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CONVECTIVE STABILIZATION OF IONOSPHERIC PLASMA CLOUDS

1. INTRODUCTION

The evolution of artificial plasma clouds (e.g., barium) in the
earth's ionosphere continues to be of interest to space plasma physicists
after more than two decades of research. The plasma dynamics associated
with ionospheric clouds are of interest since they provide a diagnostic of
the ambient ionospheric environment, and also provide experimental data for
the study of plasma instabilities. Of particular interest is the onset and
evolution of the E x B gradient drift instability (Simon, 1963; Hoh, 1963)
which is believed to cause the gross structuring of plasma clouds, i.e.,
field-aligned striations (Linson and Workman, 1970). This instability is
also believed to be responsible for, at times, the structuring of the
ambient, high latitude F region ionosphere (Keskinen and Ossakow, 1983).
The E » B gradient drift instability is an interchange mode and is driven
by a neutral wind or dc electric field in an inhomogeneous, weakly
collisional plasma. A substantial amount of theoretical and computational
research has been carried out to understand the E x B gradient drift
instability and its relevance to ionospheric structure (VSlk and Haerendel,
1971; Perkins et al., 1973; Zabusky et al., 1973; Shiau and Simon, 1972;
Perkins and Doles, 1975; Scannapieco et al., 1976; Chaturvedi and Qssakow,
1979; Keskinen et al., 1980; McDonald et al., 1980, 1981; Huba et al.,
1983; Sperling, 1983, 1984; Overman et al., 1983; Sperling and Glassman,
1985; Sperling et al., 1984; Drake et al., 1985).

The bulk of theoretical analyses to date have been based on the local
approximation in slab geometry. The local approximation is appropriate for

unstable modes which have wavelengths much shorter than the scale length of

Manuscript approved November 19, 1985,
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:f the density gradient associated with the cloud boundary (i.e., kL >> 1 f:t!
3 where k is the wavenumber and L is the density gradient scale length) (Huba E»}
N et al., 1983, Huba and Zalesak, 1983). However, the observed gross
;3 structuring of plasma clouds seems to suggest that the dominant modes have
J. kL < 1 so that the local approximation may not be valid. The slab or one~=
-f dimensional [n = ny(x)] models of plasma clouds do not include a number of 5&%‘
‘ important physical effects which appear in more realistic two-dimensional . E;ié%
models. The polarization of large plasma clouds in 2D greatly reduces the &ﬂ?f
‘. relative slip velocity of the cloud and the ambient neutral wind thereby f$"$
;3 weakening the E x B gradient drift {instability (Overman et al., 1983; -
: Zalesak and Kuba, 1984%). Furthermore, convection and/or propagation of the :"E;;
perturbations from the unstable backside to the stable frontside of the ,_fg%
cloud may influence the overall stability of 2D models. :;Ezzi
- N
The most detailed linear stability analysis of 2D plasma clouds in the ;i;;
B long wavelength regime has been based on the waterbag model (Overman et ,
S; al., 1983). The purpose of this paper is to extend the analysis of Overman
;f et al. (1983) by including parallel dynamics, i.e., density and potential

fluctuations along the ambient magnetic field. Recently it has been shown
that the parallel effects can strongly influence the linear stability of
ionospheric plasma clouds by stabilizing the short wavelength modes
(Sperling, 1983; Sperling et al., 1984; Sperling and Glassman, 1985; Drake
et al., 1985)., However, these investigations have been based on a 1D cloud

model and the need to consider a 2D cloud model is apparent. Thus, in this

paper we study the influence of parallel dynamics on the stability of 2D

ol ionospheric plasma clouds. In particular, as in Overman et al. (1983) we . ;}ﬂ

consider a simple equilibrium consisting of a 2D c¢ylindrical waterbag, but -2323

in contrast to them we consider three dimensional perturbations. We find

e o et . A
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that the finite parallel dynamics can dramatically alter the E x B gradient

drift instability. Unlike the limit k, = 0, exponentially growing global
eigenmodes can exist when k, = 6. As k, is increased above a threshold
value, the unstable modes 1localize at a finite angle away from the
backside; at a point where the diamagnetic propagation velocity (Vd)
balances the convective flow velocity of the background plasma around the
cloud (Vb). We find that the E x B gradient drift instability is stable
when Vd > Vb 30 that the cloud is no longer susceptible to larger~scale
structuring. We apply these results to ionospheric barium clouds and
estimate that they will cease structuring when LL < (cT/eB)(M+2)/2Vn where
e

LL is the ¢transverse size of the c¢loud, T = T, + Ti is the total

temperature, M = nc/nb, and n., is the cloud density, ny is the background

e
density, and Vn is the neutral wind velocity. For mid-latitude barium
releases at -~ 180 km we estimate LL ~ 160 » 480 m which is consistent with
observations.

