
. 3.7.5 Effect of RNS Range on 97
- Recognition Error Rate
4 SYSTOLIC ARCHITECTURE FOR RNS IMPLEMENTATION 99
'E 4.1 AUTOCORRELATION COMPUTATION 99
4.2 LINEAR SYSTOLIC ARRAY FOR AUTOCORRELATION 103
COMPUTATION
4.2.1 RNS Hardware Concept 110
j 4.3 SEMISYSTOLIC DTW ARRAY 115
1 4.3.1 Computation of the Array of 116

Distortion Values

4.3.1.1 Quantization of the Distortion 123
Values

R I B R

L . LN R S A T T P I T P
TN R P I W el U] Ui Wiy P Wy TAAF TPUAT JU. . s SO UL WP




L St e et Sl ) Pl A A - “T T .

TABLE OF CONTENTS (Concluded)

Section Page
4.3.2 Shortest Path Computations 126

4.3.3 Interconnection Concepts 135

4.3.4 Estimate of Throughput 137

4.4 SUMMARY 139

5 CONCLUSION 141
5.1 SUMMARY 141

5.2 ALTERNATIVES FOR DISTORTION COMPUTATION 143

5.2.1 Itakura Distortion 144

5.2.2 Euclidean Distance Measures 145

5.2.2.1 Log Spectral Deviation 146

5.2.2.2 Direct Autocorrelation Analysis 147

5.3 FOLLOW-ON RECOMMENDATIONS : 148
REFERENCES 151
APPENDIX A: RESIDUE NUMBER SYSTEMS 155

vii




AR XN I S0 i i Gt it e e b A B A e 0% e R A B AR AR S ity e
. " - .

LIST OF LLLUSTRATUIONS

: Flgure Page
! l.1 Speech Recognlition via Dynamic Time Warping 4
1.2 Tuput Speech Preprocessiog 7
. 1.3 Uttt rance Detection 8
l 1.4 Segmentat{on of an Utterance 10
? 1.5 LPC/ 01 Word Recognition System 21
5 3.1 Dynamic Time-Warping 50
! 3.2 Unconstrained DTW Grid 52
i 3.3 Local Path Constraiats 55
; 3.4 Geid for Type 3 Local Constralats 59
! 3.5 DTW Network 61
ET 3.6 Ystribution of Path Metrle Differences 65
; 3.7 NDistribution of Local Distortion Values 68
: 3.8 RNS Tmplemeantation of DTW Algorithm 71
T 3.9 Calculation of t(x) = Isz(x) - Sl(x)lpl 813
3.10 RNS Implementatlon: Recognition Errcor Rate 92

vs. Input Scaling

3.11 RNS [mplementation: Recognition Error Rate Y
vs. Distortlon Functioa Secaliag

EE U
T«
[

3.12 Recognition Ercor Rates 95 o
k-
3.13 RNS Implementation: Recognitlon Ercor Rate 96 '

vs. Quantization Threshold

DEdtae Sl 2uyt JER a4 e T et o R A SNe . 4 e b T 4

3.14 RNS [mplementation: Recognition lrror Rate 93
vg. RNS Range

viit

. .".‘: BN s Tt S »“-".'-i
R TP A A O I R IS T
ORI % P W U N VR RS P




P i e

Figure
4.1
4.2
4.3
4.4
4.5

4.6

4.7
4.8
4.9

4.10

9 " o
WO R T T e

i.n VN T e e e e e e e o)
N e .t e e B S e ST e
PP S PN W T SATRE WA R0 PORE P L TR P R iy

LIST OF ILLUSTRATIONS (Continued)

Input Segmentation

Autocorrelation Computer

Systolic Autocorrelation Computer
Aatocorrelation Computation
Autocorrelation Computation: Final Steps

Autocorrelation Computation: Two Consecutive
Input Segments

Processing Element in Autocorrelation Array
Systolic RNS Autocorrelation Computer
Systolic Correlator Cell Mod P

Modulo P Multiplier: Logarithmic
Implementation

DTW Input Data Flow

Systolic Computation of Local Distortion
Computational Wavefront

Local Distortion Computation

RNS Quantizer

DTW Array Processing Element

DTW: Systolic Path Computation

Systolic ODTW Computation

DTW Mod P Cell Architecture

ix

B 3 R o T L R P

. T T e e T ‘_._.‘. _'.. .
~ R P A e A S Y LSRN

. . - - - e e "N . [ el
P WEWE PO PR, P ‘._‘.L‘L.“...‘k!.l

Page
100
102
104
105
106

108

109
111
112

114

118
119
120
122
124
129
130
131

134

AN A

. ALY o T L
TutaN ﬁ l.":h_’-L-‘ ..1".3;' ;

ar
-.;.3 X

- -

‘. -
RS
A N
I\f - ~
> WY

R TS |
oal
ey
2

o
o



T e

v} D"

LIST OF ILLUSTRATIONS (Concluded)

RNS DTW Cell

Schedule of DTW Cell Operations

Correlator and DTW Array

General Residue Number System Function




- .

| CACREAUEERIERNE A A A aAAN M)

LIST OF TABLES

Table Page
3.1 Differences Arising in the Shortest Path 66
Calculations of the Dynamic Time-Warping
Algorithm
3.2 Histogram of Differences in DIW Shortest Path 69

Calculations: One-Bit Quantization of Gain-
Normalized Itakura-Saito Distortion Function
Values ~ Breakpoint = .5

3.3 t(x) for 4, 9, 5, 7 Residue Number System 76
3.4 t(x) for 7, 11, 2, 3, 5 Residue Number System 78
3.5 le(D™ « e, for 7, 11, 2, 3, 5 RNS 79
3.6 Tables for Quantization in 4, 5, 7, 9 RNS 81
3.7 Number of Overflows of First Modulus and 388

Recognition Error Rates for Various RNS2Z
Choices for DTW Calculations - One-Bit
Quantization of Distortion Values -

RNS1 = {73, 71, 67, 61, 59}; Threshold = 16

x1

W T

. 'AA "_'-
AN -
S A
B A

s . . D TP Y IR PR . . . e

AP A T P PR O P TIPS . R

- - - s
= ‘_‘L.!__r\

L e T e




e 2
' SN

-1
B




F"‘:':‘-E_R, B Rk PO I DR N SOA LA AL AR & ikl et ioans CAO O Al i o i e o B e v

SECTION 1

INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

This report is concerned with the development and application
of improved techniques of digital signal processing, based on the
use of residue number systems (RNS), to implement the processing
functions associated with isolated-word speech recognition. It
constitutes final documentation, for fiscal year 1984, on MITRE
Mission Oriented Investigation and Experimentation (MOIE) project

7440: Advanced Architectures for Signal Processors.

Speech recognition is a computationally intensive application
for digital signal processing in which residue number system tech-
niques can play an effective role in reducing the computational
burden, or equivalently, in increasing the throughput rate at a
fixed computational level. Under this project, we have explored the
use of RNS-based computations, in combination with systolic
architectures, for the improved implementation of speech recognition
algorithms. Our work has focused on a particular type of word
recognition algorithm that is based on an autoregressive model of
the speech production process and a dynamic programming approach to
effecting time registration between test and stored-reference speech

patterns. While other approaches to speech recognition are certain-

ly feasible and the subject of active research at many institutions,
the approach we have adopted is representative of the results of
many years of speech research occurring in a large segment of the
speech processing community. Our objective was not to advance the
state of speech research, but rather to concentrate on the RNS

implementation of a well-understood and commonly used method of
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speech recognition. We expect that the RNS implementation advan-
tages demonstrated by our work will extend also to the processing

functions resulting from improved speech recognition research.

"R AN T, Y % T T W F V.V .T T oW VT T

1.2 SCOPE

In the remainder of section 1 we will present a view of the
fundamentals of speech recognition processing sufficient for under-
standing of our RNS implementation work. 1In section 2 we will
present a self-contained derivation of the Itakura~Saito distortion
function from a time-domain viewpoint, the distortion computation
being a central issue in any speech recognition process. Section 3
is devoted to a complete description of the dynamic time-warping
(DTW) algorithm used for time registration between test and refer-
ence patterns and its RNS impiementation. Of particular concern is
a technique of quantization of the distortion values within RNS,
necessary to contain the dynamic range while allowing satisfactory
discrimination between word matches and mismatches. Section 4
discusses RNS implementation, in a linear systolic array, of the
sample autocorrelation function estimate upon which the distortion
computations are based. Also developed is the RNS architecture for
a two-dimeusional systolic array, or computational wavefront pro-
cessor, in which the distortion function and dynamic programming
computations are carried out. Of particular concern is the pipe-
lining of the computations to maintain a high throughput in the
processor. Section 5 summarizes conclusions and presents recommen-
dations for further work. Necessary details of residue number

systems and their properties are contained in an appendix.
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1.3 SPEECH RECOGNLTION FUNDAMENTALS

The rudiments of a speech recognition process are pictured in
flgure 1l.1. In this process the input utterance, which 1is a word to
be matched to one in a reference library of stored utterances, is
analyzed in short blocks of overlapping segments from which a spec-—
trogram, or time versus frequency plot, of the utterance may be
constructed. Segmentation into short blocks allows the process to
be viewed as locally stationary, the time variation being accommoda-
ted by the sequential processing of overlapping analysis segments.
It i{s assumed that a similar analysis has been performed on the
utterances contained in the reference library. 1In both cases,
feature vectors are compared to produce a local measure of distor-
tion between segments of the test utterance, and those of one of the

reference utterances.

If there are u segments of the test utterance and m segments of
the reference utterance then the local distortions, based on a
Fuclidean distance metric or something similar, define a two-dimen-
slonal grid of n x m distortion values, the low values corresponding
to good matches between analysis segments and the high values corre-
sponding to poor matches. The purpose of the dynamic time-warping
algorithm is to effect time registration between the stored and test
segments to compensate for local time expansion or coatraction of
the test utterance with respect to the reference. 1t is a dynamic
programuing algorithm which calculates the accumulated welghted
distortlons for the least-cost path through the grid of distortion
values. This score for the comparison of utterances 1s compared {n
magnitude with the scores for other pairings to produce a final

decision as to which reference utterance provides the best wmatch.
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The dynamic time-warping computations and distortion function

computations impose the greatest computational burden in the recog-
nition process. Although the short-time spectral analysis, or
feature extraction, computations can be quite complex, the analysis
needs only to be performed once for each segment of the test utter-
ance. Although the distortion and DTW computations may not be as
complex, individually, there is a need to produce an array of dis-
tortion computations for each pair of utterances coupled with the
dynamic programming computations to produce a score comparing the
test utterance with each of the reference utterances stored in the
library. This 1is the computational bottlemeck in the recognition
process that we expect to impact with the combination of RNS compu-

tation and systolic array architecture.

1.3.1 Preprocessing of the Speech Waveform

Since the speech recognition process will involve digital
computatiouns on overlapping segments of the analog speech waveform,
preprocessing of the speech signals is required to obtain the appro-
priate digital signals. The waveforms must be appropriately sampled
and quantized, the beginning and end of an utterance established,
the utterance segmented into overlapping blocks, and the segments
windowed for subsequent spectral processing. The sampling rate must
be high enough to prevent allasing, the quantization must be suffi-
clent for satisfactory digital representation of the analog signal,
and the segment length must be short enough to provide a statiomnary
sample of the spectrum yet long enough to provide adequate spectral
resolution. The reference patterns to be stored in the library must
Ye preprocessed in 1dentical fashion to avoid artificial distortion

d:e to processing differences. In our experimental work, we have
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made use of a computer simulation, operating on the MITRE Corporate

Research Computer Facility, which digitally processes speech wave-
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forms that have been preprocessed in our Audio Signal Conversion

Laboratory (ASCL).
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Input processing of the speech waveforms and their A/D conver-

Syt .

l"
Ay
»

N sion are pictured in figure 1.2. Voice signals are picked up by the

L}
b

microphone, amplified, and passed through low-pass filters to remove
N frequency components above 4 kHz. After equalization to compensate
for a finite sampling aperture, the analog signals are converted to
i 12-bit digital samples at an 8 kHz sample rate by an A/D converter.

Output from the A/D converter is either stored in a designated file

- for future input to the simulation or, in recognition mode, may be i;ifl:ﬁ

; input directly to the speech recognition system implemented in the %f

. simulation. ,

N 1.3.2 Utterance Detection

Y -

2 Detection of an utterance, as contrasted with a period of :::2;:‘
silence, is regarded as a dlgital preprocessing function in our _ﬁt - :

% work. In our experimentation, we have based utterance detection on ;S;ﬂ?i:

i observation of energy statistics. The procedure is pictured in ::gli:t?

i figure 1.3. The energy statistic is a measure of the short-time N j;;

" average signal energy minus the long-time (exponentially averaged) f;.ﬁiFi

signal energy. Three thresholds are set as shown in the figure.
The beginning of an utterance is detected if the energy statistic
; rises above the START threshold and remains above it until crossing
‘ the HIGH threshold. The end of an utterance is detected if the
energy statistic falls below the END threshold and remains below it
for at least 150 msec. These events constitute a valid utterance

detection if the length from beginning to end is at least 240 msec.
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1.3.3 Segmentation of the Utterance

After detection, an utterance must be divided into segments for
short-time analysis. The segmentation that we use in our experimen-
tation is shown schematically in figure 1.4. The analysis interval
should be long enough for good spectral resolution, yet short enough

to capture as stationary significant features of the utterance.

Extensive observation of speech waveforms has revealed that the

duration of stationary speech events varies over a wide range. Very

shart events (such as those corresponding to the burst associated
with a plosive consonant) with a duration of only a few milliseconds
and very long events (such as those corresponding to the production
of a vowel) with a duration exceeding 350 milliseconds may be
observed. Most statlonary speech events have a duration in the
range of 12 milliseconds to 174 milliseconds; the distribution is
skewed so that the median duration (50 to 75 milliseconds) is always
shorter than the mean duration (60 to 85 milliseconds). Most
systems that analyze speech do so on a fixed time scale (about 20 to
25 milliseconds) that is considerably shorter than the median dura-
tion of stationary speech events and without regard for the location
of the event relative to the analysis interval. Some systems employ
overlapped analysis intervals (with an advance of about 10 milli-
seconds) so that the deleterious effects of employing a fixed tinme
scale and ignoring event location are reduced. We have chosen to
segment the utterances into 22.5 msec. blocks with an advance of 10
msec. Thus, each segment consists of 180 samples (at .n 8 kHz
sample rate) with each segment advanced by 80 samples. A typical
utterance may be blocked into as many as 60 segments. Each segment
is windowed by a Hamming window function for purposes of spectral

smoothing.

et at . R P e T e '.'""4-'- R SR . . .
~ DR EARN _\-‘..‘ SN . .- '.\j

R RO B LR
VY PV PR W v WA R WA W SO

) S e
b W, v W S AP S )



j

2367

«

END OF

BEGINNING OF

w
Q
z
<
[+ 4
w
-
-
o

UTTERANCE

—>

22.5 ms (180 SAMPLES)

L(— ANALYSIS SEGMENT LENGTH

10

10. ms (80 SAMPLES)

|<~— SEGMENT ADVANCE

Figure 1-4. SEGMENT EXTRACTION AND WINDOWING




PR NOAE SN SISO SOIE. RO TUY Ny v WY LSS PO S S TN b1

1.4 SPECTRAL PROCESSING FOR FEATURE EXTRACTION

Generally, speech analysis 1s based on identification of spec-
tral features that form a time-varying pattern, or spectrogram, to
distinguish utterances. Short-time spectral analysis is used as a
means of dealing with speech segments over time intervals in which
the spectra are stationary, the concatenation of these spectral
segments forming the spectrogram. The spectral approach to speech
analysis is justified by the results of many years of experimenta-
tion and empirical observations and in the ability to accurately
model the vocal tract and its excitation with acoustical transmis-
sion-line models. Experimental evidence abounds to show that much

of the information contained, or perceived, in a speech signal is

B

.
-
v
[}
»

coded by the collusion of a few formants, or natural resonant

frequencies, of the vocal tract.

Three methods of short-time spectral analysis are prevalent in
current speech recognition research: windowed discrete Fourier
analysis, processing in a band of contiguous frequency-selective
filters and spectral analysis based on linear predictive coding
(LPC).

