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Abstract

_»The energy levels in a delocalized two- or three-dimensional chemical structure
are related to the eigenvalues of the graph representing the corresponding bonding
topology. Such relatively crude but computationally undemanding graph theory
derived models provide a clear demonstration of the close relationship between l
two-dimensional aromatic systems such as benzene and three-dimensional aromatic
systems such as deltahedral boranes, carboranes, and metal clusters. The basic
building blocks for the three dimensional aromatic systems are deltahedra having
no degree 3 vertices. Delocalized bonding in such systems having v vertices requires
two electrons for a multicenter core bond as well as 2v electrons for pairwise
surface bonding. A problem of particular interest is how metal cluster polyhedra
can fuse together leading ultimately to the infinite structures of the bulk metals.

As a model for such processes the fusion of rhodium carbonyl octahedra is examined

using graph theory derived methods. These lead to reasonable electron-precise

models for the bonding topologies in the("blphenyl analogue (Rh1z(C0)3o\)

o

3

the "naphthalene analogue (Rhg(CO)19)3 the ¢ "’anthracene analogue
Hz{Rh{;(C 0);;, and the("permaphthene analogue (Rh11(C0)23)3 . Similar models
can also be developed for clusters based on centered larger rhodium polyhedra
as exemplified by the centered cuboctahedral clusters of the type
(_Rhig(CO)ééH;.élf?] (q = 2, 3, 4) representing a fragment of the hexagonal close

packed metal structure.
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. Introduction

:‘:;; The systematics of the fusion of metal cluster polyhedra are important in
::: ! understanding the structural relationships between discrete metal clusters and
::z. bulk metals. Topologically the fusion of metal cluster polyhedra to give bulk
::; metals can be regarded as a three-dimensional analogue of the two-dimensional
Eg problem of fusion of benzene rings to give graphite. This paper summarizes some
,':2 key aspects of our graph-theory derived approach to metal cluster bonding
‘,_:;3 topology'+2:3 and shows how it can be extended to the treatment of the fusion
i{é of metal cluster polyhedra using several fused rhodium carbony! cluster polyhedra
;'*1 as examples. A more comprehensive discussion of graph-theory derived models
%& of the bonding topology in fused rhodium carbonyl cluster polyhedra is presented
h‘a elsewhere.* Another recent paper> compares the essential aspects of our

! graph-theory derived approach to metal cluster bonding topology with other

ity approaches to metal cluster bonding such as the original Wade-Mingos skeletal
}

n

:% electron pair method,5:7.8 the extended Huckel calculations of Lauher,? the

perturbed spherical shell theory of Stone,10:11 and the topological electron counting

method of Teo.12-13,14,15 Strengths of our graph-theory derived method include

:‘:: the following:

M (1) The ability to deduce important information about the electron counts and
“" shapes of diverse metal clusters using a minimum of computation.

(2) The ability to generate reasonable electron-precise bonding models for metal
k) clusters, such as platinum carbonyl! clusters, 16,17 that appear intractable
E:i by other methods not requiring heavy computation.

:,i. (3) information concerning the distribution of total cluster electron counts between
:“! skeletal bonding within the cluster polyhedron and bonding to external ligands.
é; (4) Ability to distinguish between localized and delocalized bonding in cluster
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polyhedra.
In connection with understanding the fusion of cluster polyhedra an important
development was the observation by Teo!3 that the Hume-Rothery rule!? for
electron counting in brasses can be extended to close packed high nuclearity metal
clusters. Other aspects of the fusion of cluster polyhedra have been treated by

Mingos29.21 and by Slovokhotov and Struchkov.22

Background

Chemical bonding relationships can be represented by a graph in which the
vertices correspond to the atoms participating in the bonding and the edges corres-
pond to bonding relationships. The adjacency matrix of a graph, such as a graph

representing chemical bonding, can be defined as follows

0ifi=j
Ajj = 1if i and j are connected by an edge 1

0 if i and j are not connected by an edge

The eigenvalues of the adjacency matrix are obtained from the following determin-

antal equation:
|A - xt|= 0 (2)
in which U is the unit matrix (I;; = 1 and l;; = 0 for i # j.)

