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,: 1. INTRODUCTION

N

2 In 1981-1983 a computer program was developed which solves numerically
‘, two-dimensional Euler equations using the Godonov method (Ref. l). The

program was intended primarily for turbomachinery application, but with
modification to the boundary conditions, application to any problem which is

Q: modeled by the Euler equations is possible.
¢
This report covers one year of extensive testing of the code for
" different flow regimes. This testing was done with three main objectives:
a) To gain experience in simulation of the various problems related to
the research activity in the Turbopropulsion Laboratory,
Naval Postgraduate School, Monterey, California.
b) To test code accuracy by comparing numerical with analytical
N solutions.
¢) To find the source of errors for various numerical simulations and the
A basic Godunov method in order to reduce these errors,

Some of the results of these experiments with the code were reported in
. other papers and appear as appendices to this report. Other cases were
I simulated, but not published, and will be reported here. Some unsuccessful
= attempts to improve the code accuracy are also described.

C The topics studied and the progress made are described in the following
i sections.
.. 1) The problem of the gradual opening of wave rotor passage.

2) Numerical modeling of the nonsteady thrust produced by intermittent
pressure rise in a diverging channel.

3) Numerical techniques for wave rotor cycle analysis (A. Mathur). S

4) Development of a grid generation program in order to generate a grid S
over wedge-arc configuration. )

Test case of the supersonic flow in a channel with arc, wedge,

. f* wedge=-arc, sinsoidal arc-bumps.,
6) Modification of the Godunov method to include shock fitting using the ‘;:if
o oblique shock wave theory. -
- 7) Development of the one-dimensional code based on Verhoff's method.
i. 8) Modification of the program for cylindrical geometry problems, and
T modeling of the flow in CDID.
. g: 9) Modeling of the flow in a detonation engine,

10) Development of the SELCO Method,

l1) Grid generation for CDTD inlet
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2. PROBLEMS CONSIDERED Y

[ g 4 Wt 3

2,1 The Gradual Opening in Wave Rotor Passage.

Zm

Influence on the flow pattern of the gradual passage opening in the wave
rotor was studied on the basis of a numerical simulation. It was found that,
in most cases, a significant volume of the passage will have rotational flow,
which should lead to the mixing between the driver and driven gases. In some
cases, losses will occur as a result of the multiple reflections of the shock
and pressure waves from the passage walls, It was shown that the interface
between driven and driver gas will be oblique to the passage walls when the
passage opens gradually, and that the interface can retain its obliqueness to
the walls. The results for the rectangular and skewed passages are reported
in Appendix A,

o
A

P, AS

In the case of the skewed passage, the perfect compression of the driven
3 gas with very small mixing losses could be achieved if the channel opens
according to a certain formula of the optimum opening velocity., It was found
that the velocity of opening could be predicted by the equation:

(D

. where: Vopen = the velocity of the gradual opening -
. Vsh the shock wave velocity in the driven gas
Lgk the angle of the skewed passage ¢

. 2,2 Numerical Modeling of the Nonsteady Thrust Produced by Intermittent ;2
: Pressure Rise in a Diverging Channel. i

The dynamics of the expansion of detonation products in a diverging 'l
. channel were investigated numerically. The influence of particular features .
. in the expansion process, such as the presence of reversed flow and
- propagation of hammer shocks on the production of thrust were examined. -
N Sequential expansions of detonation products were also modeled and it was
concluded that in order to maintain a high frequency periodic mode of
operation for propulsion applications, the channel should be refilled with

-
ambient air after each expansion. The influence of the ratio of ambient air g
to detonation products volume on the dynamics of the thrust production and on
the impulse generated during the expansion are also reported. The
presentation of the results of this investigation is given in Appendix B. o
-

2.3 Numerical Techniques for Wave Rotor Cycle Analysis.

. With the author's participation, A. Mathur developed a one-dimensional

- code based on Godonov's method for wave rotor cycle analysis. Because the

X resolution of the code on the interfaces was poor, it was decided to develop a
one~dimensional code based on the random choice method. Non-standard boundary




§$ conditions for this problem were developed. A paper was written and accepted
2 for publication in the proceedings of the ASME Symposium on Nonsteady Flows.
The paper is attached as Appendix C.
n 2.4 Development of the Grid Generation Program for Wedge-Arc Configurations.
The grid generation routine, which was used for the cascade and wave
N rotor simulations did not allow a full control of the grid parameters. This
F: control was especially needed for the simulation of the test problems, since
we wanted to insure that the grids have the same general parameters for the
ﬂ’. different wedge-arc configurations considered.

‘ A program which allows the grid generation with full control over grid
. parameters was developed. The program, with an example of the grid, is given
Lo in Appendix D was delivered to the Naval Postgraduate School and stored in an
| archive file.

2.5 Test Case of the Supersonic Flow in a Channel with Arc, Wedge, Wedge-Arc,
Sinusoidal Arc-Bumps.

.- Performance of the Godunov code was tested for numerous supersonic and
subsonic internal flow problems. The tasks included:

a) An attempt to determine what causes the nonsymetrical behavior for o
subsonic flow case and whether it is possible to increase the -
accuracy of the basic Godunov code by changing boundary conditions.

b) A comparison of the numerical solution with analytical predictions
l. for supersonic flow.

For subsonic flows it was determined that the main source of errors was slop e

N . discontinuity at the corners of the "bump”. When the circular arc bump was A
SR replaced by a sinusoidal arc "bump”, the symmetry of the subsonic solution W,
; improved substantially. This resulted from the fact that in the case of the ;
l . sinusoidal arc only the second derivatives are discontinuous at the R
o surface. It was found that the boundary conditions at the surface, which are NN
used by the basic Godunov method (solution of the Riemann problem between the R

physical point and it mirror image with the same pressure and density but with e
the negative velocity), produce the most consistent results for various ol
- problems. Results for this simulation are shown in Figure 1. The grid is e
shown 1in Figure 2. S

ClERETR T 8 8 0

Efforts to improve the subsonic flow solution were discontinued when it
was realized that a more objective criteria than symmetry of solution was
needed. For this reason, work on supersonic flows was begun, since, for these ;
conditions, some analytical solutions are available. First, the method for R
supersonic flow (M = 2.2) in a channel with a 10% thick circular arc "bump was
tried. The grid for this case is shown in Figure 3. In Figure 4 we show e
results for this geometry when the inlet Mach number is 2.0. Results are RS
shown in the form of the distributions of the pressure coefficient over the RO
surface of the lower wall of the channel. Numerical results correspond very 8
™ well to the analytical in this case. It was found, however, that when other AN

flow parameters are compared with the analytical solution, there was
substantial disagreement between the reslts. Figure 5 shows the comparison of AR
the pressure coefficient, entropy, density, velocity and Mach number that were . ’

|
Y L B

IR S T 2 1R .

. . . L - . . .- . - ‘. '.. R " R '.- N ".. K T . ‘: ‘-. . -t - s N .t = . -

. e . PN oAy n e ... . - - - . - P LI T N A AT - . . ° .
- . - - 0 - - - . L .. - - - . - - - - - - - . - . - . - ~ - - w . - . ~ . * T , R T . 3
AT IENEIE SRR IS SR I IE ISP IEIE I SEIER, Ll T e N T T SN s e e




calculated numerically with the analytical solution., The comparison is done
for supersonic flow with M=1,6 over 5% thick wedge-arc "bump”. As shown in
Figure 5, the errors are produced mostly on the shock waves and that the
largest is the relative error in entropy. The fact that only pressure is
simulated accurately was confirmed for the numerous test cases in which the
arc thickness and the wedge angle varied in the wide range of values.

2.6 Modification of the Godunov Method based on the Shock Fitting using the
Oblique Shock Wave Theory.

A shock fitting was attempted to reduce the errors on the oblique shocks.
The procedure for fitting was as follows:

1) Calculate the values using Godunov's method.

2) Using oblique shock wave theory, calculate the exact value of the
parameters. This calculation is based on the assumption that the
pressure is computed correctly by the Godunov method.

3) Substituting values behind the shock for the exact values. It was
found that the procedure did not work if it was applied as
described above. Many modifications of this prodedure were tried.
Some involved interpolation of the values ahead and behind the
shock. The last approach did improve the accuracy of the entropy
calculation but introduced oscillations.

2.7 Development of the One-Dimensional Code based on the Verhoff Method.

A new formulation of the Euler equations and numerical method to solve
them were proposed by Verhoff (Ref. 2). A basic code implementing his method
for one-dimensional flow was developed. 1In Figure 6, results are shown for
the case of two colliding shock waves in a tube. These results are a
reconstruction of the results presented in Ref, 1 in Figure 5. Comparison of
these two figures shows that our code implements the basic Verhoff method
correctly, The listing of the program is presented in Appendix E.

