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ABSTRACT

We combine Gaussian wave packets and the coupled channel
method to develop a theory of Hz diffraction and rotational
excitation by collision with surfaces. This improves our previous
work on'H2 diffraction since it eliminates the mean trajectory
approximation; it also extends Heller's work to problems in which
the dynamics require the creation of new packets which must be
coupled to each other as they are propagated through the
interaction region. The approximations involved in the above
Gaussian wave packet approach can be removed Sy using extending a
method proposed by Fleck, Morris and Feit, which propagateé the
Gaussian wave function exactly and efficiently.
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I. INTRODUCTION
The analysis of various H2 surface scattering experi-
numtsl-15 requires the use of gquantum mechanics in describing the

rotational motion and the translation of the center of mass.
"Exact" coupled channel calculations are possible only for low

16~18 yowever, even when feasible, such

incident kinetic energy.
calculations are tedious and perhaps insufficiently descriptive of
the underlying physical processes. As a result much work has been
done to develop simpler and hopefully more illuminating
approximate procedures.l®”34
In this paper we present an exfension of our previous

work35

in which we used a Gaussian wave packet (GWP) mean
trajectory approximation (MTA) method to calculate the diffraction
and the rotational excitation of H2 colliding with a solid

surface. The GWP-MTA theory uses a wave function of the form

N n
¥(R,e,0:t) =% 6 (Rit) £ c_(t) Y (e d)exp(-ie, t/n),
« od i i SO
a=1 i=1 w
(I-l) '::-_::.
where R is the center of mass position and e and ¢ are the polar ‘Eg’

and azymuthal angles describing the orientation of the molecular P
axes in the coordinate system shown in Fig. 1. The functions -
Yi(e,¢) are spherical harmonics labelled by the binary index i =
(l,ml), and Gq(ﬁ,t) are Gaussian wave packets. The experimental S
conditions are such that the vibrational energy of H, exceeds all
2 to be a rigid l-iu
rotor. e

other energies in the system, so we can consider H

Since we are interested in diffraction we must ensure that
the initial state of the center of mass is a plane wave. This is

achievea3939

by placing the packets Ga' =1, ...,M on a M point
square grid which covers the surface unit cell, and by choosing
the parameters in each Ga so that for R within the unit cell, I
G°l (ﬁ) coincides with the incident plane wave. The translatio%al

symmetry of the surface allows us to construct the result of
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o scattering by the whole surface, from the results of scattering

- A
E the packets G by an unit ce11.35739 fiif
- To explain some of the improvements contained in GWP-MTA we §¥ﬁ
compare it with the customary classical MTA‘O-SO (denoted CMTA) éﬁa
which has been applied fairly successfully to surface science !ﬁ;;
problems.za'zg'45 When applied to H2 scattering CMTA replaces in g?ﬁ
the Hamiltonian the quantum variable R with the "classical” ﬁiﬁ
trajectory ﬁ(t). and uses the wave function ¢(e,¢) = Z ci(t) :LZ'

Yi(e.¢)exp{-ieit/h}. The classical trajectory ﬁ(t) is Sbtained by
solving Newton's equation with the mean potential T I ci(t)cj(t)
<Y1|V(§(t))|YJ> where V(ﬁ(t)) is the surface-molecule interaction
energy. By using a classical trajectory MTA eliminates all
gquantum effects from the motion of the center of mass, except for
those contained in the computation of the mean force. The GWP-MTA
theory propagates a Gaussian wave packet on the same potential
energy as CMTA.35'5° The use of a wave packet provides a fully
quantum mechanical description (albeit a simplified one) of the
center of mass motion. The resulting theory describes well such a
dramatic quantum gftect as diffraction and also gives a good
description of the rotational excitation probabilities.35
Furthermore, GWP-MTA is computationally cheaper than its classical
codnterpart since the number of GWP's needed to describe the

quantum scattering process is substantially smaller than the

¥ number of classical trajectories required by CMTA. This can

i generate substantial savings in computer time since the expense
;; per GWP is roughly twice the expense needed to prcpagate a

g classical trajectory. This can be understood metaphorically, by
L' thinking of each packet as a bundle of classical trajectories,

! _ which are generated at once by propagating one packet.

: Unfortunately GWP-MTA shares with CMTA a shortcoming whose
:; removal is the subject of the present paper. To understand both
Lf the origin of this shortcoming as well as its removal by the

! method proposed here it is useful to compare the GWP-MTA wave

:' function (II.1) with its proposed replacement, which is
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? $(R,e,0:t) = £ G_ (R:t) Y, (o,¢)exp{-ie t/n)}. (I.2) SO
X o=l i=1 ol i i ﬁ'
. o)
3 The GWP-MTA wave function describes the center of mass W
! motion with one Gaussian per grid point. Superficially this is in E;;
} agreement with out intuitive belief that a packet represents a éii
z localized "corpuscule" (as opposed to a wave) and therefore we %é:
. must have one trajectory per corpuscule. It is however incorrect oY
' to apply this "Newtonian" notion to a system that has discrete _;;,
- internal states (i.e. rotations) which can be excited during f;;
collision. This makes the classical motion of the center of mass i}?

_ rather non-Newtonian, since the quantum excitation of the internal IES
. motion affects the center of mass motion (at least through the :ﬂ?
‘ conservation laws). Thus the excitation of an internal state f;ﬁi
requires the appearance of a new center of mass trajectory whose igf

' translational energy is equal ta the incident one minus the energy {5;
' of the internal excitation. Therefore, a correct description of E:-
center of mass motion requires one trajectory for each final foi

rotational state. Within the GWP approach this can be achieved by Eﬁ?;

using the wave function (I.2) which has (at each grid point) one_ ?tf

. packet for each rotational state. llé
s It is now useful to contrast the behavior of the packets in R
j: these two theories. The unigue packet used in GWP-MTA moves on a Ei;_
? mean,'rotationélly averaged potential surface. A time of flight ;{fl
i (TOF) measurement applied to this theory gives one peak in the E‘i

momentum distribution whose position is determined by the fact SR
that the kinetic energy lost by the center of mass motion equals :

- ..
r

the total energy taken up by all the rotations; the same TOF " il;;
measurement on a system described by the multiple GWP theory A

" 5 TERS.

