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Abstract psge

ABSTRACT

The ISIS system transforms abstract type specifications into fault-toierant distributed impie-
mentations, while insulating users from the mechanisms whereby fault-tolerance is achieved. This
papcrduamthen'amfomsﬂomthatmusedvnthmlm methods for achieving improved
performeance by concurrenty updating rephatea‘dan,andum-lcvelmuthatmsewhmIS.'Su
employed to solve a fault-tolerant distributed probli<n. We describe a small set of communication
primitives upon which the system is based. These achieve high levels of conmrrency while
mpectmg ordering requiremeats impose.! by the caller. Finally, the perfonazace of a prototvpe
is reported for a variety of system loads and configurations. In particulsr, we demcustrate that
pcrformmofarepﬁcatedobjeainISlScanequaloxexceedthatofamnreplimtedobjec!.

Keywords: rFault tolerant cistributed computing, replication, concurrency, atomic broadcast, resi-
lient objects, performance.
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7 i. Introduction

1 Our basic premise is that the complexity of fault-iclerant distributed programs precludes
) their design and developmeut by typical programmers. This comglexity seems to be inherent: sys-

ﬁ tems achievs fault-tolerance through redundant data or pro.essing, and the distributed agrc..nent
. and synchronization protocols needed for this purpose are hard to implement. Moreovesr, high

levels of concurrency are required for reasons of performazce, making it difficult to reason about

. S
PR

correctness in the presense cf failures. Alternatives to direct implementation are rieeded if fault-

tolerant systems are to become widely available.

.
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The ISIS project seeks to address this need by automating the transformation of fault-
intolerant program specifications into fault-tolerant implementations, which we call resilient objects.
In [Birman-a} we first reported this work; the present paper extends the previous discussion, pro-
viding considerable additional detail and performance data. ISIS works by replicating code and
data while ensuring that the resulting distributed program gives behavior indistinguishable from & -
single-site instantiation of the original speafication. Although many systems have been built to
assisi in the construction of distributed and fault-tclerant sofiware, including ARGUS (Liskov-b],
EDEN [Lazowska], CLOUDS [Allchin], LOCUS [Popek], TABS [Spector], and the TANDEM svs-

tem [Bartlett], ISIS goes furthest in insulating users from the details of {ault-tolerant program-

¥ ming. Moreover, ISIS places few restrictions on programs. In contrast, other systems that exe-

cute fault-intolerant specifications fault-tolerantly, such as CIRCUS [Coope’] and AURAGEN
[Borg], are restricted to programs that are are fully deterministic given the spediication. Tn paxtic-
ular, concurrent calls to the program are only allowed if the calling sequence is fired. Thiis sort of
restriction effectively disallows the design of a fault-tolerant service that ./ill concurrentiy be used
by more than une caller - the primary use to which resilient objects will be put.

Rather than implementing a spedalized distributed protocol for cach algorithm aseded in the

system. /SIS has been built using a communication layer supporting a variety of broadcast” proto-

'
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cols. While broadcast primitives have been known in the literature for some time [Schneider]
[Chang] [Cristian], the primitives we describe are integrated with a failure detection mechanism
and provide unusually flexible delivery ordering properties. Within ISIS, algorithms are specified
as sequences of calls to these protcools, making it feasibic to reasan about the correctness of our
code. ISIS would have been far mors complex, and our code more error prone, had it been built
directly from a lower-level comnumnication mechamsm such as asynchronous message passing.

It is sometimes argued that fault-tolerance is best app-oached by employing spedially
designed redundant hardware. We believe that sofiware fault-toierava: would be @ issue even if
this were done. Crashes often stem from user error and obscure bugs in the operating system and
asunciated anmort wftware, or in high level application software. Moreover, even spedal
hardware depends on a statle power source snd air ovaditicong, and may bave to be shut down
from time to tme. Thue, fuilires seem insvituble in any distrituted system, and it is important to
minimize the resulting disruption. Moreover, we will show that the problem of detecting and
reacting to failure is, in its essencs, not very different from that of tolerating more benign eveats,
such as online reconfiguration and synchronization in parealle] algorittms. By developing a tech-
ﬁology for software fault-tolerance, we also gain mechanizms for addressing these other problems.

The structure of this paper is as follows. The next section introduces resilient objects,
reviews the object spedification language, and shows how an application program can be con-
structed using ISIS. The example presented, a distributed calendar service, required just a few
days to design, code, and debug. At a more technical level, we then show how ISiS compiles a
specification into a fault-tolerant implementation using the communication primitives mentioned
above. The paper concudes by discussing the performance of our communication primitives,

sorae sarmyle objects, and of the overall system as the load and configuration are varied.

Hare, the term “‘broadcast’ refers to a software protocal for sending infarmation from a single scurce to a set of
destination processes. Such broadcasts might take advantage of an ethernet broadceast capahility, but can be implement-
ed using other interconnection devices as well.




2. Resilient objects

ISIS extends a conventional operating system by introducing a new programming abstraction,
the resilient object. Each resilient cbject is an abstract type that provides some scrvice at a set of
sites, where it is represented by components to which requests can be issued using remote pro-
cedure calls (RPC) [Birrel]. A typical ISIS application is constructed by developing conventicnal

b front-end programs and iaterfacing them to one ar more such objects. The programmer can also
m define new, specialized, resilicn objects if suitable oncs do not aieady exist. A resilient objct
can be used for several purposes: as a specialized database for fault-tolerant informatio storage,
as a source of status information through which processes monitor actions underway at remote
" sites and detect failures or rocoverizs, and as an intermediary for controlling and synchronizing
% distributed computations.

et

. The translation of a non-distributed specification into a resilient object is based on several
i assumptions about the environment in which ISIS will be used and what resiliency should mean in
= this context. These are addressed below.

o 2... Fellurz sssumptions

ISIS runs on usters of computer systems communicating over a local arca network. The
network should not be subject to partitioning. Since local networks are often twilt from ethernets
and token rings, ccasisting of interconnecied clusters of sites, this assunption is reasonable. In
case partitioning does occur, ISIS has been designed to pause when fewer than half the sites in a
cluster are known to be operational, thus aveciding incorrect actions. Issues relating to reliabie
operation in the presense of pactitioning failures are being addressed by some of our cclleagues
[E] Abbadi-a] [E] Abbadi-b). We assume that the only way sites fail is by halting (izashiag)
[Schlizting]; tolerance of wmore malicdous failures wouid iead 1o rapid increases in proiocsi cusis ai
many levels of the system [Strong]. Failure detectic n and a collection of fault-tolerant broadcast

protocols are implemented in software on top of the bare network.
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2.2. Properties of resillent ohjects

Throughout this paper, the term resiliency is used to denote k-resiliency. A k-resilient object
satisfies the following properties:

1. Consistency. The external behavior of an is like that of a non-distributed one which executes
requests sequentially and to completion, with no iterleaving of executions. An object may
also implement distributed synchronizstion operations that introduce additional consistency pro-
perties.

2. Availability. Let f denote the number of components of an object that fail simultaneously. If
f s k, then opzrational components continue to accept and process requests,

3. Progrems. If / < k, then operations are executed to completion, despite failures.

4. Recovery. Because SIS supports replication, two cases can be distinguished:

s. Partlal. If f < k, a failed component restarts autcmaticaily when its site recovers.
b. Total if f > £, failed components restart automatically when all the failed sites recover.

It should be stressed that k-resiliency is a much stronger property than resiliency of the sort
discussed in [Svobodeva] or [Liskov-b]. In both of these papers, resiliency denotes the ability of a
system tc remain in an internally consistent state during normal execution and to sutomatically
recover into such a state after a {ailure has been resolved. Our approach reflects the ad-itional
assumption thst data will be replicated, making it feasible (and desirable) to continue to provide

sesvices even though a fadure hes occurred.

