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I. INTRODUCTION

In recent years, numerous investigators have proposed different hot spot
initiation models for the impact initiation of detonation., Field, et a1l
have shown that catastrophic shear failures can cause ignition, even if the
catastrophic shear failures ocowr in inert plastics rather than in the ex-
plosive. They have also shown that crack propagation, by itself, is insuf-
ficient for ignition, but have speculated that the crack generation is sensi-
tizing. Coffey2 has proposed that dislocation pile up within erystals can
cause shear banding, which in turn can lead to ignition. Mader3 has used a
hydrodynamic hot spot model to desceribe initiation and has stated that the
hydrodynamic hot spot model is all that is required to model ignition and
buildup to detonation, for higher pressure (~10 kbar) shock initiation of
heterogeneous explosives.4 Cavity collapse processes have been modelled
by Frey,’ using an extension of the model of Carroll and Holt.® In the
range of pressures of interest to Frey, the hydrodynamic heating processes
treated by Mader were less important than plastic work and shear processes,

Most of these models were developed without access to experimental results
under conditions of interest. In particular, very little experimental work has
been published describing the various damage forms arising from impacts upon
explosives under heavily confined conditions. Futhermore, given that a multi-
plicity of phenomena could contribute te the initiation process it decomes
important to identify which ones provide the most significant contributions.
The experimental work described herein represents a first attempt at char-
acterizing the material response processes which occur within heavily confined
explosive charges subjected to impact,

II. EXPERIMENTAL

Samples of heavily confined explosive charges were impacted by flying
steel plates. Two types of TNT loaded projectiles were impacted, creamed and
not creamed. The term "creamed", refers to a process whereby TNT powder is
added to the molten batch of TNT during the hot melt casting procedure. The
addition of the powder providea a large number of nucleation sites, and induces
small crystal growth.

The 76 mm x 152 mm x 6 mm mild steel plates were explosively driven by
Dupont Deta Sheet, and were thrown at 340 and Y40 m/sec. The impacted rounds
were prevented from hitting the wall of the firing site barbette by the use of
sand bags. The different plate velocities provided different initial shocks,
and different rates of projectile deformation., There were two variables funce-
tioning in the test configuration, plate velocity and TNT grain size. Fig. 1
is typical of the test setup in this firing program.

Control samples (not impacted) were kept from each lot, to be used as
undamaged standards in the microstructural study of the impacted explosives,

Both the control and impacted projectiles were remotely cut, and
cylindrical sections were removed for microscopic investigation. No fluilds
were used in the cutting process 30 as to minimize the probubility of con-
tamination. The sections taksen were approximately £0 mm thick. Fig, 2
represents a typical cut projectile, and Fig. 3 shows a cylindrical section.
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76 mm x 152 mm x 6 mm
—.. MILD STEEL PLATE
COVERED WITH DETA SHEET I

SUPPORTED BY TAPE

OVER OPEN FRAME - DETONATOR MOLDER

20 mm STANDOFF RHA WITNESS PLATE

LINE WAVE
GENERATOR °

Itz

Figure 1. Schematic of Test Setup for Plate
Impact Experiments.
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Figure 2. Test Pijectile, Sectioned After
Impact., Section was Obtained From
the Center of the Impacted Region.
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; Figure 3. Cylindrical Cross Section of Impacted

q Target. Corings were removed for
Microscopic Examination. Top View.
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Sample corings were removed from various locations within thes sactions
taken from the cut rounds. The corings were removed by hand, using a standard
hole saw; no power equipaent was used at this point in the sample preparation.
The samples were sanded flat on one side, sc that the flat was parallel to the
plate impact; this flat provides an orientation landmark for the direction of
the impact. The originai cut surface (made when the round was sectioned), and
a plane parallel to the cut surface, were coarse sanded using 150 grit sand-
paper followed by 320 grit sandpaper. The flat opposite the cut surface was
glued to an aluminum SEM sample stud using a silver base acrylic paint.

The surface to be investigated was again sanded in final preparation for
polishing using 150 and 320 grit sandpaper, and then fine sanded using 460 and
600 grit sandpaper. All sanding was done by hand, without water. An effort
was made to keep the prepared surface perpendicular to the axis of the mounting
stud, and obtain a smooth 600 grit finish.

