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1 INTRODUCTION

Modern organizations are becomini increasingly reliant on the

storage and processing of very larj data bases in support of their

accounting, operational control, i d high-level dec-.sion-making

functions. Contemporary Data BaF Management Systems (DBMS's) are

capable of handling data bases on the orde of a trillion (1012) bits

of data [26], and can process transactions at rates of up to 100

queries per second (2]. However, it is expected that future |

high-performance DBMS's will be required to provide storage capacities

and transacton rates several orders of magnitude greater than those of

any current systems. It is not unreasonable to project requirements of

15a quadrillion (101) bits and one million database accesses per second

[18].

As DBMS's become ever more integral parts of many organizations'

operations the costs of system failure or unavailability increase

correspondingly. Accordingly, there is a growing need for "fault

tolerant" systems which can provide continuous availability in the

presence of many types of internal component failure (both hardware and

software).

To meet the requirements for increased speed, capacity, and F

availability the IMS Data Base Computer (INFOPLEX) employs a highly

parallel, distributed control architecture. The preliminary INFOPLEX

design consists of two logically and physically separate components: a

physical storage hierarchy which consists of a series of

micro-processor controlled storage devices functioning as a very large

(1015 bits) virtual memory; and a functional hierarchy, consisting of

a series of micro-processor clusters, which provide user interfaces,

-- i i -



security, and memory management facilities for an INFOPLEX database

system [il]. The general structure of an INFOPLEX data storage

hierarchy has been developed and a preliminary set of control

algorithms has been proposed [151.

This report presents a refined set of control algorithms which

take advantage of theoretical properties of INFOPLEX-like storage

systems [16, 3]. Section 2 presents an overview of the INFOPLEX design

issues and tradeoffs related to performance and reliability, and

develops a general strategy for efficient READ/WRITE control and

reliable fault handling. Section 3 develops the functional design of

DSH-III in more detail, including functional descriptions of the system

components and their interfaces. Sections 4 and 5 detail the

algorithms and protocols supporting the READ and WRITE operations,

respectively. Finally, Section 6 summarizes this report, and indicates

the directions for further research.
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2 OVERVIEW OF DSH-III DESIGN

2.1 Introduction

The INFOPLEX Data Storage Hierarchy III (DSH-III) is a model for a

very large, high-speed, reliable storage system. The primary design

objective of DSH-III is to provide a user (in particular the INFOPLEX

Functional Hierarchy) with a very large, high-speed virtual address

space. As will be seen, DSH-III takes complete responsibility for all

physical data management, control of the various storage devices in the

system, and recovery from almost all types of single-component

failures. By incorporating the intelligence needed to perform these c-i

functions into the storage system, DSH-III is able to provide a user

with a very simple, clean, easy to use interface. In particular,

DSH-III can provide almost complete memory system functionality to a

user through two primitive operations - READ and WRITE. This should be

contrasted with the more than thirty Channel Commands needed to fully

utilize an IBM 33xx series disk [141.

While this paper presents the details of only two primitive

operations - READ and WRITE - additional primitives can be added as

experience indicates in order to increase the usability and flexibility

of DSH-III. A partial list of such primitives might include:

TEST AND SET - provides an atomic conditional update

operation which can be be used to support P

and V [8] synchronization operations;

SETSECURE- allows a user to select a portion of the
i .p.... "-

DSH-III virtual address space for special [

high-reliability handling, such as automatic

- 2.1-
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replication and duplication of data. This

facility might be used to protect data of an

especially critical nature, such as system

control tables. The Tandem [4] computer is an

example of a system which uses automatic

duplication to enhance availability;

BLOCK MOVE - allows a user to transfer large data blocks

from one location in virtual memory to

another. By simply modifying the mapping of

real to virtual memory, this operation could

be accomplished without any actual data

movement;

BLOCKZERO - allows a user to initialize (set to zeroes) a

large area of virtual memory.

2.2 Basis of DSH-III Design

The fundamental rationale for the design of DSH-III to be

presented in this paper is based on three principles: 1) employing a

range of storage technologies, 2) taking advantage of locality of

reference, and 3) hierarchical decomposition and distributed control.

2.2.1 Range of Storage Technologies

A basic problem which constrains the design of any high-speed,

high-capacity storage system is that no single storage technology can

meet the requirements for both speed and capacity within reasonable

cost constraints. For example, high-speed semi-conductor RAM can

support random access times of 50ns but costs on the order of $1.00 per

-2.2-



byte. At the other end of the cost/capacity/speed spectrum are mass

storage devices such as automated tape handlers, which can store large

quantities of data at a cost of only .0005 cents per byte, but which

have access times up to seven orders of magnitude slower than ", -

high-speed RAM. In between these two extremes are a range of storage

device technologies as shown in Table 2.1.