(MGWP) leads to one peak for each rotational state. In MGWP the -ka
- Y,
: post~-collision rotational distribution is imprinted in the TOF RS
: spectra and with sufficient resolution one could measure the :ﬁkg
i rotational energies by doing TOF measurements. Another way of 5&1
E pointing out differences between the two methods is to examine the AR
N results predicted for rotationally selected final state e
'.: ::::: \
! .
:'- AR P e . : ..... ~ce . T S ) \:'._- P e I AT -:\i‘ T
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measurements.51 GWP-MTA gives the same diffraction spectrum for

each rotational state, while MGWP gives different diffraction
patterns for each final rotational state. Furthermore for a
rotationally selected, angle resolved, TOF measurement GWP-MTA
gives the same results for each state Yi' while MGWP predicts
different results for different Yi'

We emphasize that while the conceptual and qualitative

DA X pr R st LU

' improvements brought about by MGWP method are interesting and

I necessary, one should not view the use of GWP-MTA with exagerated

alarm. The measurements required to discriminate between the.two

methods are possible but very tedious. Less ambitious ‘(but still

r~ difficult) experimental work, such as a measurement of the

l rotational distribution with a modest angular resolution and
without TOF, is likely to be well described by GWP-MTA, since the
method of measurement performs experimentally the kind of
averaging that GWP-MTA does theoretically. Diffraction

. measurements with modest angular resolution and no anlyéis of the

33 rotational state are also well described by GWP-MTA except for

:i those situations when the angular resolution is sufficient to

resolve the diffraction peaks due to molecules that are

I rotationally excited.z'6

theory together with the rotationally elastic parent peak and will

Such peaks are averaged by the MTA

be absent in the predictions of the theory.
Within the existing GWP methodology52—7°
the MGWP scheme requires the solution of several technical

the development of

W

problems. The customary propagétion scheme assumes that the

’ .

number of packets is conserved in time, while in the present

-

S,
3. L3 LA
AERL . T

theory we must start with one packet and emerge with as many
packets as many open rotational channels. Thus we must find a
method for generating new packets as the incident packet enters
the collision zone.

AU ‘..

Furthermore, the existing applications of the GWP method to
diffraction39-3°
(SHM) , which assumes that the packets can be propagated

has used what we call the simplest Heller method

0!

independently. This assumption cannot be made in the present

AR A tOah




LAY O v e,

LR T

problem for the Gaussians G i=1, ..., m because the rotational

populations are establishedaixclusively through the coupling
between the packets having the same o but different i-s. Neglect
of this coupling (as in SHM) would suppress rotational excitation
from the theory.

The main contribution of the present paper to the GWP
technology is the development of a propagation scheme in which
Gaussians are created in the process of propagation as needed, and
evolve by interacting with each other. .

The difficulties encountered by a classical or semi-
classical propagation scheme applied to a subset of degrees of
treedgT :gich are coupled to a strongly quantum subset, are well
known

solution. The present MGWP approach is a new procedure to attack

and much labor and ingenuity has been devoted to their

this o0ld problem. Since the space does not permit a detailed
comparison between the present and the earlier,work,71-79 we
confine ourselves to listing those features that make us hope that
the method developed here will be useful. First, the MGWP does not
require root searching, classical calculations with double ended
boundary conditions, or self-consistent solutions of integro-
differential trajectory equations, it is not confined to one
dimension, and has no difficulties with the turning po;nts.
Second, the GWP equations of motion are almost as simple and
sometimes less laborious than the classical ones. The GWP
scheme blends easily and naturally with classical mechanics so
that quantum scattering calculations from a classically movin§
lattice are possible.39 Finally the method lends itself to simple
classical like, intuitive interpretaticn of dynamics.

In the context of surface science GWP methods are relatively
new; the existing calculations show that they are reasonably
acm:\u'ate.sﬁ-39 In diffraction problems they can be applied at
kinetic energies at which coupled channel calculations are
prohibitive. They can be easily used to calculate scattering by
disordered surfaces,37 a problem for which the traditional guantum

methods would have extreme difficulties.
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The single most important drawback of the GWP method is that :3
it is an "ill-defined" approximation, in the sense that it lacks a
precise validity condition, or a convergence scheme which insures
the achievement of greater accuracy with increased labor. This

LT T T TN R R % e v W -

cannot be done by increasing the number of packets; in fact it ggﬂT

sometimes happens that an increase in the number of Gaussians Li(k

67,69

leads to overcompleteness and worsens the accuracy. SR

i Practical experience indicates that one should expect good results é{if
with little effort for short time dynamical problems involving "'5;

spatially localized quantum degrees of freedom, which are nearly
semi-classical. Recent work by Sawada, Heather, Jackson and
Metiu67 shows that for some problems accurate long time results
can also be obtained at the expense of the simplicity of the

propagation scheme.
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II. THE MULTIPLE GAUSSIANS THEORY OF H, SCATTERING ﬁ:}

" Wl

II.1. The Hamiltonian aﬁs‘
We use the Hamiltonian &'t

SR

2 2 2. -1 22 > > [, -

H=-(h /2M)V§ + (2ufr|S) "t T+ V(F,.T,) , (I1.1) g
where R is the center of mass position, ?1 and ?2 are the '2
coordinates of the two atoms forming the diatomic, M=2M and u=M/2 if
are the total and the reduced mass of the diatomic, and T is the fﬁg

angular momentum operator. The coordinate system is shown in Fig.
1. The interaction energy with the surface is S
2 £

V(r ,r ) =% D (exp[ -2« (z -2 )] 2exp| - N (z zo)]) -

i=1
(II/2)