1.3. Logleal executon mode!

We deaded to model the execution of operations on reslient objects by transactions
(Eswaren]. Although this precludes suppo:ting some intercsting ‘‘non-transactional” resilient
types, it is convenient because it permits a programmer to specify resilient cbiects in a straightfor-
ward menner, using a lock-based concurrency contro} algorithm to enforce tae transactional

abstraction. A non-transactional model would force the programmer to become much more

Page 4
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involved in the details of syndironization.

Specifically, the execution of each operation gives rise to a transaction, which begins (impli-
citly) when the procedurs specifying the operation is invoked and commits (implicitly) when that
procedure returns @ result. A procedure can also aborr, which explicitly causes its actions to be
rolled back. Since procedures can cajl one another, our model is essentially that of Moss' nested
rurcactions [Moes], slthough & wider variety of lock types are availabic than Moss discussed (Sec.
s.1).

Liskov has observed [Liskov-b] that a machanism is needed for initating top-level transac-

tions from within other transactions, in order to avoid severe inefficiency. A top-level transaction

is one that was invoked by a non-transactional caller; eny transaction invoked within some other

transaction is said to be a subtransacrion, and comurits or aborts relasve to its parent transaction.

Liskov points to a case in which the garbage collected during the execution of a subtransaction

- must be reinstalled if its caller aborts, and argues that this inefficdency can be avoided if a mechan-

ism for initiating a top-level transaction from within otber transactions is evailable. Top-level
Fp- transactions have other uses as well, notubly because they permit increased concurrency when tran-
b

sactionally updating a concurrently accessed data structure. Here, an update may affect both the

.
r

linkage fields of the data structure itself and the contents of some record, and it is desirable to
view these as independent events. By using top-level transactions to update link-fields, other ~on-
currently executing operations arc permitted to “pass through™ a node while it is still being
updated, without waiting until the update trameaction has terminated. Operations that try to
acvess the record contents. however, block until the update tramsaction commits or aborts. For
these reasons, we included a top-level transaction mechanism in /SIS.

Arnother possibility was to support an w3do mechanism, which would permit the programmer
to associate an arbitrary undo action with each operation. If it becomes necessary to abort an
operaticn, the corresponding undo action is executed. Unlike the system-levei abort feature now

supported in ISIS, an undo mechanism could be used to back out of actions that have external
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" side-effects. However, abort is rare in our prototype, and we decided not to implement vado

b actions at the present time.

3. Odlect specification langnage and system interfuce

In this section we review the language used to spedify ISIS obiects, e interface provided to

exterpal calies. A command language is also availabie, and is used to contral tho ISIS sys?em
itself during execution, but is not described in detzil here.

3.1. Raallient object:s

The k-resilient types are a special dass of abstract data types [Liskov-a]. Each resilient object
instantistes a resilient type end ix sccessible to hoiders of & capability on it; these are open in that
they can be freely copied cor stored [Dietrich]. Resilient type specificotions have the folluwing
parts:

1. Declarations for the resilient data encapsulated by the type, consisting of one or more

indefinite-length arrays cr heaps® of resilient records.
: 2. Type definitions for the parameters and results of operations.

3. Procedures for manipulating resilient data. These can be given attributes such &s creare (exe-
cuted when an instance of an object is created), entry (accessible to external callers), and read-

only (does not update resilient data).

Resilient procedures ae coded using a version of the C programming language. All of C is
available, as are many operating system calls. The language has been angmented to include a

multi-tasking facility for internal concurrency and to provide several new stateruent types:

'Sequentially allocated data structures tend to have “hot spots’ which are frequenty accessed, reducing pocential
concurrency [Gawlick]. The heap management facility supports dynamic allocation and deallocation of resilient recards
within transactions, avaiding a commen source of hoe-spots.  Heap management is dane using per-transaction allocation
and free lizcs, which are updated when a heap allocation or tree is done and when a subtransaction commits or aborts.
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S.

1/O statemenss. Resilient data is accessed using read and write statements, which can also
specify a lock to acquire before performing the access. By forcing the programmer to use a
specisl notation when accessing resilient data, the most natural programming style tends to
minimize those operations ~ and this is also the most effident way to use ISIS.

Remiote procedure calls. A flexible RPC mechanism is provided, including nested, rucursive,
and asynchronous RPC's, as well as RPC's in which the function to call is a paramster. It
showld be ncted, however, that there are same tecimical restrictions on the use of recursive and
asynchronous RPC’s that stem from the model, hence it is not dear whether typical users will

make use of cither feature. RPC is also used to as an interface to most /SIS s'stem functions.

Abort resurn. A normal return from & resilient procedure i3 intespretsd as a commit of the sub-
transaction that was being executed. In an abovt reagn, the effects of the procedure (and any
that it has invoked) are erased.

Cobegin. A set of branches (statements, which do not contain return or abort statements) are
specified for concurrent execution. The cobegin terminates when all its branches terminate.
Each cobegin branch executes as = task within a single address spacc. A more ficiible cobegin,
which might provide some form of explicit control over concurrent processing at multiple sites,
is under consideration. The statement is currently used t» keep 2 computation a-tive while
sume branch is blocked (¢.g. when acqriring a lock). 25IS assumes that the branches of a cobe-

gin do not compete for locks on the same data items.

Toplevel. The statemeat is caccuted s a top-level transaction.

3.2. Festures for monitoring remote activities

Although resilient objects provide a simple mechanism for concealing replication and distri-

bution, they will also be used to explicitly synchronize and control distributed computations. As a

resuit, features have been added to the langusge that permit a computation to pause vntl an

update to a replicated variable has been received, or until one of the sites at which an object

e A
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resides failure or recovers. A predefined SITES variable can be read to determine the full set of
sites at which an object resides. A VIEW variable gives the subset of SITES that ac currently
~oerational. By combmg these mechanisms, it is easy to build objects with very sophisticated
distributed functionality.

2.5. Vaclitizss for ase in programs external to ISIS

Non-resilient clients ateract with resilicat objecis through an interface that resembles the
one used by objects to communicate with one ansther, by issuing RPC calls to objects on which
they hold or can obtain a capability. /SIS supports a globally accessitle name space object, which
has a well-known capability, and can he used to look up a desired object using & symbolic name.

Normally, each .PC issucd by a client executes as a top-level transaction. A client can,
however, explicitly combine & series of requests into a transacuon. To do this, W progrumn first
invokes a BEG'N procedure, then perform: the wperctioms, and then invokes COMMIT or ABORT.

A client can only have one active trausaction at 2 time.

If a client fails whilc a transaction iv ° progress, the d.fault action is '0 terminate the tran-
saction. Observe that the semantics of termination in this case differ from thos2 for abors. This is
because an abort is explivtly executed by the computation to be aborted, whereas when a dlient
fails it may be iecessary to interrupt a compritaticrn that is still in progress, or blocked (perhaps
deadlocked). To this end, ISIS supposts a software kil} signsl, which can be issued by a client pro-
cess, and is automatically issued when a dlient fails before terminating a transaction. Kill cannot
be caught or ignored, and icriinaics a ransaction by haiiing it and its subtransactions and then
aborting ther:.

Transactional sys 'ms that lack a mechanism for ensuring continued progress despite failure
generally impiement a variant of kil! to termiuate transactions that e interrujted when a aite at
which they executed fails (this gives rise to the orphan terminanon problem discussed in [Moss)
[Liskcv-b]). Software built using these systems must avoid irreversible actions, like muvement of

a mechunical arm or dispensing cash from a machine, because the only time such an action can

Page 8
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s safely be taken is during the top-level commit (when kil can no longer occur).  Unfortunaiely,
this tactic makes it hard to implement certain types of operation, for example on¢ that moves a
mechanical arm while ‘mouitoring and reacting to ssnsor feedback. Here the desired behavicr
could cnly be obizined by breaking the cperation into a seri-~ ~f separate transactions. The pro-
grammer weuld then implement his own algorithms to cope wiw: failures, a nonitrivial underta' ‘ng.
Becausc it uses a progress mechanise:, ISIS never invokes kill automatically unless a client-level
transaction fails. Thus, an operation such as tlus is ¢ssily implemented within e resilient object.
Clearly such an object must be deadiock-free, but this is a minor restriction (for exampfe, locks

can simply be acquired in 2 fixed order).