We were unable to implement the shock fitting in our code. Comparison
between the analytical solution and numerical was 10-15% in error for
velocity, pressure and density in the region of the shock wave, if the shock
was not fitted.

2.8 Modification of the Program for Cylindrical Geometry Problems, and
Modeling of the Flows 1n CDID.

The Godunov code was modified for simulation of the flow with
cylindrical velocity. The modified program was used for modeling of the flow
field in CDTD device (Ref. 3). The task of the modeling was to test how the
rotational component of velocity will influence flow field.

In Figure 7, one of the geometries of the CDTD is shown with a
computational grid covering the domain of integration. In Figure 8, the
Iso-Mach lines for the geometry are shown for the inlet flow conditions
indicated the figure 7.
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The conclusions of preliminary research was that the program models the
flow correctly and that, for the tested conditions,the results are close to
those given by the program developed by Hirsch as discussed in Ref. 4,

2.9 Modeling of the Flow in Detonation Engine.

The flow field in the projected combustion chamber of a detonation
engine was simulated numerically using the Godunov code. The task of this
research was to study the dynamics of the discharge of the high pressure gas
after detonation. A number of configurations were tried. In Figure 9, an
example of this type of simulation can be seen., Pressure in the detonation
chamber drops from 15 atm to 0.55 atm in 0.,00131 second. It was important to
establish that time since it is one of the limitations on the detonation
frequency. In this example, the ability of the program to simulate large
gradients of pressure can be seen.

2,10 Development of the SELCO Method.

A new method for supersonic flow simulation was developed. A full
description of the method, with illustrations of its application to the
supersonic flow over the wedge, is given in Appendix D. This method
demonstrates that inaccurate modeling of the oblique shock waves produced by
the Godunov method is the result of the obliqueness of the shock wave with
respect to the edges of the cells of the computational grid covering domain of
integration. It was shown that only when the shock surface is parallel to the
two opposite edges of the cell that the oblique shock can be accurately
calculated.

A new method of the Local Cell Orientation, - SELCO, was proposed to
allow local reorientation of the cells in the vicinity of the shock waves.,

The efficiency of the SELCO method was demonstrated for the simulation of the
oblique shock waves in the supersonic flow over the wedge.

2.11 Grid Generation for CDTD Inlet.

For a given distribution of the pressure measurement ports on the CDTD
blade surface, a computational grid was developed. Several variants of the
CDTD geometry were implemented. However all grids which were generated proved
to lead to large computational errors. This work was not continued due to time
constraints on the project.

3. Conclusions
The principal findings of the program of code testing were as follows:
l. The code has a robust ability to analyse unsteady time dependent
flows and provide qualitative information on complex shock patterns
and pressure fields.
2. With attention to boundary conditions and particularly grid

structure it is possible to reproduce analvtical flow solutions with
great accuracy.




3. The solutions produced are sensitive to grid orientation. The grid
must be re~orientated locally along shock or discontinuity planes.

4, Care must be used in selecting the grid distribution on areas of
rapid curvature change.

Despite the program sensitivity under certain conditions, with skilled
use it can be most instructive in establishing wave and shock structures
in complex flow situations. A significant example is the unsteady
boundary of Section 2.1 where in it was possible to generate a minimum
loss passage angle for a wave rotor device.
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The Problem of Gradual Opening in Wave Rotor Passages

S. Eidelman®
Naval Postgraduate School, Monterey, California

The influence on the flow pattern of the gradugl passage opening in the wave rotor is studied on the basis of
numerical simulation. 18 is found that, in maost cases, significant volume of the passage will hase rotational flow,
which should lead 1o the mining between the driver and driven gases. In some cases, Josses will occur also as a2
resilt af the multiple rellection of the shock and pressure waves from the passage walls, 11 is shown that the
interface beiween driven and driver gas will be obligue (0 the passage walls, when the passage opens gradually.

and the interface can retain its obliqueness 1o the walls.

Introduction

AVE rotors are devices that use wave propagation

through the fluid in a rotor passage to transfer energy
from one 1luid 10 another! or to transfer energy from one
fluid 10 rotor shaft and another fluid.® Wave rotors, wave
engines, wave pressure exchangers, wave equalizers, and
Comprex' are all based on the same idea of energy exchange
i the unsicady waves, and the topic of the present study is
relevant 10 all of these devices.

Wave rotors offer the potential for significant im-
provements in air-breathing engine propulsion cycles because
they can be sell-cooling, since both high-pressure gas and cold
low-pressure gas use the same passage for alternate periods of
time in the cycle. Combining a wave rotor with conventional
turbomachinery components shows promise of significant
reduction in specific fuel consumption without weight or size
penalties.

The principles of operation of wave rotor devices and their
commerical applications can be found in Refs. 1-3. For
completeness, the general scheme of a wave pressure ex-
changer will be described, as illustrated in Fig. 1. One gas
tdriver) at high pressure is used 10 compres, a second gas
tdriven). The process is arranged to occur in tube-like
passages with trapezoidal cross section located on the per-
iphery of a rotating drum or rotor. The compression is
achicved successively in each rotor passage by means of
compression wases or shock waves generated by the entering
driver gas. The compressed driven gas is drawn of f from the
end ot the passage when it aligns with an outlet port. The
driver gas then undergoces a series of expaunsions to a lower
pressure and i scavenged out by freshly inducied driven gas at
approximatcly the same pressure level. This fresh *‘charge’ is
then compressed by the high-pressure driver gas and the cycle
repeats wselt. Steady rotation of 1he drum sequences the ends
ot the passages past stationary tlet ports, outlet ports, and
endwalls. Thiy estabfishes unsteady but periodic flow pro-
cesses withui the rotatuig passages and essentially steady flow
in the mlet and owlet pors. The passage may be oriented
awvially as i Figo | oor at a stagger angle. In gencral, wave
machines used as pure pressure exchangers (e.g.. “Com-
pren 'y have usually awially oriented passages, while those
with stapgered passages may drive a shatf, since shaft work
extraction s posstble with this latter contizuranon.

Rocennad March 21983 revimton recenved O 221983 Tius papar
s declared o work of the U'S Government and therctore s in the
pubhy domain

A g Research Professor, Depariment ol Aeronauticn Now g
Sactee Apphaations Ine Co Mol can, Virgima

In the design of the wave rotor, it is very desirable (o
determine the optimal ratio between the width and length o1
the single passage of the rotor. Usually only two parametaers
are evaluated 10 determine this ratio: skin friction losses and
bypass losses. The number of passages on the rotor shouid be
minimal to minimize skin friction losses. On the other hand,
the passage should be narrow compared to the port widths 10
reduce flow bypass between inlet or outlet ports. The transicnt
process of the passage opening or closing (as the passage end
maoves across a port or moves from a port 1o be closed by the
endwall, respectively) usually is not considered in the design.
It is generally assumed that the passage opening or closure
occurs instantaneously.

Pearson’ tried 1o take into account the gradual opening ot
the passage, assuming that the air in the passage 1s compres «od
in a series (usually 1hree) of discrete compression waves which
converge and ultimately merge to form a shock wave, Tiu,
allowed him to design a complicated wave machie vyele tor o
rotor using relatively short passages. However, singe the
technique was oune-dimensional it could not reveal the
peculiarities of this essentially two-dimensional flow and
would be valid only for very weak waves.

In the present study, by means of numerical modehing, we
will examine 1 real-time how the gradual openmyg mtlucoes
the wave formation in the wave rotor passages and how 1hat
should affect the rotor design.

Maodel

The assumptions mvolved iy the numerical simulations are
described as follows,

The flow m cach passage of the wave rotor s unsteady and
periodic. At the same time, the tlow through the pori. i
(idcally) steady. ' ¥ The peripheral width of the POrt s usuualis
equal to several widths ot & single passage. and herem o1 s
assumied that the flow i the il or outlet port remans
stanonary when the passage-cnd encounters the port. For this
reason the region of the port is not included i the o
putanonat domaw showmn b 2.

The tme-dependent process ol the passagpe-end transtan,?
across the region of the indet or ouder port will be reterred as
the “gradual opemag’™ of the passage The passage operany
process will be reterred as imsiantancous,” when the as
sumption s made that the passaee instantancounly opees o
the port arca and s subjected tmmediatedy 1o the steads Hoa
condittons at rhe port.