The eigenvalues of the adjacency matrix of the graph representing the relevant

chemical bonding are closely related to the energy levels as determined by Huckel

theory.23,24,25,26 Thus Huickel theory uses the secular equation




T ETEATTLTIWH M. SAVLW I I U e LWL TE Y W LWL b e e

|H-ES|=0 (3)

in which the energy matrix H and overlap matrix S can be resolved into the unit

matrix | and the adjacency matrix A as follows:
H=cal+B8A (4a)
S$=1+SA (4b)

The energy levels of the system are related to the eigenvalues x of the adjacency

matrix A (equation 2) as follows:

_a+xB
g=ttxt (5)

Thus a positive eigenvalue x of A corresponds to a bonding orbital and a negative
eigenvalue x corresponds to an antibonding orbital in the corresponding chemical
system. In this simple way graph theory can be used to determine the number
of bonding and antibonding orbitals for a bonding topology represented by a given
adjacency matrix A. Such information, although very limited compared with inform-
ation obtainable at least in principle by more sophisticated methods which are
more complicated computationally, is sufficient to determine favored electron
counts for different molecular shapes which are of considerable importance in
metal cluster chemistry.

In this paper we apply such bonding models to the study of such metal clusters.
The vertex atoms in such clusters may be classified as light atoms or heavy atoms

depending on whether they use d orbitals as well as s and p orbitals for their chem-

ical bonding. Furthermore, vertex atoms may be classified as normal or anomalous
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i vertex atoms depending upon whether or not they use precisely three of the four
(for light atoms) or nine (for heavy atoms) valence orbitals for intrapolygonal
;':.: or intrapolyhedral chemical bonding; these three orbitals are called_internal orbitals
g{f;‘: and the remaining one (for light atoms) or six (for heavy atoms) valence orbitals
:ffi} are called external orbitals.
!i:i The two extreme types of chemical bonding in metal clusters may be called
sg edge-localized and globally delocalized.’3 An edge-localized polyhedron has
1" two electron two-center bonds along each edge of the polyhedron. A globally
E':: delocalized polyhedron has a multicenter core bond in the center of the polyhedron
Ezg and may be regarded as a three-dimensional "aromatic" system.27 A complicated
?t!i‘ metal cluster system consisting of fused and/or capped polyhedra can have globally
&' delocalized bonding in some polyhedral regions and edge-localized bonding in other
, ' polyhedral regions.
*l One of the major triumphs of the graph-theory derived approach to the bonding
j';: topology in globally delocalized systems is the demonstration of the close analogy
:C: between the bonding in two-dimensional planar polygonal aromatic systems such
L ' as benzene and in three-dimensional delathedral boranes and carboranes,! where
:’::: a deltahedron is a polyhedron in which all faces are triangles. The latter three-
:c;::‘ dimensional structures are topologically equivalent to metal cluster structures
i through ideas first presented by Wade in 197128 and subsequently developed exten-
sively by Hoffmann as Lisolobality.29
:és Consider a globally delocalized polygonal or deltahedral sytem with v normal
:'.‘ vertices. In such a system the three internal orbitals on each normal vertex atom
355:4 are divided into two twin internal orbitals (called "tangential” in some treatments)
EE':E; and a unique internal orbital (called "radial" in some treatments). Pairwise overlap
i‘"‘ between the 2v twin internal orbitals is responsible for the formation of the poly-
__ gonal or deltahedral framework and leads to the splitting of the 2v orbitals into
70
i
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:::3 v bonding and v antibonding orbitals. The dimensionality of this bonding of the
.:::‘if'; twin internal orbitals is one less than the dimensionality of the globally delocalized
. 8 system. Thus in the case of the two-dimensional planar polygonal systems such
s as benzene the pairwise overlap of the 2v twin internal orbitals leads to the
3 o-bonding network which may be regarded as a collection of v one-dimensional
‘;:r bonds along the perimeter of the polygon involving adjacent pairs of polygonal
.;:. vertices. The v bonding orbitals and v antibonding orbitals correspond to the o
.;: bonding and o* antibonding orbitals, respectively. In the case of the
':;:: three-dimensional deltahedral systems the pairwise overlap of the 2v twin internal
E':..:' orbitals results in bonding over the two-dimensional surface of the deltahedron,
:.:‘E which may be regarded as (topologically) homeomorphic to the sphere.