Sequential !k
Random Transfer Unit Unit

Storage Access Rate Capacity Price
Level Example Time (bytes/sec) (bytes) (cents/byte)

1. Cache HMOS RAM 50 ns looM 32K 100

2. Main NMOS RAM 1 us 16M 512K 10

3. Block Magnetic 100 us 8M 2M 2
Bubble Memory

4. Backing High-Speed 2 ms 2M loM 0.5

Drums

5. Secondary Disks 25 ms IM looM 0.02

6. Mass Automated Tape 1 sec IM lOOB 0.0005
Handlers

Table 2.1 - Summary of Storage Technologies

The approach taken in the design of the INFOPLEX Data Storage

Hierarchy is to utilize a range of storage technologies, with the bulk

of the data stored on inexpensive but relatively slow devices and

automatically migrated to higher speed devices when it is accessed.

This approach is logically equivalent to that used by cache based

computer systems such as the IBM 3033 [12] and by mass storage systems

such as the IBM 3850 [13].

-2.3-



2.2.2 Locality of Reference

In order for a multi-media storage system to take full advantage

of its higher speed storage devices, it is desirable that the higher

speed devices be accessed relatively more often than the lower speed

devices. For this goal to be attainable, it is necessary that the

database be subject to a non-homogeneous reference pattern. This

non-homogeneity can be spatial or temporal and any database system

which has this property is said to exhibit locality of reference [17].

Spatial locality refers to access patterns for which reference to any

particular data item increases the probability that related data items

will also be accessed. There are many examples of this phenomenon: r

- sequential flow of control in a software module implies
that reference to an instruction in program storage
presages references to following instructions.

- reference to a particular field in a record stored in a
file system is usually accompanied by references to other
fields in the same record (or the same field in related
records).

Temporal locality refers to access patterns for which consecutive

references to data items are correlated in time. Automatic teller

systems provide a typical example of this phenomenon. A common usage

consists of a balance inquiry followed by a cash withdrawal, resulting

in two accesses to the account balance within a short period of time.

(In fact, the withdrawal alone, or any other database update, exhibits

temporal locality due to the need to read the data item to be updated

before writing the modified version of the data.)

INFOPLEX takes advantage of the fact that database systems do

exhibit locality (25, 24], and that locality can be used to increase

the relative utilization of the higher speed storage devices in the

system.

-2.4-
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" There are three strategies for taking advantage of locality:

- static, where high-usage data, such as key system tables, r
is permanently allocated to higher speed devices

- manual, where it is the responsibility of the programmer to
move data to higher speed devices when it is needed

- and automatic, where the system automatically migrates high W.
usage data to fast devices and low usage data to slow
devices.

One design strategy of INFOPLEX is to use automatic migration to take

advantage of locality. This technique has the following advantages:

- it allows dynamic response to changing application loads
and time-varying database content

- it relieves the programmer or system designer of the burden
of allocating the data.

This strategy is analogous to that used by Multics which automatically

migrates pages of virtual memory between high speed paging devices

(e.g., drums) and lower speed devices (e.g., disks) in response to

changes in the working sets of the active tasks in the system. [91 The

precise manner in which automatic migration is implemented in DSH-III

is described in Section 2.3.

2.2.3 Hierarchical Decomposition and Distributed Control

INFOPLEX organizes its heterogeneous array of storage devices

using the principle of hierarchical decomposition and distributed

control. The use of hierarchical decomposition leads to a conceptual

system design such as that shown in Figure 2.1. This structure has j
been shown [19] to represent an efficient and effective method for

integrating heterogeneous storage devices into a single system. There

are three primary advantages to this structure.

-2.5-



J Request J
I Generator I

Level 1 J J I
("cache") J J

Level 2 I J__ _

. .d

Level r I I
("reservoir") I

Figure 2.1 - Logical Structure of a Storage Hierarchy

First, the hierarchical structure supports the types of direct 2

interlevel data transfer which are used by read, write, and automatic

migration algorithms. This avoids the overhead associated with the

indirect data path (i.e., drum to main memory to disk) used by the page

migration scheme of Multics mentioned above.

Support for direct inter-level data transfer is a reflection of

the second advantage of the hierarchical structure, namely that it

facilitates the utilization of a distributed control strategy for the

system. By this we mean that the basic system control and interlevel

communication functions will be performed by micro-processor clusters

-2.6-r
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within each level. This strategy improves system performance by

facilitating parallel and asynchronous operation within the hierarchy,

as well as eliminating the potential reliability exposure that would be

associated with a single controlling processor cluster.

Third, the design is inherently modular. This has four principal

- advantages

- the structure allows the use of common algorithms and
software modules at each of the levels. This facilitates
software design, especially in the area of interlevel
communications protocols.

- if a level fails, the remaining levels form a system which
is logically equivalent to the original (unfailed) system.
This has important implications for the ability of the
system to continue operation in the presence of failures.