Is assumed that the tlow s inviscrd and can be modeled Sy
the baler equattons. The unsteady iwo-dimensional taler
cquations can be wrtten m consersation law 1orm as
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where
(/] pu pr \
ou p+pu? put
U= v F= puv G P+t
e (e+p)u (e+ )
mn

Here p is the density, w and v the velocity components in the X

and Y coordinate directions, p the pressure, and y the ratio of
specific heats. The energy per unit of volume, e, is defined by

( . w +0? )

e=ple+ ———

° 2

where ¢ =P/ (y—1)p is the internal energy. We look for the
solution of the system of equations represented by Eq. (1) in
the computational domain shown in Fig. 2 in time 1 with the
following conditions at the domain boundaries: a) solid wall
along segments 1-3 and 2-4, b) outflow along segment 3-4,
and ¢) inlet along segment }-2.

It is assumed that initially at time r=0, the passage of the
wave rotor is filled with stationary gas a1 ambient conditions.
When instantaneous opening of the wave rotor passage was
simulated, it was assumed that at time 1=0, the flow at the
inlet 1-2 was equal to the steady flow in the port. When
gradual opening of the passage was simulated, at time r=0,
the inlet was closed and solid wall boundary conditions were
imposed at the inlet 1-2. Then, this bollndary condition was
gradually replaced by the flow condition at the inlet port. The
length uncovered to the inlet port region, where the solid wall
boundary conditions were replaced by the inlet port con-
ditions, was determined using the elapsed time and the
velocity of the passage relative to the inlet port.

The Godunov method was used to obtain a numerical
solution of Eq. (1) with the described boundary and imual
conditions. Details of the implementation of the method and
boundary conditions are given in Ref. 4.

The flowfield was modeled for the rectangular passage with
a width of 0.02 m and a length of 0.12 m. The grid covering
the computational domain of the passage is shown in Fig. 2.

Results and Discussion

The following initial conditions were assumed for the air

initially in the passage:
P,=lamm p,=12kg'm’ U,=0 V,=0

The driver gas entering through the port at the left-hand end

was assumed (o have the following properties:

P,=18am p,=181kg/m’ U,=150m’s V,=0
These conditions correspond to a practical situation in a wave
rotor when a passage filled with a quicscent fresh charge of air
at ambient conditions encounters an inlet port supplying hot,
high-pressure driver gas.

If the assumption is made that the passage instantancously
opens and is subjected 1o the conditions of the inlet flow at the
‘st boundary 1-2 (see Fig. 2). then a pertectly one-
dimensional flow pattern should develop i the passage. The
results of the modehing of these conditions are presented i the
form of pressure contours at progressively larger time stepsan
Fig. 3. Time r=0 corresponds to the moment when the
passage opens. Instantancous opemng of the passage is ~ccnn
Fig. 3 tolcad to an immediate formanion of a shock wave and
subsequent propagation in the passage from the lefi to the
nght. The tlow condinons a1 the inicr pori are matched 1o the
parameters of the rarefaction wave which etfecnively will
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Fig. 1

Ware rotor operation scheme.

Fig. 2 Computational domain,
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Fig. 3 Evolution in time of the shock wave formed after instantane-
ous passage opening.

cancel the rarefaction wave moving toward the inlet at the teft
end of the passage. For this reason the flow in the passage has
no additional discontinuity. This situation is typweal for a
wave rotor, where flow conditions at the ports are chosen i
such a way that waves do not propagate from the passages
into inlet or outlet ports. The flow in the ports will theretore
remain steady. In the case shown in Fig, 3, the shock wave
was found to propagate with a velocity, b, =346 m s the
imterface with a vetocity $,, = 150 m’s, and all the parameters
exanined were confirmed accurately using one-dimensional
gasdynamics relationships. -
Most of the approaches used in wave rotor design are based
on the assumption that the waves are one-dimensional in
nature. When the gas 1s compressed by a weak shock wave,
tor mstance, assumpnons are made that, 1) the process s
isoentropic, 23 the hot and cold gases are strictly separated by
a planar mtertace, and 3 the flow s everyw here irrotanonal,
This leads to the very Ingh efficiencies projected tor the
compression. 1f the passage 15 wide enough so that viscous
cticats van be negledied, this moadel ot the compression i the
wave rotor passage 1s tealistic, but only for msiantancous
passage opcning of tor a ey long passaee. Results prosented
helow tHustrate how the gradual passage opemng allects the
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In Fig. 4, the pressure and Mach number contours in the
passage are shown at a sequence of times for the case ot a
gradual vpening to the let port with a velocity of 100 m/s.
Parameters lor the gas in the passage, betore opening begins,
and in the intet port are the same as for the case ot in-
stantancous opening. The dynamics of the flow development
seen in Fig. 4a is very different from that shown in Fig. 3.
First. curved pressure wases radiaie from the 'nitial small
openng appearing at the lower corner of the inlet on the left
side of the passage (1=0.043 ms in Fig. 4). Subsequently,
thes@ waves reflect from the upper wall of the passage and at
time 1=0.125 ms have formed a row of compression waves
which have approximately straight fronts normal to the wall
of the passage. Initially, compression waves of this kind
occupy a small part of the region with disturbed gas. In the
region well behind the front of this quasi-one- -dimensional
propagation, compression waves are curved and are the result
of the interaction between the waves reflecting back and forth
between the lower and upper walls of the passage and the new
waves created by the progressive opening of the port to the
passage. Since it is possible to see in Fig. 4 for the times
(=0.084 and 0.166 ms, respectively, the flow behind the
quasi-one-dimensional reglon is highly rotational and is
relatnely constant pressure in the X direction. The passage
became fuily opened only at 1=0.2 ms. At this time com-
pression waves are propagating along the length of the
passage and the pressure rises gradually from 1 atm at the
right end to 1.8 atm ai the left end. The front of converging

compression waves will eventually become a shock wave, but
this will occur at some later time and outside the com-
putational domain.

It was concluded froin the case presented in Fig. 4 that a
passage length-to-width ratio of 6 will lead to very high
mixing losses and nonuniform and incflicient compression,
since in this case the region of rotational flow occupies half of
the passage volume. Additional losses will be produced
because of the highly rotational flow within each of the two
gases.

In F1g. S, pressure and velocity contours are shown for the
case of gradual opening of the passage with a velocity of 200
m/s. Full opeiing of the passage in this case occurred at
1=0.1 mv. A curved shock wave i formed at 71=0.044 s,
This shock wave (see Fig. 5a) partially retlects from the upper
wall ot the passage and then, gradually converging with its
main front, forms an almost planar shock front at the time
1=0.252 ms. However, even then the Iow is highly rotational
pehind the shock front, and the region of rotational How
occuptes one-third of the passage volume. [n this region the
gas scloaty increases from Af=0.3 at the upper wall to
M=0.52 atthe lower wall,

Whea the veloaity ot the passage opening is increased to SO0
mos (see bigl 6) the passage becomes (ully open at 7 = 0.04 ms.
Becausc of the tast opeting ot the passage, the shock wave at
the tunc 7 = .03 meac less curved and only a small trachion ot
the shuck front retlects trom the upper wall. Tius retiected
part of the shock tront converges with the main tront ai
r=0.172 ms. From that time on, the tlow pattern in the
passaee s omosth  one-dimensional with a smalt and
weahemmg regron ot rorational How behind the main front.
Nervertheless, even tor this case, wath passage lengrh passage
width 3 there will be very high mivng Tosses, with a larpe
part ot the passage volume subjected to rotanonal tlow.