Windowed discrete Fourier analysis is accomplished by computing
a set of time-overlapping discrete Fourier transforms of finite
length, the number of points being determined largely by the compu-
tational resources available. The filter-bank approach to spectral
analysis requires the signal being analyzed to be processed by a set
of bandpass filters. The highest spectral resolution is normally
provided at the low-frequency end of the spectrum and lower resolu-

tion, or larger bandwidth, is provided at the upper frequencies.
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Linear predictive coding (LPC) is based on a wmodel of the
utterances produced by the vocal tract as a linear system driven by
white noise or a pitch-synchronous, alwost periodic pulse train.
Based on Wiener”s (1949) work on linear prediction of stochastic
time-series, a number of recursive algorithms are available to
deteruine the parameters of the time-varying linear system, from
which {t is a simple matter to evaluate the system function In the
frequency domain to generate the spectrogram. Alternatively, the
LPC parameters can be used directly as a means of encoding speech

for pattern discrinination and recognition.

The LPC method is equivalent to autoregressive spectral estima-
tion, which {n turn ls equivalent to maximum entropy spectral esti-
mation for Gaussian processes. We have chosen to use this method in
our RNS development for several reasons. One is the successful use
over many years of llnedr prediction theory for speech, which is
largely due to the natural fit of an all-pole model to the speech
silgnal during voiclag, attributed to the absence of zeros in the
transfer function of the transmission-line model. Another consider-
ation is the maximum entropy viewpoint which does not constrain
artificially the data where {t is not observed but rather produces a
spectrum that presumes maximum uncertainty for the unobserved data.

Finally, the computations involved in processing the data involve

Aantocorrelation estimates rather thaa spectral filtering or trans-
forms, and these are well suited to RNS computation, nartlcularly
with R]NS gystolic architectures that have heen developed for trans- ;; 'r}_

versal filtering under MITRE s Integrated Electronics project. ;2'-g‘
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1.4.1 Autoregressive Spectral Estimation

Autoregressive spectral estimation of speech is treated
thoroughly in the literature, but its essentials will be reviewed
here for completeness [l]. The autoregressive (AR) or linear pre-

dictive coding (LPC) model of speech assumes that speech may be

modeled as the output of a linear system of finite order having only
poles in its frequency domain transfer function and driven either by
Gaussian white noise, or by a pitch-synchronous periodic signal,
depending on whether the sound 1is unvoiced (as for certain
consonants) or voiced (as for vowels). The parameters of the model
are estimated, from which it is a simple matter to generate the

power density spectrum.

The most common description of the AR model is in terms of the
model gain, o > O, and a set of predictor coefficients {a,;
a=1, 2, ..., P} which are selected so that a monic Pth order

polynomial, zPAp(z), defined by

P
Ap(z) = ¥ apz™®;  ay =1 (1.1)
n=0

has all (ts roots inside the unit circle z = el®. With these
parameters so defined, the pth order autoregressive, or AR(P),

model spectrum is given by

b(ey = (1.2)

13
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The requirement that zPAp(z) have all its roots inside the unit
circle is made so that the predictor coefficient sequence is

unique. Note that for any root of zPAp(z) which is inside the

unit circle, there is a corresponding root of z'PAp(z'l) which

is outside the unit circle. By swapping corresponding roots between
this pair of polynomials, one obtains different sets of polynomial
coefficients without affecting $(8). Among these 2P polynomials,
the one with all its roots inside the unit circle 1s called a mini-

mum phase polynomial.

In addition to providing a unique parametric description of the
AR(P) model spectrum, $(3), the minimum phase condition is important
in that it is equivalent to stability for the linear shift invariant

filter with transfer function

o
Ap(2)

¥(z) = (1.3)

Ap(z) 1is often described recursively in terms of a sequence

of reflection coefficients. Thus

An(z) = Aqo1(2) + Kz PAg 1 (z7h); Ag(2) =1 (1.4)

forn =1, 2, ..., P. If [Ky] <1 and A,-1(2z) is minimum phase,
then A, (z) is also minimum phase. Thus, Ap(z) 1is minimum phase

if and only 1if every reflection coefficient in the set {K,; n =1,
2, ««+, P} is less than one in absolute value. One virtue of
reflection coefficients is that they admit this simple test for the

minimum phase condition.

14
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By expanding $(©) in a Fourier series, one obtains the follow- N
e
ing pair of relationships between the AR(P) model and its autocor- afw'm';
!.’ \
relation coefficient sequence.
E
oo
v(e) = T r e7ind (1.5a)
]
T
rtn = [ w(8)elnd %0 (1.5b)
m
-

Because y(9) is symmetric, r, = r-,. By equating the right-hand
side of equations 1.2 and 1.5a and then multiplying both sides of

the resulting equation by Ap(eie) one obtains

+o0 02
Ap(el®) ¥ rpemind = =~ (1.6)
- Ap(e-ie)

Then, by expanding both sides of this equation and equating coeffi~

clents of like powers of eie, one may derive the Yule-Walker, or

normal, equations expressed in matrix form as \;‘fn T




) ry r, soe rp 1 02

l'l I’.'O ('l PP l’.'p_]_ al

€2 ry Ty rp-2 aj = 0 (1.7)
L rp rp.y| tp.) e ry L ap 0

Given the truncated sequence of autocorrelatlon coefficients (r,;
n=20,1, ..., P} the above symmetric Toeplitz coefficient matrix is
known, and one may solve equation (l1.7) to determine the predictor
coefficlents. For this parameter set, the minimum phase coandition
i{s equivalent to the condition that all principal minors of the

coefficieat matrix have a positive determinant.
To organize the distortion function computation, to be dicussed

below, it is useful to define a sequence of inverse correlation

coefticients {uy; 2 =0, 1, ..., P} as

._t___ = J ujp|ein® (1.8)
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1.4.2 The Itakura-Saito Distortion Function

The Itakura-Saito distortion function, upon which our work is
based, was Introduced in 1970 as an analysis technique for making a
{ maximum likelihood estimate of the power spectral density of an
[ autoregressive process modeled as the output of an all-pole filter
! driven by white Gaussian noise {2]. Thelir original work has been

subsequently extended by a number of researchers, and variations of

thelr original idea have resulted in a number of related distortion

measures [3]. Below, we present the basic formulas that result when

the Itakura-Saito distortion 1is interpreted as a measure of spectral

matching. In section 2, we will present a different and self-

contained derivation that {s developed in the time domain.

Defining £(8) as the power spectral density of a test segment

and g(8) as the power spectral density of a reference utterance, the

Ttakura-Saito distortion may be expressed as

m

£(9) £(8) do
diq(f,g) = —Z - gp=t—~L - 1)— (1.10)
[sth8 f (g(e) ng(e) )Zn
-

When the sgpectra of the test and reference segments are the same,

the distortion Is zero for an all-pole model spectrum and it is

possible to show by means of contour iategration of equation (1.2)

in the complex plane that
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m
[ tay(8) g%-= gno? (1.11)

-

where 02 is the variance of the white GCaussian process driving the
all-pole filter whose transfer function is Ap(z). The distortion
ﬁ may then be written as
EC) 48 ok + anod - 1 (1.12)
g(9) 2m

-

In terms of the Inverse correlation coefficlents of equation (1.8),

the remaining integral may be rewritten as

m P m
f(6) do ing d9
N = f e —_—
F ooy an - b m@®@ [ f@e
-% n=-P -n

(1.13)

The integral on the right-hand side of equation (1.13) 1is simply the
sequence of autocorrelation coefficients {ry; n = 0, 1, ..., #w}
whose discrete Fourier transform is the power density spectrum £(8),

as in equation (1.5). Then we have

w P
f(8) d9 = T

g(9) 2n
- n=-pP

up(g)rn(f) (1.14)
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which is seen to be a scalar product between the vector of 2P + 1
autocorrelation coefficients r with the vector of inverse corre-
lation coefficients u. It is a fortunate consequence of the
autoregressive model that only 2P + 1 autocorrelation coefficients
of the test process are needed in the distortion computation (and
they are symmetric). When the process actually is Pth order
autoregressive, these are sufficient to predict the remaining
coefficients and hence the power density spectrum. The distortion

function may finally be expressed as

P 2
g
£
drs(f,g) = ] up(8)rp(f) - an — -1 (1.15)
%
n=-P

This is the form of the Itakura-Saito distortion used for computa-
tion. In section 2 we will discuss determination of the variances

o% and oé.

In computing the distortion of equation (1.15), notice that
u, the vector of inverse correlation coefficients and the corre-
sponding variance cé for each reference segment may be precomputed
from the normal equations (l.7) and equation (1.9) and stored in the
reference library. For the segments of a test utterance, it is
necessary to determine r, the vector of 2P + 1 autocorrelation
coefficients and the variance o% since these cannot be computed in

advance.

19
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1.5 DYNAMIC TIME-WARPING

Dk W
.‘. l‘

-

) Although voice spectrograms provide distinct patterns for

discrimination and recognition, variations in speaking rate, speaker

inflections, and variations from speaker to speaker produce local

- time variations in the patterns that must be compensated for effec-

2 tive comparison with the stored patterns. Dynamic programming,

» introduced for speech recognition by Sakoe and Chiba [4], has been

successfully employed to bring about adequate time registration, but

'a the computational complexity is high because of the need to register

i the segments of each test utterance agalnst those of every reference
utterance, including variations of the same word, stored in the

reference library.

[l R

The dynamic time-warping algorithm and its RNS implementation

will be discussed in entirety in section 3. A systolic arciiitecture

.
s

for the RNS implementation will be discussed in section 4.

- 1.6 SUMMARY OF RESULTS

The diagram of a speech recognition system based on linear
predictive coding (or autoregressive spectral estimation) and

dynamic time-warping is shown in figure 1.5. This diagram

corresponds to a computer simulation model used extensively in our
RNS implementation studies. (The reader is referred to Appendix A Oy

j for a discussion of residue number systems and their properties.)
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As shown in figure 1.5, the speech waveform after preprocessing
its converted to 12-hit digital samples and segmented into over-
lapping blocks of 180 samples each which are windowed with a Hamming
window function. Thirteen autocorrelation values are estimated for
each segment. The LPC parameters are extracted by solution of the
normal equations (l.7) with the process gain oé and the inverse
correlation coefficients u, stored in the reference library. The
LPC computations are performed off-line and computed with floating
point arithmetic, but the scaled and quantized parameters may be

stored in RNS code.

For the test samples, the same autocorrelation is performed
with the RNS values entered into the dynamic time warping processor
to be compared with the reference library segments. The Itakura-
Saito distortions are computed largely in RNS, as discussed in
section 3, to establish the DTW grid. The array of 60 x 60 points
is a typical value; actual utterances in our library range between
28 and 72 segments. The dynamic time warping path metric calcula-
tions are also carried out in RNS, as will be discussed in

section 3.

Extensive studies were made with this simulation model to
support our RNS implementation development and selection of RNS
parameters. Our studies have shown that RNS can be quite useful in
implementing a dynamic time-warping based speech recognition

algorithm, although some significant problems still remain.
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Our architectural studies demonstrate that RNS computation is
quite natural for computing the correlation estimates needed in the
LPC analysis and in the Itakura-Saito distortion computation. In
fact, a linear systolic architecture can make use of hardware tech-
niques already developed for RNS implementation of a transversal
equalizer under MITRE”s Integrated Electronics project. The pipe-

lined architecture will be discussed in section 4.

We have found that the dynamic time-warping calculations can be
profitably carried out in RNS if the Itakura-Saito distortion values
are first quantized into the range of a smaller RNS. In fact,
binary quantization (match or no-match) seems adequate if the
unquantized distortion values provide sufficient discrimination
between true and false word matches. We developed an algorithm for
performing the quantization within RNS, which is presented in

section 3, with the hardware implementation discussed in section 4.

Subject to these conditions, RNS seems useful both in computing
the distortion values and in accumulating the least-cost path metric
in the dynamic time-warping algorithm. In section 4, it 1is shown
how both these computations may be carried out in a pipelined two-
dimensional systolic array, with the data flow specified and impli-

cations for RNS implementation of the hardware discussed.
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Although the path computations for DTW can be easily carried

out in a practical-sized RNS with appropriate quantization of the
distortion function values, the RNS range used to compute the
Itakura-Saito distortion is still rather large (30 bits equiva-
lent). The quantization algorithm also seems more complicated than
necessary. Improvements to alleviate these conditions, and there-
fore to develop a more practical method of RNS implementation, are
the subject of continuing work, as will be discussed in our conclud-

ing section 5.
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SECTION 2

USE OF THE ITAKURA-SAITO DISTORTION FUNCTION
FOR SPEECH RECOGNITION

2.1 INTRODUCTION

The Itakura-Saito distortion was derived originally for maximum
likelihood estimation of the parameters of an all-pole filter used
for speech synthesis [2]. In their work, it was used in an experi-
mental system for speech analysis and resynthesis, and it demonstra-
ted good performance by comparison of sound spectrograms of the
input and resynthesized waveforms. They interpreted their distor-
tion function as having physical meaning for comparing power density
spectra of short-time speech records, a view which has appealed to
the speech processing community and which has been expanded in the

more recent literature [3].

Unquestionably, spectral models are useful and have a long his~

" s ¥ T F ST S T e om

tory of use in the analysis of speech. They provide coanvenient men-
' tal pictures that can be related to acoustic models of the vocal
tract and its excitation. Traditionally, speech patterns are repre-
sented by sound spectrograms presented as two-dimensional intensity
! plots of time-varying power spectra. Trained speech researchers

' learn to "read” such plots, demonstrating the ability to recognize
patterns not readily apparent in the temporal waveform. It is not
surprising, therefore, that speech recognition work is so heavily

| influenced by the spectral viewpoint.
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On the other hand, the Ttakura-Safito distortion function is
well-sulted to formulation in the time domain, such a formulation
being relatively simple and free from such sophisticated mathema-
tical notions as the asymptotic distribution of eigenvalues associa-
ted with Toeplitz forms, results of which are needed in a rigorous
spectral approach [5]. Ttakura and Saito modeled speech as an auto-
tegressive random process produced at the output of an all-pole
linear filter driven by white Gaussian noise [6]. They showed that
this model, with its parawmeters obtained as a maximum-likelihood
estimate, minimized their distortion function. In an efficient
distortion computation based on a linear predictive coding model,
the frequency spectra are not explicitly used, and in fact, an
appropriate distortion function can be derived entirely in the time
domain. 1In an application such as word recognition, a frequency~
independent approach may have merit in illuminating the essential
computational aspects. The temporal approach also leads naturally
to a matched-filtering interpretation which suggests an alternative

computational implementation.
2.2 A FREQUENCY-INDEPENDENT FORMULATION
Ye begin by expressing the distortion function as an average

log-1ikelihood ratio, which measures the distinguishability between

two random processes f and g [7].

p(xI|£)
dIS = fRnp(l(_ If)ll‘l p—(—grg—) di- {2.1)

26




The symbols f and g represent zero-mean Gaussian random proces-
ses corresponding to test and reference utterances, respectively.

In application to speech recognition, since the samples x are drawn

from the process f, the conditional probability density functions

are related by the inmequality p(ilg) S_p(}lf), therefore dyg > O.

1 Samples of the Gaussian process f can always be regarded as
! linear combinations of samples of a white Gausslan noise process, in
other words, as the output of a stable discrete linear system driven
by samples of white Gaussian noise. The linear system may be des-

cribed 1in general by the linear difference equation,

Com 00

L K

x(n) + § ogx(n - 2) = of § Bku(n - k) (2.2)
g=1 k=0

e

where L < K, o% is the variance of the laput white noise process,
By = 1 and x(n) represents the sequence of output samples. For the
process g, we assume that the corresponding linear system 1s des-

cribed by the restricted difference equation

M
s(n) + ¥ ags(n - m) = agu(n). (2.3)

n=1
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In (2.3), oé is the variance of the 1nput process and s(n)

o'd

represents the sequence of output samples. Notice that, unlike

= -
E

x(n), s(n) depends only on the present and not on past input sam-

o 1

ples, and is referred to as an autoregressive random process (the
jf parameters a, determine an all-pole filter in accordance with the
frequency—-domain transfer function corresponding to (2.3)). While
og is the variance of the input process, it will be convenlent to
regard Og as the gain of the linear system driven by u(n),

(n =0, 1, 2, ...), a sequence of samples of unit-variance white

Gaussian noise.

We assume that the distortion is to be computed for a sequence
of N samples x(n) of the test process f, and that the comparison is
to be made with the model of the reference process g that is des-
cribed by the linear system of (2.3). We denote by x the column
vector of N samples [x(0), x(1), ..., x(N = 1)]t and by Rf the
L N x N matrix [rp,] of (ensemble-average) covariance values of x.
Similarly, we denote by §g the covariance matrix of N samples of
the process g and we assume that M < N. With this notation, we may

express the conditional Gaussian probability density functions as

8],

. Pit)
.

S
LIPS

exp(- 3 x'R; %) (2.4)

and

(2.5)

= 28
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dis = PR, T "2 2R X tyE5gx (2.6)

where the overbar signifies the ensemble average over the multi-

variate distribution of x conditioned on f.