- the modular structure facilitates the incorporation of new
storage technologies into an INFOPLEX system. Thus the
basic design should be relatively insensitive to the
rapidly changing technology in this area.

- the structure allows the building of storage hierarchies
with the number of levels and the types of storage device
at each level customized to a particular application.

2.3 Design of an INFOPLEX Storage Hierarchy

This section presents the cost/performance/complexity/reliability

tradeoffs and other issues underlying the design of DSH-III. We begin,

in Section 2.3.1, with a general overview of the system topology

implied by the discussion in Section 2.2. Next, Section 2.3.2

describes the interface between DSH-III and a user. Section 2.3.3

r
presents a justification for the data management strategies used in

DSH-III. Based on these strategies, a specification for the READ

algorithms used by DSH-III is developed in Section 2.3.4. Finally, the L
basic design of DSH-III is completed by the specification of WRITE

algorithms for DSH-III in Section 2.3.5.

-2.7- r
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2.3.1 Overview of System Topology

Following the reasoning presented in the preceding sections leads

to a conceptual system design such as the one shown in Figure 2.2.

i User Bus (UBUS)

I __ _ I Gateway i
I Controllerl
I (GC) I

I Local Bus (LBUS)

I Gateway i I Processing I Local I
I Controllerl I Elements I Memory I Level 1
I (GC) I I (PE's) I (LM) I

*II
-II _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I Gateway i I Processing I Local I I Local I
I Controllerl I Elements I Memory I I Storage I Level 2

I I (GC) I I (PE's) I (LM) I I System (LSS) i

* I

Global Bus
" I (GBUS)

* I

II I I I
I Gateway I I Processing I Local I I Local
I Controllerl I Elements I Memory I I Storage I Level r
I (GC) I I (PE's) I (LM) I I System (LSS)

Figure 2.2 - Conceptual Structure of a Storage Hierarchy

The system consists of r storage levels, Level 1 to Level r, with

. Level 1 containing high-speed cache memory and Level r (the

"reservoir") containing mass storage devices which contain a copy of

-2.8 -
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all the data in the database. One of the modules shown in Levels 2 to

r is a Local Storage System (LSS), which consists of the physical

devices holding the DSH-III database. LSS technology will vary from

level to level, with higher levels using faster, but lower capacity, -.

devices. In particular, because of the high response time requirements

for the highest level, Level 1 will use the same storage technology for -'

both Local Memory (LM) and LSS. For this reason, no separate LSS is

shown for Level 1 in Figure 2.2.

All interlevel communication is performed via the Global Bus

(GBUS). The major disadvantage of using a single GBUS instead of an 2

inter-level bus between each adjacent pair of levels is that the

parallelism of the system is reduced and thus bus contention and

resultant queuing delays are increased. That this is an important

consideration is shown by simulation studies of a storage hierarchy ..1
[15] which showed GBUS utilizations of over 80%. While 80% utilization

of the GBUS has little impact on system performance (because the GBUS

has a high bandwidth relative to other components of the system) it is

clear that the GBUS could easily become a bottleneck under slightly -

different assumptions for component speeds or transaction loads. On

the other hand, the logical GBUS could be implemented as multiple

physical buses. In this case, adding extra capacity to a bottlenecked

GBUS would not involve any great difficulty, but could be accomplished

by replicating existing hardware structures. The potential "

disadvantage of using a single logical GBUS is clearly outweighed by

the advantages Qffered by this structure. These advantages include

- the ability for a level to communicate with any other
level, thus supporting "broadcasting" of information. As
will be seen in Section 2.3.3, broadcasting greatly
improves the efficiency of data movement algorithms and

-2.9-



eases system control problems by providing a means of
synchronizing operations at different levels.

- increased availability, since the system structure
facilitates "graceful degradation" and continued operation
in the presence of level failures.

more cost effective utilization of resources since the
resource (the GBUS) is shared by all users (the levels) in
the system. This facilitates the matching of bus capacity
and demand.

Each storage level consistes of a number of storage devices and

processing modules, interconnected via a Local Bus (LBUS). The

interface between each level and the GBUS is provided by a Gateway

Controller (GC) at each level. From the viewpoint of a GC, each level

appears as an identical black box, i.e., the number and types of

processors and storage devices within each level are transparent to the

GC at that level. This conforms wi the concept of modularity and

commonality of algorithms and software discussed in Section 2.2.3

above.

A Pended Bus Protocol [28] will be used for all buses in order to

support the large number of devices on each bus.

Section 3 contains a more complete discussion of a possible

hardware implementation of this hierarchical structure.