The organization of the paper is as follows. In the next section we
present the assumptions and general equations used in the analysis. In
Section III we derive the dispersion equation and in Section IV we present
analytical and numerizal results. In Section V we investigate the
possibility of exponentially growing global eigenmodes. Finally, in

Section VI we summarize our findings and discuss the application of our

theory to the evolution of ionospheric barium clouds.
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II. GENERAL EQUATIONS AND EQUILIBRIUM

-

] K

W, Y

The general three dimensional equations for a warm plasma cloud in a Al
uniform magnetic field B = B e, and a background neutral wind !n - Vn e, sﬁx;\

(see Fig. 1) are given by (Drake et al., 1985)

- T
' an _¢ 3 1 3% e oJn
) a—t-§V¢xz'Vn+5-z-——en (a—z'*n—é-a-;)-O (1)
i e
: g Xiﬂ Vv +nV ¢ +0D Vzn * 233 ; x V +Vn + a1l (22 - Eﬁ QEJ =0 (2) : é;ﬂ:i
I B 8 1 L TRy a, -n 9z en_ "3z ne 3z
' .‘l.\.- -
' - ‘-:.-
’ h /ne? 1 istivit . D N
; where n, = m v, ne- is the parallel resistivity, Vo Voi Ven'® i “;“i}'
i (vin/niJCTi/eB is the perpendicular fon diffusion coefficient, v, is the ot
\‘3“,{’
. electron~ion collision frequency and Qa and Van 2re the cyclotron and .;;{if
neutral collision frequencies of the species a. Equation (1) is the j;jijg
electron continuity equation and (2) arises from charge neutrality “i‘ﬁ*
(VeJ = 0). We have considered the electrostatic limit, have assumed NN

in" "1
perpendicular electron diffusion [019). We therefore assume that

ve/ne, v, /R, << 1, and have neglected the ion parallel diffusion (D,i) and

=", R W S 4L e © SN Y Y T.7.7.

3/3t >> D . 32/3z5, D _ V4.
i1l 12 L

It is convenient to change variaules by defining a new potential

Ti
' ¢ =0+ tn(n). (3)
!
g
.
.
b
,
,
.
; 4
i
; o~
e s e e e e e e e T e e e T e e e e e e e e . g
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Equations (1) and (2) then become

an o]

- 3 1 3o T 3n
ot B Ve x z+Vn + -7 en, (az " ne az] 0 (4
v V. a
¢ in i ) 1 3¢ . T on
B ni VL n VL? * Qi z X !n n + 3z en (az ? he az) 0 (3)

where T = 'I‘e + Ti

We consider a simple equilibrium consisting of a cylindrical waterbag

of radius r, and density n. in a uniform background Ny:

c c

ng(r) = ncH(r -r)+n (6)

o] b

where H 1is the Heaviside function. The solution of the equilibrium
equations for this configuration are well known. The drag between the
cloud and neutral wind polarizes the cloud. The resulting potential 00 is

given by (Smythe, 1950),

M
Vn e rsing r < Pc
co
9.
B 2
r
M o]
Vn rvre i sing r > rc

where M = “c/nb' The potential causes the cloud to drift with a uniform

velocity

~

e L4
X

M
Ve = Vo w2 (7




The linear stability analysis which follows is most easily carried out

in the frame of reference of the moving cloud. In this frame the

potential °0c is given by
0 r < rc
0000
| B 2 (8)
M rc
. Vs (r - =) sins. r>or
X III. LINEARIZED EQUATIONS AND DISPERSION EQUATION.
; We investigate the stability of this equilibrium by considering small
E perturbations n(r,8,z,t) and #(r,0,z,t) around ng and °Oc' Since the

equilidrium is independent of z, we can expand the perturbations in plane
WJaves in the z direction (ﬁ, ¢ - exp 1kzz) without loss of generality. In
the perpendicular plane such a simple expansion i{s not generally possible
since the equilibrium depends on both r and 8. Equations (4) and (5) yield

the lineari{zed equations,

an _ ¢ ~ o~ ¢ e 3 Kz (z_1Tn
EE-—B'VOOCKZ‘VII*E;;B—GG(I”‘PC)‘e—ne'[O‘;a;)'0 (%a)

L R R R L T —.v)ﬁ-k—z- G-129.0
B a, L O L Oc 2y n ¢’ 3y en, e n,

Equations (9) are solved separately in the region r > r, and r < r_, and

(o] c’

the solutions are then matched using boundary conditions which are obtained

from the equations for r =r In the 1limit k, = 0, this procedure is

ca

straightforward since n =0 and V2 3 =0 forra=r In the case Kk, = 0,

co

the equations for n and & in the region r = r, are much more complicated so

C

T T e
A e .
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further simplifications must be made. We 1limit the calcula=tion to
perturbations for which 3/36 >> 1, In this 1limit the 6 dependence

of n and ¢ can be represented by the eikonal 5, n - exp[lS(e)] where
VS = 1ke(e) ey (10)

In this limit the perturbations are strongly localized around the boundary
rao and decay exponentially away from this boundary. Thus, for r = ro we

write

$+ = ;+ exp[is(8) Jexp[+ kr+(r - rc]] (11)

where + and = refer to the region r > r, and r < r

c o respectively. The

specific range of parameters for which the feorm of ® given in (11) is valid
will be presented later. Similar expressions can be written for Ez(r. 8).
Finally, we assume n and ¢ grow exponentially in time with a growth rate
Y. For the present, Y must be considered a local growth rate Y(8).
Eventually, we will investigate under what circumstances exponentially
growing normal modes of the cloud can exist.