4. Programming & ISIS

This section summarizes the deveioment of a distribuced appointinent and calendar system,
whi~) was undertaken to exercise ISIS and to gain some programming experience using resilicat
objects. The celendar combines data storage with a dynamic monitoring crpability: uscrs who
chase to Aisplay their schedule on a terminal are shown changes as they occur.

To develop the calendar program, we began by designing and implementing a conventional
single-user program with the same functional decomposition that we intended to employ in the
fault-tolerant distributed version. This program contains an interactive display module, a com-
mand interpreter, and a collection of procedures for managing the calendar data structure. The
data structure consists of an array of per-user infcrmation (FUI) blocks and, for each user, a
linked-list of appointment schedules. The command interface permits a user to define a new
group (a set of users and a reason for their meetings) or schedule a meeting, and can provide
advice to a user who wishes to schedule a meeting with some group but is unsure vhat time to
pick. A graphic dispiay of e nser’s schedule is ciso provided.

Having coronleted this‘iniﬁai versicn of the calendar, we madif ed the calendar ditabase into
a resiiient object. The object supperts operations to fetch or update the PUT for a user of group,
fetch or update the entry for a wexk, and to pause until a change to the schedule for the current
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urzs is detected (this enables the program to refresh the display when the schedule is changed by

some other user}.

Commymn&c;lmedmbemaighﬁmdwimplm. We divided commands into
two types: read-only roquests and update requests. Each is ezecuted 2s a transaction. Locking is
dcae on just the PUI blocks, and thesc ae locked in a fixed order, a strategy which is deadlock
free.

For reasons of performance, it was desirable to cache information in the interactive froni-
end programs. A varsion number was therefore assodated with each PUT block ansd incremented
by update transactions. All calendar infcrmaticn except the PUI is cached. Each sime a F1JJ block
is referenced, any invelided cache entries for that user are discarded. In practice it seems likely
that cache entries will normally be accurate simply because calendars are consuited moze fre-
quexntly then they are upsated,

To summarize, we found it easy to implement a nontrivial <“stributed program using I3i5.
The result is not of production quality, but the remaining issues are in the calendar interface, not
the feasibility of implementing the calendar, and the program wes never subject to concurrency
related bugs or problems with failure handlirg and recovery. This wouid ~zrtainty not have been
the case in a development starting with the basic UNIX interprocess commnmication primitives. In
fact, our program was converted by the author from a single-site version into a distributed one
within a few days. Moreover, the performance of the resulting system is reasonable: althcugh
there may be a delay of several second; before information from an complex update is reflected ir
remote copies of the calendar, users of the system are unaware of this, since th=ir local calendar
reflects updates rapidly. Ir effect, the program gives a speedy isponse and then completes the
the request in the “backgriund”.

5. Runtime issues

In this secticn we turn to the runtime mechanisms that underlie the implemeantation of a resi-

lient object. These are nontriviai because of the many “physi ."” eveats that can occur during
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sxecuticn. Our treatment begins by surveying the algorithms without addressing d=tails relating to
their implementation using broadcast primitives. Sec. 5.2 introduces the primitives actually
employed within ISIS, and Scz. 5.3 then shows how some of the algorithms of Sec. 5.1 can be effi-
ciently implemented using them.

5.1. Fault-tclerant execution of a request

We use the term task to refer to the physical exccution of a requsst by oae of the com-
ponents of a resilient object, designated the coordingtor. Componeats are identical: any can be
coordinator for any request, which tends to distribute processing load. The components that are
passive for a request are designated es cohorts and serve as backups - one takes over if the ccor-
dinator fails. Recall from Sec. 2.2 that a task must 3atisfy several properties to produce a correci
logical execution. We now consider these properties individually.

5.1.1. Consistency

Concuir oy couttol [Dermsiein] is not automatic in ISIS, because it is difficult to infer an
effident concurrency am'rol algorithm without !mov:ledge of the semantics of cporations. There-
fore, ISIS requires that the programmer provide a single-site concurrency control algorithm, which
is transformed into a distributed one. The class of conawrrency control algorithms supported are
the. conflict serialization algorithms [Papa], of which 2-phase locking is the be:: inown and easisst
to cods. Two lock classes are supported (see below); witnin each dass, read, promotable
(exciusive) read, previous committed versicn read, an-i write locks con be requested.

The previcus committed version 1ead-lock is unususl, and deserves further explanation.
Tocks of this sort permit a read-only transaction to exccute concurrently with one thet is updating
some of the Jata items it accesses. Denote such a read-only transaction R and an update transec-
tion with which it confiicts U. If R requests a read previous lock on some item v, that lock can be
grarted even if U already has wriie-locked x, and the subsequent read request by R sati-” =d from
the last committed version of . Should U attemp io commit before & does so, U st now be

foresd to wait untit R commits and releases its locks. Then, if R reads other records that U is
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updating, it wiil consistently see the versions committed before /7 began ex<:uting. In effect, R
has been serialized before U slthough it started execution efter U, and neither R nor U is forced
toblockunﬁlUrcad)éitseommitpoim. A similar form of cuacurrency control was described in
[Weihl], where Aybrid atomiciiy was introduced to capture the behavior of a speaal “timestamped”
concurrency control method that also permits read-only transactions to run »sing previous versions
of data items. Since many transections are read-only. previous copy locks should be very valuable
in systems such as ISIS.

The two iock classes supported by ISIS are:

1. Nested 2-phase locks. When a subtransaction commits, the lock is retained by its parent tran-
saction [Mose]; when the top-leve! commits, it is released.

2. Local 2-phase locks. When the transaction or subtransaction hclding the lock commits, it is
released.

Nested 2-phase locks are easiest to work with, and probably suffice for most users. On the
other hand, by using local locks in conjunction with top-level transactions, it is poss Je to imple-
raent highly concurrent data structures, and this approach was used successfully within the JSIS
namespace object. The combirnztion of lock classes and types makes ISIS exceptionally flexible at
the level of concurrency control, and we believe that effiaent concurrency coniroi algorithms can
be devised for most objects.

5.1.2. Availability

Availabiiity is satisfied by replicatng the code and data for each resilient object. Since data
accesses are transactional, each item is reyresented as a stack of versions [Moss], replicated at k+1
or more sites. A read-one copy, write-all (operational) copies rule is used when locking or access-
ing replicated data. An item is updated by pushing a new version on all copies of the corresp

ing stack, or replacing the top-most version if one already exists for the transacton cang the

update. Aboert is implemented by popping the top version, and commit by popping the icp two




and thea pusking the first again. The best known alternative to the rzad-one, write-all approach is
to employ & quorum access rule, where both cead and write requests arc satisfied by accessing
multiple copies [Gifford] [Herlihy]. We rejected this because the latency incurred while waiting
for a quorum of responses from remote sites reduces the level of concurrency below tuat which we
attain using the read-one write-all approach, where corzputation can proceed without delay as soon
as the loce! copy of & data item has been accessed (evidence to support this conclusion is given in
Sec. 7). Qurorum methods arc preferable if network partitioning is common, because they
increase availability [Herlihy] [E] Abbadi-aj [E] Abbadi-b], however this is not felt to be an issue

in the environmesi for which ISIS was designed.

5.1.3. Progres

ISIS ensures that operations progress to completion using a transactional chec.point-restart
scheme [Pirman-a] [Birman-b]. Related work on non-transactions! checkpeint and restart appears
in [Toueg](Chandy]. Each RPC i3 i*roadta:; to the operational components of an object, and con-
stitutes an inifial checkpoint. If a coordinator fails while executing the request, one of its cchorts
takes over as the ncw coordinator. It restores its copy cf the object to the state at the time of the
checkpoint, discarding versions of data items that were written by the transaction being restarted
(this requires no commuuicatior. with other components or cbjects). The actions of the failed
coordinetor are then repeated in restart mode in order to reestablish the state that existed at the
time of ihe failure.