2.3.2 User Interface

Level 1 (the *cache" level) of the storage hierarchy serves as the

interfc e between the user (the lowest level of the INFOPLEX Functional

Hierarchy) and DSH-III. In particular this implies that Level 1

represents a shared cache structure, rather than a per user processor

cache structure. Detailed simulation studies show that this

single-bus, shared cache structure is a very effective and efficient

- 2.10 - .



topology for providing high-speed, parallel, multi-processor access to

the storage hierarchy. This structure, which is made feasible by the

use of the Pended Bus protocol, has the significant advantage of

greatly simplifying the cache consistency control problem. For a

complete discussion of possible alternate topologies and the trade-offs

among performance and consistency control policies the reader is

referred to [1].

In addition to the usual GC at Level 1, there is another Gateway

Controller which serves as an interface between the Level 1 LBUS and a

User Bus (UBUS) which connects DSH-III and the Functional Hierarchy.

From the point of view of a user, DSH-III appears as a very large

linear address space which is accessed via simple primitives such as

READ(request id,virtual address) and

WRITE(requestid,virtual address,data) .

As noted previously, the interface has been kept as simple as possible,

and a user is completely isolated from the details of data management

and error recovery. The intelligence to perform these functions is

distributed throughout DSH-III.

The READ and WRITE operations are not atomic operations. This

means that control is returned to a user after he issues one of these

commands, but before the operation has completed. When the operation

finally completes, the user is notified. This implies that a user may

have multiple operations active simultaneously. Because of this, it is

important to define exactly what results DSH-III will produce if READS

and WRITES are overlapped.

- 2.11 -
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10-1

The simplest way to look at this problem is to think of WRITE as

an atomi. operation. If an operation starts or completes after a WRITE

has been issued but before it has completed, its sequencing with

respect to the WRITE is undefined. In other words, in the sequences -:

READ, WRITE, READ complete, WRITE complete, or I

WRITE, READ, WRITE complete, READ complete

the READ may be considered to have come either before or after the

WRITE. Therefore, the results of the READ may or may not reflect the

results of the WRITE. The only guaranteed way to ensure that a READ

will reflect the results of a WRITE is to issue the READ after the

WRITE has completed.

The remainder of this chapter is devoted to explaining and

justifying the data movement strategies used by DSH-III, and Sections - -

IV and V present the details of the algorithms used by DSH-III to

support the READ and WRITE primitives, respectively.

2.3.3 Data Movement Strategies

The objectives of the data movement strategies used by DSH-III are

three-fold. First, the strategies attempt to take advantage of

locality by migrating high usage data to the higher speed storage

devices. Second, the strategies attempt to minimize unnecessary data

movement within the system in order to reduce bus contention. Third,

redundant copies of data blocks are maintained at various levels. This "

has the effect of increasing system reliability while greatly

simplifying page migration algorithms.
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The basic design decisions underlying the data movement strategies

of DSH-III are

- when should a block of data be moved from a lower level to
a higher level of the hierarchy?

. - if the transfer of a data block to a higher level
necessitates the removal of a block already in the higher
level, how should the block to be removed be selected, and
what should be done with it (e.g., should it be discarded
or transferred to some other level)?

- how big should the basic unit of access and transfer (the
"page size") be; should it be the same at all levels or
differ from level to level?

2.3.3.1 Demand Paging with Replacement

The data retrieval algorithms of DSH-III are based on a demand L

fetch policy. Under this policy, a data block is moved from a lower to

a higher level in the hierarchy only in response to an explicit READ

request by a user. In other words, there is no attempt made to

anticipate future retrieval requests (based on known usage patterns or

locality considerations) by pre-fetching data blocks before they are

explicitly requested. This does not mean that the system does not take

advantage of spatial locality. As will be seen, DSH-III blocks data

into pages of various sizes, and this policy does result in

anticipatory retrieval of data stored in the same page as the data

being explicitly retrieved. The point here is that no anticipatory

fetches are made, even though some data is retrieved in anticipation of -

future use by fetches that were going to be performed anyway in

response to an explicit request by a user. Note that a user can create

the effect of anticipatory fetching by simply issuing anticipatory

reads for those applications (e.g., monthly payroll) whose future data

requests are predictable.

2.13
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The transfer of data into a level may necessitate the removal of

some data already at that level in order to make room for the incoming

data. This removal process is referred to as replacement and the

replaced data is said to have overflowed.

The justification of a demand fetch policy is based on the fact

that, for hierarchical storage systems, . . given any series of

requests] and replacement algorithm (not necessarily using demand

paging) [a] replacement algorithm exists that uses demand paging and

causes the same or a fewer number of pages to be loaded . . ." [20].

Intuitively, this means that demand paging leads to no more I/O

requests within the hierarchy than any other possible algorithm. Since

the number of I/O requests is a fundamental limiting factor for system

throughput, using a policy which minimizes I/O requests is very

attractive.