In order to study how the strength ot the shock wave in-
fhuences “he How pattern developing in the passage. an ad-
dinonal Caise was sanulated where the paramcters of the diver
gas at the adet POTLATCO were mereased; llamcl). Qo

,=288%am U, -28Yms o, =dkgm’
Asan the previons case, the paramceters of the driver gas were

hosen meosuch @ way that waves do not propagate back o
the port ahien the passage opens. Results of this somulanon
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Lig. 4 Hlow pattern evolution for the passage gradusi opening with a
velocity of Thm o,

arc shown i Fig. 7. The velocity of the passage opening was
b= 250 moso 1t was concluded from the results presented in
Fig. 7 that an mcrease in the minal shock strength fcads to
stronger retlections and substantial increases in the How
rotation. Thasom turn, will lead to inereased Josses because ot
miang ot the driver and driven gases. The pattern ot mulniple
retlections ol the shock wave from the upper and fower walls
ot the passage can be seenin big. 7a. At time 7= 0.0 ins the
shock wave retlected trom the upper wall is propagating
tosward the fower wall, Part ot the retlected shock wase lront
conserges with the mam shock wave, and part begins to
retlect trom the lower wall (7=0.109 ms). The multipic
reflection weakens the retlected shock, but the retlection
between the walls ot the passage comtinues and can be
tollowed tor - 0201 and 0.245 m. teas clear that tor these
conditions even passages with a feneth-to-width ratio of 6 will
have substantal meving losses because of the rotational 1low.
A dibterent atuation s found tog the passage opering 1o the
mler port o the doven gas At this porr, the pressure and
veloarty of the (drsver) gas in the passage should be marched
with the pressure and veloary of the (driven) gas at the mlet
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Fig. S Flow pattern cyvolition for the passage gradual opening with o
selovity ot 2 m s,

I the passage opens anstantancously, the tHowheld i the
passage will have only one disconnnuity —the imtertace be-
tween the tresh ar and exhaust gas entenny and leaving the
passape, respectively . To maodel this condition toe the gradual
Poatee opemng, 10 was assumed that i the passage. £ =1
RUSTIT DS kg ', U, =150m s, and b, 00 mthe porg;
Poolatmep, 13 kg m' L, 180m s, and b0 The
veloamy of the passage opetng was b - 2Hm s

Rovarlis tor this simulation are prosented e Fig 8 e can be
v i, stee F Dist moment most of the mler cross sechion
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Fig. 6 Flow paticen esolution for the passage graduat apening with o
sefoctdy of S m

s blocked by the wall, a raretacnion wave retiects trom the
inlet wall The passage tull opening oceurs at 7= 0 Tas brom
this nme on the pressure desaton i the How held weakens
and at 7= 0.22 ms the prossure s almost completels ntaom
and equal to the static pressurcan both the undistin e F g
are and evhaust gas Digore 8 shows thar the merhace wild
carry the imprint ot the gradual passage opeting lomg e
atter the passage becomes Tully open There s no dissipanive
mechanisim included i the mathemancal model used o il
studs o taree the mtertace o becomic normal to the puassaes
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walls. Therefore, the interface will “*remember’ the dyvnamigs
of the gradual passage opeming in passages with large fength-
to-width ratio.

Conclusions

It 1s shown in the present study, on the basis of numerical
modehling, that the dyuamics of the passage operang sig-
nificantly affects the flow paticr: o 1he passages of wave
rotor devices. For rectanguidr axv.a' passages. even when the
velocity of the passage operiiy ~ € & 1+ g une dimensional
flow pattern forms only b passaye with @ teng'h io-width
ratio larger than 3. In the regir proleding he tormacon ot
the one-dimensional flow patters e How oy rotationgl and,
0 some inslances, conaims shovk and pressuzes waves which
repetitively reflect from the upper and lower walls of the
passage. In practuce this would lead to sigriheant mmng
between the driver gas (e.g., exhaust gas) and Jdriven gas (e g,
fresh air} and reduce the ettictency of the engine dscle With a
reduction i the velocity of the passage opeming, the volume
of the muixing region increases as a result of the roranonal
flow which develops from the slow opeming of the passage.
With an increase in shock wave strength, the volume of the
mixing region increases as a result of the rotanonal flow
which develops form muluple retlections of the shock and
pressure waves from the passage walls.

Numerical modeling of the process of gradual passage
opening al the inler port of the driven gas revealed that the
interface between the gases will move all the way through the
passage with a frozen pattern of distortion or obliqueness 10
the passage walls. The intertace obliqueness increases when
the velocity of the passage opening decreases.

J. PROPULSION

In all, it can be concluded thar taking into account the
gradual passage opeting 15 essential tor the wave machine
design, not only for proper iming and wave arrangement bug
also because of the losses which will occur due 1o mining and
wave retlechons. The gap between projected and achieved
etficiencies of wave machines™* " could be partially due to
neglect of the effects of the gradual passage opentng wlich are
studied herein,
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Gradual Dpehing’ of Skewed Passages in Wave Rotors

The problem of gradual openina of rectanqular axial passage in wave
rotors was studied in our article1 published in the Jamuary issue of Journal
of Propulsion and Power. There we have defined the problem of gra”ral
opening in the wave rotor passage and the mathematical model which was used
to simulate the openinag process. 1In this article we will assume that the

1

reader is familiar with the reference , and it could be recarded as an

extension to the that reference.

If the wave rotor is used to produce shaft power, it's passaages should
be skewed in one form or another. 1In this paper we will analyze the aradual
openinag of a skewed passaqge and will examine the conclusion drawn for the

rectanqular axial passaage for this more general geometrvy of the passaqge.

.............

The main conclusion of the study on aradual openinag of rectanaular
passage is that in order to minimize the mixing losses caused by rotational
flow in the passaae, the openinag velocity should be very hich. 1In the

limit, instantaneous openina of the wave rotor passaage will lead to one
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dimentional flow pattern in the passage will have minimal mixing losses.
When the passage of the wave rotor is skewed, even instantaneous openinag of
the passage will hot lead to development of the one dimensional flow pattern
with small mixing losses. That statement will be demonstrated in the

following example.

Let's model the openina process for the passage 0.02 m wide and 0.24 m
long. It has left and right hand inlets parallel to the y-axis and upper
and lower walls of the passage form 60% angle with positive direction of the
x-axis. It is assumed that initially air in the passage is at the following

conditions.

= 0; V. =0

P =1 atm; p_ = 1.2 kaq/M3; U, o

o

The driver gas entering throuah the port at the left hand end was assumed to
have the following properties:

Pd =.1.R atm; P

The conditions for the driver and driven gas are the same as in case of the

= 1.81 ka/M3; Uy = 75 M/sec; V. = 129.9 M/sec

d d

rectancular passace which we reported in the previous paraaraph.

In Ficures 1a and 1b results for simulation of the instantaneous
opening of the skewed passage are shown in form of pressure and velocity
contours at the sequences of times. The flow pattern near the inlet in
Fiqure 1 is highly rotational which suaqgests very hich mixinc losses. That

is caused partially bv reorientation of the shock wave. At the first
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moments of time after the opening of the passage the shock wave hetween the
driven and driver gases is oblique to the lower and upper walls of the
passage. At later times this shock wave turns and hecomes normal to the
upper and lower walls. Thus, incontrast with rectanqular for skewed
geometry passages there is no obvious condition for minimizing the mixing
losses caused hy the inlet opening.

let's find the conditions for opening of the skewed passage which will
lead to minimal mixing between driver and driven gases. As we have stated
before, rotational flow in the instantaneously opened skewed passage, will
develop because of the rotation of the shock wave from the parallel position
to the inlet (initially) to the position where it is normal to the upper and
lower walls of the passage (when the flow is developed). 1If we could form a
shock wave which will be all the time normal to the lower and upper passaaqe
walls then the rotational flow and mixing will be minimal.

Analysing the formation of the shock wave front at the inlet we
concluded that for the shock wave forming at the inlet to remain normal to
the lower wall, inlet should be opening at the rate:

Vop = Ven /sin % ox (1)
where Vop - velocity of the inlet opening.

Vsh -~ shock wave velocity in the media.

ask ~ anqgle of the skewed passaage.
The velocity is equal to the velocitv with which the shock wave surface will
slide along the inlets wall.

In Fias. 2a and 2b results for the modelina of the coradual opening of

the skewed passaage inlet with the opening velocity in accordance to equation
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?: (2) are shown. B2s it is obvious from coutour plots of pressure and velocity g;;
:: in Figs. 2a and 2b, opening the passage with velocity V"p calculated from ; ;\'_s
;S equation (1) assures development of the flow pattern with minimal mixinga. - ;i%
& The shock wave surface in that case remains at all times normal to the walls ;} é;f
'?_ of the passage. TN
. g F‘.‘f‘
- Eontlsiohs L
Modeling of the gradual opening of the skewed passage revealed the way f: ;;:
. to minimize mixing losses at the passage inlet. The mixing will be minimal °¥;i
. when the velocity of the opening is matched with shock wave velocity in the 'g ii
'ﬁ passage divided by the angle of skewed passage. Our simulations shows that A‘QGj
\E even when conditions for the optimal opening are not satisfied exactly, 'ii?
. reduction of the rotational mixing could be significant if the opening ii i;:?
:i velocity is.i15% of the optimal value. ) ;;};
Eg We can also conclude that a very high opening velocity is required in j: ;E%g
2 order to obtain low mixing loss. The opening velocity of the passage should 'l iés
;~ be always hicher than the velocity of the shock wave generated in the wave A
:S rotor passage at the high pressure inlet. Fven suhstantially skewed passaage
= will reguire the opening speed ®10% higher than the shock wave velocity in - Ei;
the passage which is not easy to achieve for the typical flow conditions in
the wave rotor. -
Another limitation is that even when this optimal speed of openinag is a Eﬁi
. achieved at one port, it will not be optimal at other ports; so, . L
é optimization will not be full. However, mixing losses in the skewed o
- passages will be smaller than in rectangular one, if the agradual opening of i; \?S

the skewed passage begins from its acute angle.
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Rise in a Diverging Channel.
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" ABSTRACT

The dynamics of the expansion of detonation
products in a diverging channel were investigated
numerically. A two-dimensional unsteady Euler code
based on the Godunov method was employed. The
influences of particular features in the expansion
process, such as the presence of reversed flow and
propagation of hammer shocks, on the production of
thrust were examined. Sequentially expansions of
detonation products were also modeled and it was
concluded that in order to maintain a high frequency
periodic mode of operation for propulsion applications
the channel should be refilled with ambient air after
each expansion., The influence of the ratio of ambfent
air to detonation product volume on the dynamics of the
thrust production, and on the impulse generated during
the expansion, are also reported.