When an operation is reissued in restart mode, ii dearly should not be re-executed - other-
wise, the system state could become inconsistent (e.g. if an iccrement were done twice). To avoid
this, the results returned by completed operations are reglicated in addition to the updates they
perform on replicated data. Spedficclly, when a coordinator finishes executing a raquest it broad-
casts tne result to ite cohorts as well as to the caller. The cohorts retain copies of each result

under the TID of the transaction, constituting a final checkpoint. Because the same TID is used

during restart (sce Sec. 5.3 for details), when the operation is reissued a copy cf the retained
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result can be located and retuned (thi« is done by the process that would normally have executed
the request in the callcd object). If none is found, a restart-mods= reguest is rejected. The cocrdi-
nator performing the restart deduces from this that rormal execution shculd resume,

The storage overhead associated with our method is low. Retzined results can be discarded
when the parent of a subtransaction commits or aborts, retaining its own result, or when the top-
level commits. Ca the other hand, since top-level statements are ro-executed during restart, the
results of the top-most action in suc: a statement must be retained. Also, if a resilient object
takes external actions like moving a robot arm, the robot arm must provide a function equivalent
to a retained result -- for example, a way that the device driver can determine the command it last
executed and in this manner identify a duplicated command (a minor restriction since mest devices
of this sort contain microprocessory, ax2 memory).

While restarting, it is not enough for the new coordinator to determine the results returned
by operations that were previously executed. The serialization order must also be the same as was
used befora the failure - otherwise, the values read from resilient data ite:us by the zzw eoordina-
tor might differ from those read by the previous one, ag2in leading to incorsistencies. ISIS
addresses this issue by replicating both reac and write locks, so that after a failure the new coordi-
nator holds ali the locks acquired by the previous coordinator before it failed. Because replicating
read-lock information is potentially ineffident, the approach is to piggyback this data on other
messages that could depend on their existence -- RIC requesty and updates issued subsequent to
the acquisition of the lock. If an RPC or update persists after the crask, the curresponding locking
information persists as well. This information is forwarded to the new coordinator befors it is
informed of the failure, which therefore registers the locks prior to initiating restart [Eirman-b).
The reader may be troubled by the appareniiy complex synchronization requirements of this algo-
rithm: read-locks must be 1egistered before restart begins, and the consistency of the system state

must be muntained cfter failure. We <ow in the next section that thece problems can both be

resolved in an elegant manaer within the communication primitives themselves.




5.1.4. Recovery

If a pa-tial failure occurs, a failed component can recover by discarding its old state and
copying the current state from some operational component, In effect, the components of &a
object act as dynamic backups, eliminating the need for steble (disk) storage. Later, we will show
that the communicatioz primitives can be uted to serialize recovery with respect to other opera-
tions. To tolerate total failure, an object must save checkpoints and committed versions of the
object data on stable storage. When the components that failed last have recovered [Skeen-aj,
they can resume operation from their stable stores; cther components use the partial recovery
method.

Some care is needed in deciding what information should be placed in stable storage, since
this approach will be costly if access to stable. stcrage must occur {requently. For example, con-
sider a request to insert a dara item into a cumplex data structure. The message containing the
request may be tiny, but massive changes to the dara structurc couid resuli. if iSi5 were to
blindly perform these on a stable representatior; of the strusture, performance would be very
poor. On the other haud, if the request itself weze leggad, the object could restart from {ailure by
replaying the request log. By saving periodic backups of the object state and dlesring the log, the
cost of replaving it can be kept small. The cost of updating such a log will be minor in com-
parison with the cost of maintaining the entire object state in a stable form. ISIS therefore pro-
vides the programmer with a tool for maintaining a log transactionzlly. It is possible to log any
RPC requsst. The capability and arguments are written to the log and later can be replayzd by
some other transaction. If a transaction aborts, log entries it has risus are deleted. A conse-

quence is that the performance of the stable storage mechamism is not a bottleneck in ISIS.

§.2. The communicauon subsystem

The ISIS ccinmunication subsystem provides three types of troaccast protocc! for transmit-
ting a message reliably from a sender process to some set of destinations. The protcccls are

atomic in an “‘all or nothing” 2cmsc: if any componeat of o chiect recsivas o maeanca then nnecy
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it fails, all operational components will receive it. Atomic broadcast has often been proposed as a
basic primitive from whick higher level system services can be constructed, and several protocols
for realizing such broadcasts have been reported in the literature [Schneider] [Chang] (Cristias).
Unfortunately, although the number cf packets transmitted to deliver a message is low in the pub-
lished protocols, the latency before message del*very takes place is potentially high in comparison
to average intersite message transit times, primarily because they enforce a global message
delivery ordering in addition to the atomicity property given above: broadcasts are received in the
same order everywhere in the system. Such strong ordering is only needed rarely in ISIS. To
overcome this problem, our protocols achieve varying degrees of order, and have latency that
varies accordingly. Moreover, unlike the previously reported work, our protocols are integrated
with a mechanism: for dealing with failure and recovery at the level of individual processes. We
now summarize our approach, but omit the detailed protocols and corrvectness proofs, which can
be found in [Birman-c]. Fig. 1. illustrates a scenario in which two clients interact with a procsss
group while its membership changes dynamically; the interactions are labeled with the type of
primitive that would probably be used.
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Fig. 1: Two cliznts interact with a process group using the brosdcast primitives.
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5.2.1. Broadcast primitives
The GBCAST primitive

GBCAST (group broadcast) is the most constrained, and costly, of the three primitives. We
will say that the operational components of an object form a process group. GBCAST transmits
information about failures and recuveries to procss group members. A recovering compone 't
uses GBCAST to inform the operational ones that it hss become available. Additionally, whea a
component fails, the system arranges for &8 GBCAST to be issued to group members on its behalf,
informing them of its failure. Arguments to GBCAST are a message and a process group identif-
ier (a capability on the resilient object), which is automatically translated into a set of destinaticns.

Our GBCAST protocol ensures that if any process receives a broadcast b before receiving a
GBCAST g, then all overlapping destinations will receive b before g. This is true regardless of the
type of broadcast b. Moreover, when a failure occurs, the corresponding GBCAST message is
delivered after any other broadcests from the failed process.” Each component can therefore main-
tain & view listing the membership of the process group, updating it when a GBCAST is received.
Although views arc not updated simultaneously (in realtime), all components observe the same
sequence of view changes. Moreover, all components will receive a given broadcast message in
the same view*.

Intuitively, the view represents a logical state in which the message arrived simultaneously at
all available compunents. This may not be the same as the set of operational components,
because some may still be executing the recovery algorithm (Sec. 5.3.2). A component of a resi-
lient object can take advantage of this to pick a strategy for processing an incoing request, or to
react to failure or recovery without running any spedal protocol first. Although these other com-

ponents may not have received the message yet or cbscrved the falure or recovery, since the

A problem arises with this definition if a process p fails without receiving sorne message after that message has
already been deliverad to some otiier process 4: g's view would show o o be operan‘mal; hence, ¢ will assuras that p
received the message. although p is chysically inxzpable of dong so. However, the state of the system is now
eqmvalem o one in vhizh p did receive the rorssage, but failsd befare acdng on it. In effect, there exists an interpre-
tation of the actual system state that is consistent with @’s assuraption.
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broadcast primitives are atomic they will eveatally do so, and since the GBCAST crdering is the
same everywhere their actions will all be consistent. Notice that GBCAST provides an inexprasive
way todctcrminethel&tﬁtethmfaﬂc&pmmgroupmmbmsimplymdead:mvicwon
stable storage; a simplified version of the aigorithm in [Skeen-a] can thus be executed when recov-
ering from failure.