This policy leads to a retrieval scheme which operates roughly as

follows:

1) a user issues a READ request

2) if the requested data is found in the cache level it is
returned to the requesting user

3) if not found, the hierarchy is searched for the requested
data. The requested data is transferred from the level in
which it is found to the cache level, and from there to the L_
requesting user.

This very general description leaves open a number of questions which

will be addressed in the remainder of this chapter, including:

1) is only the requested data fetched or are entire blocks
which may contain data which has not been explicitly
requested retrieved?

2) if the data is blocked into pages, should the pages be the
same size at all levels?

- 2.14 -
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3) given that an entire page has been referenced, should a
copy (or multiple copies) of the page be saved in the
levels between the level at which the page was found and
the cache level, in anticipation of future requests for
data in that page? .,.,

4) how is the hierarchy searched - level by level or all
levels in parallel?

5) finally, if this strategy results in an overflow, how
should the page to be removed be selected, and what should
be done with it?

Questions 1, 2, and 3 will be addressed in the next section, while

questions 4 and 5 will be dealt with in Section 2.3.4.

2.3.3.2 Page Size Specification and Page Splitting

An examination of the random access times and transfer rates of

the devices listed in Table 2.1 reveals that access times vary by over

six orders of magnitude, while transfer rates vary by only two orders

of magnitude. This fact, coupled with spatial locality considerations,

can be used to show that system performance can be optimized (with

respect to total expected data transfer delay) by

1) a choice of page sizes such that N1 < N2 < ... < N r (where
Ni is the size of the unit of transfer from Level i+l to

Level i, and also the size of the page stored at Level i)
coupled with

2) the use of a page splitting algorithm to determine the
placement of data in the various levels in the hierarchy.

(For a detailed derivation of this result, see [17].) Intuitively, a

factor to consider in the choice of N is that this choice represents a

tradeoff between the sensitivity of the system to spatial and temporal

locality, respectively. A smaller page size decreases the sensitivity

to spatial locality (less spatially related data is retrieved by each

fetch), but increases sensitivity to temporal locality by allowing a

level to hold a larger and more diversified collection of pages. Of

- - 2.15 -

• _*.. , : i.,_ -,"-... ?" -" " ' : . . - * . ."•



course, the optimal values of N will depend on the actual degree of

locality and the speeds of the various storage devices in the

hierarchy.

In order to retain as much flexibility as possible in the design - -

of DSH-III, we allow the size of the unit of transfer between Level 1
N1

and the user to differ from the page size, N, at Level 1. This idea

is consistent with the variation of page sizes within the storage

hierarchy itself. The size of the data blocks transferred, via the

0UBUS, between DSH-III and a user will be denoted N

Page splitting operates as follows. Suppose a referenced data

3item is found in some page, of size N , at Level 3. The sub-page (of

size N2) containing the referenced data item is retrieved and

transferred to Level 2 via the GBUS. Logically, the next step would be

for Level 2 to transfer the sub-page of size N containing the

referenced data item to Level 1. In practice, this is not necessary,

since Level 1 can obtain the appropriate sub-page from the GBUS during

the initial transfer of data from Level 3 to Level 2. Therefore, the

strategy actually used by DSH-III is for the level at which the data is

found to "broadcast" the appropriate page over the GBUS, with each

level extracting the appropriate sub-page from the broadcast data.

This strategy is called READ-THROUGH since the requested data is read

through from the level at which it is found directly to the highest

storage level. This procedure is illustrated in Figure 2.3.

This figure gives an example of the notation we will use when it

is desired to make explicit the relationships between a set of pages

and their sub-pages at various levels. Virtual addresses of the

smallest addressable units of data, i.e., pages of size N0 bytes, will
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IX23"1 [
I I I Level 1

II I I I I-

I I IX23*1 I

N bytes

I I I I I

1T- -X21*IX22*IX23*IX24*I I
I I I I I ILevel 2

II I I I I I I I I t I II"

I I I I IX21*IX22*IX23*IX24*I I I I I
II I I I I I I I I I I . .

I N2
N2-byte page, X2**

I <IX2** I
I Level 3

I I I I I I I -

I I I I Xl**I X2**I I
II I I I I I I I.

3_

N -byte page 

3
I~ ~ -byte page X***

Key: Xl** I X2** I containing 2 N2-byte
I I sub-pages, Xl** and X2**

i I I I N 2-yte page X2** containing
1X21*1X22*1X23*IX24*I 4 N -byte sub-pages,
I I I I I X21*, X22*, X23*, and X24*

Note: Pages not drawn to scale, i.e., N3 > N2 > N1

i
Figure 2.3 - Illustration of Page Splitting as Page X23* is

Broadcast From Level 3 to Levels 1 and 2

be denoted by sequences of letters and/or numbers. Thus, X, 12345, and

AB3 might denote addresses. The addresses of pages at Level i are
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denoted by a sequence of letters and/or numbers followed by i

asterisks. Thus A** denotes the address of a page in Level 2.