-8 D exp[-2a,(z,-2z ) ][cos(2mx,/c,) + cos(2my,/c,)], o
where ¢, and c, are the lattice constants, and ?is(xi,yi,zi). E§if
This represents the interaction with a corrugated surface and the
forces acting on the molecule depend on both the polar and the J:ﬁ;
azymuthal angle describing the orientation of the molecular axis
(Fig. 1). To obtain the equations of motion for the nuclear wave
functions Gai we inseft the wave function (I.2) in the time e
dependent Schrodinger equation, use e

(2017137 LY (0,0) = €,¥,(0.0) , (11.3) b

multiply with Y

j(e,¢) sineded$, and integrate over angles. This
leads to . et

2 . 3 - - .'.>—‘..~
tin e (n? /M G, g Rt) = g v (Rlexp(-1(e -e ) t/RI(F6 ;). i

with

2m
i(‘ﬁ) = r sinede [ d¢ Y
o

J(G ¢)V(r ,r 1Y, (e,0) . (II.5)

......................
..................................................................
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IT.2 The Equations of Motion

ITI.2.A. General Remarks

To use the GWP method for solving the equations (I1.4) we
assume that Gai are wave packet of the form

Gy (Rit) = expl(1/m) ((R-R () "R, (6)- (R-R_, (£))

2 (I1.6)
+* B (0 (R-R ) + v (600

Here ﬁai(t) and ﬁ&i(t) are the expectatizﬁ’values of the position
and momentum operators in the state Gai' Aai(t) is a 3x%x3 complex
matrix which gives the width of the packet and a space dependent
phase and 7ai(t) is a complex function of time contributing to the
phase and the amplitude of the state Gai'

The central idea in Heller's work is that the time evolution
of the state Gai ié given by the evolution of the parameters

implementation of this idea (which we call the simplest Heller
method (SHM)) it is assumed that: (1) the Gaussians are narrow
throughout the collision so that we can expand the potential in
the Schrodinger equation (II.4) in'power series around the
instantaneous position ﬁai(t) of the packet and retain che
quadradic part only (the local harmonic approximation (LHA)); and
that (2) each Gaussian can be propagated independently (the

independent Gaussian approxjimation (IGA)). The shortcomings of
7269
SHM were pointed out in our work as well as the work of Skodje and

65 66

Truhlar and Thirumalai, Bruskin and Berne. Ways of improving

SHM, by removing the two approximations presented above were
proposed by Sawada, Heather, Jackson and Metiu67 and by

Heller.52’53 67
In this paper we use the minimum error method (MEM) which

couples the Gaussians and makes no assumption concerning their
width. The only approximation is that Gui(ﬁ;t) maintain their
Gaussian form throughout the collision.

Our numerical experience with the coupled Gaussian MEM :ﬁ*?
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theory indicates that the coupling terms vary on a faster time
scale than the other terms appearing in the MEM equations. The
presence of these terms slows down considerably the integration
program and therefore it is desirable to neglect them whenever the
penalty is not too severe. In the diffraction calculations carried

out by Drohlshagen and Helleras'37

38,39

(for atoms) and by Jackson and

Metiu (for atoms and diatomicsas) it was demonstrated that

L

{

!
M
S
s
-

satisfactory results can be obtained if the Gaussians used to
construct the incident plane wave are propagated independently.

«
A A

[ONCRN TR

In the present context this suggests that we can assume that Gai

GBJ etc are decoupled when axg. We cannot however neglect the

coupling between the packets Gai i=1, -.., 1, since this coupling _afi
is the driving force for the rotational excitation of the .E‘q
particle. ) :é;a
II.2.B. The Equations of Motion ey
To generate the MEM equations of motion for the Gaﬁssian ; ?
parameters we define67 the error made by using the Equation (I.2) ;ii
as: ::Ef:-ﬁ
g = 1| (n 2 3 2 n 2 R3]
= (h /2M)V§ + ih33) Go:j( ;1:)—121 vij( )exp(i(ej—ei)t/h}

2 . : fﬁi

G, (Rit) arR . : -;‘:.-_-_‘::.j

: = e

§1nce the error made at time t is a function of Aai(t)' Rai(t)' E:i

F;i(t) and ;ai(t) we determine these quantities so as to minimize
the error. This generates first order, non-linear, ordinary

: 617 -
differential equations for Aai(t)' ﬁai(t), ?ai(t) and

rai(t): E;—i

Y _l <—>(2)_ - -1 (1) ":

Rey(t) = & 3aj(t)+( Mo -Im A1) Imfaj (I1.7a) i
-> - 'i‘: .',
a = (v (2) -1, (1) > : _ 1 ——
Baglt) = =M ") Refaj +2Re A L (E)[R s (t) - & Eaj(t)] =

(I1.7b)
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Lot

(t) = ﬁ ‘K:j(t) . *K:j(t) + *§:j (II.7¢)

»
o
2te

-

and

ih - 1
= (R0 + 55 3 (t)‘qu(t’

Toy(t) = 2M o

=

1
—
. N
~—
~
i, ‘e

(0)
¢ B ()[Rt - LB (t)]—(F“j )—(I
o] of M ") ( ) (I )

Iooo aj o0o’ «j

(I1.74)
-i(ei-ej)t/h

.., P
e, SN
N ’.l . "l_“}_‘ *l ..l‘ o,

(n)_ . n * ) )
Fog = E FaR(R iqj(t) Gaj(ﬁ,t) Gai(ﬁ,t)vji(ﬁ)e :
(1I1.8) ' %é%
and —
Wl R BB () (BB ()6 (R;ty)2 (1I.9) 5
aj o] «j oj' : ’
N §))

is a scalar, F is a vector with the components

Note that F Rt
[« o j v .o'»‘.

3

(1), _ * ' o
(F i), = E :dﬁ(x-xuj(t)GaJGaivjiexp(i(ej-ei)t/h),etc. =

J "'x

and sz) is a dyadiz with the components e
3 =]

(2) - _ _ : N
(Fog gy = Exdﬁtx X5 (8)) (Y=Y (t)) S

G G .V..exp{~i(e

«j CaiVii -ei)t/h), etc..