Tk2 BCAST primitive

The GBCAST primitive is 100 costly to be used for general communication between the 1ro0-
cess group members that make up a resilient object. This motivates the introduction of weu'er
(less ordered) primitives which might be used in situations where a total order on broadcast ms-
sages is not necessary. Our secend primitive, BCAST, satisfies such a weaker constraint.  Specifi-
cally, it is often desired that if two broadcasts are received in some order at a common destination
site, they be received in that order at all other common destinations, even if this order was not
predetermined. For example, the ISIS heap fadlity maintains replicated allocation and free lists
for each transaction by transmitting each heap operation to all copies; since the operations ar:
done in the same order ecverywhere, the lists are mutually conmsistent. The primitive
BCAST(msg, label, dests), where msg is the message and lzbel is a string of characters, provices
this behavior. ‘T'wo BCAST"s having the same label are delivered in the same order at all commmon
destinations. A BCAST having the label **' is ordered with respect to all other BCAST's. On ihe
other hand, BCAST's with different labels can be delivered in arbitrary order. This relaxed syn-
chronizaticri results in potentially better performance.

The OBCAST primitive

Our third primitive, OBCAST (ordered broadcast), is wuakest in the sense that it involves
less distributed synchronization then GBCAST or BCAST. OBCAST(usg, dests) atomically gelivers
msg to each operai onal dest so that if one process sends multiple messages to the same destina-
tion, they are delivered in the order they were sent. Delivery ordering is unconstrained if two

broadcasts originate in different processes or are issued concurrently withir: a single process. More
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specifically, if there exists a chain of message transmissions and receptions or local events by
which knowledge could have been trarsferred from the point at which the first broadcast was
issued to the point at which the second one was issued, we consider the broadcasts to be potentially
causally reiast d, and the deiivery ordering will resnect the order of transmission. For causall~
independent broadcasts, the delivery ordering is not constrained.

OBCAST is valuahle iz ISIS because resilicat objects cmploy conarrrency «ontrol algovithms
for distributed synchronization. A comsequence is that if two computations communicste con-
currently with the same process, the messages are almost always independent ones that can be
processed in any order: otherwise, concurrency control would have caused one to pause until the
other was finished. On the other hand, order is dearly bnportant within a causally-linked series of
broadcasts, and it is precisely this sort of order that GBCAST respects.

5.2.2, Other broadcast abstractions

A weaker broadcast primitive is reliable broadcast, which providss all-or-nothing delivery,
but no ordering properties. The formulation of OBC.'ST in [Birman-b] actually includes a
mechanism for performing broadcasts of this sort, hence no special primitive is needzd for the
purpose. Additionally, there may be si‘aations in which BCAST protocols that also satisfy an
OBCAST ordering property wouid be valuable. Although our BCAST primitive could be changed
to respact such a rule, when we considered the likely uses of the primitives it seemed that BCAST
was better left completely crthogonal to OBCAST. In situations needing hybrid ordering behavior,
the protoonis of [Birman-b] could casily be modified o implanent BCAST in terms of O5CAST,

and the resulting protocol would behave as desired.

5.2.3. Synchronous versus asynchronous broadcast abstractions

Many systems exnploy RPC internally, as a lowest level primitive for interaction teiween
processes (this tvpe of RPC should nct be confused with the high-level RPC primitive used to
coiamunicate with and betvicen resilient objects). It should be evident that all of our broadcast




primitives can be used to impleszient replicated remote procedure calls [Cooper): the caller would
simply pavse until replies have been received from all the participants (observation of a failure
constitutes a reply in this case). We term such e use of the primitives synchronous, to distinguish
it frcm from an asynchronous broadcast in which no replies, or just one reply, suffices.

In SIS, GBCAST and BCAST are normally invoked synchronously, to implement a remote
procedure call by cne companent of an object on all tie members of its process group. However,
OBCAST, which is the most frequently used overall, is atmost never inveked synchronously.
Asynchronous 28CAST s sre the source of most concurrency in JSIS: although the deliver order-
ing is assured, trarmission can be delayed to take advantage of piggybacking or to schedule 'O
’ within the system es a whole. While the system canrot deic: such a broadcast indefinitely, the
ability to defer it a little, without delaying some computation by doing so, permits Joz:! to be
smoothed. As observed sbove, although cencurrency is introduced by the primitive, it vespects
the delivery ordeiings on which & computation might depend, and is ordered with respect io

[ failures, sc this concurrency does not complicate kigher level algorithms. Moreover, the protocol
itself is extremely cheap.
| A problem is introduced by our decision tn alow asynchronous broadcasts: the atomic recep-
tion prepecty must now te extended to address causally related sequences of asynchronous mes-
sages. If a failure were to leave a “‘gap” in such a sequence, such that some broadcasts were
| delivered to all their destinations but others that precede them were not delivered anywhere,
| inconsistency might result even if the destinations do not oveelap. We therefore extend the atomi-
: dty property as follows. If prucess ¢ receives a message m from process s, tnd s subsequently
) fails, than the state of + mey depend on any message m’ received by s before it sent ~. There-
‘ fore, unless ¢ fails a3 well, m’ must be delivered to its vemaining destinations. The cost of the pro-
tocols are not affected by this change.

| A second problem arises when the user-level implications of this atomicity rule are con-
sidered. In the event of a failure, any suffix of a sequence of aysnchronous broadcasts could now
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be lost and the sysiem state would still be internally consistent. A coordinator that is about to

g EENEREREMEN - T

send a top-level reply or take some action that may leave an externally visible side-effect will

E‘j therefore need a way to pause untii ali such broadcarts have actually been delivered. For this pur-
e'; pose, a flash primitive is provided within the object specification language. Notice that cocasional
o calls to finsh do not eliminaie the benefit of using OBCAST asvnchronously. Unless the system
5 has bt up a considerable backlog of undelivered brrucsst messages, which should be rere, Sush

will only pause while transmission of the last few broadcasts completes. Finsii is automatically

invoked when a log entry is written.

-
AR I

5.5. Fsulttolersnt impiementstion of selected operstiors
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In this section, implementations are described for some of thz operations that occur most

W,
L]

»

i frequently within /SIS, using the prim tives given above. In the interest of brevity, caly a small
;'.f; subset of ISIS is presented.

bhﬁ

i 5.3.1. Object invocation and reg=zst processing; commit and abort

k-

»:;::: To issue a request to an object, a task first generates the trasaction id under which the

desired operation should be executed. If a non-resilient process is performing the RPC, a new

*

top-level transaction is created and a unique identifier is assigned as its TID. If a task with TID x

*

does a series of RPC'’s, TID’s for the resulting subtransactions are formed by extending x with an
index: x.1, x.2, etc. The branches of & cobegin are assiglied TID's in the same mannez. Finally, if

a ftoplevel statement ie executed, a TID is generated as for a subtransaction but the prefix is
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Cagged as a top-level event.
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Having dctermined the TID, the caller asynchronously OBCAS?™s the RPC to the com-

poaents of the destination object. A capability management fadility transiates the capability into a

T~
Pt 4
M .

list of process addresses for transmission’. The caller then waits for a single reply, which could
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come from any ccmponent of the ubject, or even amive in duplicite because of failures.

"'1 b

o
u_'r;

‘An inexpensive protocal to Mo tain a cache of group addressing infarmation, updadng it if it is {oeed o be our
of dxe during message transmission, is given in [Birman-c].
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Duplicates are discarded

Upon receiving the RPC, a component must determine if it is the coordinator. All com-
ponents of each obpct are statically ordered by site awnber into a ring. A component computes
its ranking as the distance along the riag from the site where the RFC oniginated; the coordinater
is defined to be the lowest ranked operational componeri. This tends to place the coordinator at
the same site as the originator, whick is desirable because it niinimizes the latency incurred before
a result can be returned. The new coordinator returns a retained resiit if one is found. Cther-
wise, it executes the new request and asynchronously OBCAST's the result to the caller and its
wohorts. A cohort watches the coordinator for failure, which it detects by reception of a CBCAST
message, and recomputes the razking if cne occurs, Since all components have the same view
when an RPC is received, and all subsequently see the same sequence of failures and recoveries,
ths computed rankings are mutually consistent. Note tihat all necessary svachronization is pro-
vided by the communication primitives.