With the form of & (and n) given in (11), (9a) and (9b) reduce to

algebraic expressions for kr: in the regions r = r

c’
2
a. K
2 2 +°Z M
K, = Kg Y {y + ik a3 V, sine
-2y “in [1k, cos8 = k__(1+M) sins]} = 0 (12a)
M+2 'n Qi 9 r+
2
a K v
2 2 -z 2 in .
Ko, = Kg = {y = 7z Vo 3 [ike cose + qu31ne]} 0 (12b)
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{]

% Y, =Y ek Dy * 1Ky oz w22 V_ sine, (12¢)
'i Y =Y+ KD (12d)
.o' N YA |e’

E
:

a = Qeni/vevin

coefficient and

>» 1, D,e = T/meve is the parallel electron diffusion

Y, n, = K5 &, /eng,. (13)

The matching conditions for n_, ¢, and kp+ at r = r, can be derived
from (9). The radial E x B convection of the cloud cayses the density n to
be singular at the cloud boundary (third term in the continuity equation).

It is convenient therefore to separate out the singular behavior of n so

that in the region r = r,

a(r, 8) = [N s(rhrc) + ;+] exp[is(8)]. (14)

The potential ¢ remains finite at the boundary so (9a) can be written as

2 -
[y + x; ol + (¢/B) 1ky 8, JN + (c/B) ikgn, ¢ = O. (15)
for r =r,. Equation (15) now contains no singularities at r = r,.
However, °6c is discontinuous across r = r, since it is zero for r < r, and f}ijuq
finite for r > r,. The parallel diffusion coefficient Dle is also ~

generally not continuous across the boundary. These discontinuities must

be balanced by a corresponding jump in the potential ¢ at the boundary.
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Thus, from (8) and (15), we find .

o /Y, = o_/Y_. (16) T

‘uts
3

o
A
L

-,D
LEoi
or

This condition can also be derived from the requirement that the tangential

% electric field across the boundary of the plasma cloud be continuous. The o
g ..-‘\:.
v continuity equation then reduces to T
: oo
N
d YN + (¢/B)ik.n & = 0. amn) E\'
N - 8 ¢ ~ R
v
kN N
>, The matching condition for k,, can be derived by integrating (9b) across -*}-,:"
the boundary, n oy

\.T g'; u
= RE
.' ™

- - B 2y - “_}_} y
) . B 'n - A
- k., ¢, = (n, +n Jk o + 255 [iky cose N+ (1+M) siné n, o
:" ~ (G + G ) . ..
- + -~ 2Tz y

" sing n_] + 3 kg N =0. (18)

" Equations (13) and (16)-(18) can then be combined into a single relation
= between k,, and Kk _,

_, 2v v

n 2 in 2

. koY, ¢ (1eMk Y = == [Mke cose + (1+M){a, = a_) 5;— k> sing] (19)

5 M 2 ol

+ i[a+ + a_) > kzke eB - 0] .

::: Equations (12) and (19) constitute a local dispersion equation for the

A E x B instability with kz s 0 based on a 2D waterbag equilibrium.
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IV. EVALUATION OF THE LOCAL DISPERSION EQUATION §;§:ﬁ,-;
AN
We first evaluate the local growth rate Y(8) by solving the dispersion 5&&!&

equation given by (12) and (19). We consider two limits: the cold plasma
limit (T = 0) and the warm plasma limit (T = 0).
A. Cold Plasma Limit: T =0

In the cold plasma limit (19) simplifies to

2V v,
. n 2 in , 2 _.
k.Y, + (eMdk Y = o= [Mke cos8 + (1+M)(a, =~ a_) ? k2 sine] (20a)
where
Y, =Y+ Zikemvnsine/(wz) (20b)
Y =Y (20e)

since Dle « T = 0. Equations (12c) and (12b) for k., remain unchanged. In

the limit of small k,, (12a) and (12b) yield

kK =k {21a)

and the growth rate Y can then be calculated from (20),

Y= mYO[cose - 1 sind) (21b)

h )

v e
paesl
.r'. Ce,
Ste® % 0 e
O KR A EATRRINE *

‘

v
2M 5 ;’l (21¢)
(M+2) e

v
h
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where m = kerc is the poloidal mode number. The growth rate peaks at 6 = 0
(the backside of the plasma cloud) and is linearly proportional to m. The
growth rate in (21) is consistent with previous rigorous and heuristic
investigations of the stability of circular waterbag models of plasma
clouds (Qverman et al., 1983; Zalesak and Huba, 1984), For 8 = 0, the
second term on the right side of (21b) causes the mode to propagate at a
finite frequency. This propagation results as the fluid outside of the
cloud convects around the circular boundary and carries the perturbation.
The point 8 = 0 corresponds to a stagnation point of the flow so there is
no finite frequency there. Finally, from (21a) the assumption that the
modes are strongly localized around the cloud boundary requires m >> 1,
To obtain analytic expressions for the growth rate of modes with

kz = 0, we consider only the case 8§ = 0 which corresponds to the most
unstable mode. Later we will present numerical solutions of the more
general dispersion relation in which this restriction is relaxed. For

el

For 8 = 0, we have kr+ = qu - kr and Y, =Y, =Y and the dispersion

simplicity, we also assume that Ve = Ven >> v 30 that a_ *a, = @y

equat ions are given by,

2
Ykrrc =m Y, (22a)
mY, v
22 2 2, _ 270 %n
kro = m o+ (1 15 5 ——Qi) (22b)
with the solution
2 v 2 v
Y = my {[mZ(mZ . XZ) - Au (M+2) 1n]1/2 . “2 M+2 m}[mz . XZ)-1