J

-d
The complex matrix Sa and the \,'ector's.-]‘.’mj and Kaj are
defined in the Appendix, where we also give an outline of the

derivation of the equations presented above.

...................................................................................
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I1.3 The Choice of Initial Condition

In order to solve the equations (II.7) we must choose
initial values for the parameters‘x;i(O), ﬁai(O), §ui(0), yai(O).
As discussed often in literature the GWP method does not provide
an unique and fully justifiable method for specifying these
values. However in the particular case of atom or diatom
diffraction, prescriptions that work well have been proposed and
35-39 Tnus if the initial
rotational state is Yi we take Gu =0 for j=i and define the
parameters of Gai such that gGai(%;O) is a plane wave whenR takes

values within the unit cell of the solid surface. The way to do
35-39

we see no reason to modify them.

this was discussed in several papers.

While this provides initial conditions for the equations
propagating the parameters in G it says nothing about the
initial conditions for Gaj’
this: the initial state 5 Gai

while T Gaj is generated by the collision process. The availabie

al’
j=i. There is a physical reason for

is prepared by the experimentalist,

GWP procedures have no provisions for the birth of new packets.
To circumvent this difficulty we propose the procedure described
below.

We consider the case in which the incident molecules are in
state Yk and the incident state of the center of mass is
constructed with the packets Gak' «=1l, ..., M. Let us denote by
ta the last time when we can still assume that the packets Gul'
1k have zero amplitude. At that time the packets satisfy the
equations

2 2 _ 2z
(in + (n°/2M)7) Gak(i;t) = vkk(ﬁ)sak(a,t) (II.10a)

o
t

and

(i %; +(h2/2M)V%)Ga1(§;t) = v (Brexp(-1(e e Ht/n)G_ (Rit)

1#zk, 1=1,2,...,m (IT.10Db)

According to these equations a new packet Gal(ﬁ;t) is generated
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when the initial packet Gak(ﬁ;t) starts overlapping with Vlk(ﬁ).
To create the new packet Gul(§7t0+T) we solve Eg(II.10b) for
a short time t. This gives

3/2 +00
cal(ﬁ;t°+r) = -(it/n)(M/in2mT) r ar’

exp{(1/h)[(M/27) (R-R")?] Vi (RG (Rrit )

exp(-(i/h)(ek—el)to} . : (II.11)

A rather tedious calculation shows that for the surface-
molecule poten?ial (II.2) the quantity Vlk(ﬁ'), defined by Eq.
{({II.5), is a Gaussian. Therefore the integrand in Eq. (II.11) is
a product of Gaussians and therefore the integration gives a
Gaussian for Gal' if Vlk(ﬁ') has-a complicated non-Gaussian form
the integral can be very accurately performed (since t is
arbitrarily small) by using the stationary phase approximation and
this also gives a Gaussian result.

It should be noted that the above procedure is nothing else
but perturbation theory with respect to rvlk followed by an
asymptotic evaluation of an integral by using the fact that the
inverse length (M/21h)1/2 is very large compared to all other
length scales in the problem (i.e. the width of Gak and the length
scale over which Vlk(ﬁ) changes). Because we control the
magnitude of t this procedure is essentially exact.

Our numerical experience with charge transfer problems shows
that it is possible to generate all packets at once, even if for
some of them the term mGGak is very small due to poor overlap.
The outcome is that the new packet Gam has a much smaller initial
amplitude than the other new packets, as it should. Subsequent
propagation will increase that amplitude as vmiGai increases.

A serious danger in using such a method is that the results
may depend on the moment to chosen for new packet generation.
There is some numerical experience regarding this possibility,
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which indicates that the results are remarkably stable with

respect to this choice.ao

ITI.4 A Simplified Model and A Qualitative Discussion of the

Theory
The notation used so far gives a compact representation of

the equations of motion (II.7) for the Gaussian parameters, but
obscures to some extent their physical meaning. In this Section
we discuss a limiting case which is designed to simplify the
computational scheme and bring out its physical content. The
approximations made are sufficiently reasonable to give us hope
that the simplified scheme might also be accurate enough to be
computationally useful.

‘As Heller pointed out, in the simplest version of his method
( SHM) ﬁ(t) and §(t)) follow classical equations of motion and the
phase Rey(t) is essentiaily the classical action. These results
are obtained only if the Gaussians are narrow (LHA) and decoupled
(IGA).

The MEM version of the theorys7 does not make these
simplifying assumptions and as a result loses the simple features
mentioned above. Nevertheless, it is still useful to think of the
equation of motion for ﬁai and 3«1 as evolving according to a
mechanics which is similar to, but more complicated than the
classical one; for lack of a better term we call this a
corpuscular mechanics (we have also used in our work the term
pseudo-classical). When the MEM theory uses only one packet Gai
the force acting on the center of the packet is 2ot -3Vi(Rai)/aRai
(as in the simple geller method) but -3/3R_, f G_, ViGaidﬁ.“’Since
the quantity lGail appearing in this integral depends on ImA(t),
the above force depends on time and the motion of the center of
the packet is not conservative. Various interesting features of
this potential and the resulting "corpuscular mechanics" were
discussed and exemplified by Heather and Metiu.68 The use of
several coupled Gaussians further complicates the picture since
the motion of their centers is now coupled through terms that have

no classical analog and which are turned on by the overlap between
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t?e packets (i.e. they depend on the gquantity [ dﬁ?ﬁLﬁz)
Giejvij(R))'

In what follows we analyze the meaning of the MEM equations
(II.7) by making some of the approximations used by the Sl-{M.‘,'_‘s
First we emphasize again that while in previous applications of
MEM we coupled the Gaussians in order to increase the accuracy of
the calculations, in the present work the coupling between the
Gaussians G«i’ i=1,...,n with the same « is essential on physical
grounds. It is this coupling that allows the amplitudes of
various Gaussians. to vary and give us the final rotational
distribution. The probability that a particle is in the
rotational state Yi is proportional ;S JaR & G;iGai which depends
on Imyai(t) and det(ImAai(t)). Thus Acompute this probability
correctly it is essential that the coupling between the Gaussians
Gai’«3=1' ..., h is present in the equation of motion for Yai(t)
and Aai(t); however, we might expect that the coupling may be
neglected, -without causing a dramatic qualitative deterioration of
the results, in the equations of motion for §a1 and ﬁui'

If we begin with the Equation (II.7a) for R j we find that
the coupling between packets enters through Im ?mj' This quantity
can be written as (see Eq. (II.9)).