Now, consider task termination. For each task, 8 capability list (C1IST) is maintained, con-
taining the capabilities of objects whose components should be irformed when the task commits or
aborts. The coordinator uses OBCAST to asvnchronously scnd a commit or abort message to the
objects in the CLIST. A CLIST is initially empty; a capability is added when an RPC is issued to
an object. Additionally, when a reply is received from a committed subtransaction, the CIIST for
that subtransaction is piggybacked on the reply and merged with that of the caller (unless the sub-
transaction executed in a toplevel statement, in which case its CLIST i¢ discarded when it com-
mits).

On reception, a commit or abort message for transaction T is delayed if some subtransaction
of T is sull active. This makes it possible for a subtransaction to reply to its caller before issuing
its own commit cr abort, a tactic that reduces latency and ensures that at lcast one copy of the
reply will reach the caller (a duplicate might be sent if the coordinator feils after sending tiis reply

but befors sending the commit). After all subtransactions have terminated, retained results
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corresponding to T are deleted, and the local lock manager and version-stack managers are
informed of the event. When a kill is received, if the coorcinator is doing a restart it waits unti
restart is completed {to ensure that the CLIST is accurate). Nince restart is done without blocking,

it Wil terminate. KiB is then forwarded to any active subtransactions, and an abort is perforned.

& 5.2, Recovery from partial faffures

To initiate recovery, a componsnt issues a GBCAST tc the operational components of the
! object to which it belongs. When this messige is received, sy component transfers its state to
E 1'." the recovering one: since tiie states of the cperational cumporents are determined by the messagss
Ei. . they have received, and each has received the same set of messages, all are in the same (logical)
H state. This GBCAST can thus be thought of as a synchronous RPC that returns the current state
E of the vbject and has the side--:iect of modifying the process-group view to include tiie recovered

K- compcnent. The totai ordering of GBCAST with respect to other broadcasts provides all the
B fiecessary synchronization.

B

E 5.3.3. Managing replicated locks

The locking facilities discussed earlier are easily implemented using cur broadcast primitives.
A read-lock is first obtained locally by the coordinator of a computation. Then, a read-lock regis-

E tration message is asynchrorously OBCAST ‘o the other copies of the data item. The coordinator
E" immediately continues execution, as if its reai-lock were already replicated, although the message
Fl may not actuaily have been dclivered anywhere. If the coordinator fails and amy process had
Ez received a message m sent after the lock soquisition, the read-lock will be registered before the
fi{" falure can be “detected” by the cohorts managing other copies of the lock. This follows because
F' the read-lock registration precedes m and iience must be d:livered despite the failize, whereas (by
E * definition) the GBCAST follows m and hence must be delivered after the lock registration.
%’P‘; Because the read-lock registration message is small and asyuchrenous, piggybacking such messages
E' on outgning updates and RPC messages is particularly effective.
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Unlike a read-lock, a write-lock must be granted explicitly by all components of an object,
except in certain special cases® described in [Raeuchle]. Moreover, a write-lock request can be
performed correctly whether or not other broadcasts issued by the computation have been
delivered, heace the request is not subject tc the OBCAST type of oxdering constraint. Note,
though, that if two write-lock requests are issued concurrently (on the same iteit), they could
deadlock simply by being granted in different orders at different sites. This is just the type of
ordering probicii addressed by BCAST. To acquire a write-lock, the requsst is synchronously
BCAST using the identifier of the data item as a BCAST label. If a component fails during tie
protocol, the caller withdraws the partially acquired write-lock and then rerequests it. Since the
read-lock registration message preceded the GBCAST anncuncing the failure, either it is delivered
before the GBCAST, or no site received a message from a failed cocrdisiator after it obtained the
lock. Because of the withdrawal rule, the write-iock is rerequested after the GBCASYT message is
received, so it will be forced o wait if the coordinater held a rcad lock and that lock survived the
crash. Moreover, since BCAST is delivered in the same order everywhere, concurrent write-lock

requests will not deadlock.

5.3.4. Updating replicated data

Read operations are satisfied from the version stack for the local copy of the data item being

accessed. Three implementations are supported for write operations.

Synchronons apdate.

For this method, OBCAST is vsed to synchronously transmit the new value to all operational
components. The method is only used for expcrimental evaluation of ths sffect of asynchronous
data tranvmission on performance, as reported in Sec. 7. Note, however, that if ISIS used a
quorum replication rusthod, both read and write operations would effectively ba s ous.

Thus, the perf.-mance of synchronous update sheds light on the performance attainable with a

The most imporiant of these is that, since coordinators for a single transaction are run at the same site, after a
transaction has acquired a distributed write-lock on an item x, its sub-transactions need only lock x locally.
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quorum replication miethod.
Concurrent updais,

Although synchronous update is concep:ually simple, costly delays are incurred while waiting
for acknowledgements. Using concurrent update, data are uj'dated locally by the cocrdinator,
which issues an riynchropous OBCAST to inform its cohe rts [Joseph-t]. An usynchrorous
OBCAST is also used to comamit, at which time locks are relsased. Since the updates precede the

corcmit and CBCAST respects this crdering, eny process that obtains = lock will obterve the

ks correct version of the data it reads. Thus, the semantics of the synchronous update are preserved
B
f:;-: but, if few write-locks are needed, the respeorse time is limited by th. local execution speed of ine

request! Recall that when concurrent update is in use, it may be necessary to invoke finsh before

returning a result from a top-level cperation or taking an action with external side-effects.

LT o

*
¥y s

Delaysd updates

4 [
5 4 Y

The concurrent update scheme assumes a pessimistic write-locking algorithm, which waits for

responses from all operational compenents esch time a write-iock 18 needed.  Pessimistic loéking

permits the prograrzmer to design a deadlcck-free object and hence to implement objects that take
irreversible actions. Howevsr, better performance can sometimes be obtained using an optimistic
locking algorithm together with delayed updating. Write-locks are acquired locally by the coordi-
nator, which queues update messages but does rot transmit them. When the transaction is
prepared to commit, it attempts to acquire these write locks from its cohorts using the protocol of
Sec. 5.3.3. The iransaction aborts (discarding its queued updates) if deadlock would result. Oth-
erwise, it transmits the undates using G3CAST.

Using delayed updates, the possibility of an occasional ebort is accepted as an alternative to
issuing multiple write-lock requests -- only one distributed concurrency control action is needed,
and it occurs at the ond of the transaction. Morzover, other transactions can read old versions cf
any cata items being updated (but only at remote sites) and multiple updates could be sent in each

message. These benefits have a cost: large amounts of buffering may be needed to support the
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technique, and irreversible actions arc precluded. The ISIS prototype will be used to compare
delayed and concurreit update in the future. Both update methods have been proved correct for
objects that use wnﬂiét-scxializabﬂity as a correctness constraint [Joseph-a]. An open probiem is
to investigate the applicability of these techniques ir: system which employ other correctness cos-

straints.

€. [ /stea architaciure and Implementstion issues
6.1. Comrnunicstion primitives

We now summarize the architecture and implementation of the /SIS communication sitbsys-
tem. The primitives are built in layers, starting with a “bare” nctwork providing unreliable
datagrams. A site-to-site acinowledgement protocol converts this into a sequenced, error-free
message abstraction, using ‘imeouts tc detect apparent failures. An agreement protocol is then
used to convert the site-failures and recuveries into an agreed upon ordering of events, If
timeouts cause a failure to be deiected erroncously, the protocol forces the affectm site to

undergo recovery.