Page/sub-page relationships are expressed by using identifiers with all

non-asterisk symbols equal. Thus A** contains (is the "parent" of) AB*

(its "child"). Page AB*, in turn, is the parent of AB3. In situations

where the relationships between pages are clear from the context, we

will adopt the simpler notation of denoting pages by upper case Latin

letters, e.g., X, Y.

In order to simplify implementation of the READ-THROUGH strategy,

it is desirable that the page sizes be powers of 2. From now on we

will assume that N = 2 . This means that each page in Level i

contains an integral number of sub-pages of size Ni - l. The total
cpctofLvldeoeCi Ci mii i"i-

capacity of Level i, denoted C can be computed as C= m , where m

is the number of pages of size N in Level i.

2.3.3.3 Page Splitting and Redundant Data

One result of using a page splitting strategy is that the system

will contain redundant copies of data blocks. As a data item is read

through into Level 1 it leaves a copy of itself, embedded in an

appropriately sized page, in each level of the hierarchy.

There are two disadvantages associated with this redundancy.

First, from a myopic point of view, redundancy is wasteful of storage

space, but this ignores the performance gains resulting from a page

splitting policy. One alternative to page splitting would be to

transfer the requested data, X say, to Level 1 only (in a page of size

N1 ). Then, as subsequent references caused other pages to be brought

into Level 1, X would eventually overflow and would be moved down to
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Level 2 to make room for the incoming data. This type of overflow

handling policy will be justified in the discussion of overflows in

Section 2.3.4.3. Moving X from Level 1 to Level 2 would result in two

I/O's and a bus transfer. In addition, since the pages in Level 1 are

N 1bytes and the pages in Level 2 are N2 > N1 bytes, the rest of the

page of size N2 containing X will have to be retrieved and moved into

Level 2 in order to maintain the consistency of the paging scheme at

Level 2. This latter retrieval will result in two more I/O's and

another bus transfer. This process would then have to be repeated as

the page removed from Level 2 to make room for X is moved to Level 3,

and so on, all the way down the hierarchy. It is clear that this

scheme involves considerable overhead, both in terms of extra I/O's and

added bus traffic. It will be shown that the redundancy caused by page

splitting allows the use of READ and WRITE algorithms which eliminate

this overhead by discarding removed pages while still obtaining the

performance benefits due to considerations of temporal locality.

The second disadvantage arises out of the potential for

inconsistencies present in any system with redundant data. It will be

shown that the algorithms used by DSH-III eliminate this possibility.

There are also some positive aspects to the data redundancy in

DSH-III. Besides the performance advantages alluded to above,

redundancy enhances the ability of DSH-III to recover from failures and

continue operation by reconfiguring itself to bypass a failed

component.

Finally, note that maintaining redundancy does not have much

impact on the total effective storage capacity of the hierarchy since,

i i+lin any reasonable design, one would expect C << C
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The advantages of using a page splitting policy appear to outweigh

the disadvantages. Therefore, this policy has been incorporated into

the data movement algorithms of DSH-III.

2.3.4 READ Strategies I
Up to this point we have discussed data movement strategies and

the tradeoffs among various alternative policies at a fairly general

level. After settling on a hierarchical structure and specifying

possible data movement paths between levels of the system, various data

management policies and tradeoffs were discussed. The strategies

selected on the basis of this discussion included demand fetch with

replacement, different page sizes at various levels (selected on the

basis of storage device speeds and locality considerations), page

splitting, and the storage of redundant data. The following sections

further refine the specification of the READ algorithms used by

DSH-III. Issues addressed include specification of how the

READ-THROUGH policy operates, how pages are selected for replacement, .

and how overflows are handled.

2.3.4.1 Data Location and READ-THROUGH

If a referenced data item, X say, can not be located in Level 1

(the cache level), the rest of the hierarchy must be searched for X.

There are two ways that this search might be implemented, serial or

parallel. A serial search could operate as follows. The READ request .

is passed, via the GBUS, from Level 1 to Level 2. A directory in Level

2 is searched for a page containing X. If found, X is retrieved from

the storage system in Level 2, and the READ-THROUGH process is

- 2.20 -
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initiated to transfer X to Level 1 and the Functional Hierarchy. If X

is not found in Level 2, the READ request is passed down to Level 3,

and the search is repeated at that level, and so on, until the request

has percolated down to a level which contains X.

A parallel search operates as follows. The READ request is

broadcast from Level 1 to all lower levels of the hierarchy, which then

perform simultaneous, parallel directory searches for X. The highest

level to locate X then initiates the READ-THROUGH for X, after

informing all the other levels that X has been located.