0 2 2 2M Q

4M Qi i
(23a)
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where

A= o kr . (23b)

As k. is increased from zero, over the interval A < m the growth rate {s

Z

roughly given by its kz = Q limit. For

2,2 2 2
4
1 <<aT/mT Qv (24a)
the growth rate decreases with k, as
2
Y = @ Yq/he (24v)
Over this range kr = u;/z kz >» ke so that k, causes the mode to become

more localized near the cloud boundary. For

2
2 @
2 ag kil ML .2 (25a)
bz ¢ 2 2
(M+2) Vin

the mode is stable. Note that (25a) implies that the lowest order poloidal
modes are stabilized first as kz is increased. The stability condition

given in (25b) is only valid for Vai << Ven * In the opposite

Limit v, >> v, a_ = ub/(1*M) and the stability condition can be

similarly derived,

2
2 Q
AT - abkzrg > al! 1753 ——% m2. (25b)
[1 + (M+1) €] in
13
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To confirm the analytic results for T = 0 and to generalize the
results for 8 = 0, we present Figs. 2 and 3 which are obtained by solving
(12) and (19) numerically. In each figure we plot (a) the growth rate
/Y, vs. A = a;/zkzrc and (b) the real frequency w,/Yy vs. X for the
parameters m=1, vi/n1 = 0,025, M = 2, and Dle =0 (i.e., T = 0), and
several values of 0: (A) 8 = 0°, (B) @ = 22,5°, (C) @& = 45°, (D) 9 = 67.5°,

>> v_. while
el

and (E) & = 90°, In Fig. 2 we have taken the limit Ve 7 Ven

in E‘igf 3 we consider the opposite limit, Ve = Vai > Van*

We note the following from Figf 2 (the limit Ven >> Vei)' First, the
growth rate Y i{s a maximum when kz = 0, and decreases as 8 increases.
For 8 = 90° there is no growth. On the other hand, the real frequency w,
increases in magnitude as a function of 8 for A = 0, i.e., k, = 0. These
points are consistent with (21). Second, for all values of 9, Y decreases
as A increases which 1s consistent with (24b), while w, remains roughly
constant. Finally, the modes become purely propagating for sufficiently
large A, i.e., Y = 0 but w, * 0. The value of A denoted by the arrow in
Fig. 2a corresponds to the stabilization point predicted by (25a) which is
in excellent agreement with the numerical results. We also note that the
stabilization point is independent of 6.

We now discuss Fig. 3 (the limit Vei >> ven)f First, for » = 0 we
note that Y decreases as 3 increases, while W increases in magnitude; this
is similar to the results in Fig. 2. Second, in contrast to Fig. 2, we
find that a secondary maxima occurs in Y at A = 36, and that for finite kz,
modes at 6 = 90° are unstable. This enhanced instability at finite values
of k

; 18 due to the term proportional to (a, = a_)sin @ in (20a). For

ven >> vei weé have @, = a_ 30 that this term does not contribute to the

growth of the mode. However, for Voi > Ven we note that a, = a_ so that

14
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this term is finite and positive for 0 < 8 < w, Fiﬁally. the modes are
stable for sufficiently large A. The arrow in Fig. 3a denotes the
stability condition given in (25b) for 8 = 0°; again this value is in
excellent agreement with the numerical results.

B. Warm Plasma Limit: T = O

We only analytically investigate modes at 0 = 0 and again consider the

limit v >> v

en o1’ Equations (12) and (}9) reduce to

Q
. M i 2
koY m[mYo g T kzole] (26a)
in
kiri = m2 + AaY/Yﬂ (26b)

= = = 2
where k”; kr' Y, Y. Y + klee and we have neglected the terms

proportional to v n/Q in (26b) for Kne This approximation is justified

i i
for sufficiently large T (to be proven later).

For k, + 0, the finite temperature corrections drop out of (26) and
the growth rate reduces to Y = nm Yo as in the cold plasma limit. As kz

increases the second term on the right side of (26a) becomes comparable to

2 2
the driving term YO when kzD|e Yo vin/Q << Y,. At this point l-<_‘:D'e can

i 0
still be neglected compared with Y -~ Y  in the definition of Y_. Thus, the

0

eigenvalue Y is given by

(mYO - imo)m

Y = (mz N A2]1/2 , (27a)

where

kK pS = m2 + A (27v)
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Thus, k, decreases the growth rate as in the T = 0 limit and causes the

z

mode to propagate at a finite frequency which increases with kz.

2

When kzD|e >> Y. v /Qi. the modes to lowest order simply propagate at

0%in

the frequency given in (27a). To calculate the growth rate in this

limit, kiD e can no longer be neglected compared with Y in Y_. 1In (26b) we
1

assume kZD << Y 80 that
2 ye

2
NP I NV 22 20 je
re 2 » 2172 2
and from (26a)
2 . .2
2 m__+ A/2
Y = (=~ tw, *+ @Y,) =B - kD T— L5, (28a)
0 0 (mz . X2)1/2 zZ e (ma + XZ)
The E = B gradient drift instability is stable for
2, .2
2 m- + A /2 2
KD ——m————— > Y . (28b)
Z je (mz . X2]1/2 0

Note that this

inequality again implies that the lowest poloidal mode
2

numbers are stabilized first. The assumption that Y >> kzD'e is valid at

the stability point for

Also, the neglect of the terms proportional to v

. 2,2 \
Koy >> (vn/vi)vin/ni. (28¢)

n/n in (12a) and (12b)

i i

near the stability point are valid in this same limit. Thus, when (28¢) is

18
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satisfied, finite temperature effects stabilize the E x B instability, and

the stability point is given in (28b). 1In the opposite liu.*

2,2
<L (Vn/vi] ) n/ni.