Built cn this is a layer that supports the various primitives. OBCAST has a very light-weight
implementation. Each process buffers copies of any messages needed to ensure the consistency of
its view of the systerc. If message m is delivered to process p, and some message m’ precedes m,
a copy is sent to p also. Thus, if any chain of process-to-process interactions leads to the intended
reapient of a messege, the message will travel down that chain and can be delivercd {dupiicate
copies are discarded). An inexpensive garvage oollsctor tracks down and deletes superfluous
copies afiar & imcssage hias roaencd all its destinations. By using extensive piggybacking and a sim-
ple scheduling algoritbm to contrcl message transmission, the cost of an OBCAST it kept low -
cften, less than ones packet per destination. BCAST employs a two-phase protocol based on one
suggested to us by Skeen [Skeen-b]. This protocol has higher cost than OBCAST because delivery
can only occur during the second phase; BCAST is thus inlierently synchronous. Recall, aowever,
that ISIS uses BCAST primarily for write-lock acquisition, which can be done rarely. Morsover,
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3CAST is only needed the first time a computetion write-locks a particular vanatly, subsequent
attempts to re-lock it (not uncommon in nested transactions) can be handled locally. GRCAST is
implemented using a two-phase protocol similar to the onc for BCAST, tut with an additional
mechanism that flushes messages from a failed process befors delivering the GBCAST announcing
the fasiure. Although GBCAST is slow, it i3 used very rarely. More details and corvectness proofs
appear in [Birman-<}.

6.2. Higher ievel systam structure

i The ISIS prototype was built under UNIX 4.2. and is organized hierarchically, as ilustrated
ji:: in Fig. 2. The lowest level provides the communication primitives described earlier, together with

a message “editing” subsystem supporting variabls-format messages with symbalically named
message-fields. Built on top of this is the a layer supporting concurrent tasks, monitors for mutual

.
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exclusion, the transactional version stack, the lock manager, the capability manager [Dietrich],
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which maps 2 capability on an ohject to a list of sites where its components reside, the name-
space, which maps symbolic names to capabilitics, and the interfuce used by external non-resilient
processes to issue requests to resilicnt objects. The capability manager supparis dynamic migra-
tion of objscts, although we do not yet exploit thiis possibility. ©

‘We originally feared that processes and inter-process communication would be the dominant '
cost factor in ISIS. Consequently, a single system process handles functions common to all resi-
lient objects, and a single “type manager” is used for each resilient type. A type mansger multi- i
plexes its time between the different instances of its type residing at the site where it is executing;
these in turn multiplex their time among currently active tasks. Process creation occurs only when
2 new type manager must be started (this idea was suggested in [Lazowska].) Commands to
interactively load and unload type managers (e.g. when a new type is defined) are provided by the
system process.

In retrospect, we feel that the dedsion to multiplex type managers was an error. The
increased code complexity required to keep separate copies of the various data structures used in
the type maneger for each instance was not justified by the reduced overhead that resulted. In
any future version of ISIS, each object will be represented by a single process at every site where

it resides and the runtime system will be fragmented into multiple processes: a process group

manager, a protocols process, a failure detector, communication buffering processes, etc. We now
believe that this would reduce complexity and that adverse performance impact can be minimized
with carefu! tuning. We also believe that if ISIS is to perform well, it must be moved away from

UNIX, and are planning to dc so in the future.

7. Performance of the prototype

£
L
13
3
i
i.
!
J
3

A prototype of ISIS has been operational since January 1985. Performance is reported for a
cluster of SUN 2/50 workstations interconnected by a 10-Mbit cthernet (Table 1). Our approach

was to evaluate the performance of the communication primitives, the response time for some

o e

simple resilient objects, and the overall response time of the system when presented with
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e ent requests at multiple sites. The indexed sequential file, built from a resilient directory
'E.;‘ and a resilient file, illustrates the overhead associated with nesting.

b '

L‘ When we instrumented ISIS, we discovered that the performance of our IPC connections was
3

’ eyboptimal, primarily because the version of UNIX we used did not support changes to the IPC
,l~ ‘i}: buifer size, which was consequently too small to permit effective “windowing”. We lacked the
>

-

3

s
e

" GENERAL PERFORMASNCE COMPONENT TESTED SUN 2/80
b Site-to-site message Delay to recepdon Bms
I+ Process-to-process message Delay to reception 10ms
> RPC to object, same site Delav until task starts 30ms
. Versicn stack: BEGIN / COMMIT 19ms
e (volatile) BEGIN/ READ/COMMIT  20ms
y BFGIN/ WRITE / COMMIT 23ms
(stable) BEGIN / COMMIT 467ms

BEGIN/ READ/ COMMIT  493ms
BEGIN/ WRITE / COMMIT  880ms

Lock manager Acguaire local lock 0.7ms
COMMUNICATION PRIMITIVES 1 site 3 sites 6 sites
Failure detector Timeout n.a. 7 secs 7 secs
GBCAST Delay w1 deliversd n.a, 2 secs 3 secs
OBCAST Latency 10ms N2m 44m
Turnaround 18ms 165ms 360m
Tircughput (cne task) 10/ sac 6/ sec 35/ sec
Effectve Throughput 35/ sec 24/sec  17/sec
System Throughput > 100/sec 18/ sec 10/ sec
BCAST Larency 10ms 180ms 240m
Turnsround 20 18Cms 360ms
System Thrcughput > 100/sec 20/ sec 12/ sec
Write lock Delay to acquisition 30ms 20m 400ms
Log manager Write log recard 55m 25m 410ms
RESILIENT OBJECTS’
Resilient file READ 13/ sec 11/ sec 11 / sec
WRITE (synchronous) 4.2/ sec 1.27/sec .75/ sec
WRITE (concurrent) 12.5/ sec 11/ sec 9/ sec
Resilient directory BIND (synchranous) 2.9/ sec .9/ sec 57/ sec
BIND (concurrent) 6.3/ sec 63/sec 5/sec
LOOKUP (read only) 11/ sec 10/ sec 11/ sec
Resilient stack PUSH (synchronous) 2.7/ sec 1.1/sec  .52/sec
PUSH (concurrent) 9.2/ sec 9.3/sec  9.6/sec
POP (synchronous) 3.3/ sec 1.7/se¢ 1.0/ sec
PCP (concurront) 9.2/ sec 10.3/sec 8.9/ sec
Indexed seq. file INSERT (synchronous) 1.6/ sec 52/se¢ .3 /sec
INSERT (comcurrent) 3.8/sec 5. /sec 2.3/ sec
LOOKUP 9.5/ sec 95/sec  9.5/sec
“Partial recovery mode.

Table 1: Performarce In the ISIS Prototype




resources to correct this problem.

The first set of figures addresses performance of the version store and lock manager. These
show that while the version store is very fast in its in-core partial recovery mode, it degrades in
the disk-based “stable” storage mode. This supports our decision to favor log-besed recovery
from total failures, since the use of stable storage is minimized in this mannez. Consequently, the
resilient objex.. tested wele run in the in-core mods only.

The broadcast primitives are dominated by underlying message-passing costs, but otherwise
depend primarily on the number of phases required. In the initial implementation of the primi-
tives, all run in two phases (althcugh the message is delivered during the first one for OBCAST
and the second for BCAST), hence all the primitives give similar performance. The latency figure

measures the time from message transmission to remote delivery. Because the OBCAST imple-

P

mentation we instrumented is not identical to the one described in this paper, the OBCAST latency

is very high. Moreover, the latency figure turned cut to be very bard to measure: using a 60Hz

line-clock, which it the only one available cn our SUN workstations, elspsed time can only be

measured to an accuracy of 16ms. Nonetheless, the OBCAST latency (32ms in the 3-site case) is

S

much larger than the inter-site latency (10ms). We found that this results from delay assodiated
with the /O operation that occurs when an OBCAST recipient acknowledges delivery to the initia-

tor. Additional latency is introduced by the small window size, and the inaccurate dock further

inflates the OBCAST figure. We are confident that afte: we reimplement the primitives using the
algorithms given in [Birman-c], OBCAST latency will not be much higher than the site-site latency
of i0ms.