Pl ar Y SRR LELIPURIDS, g el SRR E B S

After sanding, vhe sample was hand polished using a wool polishing cloth
saturated with distilled water, The wool cloth was manufactured by Buehler,
Ltd.. The Buehler cloth was cataloged as, "AB Kitten Ear"™, no. 40-7556., This
material has been discontinued by Buehlsr, but can be purchased from:

it 40

J.1. Morris Company

394 Elm Street

PO, Box 70

Southbridge, Mass., 01550

Phone: (617) T64-4394
Item: U=18 Pressed Wool Pad
The sample being polished was rinsed with distilled water, and dried with

comp.ressed Freon. Polishing was done with a light pressurs, while moving the
sample in a figure eight motion.

NS A ARl e DegFor Y

Optical microscopic examinations were done using an Optiphot Microscope by
Nikon. Two types of surface lighting were used; polarized light, and normal or
scattered light. Normz2l lighting provides the best delineation of the TNT
grains; but both types of light have their advantages, each providing different
data., A partially polarized light source also proved useful,

Mok T
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Samples for scanning electron microscopic (SEM) examination were prepared by
sputtering a conductive coating of gold, or gold/palladium onto the surface,
The sputter coating for this work was done in a Denton Vacuum, Inc.; Desk 1;
Sputter Unit. A gold/palladium coating was applied at an argon pressure of 75
mtorr, and a current of 15 mA for 2 minutes. These sputter conditions provide
a conductive film thickness of about 500 angstroms. A film of this thickness
has been found to be the minimum thickness suitable for SEM work on an
explosive sample.
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The sample can be chemically etched after polishing to enhance the TNT
grain boundaries. It was found that 1,2 dichlorcethane 1s an excellent solvent
for etching TNT. This chemical is toxic and was not allowed to come in contact
with skin, nor were the vapors inhaled. Etching was completed by dipping the
sample in fresh stirring solvent, for 3 seconda, Dissolution was quenched
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after 3 seconds by immediate immersion in distilled water., The samples were
rinsed with distilled water, and dried with compressed Freon., Pure solvent was
used for each sample so that the rate of dissolution was constant from sample
to sample. Mild stirring was effected by using a magnetic stirrer.

TR
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IIT. RESULTS AND DISCUSSION

'y

N Examination of sections of artillery shell subjected to impacts by ex-
plosively launched plates revealed several phenomena which appear to be im-

8 portant to the initiation process, The intensity with which these phenomena

% oceurs 1s an increasing function of severity of lmpact.

Q Shown in Fig. 3 and 4 is a cross sectional view of a target round, which

had been lmpacted at 440 m/s by a 0.64 cm steel plate, Near the polnt of im-
pact is a kidney bean shaped area which has been severely damaged. Grains have
been comminuted, and intergranular separation has occurrea., The blackened
regions are localized areas of decompoaition. Chemical analysis lndicates that
the decomposition is rather complete; the main product identified as being pre-
sent was carbon.* Microscoplc examination of these blackened regions revealed
two morphologies, as shown in Fig. 5 and in the microphotos of Fig. 6 and 7.
One family of blackened regions appears as relatively long, narrow reglion
oriented parallel to lines of principal shear, and is probably an example of
shear-induced hot apot formation. Note that these regions occur at grain
boundaries and as shear fallures within individual grains., The second family
of blackened regions is more apherioal in nature, has no preferped orientation,
and quite probably is a result of cavity collapse processes, Note that, in
this particular sample, the number density of shear~induced hot spots is
greater than that of cavity collapse-induced hot spots, although both are
present. The proportlon will be a function of sample porosity and deviations
from planar, uniaxial flow.

Between the bean-shaped region of high damage and the warhead casing is a
narrow band showing little damage (see Fig. 3). This band is reproducible from
shot to shot. Apparently, it was caused by heat conduction to the steel cas-
ing. If this is true, i indicates that the decomposition within the reglon of
high damage was a relatively slow process.

® In the region of severe blackening, directliy behind the lmpact point,
decomposition of TNT was confirmed by chemical analysis, The black materlal
was found to be carbon. Surface a2nalysis, via X-Ray Photoelectron Spectroscopy
(XPS), indicated the possible presence of oxidation products of TNT. Feak
broadening in the XPS spectra indicated the presence of the acld or aldehyde
derivative, and also the possibly of a nitrile derivative, TLC was used to
further evaluate the sample, and four compounds were jdentified, TLC
comparison with reference compounds, and mass spectra confirmed the four
compounds as TNT; 2, U4, 6 trinitrobenzaldehyde; 2, 4, 6 trinitrobenzonitrile;
and 2, U, 6 triniltrobenzaldoxime, The oxime is a second step decompositlion
product, in that it probably results from the reaction of trinitrobenzyl anion
with nitrous acid, The nitrile is then formed by dehydration of the oxime,
These results are consistent with a rather complete, localized decomposition of
the TNT. (Private communication with J. Sharma; Naval Surface Weapons Center,

White Oak, Silver Spring, MD 20910)
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N1 Figuie 4. Bottom View of Cross Sectiou of Impacted
o Sample. Compare with Figure 3; Note
ué\f Difference in Deformation and Blackened
;%, Region.