K {

H (29)

the cold plasma effects stabilize the mode and the stability point is given
in (25). An expression similar to that given in (28b) can again be derived
in the 1limit Vi >> Von*

To verify our analytic results for T = 0, and to extend these results
to 8 « 0, as well as to both Ven > v and Ve

ei i
solutions to the complete dispersion equation [(12) and (19)]. 1In Figs. 4

> Ven® we present numerical

and 5 we plot (a) the growth rate Y vs. 1, and (b) the real frequency W,

b 2
i " 0.025, M = 2, Dle/abrch

10'4, and several values of 98: (A) 6 = 0°, (B) 8 = 22.,5°, (C) 8 = 45¢°,

vs. A for the parameters m=1, vi/Q = 5,0 x

{D) 9 = 67.5°, and (E) & = 90°, In Fig. we 4 consider the limit N

Ven > Vai? while in Fig. 5 we take Vo = Vei » Von® Thus, Fig. 4 corres-~
pouds to the warm temperature limit of Fig. 2 and Fig. 5 corresponds to
that of Fig. 3.

In Fig. 4 we note several similarities to Fig. 2. The growth rate Y

decreases as @ or k, increases and the mode is stable (y < 0) for

sufficiently large k,. On the other hand, for T = 0 (or D.e = 0) the mode

stabilizes at a much smaller value of k., (other parameters being equal) and

Z

the stability point is sensitive to 8. The arrow denotes the value of A

for marginal stability (Y = 0) based on (28b) for & = 0°, This value

(A = 15.8) i3 in very good agreement with the numerical results (i = 15.5),

In Fig. 5 there are also similarities to Fig. 3. For k, = 0, the '¢§inﬂ

growth rate Y decreases and the real frequency w, increases in magnitude
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as 8 increases. A secondary maxima (or plateau) in Y sceurs for a finite

ey
NSAC,
value of kz. However, in contrast to Fig. 2, the value of k, at marginal f:;i
~.‘ o
stability increases with 8 so that the most difficult mode to stabilize is - .

at 8 = 90°, Also, the value of kz at marginal stability i{s smaller than

when T = 0.

It is also illuminating to calculate the damping rate of the

AL
1

LN 2
L
s

kA

instability in the limit of very large X There are two modes of the

‘l
I
e
" %

zo

l..'
s
L4 iy

[’-‘ -

R
3

system. The first damps at the ion diffusion rate,

o

&

"

2 uﬂuix
Y = - Ikr-l D_L (303) ;‘.-‘::.;
Y
D
where s
Q J
i M
K = =1k, — —=—— (30b)
r 9 Vin M+2

i is the ion diffusion coefficient based on the total

temperature T = Te + Ti' The second damps at the electron parallel

and DL = (cT/eB)vin/Q

diffusion rate

2
Y = - kz Die' (31)

Ve GLOBAL EIGENFUNCTICNS
In Section III we derived a local dispersion equation [(12) and (19)]

which was solved to obtain the growth rate Y(9) in Section IV. This local

growth rate is peaked on the backside of the cloud (8 = 0)., We now e

investigate under what conditions the gradient drift instability forms a f":

K

L)
A

.
v e m - .
OO ] .

global eigenmode as it grows on the cylindrical waterbag. o
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Such global ejigenmodes can exist if solutions 3(6) can be constructed

which are 1localized around some angle § To obtain these solutions we

0
take the growth rate in (12) and (19) to be independent of 8 so that the
dispersion equation yields ke(e,Y). We then make the identification
ke = - r;? 3/38 to obtain a differental equation for E(G)f

In the limit XZ 2 q kiri K1, (12) yields kr: = kg and the local

dispersion equation in (19) becomes

Yo 36/38 = 1Y exp(18)$ + wyd = O. (32)
Since this equation is first order in 3/38, there are no bounded solutions
so that there are no exponentially growing global eigenmodes when kz is
small. This result is consistent with previous calculations in the limit
kz = 0 where it was shown that the energy always cascades to lower poloidal
mode numbers (Overman et al., 1983). The local growth rate (see (11)] is
the approximate rate of increase of the amplitude of a broad spectrum of

modes centered around k

8°
We now consider the case where Aa >> 1 while k, is sufficiently small .:c){
80 that the terms proportional to vin/ni in (12a) and (12b) can be
2
neglected. We also assume that Y >> kzDIe and Ven > Voi® With these
constraints (12a) and (12b) simplify to
- 172
kr; a Tk,
and (19) yields the equation
2
Y. cos8 2= + [w, + Y. A sine] & & + ¥ A5 = O. (33)
0 ae2 0 0 36

23

. P P e T i e o S T I T T AT SN
. o e oty
PR . -
2

I P S L S T D) TR .
PORPYRPER WU T VR . W WE W8, WO g, D1 YO




equation by defining a new dependent variable

We simplify this
$ = ¢ exp[~£(8)]