Turraround measures the delay from transmission to reception of a reply from the remote

»
.
5
.
5

Y

task that reccived the message, and throughpur measures the rate at which a single task can issue

broadcasts without waiting for acknowledgements, in messages per second. The effective

T

throughput is 3 to S times higher than this, because concurrent update permits multiple update
messages i0 be piggybacked on a single packet (notice that the effective throughput decreases

Ll
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more slowly than the true throughput as the number of sites increases: while waiting for ack-
nowledgments, there is time to generate more concurrent update messages, hence the degree of
piggybacking rises). We also measured the system throughput, wiich is the maximum number of
BCAST or OBCAST protocols that can be started per second at a site in a steady state (this figure
coulG be improved by tuning the UNIX scheduling policy). Note that the cost of the protocols
rises linearly with the number of Gestinations, as least when the number of destinations remains
small.

Turning to the resilient objects themselves, we see the dramatic performance impact of the
concurrent update technique when compared with synchronous update. Tuese tests measured the
average cost per operaion for a tramsaction doing 25 operations of the designated type. Con-
currency contrnl overhead is higher for the first operation than for subsequent ones, which the sys-
tem recognizes as being “covered” by previously acquired locks. The amortized cost is therefore
low, permitting bursts of 10-12 operations per-second even when updating was being done (again,
assuming an otherwise idle system). The fact that concurrent update does better than synchronous
update even in the single-site case is beceure concurrent update is also used to maintain m=ssage
routing tables in the type managers. Nesting did not introduce ary substantial overhead. Within
the system, most time is spent sending and receiving messages and in the object itself, executing
the requested operation.

Finally, we measureu the performance of the file object under a distr’buted load. Con-
currency control was not included, in order to isolate the effect of replication from other factors.
Two types of tests were undertaken. First, we considered a “mixed” transaction that performed 3
reads before doing & write and committing. Tue file object was replicated at 1 and 4 sites, and
varying loads of requests were presented randomly at each site. Figurs 3a shows the mean
response time for several thousand requests, for loads ranging from 0 to % operations per seccnd.
Each curve stops when the cysteir saturated and began to develop a request backlog. A com-

ponent of the file object does two sorts of work when processing these requests: computing related
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Load (operations / sec) Load (operations / sec)

Figures 3a,3b: Responsiveness of a flle object as a function of its workioad
to the coordinator side of each operation, and work stemming from its role as cohort in requests
initiated remotely. ThclanainvolvaprocudngthehﬁﬁalRPCmage.themwgemﬁaining
thedmfmthewﬁw,mdthewmit;theforminvolvagmaﬁngﬂmemgamd
interacting with the external client programs.inadditiontocxmﬁngth:opcraﬁonitsdf.

The data we plotted was obtained by correlating response time for individual requests with
the times at which read and write requests were serviced by the file object. The overall 1oad on
mzobjeawmdeamdbymwmhgthcmeoflomlre&andwdtamdnddng4ﬁmatheme
ofupdatcsrmzivedﬁanrunoteséta,mmmfmth:3readsthMMdmemmdyfm
every update sent out. Notethatpigxybackingmakuitpossibl:fmacobmtwdoqtﬁmabitcf
workforead:mmsagei?recdvu&omthcnmﬁmesystan;inthemeofmcmrdimorthisb
generally not the case. It is inicresting to observe that except when the load on the object was
very low, response time in the 4-site case is better than that which can be achieved with a non-

replicat  object. Thiseffeamnbeexplainedbythes!mingofwordianmdimcrfmrdawd
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activity amoag the components of the object. Moreover, the maximum capacity of the object io
perform operations rises from 4.25 operations per second in the non-replicated case to 7 opera-
tions per second. As the load rises, piggybacking increases the efficiency of the system, explaining
why the response time drops from about .25 seconds to .1 seconds for a typical operation.

We wondered whet would hapren if transactions did only writes. Figure 3b shows how
respcnse time varies as a function «f load for a trantaction that does one write and then commits.
In the single-site case the performance of this transaction is clos~ (o that for the single-site mixed
case (writes and reads have comparable local costs); in ail the replicated cases, however, response
time improves as the ubject is placed under increasing load (the saturation point is approximately
the same, however). This beiter response time is explained purely by the reduced coordinator-
related and front-end work being dons by the system. Of course, the cost of running the broad-
cast protoccls rises with the number of sites, and performance would undoubtably drop again for

objerts replicated at very large nurabers of sites.

The major conclusion to draw from the above is that when using concurrent update, the
apparent performance of a resilient object accessible from multiple sites can be comparable or
better than for a fault-intolerant single-site object of the same type (our experience with the calen-
dar program supports this). Moreover, overall performance is higher in read-intensive settings,
provided that requests arrive randomly at the different components and the concurrency control
algorithm is good, since reads are done iccally. On the negative side, the steadily increasing costs
of the protocols, espedially BCAST, suggests that data should not be replicated to more than 3 or 4
sites beczuse concurrency control cvarbead could become excessive. This has lead us to imple-
ment a data migration mechanism for ISIS, which will be described sleewhere [Dictrich]. Our fig-
ures demonstrate that ISIS is able to provide powerful distributed services at suprisingly low ccst.
If an effort were made to tune the ISIS prototype and the objects themselves, perfcrmance could
probably be doubled under UNIX, and further Lnproved by moving to a mcre streamlined operat-

ing system.
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8. Future research

The ISIS project is now eatering its thiid year. Two major problems are receiving attention:
mechanisnis for increasing availability during partitioning, and an investigation of the limits of
concurrency in systems subject to ordering-based correctness .unstreints [Joseph-a]. Simultane-
ously, we are ezamining uses for ISIS in high-level programming tools, which might constitute the
interface to a new generation of opersiing system services. Also being studied are Zacilities for
dealing with real-time events, replicated processing (as opposed to replicated data), and demand-
based data migration within k-resilient objects replicated at more than k+1 sites. We would alsc
like to build some sort of application system using ISIS as its base, for example a critical care sys-
tem for medical environments [Birman-d].

Resilienit object = too high-level for many purposes. For example, if all updates to a
given variable originate at a sngle site, there are cheaper ways to maintain that variabie then to
adopt a general purpose transaction mechanism. Recognizing this, we now expect to use ISIS in
an environment that would also permit programmers to work directly with fault:tolerant process
groups. Users could then construct fault-tolerant software using whichevar tools seem most con-
venient,

A basic problem is that ISIS provides a type of -srvice and exhibits a collection of require-
ments which are very different from those seen in most contemporary distributed programs. For
example, UNIX assumes that interactions between processes will be through RPC or virtual dr-
cuits, whereas communication ir fault-tolerant distributed systems is strongiy biased towards
hroadcast protocols. A result is that UNIX is simply not very good at runmning our software (the
V system [Cheriton] might b= more reasonakle, although we have yet not considered porting ISIS
to it). Clearly, it is beyond our resources to conduct research into both fault-tolerance and operat-
ing system design. It thus seems appropriate to call for renewed rssearch into primitives and com-
putational models at the operating system level, and for greater cooperaticn between the designers
of these two mutually dependent classes of cystem.
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9. Conciusions

This paper presented an overview of the ILIS project and reviewed the techniques it uses to
obtain fault-tolcrant iraplementations from absiract type specifications. The good performance of
a prototype supports our belief that the approach will be viable in diverse situations. Movoover, a
nove! communication architecture leads to a system structure within which correctness arguments
are straightfcrward despite the presexse of failures and coucurrency.

We believe that a ncw generation of high-leve! computing fadlities, including /SIS, is now
emerging. Much as virtual memory changed the engineering of very large systems in & fundamen-
tal way, these fadlities will fundamentally change the way that distributed sofivare is develuped,
anG will thereby enable research in arcas for which existing programming metirodologies are
inadequate. As the complexity and sheer size of distributed systems continues to grow, fadlities

of this sort will be indispensable.
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