Figure 5. Cross Section of Round, Showing Major
Shear Cracks and Regions of High
Damage.
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Figure 6. Close up View of Blackened Pegiom.
Blackening is a Result of Chemical
Decomposition.
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Figure 7. Blackened Regilon at Higher Magnifica-~
tion. Note Boundary Between Case
and Blackened Region.
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The volume of the bean-shaped region of high damage correlates with case
deformation. For similar impact geometries, higher impact velocities produced
larger damaged volumes, and greater density of decomposed regions within these
volures. Where case thickness rariations ceuse different deformatloas, the
damaged volums appears to scale with total deformation, and the density of hot
spots within the damaged volume correiates with impact veloeity. The fact that
impacts in thinner cases yielded larger reglions of high damage indicates that
the damage was caused primarily by case deformation, not shock loading, as
small changes 1n wall thickness would not cause appreciable differences in
shoek loading. To check this, computer calculations were conducted replicating
the impact conditions., Results showed that the shock loading conditions are
essentially the same for the two impact conditions.

Each of the impacted samples exhibited a field of major shear cracks,
external to the regions of high damage, as shown in Fig. 3 and 4 and as shown
in Fig. 5. The width of individual shear cracks was found to vary
significantly and randomly across a sample. Cracks as wide as 0.1l mm and as
narrov as 0,01 mm were observed., Microscopic examination of these cracks
revealed several interesting features. In the wider regions, the explosive was
severly shattered within the crack, tc the point where integrity of the sample
was lost, and polishing was difficult or impossible (see Fig. 8). In the nar-
rover regions, cracking and comminution of the grains occurred, and melting and
fusing occurred as well., In these regions, sample integrity was reestablished,
and polishing was possible. One such area is shown in Fig. 92 through 9¢. 1In
Fig. 9a, partial melting is clearly apparent. Some fractures are apparent
within the crack, but most have been healed, A+ the edges of the crack, many
sl fractures are apparcat. These zay have cccurred after crack formetion

4 aid healing, or they may have occurred during crack formation but, because they
) were at the edges of the crack, did not reach a high enough temperature to
3 heal, Fig. 9a through 9¢ are photomicrographs of the same region, but with
different lighting, to highlight different crack features. Figure 9a discussed
above, was obtalned with plane polarized light, to reduce surface reflections,.
Figure 9c was obtained with unpcolarized light, to emphasize surface character-
istics. Here, one can discuss the intersection of grain boundaries with the

o highly polished specimen surface. Note the large amount of flow which has

3K accurred within the region. Healing of internal fractures has occurred, and
A nartial melting has alsc occurred. Some discoloration within the crack was

!k noted, indicating that partial decomposition may have occurred, Figure 9b was

i obtalned with partially polarized light and permits comparison of 9a and 9c,

fi having gome features of each.
5? The majority of macroscopic shear cracks exhibit the features described
e ebove, Evidently, formation of these cracks involves local shear failures over
: a wide region, with shattering and grinding of the explosive occurring within
; the crack. If the motions and pressures are adequate, healing, melting, and
5 decomposition can occur. Occasionally, macroscopic shear cracks can propagate
8 with relatively little damage to the grailn structure, and with little indi-
:§ cation of decomposition or local heating. BSuch a crack is shown in Fig. 10.
' Nete that, in one region, the crack width has narrowed to a2 dimension of the
f; order of a grain boundary. Significsnt slip has occurred; Fig. 11 shows a
collage made by cutting along the crack and matching graln boundaries. In this
n instance the total slip was ~ 0,0L mm,
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Figure 8. Microphoto of Major Shear Crack in INT.
Darkened Region at End of Crack is a

Result of Powdered Explosive Removed from
Sample During Polishing.
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Figure 9a. Optical Micrograph of Major Crack,
Showing Fracture Damage and Some

Internal Healing (Plane Polarized
Light).
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Figure 9b, Same Region of Crack as in 9a, Viewed
with Partially Polarized Light. Note
Cutline of Grain Boundaries.