+ Y. A sin8]/2Y. cos® and find that

with 3£/38 = [w, o 0

226/26% + V(8)¢ = O (34a)

where the potential V(8) is given by

w
V(g) = {(%; cos@ - %J A - 5%; sine

1
cosze :

- —_ [mo * Yy A sine]z} (34b)

1
4y°
[o]

We first consider the limit T = 0 and expand V(8) around 6 = 0,

The bound state solutions for this potential have eigenvalues
Y = Yo(n+1)' (36)

where n i3 a non-negative integer. The mode is localized on the backside

of the cloud and has an angular width A8 -~ A_?/Z << 1, which decreases with

increasing kz. Thus, the expansion of V around 8 = 0 is valid for A >> 1,

Note also that higher order modes n, which have more structure in the

. Y. . . . - - . ~ 'A.' - "
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poloidal direction, have larger growth rates. This result {s consistent
with local theory where Y increases with the poloidal mode number m.

The potential V in (34) is modified by finite thermal effects when
wy ~ Yox7 Comparing the magnitude of the various terms in (34), we find
that the term proportional to (Mvg)‘j is of order A >> 1 larger than the

remaining terms unless the terms within the bracket cancel. We therefore

look for a mode localized around the angle eo defined by
31n60 = -WO/YOXf (37N
Near eo the potential assumes the form
Y 1 1 1.2 2
V(o) = A 3= o= agx.ux(eﬂ.eo). (38)
0 0
The bounded solutions have eigenvalues
2
Y0 q1/2
Y = Y. (n+1) {1 » =—=]"%, (39)
0 2.2
Y A
0
where n i3 again a non-negative integer. When wy << YOA, the growth

reduces to the previous zero temperature result in (38). As wy increases

the growth rate decreases until the mode becomes stable at wy = YOA or

vo. (40)

The reduction of the growth rate in (39) is a consequence of the
localization of the mode at an angle eo « 0., The growth rate in (39) can

be rewritten as
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Y = Yo(n+1) coseo.

At the marginal stability point, 6, = n/2, i.e., the mode localizes in a

0
region where there i3 no driving force., Above the threshold in (40) there

are no bounded solutions to (34) since &, moves into the complex plane.

0
The physics behind the localization of the mode can be readily
understood. As we discussed previously Iin Sec. IV, the convection of the

background plasma past the cloud causes the mode to propagate with a

frequency [see (21b)]

w, = mY, sind. (41)
On the other hand, the thermal effects cause the mode to propagate with a
frequency [see (27a}]
- o U

w, MOM_ (42)
These two frequencies balance each other at the angle 60 given in (37). The
mode localized at this angle has no real frequency and grows at the local
growth rate corresponding to this angle. When the propagation rate due to
the thermal effects i3 everywhere larger than the convection flow no
localized 3olutions exist. In this regime the E x B gradient drift
instability is effectively stable since, unlike the limit where K, = 0, the
rate of propagation of the mode from the unstable backside of the cloud to
the stable frontside exceeds the rate of growth of the mode. Convective
amplification of perturbations {n this finite Ky limit is therefore not

significant.
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VI. SUMMARY AND CONCLUSION

We have investigated the influence of finite parallel wavelength on
the stability of a cylindrical plasma cloud. We first derived a dispersion
relation for the 1local growth rate Y(8) of the E x B gradient drift
instability, where 8 is the poloidal angle (8 = C on the "backside" of the
cloud as shown in Fig. 1). For sufficiently large values of the parallel
wavenumber Ky the local growth rate is negative for all values of 8. In

the cold plasma limit,

2 2
K {

< (Vn/vi)v ,/8 (43)

8P i

the stability criterion is given in (25a) while in the warm plasma 1limit
(the inequality in (43) is reversed], the stability condition is given in
(28b). In both cases the lowest poloidal mode numbers are stabilized at
the smallest values of k,.

We have also investigated under what conditions exponentially growing
global eigenmodes can exist. In the limit

22 = ak?r? << 1 (44)

NN
[ 2 V]

r

with a = Qeni/vevin there are no exponentially growing solutions. In this

limit the energy cascades to lower poloidal mode numbers as the instability

grows as found by Overman et al. (1983). When AZ >> 1 a localized mode of

angular width 8 - A‘1/2 << 1 forms on the "backside" of the plasma cloud
and grows exponentially in time. Thus, the cascade of energy to lower mode

numbers no longer takes place when K, is sufficiently large. The structure

of the mode for this case is illustrated in Fig. 6a. This figure is drawn
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Schematic of the plasma cloud,
growing eigenfunction: (2) T

detalled description.
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+L

in the rest frame of the circular cloud. The neutral wind is moving from
the left to right with a uniform velocity 2Vn/(M+2) while the background

plasma flows to the left with a velocity V. . The dashed line illustrates

b.
the amplitude of the lowest order mode. At still larger values of kz the

unstable mode becomes lccalized at a finite angle 60 given by

sineo - = Vd/Vb (4s)

where

cT 1/2
vd M o8 kz

is the effective diamagnetic velocity and

with M = nc/nb. For a waterbag distribution the density scale length which

usually appears in definition of the diamagnetic drift velocity is replaced

-1 /Zk.-l'l

by the radial scale length, a 2 ° For Vd > Vb or

a1/2 ¢T 2 v
z eB M+2 'n

(46)

the mode is completely stable. The physical mechanism which causes the
localization at 90 as well as the stabilization {s illustrated in Fig.
6b, In the local dispersion relation the diamagnetic effects cause the
mode to propagate in the poloidal direction with a frequency

w = kevd/(M“'Z)v

29
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where ke is the poloidal wavenumber. The velocity of the background plasma

just outside the cloud (in the reference frame of the cloud) is given by
V= Vb siné ef