(1)_
Im%‘mj = § Im‘fij (I1.12)
with

= X .
?1j=rd§(§—§uj(t) )Gaj(R;t)vji(ﬁ)cai(ﬁ;t)exp(-i(ei-ej)t/m
(I1.13)

The diagonal term ?jj(t) is real and therefore does not contribute
to Im qu' We are thus left with the off-diagonal terms ?ij’ i=j,
only. These represent the effect of the coupling of Gaj to the
other Gaussians Gai' i#j. Since we argued that in the equation
for §aj this coupling is(got physically essential we neglect it,
and therefore can take F. = O.
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This assumption is also reasonable in view of our past
experience with coupled Gaussian calculations. We have found that
the time evolution of the terms G iG j is much more rapid than
that of |§ or |§ because of rapid changes in the
difference between the phases of G i and Gaj' Thus the terms
?11,1#3, oscillate very rapidly and their effect on the evolution
of ﬁ may average to zero when the equation of motion for ﬁaj is
1ntegrated; furthermore the phase exp{i(ei-ej)t/ﬁ) can play the
same role. Moreover fij is non-zero only when G i’ ij and G o
overlap which means that ? j is practically zero at least at some
times during collision.

If these arguments are accepted we can replace (II.7a) with

§aj ~ ?qj/m (I1.14)

which implies that the center of each packet Gaj moves like a
classical particle with momentum 3

A similar discussion can be made to simplify Eq. (II 7b)
(giving the evolution of Fai) by neglecting ?ij when ixj. The use
of Eq. (I1.14) in (II.7b) removes the last term in the latter
equation. If we further assume that the Gaussian Gaj is narrow
throughout collision we can expand ij(ﬁ) appearing in the

integrand of ? (see Eq. (I1I.13)) and obtain

v, (R _.(t))
_ _ RPN s -5 |
?JJ ~ fdR (R §aj(t))(§ §aj(t))|qu(R,t) -
3 aj(t)
o (2) ]
> Mg avjj(ﬁaj(t))/aﬁaj(t).
The last term follows from Eg. (II.9). Using these approximations

and Eq. (II1.12) in Eq. (II.7.b) leads to

3aj(t) = -3V(§aj(t))/3§aj(t). (II.15a)

If we don't assume a narrow Gaussian we have
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Thus the use of the independent Gaussians approximation (IGA) in
(I1.7a) and (II.7b) leads to (II.14) and (II.15b); the additional
assumption that the potential energy is locally harmonic (LHA)
sipplifies (II.15b) and gives (II.15a). If both LHA and IGA are
used each packet center moves classically on the potential
= J(ﬁuj(t)), which is the expectation value of the molecule
i surface potential energy when the molecule is in the rotational
state Yj‘ If LHA is abandoned the m°t132 geffmbles superficially
the classical one. However the force -[MQJ] '?Jj is time
dependent and the motion of the packet is non-conservative. As
shown by Heather and Metiusa'69 this is a necessary feature which
ensures the conservation of energy; if LHA and IGA are used the
"classical energy" 3§j/2M'+ V(ﬁaj(t)) is conserved, but the
guantum one isn't.

We emphasize that the use of IGA to decouple the motion of
X the centers of the packets is not likely to lead to qualitative
- A errors for short collision times, and simplifies considerably the
propagation scheme through the elimination of the rapidly varying
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is conceptually required, one trajectory for each rotational
state. On conceptual grounds the theory also compares favorably
with the well known Preston-Tully (PT) method,75 while being less
demanding numerically. Like PT we have multiple trajectories, one
for each rotationally averaged energy surface. Unlike PT the GWP

coupling terms. There is, as yet, no proof that the errors made
. by using these simplified equations are small and the usefulness
,i of these equations remains to be tested. 1In support of this
f; simplified theory we note that it is superior to all classical
i trajectory methods which use one trajectory only since it has, as

procedure - even in its simplest form discussed in this Section-

describes the center of mass motion by using a nuclear wave
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function. The trajectories are only a simplifyving device for
propagating these wave functions. As a result the present theory
uses probability amplitudes while PT attaches to each state a
probability, ignoring the superposition principle and losing
interference effect. Thus, the present theory describes
interference dominated phenomena - such as diffraction - rather
well while PT cannot describe them at all. Furthermore the use of
GWP's (with (II.15b)) maintains Heisenberg principle in the theory
and this should improve the dynamics, especially if zero point
motion is important. Finally we compute observables describing
center of mass motion by using the rules of quantum mechanics
(i1.e. wave functions, operators, matrix elements, etc.) while the
PT method is confined to classical rules. Thus, for example, all
etfects of quantum fluctuations (e.g. the fact that <G|§2|G =
<G|P|G> ) are lost in the PT method. Nevertheless while
conceptual improvements are pleasing, a direct numerical
comparison between MGWP and PT is required to test whether such

improvements have any practically useful consequences.
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III. DISCUSSION
III.1 Remarks regarding the errors made by MGWP

The errors in MGWP are made because (1) we propagate the
packets originating from different grid points independently and
(2) we force them to maintain their Gaussian form throughout the
collision.