The second term of (2.6) may be expanded via

__I__f 1 N\:l Nfl IR | —f
trs = b ., IRflmn XpXn 2.7
R g I:R_fl m=0 n=0 ¢ )

where IRglpn is the cofactor of the element rp, in the deter-
minant of the covariance matrix Rf. We recognize the inner sum as

Laplace”s expansion of |Rfl|, consequently,

x"Rf*x = N (2.8)

and

1 N 1
dIS =72nTR_fT-7+7£—'g i- (2.9)
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To compute the ensemble average remaining in (2.9), we invoke
<12 properties of the linear system of (2.3). There exists a linear
system that is inverse to that of (2.3) in the sense that it is a
"whitening” filter for s(m). In other words, if the two systems
are cascaded and driven by white Gaussian noise, then the output is
also white Gaussian noise. The unit impulse response of the cas-
caded system must be a unit impulse. If omne writes out a few terms
of the recursion of (2.3) for x(0) = 0, and u(0) = 1, y(n > 0) = O,
then it is almost trivial to verify that the inverse filter is a
finite impulse response filter with its impulse response given by

the sequence

[h(0), h(1), ..., BOM)] = [1, &y, a5, «--, ayl/og- (2.10)

If we let v represent an N-vector [v(0), v(l), ...,
v(N = 1)]t of output samples of the inverse filter, subject to
(unit-variance) white Gaussian noise input y = [u(0), u(l), ...,
pw(N -~ 1)], then the output covariance matrix, W, = vvt, may be

rg
written as

Wg = HuytHt = HIHt = HH® (2.11)

30




where H is an N x N Toeplitz

elements h(k),

hy
h]_ h‘)
h, h;  hy o

Since the inverse filter is a whitening filter for s

s(1), «.., s(N - 1)]t, we also have p = Hs. Consequently,

u ut =H s st EF = §.§g Et‘

Then, with reference to (2.11),

_1=
Sg" = ¥g

=)

5

=
N

matrix composed of impulse response

(2.12)

hy

= [s(0),

(2.13)

(2.14)

which shows the covariance matrix of the reference speech model

samples to be the {nverse of the covarifance matrix of the output of

the Inverse filter (when driven by white Gaussian noise).

may write
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where Wy = HHY is to be determined by (2.12) from the model

parameters of the reference process g.

Eg is an N x N symmetric matrix with its elements determined

m<M
W = hyh |-
mn kio kP jm-n{+k

for |m - n|l <M. For |m - nl > M, Wy, = 0. In terms of the

linear system parameters, for |m - n| < M,

m<M
; b agart|m-n] = = A
95 k=0 o

where, by definfition, a5 = l. 1Tt {s coaveanlent to regard Eg as

the sum of two matrices,




Wig

For m or n > M, we have expressed Wp, = W|p_,| in (2.18).

Except for the upper left hand M x M block, W, would be a
symmetric Toeplitz matrix, the form of a covariance matrix for a
wide-sense stationary process. It may seem odd that Eg is not
Toeplitz, but not if it is observed that Eg is the covariance
matrix of the output samples of a linear system driven by a station-

ary input, with zero-state initial conditions. The output of this

y-1,0 "M-1,1

0

Ol
Sk o3

K=

(2.18)

lo

R ")
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system is eventually stationary, after the initial transient

L% N

settles, but it is strictly non-stationary even though the input is
stationary [9].

If we denote by r the vector of 2M + 1 elements r = [ry,

cesy T}, Tp, Ty, ee., Ty] and similarly define A = [Ay,
AM-1, Ay, Ag, Ay, ..., Ay], then the bilinear form (2.15) can be
written in terms of a scalar product

™M-1,

I -1 M‘Zk
xtW,x = N-g (Aer) + _1 MX Y (mo-k = g)rpag_jag4py-

] o2 k=0 g= 2.19
. og og k=0 g=1 ( )
. How we have, » 3
Ll
ISg | — AR,
dig = len'28' - N 4 N-M (aer) +
e 2 B.f 2 20’% :.:‘-_:._ X :,
'.\. _.
\'_
.
(2.20) <3
.‘-:L
M=1 M-2k <5
L0 T (mk-p)riag-1agek-1- %0,
20% k=0 ¢=1 2
For M << N, a good approximation is simply,
drs = bnlSel - W4 N L, (2.21)
2 TRel 2 202 = ~

i A N N Y
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We will be concerned next with computation of the determinants

!
’

|§g| and |Rgl. Direct computation of the N x N determinants, by

R T

using Laplace”s expansion for example, would impose an enormous

HEM

Y

)
A

computational burden since N is typically greater than a hundred
samples. But, since |Syl| = |Eg|‘1, use of the parameters of the
all-pole filter model can save considerable work. Since Eg =
Eﬂt, the product of lower- and upper-triangular matrices, and
det (HH®) = det(H)det(H%) = hg? it follows immediately from
(2.10) that

tnlSgl = N gn og. (2.22)

As noted earller, cé 1s the variance of the white noise
process driving the linear system of (2.3). It can be determined
readily from the normal equations which must be solved to determine

the system parameters [l].

SO Sl Sz . . . SM 1 UZ—‘
Sl SO Sl . . . SM-I. al
. . 32
. . ) =1 . (2.23)
:M SM‘I SM-Z . . . SO a.M 0
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as the scalar product of the first row of §g with the vector of

tilter coefticients,

2 - ot
0% = sta,. (2.24)

The vector [Sq5, Sy, -++, Sy} = §ﬁ consists of the first M values
of the covartance of N samples of the speech reference process,

assumed sampled (n a statlonary laterval.

[f we are willing to model the test process also as an
autoregressive process of order M, then we can similarly determine

2
of from the normal equations, but it is not necessary to actually

solve them. Let

-— I —
ry £, . . . rM 1 of
r, 1) . . . rM_1 b; 0
: : * = ' (2.25)
__YM rH_1 . . . ry B _bM__ _ 0 |

be the normal equations defining the parameters of the test process
(assumed autoregressive). Application of Cramer”s rule to (2.25)

ylelds,
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M)
6% = ____lgf | (2.26)
1R D]

where |§§M)| is the determinant of the (M+1) x (M+l) covariance
matrix and IB§M-1)I is the cofactor of the first element. In this
case, rather than computing an N x N determinant, the autoregressive
assumption for the test process allows the computation of the ratio
of determinants of substantially smaller order, since generally

M LN,

Finally, we may express the dlstortion as (approximately, for

M & N)

dig *rtmm2-N+ N (a.r). (2.27)
) 2 =

If we define the normalized covariance coefficients for the
test process as pi = rk/o%, then the approximate distortion

functtion (2.27) is expressed as

2
drg = L1n%8 - N 4 E‘.‘i (A p). (2.28)
0% 2 2 0'% - -
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~ If the processes are identical, except for the input variances, then
>
Q (2.28) becomes
i
N 1 o N
N dig = =~ 1n 28 - X (2.29)

of 2
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p—
i
QiQ
oaro| Fro
R —

which would vanish for equal input variances.

2.2.1 Gain Normalization

For purposes of word recognition, we would like the distortion
- function to be independent of relative differences between the model
N input variances of the test and reference utterances. We would like
l to recognize words produced by the same LPC model regardless of

' intensity differences. For development of such a distortion func-
o tion, {t is appropriate to use a log-likelihood ratio based on nor-

malized Gaussian probability density functions.

;f:' Let
y 8 = x/o¢
]
- (2.30)
. R.= 2
: Re= Relog
;j and consequently,
e
r..
, s - 2N
IR1 = IR I/02N. (2.31)
38




For the probability density of g)

f = N f = 1 - 1 t~-1 .
p(8lf) = ofp(xlf) GOV exp (- = B°Rg'8) (2.32)

If y is a sample vector of the process g, then it has a probability
density function given by

1 1
(2“)N/2|§8|172 exp (- 7 ¥ 5g y) (2.33)

p(ylg) =

and if we let

|R
I

= Z/og

(2.34)

2
Sg/og

K

then the normalized probability density function is

1

1 b
plalg) = (ZW)N/Zléglllé exp (- i’EFEglﬁ)‘ (2.35)
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The gain-normalized distortion function can be derived from the

normalized average log-likelihood ratio

d f 81£)1 PEI) s (2.36)
= n [y
187 RN PR p(Blg) ~

where 8 is the gain-normalized test utterance vector described in
(2.30). With reference to the previous formulation, we observe that

ISo] = IRg] = 1 as a result of the gain normalization. Then
2g =f &

1 1 5=
drg = - 7 B'RFls + 5 8Eszls. (2.37)

Since Ef is the covariance matrix for 8, the first term is simply
~N/2 and

L

~ N 1 e=~_
dis = ~ 5 + 3 8tszls (2.38)

or, in terms of the observed test vector x

_f
Ye = =N 41 eg-1, (2.39)
IS ] 20% 2 -8 =

40
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From (2.27), we may write the gain-normalized distortion function as

~ N N
dig = - 7 + — (A1) (2.40)
Zof

or, in terms of the normalized test correlation coefficients py,

N N
d[s E —2-+ 7 (é . _{)—). (2.41)

This is the most convenient form for computation of the gain-
normalized Itakura-Saito distortion, expressed as the scalar product
of two normalized vectors, the vector A composed of the correlation
values of the parameters of the inverse filter model (the so-called
inverse correlation coefficients) and those of p composed of values
of the N normalized covariance samples of the test process.
Although ensemble averages have been used ian the formulations above,
stationarity allows for computation with time averages, the time
averages asymptotically approaching the ensemble averages for a
sufficiently large anumber of samples, equivaleunt to a long time

average.
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2.3 A MATCHED FILTERING I[NTERPRETATION

Let H represent the matrix of impulse response coefficients of
the inverse filter corresponding to the reference process g, as
glven by (2.10) and (2.12). Let X, the sample vector drawn from the
test process f, be the input to the transposed system Et, and let
2z be the vector of output samples. Then the inputs and outputs are

related by the matrix equation

z = Htx. (2.42)

The sum of the squares of the output samples may be expressed as an

inner product

zfz = (O (H'x) = x"H B'x. (2.43)
From (2.11) and (2.14),
2tz = xtsglx. (2.44)

The term on the right hand side of (2.44) may be expressed as the

trace of a matrix product [7],

xtszlx = erlszlex x©)]. (2.45)
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Taking the ensemble average of both sides of (2.44), we obtain

2z = e[ sgl(xxh) | = eefsglRe]. (2.46)

The vector z, from (2.42), may be interpreted as a result of
convolving the test sequence x with the inverse filter, or whitening
filter obtained by LPC analysis, but with the samples of x entering
the filter in reversed order. The average 1s taken over an ensemble
of sample functions x drawn from the test process f. If f is a
wide-sense stationary ergodic process, then the averaging may be
accomplished by squaring and adding the filter output samples over a
time interval that is long compared with the time intervals for
which the samples of x are correlated, the effective coherence

time. This condition should be satisfied for M < N.

In the expression for the gain-normalized distortion function

(2.37), we may write

ars = - str[RElRe] + 1 ex[S318¢] (2.47)

Since

tr[RE1Re] = N = er[ 5515, ] (2.48)
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and the trace is a distributive function, the distortion may also be

expressed as,

~ ~

drg = zer[851(Re - §,)]- (2.49)

The distortion as expressed in (2.49) may be interpreted as the re-
sult of passing the difference sequence (8 - a), the difference be-
tween the normalized test and reference sample vectors, through the

normalized inverse system EF to obtain the output vector

£ = H(@B - a) (2.50)

and then forming the ensemble-averaged inner product

té = {Et - gt)é_ﬁ_t(_s_ - ﬁ)’ (2.51)

For stationary ergodic processes, this may be accomplished by
convolving the sequence (B - a), in reversed order, with the
normalized LPC model inverse filter having the impulse response
values {1, a;, a,, ..., ay} and then squaring and adding the

output samples.

A principal difference with the matched filter implementation
is that the final distortion value 1s reached monotonically from
below rather than being computed as a convergent series with sign
alternation as in a direct computation of (2.41). This could be

important 1in controlling the computational range of the processor in
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replace the squaring detector at the output with one that simply
adds the magnitudes of the samples, thus compressing the integer

range of the output.
2.4 COMPUTATION IN A RESIDUE NUMBER SYSTEM

The key equations for computation of the distortion are equa-~
tion (2.27) for the Itakura Saito, and equation (2.41) for the gain
normalized Itakura-Saito distortion. Equation (2.51) presented an
alternative for computation of the gain-normalized distortion func-
tion, providing an output that increases monotonically to the final

value.

In a computation using the real numbers in a conventional
weighted number system such as two“s—complement, the use of equation
(2.51) rather than equation (2.41) could be important in containing
the dynamic range of the processor. In a computation using a resi-
due number system it makes little difference since, in RNS, inter-
nmediate products may overflow the range available provided that the
eventual output is contained within the range of the RNS. (The
reader is agaln referred to Appendix A for a discussion of residue

number systems and thelr properties.)

If the Itakura-Saito distortion is used, then it will be neces-
sary to compute the logarithms of the squared gains o% and og.
It can be assumed that the reference gain term lnoé has been pre-
computed, converted to RNS representation and stored in the refer-

ence library. Similarly, solution of the normal equations to obtain
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the vector é of inverse correlation coefficients (or the vector

u = A/oé of normalized inverse correlation coefficients) can be
assumed to have been precomputed, scaled and converted to RNS form
before being stored in the reference library. Computation of
-Qno%, which is needed in equation (2.27), can be obtained from
equation (2.26) as

-Qnoi = 2n|5§Mc1)|‘ln|(§éM)|- (2.52)

The determinants in equation (2.52) can be computed in RNS if the
correlation values are scaled and converted to RNS, or are imme-
diately available {f they have already been computed in RNS. The
logarithm, however, will necessitate conversion to a weighted number
system before computation, with the result converted back to RNS.

An excellent algorithm for logarithmic quantization for numbers
represented in two”s complement form is contained in [10]. It
results in a simple hardware implementation. Conversion to and from

RNS using mixed-radix representation is described in Appendix A.

If the gain—normalized Itakura-Saito distortion is used as in
equation (2.41), then the normalized correlation coefficlents
0 = E/o% must be computed. Although r may have been computed in
RNS, reconversion to a weighted number system to facilitate the
division is to be expected, after which the values can be scaled and
reconverted to RNS. This additional coaversion process should not
be distressing since it occurs only once for each correlation
vector; whereas the distortion function must be ccmputed for each
point in a constrained grid of polants involved fn the dynamic time

warping algorithm, to be discussed in section 3.
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SECTION 3

RESIDUE NUMBER SYSTEM IMPLEMENTATION
OF A DYNAMIC TIME-WARPING BASED SPEECH RECOGNITION SYSTEM

3.1 INTRODUCTION

The basic operation performed by a speech recognition system
(SRS) is the matching of an analyzed test pattern representing the
unknown word to be identified against stored reference patterns
which represent the words of the system vocabulary. A problem that
arises in this matching is the need for time registration of the
different speech patterns. The pattern representing one production
of a word will differ in length from the pattern representing
another production of the same word. Furthermore, individual parts
of a word may be stretched or compressed relative to the same parts
of another production of the same word. Attempts to perform linear
time registration of speech patterns have been largely unsuccess—
ful. However, time registration by dynamic programming [4,11] has
proven to be an effective means for comparing unknown test patterns

agalanst stored reference patterns of speech.

A dynamic time-warping (DTW) algorithm finds a shortest path
through a grid of points. Each point of the grid represeats a
matching of a selected palr of short-time segments, or frames, of
the unknown test pattern and a given reference pattern. Associated
with each grid point is a value which is the calculated local dis-
tortion for the particular match of test and reference frames rep-
resented by the point. Assoclated with each path through the grid
is a distance which is a welghted sum of the local distortions for

grid polnts lying on the path. The output of the DIW algorithm is a

score, the distance of the shortest path through the grid, represen-

ting the degree of dissimilarity between the matched patterns.
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E Computationally, the most intensive portion of a DTW-based SRS
: is the calculation of the local distortion measures. This calcula-
s tion must be performed for each point of the defined DTW grid, which
o typically may contain several thousand points, and must be repeated
f for each grid, that 1is, for each reference pattern contained in the
.; library. The distortion measures employed In our work have been

- variants of the Itakura—Saito distortion measure [2]. This measure
has been selected because it has a strong theoretical justification,
is known to have performed well in existing recognition systems, and
is relatively easy to compute. The basic computation involved in
evaluating this measure 1s an inner product calculation for a pair

of vectors of correlation and inverse correlation coefficients

L I

(AN a]

representing the test and stored reference frames, respectively.