The convection of the background plasma past the cloud causes the mode to

propagate with a frequency
w = keVb sinef

These two frequencies balance to produce a non-propagating mode at the
angle 8, defined in (HS)f The dashed 1line in Figf 6b illustrates the
localization of the mode in this case. When the diamagnetic velocity
everywhere exceeds the flow of the background plasma around the cloud the
gradient drift instability is convectively stabilized.

Finally, we apply these results to the structuring of barium clouds
and discuss their application to the sosmcalled "striation freezing"
phenomenon (Linson aﬁd Meltz, 1972). Basically, it has been observed that
barium clouds released in the jonosphere structure because of the E = B
gradient drift instability and develop field~aligned striations. The first
generation of striations can also undergo further structuring, at times,
and break up into even smaller striations (i.e., smaller in size transverse
to go). This process, known as bifurcation, appears to continue until a
minimum transverse scale size 1is reached (which we refer to as the

"freezing scale length"). For barium clouds released at altitudes ~ 180 km

the freezing scale length i{s roughly 400 m (Prettie, 1985). A number of
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studies have been carried out which address this problem (Francis and
Perkins, 1975; McDonald et al., 1981; Zalesak et al., 1984; Drake et al.,
1985; Sperling and Glassman, 1985). Rather than describe the detailed

processes proposed in these papers, it is sufficient to note that there is

RGPS < xé o ¥ 4 o g

.
.

no generally accepted model of striation freezing at this time; each model

AR

has its merits and shortcomings. Although the theory presented in this

paper does not explicitly predict a "freezing scale length", we can make an

estimate of this size based on (46) and a simple physical argument. The

' free parameter in (46) is kz; all other parameters are determined by
:i ionospheric conditions. Thus, we need to make a reasonable estimate of
il kz. We do this by noting that transverse perturbations can map parallel to

the magnetic field. The relationship between parallel and perpendicular

Jj/z L = c‘1/2
1l

and ¢ refer to the scale size and conductivity, respectively (Farley, 1959;

scale lengths is approximately given by Ll ~ (OI/UL LL where L

Goldman et al., 1976). Assuming that k, - L:? - [a‘lzLL)‘1 we find that

(46) can be written as

M+2 T 1
L_L<-2_€B-T. u7)

=

Thus, (47) suggests that barium cloud striations with transverse dimensions
smaller than LL would be stable to further structuring by the E x B grade~
ient drift instability. For typical barium cloud ionospheric parameters at

180 km, ioeo, T = Te + Ti - 002 eV, B ~ 005 G' \'} - 50 m/SeC, and M ~ 2—10,

n
we find that LJ. - 160a480 m which 1{s consistent with observations. or
1/2L )‘1

4

which, although plausible, is somewhat ad hoc. In order to remove this

course this result is predicated on the assumption that k, - [u

assumption it is necessary to consider the finite length of a barium cloud
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JAYCOR
11011 TORREYANA ROAD
P.0. BOX 85154
SAN DIEGO, CA 92138
01CY ATTN J.L. SPERLING

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKXINS ROAD

LAUREL, MD 20810

01CY ATTN DOCUMENT LIBRARIAN
01CY ATTN THOMAS POTEMRA
01CY ATTN JOHN DASSOULAS
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KAMAN SCIENCES CORP

P.0O. BOX T463

COLORADO SPRINGS, CO 80933
01CY ATTN T. MEAGHER

KAMAN TEMPO-CENTER FOR ADVANCED
STUDIES

816 STATE STREET (P.O DRAWER QQ)
SANTA BARBARA, CA 93102

01CY ATTN DASIAC
01CY ATTN WARREN S. KNAPP
01CY ATTN WILLIAM MCNAMARA
01CY ATTN B. GAMBILL
LINKABIT CORP
10453 ROSELLE
SAN DIEGO, CA 92121

01CY ATTN IRWIN JACOBS
LOCKHEED MISSILES & SPACE cCoO.,
P.0. BOX 504
SUNNYVALE, CA 94088

01CY ATTN DEPT 60-12

01CY ATTN D.R. CHURCHILL

INC

LOCKHEED MISSILES & SPACE CO., INC.
3251 HANOVER STREET '
PALO ALTO, CA 94304

01CY ATTN MARTIN WALT DEPT 52-12
01CY ATTN W.L. IMHOF DEPT 52-12
01CY ATTN RICHARD G. JOHNSON

DEPT 52-12
01CY ATTN

J.B. CLADIS DEPT 52-12
MARTIN MARIETTA CORP
ORLANDO DIVISION
P.0. BOX 5837
ORLANDO, FL 32805
01CY ATTN R. HEFFNER

MCDONNEL DOUGLAS CORPORATION
5301 BOLSA AVENUE
HUNTINGTON BEACH, CA 92647

01CY ATTN N. HARRIS
01CY ATTN J. MOVULE
01CY ATTN GEORGE MROZ
01CY ATTN W. OLSON
01CY ATTN R.W. HALPRIN
01CY ATTN TECHNICAL