NOMENCLATURE

element of channel internal surface area normal
to the x-axis

- energy per unit volume

- pressure

- time

- component of velocity in x direction

- component of velocity in y direction

- cartesian coordinate

- cartesian coordinate

internal energy per unit mass

- ratio of specific heats

-~ density

ubscripts

- conditions at t=0 in combustion products
X = external

-~ along inner wall of the channel

&
]

o0 OO <XmdMH<CE MTOD
]

INTRODUCTION

Early in the development of propulsion engines for
aircraft, a choice had to be made between engine
concepts based on nonsteady or on steady gasdynamic
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processes, Concepts based on steady gasdynamic

processes were pursued largely because they were

simpler to analyze and to appreciate conceptually. On
the basis of the chosen steady concepts, engines were
built, developed and perfected with time., The
nonsteady concepts, which looked as promising
initially, were not developed and remain today in the
conceptual stage.

The need for a more thermally efficient small
engines for various military and civilian
applications, has led, at intervals, to a
. reexamination of nonsteady concepts (1,2,3). Today,

l such an examination can be made more thoroughly. For,

; while nonsteady engine concepts were at one time
extremely difficult to analyze, numerical modeling on
computers can now provide time-dependent pictures of
internal flow processes. This can provide efficient

" tools for preliminary design calculations and

. eventually analysis tools for design optimization,

o From the late 50's until the early 70's, the
feasibility of an engine operating with intermittent
detonative combustion was studied at the University of
‘Michigan (4,5,6). Specific impulses over 2100 sec.

- were realized for a single linear shock tube operating

. intermittently with frequencies up to 35 detonations

- per second. Nicholls et al. showed that an engine

" operating intermittently on detonation waves will have

- some advantages over an englne operating on

deflagration. In general, it will have very high

specific thrust, The engine will be very simple

. mechanically, and not require precompression of the

. mixture for efficient cowbustion,

- One of the disadvantages of the engine 1is that jet

velocities developed after detonative combustion are

very high. Efficient operation of the engine for
propulsion could be realized only at high supersonic
vehicle velocities (Mach number of about 4)., In order
to reduce the velocity of the out-coming jet, it was
proposed to use spinning detonation (6). But the
spinning detonation process proved to be unsuitable
for use 1in an engine because it was unstable. Back et
al. (8) studied the feasibility of using detonative
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propulsion in Jupiter's atmosphere, and obtained a
number of results for various types of nozzles.

Motivated by the potential applications, of
detonative propulsion, in the present study the
process of the expansion of detonation products in a
diverging channel or diffuser of a detonation engine
were modeled numerically. The model and computer
program were then applied to calculate repetitive
firing, and the effect of changing the diffuser
length.

THE MATHEMATICAL MODEL AND NUMERICAL SOLUTION

It {s assumed that the jet-propulsion nozzles of
an englne using detonative combustion can bhe
constructed from a number of straight diverging
channels which are grouped, or clustered together. In
one cycle of the engine, a small volume of each tube
is filled with the combustible mixture and undergoes
detonation., Then the detonation products expand into
the stationary gas which fills the rest of the tube at
amblent pressure and temperature, The tube is
diverging and so the shock wave decays in strength,
Finally, a weak shock wave leaves the tube, and a
subsonic flow of gas discharges from the exit of the
channel.

It is assumed that the flow is periodic along the
1ines which are a continuation of the walls of the
channel. This implies that we are modeling the flow
in a centrally located channel of the cluster,

It 18 further assumed that the flow 1is inviscid.

The unsteady two-dimensional Euler equations can
be written in conservation law form as:

U oF 3G
rawtawt?
where _ _ _ _ _
p pu 5 pv
- |PU = [Pt pu - [puv N
v pv |’ F puv » G p + pv2 (1)
e_ le + plu {e +p)y

Here p is the density, u and v are the velocity
components in the X and Y coordinate directions, p is
the pressure and y is the ratio of specific heats.
The energy per unit of volume, e, i1s defined as

2 2
+
e-o(s+2——2_v-) .
where € = ?;:%73 is the intecnal energy per unit mass.

We look for the solution of the system of equations
represented by Eq (1) in the computational domain as
shown in Fig 1 in time t, with the following
conditions at the domain boundaries:

FEPPETL U¥ T PRV LY




LASSNNL D T e

\\';
[l:..

e

(" W U PR ST WY 3

- a) Solid wall along segment 1-2, 1-3 and 2-4

The condition on the surface is defined by solving
the Riemann problem between the point nearest to
the wall in the domain of integration and its
mirror image in the direction normal to the wall,

b) Periodicity between segments 3-5 and 4-6
By virtue of the central location of the channel
flow at each grid point along 3~5 is the same as
at corresponding grid points along 4-6 in Fig 1.

c¢) Outflow along segment 5-6

If the outflow is subsonic at the downstream

boundary we define only the pressure Poyt» and

for all other flow parameters apply the
continuation condition. That means that ug,,

Vout and py,¢ are set equal to the values of u, v

and p one point ahead of the downstream

boundary.

If the outflow 1is supersonic the continuation

condition is applied to all parameters at the

downstream boundary.

It Is assumed that initially at the time t=0, the
channel {s filled with detonation products from
segment 1-2 to 1'-2', Outside this region of the
computational domain, the gas 1is assumed to be at
ambient conditions.

The Godunov method has been used to obtain a
numerical solution of the Eq (1) with the
described boundary and initial conditions. Details of
the implementation of the method and boundary
conditions are given in ).

An orthogonal grid 1s constructed which covers
the computational domain as shown on Fig 1. It should
be noted that although the formulation of the problem
and 1ts solution is two~dimensional, with the boundary
conditions described above the flow will be
essentially one dimensional,

It i{s assumed that at t=0, the detonation wave
has passed through the combustible mixture and the
products of combustion have uniform properties., Thus
the time of initiation and propagation of the
detonation wave through the combustible mixture 1is
neglected in comparison with the time for propagation
through the channel and subsequent expansion of the
gases,
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RESULTS AND DISCUSSION
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The history of the flow development in the

= diverging channel 1s shown in Fig 2. Here the
i velocity and pressure distributions at the center-line
of the channel are shown at specific moments of time,
where time t=0 is when the expansion begins. At time
t=0, approximately 8.5%7 of the channel volume from the
left~hand side, 1s filled with detonation products
with initial pressure density and velocity having
[ ] values of

Po = 40 atm, py = 5.2kg/m3, Vo = 0 and uy = 0
respectively. At t=0, the rest of the channel is

- filled with ambient air with
. p=1atm, p=1.3k8/n3, v=0and u=0,
: The length of the channel {8 1 meter. These
e conditions will be referred to ag Case I,
e Initially, a shock wave going from left to right
S and a rarefraction wave going from right to left can
be seen in Fig 2. The shock wave progressively decays
X because the channel is diverging., The rarefraction
- wave propagates rapldly towards the wall at the left
end of the channel, because the temperatures ian this
region are very high (approximately 2800 K) and the
channel is converging towards the left end. At a time
of about 0,15 msec the rarefraction reaches the wall
- at the left end of the channel., From this moment,
l' pressure at the left end of the chaannel rapidly
decreases from about 40 atm at t = 0.15 msec to about