The parallel search scheme has an obvious advantage in that it has

potential for minimizing the expected delay between initiating the

search and locating the data. On the other hand, there are some

potential drawbacks to the parallel search strategy. While it is true

that the expected time for a parallel search is less than that for a

serial search, the parallel search is wasteful of system resources in

that only the results of one search will be used. All the other

searches represent wasted effort. This would not be a concern if it -°-.

was expected that there would be excess processing power at each level.

However, the fundamental rationale for the multi-processor architecture

of DSH-III is that throughput can be increased by processing multiple

transactions in parallel. Thus the parallel search might use resources

that would otherwise be employed doing "useful" work as a part of the

inherent parallelism of DSH-III. There is an implicit assumption here

that the search uses scarce system resources. If, for example, the

search was performed by specialized (and underutilized) hardware, there

would be no disadvantage to parallel searches. Intuitively, the [

parallel search strategy represents an attempt to decrease response
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time for individual transactions at the potential expense of decreasing

overall system throughput. But note that the time for a serial search

.. grows linearly with the number of levels that must be searched, while

the data retrieval times grow by orders of magnitude as one moves down

the hierarchy. This implies that the parallel search strategy is

relatively less advantageous for retrieving data from lower levels of

* the hierarchy because the total search time for either strategy is

- relatively insignificant compared to the data retrieval time at lower

* levels. Therefore, for those retrievals where the parallel strategy

has the greatest absolute advantage, the relative impact on response

time is small. In addition, locality considerations lead one to expect

that the majority of retrievals will be satisfied at high levels of the

hierarchy. For retrievals from these levels, the serial search time is

not much greater than the parallel search time, and thus does not have

a great impact on response time.

Another drawback of the parallel search strategy is the extra

algorithm complexity and control protocol overhead needed to coordinate

the searches at different levels in order to determine the highest

. level at which the data was found.

- The tradeoffs between serial and parallel searching will be the

subject of further investigation, since the relative merits of the two

schemes are dependent on the exact hardware configuration and load on

- the various components of the system. For the purposes of this paper,

-[ we will use the serial search strategy because it is simpler and

because the parallel strategy does not seem to offer any significant

* performance benefits.
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The precise mechanics of the READ-THROUGH process are fairly

straightforward. Once the requested page has been located, it is

retrieved from the LSS and broadcast to all higher levels of the

hierarchy. Section 3 describes the architecture which allows the

destination levels to extract appropriate sub-pages from the broadcast I

data, so that each receiving level obtains the correctly sized sub-page

containing the originally referenced virtual address.

One potential way to decrease system response time would be to

order broadcasts so that data destined for higher levels was broadcast

first. In particular, the page destined for the cache level (and the

Functional Hierarchy) could be broadcast first. In other words, the • 4

first data broadcast would be the sub-page of size N 1 containing the

referenced virtual address. Next, the sub-page of size N2 containing

the referenced data would be broadcast, and so on until the entire data

block had been broadcast.

2.3.4.2 LRU Replacement

The next issues to be addressed deal with the choice of a

replacement policy and the design of overflow handling algorithms.

DSH-III will use a Least Recently Used (LRU) replacement policy.

At any point in time, the pages at a level can be ordered by time of

most recent reference. This ordering is called the LRU stack for the

level, and each page at the level occupies a unique position in the

stack (which will change as references are made to the level). Under

the LRU policy, the page at the bottom of the stack (i.e., the page

least recently referenced) is the one selected for removal. There are

three reasons for the selection of LRU as the replacement algorithm for
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DSH-III:

1) LRU has been shown empirically to compare favorably with
the "optimal" removal algorithm, MIN [5]. (MIN itself can
not be used as a replacement algorithm since it requires
knowledge of the future.)

2) LRU is one example of a class of "stack algorithms" [20].
These algorithms can be shown to have "inclusion"
properties which are used to simplify the data movement
algorithms of DSH-III.

3) One consequence of the inclusion property of LRU is that
the "hit ratio" for a level (the fraction of READ requests
satisfiable at that level) is a monotonic function of level
size. Thus LRU is not subject to certain anomalies (6]
which can decrease performance as level size increases.

Now suppose that a reference to some data item, X, is satisfied at

some level, j (the highest level containing X). This will cause X to .

be moved to the top of the LRU stack at Level j. Then the READ-THROUGH

for X will result in a copy of X being stored in all levels, i, with

i < j, and all these levels will have their LRU stacks changed to

reflect the fact that the most recent reference at each of these levels

* was a reference to X. The algorithm described up to this point is

referred to as LOCAL-LRU [15]. It is characterized by LRU stack

updates being performed only at those levels wnich actively participate

- in a READ-THROUGH, in this case Level 1 to Level j.

An alternative policy is termed GLOBAL-LRU. Under this policy,

the LRU stacks in Level 1 to Level j would be updated as for LOCAL-LRU.