.3, The equal numbers of bonding and antibonding orbitals formed by pairwise
!' overlap of the twin internal orbitals are supplemented by additional bonding and
 ? antibonding molecular orbitals formed by global mutual overlap of the v unique
5 N internal orbitals. This overlap can be represented by a graph G in which the vertices
4‘: \ correspond to the vertex atoms or (equivalently) their unique internal orbitals
f:m and the edges represent pairs of overlapping unique internal orbitals. The relative

energies of the additional molecular orbitals arising from such overlap of the

~,
3

unique internal orbitals are determined from the eigenvalues x of the adjacency

-

w2

matrix A of the graph G (see equations 2 and 5 above). In the case of benzene

1
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the graph G is the Cg graph (hexagon) which has three positive and three negative

eigenvalues corresponding to the three w bonding and three n* antibonding orbitals,

’ Ny ar h
2

respectively. In the case of a globally delocalized deltahedron having v vertices

>
-

such as found in the deltahedral boranes ByH,2~ and carboranes C2By-2Hy

- > -

(6 <v<12) as well as most octahedral metal clusters (v = 6), the graph G is the

complete graph K, in which each of the vertices has an edge going to every other

vertex leading to a total of v(v-1)/2 edges. This corresponds to a v-center bond
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f'g at the center (core) of the deltahedron formed by overlap of each unique internal
:?é: orbital with every other unique internal orbital. The complete graph K, has one
-_,;.‘%;. positive eigenvalue and v-1 negative eigenvalues regardless of the value of v
;E indicating that the v-center core bond in a globally delocalized deltahedral cluster
i:"' leads to only one new bonding molecular orbital. The sum of the v bonding orbitals
4‘,‘ arising from the surface bonding of the twin internal orbitals and the single bonding
%E.:E orbital arising from the v-center core bonding of the unique internal orbitals gives
Z‘:; a total of v + 1 bonding orbitals for globally delocalized deltahedra having v
’:;:. vertices. Filling these v + 1 bonding orbitals with electron pairs in the usual way
gives a total of 2v + 2 bonding electrons in accord with the observed number of
E;;. skeletal electrons required to form stable globally delocalized deltahedral boranes,
1\ carboranes, and metal clusters. Further details of this bonding model are presented
E: elsewhere.1,2,3

- The relationship between the number of edges meeting at a vertex (the vertex

degree) and the number of internal orbitals used by the atom at the vertex in

;f' question determines whether or not the bonding in the polyhedral cluster is edge-
:Fj localized or globally delocalized.3 Thus edge-localized bonding requires that
ﬁ: all vertex degrees match the numbers of internal orbitals used by the corresponding
E?.: vertex atoms. Conversely, delocalization occurs when there is a mismatch between
:::' the vertex degrees of the polyhedron and the numbers of internal orbitals provided

by the corresponding vertex atoms. Since normal vertex atoms3 use three internal

v orbitals, the smallest globally delocalized polyhedron is the regular octahedron,
,3 which is the smallest polyhedron having no vertices of degree 3. Delocalized
g:i metal octahedra have a similar prototypical role in constructing three-dimensional
.:':': delocalized metal clusters and bulk metals as planar carbon hexagons have in
:':: constructing fused planar aromatic systems ("polyhexes") including graphite. This