0.3 atm at t = 0.32 msec. Because of this rapid
depressurization of the region adjacent to the left
end wall, the pressure on the right hand end of the
channel becomes higher than that at the left, which
[ ] generates a shock wave going from right to left at

time t~0.6 msec. This back-going shock wave rapidly
slows down and then reverses the direction of the flow
because the channel is converging towards its left end
wall,

The negative flow reflects from the left end wall
L at time tw~l.4 msec, forming a hammer shock wave which
moves from left to right and again reverses the flow
direction. The formation of the hammer shock wave can
be seen clearly on the velocity and pressure graphs
for time t = 1,6 msec. Because the shock travels in a
diverging channel, it weakens rapidly.
) The main shock wave produced by the detonation
A products leaves the channel at the time =0.94 msec,
’ and because the channel is diverging in the direction
of propagation the pressure behind the shock wave
drops frow about 10 atm at time t~0.l msec to about 5
atm, at t = 0,94 msec when it leaves the channel.
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The mass velocity of the gas drops from about
1100 m/sec at the beginning of the expansion to about
500 m/sec when the gas begins to leave the detonation
tube. The velocity of the gas leaving the tube then
. decreases to -20 m/sec and increases again to about
50 m/sec when the shock wave reflected from the left
end wall reaches the exit of the channel., This
concludes the significant events which occur in the
diverging channel as a result of the expansion of the
detonation products, At later times, rarefraction and
pressure waves continue to form and travel in the
channel, but they are much weaker and their influence
on the thrust produced 1is very small,
In Fig 3 thrust as function of time 1s plotted
~ for the case described in the graphs given in Fig 2,
Thrust was calculated for the case of a stationary
tube with external pressure equal to the ambient
pressure using

T
A
. 'l:'ﬁ,
A

R AR

’
P AR
[

Sal
n

v VY vy
L)

«'s

el
"~ ¢ _"
T ‘

P M
‘

.
s

LIRS
YA
oo

.-.'-*‘.;u

‘NN

F= fL(pL - pex)dAx (2)

It can be seen in Fig 3 that most of the thrust
is produced in the 2 msec following the beginning of
the expansion of the detonation products. Integration
of thrust in time shows that 902% of the impulse is
produced in the first 2 msec and 102 in the following
7 msec.

The peculiarities of the thrust curve can be
undergtood in relation to the wave pattern in the
, tube., The first change in slope at time t~(0.8 msec o
corresponds to the time when the front of the main i’
shock wave reaches the end of the tube, Because the
pressure behind the shock front drops rapidly, the
thrust decay increases when the main shock front N
leaves the channel. At time t~l.5 msec the thrust -
increases as a result of the hammer shock wave e
reflecting from the left wall, | B >

When the main process of expansion ends, at RSO
time t~6 msec, the pressure in the tube 1is about 1.l
atm and the average density is about 0,43 kg/m3. This BN
corresponds to an average temperature in the channel e
of about 935 K. Since the pressure in the tube is T
close to ambient, the heat exchange will be by natural = &
convection, and it will take a relatively long time S
for the gas remaining in the tube after the expansion
to cool,.

In order to examine what will be the wave pattern
and thrust when a second detonation wave expands 1in
the channel immediately following the expansion of the
first detonation wave (6 msec after the beginning of
the process of expansion of the first detonation
wave), conditions were simulated numerically in the
following way. Results of the calculation for the
first detonation wave expansion were used as the
initial distributions of flow parameters. Then, in
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the 8.5% of the channel volume adjacent the left end
wall the pressure, density and velocity were given the
values

Po = 40 atm, p, = 5.2 ¥8/m3 and v, = u, = 0
respectively at time t=0. These conditions will be
referred to as Case 2,
' In Fig 4, the thrust vs time is shown for the
second detonation wave expansion, Since the
detonation products expand in a low density hot gas,
the expansion goes much faster than in the previous
case, At time t~0,8 msec from the beginning of the
second detonation wave expansion, the thrust drops to
zero. This can be compared with a thrust of
approximately 6+10%N/m at the corresponding time shown
in Fig 3, for expansion into ambient air. Then,

03
Py

because the large volume of the channel has static OO
pressure lower than ambient, thrust becomes negative PO
and, as in the previous case, a back-going shock wave !‘
develops. In Fig 5, the development in time of this AN
recursive shock can be followed. It is observed that O
the negative flow velocitles which develop are twice o
as large as those for the preceding expansion into : {iQB;
ambient air. And at time t=»2 msec the flow throughout s
the tube is reversed. Reflection of the ‘3

left-traveling shock wave from the left end wall at
time t~2 msec the flow throughout the tube is
reversed. Reflection of the left-traveling shock
wave from the left end wall at time t~2 msec produces R
a very strong hammer shock which reverses the thrust P
and the flow direction at time tw~2,1 msec, Because of
the large negative thrust, the total impulse which is
produced in Case 2 1is about 157 smaller than the
impulse of the detonation products expanding in
ambient air.

Another notable effect of expansion into the
products of the previous cycle, is the substantial
rise of temperature which occurs in the channel after
the second expansion. When the process of the second
expansion ends the average temperature in the channel
is approximately 1550 K. This 1s 615 K higher than
the final temperature after expansion into ambient
air,

In order to examine how thrust and total impulse
are influenced by the volume of air contained at
ambient conditions in the channel before the
expansion, two additional test cases were modeled., In
Case 3, the volume of ambient air in the channel to
the right side of the interface with the detonation
products 1s taken to be approximately 2.5 times larger
than the volume of the detonation products, This
requires a channel about 50% shorter than the original
channel, for which the ratio of the volumes of ambient
air to detonation products was about ll. In Case 4,
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o there was no air in the channel when expansion began,
~ which implies that the channel in this case has
N only about 257 of the original length, Therefore,
ne between Cases 3 and 4 and Case ! only the length of e
the channel was changed. The geometry of the channel, |
initial parameters of the detonation products were the
same in Cases !, 3 and 4, .
In Fig 6 the thrust is shown as a function of hS
. time for Cases 1, 3 and 4. It can be seen that Case 1l
< (solid line) where the channel is fully extended,
gives consistently higher thrust and that the thrust
decreases when the volume of ambient air in the
channel (or channel length) decreases, Case 3 (chain-
dotted line) and Case 4 (dashed line) have regions
where thrust 1s negative. Comparison of the total
impulse generated shows that the extension of the
channel is very beneficial for producing impulse. The
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impulse produced in Case 4, where the tube 1s filled
. with detonation products 1s 0.162¢103N/M+sec. When
- the channel is extended so that only 28.6% of the
channel volume 13 initially filled with detonation
products (Case 3), the impulse increases 28%. An
additional extension of the channel so that only about
8.5% of the tube volume is initially filled with
detonation products (Case 1), leads to total impulse
of 0,2784+103 N/Me+sec, which 138 a 72% increase
over Case 4.

CONCLUSIONS

Numerical modeling of the process of expansion of S
detonation products in a diverging channel revealed a s
flow pattern rapidly changing in time with multiple N
shock and rarefraction waves. One of the most O
- interesting features was the occurrence of a .
-- backwards-traveling shock wave, which developed as a el
result of over-expansion in the channel., The shock D
wave first reversed the flow direction (and in some AR
cases developed a negative thrust) and then, [?;5
reflecting from the left end wall as a hammer shock, i~
reversed the flow direction again, increasing the
thrust,

Modeling of the second detonation wave expanding
into the products of the previous expansion, showed
that this arrangement leads to: a) significant
negative thrust; b) increases of the gas temperature
after expansion; c¢) losses of 15% of the total
impulse. This leads to the conclusion that the
chanael should be filled with amblent air after each
detonation and expansion., Since the process of
expansion takes only about 0.006 sec, the
time~averaged thrust which can be generated by a
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- single channel will be limited by the rate at which
- the channel can be re-charged with air and mixture,
and refired. For very low initial velocities in the

. channel (consistent with the initial conditions

n .specified in the modelling), the frequency of firing
is limited to about 20 detonations per second. This
.corresponds to 0.044 sec for recharging at gas
velocities of about 23 m/sec. Investigation of the
influence of the channel length on the impulse and
thrust production showed that increases in the volume
of ambient air in the channel ahead of the detonation
- products, which was obtained with an increase in
-, channel length, led to significant increases in the
K thrust and impulse generated during the expansion.
The total impulse generated by an expansion in the
channel in which 8.5% of the total volume was filled
. initially by the detonation products, was found to be
. 72% greater than in the case of a short channel filled
Tt only with the same volume of detonation products at

the same initial conditions,

. ' The diverging channel geometry provided the
simplest geometry with area change to model using the
unsteady 2D Godunov-Euler code. Variations in the
geometry can now be made in order to examine the
ungteady thrust performance.
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NUMERICAL TECHNIQUES POR WAVE ROTOR CYCLE ANALYSES

A. Mathur and S. Eidelaan

Exotech, Inc.
Canpbell, California 95008

R, P. Shreeve

Turbopropulsion Laboratory
Naval Postgraduate School
Monterey, Californtia 93943

INTRODUCTION

Wave Rotors are devices which use unsteady
pressure waves to effeact direct energy exchange between
tvo gases. They offer the potential for significant
improvenents in air-breathing engine propulsion cycles
through their capability of withstanding higher
temperatures and pressures than' present-day turbines.
Other diverse applications are recounted in Ref (1).