The statement that it is erroneous to propagate ¢ = E Ga by
propagating each Ga independently seems to be at odds with the

(]
™M

linearity of Schrodinger equation. 1Indeed if we apply to ¢(0)
Ga(O) the exact propagator U(t) to calculate

¥(t) = U(t)e(0) =Z U(L)G_ , (II1.1)
o
it automatically follows that

(L) |Aj9(t)> = T <sa(0)|0(t)’80(t)|cp(0)> (III.2)
x,B

for any operator A. If we take A=1 and if U(t)’ =
u(e)?
U(t)H=HU(t) the conservation of energy follows. These conclusions

. the propagation scheme will conserve the norm; if ;=H and

hold even if U(t) is approximate, as long as it is unitary and
commutes with the Hamiltonian.
However the application of the GWP method with independent

67 shows that the above

Gaussians to several (but not all) examples
conservation does not hold; moreover, if the Gaussians are
coupled, the conservation properties are restored.

' This discrepancy between the conclusions of the familiar
analysis presented above and the numerical calculation is due to
the peculair nature of the GWP propagation method which calculates
U(t)Ga(O) by separately optimizing U(t) for each packet Gq. Thus
the result of such a calculation is more properly denoted
Ua(t)G“. As long as it is applied to Ga the GWP propagator is
unitary (i.e. conserves the norm <Ga(0)|Ga(0)>) and commutes with
the Hamiltonian (i.e. <Ga<°)'H'Ga(°)> i1s conserved). There is

...........
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however no assurance that Ua(t)+Up(t)G
HU G
[+ 4

= G_ nor that U HG =
-] ©

-} g

8’ Because of this, the quantity

<¢(t)|il¢(t)> = i § <Ga(0)|Ua(t)’ OUp(t)|Gp(0)> , (I11.3)
is not conserved for Aal or for A=H. The MEM procedure does not
have this shortcoming since it seeks an optimum propagator for the
whole sum I Ga rather than for each Ga independently, and
therefore (III.2) and its consequences are valid.

The use of the IGA in developing the MGWP procedure is based
on its success in previous diffraction calculations. We have no
detailed understanding of the reasons for this success, other than
the qualitative argument that the IGA-GWP approximation gives each
packet a phase that is very similar to that given by the semi-

classical theory,81 which is known to work well for

d.‘.ffr:m:t:ion.82_85 Nevertheless 1t is of interest to discuss a
computational methéd which removes the IGA approximation as well
as the restriction that the packets maintain their Gaussian form
during collision. This is based on ideas advanced by Fleck,
Morris, and Feitas (FMF) (summarized in Section III.2) applied to

the MGWP theory of H2 scattering (Section III.3).
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I11.2 A brief description of FMF method
The starting point of the FMF method is similar to that used

in path integral theory. The long time propagator U(T) is written

as

W(T) =~ u(t)® (III.4)

with nTt=T. The short time propagator U(t) has the "split" form
U(r)=exp((irh2/4M)v§))exp(—irV(ﬁ))exp((irh2/4M)v%) (II1.5)
It is easy to see that U(T) can also be written as

U(T)sexp((1Th2/4M)V%)exp(-iTV(§))W(T)n—zexp(ith2/4M)V%),
(I1I.5)

where
W(t) = exp((irhz/ZM)V%} exp(-iTV (%))} (III.6)

is the more familiar expression for the short time propagator
appearing in the discrete form of the path integral formula for
U(T). The error made by using (III.S) is of order 13, for each
time step t, while the discrete path integral formula U(T) =
W(T)n makes an error of order 12 at each time step.

To explain the FMF algorithm we examine the computation of
the elementary step W(rt){¢(t)>. Using (III.6) and straightforward

manipulations based on the representation theory we can write
<§;]¢(t+r)> = <RLIW(T) [0(E)> =
o B _ 222 > »
<§“|ﬁv>exp( (ith kv/2M)}<kV|§n>exp( 11V(§n)}
] <§n|¢(t)> . (I11.7)

Here we have discretized the variables E and ﬁ and used the rule

that repeated variables are summed over. In the customary path

LT, R S P
e R s Al
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integral theory the integral over Ev is done analitically and
genera’.es the familiar Gaussian A =
(2ﬂiT/M)-1/2 exp(im(§ § ) /2hr) p‘ﬂWe are thus left with only one
integral, over § which must be performed numerically. This
amounts to a multiplication by the diagonal matrix B “=6n“exp{—
11V(§ })}, followed by multiplication with the matrix A . If a
proper discrete representation of the function exp(- iV( )}<§|¢>
requires a grid having Nd points (d is the dimension of the vector
ﬁ) the calculation outlined above requires N2d + Nd operations per
time ste P“AEE}S k1n37of calculation has been performed by
Thirumalal Berne who used it to evaluate the path integral
formula for the partition function, which is the imaginary time
verison of our problem.88

The FMF method does perform both integrals in (IIX.7) (i.e.
the sums over Ev and ﬁM) numerically. At first this seems to be a
rather bad idea since it should be more expensive to double the
number of integrals. However this is not the case. Since <Ev|§n>
= (2'rr)-3/2 exp(—iﬁv-ﬁ } both integrals in (III1.7) are Fourier
transforms and the usg of a fast Fourier transform (FFT) algorithm
requires only (N 1n N)d operations for each integral. -Thus, this
leads to a much faster algorithm than the evaluation of the path
integral by the matrix multiplication procedure. The additional
efficiency comes from both the use of the split propagator formula,
({III.5) which reduces the number of time steps, and the use of FFT
which reduces the number of operations per time step. The method
can be applied equally well for real time or imaginary time
problems.89 We emphasize however that the rapid growth of labor
with dimensionality confines this method to a small number (s4) of
quantum degrees of freedom; for imaginary time calculations on
systems with higher dimensionality Monte Carlo methods should be
vastly superior; for real time problems the Monte Carlo procedure
still has severe difficulties which take it out of contention.

The rela“ionship between FMF and the coupled channel method
(CC) depends on the problem considered and should be examined with

some care, since a kind of complementarity exists between them.