0

Inner product calculations are well-suited for implementation in RNS

v
1 A R

1f the end result does not need to be immediately translated back
from RNS to conventional arithmetic notation. This particular cal-
culation of the Itakura-Saito distortion presents both a challenge

and a considerable opportunity for RNS implementation. The chal-

P

lenge results from the apparent need to employ a large range in the
RNS calculations to avoid certain problems of truncation error
resulting from the integer conversion of the input data to the
calculation. The opportunity results from the established fact that
the range need not contain the (much larger) individual products or
sums accumulated during the inner product calculation, nor even the
scaled autocorrelatfon and inverse autocorrelation coefficients.
Overflow of the RNS during the calculation causes no harm as long as
the final result lies within the range of the RNS, and even occa-
sional overflow by the result may not be harmful to the DTW distance

computation.

AV RS AP R




Three functions are required for dynamic time-warping: con-
struction of the DIW grid, the set of points (i(k), j(k)) on which
the DTW path is permitted to lie; evaluation of a local distortion
measure for all points of the grid; and solving to find the shortest
path through the DIW grid from the point (1,1) to the puint (m,n),
where m is the number of reference frames and n is the number of
test frames to be matched. The shortest path algorithm is a special
simple case of dynamic programming [12]. Construction of the DTW
grid and the calculations required to find the shortest path through
the grid are discussed in section 3.2. Calculation of the Itakura-
Saito distortion measure and its variants has been discussed

previously in section 2.

The remainder of section 3 {s concerned with the implementation
of the DTW algorithm in RNS. The approach discussed in section 3.3
utilizes a two-part quantization of distortion values, first into
the range of a single modulus, and then to a single bit (match or
no-match). The quantization algorithm is described in section 3.4.
RNS implementation of the shortest-path calculation 1s treated in
section 3.5. Range considerations for the RNS implementation of
dynamic time-warping are discussed in section 3.6. Finally, results
of simulations of RNS implementations of a DTW-based speech recogni-

tion system are presented in the concluding section 3.7.

3.2 DYNAMIC TIME-WARPING ALGORITHM

The three functions contained in the dynamic time-warping algo-
rithm are {llustrated in figure 3.1. In this section the determina-~
tion of the DIW grid point set, given the number of reference frames
m, the number of test frames n, and a set of local and global path

constraints, Is described, and the calculations required for finding
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the shortest path through the grid are derived for a particular
choice of local constraints. The unknown test utterance will always
be assigned to the y—axis (vertical), and the reference utterance

will be assigned to the x—axis (horizontal).

3.2.1 DTW Path Constraints

Initially, before application of any constraints, the DTW grid
(figure 3.2) consists of the m x n points (1,j), 1 <{ < m,
1 < j < n. Fach point (i,j) represents the matching of the i-th
reference frame against the j—th test frame. Certain matches and
sequences of matches (i.e., paths) may be unreasonable to make,
however, and should be ruled out in advance. Rules are adopted in a
speech recognition system to avoid such unreasonable paths and

pointless computation. It is the role of the local and global path

constraints to define these rules.

Local path constraints specify in a precise manner the ways in
which a particular path point (i(k), j(k)) can be reached from a pre-
ceding path point (i(k - 1), j(k - 1)). Following Myers et al.
{t1], we represent allowed local paths by a set of productions from

a regular grammar. A production is a rule of the form

P: (al,bl)(az,bz)-oo(aL,bL) (3.1)

where L is the length of the production, and the (a,b)”s are seg-
ments in a sequence of local moves. All a”s and b”s and L are

assumed to be (small) nonnegative integers. Using a production, a

o8

local path to the point (i(k), j(k)) can be traced backwards to the ;
.
point (i(k - 1), j(k - 1)) through L - 1 intermediate points: r
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. k-th point: (i(k),j(k))

. s s
. s-th intermediate point: (i(k) - 21 ag, j(k) - 21 by )
1= =

L L
(k - 1)st point: (1(k - 1),j(k - 1)) = (i(k) - 211 ay, (k) - zzlbl)

This representation of local path constraints provides a great
- deal of flexibility in their choice. The left-hand side of figure
N 3.3 1llustrates the Type 3 constraints of Myers et al. [11], which

are specified by the four productions:

Pl:  (1,0)(1,1)
P2: (1,0)(1,2)
P3: (1,1)
P4:  (1,2)

These four productions define four distinct possible local paths to
a given point (i(k),j(k)) in the DIW grid, coming from the points
(i(k) - 2, j(k) = 1), (i(k) - 2, j(k) - 2), (i(k) -1, j(k) - 1),
and (i(k) - 1, j(k) - 2), respectively. The first two of these
local paths also pass through the intermediate point (i(k) - 1,
j(k)). Note that for any local path to be valid, its starting point
(1(k - 1), j(k - 1)) and its end point (i(k), j(k)) must belong to
the valid point set.
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A zero value for an a (b) in a production implies that the
corresponding reference (test) frame is to be matched with more than
one test (reference) frame. A value greater than one, on the other
hand, results in one or more reference (test) frames being skipped
(not matched) altogether. Thus, paths Pl and P2 of the Type 3 con-
straints allow a given test frame to be matched with more than one
reference frame, while paths P2 and P4 permit the skipping of a test
frame. Under these constraints, each reference frame is used exact-
ly once. Corresponding to the Type 3 constraints is a reflected
version, the Type 3a constraints shown in the right-half of figure
3.3. These are specified by the four productions:

Pl: (0,1)(1,1)
P2: (0,1)(2,1)
P3: (1,1)
P4: (2,1)

For these constraints, paths Pl and P2 match a given reference frame
against more than one test frame, while paths P2 and P4 permit a

reference frame to be skipped, but each test frame is used once and

only once.

While there is no apparent reason for claiming that one set of
constraints will perform better than the other, it seems more
natural to require that each test frame be matched exactly once,
while allowing reference frames to be skipped or used more than
once. Thus, we tend to prefer the Type 3a constraints over the Type
3. Myers et al. in effect tested both types (along with a number of
other gsets of local constraints) by using the Type 3 constraints but
allowing the assignment of test and reference to the x- and y-axes

to be reversed. They found better results for the reversed case,
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which corresponds to using the Type 3a comnstraints. Furthermore,

there are computational advantages to requiring that each test frame
be matched exactly once; for then, the logarithm of the squared

2
galn, of, of the test power spectrum does not need to be evaluated

in determining the local distortion values. This is because each

calculated value of o% will be used exactly once in any legal path
from (1,1) to (m,n), and therefore can have no influence upon deter-

mining the best path.

Associated with each local path to a grid point (i,j) is a path
cost which is a weighted sum of the local distortion values for grid

points passed through by the path. One of the simplest of weight

functions takes the form

w(k) = i(k) - i(k - 1) (3.2)

For this weight function, the weight assigned to a local path is the
distance traversed in the reference direction (i.e., the sum of the
a’s in the production defining the local path). It is customary to
divide the weight equally among the segments forming the path.

Thus, for type 3 local constraints, this weight function assigns
unit weights to all path segments, whereas for the type 3a con-
straints a fractional weight will result for the segments of path
Pl.

Local constraints limit the valid point set making up the DTW
grid in the following manner. For each procedure P of a local con-
straint, let sum(a) denote the sum of all the a“s and let sum(b)
denote the sum of all the b“s. The slope of the local path is given
by the ratio sum(b)/sum(a). Let emax and emin denote the maximum

and minimum slopes, respectively, obtained over all productions P
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comprising the local constraint. 1If we draw lines of slope emin and
emax through the endpoints (1,1) and (m,n), the resulting four lines
define a parallelogram in the initial DTW grid within which all
valid points must lie (see figure 3.4). Points intermediate to
local paths may lie outside this parallelogram, but the endpoints of
such paths must themselves lie on or within the parallelogram. In
figure 3.4 the parallelogram resulting from the Type 3 constraints
of [11] is shown, drawn in solid lines, for an illustrative example

representing ten reference frames and eight test frames.

Global path constraints were introduced by Sakoe and Chiba [4]
to further delimit the legal point set. These constraints take the

form

(k) = 3] < g (3.3)

for some nonnegative integer g. They constrain the DTW path to lie
within a corridor of width 2g centered on a 45-degree diagonal
through the point (1,1). Of course, if Im - n|l > g, then the end-
point (m,n) cannot satisfy the global constraint, and no legal DTW
path can be found. Thus, in additiom to restricting where the path
can lie, the global constraint can be used to rule out altogether a
search for the shortest path whenever the lengths of the test and

reference utterances are too dissimilar.
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A choice of g = 0 will permit no path unless n = m, in which
case all local paths must begin and end on the diagonal from (1,1)
to (m,m). The global constraint usually limits the DIW grid by cut-
ting off the interior corners of the parallelogram defined by the
local constraints. In the example illustrated in figure 3.4, only
the lower right corner 1is in fact cut off by the severe global con-
straint g = 2. The resulting legal points comprising the DIW grid
are shown as solid grid points. The hollow or empty points lying
outside the parallelogram are Iintermediate points which may be
passed through in traversing certain local paths which begin and end
in the legal point set. The selected local distortion measure must
be evaluated for such intermediate points as well as for the points

in the legal set.

3.2.2 DTW Path Computations

Dynamic time-warping for speech recognition was first formu-
lated as a problem in dynamic programming by Sakoe and Chiba [4].
In fact, however, the problem of finding the best path through the
DIW grid reduces to a special simple case of dynamic programming
known as the shortest route problem. This problem can be stated
briefly as follows: Given a connected graph with two distinguished
nodes A and B and with a cost associated with each arc from a node i
to a node j of the graph, find the path (i.e., sequence of arcs)
from A to B whose summed cost is a minimum. Algorithms for finding
an optimal solution to this problem were first given (independently)
by Moore [13] and Dantzig [l4]. Subsequently, Bellman [15] formu-

lated the shortest route problem as a dynamic programming problem.

58




|

-
2

Ve e Te LUPCh .W‘.‘Ay“’v—? “'."Vvv‘

e

V%

SINIVHLSNOD VOO € 3dAL HO4 QIO +°¢ aunbld

L RN TR

SINVHL IONIYIIFH 0L = W SIWVHL 1S3L 8 = U
Z = B INIVHISNOD TvEO1D HLIM

Puvud ™%

SINIVHLSNOD V201 EYVE NERE Y
€3dAL oo 6 8 L 9 § ¢ € T t 4w
V l N n- L I U i 1 - | 1. 1 i 1 P

£d

id

v '9) SINIVHLSNOD -9
Mw. mw w301 / SINIVHLSNOD

(¥ ‘p) / vo0 L,
&9 (8 ‘01) d g
Mm mw £ /

(2 ‘e) /N /

AN 'Nv \ e = m \

(‘1) INIVHLSNOD

‘S1NIOd TvO3I1 vao1o




«

The network, or graph, to which the shortest route algorithm {is

applied is defined as follows: Nodes of the graph correspond to
legal points of the DTW grid, with the grid point (l1,1) as the node
A and the grid point (m,n) as the node B. The arc costs are defined
as welghted sums of local distortlons obtalned for matches of refer-
ence and test frames corresponding to grid points passed through in
going from the grid point associated with node { to that associated
with node j. For the type 3 local constralnts and the weight func-
tlon defined in equation (3.2), the costs defined for arcs of the

network derived from the DTW grid have the form

c(Pl) c(P2) = di—l,j + dij

(3.4)

c(P3) c(P4)

dij

where dyj is the local distortion calculated betweea the ith
reference frame and the jth test frame. The network derived froam
the DTW grid for the example given previously ian figure 3.4 and

assuming weight function (3.2) 1is shown in figure 3.5.

The minimum cost cij for any path to the node (i,3) is com-

puted (under type 3 constralnts and weight function (3.2)) as

c‘lj = Min (dij + Ci-l,j“-’ dij + Ci_l’j—Z)

(3.5)
dij + dj-1,5 + c1-2,5-1, d1j + dy-1, 5 + -2, 5-2)
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where the first two terms of the minimization are the cost of reach-
ing (i,j) by local paths P3 and P4, and the latter two terms are the
cost of reaching (i,j) by local paths Pl and P2, Let

eij =djy + Min (eg-1,3§-1, €1-1,j-2)- (3.6)

Then
¢i-1,j = dg-1,j * Min (-2 3-1, c1-2,3-2) (3.7)

and
cyj = Min (cgj, dyj + c4-1,4)- (3.8)

Cmn» the minimum cost for any path to node (m,n), is the score

returned by the DTW algorithm.

The shortest path computation for type 3 local constraints and

welght function (3.2) can be summarized as follows:

1. Compute the local distortion dij from the test
frame correlation coefficients r,(j) and the

reference frame inverse correlation coefficients

u,(i)
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2. Compute eij = dij + Min (ci—l,j—l’ ci-l,j-z)
3. Compute cyj = Min (Eij’ dij + ¢1-1, 4)

We would like to employ RNS for step 1, the computationally
most intensive calculation in a DTW-based speech recognition sys-
tem. The problem which arises if RNS is used is the magnitude

comparisons required for steps 2 and 3.
3.3 RNS IMPLEMENTATION OF THE DYNAMIC TIME-WARPING ALGORITHM

In order to make use of RNS for the local distortion calcula-
tions of a DIW algorithm, it is highly desirable to remain within
RNS for the entire DTW shortest path computation, leaving only to
convert the final score output by the algorithm for thresholding and
comparison with other scores to select the best match. As we have
seen in section 3.2, solution of the shortest path problem involves
a sequence of additions and magnitude comparisons. In general,
magnitude comparisons cannot be efficiently performed within RNS.
However, the magnitudes being compared in the shortest path computa-
tion may be similar. 1If their difference in absolute value does not
exceed half the largest modulus in use, then relative magnitude can
be determined without leaving RNS, simply by testing the difference
modulo this largest modulus. As a first approach to an RNS imple-
mentation we tested the following hypothesis:

SHORTEST PATH DISTANCE HYPOTHESIS

The absolute differences of cumulative distances
compared in steps 2 and 3 of the shortest path
algorithm will generally not exceed half the
largest modulus we are willing to employ in a
residue number system of practical size.
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This hypothesis was tested by carrying out simulations using our DTW
simulation program. Histograms of differences arising in the short-
est path calculations were generated. The magnitudes of these
differences depend upon the choice of local distortion measure. We
looked at what these differences typically are in a conventional
implementation for each of three distortion measures provided for in
the simulation program: Itakura-Saito distortion, Gain-Optimized
Itakura-Saito distortion, and Gain-Normalized Itakura-Saito

distortion [3]. Three cases were examined:

1) identical test and reference templates;
2) similar test and reference templates; and

3) different test and reference templates.

The second case arises when the test and reference utterances are
different productions of the same word; the third arises when the

test and reference utterances are productions of different words.

Results are summarized in Table 3.1, which gives the smallest
and largest differences encountered in each of the three cases for
each of the three distortion functions, together with the number of
divisions required to give a reasonable portrayal of the histogram.
The width of each division, except the first, 1is half that of its
successor. The first division has the same width as its successor
in order that all differences may be counted with a reasonable num-
ber of divisions. The distributions for the Itakura-Saito metric
are plotted in figure 3.6 for the cases of similar words (clear) and

different words (cross-hatched).
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Table 3.1

Differences Arising in the Shortest Path Calculations
of the Dynamic Time-Warping Algorithm

Distortion Templates Smallest Largest Divisions
Measure
identical .0006 374.9607 13
1-S similar .0031 352.5326 13
different .0017 733.7631 14
identical .0004 11.8593 11
G-0 similar .0002 7.3737 10
different .0007 11.2536 11
identical .0009 37.7742 13
G~N similar .0011 23.4734 12
different .0027 151.2043 14

The number of divisions needed to cover the range of differ-
ences was at least ten for all distortion measures employed. It was
concluded that our first shortest path distance hypothesis is not
valid for distortions based on the Itakura-Saito distance measure.
Therefore, we considered quantizatlion of the distortion function

leading to a modified distance hypothesis.

SECOND DISTANCE HYPOTHESIS

With appropriate quantization of local distor-

tion values, the absolute differences of cumula-
tive distances arising in steps 2 and 3 will not
generally exceed half the largest modulus we are !
willing to employ in a residue number system of e
practical size.




P R

For testing this revised distance hypothesis, an extreme
quantization of distortion function values to a single bit
(0 = match, 1 = no-match) was employed. A breakpoint threshold was
chosen; all distortion values exceeding the threshold were then set
equal to 1; all less than or equal to the threshold were set equal
to 0. To select the breakpoint, we first compiled histograms of
distortion function values for matching similar test and reference
templates (different productions of the same word) and different
templates (different words). These are shown (for the Itakura-Saito
metric) in figure 3.7, where, as before, the histogram for different
templates is cross—hatched. We seek a breakpoint that discriminates
well between the two different comparisons. On the basis of this

study, a breakpoint threshold of .5 was selected.