Figure 9c. Crack Region of 9a Viewed with Reflected
Light. Note High Degree of Flow, Grain
Damage in Crack Region.
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X Figure 11. Collage Made from Figure 10 Showing
g Extent of Slip Along Crack.

K

by

2
e 19

e ae e
W)
IS

- - . - . B - ndTwme ™
. - R R e L VR e ¢ N IrN-AITR i MWl ire e, W e WL R E SM LW YR W mLE o Md SR Rt 8 LI AR
Ry > V. X1V A.J-' A ot e w s a PR P A N A T A A I Y ™ YT PV VYT VLT LAY




Between ma jor shear cracks, damage is considerably less, Impact damzge
shows up in the form of internal fractures, separation at grain boundaries, and
slip. S1lip induced by impact is relatively easy to distinguish from slip bands
formed during crystallization due to the former displaying crushed regions
where slip bands meet grain boundaries. An example of incipient grain boundary
separation and impact-induced slip is shown in Fig. 12. For comparison, an
unimpacted sample is shown in Fig. 13. 1In regions distant from the point of
impact, none of these damage forms showed any indication of melting or sig-
nificant decomposition, as indicated by discoloration of the sample, and such
mild damage probably does not contribute to ignition. However, it is quite
likely that there would be a significant contribution to processes, such as
grain burning, which are involved in the post-ignition buildup to detornation.

At a given impact velocity, damage was found to be more severe in the
large grain size (uncreamed) TNT than in the fine grain size (creamed) samples.
This difference is manifested most strongly in the region of high damuage, near
the point of impact, with the decomposition being much more extensive within
the damaged volume, and the damaged volume much larger for the large grain
sample.

Increases in impact velocity led to lncreased damage, as expectad.
Fracture damage throughout the impacted sample is more severe at the higher
impact velooity, with much more extensive grain separation, internal fracture
damage, slip, and macroscopic shear crack formation. At the higher impact
velocity, the number of macroscoplc shear cracks is greater, and the extent of
melting is greater. Discoloration due to decomposition is much more extensive
in these c¢racks. A more quantitative description must await examination of
samples impacted at more than two velocities.

A few experiments were conducted using gun launched cylindical projectiles
which led to perforating impacts. The region of high damage observed in the
plate impact experiments is replaced by cratering. Away from the crater, dam-
age to the sample was very similar to that for the plate impact experiments,
However, almost all the deformation occurred within the TNT phase, with the RDX
relatively untouched. This is shown in Fig. 14, where the explosive was com-
position B (60% RDX, LO% TNT). Chemical analysis identified the presence of
partial decomposition products of TNT, but not of RDX.
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In addition to the internal damage, there is clear evidence of significant

melting and flow away from the point of impact, between the explosive and the
casing. How important this is to initiation is unknown.

{'

-

IV. SUMMARY

Heavily confined explosive targets were subjected to impacts by explosive-
ly launched plates and by penetrating fragments. In each experiment, the dam-
aged explosive was collected, sectioned, and examined by optical and scanning
electron microscopy. A number of different types of damage was observed, each
of which ls expected to contribute to the lnitiation process. Near the point
of impact, for non-perforating impacts, a severely damaged region was observed.
This region showed evidence of decomposition of the explosive. The decompo-
sition within this region was locallzed, and nearly complete; i.e., carbon was
ldentified, but few intermediate decomposition products. Separating this
region of high damage and decomposition from the casing was a thin layer of
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Figure 12. Micrograph Showing Impact-Induced Figure

Slip and Grain Boundary Damage.

Micrograph of Major Shear Crack
Region in Impacted Composition B.
Most of Shear Occurs in THi Phase.
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explosive, exhibiting no significant decomposition. This is probably a result
of heat transfer to the casing, and indicates that the decomposition in this
region at the lmpact conditions studied was rather slow.

Outside the region of high damage, the explosive exhibited families of
major catastrophic shear cracks. The width of these cracks varied from ~ 0,01

mm to ~ 0.1 mm., Evidence of melting and decomposition was observed in the
thinner regions of the cracks.

Results for impacts with perforating fragments were similar to those for
plate impacts, except that cratering replaced the region of high damage. All
the other phenomena were quite similar.

The response of the explosive to impacts is more complicated than
originally thought. Since the explosive is mechanically weak, the conditions
for shear damage are almost entirsly controlled by casing responsa to the im-
pact, and the domain over which severe damage occurs is controlled by case
deformation. We are as yet unable to rank these various explosive damage
mechanisms with respect to their importance to the initiation process.
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