paper thus considers fusion of rhodium octahedra as a model for important stages
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in the generation of bulk metal structures by fusion of individual metal polyhedra.
Many interesting higher nuclearity metal clusters have interstitial atoms or
groups located in the center of the polyhedra. In such interstitial atoms all valence
orbitals (four in the case of a light atom and nine in the case of a heavy atom)
contribute to the skeletal bonding so that all of the valence electrons of the inter—
stitial atom are available for the skeletal bonding. For example, interstitial carbon
and rhodium atoms contribute four and nine electrons to the skeletal bonding,
respectively. Such interstitial atoms require the surrounding polyhedron to have
a certain minimum volume.30 Thus an interstitial carbon atom cannot fit into
a tetrahedron but fits into an octahedron as exemplified by Rug(C0);7C.31 An
interstitial transition metal such as rhodium cannot fit into an octahedron but
fits into a twelve-vertex polyhedron. In this connection the volume of a polyhedron
containing an interstitial atom can be increased by decreasing the number of edges.
In the case of a deltahedron this can be done by converting pairs of triangular
faces sharing an edge into single quadrilateral faces by rupture of the edge shared
by the two triangular faces. This process is similar to the “diamond-square" portion
of the diamond-square-diamond process involved in polyhedral
rearrangements.32r33r34 For example, rupture of six edges in this manner form
an icosahedron can give a cuboctahedron.32 A v-vertex non-deltahedron derived
from a v-vertex deltahedron by volume expansion through edge rupture in this
manner and containing an interstitial atom may function as a globally delocalized
2v + 2 skeletal electron system like the v-vertex deltahedron from which it is
derived. Such non-deltahedra can conveniently be called pseudodeltahedra: they
have only triangular and quadrilateral faces with only a limited number of the
latter. In an uncentered polyhedron having some faces with more than three edges,
these faces may be regarded as holes in the otherwise closed polyhedral

surface.2,3,35 Sugh polyhedra are found in electron-rich clusters having more

m:ﬁ\?&\{\ﬁh; 3 -ﬁm{w&\'ﬂ.ﬁ. "‘::.‘::-' '4 (ita {?.{‘&%‘.’ {:‘ _:.'L.'L. L ...‘\.\ Lx'\'_‘{ ._('- L;'.&. .:..m..- ..'\.\- u.:x
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than 2v + 2 skeletal electrons as exemplified by the 2v + 4 skeletal electron nido
boron hydrides having one nontriangular face and the 2v + 6 skeletal electron
arachno boron hydrides having two non-triangular faces or one large non-triangular
face (e.q., B10H1q).1'35v37 However, an interstitial atom at the center of such
a polyhedron may be regarded as plugging up the surface holes arising from the
non—triangular faces so that globally delocalized bonding is now possible.

Electron-poor v-vertex metal clusters having less than 2v + 2 apparent skeletal
electrons have structures based on a central deltahedron having one or more capped
(triangular) faces to generate a tetrahedral chamber for each such capping relation-
ship.L3 If the central deltahedron is an octahedron or other deltahedron having
no degree three vertices, then the tetrahedral chambers are regions of
edge-localized bonding attached to a globally delocalized central polyhedron. Thus
a capped octahedron is an example of a metal cluster polyhedron having globally
delocalized bonding in some regions (i.e., the cavity of the octahedron) and
edge-localized bonding in other regions (i.e., the tetrahedral chamber formed
by the cap).

Let us now consider in more detail the general effects of face capping on the
required number of skeletal electrons. An edge-localized tetrahedral chamber

formed by capping a triangular face requires 12 skeletal electrons corresponding

to two-electron bonds along each of the six edges of the tetrahedron. However, g
six of these skeletal electrons are the same as the six skeletal electrons of three
surface bonds involving the vertex atoms of the face being capped. Thus capping
a triangular face requires six additional skeletal electrons to generate the total
of 12 skeletal electrons required for the resulting tetrahedral chamber. These
additional six skeletal electrons from capping a triangular face can be viewed
as forming three two-center edge-localized bonds along the three edges connecting

the cap with the three vertices of the triangular face being capped. Note that



]
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&

;';:f £ach of the three atoms of the triangular face being capped needs an extra internal
i

i orbital beyond the three internal orbitals for the skeletal bonding for the central

polyhedron. In general these "new" internal orbitals will come from previously

':: non-bonding external orbitals already containing the electron pair required for
H:’E the two-center bond to the capping atom. This is the basis for the statement
"' in earlier papers'r3 that capping a triangular face contributes skeletal electrons
‘ to a central polyhedron without contributing any new bonding orbitals; such a

V" statement summaries the net result of this process without considering the details.

:t:;‘ In treating capped triangular faces we can thus regard the three atoms of the
':f“ face being capped either falsely as using three internal orbitals so that such capping
:?' generates no new bonding orbitals or more accurately as using four internal orbitals
?‘ so that such capping generates the three new bonding orbitals of the three
3 two-center bonds to the cap but concurrently the six electrons required to fill
R these new bonding orbitals. Both approaches lead to equivalent electron counts.