Histograms were then compiled of all finite differences, in
absolute value, arising in the DTW shortest path calculations, by
running many test patterns agalnst the entire reference library.
Under the extreme quantization employed, most of these differences
became zero (table 3.2); the nonzero differences were both rela-
tively few in number and small in size. This result supports the
second hypothesis that, with appropriate quantization of local
distortion values, it is feasible to carry out the DTW calculations
in the shortest route algorithm in a residue number system of

practical size.

67

P N L S fat e
- N AR ROINEY

" e e e U - te e et e .
AT A AR e P P L - ~at L
- PR (PN W i G RY S NE InT U P S A W Y e e -

.
L
A
)

.

R -
.”\ I‘.' .\_
RS CRY
- \‘. -."-
- ,_:_._i. b
SR
AT,
] ‘. N o




S3NTVA NOLLBOLSIO VD01 40 NOILNSRILSIO  £'€ aunbiy

OIHLIN OLIVS-vHNNVLI

NOILMOLSIT VOO0

ve e 21 t4 o? =4 =4

(18'5=NOILHOLSIO 1S3LVIHD)
SAHOM IN3H3dda

(56'2=NOILHOLSIO LSILVIHD)
SQHOM HVINIS

———— VNI

- 001

3ONIHHNJJ0 40 AONINDIYS

1E5'2L~)

Aalaldon

0

el ala e g

el

sy

e

as - aR o9

68




i A JT T ey - Ty —— BBt Bgadian g &l —
;\'._‘. EULIEEL A NN S e N o N N e N T O T P TP T o s

Table 3.2

Histogram of Differences in DTW Shortest Path Calculations:
One-bit Quantization of Gain-Normalized Itakura-Saito Distortion
Function Values - Breakpoint = .5

Difference Frequency of Occurrence
0 2227162
1 152344
2 108417
3 73399
4 28900
5 17500
6 9726
7 5321
8 3654
9 1918

10 1149
11 772
12 510
13 300
14 141
15 94
16 59
17 35
18 18

19 22




Quantization within RNS is difficult, in effect calling for

sign determinations. Our solution has been to employ a two-part
quantization, first quantizing from the range of the RNS into the
range of a single modulus, and then requantizing to a single bit,
using a threshold. The method developed for quantizing to the range

of a single modulus will be described in section 3.4.
The revised shortest path computation is as follows:
1. Compute dij from r,(j) and u,(1)

2. Quantize to single bit d’ij : 0 = match,

1 = no-match
3.  Compute Eij = d734 + Min(cqy-1,4-1» €1-1,§-2)
4. Compute cjj = Min(eij, d7g3 + 61_1,j)

Figure 3.8 is a block diagram of an RNS implementation of a DTW-
based speech recognition system. After detection of a test utter-—
ance, input values. possibly scaled, are converted to RNS for calcu-
lation of the test correlation coefficients. 1Inverse correlation
coefficients from the reference library are scaled and converted to
RNS (this would normally be done before storing them 1in the
library), and the distortion function is computed as an ianer pro-
duct of vectors in RNS. The output of this calculation is quantized
in two steps, first to the range of a single modulus, and then to a
single bit. The shortest path through the DIW grid is obtained in

an RNS of reduced size as described in section 3.5. The resulting
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score 1ls reconverted to a conventional number system for
thresholding and selection of the winning text. In section 3.6
questions of RNS range and scaling are discussed briefly. Simula-
tion results for an RNS implementation of the SRS of figure 3.8 are

contained in section 3.7.

3.4 QUANTIZATION IN A RESIDUE NUMBER SYSTEM

3.4.1 Introduction

Our simulation experiments support the hypothesis that, with
appropriate quantization of local distortion values, it is feasible
to perform the DIW shortest path calculations within a practical-
sized residue number system (RNS). However, this raises the
question as to how an appropriate quantization of these values is to
be obtained without first leaving RNS. We propose a two-phase quan-
tization, first from the range of the RNS to the range of a single
modulus, and then to a single bit. 1In this section, we show how to

perform the first quantization in RNS.

At first glance, quantization of values within RNS appears to
be a formidable problem requiring, in effect, a series of magnitude
comparisons or sign determinations. In fact, however, the problem
may be greatly simplified because, at least in some applications,
there is some tolerance for error. Quantization divides the range
of an observed variable into, say, k intervals, and replaces each
value by the index of the interval within which it lies. The break-
point dividing interval i from interval 1 + 1 is somewhat arbitrary,
and it {s expected that, at least in our speech recognition

application, very little harm will come from errors made in the
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neighborhood of the breakpoint which cause a value lying in the i-th
interval to be erroneously recorded as lying in the (i + 1)-st
interval or vice versa. Based upon this tolerance of errors in the
breakpoint neighborhood, we have devised a method for quantizing the
values in the range of an RNS into the range of a single modulus

mi, in effect scaling by ﬁi = M/mj, where M = mymy...my 1is

the product of the n moduli my, assumed to be relatively prime in
pairs, which comprise the RNS. The method can be employed for all

sets of relatively prime moduli, but involves some calculation.
The remainder of this section is divided into three parts
dealing, respectively, with the quantization function t(x) , the

calculations required to evaluate t(x), and the choice of moduli.

3.4.2 The Quantization Function t(x)

Any integer x can be represented in a residue number system by

n
x= 1 By Ixfigly - HAGO) (3.9)

where |xlp = x - m[x/m], [y] denotes the greatest integer con-
talned in y, and A(x) is an integer-valued function first studied by
Aiken and Semon [16]) and whose range 1s discussed in [17], Appendix
A. Suppose w2 divide our moduli my into two groups which we call
p"s and q"s, where p; = my, P, = my, q; = M3, Gy = My, .o,

9n-2 = Wy, and define P = pypy, Q = q142.+.qn-2, and

ai = Q/qy. Consider now the two RNS defined by the p”s and

q°s. We can express x in the first system as
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X = p2|X/P2|p1 + Pllxlpllpz = PAP(X)

and -x in the second system as

n-2 "
= = 111 qil-x/qilqi - QAq(-x).

n=2 N
Let o(x) = pplx/pylp, + pylx/pylp, + 12;1 qgl-x/q4lq,-

Then, by adding (3.10) and (3.11)

o(x) = PAP(X) + QAQ(-X)
Define Q = |-1/qlp

s, (x) = |60(x)|pl = |-aq(=x)lp,

and

52(x) = 1Q(x)lp, = I-Aq(-x)lp, .
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(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)




T T T T T T T Y T s B e s Al Al s G . Sl k2ol Bk St -r
\-_A.&\_‘_‘- LT ST ?'. .. ..h‘. RGN '.(“.' : V.'_‘-":_"':'_\'_':'Vr‘-'_ it _~~1."'"V_r_ e Al Sl el bt Tl el St had S 1““““‘.,-“.':..

P '-_‘. b
RO
AR RN LS N
PN ANIND
‘.-:‘.'._‘"::-'_
G,
[l A LY ".

Note that s; and s, can be calculated within the RNS. Ffinally, let
t(x) = Isp(x) =~ s (0)lp - (3.17)

What will the function t(x) look like?

First couslder the function AQ(-x). We have A(kM + x) =
A(x) - k (see reference [18]), and for O £ x <M we have
0 < A(x) < n, the number of moduli (see reference [17], Appendix
A). Suppose first that the q-set consists of a s.ngle modulus.
Then ~Aqp(-x) = -1 for 0 < x < Q, -AQ(~x) = -2 for Q < x £ 2Q,

and so forth. The quantities s, (x) and s,(x) remain constant over

any span kQ < x < (k + 1)Q; both decrease by one unit at the
transition of x from the value (k + 1)Q to (k + 1)Q + 1, However,

S A I
A

Fo AT
afag, e PR M)

their difference, modulo p,, does aot change except at every p,-th
such transition. The first such change occurs for x = p, * Q+ 1,
when —Aq(—x) becomes ~(p, + 1). A similar change will occur every
p»Q values thereafter. Thus, when the q-set consists of a single
modulus, t(x) takes on the p, values 0, 1, ..., p; - 1 in some order

in blocks of length p, « Q = &1.

Next, consider the case where the q“s consist of two moduli, q

and q,. Then -AQ(-x) takes on the two values -1 and -2 in the
range 0 < x < Q, the two values -2 and -3 in the range Q < x <2,
and so forth. The quantities s; and s, can vary by one unit over
the range kQ < x < (k + 1)Q, but their difference is normally
constant modulo p;. Both decrease by one unit at the transition
polats but, agaia, the difference modulo p, is unchanged except at
every p,-th transition, and at certain values in the last sub-block

of length Q before such a transition, namely, those values
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x + (kp, - 1)Q for 0 < x < Q for which Aq(-x) = 2 or, equiva-
lently, those values for 0 < x < Q for which AQ(x) = 1. For these

g

values t(x) turns too soon, creating an ambiguous neighborhood at

the transition point. The length of this ambiguous neighborhood 1s
known [17]. Let j be the unique integer in [0, Q - 1] satisfying
I--j/ailqi =1fori=1, ..., n = 2. Then the ambiguous
nelghborhood has size j + 1.

Example 1: py = 4, pob =9, q4 =5, q; =7

Then j = 23 and we should find four blocks of length 315, with

an ambiguous area of length 24 at the end of each block. See table
3.3.

Table 3.3

t(x) for 4, 9, 5, 7 Residue Number System

X t(x)

1 - 291 1
292 - 315 1l or 2
316 - 606 2
607 - 630 2 or 3
631 -~ 921 3
922 - 945 3o0or 0
946 - 1236 0
1237 - 1260 0Oorl
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The range of the system above 1236 should not be used, as
errors which are made here would map a value which belongs in the
last interval into the first interval. Other errors are presumed to
be relatively harmless. The size of the ambiguous neighborhood

depends only on the q”s.

Finally, consider the case where there are more than two q°s.
In this case, Aq(x) may take on values greater than 1 in the in-
terval 0 < x < Q. 1If k is the largest value of Aq(x) in [O,
Q - 1], and j is defined as before, then the ambiguous neighborhood
has size (k - 1)Q + j. The size attainable by k Is treated further
in [17].

Example 2: py, =7, pp =11, q =2, q; =3, q3 =5
For this example k = 1 and j = 29. We expect blocks of length

330, with an ambiguous range of length 30 at the end of each block.
See table 3.4
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Table 3.4

t(x) for 7, 11, 2, 3, 5 Residue Number System

X t(x)
1 - 300 4
301 - 330 4or 1l
331 - 630 1
631 - 660 lor 5
661 - 960 5
961 - 990 5 or 2
991 - 1290 2
1291 - 1320 2 or 6
1321 - 1620 6
1621 - 1650 6 or 3
1651 - 1950 3
1951 -~ 1980 3o0r 0
1981 -~ 2280 0
2281 - 2310 0 or &4

Example 2 (continued):

The range above 2280 should not be used, as an error occurring
here would map a value belonging to the last interval into the
first. Notice that the quantized values, t(x), of table 3.4 are

inappropriately ordered.

Since from (3.12) g(0) = O (cf. equations 3.15 to 3.17), we
have t(0) = O, and, since there is a transition when x passes from 0
to 1, t(l) # 0. Using this fact, we can transform the t(x) values
into an ordered sequence (1, 2, ..., p; = 1, 0) by a premultipli-
cation by |t(1)'llpl. For example 2, we have t(l) = 4 and
It:(l)'llpl = |1/4]5 = 2, resulting in table 3.5 in place of table
3.4:
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n Sy
N
le(™ et lp, for 7, 11, 2, 3, 5 RNS
: x le()te el le()~t - e - 1y,
S 1 - 300 1 0
301 - 330 1l or 2 Oor 1
331 - 630 2 1
631 - 660 2 or 3 1 or 2
661 - 960 3 2
961 ~ 990 3or 4 2 or 3
991 - 1290 4 3
, 1291 - 1320 4or 5 3or 4
) 1321 - 1620 5 4
s 1621 - 1650 5 or 6 4 or 5
- 1651 - 1950 6 5
. 1951 - 1980 6 or O 5 or 6
s 1981 - 2280 0 6
2281 - 2310 Oor 1 6 or O

The third column of table 3.5 shows the effact of further
modifying the quantization function to eliminate the bias evident in
the second column. Again, observe that the useful range of x

extends only to 2280 rather than 2310.
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3.4.3 Calculations

Calculation of s;(x) requires a simple table lookup for n - 1
quantities which are summed in a modulo p; adder; calculation of
s, (x) requires a simple table lookup for n - 1 quantities which are
summed in a modulo p, adder. Calculation of t(x) requires one

additional summation (subtraction) in the modulo p; adder.

From (3.12) (3.14) and (3.15) we have

n-2
s;(x) = lQ(x)lp, = flQlp Ixlp + 121 IQ&ilpll-x/ailqi|p1
- n-2

= [laxly, + 3 |1-1/qql;, I-x/q; | .

Similarly,
~ n-2
sp(x) = |laxly, + 5 |1-1/qqlp, |-x/q1lq, | . (3.19)
P2 121 P2 i p2|p2

The quantities

ay = ||-1/q1|pll—x/&ilqi|pl (3.20)
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by = |I—1/qi|p2I—x/&ilqilp2 (3.21)

can be precomputed for the qi values leqi and stored in
(hard-wired) tables.

E_Xample 3: pl = [;’ pz = 5’ q]. = 7, q2 =9,

Then Q = 13, a; = |I3xl,1,, a, = 1315xl4l,, b, = [213xl,1s,
b, = |I5x]lgl5. The required lookup tables are illustrated in
table 3.6

Table 3.6

Tables for Quantization in 4, 5, 7, 9 RNS

X al 8.2 bl bz |3X|5

0 0 0 0 0 0 W=

1 3 3 1 0 3 -

2 2 3 2 1 1 N

3 2 2 4 1 4

4 1 2 0 2 2 .

5 1 1 2 2 - L

6 0 1 3 3 - S

7 - 0 - 3 -

8 - 0 - 4 - SO
RIS LN
ﬁ.: '

81




The last column provides a table for |3xlg, needed for computing

s, (x). Since IQl, = 1, no table is needed in this example to obtain
lQxl, = Ix|,. These tables should be easy to implement. For
example, if |x|g is given in binary form, the b, value can be

obtained in this example simply by dropping the last bit.

Figure 3.9 1s a schematic block diagram depicting the
calculation of t(x) from the n residues lxlpl, |x|p2, lxlql,
cee, 'x|qn—2° The quantities Iaxlpl, |6x|p2, ay, and by
(k =1, «e., n - 2) are obtained from the residues by hard-wired
table lookups and fed to the two modular adders, producing the quan-
tities s;(x) and s,(x), whose difference, modulo p;, defines t(x).
The modular adders in figure 3.9 are assumed to be (n - l)-input
adders. 1If only two-input adders are available, the summations

producing t(x) require n - 1 stages, as follows:

Step 1:  Add Iaxlpl and a; in the modulo p; adder;
add IQxIp2 and b; in the modulo p, adder.

Step k: Add ap to the contents of the modulo p,
adder; add by to the contents of the
modulo p, adder.

Step n-2: Add a,.p to the contents of the modulo p,
adder and output the result, s, (x); add
by-2 to the contents of the modulo p,
adder and output the result, s,(x).

Step n-1: Subtract s;(x) from s,(x) in a modulo p,

adder, producing the desired result t(x).
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Quantization by t(x) produces equally spaced intervals. 1If
unequal intervals are desired, some additional computations may be
required to map the t(x) values into a reduced set. Modular reduc-
tion of t(x) may also be required to obtain its modular representa-

tion, unless p; 1s the smallest of the n moduli my.

3.4.4., Choice of Moduli

From a glven set of n relatively prime moduli my comprising

an RNS, any given single modulus can be chosen as p,, and any

remaining modulus can be chosen as p,. The designation of p, and p,
determines the size of the modular adders required in the computa-
tion of t(x) but, since these adders are required in any event, it
should not influence the choice of p; and p,. The selection of p,
is primarily influenced by the particular quantization desired;

» the larger p; is, the more flexible are the choices for the ultimate ;{.:{u,u
i quantization. On the other hand, 1f p, is the smallest of the n ::h;; :
| moduli, it may be possible to avoid modular reduction of the quan~ i:::::::

tized values. PROR]

The size of the ambiguous range in each block is determined by
the choice of the q s. It is less than (but of the order of)

(n - 3)Q, whereas the block size itself is p,Q. The larger the
value of p,, the greater the error~free portion of each block. It
may, therefore, be desirable to choose p, to be the largest of the n
moduli, but this choice is not critical. However, p, should

probably be somewhat larger than n - 3.
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3.4.5. Conclusion

A method has been given for providing quantization within a
residue number system from values (almost) anywhere in the range of
the system into the range of a single modulus. An alternative, of
course, is to perform a translation into a mixed radix number system
of each value x to be quantized. This calls for a roughly equiva-
lent amount of work (n - 1 table lookups and subtractions), but does

- not in itself produce the desired quantization, requiring a further

: division (or equivalent operation) upon the translated value, and a
possible reconversion of the result to RNS. It is felt that there
is a definite advantage to remaining within RNS for this computa-
tion. This rather gross quantization appears to be appropriate for
mapping the results of local distortion computations into a small
range suitable for performing the DTW shortest path calculations

- within RNS.