For strongly quantum degrees of freedom (i.e. those whose
excitation energy is of the order of the collision energy) the CC
method is very efficient since it requires a small basis set. For
weakly quantum variables, however, CC 1is very inefficient. The
FMF on the other hand is less sensitive to the number of open
states for each degree of freedom, and depends mostly on the
extent of tdy@r localization. Localized states interacting
through localized potentials requires small grids for discretizing

) exp(—iTV(ﬁ)}<§|w>; in such cases N is small and FMF is very

%; . efficient. At this point it should be apparent why the use of

& Gaussian wave packets to describe translational motion would

< combine very well with a FMF propagation scheme: (a) the initial
Gaussian packet is spatially localized and this makes FMF
efficient; (b) for reasonably brief collisions the packet may

evolve into a non-Gaussian wave function but it is likely to stay
spatially localized; (c) the use of 3 GWP initial state is not a
limitation since the analysis of the resulting asymptotic state
easily yields the S matrix between many incoming and outgoing
plane waves; (d) if an incident wave function Y(x) is spatially
extended we can break it up in a sum of pieces (i.e. we can write
Y(x;0) = = ¢a(x;0) where ¢a can be GWP's, for example) each having
a smaller support and thus requiring a smaller grid. Since FMF is
exact each piece can be propagated independently and the scattered
wave function can be exactly rebuilt as the coherent sum of the
scattered pieces. 1In principle this procedure is ideally suited
for ‘parallel computing.

For internal degrees of freedom-which are localized by

definition-the FMF is almost always convenient. Our calculations

.
.

of the evolution of the Morse ground state driven by a laser show
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Another great advantage of the FMF method is that it only

AR

requires the values of the potential at grid points. We do not

~ -
need to compute matrix elements between the potential and a basis rﬁa
set as in CC, and the complexities associated with chosing R
potential forms and basis sets which are compatible (i.e. lead to ﬁSJ
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integrals that are easy to compute) does not appear. This is
particularly important when the gquantum system interacts with a
classical many body system and the potential is generated
numerically by a Monte Carlo or molecular dynamics procedure.
III. The application of FMF to the MGWP theory of H2 Scattering
As in the case of the GWP approach to this problem it is
convenient to use the hybrid coupled channel - GWP approach
embodied in the wave function (I.2). Since FMF is exact the

decoupling of G for « # p is no longer an approximation;

furthermore the ;avepgunctions G od start by being Gaussians but
are allowed to take any form imposed by the dynamics. Thus all
the approximations made by MGWP are removed.

Since we use the wave function (I.2) we must solve the wave
equation (II.5). For each « the wave function is an m-dimensional
vector ¢a(§;t) = (Gai(ﬁ;t), e ns Gam(ﬁ;t», where Gai is Gaussian
at time t=0 only. The potential energy Vij(ﬁ) is a mxm matrix.

To compute the quantity
exp(iTV(R )} - ¢ (R 1) (III.8)

required in (III.7) we must diagonalize the matrix V(§ ) for every
grid point § This must be done only once at the beginnlng of
the iteration scheme. If we denote by A(§ ) the diagonal matrix
having the elements A(§ )iJ = exp{-itx (§ ))6ij where x (§ ) is

an eigenvalue of V(§ ), then we can write

“B = exp(-it *V*(ﬁn)) =*6(§n)‘x(§n)*ﬁ(§n)'? (I11.9)

Applying the matrix<g to ¢ gives
£.(R) = Bij(ﬁ) ¢aj(§). (II1.10)

Equation (III.7) requires us to Fourier transform each fi(ﬁ)

separately. When this is done we obtain
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F (k) = % S §n> fi(ﬁn) . (III.11)
n

The multiplication of ¢ with A reqguires m2 steps per grid point ia
and Ndm2 steps for the whole grid. The FFT leading to (III.11)
requires (N 1ln N)dm operations. '

To complete the time propagation, for one time step, we must

perform

3 <§&;Ev> exp(-irnzis/2M) F (%) (III.12)
K
v

and this requires (N 1ln N)dm operatidns. The total is Ndm2 + 2M

(NlnN)d per time step. Of course we must multiply this with the
number of time steps n and the number p of packets Ga required to

construct the original wave function; the total number of
d 2

operations is Pn{N m +2m(NlnN)d}; this formula indicates that this.

calculation is feasible on a fast computer.

It is interesting to note the possibility that a calculation
in which we take too few time steps and @& too coarse a spatial
grid might have some value since these approximations cut off the
fast excitations (i.e. those transitions having high frequencies)
and the high momentum components of the wave function. It is
conceivable that this happens without strong distorsion of the
lower and mid frequency and momentum part of the wave function.
Our experimentations with simple models90 confirms this
assumption, but of course it does not imply that this must a
general property. '

We note that it might appear that a scattering calculation
require a large grid since the FFT subroutine is such that the
wave function is reflected by the grid boundary. Thus it appears
that we must place the grid edge very far from the scattering
center, to permit the wave function to escape completely from the
interaction region without reaching the border of the grid. One

can aveoid this by removing pieces of the wave function as soon as
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they emerge from the interaction region and before they reach the
grid.go Then the total scattered wave function can be

reconstructed from these pieces with very little effort.go
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APPENDIX

=p
To derive equations of motion for the parameters Aai' ﬁai’

7
i
the expression for the error E given in the text above the
Equation (II.7a). We introduce in the formula for E the Egq.
(II.6) for G and take the time derivatives indicated in E. This

and Y oi appearing in each Gaussian wave packet we start from

al . .
leads to a bilinear expression in A ol ﬁai' Fai and Yot
Minimizing E with respect to the above variables (i.e. Aai’ §ai’

etc.) leads to

) n v2 3
saR(R-R_ (0" o, (R t)t(2u g * 18 37) G (Kt

- ) iley-e)e/hy
i Gai(ﬁ,t>vji(§)e "€y 0

where n = 0,1, and 2. The resulting three equations can be

written as

2
(t) + G A1) j(t)] (R-R_,(t))

FAR((R-R_ () -
(A.1)

«J

ey 12 - (0) _
Gy (Rit) 150+ (I,00) 4B y(t) + F g 0

4—»(2) - ) Rarud '(1)=
Mg [? g (t) * 2 ( ? ‘t) ﬁaj(t) Roy ()1 + Faj ‘=0

(A.2)
- 20 (&- R 2 x>
FARUR-R N TR 00 - (TR (1) + 2 TBL (0 -T2 (1))
(A.3)
Wi (21 ».