':; A polyhedron with a single cap may alternatively be regarded as a pair of fused
:Ei polyhedra having the capped face in common. Thus a deltahedron having a capped
::: (triangular) face can be regarded as a tetrahedron fused to the deltahedron so
’;‘ that a triangular face is shared by both polyhedra. Thus capped polyhedra may
. be regarded as special types of fused polyhedra. Furthermore note that the vertices
» of a face shared by two fused polyhedra also belong to the two polyhedra. In
g‘ general, the larger the number of polyhedra to which a given metal vertex belongs,
y’:: the larger the number of internal orbitals required for its skeletal bonding. In
¥

the face-sharing fused octahedral rhodium carbonyl derivatives discussed in this
paper electron-precise bonding models can be devised in which rhodium vertices
belonging to one, two, and three octahedra use three, four, and five internal orbitals,
respectively; such Rh(CO); vertices donate one, three, and five skeletal electrons,

v respectively. Similar relationships do not necessarily hold for edge-sharing fused

OO
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metal octahedra such as [RdmC 2(C0)2412" (ref. 4).
Application to Rhodium Cart LClust Having E | Polyhed
The general ideas outlined in the previous section are illustrated in this section

for selected fused polyhedral rhodium carbonyl! clusters which are potential models

for understanding the fusion of discrete metal clusters to extended bulk metal

structures. First the properties of rhodium carbonyl clusters based on a single

polyhedron are listed below:

(1) Rha(CO)y5 and substitution products38: These clusters form edge-localized

tetrahedra having the required 12 skeletal electrons since each Rh(CO)3 vertex

contributes three skeletal electrons.

{2) [Rhg{CO)ysI” (ref, 39): This cluster forms an elongated trigonal bipyramid
in which the equatorial rhodium atoms use three internal orbitals but the axial
rhodium atoms use only two internal orbitals thereby providing the vertex
degree/internal orbital mismatch required for a globally delocalized trigonal
bipyramid.3 Note that an Rh(CO)3 vertex contributes three skeletal electrons
when it uses three internal orbitals but only one skeletal electron when it uses

only two internal orbitals thereby corresponding to (3)(3) + (2)(1) + 1 = 12 skeletal

electrons=2n+ 2 forn =15,

{3) Rhg(C0)q¢ and substitution product#9: These clusters form globally delocalized

octahedra having the required 14 skeletal electrons.
{4) [Rh7(C0)y613~ (ref. 41); This cluster is an example of an electron-poor cluster
having only 2v apparent skeletal electrons {see above) for v = 7. Its structure

is normally viewed as a capped octahedron but can be equivalently considered

. : T Al 0 EOrON A AT I IAAAGAHOAOGCAC OG0
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as an octahedron fused to a tetrahedron with a (triangular) face in common. The

s

E:: seven Rh(CO); units contribute a total of seven skeletal electrons, the two "extra"
. carbonyl groups contribute (2)(2) = 4 skeletal electrons, and the -3 charge on the
i’ s anion contributes an additional three skeletal electrons leading to the 14 skeletal
?‘; electrons required by the globally delocalized center octahedron.

- Now let us consider rhodium carbony! clusters formed by the joining in various
‘C ways of rhodium carbonyl octahedra similar to the isolated Rhg octahedron in
’:: Rhg(CO)1g. Such combinations of rhodium octahedra can conveniently be classified
:i:? by the trivial name of the polycyclic benzenoid hydrocarbon having an analogous

configuration of its planar hexagon building blocks. In this connection fusion of

N
g
-~
b

two rhodium octahedra so that a triangular face is shared by both octahedra will

3 )
s

w
L}
u

be considered as analogous to the fusion of two carbon hexagons so that one edge

’

A

is shared by both hexagons (e.g., naphthalene). Figure 1 depicts the fused rhodium

. sy -
)
)

¥ carbony! octahedra that will be considered in this paper as analogues of polycyclic
g; aromatic hydrocarbons. The specific systems are discussed below:

§§. (1) Biphenyl! analogue, [Rhq2(C0)3012"_(ref, 42); The structure of [Bh12(C0)3o]2’
t‘f‘f consists of two Rhg octahedra joined by a rhodium-rhodium bond analogous to
) biphenyl in which two Cg hexagons are joined by a carbon-carbon bond. Such
{§ a combination of two octahedra requires 28 skeletal electrons, namely 14 for
?i,_ each octahedron (2v + 2 rule where v = 6). These 28 skeletal electrons can be
.,.: obtained as follows:

:
12 Rh(C0); vertices: (12)(1) = 12 electrons
:i‘b' 6 "extra" CO groups: (6)(2) = 12 electrons
E% Rh-Rh bond 2 electrons
:;'E' -2 charge _2electrons
g::g Total skeletal electrons 28 electrons

*
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{2) Naphthalene analogue, [Rhg(C0)1913~_(ref, 43): The structure of [Rhg(CO0)qgI3"

consists of a pair of octahedra having a (triangular) face in common analogous
to naphthalene which consists of two carbon hexagons with an edge in common.
The face-sharing pair of octahedra has 9 vertices, 21 edges, and 14 faces like
the 4,4,4-tricapped trigonal prism, which is the nine-vertex deltahedron found
in systems with 2v + 2 = 20 skeletal electrons (v = 9) so that a bonding scheme
with a K9 complete graph for the core bonding is reasonable for a fused pair of
octahedra just as it is for the 4,4,4-tricapped trigonal prism. However, in the
fused pair of octahedra the three rhodium vertices common to both octahedra
use four internal orbitals whereas the six rhodium vertices belonging to only one
of the octahedra use the normal three internal orbitals. This leads to the following

electron-counting scheme for [Rhg(C0)913:

(a) Source of skeletal electrons:
6 Rh(CO0); groups present in only one octahedron and
therefore using 3 internal orbitals: (6)(1) = 6 electrons

3 Rh(C0); groups common to both octahedra and

therefore using 4 internal orbitals: (3)(3) = 9 electrons
1 "extra" CO group: (1)(2) = 2 electrons
-3 charge 3 electrons
Total available skeletal electrons 20 electrons

(b) Use of skeletal electrons:

9 Rh-Rh surface bonds: 18 electrons
1 9-center (Kg) core bond: -2 electrons
Total skeletal electrons required 20 electrons

{3) Anthracene analogue. HaRh;3(COQ)ss (ref, 44); The structure of HaRh12(CO)zs

¢ ﬁ%ﬁw

(L
6“@‘*'




‘3&5 consists of a linear chain of three fused octahedra similar to the fusion of three
B

. benzene rings to form anthracene (Figure 1). In HaRh12(C0)55 the distance between
‘;:,‘ the three vertex atoms of the triangular face unique to the octahedron at one
(o

'i‘" 3

iQ': end of the chain and the three vertex atoms unique to the octahedron at the other
"

ﬁ:! end of the chain is too large for the core bonding to be represented by a single
z...; complete graph analogous to the Kg graph used to represent the core bonding
i

j:?: in the above naphthalene analogue [Rhg(CO)1g9]3~. Instead in H3Rh{2(CO)z5 the
?5.

> core bonding consists of two complete graphs, one associated with the octahedron
oy at one end of the chain and the other associated with the octahedron at the other
“;f’

‘E;.; end of the chain. This leads to the following electron-counting scheme for
v..‘a

34 HaRh12(CO)2s:

£

iy

n\. (a) Source of skeletal electrons:

Ihe

! 6 Rh(CO0), groups present in only one octahedron and

therefore using 3 internal orbitals: (6)(1) = 6 electrons

6 Rh(C0); groups common to two octahedra and

) therefore using 4 internal orbitals: (6)(3) = 18 electrons
E": 1 "extra" CO group: (1)(2) = 2 electrons
E . 2 hydrogen atoms: (2)(1) = —2 electrons
E Total available skeletal electrons 28 electrons
g.:s (b) Use of skeletal electrons:

g“: 12 Rh~Rh surface bonds: 24 electrons
X 2 core bonds & electrons
? Total skeletal electrons required 28 electrons
B
e