The method can easily be extended with the addition of wmore
modular adders to allow quantization to the range of a subset of the
modull rather than to the range of a single modulus. To map values
from range M to range ﬁk = pP1» Py, +++» Pg-1s Where our RNS
. moduli have been divided into two sets with k and n-k members,

2 respectively, we replace (3.10), (3.11), and (3.12) by

k
- X = 1ilpilx/pl'pi - PAp(x) (3.22)
» n-k . .
- =k q I-x/q1 lq; = QWq(-x) (3.23)
k n-k
= ~ A ? ~ - ~
o (x) 111 pilx/pylp, + Y ail-x/qilqy (3.24)
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and replace p; and p, by ﬁk and pg, respectively, in equations
y (3.15), (3.16), and (3.17). To calculate s, (x) and t(x) in RNS, we
o simply get a modular representation in terms of the pj. Thus, we
use k-1 adders to calculate s;(x) and t(x), and one more to

o calculate s, (x).
= 3.5 RNS IMPLEMENTATION OF THE SHORTEST PATH ALGORITHM

Although a somewhat large range is required for an RNS
implementation of the Itakura-Saito distortion function calculation
(as will be seen from the discussion in section 3.6), the shortest
N path calculation itself can be successfully performed in an RNS of
S much smaller range. Two types of potential overflow must be
= considered. First, the magnitude comparisons of steps 3 and 4 of
s the revised shortest path computation of section 3.3 are to be
performed in the largest residue channel. An overflow will result
if the difference, in absolute value, between the cumulative path

distances under comparison exceeds half the largest modulus

employed. Second, the cumulative distances themselves are

represented by residues in all channels used. An overflow results

:
)

ot

if the cumulative distance for the presumed best path exceeds the

»
..,

range of the RNS. This is a serlous error, generally leading to a

S

recognition error, for the resulting path score will be much lower

than its true value.

We consider first this latter overflow possibility. Under
weight function 3 of equation (3.2), the cumulative cost for any
A path caanot exceed the number of reference frames. While alterna-
j tive weight functions can give higher costs, the most expensive
3 weight function we have employed results in paths whose cumulative
Y

cost cannot exceed the sum of the number of test frames and the

number of reference frames. Since the longest utterance in our test :{f‘f‘




$. ib‘

library consists of 72 frames, an RNS of range 144 or greater
suffices for the shortest path computation (under one-bit quantiza-
tion of distortion values). In a typical simulation run of sixty
test cases agalinst the entire library, the largest path score
produced was 46, resulting from matching a 72-frame “four"” and a

70-frame "five."

We plan to employ the two largest moduli from the set used for
the distortion calculations as an RNS for the shortest path calcula-
tions. For most of our simulations this has been the pair of primes
73 and 71, providing a range much greater than needed for this

computation.

The first type of overflow, though less harmful, 1is much more
likely to occur, and care should be taken to ensure that the first
residue channel 1s of sufficlent size. Table 3.7 shows the number
of occurrences of errors of the first type for various choices of
£NS2 for the DTW path computations. In all cases shown, the corre-
lation and Itakura-Saito distortion function computations were
performed using an RNS1 composed of the five prime moduli
{73,71,67,61,59}, and quantization of the distortion values was
performed in two stages, first to the range (0,72), and then to a
single bit (match or no-match) using a threshold value T = 16. The
last column of the table shows the recognition error rate for
simulations performed using our sixty-word test set consisting of

different productions of the ten digits and "oh" (The setting of the

global constraint always caused one error (l.7 percent) among the ;ﬁ?‘*3?

sixty test cases).
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For the last two RNS {7,5} and {5,3} the RNS2 range 1s exceeded
much of the time by the cumulative distances. For the remaining
cases, the range 1s never exceeded by the cumulative distances. The
results displayed in table 3.7 support the hypothesis that 1little
harm results from occasionally overflowing the largest modulus in
the path comparisons, provided that the number of overflows 1is not
excessive. No degradation in recognition performance was observed
until the largest modulus was reduced to 11, when the number of
overflows exceeded 12000. No overflows occur when the largest

modulus is 25 or greater.

Table 3.7

Number of Overflows of First Modulus and Recognition Error Rates
for Various RNS2 Choices for DIW Calculations - One-Bit
Quantization of Distortion Values - RNS1 = {73,71,67,61,59};
Threshold = 16

Moduli Number of Overflows Recognition Error Rate
25,23 0 1.7
23,21 8 1.7
21,19 44 1.7
19,17 314 1.7
17,15 364 1.7
15,13 976 1.7
13,11 4557 1.7
11,9 12390 6.7
9,7 38323 25.0
7,5 110438 61.7
5,3 294523 95.0
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3.6 RNS RANGE AND SCALING

The Itakura—-Saito distortion measure calculation has the form

dyg = scalar + Jryu, (3.25)
i

The range of the RNS to be employed must be sufficient to contain
the end-product of this calculation. Occasional overflow of the RNS
by the calculated distortion function would probably not cause much
harm; frequent overflow could affect recognition accuracy adversely;
constant overflow would destroy the information contained in the

distortion measure and render it useless for speech recognition.

We assume that the test correlation coefficients r,, are com-
puted in RNS. It is possible to perform some scaling down of the
test utterance sample values before calculation of the r,. The
reference inverse correlation coefficients are normally small frac-
tional values, and must be scaled up before conversion to integer
values and RNS representation. Since this conversion will entail

truncation error, it must be performed with some care.

If the test input sample values are scaled by the factor Z’k,
then the r, values are scaled by 2=2k, If then the reference
inverse correlation coefficients are scaled up by a factor 2h, the
"scalar" must be scaled up by a factor 2n~2k, The end result is
that the distortion function is scaled up by 2h-2k,  gor example,
if we scale the test input sample values by 272 and the reference
inverse correlation coefficients by 231, the result is to scale the
227,

distortion function by Since we have seen (figure 3.7)

unscaled Itakura-Saito distortions of the order of 23, we would

230

expect to need an RNS range of about to contain this calcula-

tion.
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In the RNS simulations reported in section 3.7, twelve-bit ¢$~
fnput sample values were used for the test utterances. After
windowing (Hamming window) and RMS normalization, these were recon-~ g’%
verted to integer values and clipped at +2047. Before conversion to MR
RNS, these values can be scaled down a little, but not much or they {5»{5

will incur truncation ervors large relative to their size.

We looked at the unscaled inverse correlation coefficlents.
The largest values (for 12-bit inputs) tend to lie in the range 10-8 gﬁr
to 107>, These must be scaled up before conversion to integers and
RNS. We would probably like to scale these up by something like 108
to 10° to make them comparable in size to the unscaled test correla-
tion coefficients, but must take care that the resulting scaled
distortion values not exceed the RNS range more than occasionally.
In the next section, we show simulation results employing various
scalings for the five-modulus RNS (73, 71, 67, 61, 59), with range
approximately 1.25 x 109, or about 1.16 x 230,

3.7 SIMULATION RESULTS FOR IMPLEMENTATION OF DTW ALGORITHM IN RNS

3.7.1 Simulation Test Set

In this section we describe the results of simulations to
analyze the performance of an RNS-based DTW speech recognition
system, such as that illustrated in figure 3.8. In all simulations,
the Itakura-Saito distortion metric was used. All simulations were
performed using a limited-size single-speaker library consisting of
sixty utterances from an eleven-word vocabulary (the ten digits O -
9 and "oh”). The same set of sixty utterances was used as the test

set. Scoring a success required that both the best and second best
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guesses be the correct text. Tie scores, which would result in fi\f\*
o

ambiguity, were counted as failures. The sixty test cases always
resulted in at least one failure which was caused by the setting of
the global constraint and not by the RNS implementation or the quan-
tization of Itakura-Saito distortion values. A conventional imple-
mentation, running with full range distortion values, would have
made the same error, as the global constraint eliminated from
consideration all reference patterns, other than that identical to
the test, with same text value in this one case. For most of the
simulations the RNS (73, 71, 67, 61, 59), with range approximately
230, was employed. 1In the remalning parts of this section, the
effects of input scaling, distortion function scaling, quantization

threshold, and RNS range upon recognition error rate for this simu-

lation are described.

3.7.2 Effect of Input Scaling on Recognition Error Rate

Figure 3.10 is a plot of the recognition error rate versus the
input scaling employed for a fixed Itakura-Saito distortion function
scaling by 227, (Of course, as the input scaling changes, the
inverse correlation coefficient scaling is also changed in a comple-

mentary way to keep the distortion scaling constant.) Input scaling

appears to have little effect on error rate until the scale factor
reaches 2~%. Test input values in the 12-bit range probably should

not be scaled down by more than 23,
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Figure 3.11 is a plot of the recognition error rate versus the

Itakura-Saito distortion function scaling employed for a fixed input
scaling by 272, (Of course, as the distortion function scaling

changes, the inverse correlation coefficient scaling is also changed

Lt.EEEEN ¢ ¢t

in a complementary way to keep the input scaling constant.) Not
shown is the 90 percent error rate obtained for a distortion func-

tion scaling by 223, The high error rates obtained for the cases
»' 25
2

and 22% reflect insufficient scaling of the reference inverse
correlation coefficients; the high error rate obtained for a distor-
tion function scaling by 229 reflects overflow of the RNS by the

distortion calculation.

Another view is presented in figure 3.12, which shows the
recognition error rates obtained for various combinations of test
input scaling, distortion function scaling, and inverse correlation
coefficient scaling (any two of which may be set independently).
Acceptable performance was realized for certain combinations result-
ing in a distortion function scaling of 227 or 228, 1t is expected
that improved performance would result if the RNS range and distor-

tion function scaling were both increased together.

LA I Y A A MG O

3.7.4 Effect of Quantization Threshold on Recognition Error Rate

Figure 3.13 shows the effect of the choice of the quantization

threshold employed for the second quantization, i.e., from the range

M

of the modulus 73 to a single bit, upon recognition error rate. For
" these simulations the input values were scaled by 273 and the

distortion function was scaled by 228, A threshold of 16 gave the
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best performance, but over a fair range the error rate does not
appear to be especially sensitive to this choice. (The results

contained in figure 3.12 were all obtained using a threshold of 12.)

3.7.5 Effect of RNS Range on Recognition Error Rate

Figure 3.14 shows the effect of RNS range upon recognition
error rate, with a constant scaling of the Itakura-Saito distortion
function values by 228, Test input values were scaled by 23 and a

quantization threshold of 16 was used. Three different residue

number systems were employed: (73, 71, 67, 31, 29), with a range of
approximately 228; (73, 71, 67, 31, 59), with a range of approxi-
mately 229; and (73, 71, 67, 61, 59), with a range of approximately
230, The first RNS gave an error rate of 100 percent, the second an
error rate of about 40 percent, and the third an error rate of 1.7

percent. Clearly, the range is important. The RNS range must be

3

']

sufficient to contain the scaled distortion function values most of
the time.
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SECTION 4 TR

SYSTOLIC ARCHITECTURE FOR RNS IMPLEMENTATION padaln Y
!f:&l;m

This section discusses the implementation of the autocorrela-
tion sample computation and dynamic time-warping (DTIW) algorithm.
For the former, a linear systolic array is presented which allows
pipelined computation of the autocorrelation coefficients, while
accepting a continuous flow of input speech samples, without

requiring the insertion of zeros between adjacent frames.

For the DIW algorithm, a two-dimensional pipelined systolic
array of processing cells is discussed. Operation is pipelined for
both the distortion value and the path metric computation, yielding
the score for a pair of test and reference utterances at every step

of tbe operation.

Both arrays are well-suited for RNS implementation, as will be

discussed.
4,1 AUTOCORRELATIOMN COMPUTATION

Let x = {xm, m > 0} be a set of equally spaced and appropri-
ately windowed samples representing the speech signal. We consider
a finite portion of the signal corresponding to a test utterance and

partition it into overlapping segments of M samples each as shown in

figure 4.1. The 2-th segment is denoted x(%) = {xél),o < m < M-1},
and the shift between segments is denoted by A. -
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From each segment a vector E‘Q) = (rél), ooy rgl)) of P+1

autocorrelation coefficients given by

M-1
SOR
m=0

-n

xS xS h) (4.1)

is to be extracted.

The values of M and A that we Implement are 180 and 80 samples
respectively. With these parameters, at most three segments overlap
at any time, and hence three correlators will be needed if the

correlation vectors are to be computed 1n a pipeline.

Figure 4.2 shows three correlators which switch the input data
stream on and off precisely at the beginning and end of their re-
spective segments. Thus, E(l) is computed by correlator 1, 5(2)
by correlator 2 and 5‘3) by correlator 3. When the first sample
of segment 4, xgh) = x35, appears, all samples of segment 1 have
entered correlator 1, so it is ready to receive segment 4. Care has
to be taken so that in correlator 1 samples from segment 4 do not

mix with those of segment l. This can be accomplished by the linear

systolic architecture which we now describe.
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4.2 LINEAR SYSTOLIC ARRAY FOR AUTOCORRELATION COMPUTATION

Figure 4.3 shows a linear systolic array composed of P + 1 pro-
cessing cells and P + 1 delay elements forming the output register.
The input samples enter into the leftmost and rightmost cells and
are passed along to the next cell to the right and to the left,
respectively. At each step every cell forms the product of its two
inputs and adds it to its contents. After all 180 samples have been
operated on, the autocorrelation coefficients will be in the cell
registers and at that point they can be passed down to the output
register and circulated out to the right.

A detailed example with 5 cells (P = 4) is developed at succes-
sive times in figure 4.4. Input samples are interleaved with zeros,

and the left input enters the array first, from the left, so that it

meets the first sample from the right input at cell 0. The figure
shows the state of the array at consecutive time instants. As the
signals progress through the array, sums of products

(2)

accumulate in each cell, with the computation of r,” “taking place
in cell n, 0 < n £ P.

Figure 4.5 shows the last few samples of a segment, followed by

zeros. At the end of the process, the n-th autocorrelation coeffi-

cient resides in cell n, 0 < n < P, at which point it can be fed out
serially in the manner already described, or in parallel (tech-

nically violating the systolicity of the operation), 1f needed.
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In pipelined operation, samples of a new segment may (depending
on the values of M and A) enter the array before the computation of
the present segment”s autocorrelation vector has been completed, and
a cell may receive inputs from both segments at the same time, in
which case they should be ignored. This can be taken care of by
attaching a control bit to the first sample of the left 1input seg-
ment and to the first sample of the right input segment. The left
control bit appears at any given cell when the last term in the sum
is being computed and it instructs the cell to ignore subsequent
inputs, both from the left and from the right, until the control bit
in the first sample of the new segment coming from the right
appears, Instructing the cell to output 1ts contents, clear its
accunulator and resume operations, as the computation of the corre-

sponding coefficlient of the new segment begins.,

Figure 4.6 illustrates the interplay of the two control bits.

AT
. e

The old segment 1s labeled x4, X;, ..., Xy-1, and the new segment

L

)
»

Yo» Y1s s++> YM-1+ The samples carrying control bits are

N
I
.t

circled. The arrows emerging from the bottom of the cells indicate

‘V)l
v

that the result has become available.

The equations governing the operation of each cell are shown in
figure 4.7. The left input is indicated by a subscript 1 and the
right input by a subscript 2; the time index is n and is shown in 10,
parentheses. The corresponding control bits are C;(n) and C,(n).
The quantities u(n) and s(n) are state variables. The variable u(n)
is used in the operation of the control bits; it is initially a zero
and it changes 1ts value every time a control bit appears. The
result 1is that u(n) = 1 precisely when the cell is computing, and
u(n) = 0 between the computations of consecutive segments, when the

cell is ignoring its inputs. The variable s(n) stores the partial

sums and r(n) is the output.
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4.2.1 RNS Hardware Concept

ol s

Appendix A discusses the fundamentals of residue number

% systems.