In its wost basic form, a wave rotor is a drum
with axial or helical (staggered) passages arranged
around the periphery. This eingle drum~-like rotor
replaces separate coapressor and turbine components for
gas turbine applications. The compression and
expansion of the two fluids occurs in the passages as s
result of shock tube like processes. In a typical
configuration, combustion products at high temperature
and pressure give up energy to the 'driven’ fluid
(usually air) through the action of time-unsteady
compression/shock waves. The combustion products, (hot
'driver’ gases), are in turn expanded and exhausted
from the rotor, the available work of expansion being
utilized to induce a fresh charge of air onto the
rotor. Careful sequencing of the passage ends past
stationary inlet and outlet ports in valve plates on
either side of the rotor creates a cyclic internal wave
pattern in the wave rotor component., The high
temperature capability of the device is s direct
consequence of the repetitive processing of both cold
and hot fluid alternately in the same rotor.

Estimation of the sero-thermodynamic performance of
these devices hinges on calculations of the unsteady
energy exchange in the wave rotor component, Numerical
simulation of the unsteady wave processes can generally
be carried out on a one-dimensional basis. However,
the complex pattern of flow discontinuities and wave
intersctions known to exist in wave rotors call for
suserical methods which solve the nonlinear, hyperbdolic
systea of governing equations without relying on either
art{ficial viscos{ty or special trestaent of
discontinuities. Described in this paper are two such
techniques, the Godunov method and a Random Choice
method (Glimm's aethod or Plecewise Sampling method).

T o T A P et e
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NUMERICAL FORMULATION

An esgential component of both the Random Choice
method and the Godunov method is the solution of &
sequence of 'scal Riemann problems. A Riemann problea
18 defined by setting up an inftial value problem for
the equations of motion in Eulerian form. The
unsteady, two-dimensional Euler equations can be
written in vectorized, conservation lav form as:

U + [F(D))x + [G(U)]y » O, where U = [p a ov e]T,
F(U) = [ (p + mu2) muv (e + plulT, and
G(U) = [ov puv (p + ov2) (e + pIvIT .

Here, p is the density, u and v are the velocity com—
ponents in the x and y coordinate directions, and p {s
the pressure. Subscripts indicate partiasl differenti-
ation with respect to that independent variable. The
energy per unit volume, e, is defined by:

e = ole+ (u2 + v2)/2), where ¢ = p/(y -1)p

is the internal energy per unit mass.

The Riemann problem is intrinsically
one~dimensional in nature and {s defined accordingly.
For the one space variable case, thus, U = U(X,t), and
the {nitial value problem is set up by specifying
initial conditions which consist of intervals over
which data are constant, separated by jump
discontinuities. If cthe time step is chosen to be
sufficiently small, the vaves propagating with finite
speeds from adjacent discontinuities remain within
their respective spatial cells and do not intersect.
This sequence of solutions frow adjacent Riemann
problems 1s then pieced together to obtain the whole
solution st each succeeding time step.

The Random Choice method (RCM) for gasdynamics is
the outcome of a constructive exf{stence proof of
solutions to systems of nonlinear hyperbolic
conservation laws presented by GClimm Ref (2), and its
development into sn effective numerical tool by Chorin
Refs (3,4). The solution 1is advanced in time by a
sethod that {ncludes a solution of Riemann problems as
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described above and s sampling procedure, vhich
chooses values frow a representative point of the
exact solution to the local Riemann prodlem. The
sswpling procedure is due to van der Corput Ref (5)
and generates equidistributed sequences Ref (6). The
technique eliminates numerical diffusion and flow
discontinuities are computed with infinite resolution,
i.e., there is no ssearing.

The Godunov method 1s a finite difference method
which computes the Riemsnn problem solutions as a
first step, and using the fluxes thus obtained,
sdvances in timse by solving the first-order finite
difference approximation of the Euler equations.

Coding details for the RCM, and the Godunov
method are given in Refs (4,7) and Refs (7,8)
respectively. In the following section, examples of
the applications of these techniques to wave rotor
devices are given,

EXAMPLE APPLICATIONS

Fig 1 shows a wave diagran (a one-dimensional
space-time plot) for a wave rotor device configured to
operate as & turbine alone. Air at & pressure higher
than asbient enters the rotor through the inlet port,
generating a shock wave with a slower moving contact
discontinuity behind it at point 'a'., The shock
reflects off s wall boundary at point 'b', crosses the
incoming interface at point 'c¢' (dringing 1t to &
halt), and resches the inlet side again at point ‘d',
vhereupon the inlet port is closed. The gases in the
TOtOr passages are nov in an essentially quiescent,
high pressure state. At point ‘e’, the outlet port is
opened to a lower pressure, s rarefaction fan being
generated in the process. The expansion waves travel
to the left, reflect off the solid boundary and
propagate back to the outlet side. The port is closed
vhen conditions in the passages are essentially the
same as st the deginning of the cycle.

o s

® - IMLET

RS

" s s sece 2 o o
o

(mpec -
v

T~ - L~ ] oUTLET

2.2 \ X{w) >

0 —T1863

Pig. 1| Weve Diagram Computed by 1~D Random Chofce
Method.
S-Shock; RS~Reflected Shock; R-Rarefaction
Pan; RR-Reflected Rarefaction; I-Interface

The entire wvave disgram vas generated by the
one-dimensional sampling method with properly
imsplemented boundary conditions. Fig 2 shows &
sequence of the propagstion of the shock wave and
contact discontinuity in time. The perfect resolution
of the discontinuities is noteworthy, even when a very
smsll density change occurs across the interface, as
in this case.

’ i
RS >
s> Ne275
RS > N=225
N=150
1
1
1
€S 1
Ne75 s
N=25

rig. 2 Sequence Showing Shock and Interface Movement.
S - Shock; 1 ~ Interface; RS ~ Reflected
Shock; N - Timestep

The transient process of the rotor passage end
opening or closing creates losses which affect the
performance of the device. The gradual (as opposed to
{nstantaneous) opening/closing of the passages is
essentially a tvo~dimensional flow phenomenon and s
sodelled using the 2~D Godunov code. Fig 3 shows a
sequence of pressure contours for the gradual opening
case vhich clearly shows the significant effect the
dynamices of the passage opening has on the flow
pattern in wave rotor devices. The actual shock
formation for the modelled case is seen to occur
approximately halfway into the passsage as opposed to
the {nstantaneous formation generally assumed for the
ideal case.

DISCUSSION

The two techniques described here are powverful
tools for the design of wave rotor devices. The
example application of the one~dimensionsl Randoam
Choice method deals with s fairly elementary vave
diagram, but serves to illustrate its potential and
suitability for designing complex gas turbine engine
cycle type wave diagrams. The Godunov method is more
smenable to extension to multidimensional analysis
required for loss calculations, while fulfilling the
requirements outlined {n the fatroduction,
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Local Cell Orientation Method.

. 2,

IHlustration of the method for the solution with oblique shock

INTRODUCTION

The Finite Volume Schemes for numerical solution of the Euler equa-

tions can be split into two main steps:

a)Calculation of the fluxes on the cell edges;

b)Updating the vafues at the center of the cell ,using the

calculated fluxes, to satisfy the Euler conservation laws.

LN NN

Usually the accuracy of the flux calculation determine the accuracy
of the numerical modeling Ref.1. In the region of the shock wave the
accuracy of the flux calculation is significantly reduced and in some
methods special care should be taken in order to reduce the pre-shock
and after-shock oscillations.When the upwind methods are used the
fluxes are usually calculated using the one dimensional wave propagation
problem (i.e. Riemann problem). In this case the assumption of the
one-dimensionality lead's to large computational errors and significant

- shock smearing in the region of the oblique shock.