The analysis of the bonding topologies in the naphthalene analogue [Rhq(C0);9]3~

and the anthracene analogue H2Rh13(CO)y5 suggests that in a linear chain of

2R arAE x Y, BTN AAEAEDSRDSOO0 PRSOGOS AN
SRR S RN R 4%, ’g__«’;g‘;‘isﬁ. R R e S N TR GO
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an odd number of face-sharing octahedra the core bonding occurs in alternate
‘ octahedra including the octahedra at both ends whereas in a linear chain of an

even number of face-sharing octahedra the core bonding consists of a K9 graph
. in the two octahedra at one end followed by core bonding in alternate octahedra
;‘ along the remainder of the chain. Such ideas are potentially useful in the con-
X struction of one-dimensional chains of fused polyhedra having novel metallic
properties.
" {4) Perinaphthene analogue, [Rhy1(C0)7313~ (ref. 45): The cluster [Rhq(C0)3313"
¢ consists of three fused octahedra. The six rhodium atoms unique to a single octa-
% hedron are considered to use the normal three internal orbitals, the three rhodium
:: atoms shared by two octahedra are considered to use four internal orbitals, and
? the two rhodium atoms shared by all three octahedra are considered to use five
'_ internal orbitals. Each of the three octahedral cavities contains a K, multicenter
.. core bond and in addition there is a "hidden" two-center two-electron bond between
::! the two rhodium vertices common to all three octahedra. This leads to the following
.' electron-counting scheme for [Rhy(C0)3313":
!
;: (a) Source of skeletal electrons:
;:'s 6 Rh(C O); groups present in only one octahedron and
:i' therefore using 3 internal orbitals: (6)(1) = 6 electrons
g 3 Rh(C0O); common to two octahedra and therefore
using 4 internal orbitals: (3)(3) = 9 electrons

2 Rh(C0); groups common to all three octahedra

? and therefore using 5 internal orbitals: (2)(5) = 10 electrons
{: 1 "extra" CO group: (1)(2) 2 electrons

-3 charge —Jelectrons

.}’ Total available skeletal electrons 30 electrons

"A

0 by
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(b) Use of skeletal electrons:

11 Rh-Rh surface bonds: 22 electrons

3 core bonds in the three octahedral

i " i

i'i:',:! cavities: (3)(2) = 6 electrons
f}:ﬁ:ﬁ: : 1 "hidden" two-center, two-electron bond between
ﬁ‘;ig the two Rh vertices common to all three octahedra: 2 electrons
:‘%E; Total skeletal electrons required 30 electrons
)
&
o Another interesting type of high nuclearity rhodium carbonyl cluster consists
:fE:EE‘ of a polyhedron having 12 or more rhodium atoms with an additional rhodium atom
:,;‘;:E‘ in the center. Many of these systems are particularly significant in representing
i fragments of body-centered cubic (bcc) or hexagonal close-packed (hcp) metal
’i structures.#6 A frequently encountered feature of these systems is a Rh{3 centered
:t?,:& cuboctahedron (Figure 2) representing a fragment of the hcp metal structure.!8
‘;:;.n! The prototypical systems of this typeAhave the general formula [Rhy3(CO)a4H5-gl9”
5::% (q = 2, 3, 4).47,48,89 These systems have the correct electron count for a globally
:::: delocalized Rhj; pseudodeltahedron having the thirteenth rhodium atom in the
::2 center as an interstitial atom. The electron counting for these systems illustrates
::“E,: the effect of an interstitial atom and can be summarized as follows:

R

N (a) Source of skeletal electrons:

: 12 Rh(CO); groups using 3 internal

W orbitals: (12)(1) = 12 electrons

;f’ Center (interstitial) Rh atom: 9 electrons

3: 5-q hydrogen atoms and -q charge: (5-q) + q = —5 electrons

Total available skeletal electrons 26 electrons

IR ;".1
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;

15 (b) Use of skeletal electrons:

*

¥

‘ 12 Rh-Rh surface bonds: 24 electrons
4 1 core bond: (1)(2) = —2 electrons
o

3 Total skeletal electrons required 26 electrons
*

N A variety of more complicated centered rhodium carbonyl clusters are known.18
(.

: Their bonding topologies are discussed in some detail elsewhere.?

;
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¥ Figure 1: Analogies between the fusion of Rhg octahedra in rhodium carbonyl!

APy clusters and the fusion of benzene rings in planar polycyclic aromatic hydro-

C et carbons.

BCA Figure 2: The centered rhodium cuboctahedron found in the [Rh{3(C0)24H5-gl9"

Vet clusters; the center (interstitial) rhodium atom is enclosed in a square.
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