= Consider implementing equation (4.1) in an RNS with prime

moduli p;, py, «.., pg, and range M. First, the input must be

3 converted to residue form. Then, for each k, equation (4.1) is

_é computed modulo pr. This requires one set of correlators like the
. one in figure 4.2 for each modulus. The output, the residues of the

o autocorrelation coefficients, are then used for the computation of

the local distortion.

.. The configuration of the correlator using 2 residue channels is
shown in figure 4.8. For each channel, a copy of the control bits

8 ¢y and ¢y, must accompany the inputs.

Figure 4.9 shows the structure of each correlator cell. Each
cell uses one mod p multiplier and one mod p adder, six data regis-

ters, a few gates and switches and some control logic which controls

N the output flow.
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The detailed designs of the modulo p adders and multipliers, as
well as the binary-to-residue converter, were carried out by MITRE”s
Integrated Electronics project to implement a transversal equal-
izer. They developed a logarithmic mod p (p 1is prime) multiplier.
To multiply two residues a and b modulo p, their logarithms base o
(where a 1s another fixed element of the field) are computed. The
two quantities are added modulo p and the inverse logarithm of the

result is then computed. Symbolically,

log,AB = log,A + log,B.

Figure 4.10 shows a block diagram of the multiplier that was

developed under the Integrated Electronics project.

A great savings is realized if the logarithms of the input
signals are computed before they enter the array, for then only the
inverse logarithm needs to be computed in each cell. This idea was
used by MITRE”“s Integrated Electronics project to implement a trans-

versal filter.

To select the moduli we assume a frame length of 180 samples,
an LPC model of 13 poles and no zeros, and input speech samples in
the range [—28,28]. An upper bound on the absolute value of the
size of the autocorrelation coefficients is then given by 180(28)2,
or a range of about [-22“,22“]. The distortion values will then lie

-256,256], which 1s required to contain the dot

in the range |
product of two feature vectors. However, it was determined by simu-
lation that, for virtually all inputs occurring in practice, the
required dynamic range is only [-233,233], which is spanned by the

five seven-bit moduli 103, 107, 109, 113, and 127.
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4.3 SYSTOLIC ARRAY FOR DTW COMPUTATLONS

Once the correlation vectors for the test segments have been
computed (and the logarithm of the process gain, if the
Itakura-Saito distortion function {s used), the DTW computations can
be carried out in a pilpelined two-dimensional processing array. It
is assumed that the inverse-autocorrelation coefficients ( and
logarithm of the process gain) for the reference segments are
available in a stored reference library and need no computation

durlng the speech recognition processing.

The DTW computations, as noted in section 3, separate iato
computation of the distortion dtj between the ith test segment and
jth reference segment and the actual path metric computations asso-
cfated with the dynamic programming algorithm to find the metric of
the shortest path.

The local distortion computation (for the Itakura-Saito metric)
fnvolves formation of a scalar product between the test and refer-
ance vectors of correlation and inverse correlation values with the
addition of a constant term dependent on the logarithmlc ratio of
the process gains, followed by quantization within RNS as discussed
in section 3. The dynamic programming algorithm uses the quantized
distortion values in a decision-directed algorithm that preserves
only the best path metrics at each iterative step. As long as the
distortlon values that are needed in the path metric computations
ate computed in advance of their need, both the distortfon and path
metric computations can be carcied out in the same systolic array.
Sfuce the distortion values are either absorbed into the path metric
conputattions or discarded as they are used, the computation can
progress through the array as a wavefront leaving empty cells in its

wake to provide a fully pipelined capability.
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Below we describe the flow of these computations in a two-
dimensional array of only a few cells for purposes of illustration.
The architecture described is readily extrapolated to a larger

array.

4.3.1 Computation of the Array of Distortion Values

Once the test utterance has been partitioned into n overlapping
segments, the jth segment being represented by a vector r(j),
1 <j<nof P+ 1 autocorrelation coefficients of the test segment,
and the reference utterance has been partitioned into m segments
represented by vectors u(i), 1 <1 { m, of P + 1 inverse-autocor-
relation coefficients of reference segments, an m x n grid is formed
with the distortion (cost) dij at each grid point (i,j) being the
scalar product of r(j) and u(i) plus a constant term dependent on
the logarithm of the ratio of the process galns for the Itakura-
Saito distortion function. The DTW algorithm computes the least
cost among paths between grid points (1,1) and (m,n), the cost being
the sum of all distortions djj encountered along the path. For
the Ttakura-Salto distortion, we will concentrate first on the
pipelined calculation of the scalar product of the autocorrelation
vectors and will show later how to incorporate the constant term in

the architecture.
After computation of a distortion value, it must be quantized

to a lower range. The details of such a quantization were discussed

in section 3.4.3.
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In order to pipeline the distortion computation, the correla-
)5y and o®

computational cells as shown illustratively in figures 4.11 and

tion vectors r (i) flow into a rectangular array of
4.12(a) through 4.12(g), where a time sequence of data flow is
presented for a square array of nine cells. Figure 4.13 shows the
arrangement of the various distortion functions contained in the
array at a given instant of time; the superscripts in both cases
refer to the collection of a set of segments associated with a

particular utterance.

Since the path computations for each pair of test and reference
utterances will proceed as a wavefront making computations on
successive diagonals, the deletion of previously used distortion
values allows pipelining to the extent that distortion functions
associated with a number of utterances equal to the number of
diagonals can be present at any given time, with the path computa-

tions being pipelined along successive diagonals.

In figures 4.11 through 4.13, vectors on the same diagonal
carry the same superscript and correspond to the same test or
reference utterance. The data proceed in straight lines (test
vectors horizontally and reference vectors vertically) through the

array, and at each time instant each cell (i,j) computes

P
O Py = T W @Mui )

n=1
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Figure 4.13. COMPUTATIONAL WAVEFRONT
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the scalar product of Efk)(j) and 3‘2)(1), the vectors appearing at
{ts inputs, to form the principal term in the Itakura-Salto
distortion. 1In this manner, all cells on any given diagonal perform

computations on the same pair of test and reference utterances.,

Performing the distortion computation In RNS suggests a sepa-
rate grid for each modulus. The ilnputs to the kth array are the
residues modulo py of the feature vectors, u(i), E(j)’ from which
the residues modulo py of the local distortlons dij are compu-
ted. In this operation the different arrays work independently and
in parallel. The need for quantization, however, will require

communication of the residue values prior to path computations.

Figure 4.14 is a simplified block diagram of the computation of
the local distortion in a residue channel modulo p. As the
components of the test and reference correlation vectors enter the
multiplier, the modulo p product of corresponding components
accumulates. A flag bit can be attached to uy(i) to clear the

accumulator at the beginning of every new segment.

With our 13-pole model, the computation of

12
u(i) « r(j) = 7.0 up(i) rq(j) mod p (4.2)
n=

requires 13 multiplicatfons and 12 additions, which, 1f performed in
a pipeline, require 13 1, + 1215 seconds, where 1, and 14
are the times, 1n seconds, required for one residue multiplication

and one residue addition, respectively.
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4.3.1.1 Quantization of the Distortion Values

Next, the scalar product of u(i) and r(j) is quantized to a
smaller range spanned by three moduli. Quantization operates on all
residues of the scalar product. (A block diagram of this operation
is given in figure 4.15). At this point, the constant terms
logo% and 1ogcg2which may be attached to r(j) and u(i)
respectively before entering the array, may be added, converted to
the three-modulus RNS and added to the quantized version of Eﬁi) .

r(j) to complete the computation of dij'

The computation of —1ogc% can be performed outside RNS in
parallel with the computation of r(j). The term logoé can be
stored with u(i) in the reference library. A method of logarithm

generation is given in [10].

Quantization involves all the residues of u(i) « r(j), so
communication between residue channels is required. Each residue of
u(i) - Eﬂj) is entered into a table, so In our five-modulus RNS
there are five tables. The outputs of the first two tables are
called Q; and Q,, and 1lie in [0,p;-1] and [O,pz—l], respectively.
Each of the other three tables outputs two symbols, a, by, k =
1, 2, 3, where ay is in [O,p;-1] and b, is in [O0,p,~1]. Then

the quantities

s; = Q + ) ag mod p, (4.3)
k=1
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Figure 4.15. RNS QUANTIZER
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and

3

89 = Q + | by mod p, (4.4)
k=1

are computed. After that, s, is reduced modulo p; and

t = lSl - 52' pl (4‘5)

is computed. This quantity is then entered into a table whose

output {s the quantized product.

For one quantization, five table lookups are first performed,
in parallel, to produce eight quantities. These are separated into
two groups of four quantities, and all four quantities in each group
are added by a tree adder. In this manner s; and s, are produced.
Next |-szlpl is computed from s, by a table lookup. Finally, an
addition is performed to compute t and one more table lookup is done
to give the final result. The time required to perform one
quantization is then 3t + 314 seconds, where 1, is the time
required for one table lookup and, as before, 1y is the time

required for one residue addition.
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Once the distortion values are available for use, a dynamic o

&

T

programming algorithm is used to find the shortest, or least distor-

"
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tion, path through the DTW grid. Since the distortion values are

.”‘.

quantized to a few levels, as discussed in section 3, the path com-

et
Y]
o

putations can be carried out in RNS with path differences generally

,
.
AN

small enough to be contained within the largest modulus of the RNS,

occasional overflows not causing catastrophic harm.

To discuss a systolic architecture for these computations it
will be convenient to temporarily set aside the pipelining of the
distortion computations discussed in section 4.3.2. For the present
discussion, we will assume that all the distortion values for a
particular pair of utterances are available in the array and
describe the pipelined data flow of the path computations in the
:j same array. It will then be evident that both the distortion and
: path computations can be synchronously pipelined in the same DTW

array.

The optimality principle of dynamic programming states that 1f
a path of minimal cost between two points a and ¢ passes through
point b, then the portion of the path that goes from point a to
point b is optimal too, among paths from a to b. In accordance with
this principle, in the DTW algorithm, cell (i,j) computes the cost
of the optimal path starting at (1,1) and ending in itself. This is
done iteratively, all cells along the same diagonal computing at the
same time. Cell (1,1) computes d,, and calls it c,;, the minimum
cost to get to cell (1,1). Next the cells on the second diagonal,
cells (2,1) and (1,2), compute d,; and d;, respectively and add it
to ¢y; to produce cy; and cy,. Then the cells on the third diagonal
do the same thing. This time cell (2,2) considers two possible
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cells from which a path can emanate, namely cells (2,1) and (1,2)
and computes cy; = dp, + min(c;,,cy;). Global constraints will
restrict the number of cells to be considered, while local

constraints will restrict the number of paths to each cell.

In general, according to type 3 local path constraints dis-
cussed in section 3, each cell considers at most four cells from

which a path to it can emanate, i.e., cell (i,]j) computes

cij = diy + min{eg-2, 5-1 + di-1,§> ci-2,§-2
+ di_l)j’ ci-laj_l’ Ci-]_,j—Z)' (4.6)

For this to be possible, the four path costs must be available
at the input of cell (i,j) when the cells on its diagonal are ready
to compute. This is clearly possible since the four path costs are
on diagonals that have already completed computation. In the physi-
cal array all data move horizontally or vertically, and diagonal
communication--e.g., the communication of cj-1, 4-1 from cell
(i-1,3j-1) to cell (i,j)--is done through cell (i,j-1). At each step
on such a path, the data advance one diagonal. All data being
operated on, or computed, corresponding to one pair of utterances,

lie on the same diagonal.

From this observation, it follows that the distortion values on
a given diagonal need not be available until the computational wave-
front has reached that diagonal and this can be managed by the
pipelined scheme already discussed for the distortion computations.
Hence, the DTW can be completely pipelined, with each diagonal
handling one pair of utterances. From cell (m,n) the scores of the

pairs of utterances compared will then emerge one-by-one.
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Figure 4.16 shows a typical cell in the DTW grid. The computa-

tion of ¢ is done in two steps so that actually only three quan-
13

tities previously computed are fed to each cell (81-1,j is the
winimum of cj-3 j-1 + dj-1 j and ¢33 j-2 + di-1, ). Also,

ci-1,j is not used by cell (1,3j) but is passed along from cell
(1-1,3) to cell (i,j+l). Similarly, ¢i-1,3-1 is passed to the

cell above, after it has been used by cell (i,j). Finally, eij is
computed and passed to cell (i+l,j). Thus, in addition to inputs
r(j) and u(j), which get passed along after their scalar product is

computed, each cell accepts four inputs and produces four outputs.

Figure 4.17 shows a sequence of data flow for the path
computation between two utterances in a 3-by-3 DIW array. For
purposes of illustration, the local distortion values di,j are
shown to exist throughout the array prior to being used in the
computation, but it 1s clear that only distortion values on the
diagonal performing computations are required, and hence that the

process can be pipelined.

Each cell receives four path welght symbols (two from the cell
below and two from the cell on the left) and, likewise, outputs four
symbols. The generation of these quantities is shown in figure
4.17. As the computational front progresses, each computing
diagonal has available all the required inputs and computes all

outputs required by the next diagonal.

The complete process, the aggregate of local distortion compu-

tation, path computation and pipelining, is shown for two adjacent

pairs of utterances in figure 4.18.
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The path computations are carried out In several residue
channels, but the local path decisions, which require the computa-
tion of two minimums, are made using only one residue channel. The

decisions are then communicated to the other channels.

The required operations are
¢{,j = dij + min(eq-1, 3-1,¢1-1, 3-2)

€i,j = min(’éi,j,dij + Ei"l,j)'

Each minimization involves one residue addition and two seven-bit

table lookups. Computation of cy 4 then takes 21g + 21¢

seconds.
equation

Ei,jr S0

The sum indicated inside the parentheses in the second
can be performed in parallel with the computation of

that the computation of i, j contributes 2ty + 21

seconds.

A block diagram of the cell operations that follow the compu-
tation of djj is given in figure 4.19. The two dashed boxes
contain the decision making portion of the minimizations, and only
one set of these is required per cell. Each residue channel
contains a set of selectors, which receive the two quantities belng
minimized, as well as the decision signal which carries one bit of

information.
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4,3.3 Interconnection Concepts

A solution to the seemingly difficult wiring problem required
by the communication between the (typically 50-by-50) arrays corre-
sponding to the different residues is to define the basic cell so
that it contains all the residues, as in figure 4.20. The wiring
indicated in the figure could be carried on two levels, with all
horizontal lines on one level and all vertical lines on the other
one. All path computations could be performed in the central, and

largest of all the cells.

All lines indicated are one-bit lines, with all data being
transmitted serially at high sﬁeed. Each one of the five data lines
on each side of the cell would be used to shift in 13 seven-bit
symbols, with the central one shifting two additional seven-bit path
cost symbols. This gives a total of 20 data lines, and, on any
line, no more than 105 bits would have to be transmitted during one
iteration. Assuming a 20 MHz one-bit shifting rate between one chip

to another, this could be done in about 5 microseconds.
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4.3.4 Estimate of Throughput

The diagram in figure 4.21 shows the DIW cell operation on a
time scale; the times indicated are based on the following table of

estimated basic operation times.

7-bit residue adder Tg = 84 ns

7-bit residue multiplier Tp = 300 ns

7-bit input, 1l4-bit output T¢ = 100 ns
table look-up (PLA

1-bit shift Tp = 50 ns

The duration of the cell operating cycle is determined by the input
data shift, which in turn is determined by the input-output pin
limitation. 1If one cell is to occupy one VLSI IC, then two pins are
required for VDD and ground, two pins for a two-phase clock, at
least 20 pins for data and some more for testing. A 40-pin DIP
could be used, which would have a few additional pins that could be
used to speed up the data flow. An alternative is to put nine cells
in a 3-by-3 array on an 84-pin PGA (Pin Grid Array), in which case
the minimum number of required data lines would be 60. From figure
4.21 we see that the other operations can be performed in 1371, and
1715 seconds or about 5ps, so we conclude that one DIW output (one
comparison between a pair of utterances) would be produced every
Sus. For a (fast) speaking rate of ten utterances per second, a
20,000 word library could be scanned for every utterance. The
process could also be speeded up by doing more than one multiplica-

tion and addition in parallel when forming the scalar product of
u(i) and r(J).

ettt

- v o % v 8
RPN

xeope

-
' ®
0
.

.

S LA

L

‘l"‘"
Py
(.