LIBRARY SERVICES
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MISSION RESEARCH CORPORATION
735 STATE STREET
SANTA BARBARA, CA 93101
01CY ATTN P. FISCHER
01CY ATTN W.F. CREVIER
01CY ATTN STEVEN L. GUTSCHE
01CY ATTN R. BOGUSCH
01CY ATTN R. HENDRICK
01CY ATTN RALPH XILB
01CY ATTN DAVE SOWLE
01CY ATTN F. FAJEN
01CY ATTN M. SCHEIBE
Q1CY ATTN CONRAD L. LONGMIRE
01CY ATTN B. WHITE
01CY ATTN R. STAGAT

MISSION RESEARCH CORP.
1720 RANDOLPH ROAD, S.E.
ALBUQUERQUE, NM 87106
01CY R. STELLINGWERF
01CY M. ALME
01CY L. WRIGHT

MITRE CORP
WESTGATE RESEARCH PARK
1820 DOLLY MADISON BLVD
MCLEAN, VA 22101
01CY ATTN W. HALL
01CY ATTN W. FOSTER

PACIFIC-SIERRA RESEARCH CORP
12340 SANTA MONICA BLVD.
LOS ANGELES, CA 90025

Q1CY ATTN E.C. FIELD, JR.

PENNSYLVANIA STATE UNIVERSITY
IONOSPHERE RESEARCH LAB

- 318 ELECTRICAL ENGINEERING EAST

UNIVERSITY PARK, PA 16802
(NO CLASS TO THIS ADDRESS)

01CY ATTN IONOSPHERIC RESEARCH LAB

PHOTOMETRICS, INC.
4 ARROW DRIVE
WOBURN, MA 01801
Q1CY ATTN IRVING L. KOFSKY

PHYSICAL DYNAMICS, INC.
P.0. BOX 3027
BELLEVUE, WA 98009

01CY ATTN E.J. FREMOUW
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PHYSICAL DYNAMICS, INC.
P.0. BOX 10367
OAKLAND, CA 94610

ATTN A. THOMSON

R & D ASSOCIATES

P.0. BOX 9695

MARINA DEL REY, CA 9029
01CY ATTN FORREST GILMORE
01CY ATTN WILLIAM B. WRIGHT, JR.
01CY ATTN WILLIAM J. KARZAS ’
01CY ATTN H. ORY ’
01CY ATTN C. MACDONALD

RAND CORPORATION, THE
15450 COHASSET STREET
VAN NUYS, CA 91406
01CY ATTN CULLEN CRAIN
01CY ATTN ED BEDROZIAN

RAYTHEON CO.
528 BOSTON POST ROAD
SUDBURY, MA 01776

01CY ATTN BARBARA ADAMS

RIVERSIDE RESEARCH INSTITUTE
330 WEST 42nd STREET
NEW YORK, NY 10036

01CY ATTN VINCE TRAPANI

SCIENCE APPLICATIONS, INC.
1150 PROSPECT PLAZA
LA JOLLA, CA 92037
Q1CY ATTN LEWIS M. LINSON
01CY ATTN DANIEL A. HAMLIN
01CY ATTN E. FRIEMAN
0t1CY ATTN E.A. STRAKER
01CY ATTN CURTIS A. SMITH

SCIENCE APPLICATIONS, INC
1710 GOODRIDGE DR.
MCLEAN, VA 22102

01CY J. COCKAYNE

01CY E. HYMAN
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SRI INTERNATIONAL

333 RAVENSWOOD AVENUE

MENLO PARK, CA 94025
01CY ATTN J. CASPER
01CY ATTN DONALD NEILSON
01CY ATTN ALAN BURNS
01CY ATTN G. SMITH
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¥ 01CY ATTN R. TSUNODA
| 01CY ATTN DAVID A. JOHNSON
) 01CY ATTN WALTER G. CHESNUT
, 01CY ATTN CHARLES L. RINO
0 01CY ATTN WALTER JAYE

01CY ATTN J. VICKREY
- 01CY ATTN RAY L. LEADABRAND
) 01CY ATTN G. CARPENTER
N 01CY ATTN G. PRICE .
., 01CY ATTN R. LIVINGSTON
N 01CY ATTN V. GONZALES
< 01CY ATTN D. MCDANIEL

oy TECHNOLOGY INTERNATIONAL CORP
» 75 WIGGINS AVENUE
BEDFORD, MA 01730

01CY ATTN W.P, BOQUIST

3 TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278

-

f 01CY ATTN R. K. PLEBUCH
g 01CY ATTN S. ALTSCHULER
y 01CY ATTN D. DEE
Y 01CY ATTN D/ STOCKWELL
! SNTF/15175
. VISIDYNE
) SOUTH BEDFORD STREET
{ BURLINGTON, MA 01803
> 01CY ATTN W. REIDY
» 01CY ATTN J. CARPENTER
01CY ATTN C. HUMPHREY
. UNIVERSITY OF PITTSBURGH
- PITTSBURGH, PA 15213
- 01CY ATTN: N. ZABUSKY
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