2 -—
RR (6] - g6 (Rien 5+ W %8 (0) + TF,

ML AR A G A 55 2L E S Tine Soe BAn Lan J ot i be e Al 2% B ]
s T A by AN Al Ve b A A A A 2 i e e St st - T v T W e
-V - PSR e et R e CRACIEA A it A B Sadh e e N T e -,

- SRR Sa a4 AN |




B0 AWM S SRR 2R

FTT

PP .
4-.-
P e

)

AORON |

- e,
TeTaT e o

&

RO

.................
......

where
iR .
Baj(t) - w trd = j(t)) + raj(t)
+ 2M Fuj(t) 51 o) - ?aj(t)-ﬁaj(t)
- _ n.__ 1
(Tnin)ay = SAR(X-X L (£) N y-y (0 (22 ()6 (Rit) |2
(n)_ ~ n SR
Fog E TaR(R ﬁaj(t)) j(ﬁ )6 (§ t)vji(ﬁ)e
(A.4)
and
a12’= raR(R-R_ (t) (§ 1% . (A.5)

The equations (A.1-3) represent 13 complex equations, although

(o)

(A.3) is symmetric. Fa is a sum of matrix elements coupling the

b) ()
¥ aj * J

second moments of these elements. Mé“ is a 3x3 real matrix of all
200 aj’ (T110'ay *+*) Of G (ﬁ-t) The real
and imaginary parts of equation (A.2) yield equations (II1.7a) and
(II.7b) for P j(t) and R j(t) respectively

The equations for the elements of A (t) are not so easily

state j to other rotational states, are the first and

2nd order moments (I

separable. We can combine (A.1) with (A. 3) however to write

ol
- LR - - Ik
raff (AR (6)) Sowepn 16,5 Rit)
(A.4)
i 5 (2)_ (2] ,(0) _
LR-R 4 (6))-"Dj0)- (BB j(0)5) + TFoy M3 Fo3 /Tooo ) as=0

where

T .(t) = 'A;j(t) + % 'A;j(t)-*ﬁ* (t)

«j @]

Satabtofia® el bad fat S v Bas Bafiulunt B ol et It S 4ok B Aos L Bat-0 4 o A 4l 4y

. P Y L o Sy
Y Se L T e e Te T ey L ’
- P Y PR o

. N A S .

¥ .0 '.", ‘ .'.'.“r

..............................
......



T o T o T T T T W T e T T e T o T o Ty o W o T W U W I Ow T W U W T T X~ VY N = NS e

SN L N

« re
LN
Chet

U

<«
This can not be reduced to a simple matrix equation for Daj(t)'

_ 2 2

A

,l’ " l'
Py

However, the matrix of equations (A.4) is symmetric, and three of

jl

‘x
e
l. 4

.

-
&
~ h,

v o )

the equations are redundant. Thus, we solve for ia a vector

-
b

containing the six non-redundant elements;

->

X

ag™ (DggCt)) s (B (e)) oo (D J(€)) ) 12(D (€) 0 s

2(D, ;2(D_

SO, S,

Upon integration, and a bit of matrix alegbra, equation (A.4) can
- be written as

w4 L2 =0,

-3 ] >~o:j oj
where

(2)
(Fuj )xx

(2)
(Foi gy

o

(2)

= (Foy )zz s

«j

(2)
Faj )xy

(2)
Fuj )xz

(
(

(2)
(Foy Vyz

T is a vector of all second order moments of Gaj(ﬁ;t);
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(T620) «j poos
(2) _ o
I«j - (IOOZ)aJ =
(I110)aj
(I301)aj
(I )
and 911 «J
(2),+,2(2)
) epra) _ Ty a0
where IS? is a real symmetric 6x6 matrix of all fourth order

moments; (we drop the subscript «j). -

1,00

I,20

Ts02

I310

l301

1,11

Thus

> - - —>»(4)
laj ( Maj )

and we arrive at matrix equation (II.7c), where

I,20

I

Io22

1,30

I121

Toa:

_1-’

«C

040.

I,02

1022

Toos

1512

Iio03

013

’

I310

Ii30

Ti12

120

Io11
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301
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211
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] — _ —>(4). -1 <«

- so:j = - Maj y o aj

E Finally, using the fact that

- rd§|sa3(§;t)|2(§-§a1(t)).*ﬁzj(t).(ﬁ-ﬁaj(t)) = Iig).iaj,

we can write equation (A.1) as equation (II.7d) for }aj(t).

As mentioned in the text, the ability to compute these three
dimensional moment and poteﬁtial integrals analytically is a
tremendous advantage of using the Gaussian basis. The moments are
straightforward to compute and can be derived from

. . 23 —>(t) 2

, - R (Im("A )1-R - £ Im(y_.(t))

- - " o] h aj
(T600) oy IaR e e

2
- & Imly (%) N

ey
8det(Im( Aaj(t)))

All moments can be generated by taking derivatives of (Iooo’aj

with respect to the elements of Aaj(t)‘ For example

: 3
(T ) = - 2 I
200 - 2 —> 000
3(TFn () )
o Im(A (%) Im(A L (£))  ~(Im(A_ (), Tt
% (IOOO)ozj -— e
det(Im( Aa (t))) RS

J T
All odd order moments are zero. ‘

The potential integrals in F can all be written as sums of ST
«d B3
terms of the form s

. c ! dﬁ (ﬁ_ﬁaj(t))n e—ﬁ-T -ﬁ - F.§ ' :::::-{'E:

where ¢ is some collection of constants, and the wave packet and }2}3

potential parameters are contained in A and . Forn = 0, we can
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complete the square to find

Pt St B S ORI L
det A

As for the moments of this (n = 1,2) we can simply take o
“ »
derivatives of the above with respect to the elements of A and T X

as was done with (Iooo)aj‘ e
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