A
L4

s

o

.
v
]

.
Lot

ey

. Y - . . et "“.' .-'O‘A'l‘ L -~
et T N e e N et en o m a T o N



SNOILVHIAO 1730 M10 30 3INOIHSS 12w ainbyy

LG + Si9 + “ugy

St4lig

AN-_:-_O.T_::OV upw —

g +hg

__U TI._

ul ejep

L4tgy

P

gy

L
¥

a6

dn-y00j a|qe} indino ug-py yndu 1ig-2

uonesidnnw snpisas ng-2 '
uonppe anpisal q-2 S:
Wys ug-|

JNIL NOILYHIdO

—|
1

d
L)

166°8L-VI

e a3 TaTady Yag,

~
MR R

Lot o

\ -

V-

138




RN e NG ANERIE SNC P IR S S S iR ARl o i A AR AN N RSl S G M i S NN el s i AR S g S 6 8 ahe She e g6

-
A
L4

4.4 SUMMARY

2, n_ =

s JRE N

Figure 4.22 depicts schematically a DTW array with pipelined

inputs. The test inputs are provided by a bank of three correlators
as discussed previously, while the reference vectors are taken from
a stored library. The commutator sorts the auto.orrelation vectors
produced by the correlators, and the cells shown serve to provide
the appropriate skew to the input data of the DIW array. It {is
assumed that the logarithms of the process gains (computed sepa-
rately and converted to RNS form using the three moduli which
provide the range for the DIW computation) are included with the
correlation vectors for implementation of the Itakura-Saito metric.
Finally, the DTW output must be converted to a weighted number
system, possibly in mixed radix form before the different scores are

normalized and compared.
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SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 SUMMARY

In the previous paragraphs we have reported on our work over
the preceding year to demonstrate the effectiveness of the combina-
tion of RNS computations and systolic array architectures for the
improved implementation of speech recognition algorithms, improve-
ment being assessed with regard to throughput and complexity of
hardware implementation. From our work we conclude that RNS does
indeed have utility for implementing a dynamic time-warping word
recognition algorithm driven by autoregressive spectral analysis and
the Itakura-Saito distortion computation. We showed how the combi-
nation of RNS and systolic arrays could be used to effectively

implement:

The autocorrelation estimates used in autoregressive

(or LPC) spectral analysis;

Computation of the Itakura-Saito distortion values;

Dynamic time-warping least-cost path-metric computa-

tions.

The incorporation of the distortion computations with the path-
metric computations in a pipelined two-dimensional systolic array
was shown to have a favorable impact in providing a high throughput
for the most computationally intensive part of the recognition

algorithm.

141

o .- 3 T T
*a SRR N

e T e e e e e e e e e T e Nt T
PO P S S WL N s L W WS W )




e T R W T R L R R R R T S S Y R R T S T ooy

These Investigations were supported by the development of a
computer simulation which was used extensively for experimentation
with an eleven-word vocabulary, three to six different productions
of each word being stored in a reference library to accommodate
variations in utterance of the same word. From our experiments, we
developed a means of reducing the dynamic range of the path-metric
computations by quantization of the distortion values within RNS. A
good means of narrowing the range of distortlon values seems

critical to successful RNS implementation.

A number of different distortion functions have been studied
and reported in the speech processing literature; many of them are
variants of the Itakura-Saito metric, and thus based on LPC analysis
[19]. Experimental results have largely shown, in our opinion, that
different metrics of this sort are roughly equivalent, although a
ranking based on small improvements could be contemplated [3]. Much
of the interest in LPC stems from its success in modeling the speech
production process in a nolse-free environment, but it is known that
the all-zero linear prediction model breaks down in the presence of

additive noise [19].

From our point of view, not only must the distortion measure
produce satisfactory discrimination in a narrow range of values, it
must also be suitable for RNS computations. For speech recognition,
the purpose of the spectral analysis and distortion computation is
to distill the information contained In the speech waveform into a
small set of data suitable for low—error discrimination between
distinct word patterns, and not to preserve information needed for
high-grade speech synthesis. Thus, the LPC methods may be unneces-
sarlly stringent for speech recognition purposes, while weak in the
presence of noise, and at the same time imposing the need for high-

precision, and therefore large dynamic-range, computations.
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While we remain convinced by the results of our work that RNS o x
implementation has high potential for speech recognition, we are N
also convinced that substantial improvement in reducing the gross
dynamic range of the distortion computations, without sacrificing
discrimination ability, 1s required before RNS implementation will
be accepted as a truly practical or attractive alternative to
coaventional architectures that use floating-point computation.

This will require a re-assessment of the distortion function used to
support the DTW computations. Some alternative distortion function
computations that could be considered in a follow-on effort are

h discussed briefly below.

- 5.2 ALTERNATIVES FOR DISTORTION COMPUTATION

In our work, we chose the LPC analysis and Itakura-Saito
distortion for the reasons discussed in section 1, hut perceive the
need to experiment with other distortion functions in any follow-on

effort. It is particularly perplexing that the path-metric

computations can be successfully carried out with very coarse
quantization of the distortion values, while our implementation of
the Itakura-Saito metric shows a need to maintain a much larger

range for 1its computation.
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5.2.1 Itakura Distortion

AN

One variation of the Itakura-Saito distortion function, some-
. times called the gain-optimized Itakura-Saito distortion, was origi-
nally recommended by Itakura [21]. 1Its distinguishing feature is
the use of a logarithmic function of the ratio of the linear predic-
tion residuals. It provides a measure that is roughly proportional
to the logarithm of the Itakura-Saito (or maximum likelihood)
distortion. As such, it has the desirable attribute of compressing
the range of distortion values. Hardware implemeqtation of this

method has been reported in the literature in which the logarithmic

. distortion values are confined to the range of a few bits and in
! which the path metric computations are carried out with 16-bit
: fixed-point arithmetic [10]. The key to that implementation is the

simplicity of a logarithmic quantizer based on a geometric series
representation of the logarithm in a2 form that is amenable to hard-
ware implementation (with roughly 200 logic gates). The referenced
;: : work points out the feasibility of compressing the range of the
Itakura-Saito distortion values (computed with 24-bit precision),
but it is not directly of value to our RNS implementation. Since we

would like to pipeline the distortion computations in the same RNS

[k Dt LA A

systolic array that is used for the path-metric computations, we
would need to Iinvent a logarithmic converter in RNS, and that 1s not

a likely prospect.
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5.2.2 Euclidean Distance Measures

Squared Euclidean distance, or equivalently mean-squared error,
while traditional in signal processing work, has tended to be
rejected in recent speech research on the subjective grounds that it
is not sufficiently meaningful for representing what are thought to
be the requirements of auditory perception. It 1s pointed out that
the ear needs only to recognize the random process producing the
waveform to within some accuracy and does not need to accurately
reproduce the specific waveform, and that demanding a small
mean-squared error in a speech system will often require far more
bits and accuracy than the human ear requires [21]. The success of
the LPC methods can be attributed to the corresponding distortion
measures (such as Itakura-Saito”s) that measure in a probabilistic
sense the closeness of the original and reproduced processes or

models rather than the actual waveforms.

Mean-squared error, however, cannot be rejected on the grounds
that it is too forgiving. 1If we base our analysis on power spectra,
or equivalently autocorrelation analysis, then Euclidean distance
may still be useful to discriminate spectral patterns for purposes
of automatic speech recognition. For RNS implementation, we prefer
squared Euclidean distance since it avoids the need for explicit
sign detection which would suggest leaving RNS for that purpose.

The utility of this measure will then depend on our ability to
contain the range of values to a practical size. Two approaches

that use squared Euclidean distance will be discussed briefly.
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5.2.2.1 Log Spectral Deviation

One of the oldest distortion measures proposed for speech is
formed by the Lp norm of the difference of the logarithms of the
power spectra. Assuming the spectral envelopes have been sampled
and scaled logarithmically, the L, norm is simply the squared Eucli-
dean distance between the vectors of logarithmic spectral samples.
One of the traditional ways of providing the spectral envelopes is
by means of a bank of constant-Q filters appropriately spaced across
the speech spectrum, the output of each filter“s power being sampled
in time and scaled logarithmically [22]. Such a filter bank is
probably best implemented with analog-sampled switched-capacitor
active filters rather than in the form of digital filters; thus we
would not propose to use RNS for the filter bank, but would convert
the log-spectral samples to RNS code for computation of the squared
Euclidean distortion in a systolic array of the type described in

section 4.

Another means of performing the filter—bank analysis would be
to perform a discrete Fourier transfsrm (DFT) of the windowed speech
samples with a moderately high resolution (perhaps 256 to 1024
samples per frame), subdivide the samples into appropriate bands
over which the complex DFT samples are to be squared and summed,
compute the power in each sub-band and convert to logarithmic form.
With the exception of logarithmic conversion, all of the processing
could be carried out with RNS. Logarithmic conversion would require
reconversion to a weighted number system (which would probably be
needed for spectral normalization anyway) followed by reconversion
to RNS for the distortion computation. These processing steps would
clearly be more complicated than the computation of the autocorrela-

tion samples described in section 4, but the operations would need
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to be performed only once for each test segment and the method

should be worthy of consideration for future effort.

5.2.2,2 Direct Autocorrelation Analysis

Although the autocorrelation coefficlents of the windowed
speech samples could be transformed by DFT to provide a representa-
tion of the spectral envelope, it may be better to use them directly
for spectral discrimination. As shown in section 2, all of the
processing for estimating LPC coefficients and computing the
Itakura—-Salto distortion 1s carried out in the time domain, without
any specific need for the frequency spectra. While LPC analysis is
used to approximate the spectral envelope, as represented by the
all-pole linear filter model, it is essentially a linear transforma-
tion of a subset of autocorrelation coefficients. The assumption of
an all-pole model of the speech production process allows this sub~
set of autocorrelation values to accurately approximate the remain-
iag ones in accordance with the autoregressive nature of the model.

This is the basis for obtalning a good spectral approximation.

If the LPC model 1s adequate, then for the purpose of automatic
speech recognition it may be satisfactory to employ the subset of
autocorrelation coefficients used in LPC analysis directly in a
squared Euclidean distance computation. For RNS implementation,
since it would be appropriate to work with normalized correlation
coefficients, it would be necessary to leave RNS to carry out the
normalizat{on and then reconvert to RNS for the distance computa-
tions. But, such a technique for distortion computation might
actually be simpler to {mplement than the Itakura-Saito distortion

and there would be no need to solve the normal equations for
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construction of the reference library. Also, if the number of

samples used is extended beyond the LPC subset, then the dependence

on the assumption of an autoregressive model is diminished.

5.3 FOLLOW-ON RECOMMENDATTONS

In any follow-on effort we would propose to experimentally
study the feasibility of using a squared-Euclidean metric, rather
than the Itakura-Saito distortion, for RNS implementation of the
distortion computations. The spectral envelope and direct auto-
correlation methods discussed above would be a starting point for
such investigations. A critical issue i{s the dynamic range imposed
by the square—-law measure, particularly when comparing dissimilar
words. We must recognize, however, that occasional overflow of the
computation range, in which RNS converts the statistical outliers to
values lylng in a valid range, is probably tolerated in the path
metric computations, particularly since these events are more likely
to occur while comparing dissimilar words whose best DIW path
metrics should be relatively large in any case. It would be quite
surprising if the overflows associated with bad word matches were to
conspire to produce a path metric smaller than that of a proper

match.

[f either of the methods discussed were to prove viable in
reducing the range of distortion values significantly, then it would
be appropriate to contemplate actual VLSI hardware implementation of
the simplified DTW systolic array, requiring an increased attention
to the details of combinational logic design of the cells of the

array in a follow-on effort.
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Finally, the experimental data base should be expanded beyond

the eleven-word vocabulary used in this study, and many controlled
experiments performed, before definitive conclusions regarding RNS

implementation and actual parameter selection can be made. These

are the elements of a follow-on effort we expect to continue in

FY 1985.
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APPENDIX A

RESIDUE NUMBER SYSTKEMS

An RNS with range M = p;py...py, where each py Is a prime
integer, called a modulus, is a number system represented by the
integers in the interval [O,M-1] in which addition and
multiplication of two elements x and y is defined as the remainder
on division by M of their sum and product, respectively. Under
these operations, the usual sum or product of x and y is obtained,
provided that the result lies in the same range [0, M - 1]. The
main advantage afforded by RNS is that the complexity of the
operations (measured by the size of a table required to implement
the operations, for instance) is lower than that of the
corresponding integer operations because of the ability to decompose
the processor into a set of independent processors each performing

operations modulo py [23].

In RNS an integer x in the interval [0,M-1] is represented by

{ts residues modulo the pg, i.e.,

X = (X], Xp, see, %) (A-1)

where x equals the remainder obtained when x is divided by

pk;lt follows that, for each k, 0 < x} < px. Every number

between 0 and M - 1, {nclusively, has a unique RNS representation,
and every 2-vector (xl, Xgy wes, “2) with O S_xk < px corre-
spoads to a unlque lateger x with 0 < x < M. Furthermore, the sum
(product) of two integers x and y in the RNS can be obtained by
adding (multiplying) corresponding components xy aad yj, modulo

the correspondiag py.
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- In this manner, any operation requiring only addition and -
k) o
f: multiplication, the input and output ranges of which are known, can 52
be implemented in RNS. Since intermediate overflow is harmless, F
Iy provided that the final result is contained in [O,M-1], it follows

that the range of the system is solely determined by the range of

the output.

Figure A-1 illustrates the architecture of a general RNS
processor. After the input has been converted to RNS form, the
function is implemented by an independent set of processors, each
operating in a different residue channel. Usually, the RNS output
is converted to a weighted number system, but linear operations

could be continued in RNS representation.
A formula relatiang a positive integer x ¢ [0, M-1] to its RNS

. representation (%}, X,, ..., %), is given by

3
x = ¥ xiMiMil mod M (A-2)
i=1

where My = M/pj and M;lis the inverse of M; modulo py,
-1
i.e., an integer M; in the range [0, pj-1] such that

MiMI1 = 1 mod pg (A-3)
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For example, if p; = 3, p, = 5, and p3 = 7, then M; = 35,
M, = 21, My = 15, M]' M;1 = 1, and M;1 = 1. Now, if x = 34,

then (x;, x,, x3) = (1, 4, 6) and the formula gives

il
N
-

]
]

1«35 2+4+21«1+6¢+ 15«1 mod 105

244  mod 105 (A-4)

34 mod 105.

This method of reconstruction, illustrated by (A-4), which is
an example of the Chinese Remainder Theorem, 1is useful for
theoretical purposes. A more efficient method for obtaining a
weighted number representation of an RNS-coded number is to convert

to a mixed-radix representation using the moduli of the RNS as

radices.

The mixed-radix representation of an integer x in [0, M-1] is
given by

£ i-1
x= 5 ¢ T pjy (A-5)
1=1  j=l

where the (., called the mixed-radix coefficients, satisfy

D e pp. I equatton (A=5),

L pj (A-6)
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For a three-moduli RNS, equation (A-5) can be written as

X = c3pap; t ¢ypy t ¢y (A-7)

Note that from equation (A-3) we have

¢y = x mod p,
c; = (x-cy)/p; mod p,

(A-8)
c3 = (x = (x=¢;)/p,)/p, mod p,

Equation (A-8) can be generalized to obtain the mixed-radix coeffi-
cients of a given number in an RNS with an arbitrary number of

moduli. A refinement of the resulting equations yields

cp = %3 mod py
_ =1
cy 2 p; (%9 = c;) mod p,
- ‘1 "1 - ,_5‘, - .
c3 = pp (p) (x3 - ¢;) = ¢y) mod pj (A-9) i
SO
. \{\'.\'_‘-‘_‘.
-.}_\‘,\',x“_-.
. “w ..\'_ -.'.‘_‘-
o \n-*-..: -
. -.‘;x';\',. <.
~ W

I | -1
c, = pl_l(pz_z(...pl(xz Cylees CQ-Z) cz_l) mod Py

The coefficients ci are derived iteratively by starting with

¢y = x; and computing ¢y by subtracting cy-j from the result of
the previous iteration and multiplying the difference by Pzil’ all
modulo py.
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Finally, the evaluation of equation (A-5) can be done recur-

sively using Horner”s scheme:

)
*
o
d

b
{

h aﬂ"“.

x = (... ((clpz-l + Cz—l)pz—Z + CR-Z)p£—3 ces tcolpy t o (A-10)

N}
Rt
D
[ I T

f("l"l'

- Efficient VLSI hardware structures that perform pipelined

binary-to-residue and residue-to-binary conversion for a
five-modulus RNS have been designed by MITRE”s Integrated
Electronics project for the primes (31,29,23,19,17) representable
with five bits.
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Rome Air Development Center

3
% RADC plans and executes nesearnch, development, test and

selected acquisition programs in support o4 Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering suppornt within areas of technical competence
48 provided to ESD Program Offices (POs) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sur-
vecllance of ground and aerospace objects, intelligence data
collection and handling, information system technolcgy,
Lonospheric propagation, sclid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility.
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