In the current study it will be demonstrated that the accuracy of

. the numerical modeling could be significantly improved by proper Local
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Cell Orientation (SELCO Method). We applyed the SELCO Method only
with the Godunov scheme for the solution of the Euler equations, but
the idea of the method is general enough to be used with other finite

volume methods.

THE SELCO METHOD.

For the Godunov method the numerical fluxes are calculated using
the solution of the Riemann problem. First the solution is assumed to be
piece-wise constant in every cell. Then, to calculate the flux for every
cell edge the Riemann problem is solved between the cells adjacent to
the edge. Solution of the Riemann problem is obtained in the direction
normal to the cell’'s edge. The equations are then integrated in the
each cell for one time step using the finite difference approximation of
the Euler equations and the fluxes at the cell's edges. A more complete

description of the Godunov method can be found in Ref.1.

In the two dimensional Godunov method it is assumed that the fluxes
could be determined using the solution of the one dimensional Riemann
problem if the CFL number used is smaller than 0.5. In the following
example it will be demonstrated that that assumption lead’'s to consider-

able errors for the solutions with oblique shock waves.

As a test case the supersonic flow over the 22.3° wedge was simu-
lated. The grid and the computational domain is shown on the Figure 1.
The system of the two dimensional Euler equations as in Ref.1, was

solved by time marshing in the computational domain shown in Fig.1 for
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. ¢
j time t+oo with the following conditions at the domain boundaries:
‘.“ b
mE"
- a) Inflow of the air at M=2.2 along segment 1-2; R
b2 -
{‘ :_.. ...:.-.:4
o b) Outflow along segment 3-4; AR
1‘ .ﬂ.\i
(the flow along this segment will be supersonic and = E_q
7. ‘ f.-_..:_
the continuation condition is applied to all parameters e
- R
- at the downstream boundary) P if:'j-_}.f
! ;:.}:.f
- c) Solid wall along segments 1-3 and 2-4.
:t_ in the Figure 2 (a,b,c,d) results of the flow simulation using the :‘;Z?)
. T P."n.,.
> Godunov method in the computational domain shown on Fig.1 (squares) &
-f are compared with the analytical solution for the supersonic flow over '.:‘_: jh-‘.:‘:l-_
v the wedge (solid lines) Ref.2. Comparison is done for the data on the :.-'."-.':
. LA
lower surface of the channel shown on the Fig.1. It can be concluded || E'_
! .\'.\\
- from this comparison that only pressure coefficient is calculated accu- o
- ratly by the Godunov method. Especially notable the error in entropy. o ::f:l:f:
‘ Exact entropy change on the shock wave is 2 times smaller than that ! @
- o
- predicted by the Godunov method. The isomach lines are shown for the e
‘-:' same simulated case, in Figure 2 (e). The shock is smeared over the
large area of the mesh (up to 5-6 points), but the shock’'s angle is = E 3
. simulated correctly. . ‘
:: _\::_
A In order to study the source of errors for this type of problems the PO 3
H
e supersonic flow over the wedges with different angles was simulated. it A
- e
N was found that the pressure was predicted accuratiy for the all simu- RS
., :.*:h:'
N lated cases. At the same time the error in entropy increases when the i‘ 'é‘i
. shock wave obliquity increases. Dependence of the accuracy of the .
:: shock simulation on the shock obliquity is not surprising since the basic .._: :::::::
. '-,-.'.‘q
: RSN
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assumption about independance of the flux calculation for the intersect-
ing edges of the cell, for t < 0.5*CFL, became incorrect in the vicinity

of the shock. Spliting the flux calculation for each cell on four one

dimensional Riemann problems for each of the cell's edges would not AL
lead to the large errors in the regions of monotonic flow. It will also n-
give accurate approximation in the region of the oblique shock if the
shock wave is parallel to one of the cell edges. The last statement will

be illustrated by the following numerical example. ‘.

Let's solve the problem of the supersonic flow with M =2.2 over the

22.3° wedge, as in previous example, on the grid shown in Figure 3. ""
The grid in Fig.1 is skewed uniformly so that vertical lines of the grid '_C"..
are forming a 51.7° angle with the positive direction of the x-axis. An E‘:-:;\.
angle of 51.7° corresponds to the shock wave angle calculated analyt- i:.—
ically Ref.2. Because the grid is skewed the oblique shock waves will ;:E:'\
be parallel to the vertical grid lines of the mesh shown in Fig.3. :f;‘::::
Results of this test case, in the form of the distribution of pressure -L::}".:‘

coefficient, entropy, density and velocity, are compared to the analyt- i'::"::'.
ically calculated values (solid lines) in Figure 4 (a,b,c,d). In Fig.4

(e), the isomach lines for this simulation are shown. It can be con-

cluded from the results presented in Fig.4, that the flow is modeled is
this case with very high accuracy. Shock wave is resolved on one grid
cell and entropy jump is calculated exactly. All that is result of the

proper cell orientation towards the shock wave.

Skewing the entire grid can help to accuratly resolve only one
shock wave, and only on the condition that the shock wave angle is

known prior to the solution, so it could not be applied effectivly. But
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if skewing of the cell can be done locally in the region of the oblique

shock it can improve the accuracy of the shock wave simulation.

The proposed SELCO method does the cell reorientation locally. The

method consist from the following steps:
1)Integration of the Euler equations by the Godunov method;

2)Define the approximate shock location and the shock angle using
the expressions for oblique shocks Ref.2.
(Based on the fact that pressure is calculated accuratly

by the Godunov method);

3)Rotate the cell edges that are directed along the shock about
their middle points on the shock wave angle. So, after rotation,
two of the cell edges will be parallel locally to the shock wave

surface (see Figure 5);
4)Calculate the fluxes on the new edges of the cell;
S)integrate the Euler equations in the new cell.

All these additional steps do not add much of computational work,
because the cell reorientation should be done only in the vicinity of the
shock wave. If the shock could be resolved on one grid point, only one
cell would be transformed. Our experience has shown that there is no
need to extend the SELCO procedure on the cells ahead and behind the

shock wave surface.

in Figure 5 (a,b,c,d) results are shown for the same flow condition

as in previous cases: supersonic flow with Mw=2.2 over the wedge of

<HP
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22.3%. Calculations were done on the grid shown in Figure 1 and in
this case the SELCO method was applyed. It can be concluded from the
results presented in Fig. 5 that the accuracy of the shock wave model-
ing using the SELCO method approach that demonstrated in Figure 4 for
the completely skewed grid, and is superior to the accuracy of the
standard Godunov method. The isomach lines for the case where the
SELCO method was applied are presented in Figure 5 (e). The shock
tickness in this graph is minimal and much more improved compared to

the simulation by the original Godunov method shown in Figure 2 (e).

CONCLUSIONS.

It has been demonstrated that inaccurate modeling of the oblique
shock waves produced by the Godunov method is the result'of the
obliqueness of the shock wave with respect to the edges of the cells of
the computational grid covering domain of integration. It is also shown
that only when the shock surface is parallel to the two opposite edges

of the cell the oblique shock can be accuratly calculated.

A new method of the Loca! Cell Orientation (SELCO Method)
is proposed in order to allow local reorientation of the cells in the
vicinity of the shock waves. The efficiency of the SELCO method is
demonstrated for the simulation of the oblique shock waves in the

supersonic flow using Euler equations.

Although the new SELCO method was demonstrated with the Godunov

scheme it will be effective in applications to the other upwind methods

B T T A N PSR
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that use the finite volume formulation.
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FIGURE CAPTIONS.

1. The Computational Domain.

}\ 2. Computation by the Godunov method.M, =2.2.

T
I

Wedge Angle is 22.3°. Continuous lines

show the exact solution for - a,b,c and d.

- a) Surface Pressure Coefficient.

b) Surface Entropy.

c) Surface Density.

d) Surface Mach Number.

- e) Isomach Lines.

3. The Computational Domain with the Skewed Grid.

4. Computation by the Godunov Method on the Skewed Grid Shown

. in Figure 3. M _=2.2. Wedge Angle is 22.3°,

Continuous lines show the exact solution for - a,b,c and d.

’ ::-' a) Surface Pressure Coefficient.

1 . b) Surface Entropy.

c) Surface Density.

d) Surface Mach Number.

e) lsomach Lines.

5. The Local Cell Reorientation by the SELCO Method.

6. Computation by the SELCO Method.M__=2.2.

- Wedge Angle is 22.3°. Continuous lines

e show the exact solution for - a,b,c and d.

a) Surface Pressure Coefficient.

: E b) Surface Entropy.

c) Surface Density.

d) Surface Mach Number.

e) lsomach Lines.
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