In addition, the LRU stacks in all levels below Level j which contained

X would also be updated just as if a reference to X had been made at A

each of those levels.

" Figures 2.4 and 2.5 illustrate these two alternative LRU policies.

The justification for the choice of LRU policy used by DSH-III will be

deferred until the issue of overflow handling has been discussed.
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Reference to X

I Level

I I Level I
I I 2

READ-THROUGHI

I ILevel Ihighest level
I I___ ___ ___ ___ ___ ___ ___ Icontaining X

I I LevelI
I I j+l

these levels are I
not affected by I
the READ-THROUGH I

I I LevelI
I r

Figure 2.4 -Illustration of LOCAL-LRU Algorithm

2.3.4.3 Overflow Handling

Wen an overflow occurs there are three possible courses of

action:

option 1: The overflow page could be simply discarded. (Since a

copy of every page exists in the reservoir, this policy

does not lead to the loss of any data.)
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____ Level .
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READ-THROUGH .

_I Level I highest level
J ________I containing X

I ____ I Level
I j+l

these levels are "
updated as if a
reference to X .
had been made to .
each of them .

Level
r

Figure 2.5 - Illustration of GLOBAL-LRU Algorithm

option 2: The overflow page could be moved to the next lower level

of the hierarchy.

option 3: The overflow page could be moved to some other

location(s) in the hierarchy.

Before presenting the pros and cons of these alternatives, let us _

recall the original rationale for adopting a hierarchical system

design. The idea was to create a structure which would take advantage

of locality by providing a range of storage devices and allowing the

dynamic allocation of data to faster or slower devices based on
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anticipated future usage patterns. Therefore, we adopt as a

"preferred" overflow policy one which attempts to keep more recently

referenced data in higher (and faster) storage levels. The obvious way

to accomplish this is to maintain an LRU stack for the entire data

base, and to allocate pages to higher or lower levels according to

their position in this global LRU stack. Clearly, this is infeasible,

since a global LRU stack runs contrary to the principle of distributed

control and hierarchical decomposition. Instead, we can approximate

the ideal strategy by maintaining separate LRU stacks within each

level, and moving pages down the hierarchy one level at a time each

time they overflow.

This implies that option 2 should dominate option 3, so option 3

is discarded as a potential overflow handling strategy. Thus the

choice of overflow policy is reduced to selecting either option 1 or

option 2 on the basis of degree of conformance with the "preferred"

policy (subject, of course, to performance considerations).

In order to define option 2 completely, we must specify what

effect an overflow from Level i has on the LRU stack at Level i+l. Lam

[161 proposes two algorithms for handling this situation: Static

Overflow Placement (SOP) and Dynamic Overflow Placement (DOP). Under

an SOP policy, the overflow of a page, X, from Level i has no effect on

Level i+l unless there is no copy of X at Level i+l, in which case the

overflow is treated as if a reference to X had been made at Level i+l.Ir
Under DOP, an overflow of a page, X, from Level i results in the LRU

stack at Level i+l being updated as if a reference to X had been made

at Level i+l.
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Two things should be noted regarding these policies. First, under

either SOP or DOP, if X is not in Level i+l, the reference generated by

the overflow results in a READ-THROUGH of X to Level i+l. Therefore,

in this case SOP and DOP have identical effects but involve significant

overhead. Second, if X is found in Level i+l, SOP implies that no

action need be taken beyond verifying that X is indeed in Level i+l.

Notice that in this case (option 2 with SOP and X found in Level i+l),

option 1 and option 2 are equivalent, except for the verification that b

X is in Level i+l.

Tables 2.2a and 2.2b summarize the pros and cons of the three

overflow handling options in the light of the foregoing discussion.

Option 1 Option 2 (SOP) Option 2 (DOP)

Conformance with low high high

Preferred Policy

Bus Load low high high

Complexity low moderate moderate

Table 2.2a - Overflow Policy Tradeoffs (No Redundancy)

Option 1 and Option 2 (SOP) Option 2 (DOP)

Conformance with high high

Preferred Policy

Bus Load none low

Complexity low moderate

Table 2.2b - Overflow Policy Tradeoffs (Overflow Inclusion)
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Table 2.2a assumes that there is no redundant data in the system, while

Table 2.2b assumes that the parent page of any overflow page will
r

always be in the next lower level. We term this property Overflow

Inclusion. This distinction is important because, as can be seen from

Tables 2.2a and 2.2b, Overflow Inclusion eliminates the need to perform

any actual data transfers in order to support any of the three overflow

handling options. With Overflow Inclusion, the only difference between

the three options is the need, under option 2 with DOP, to update the

LRU stack at Level i+l in the event of an overflow from Level i.

Notice that the assumption of Overflow Inclusion eliminates the need,

under SOP, to determine whether or not an overflow page has a copy in

the next lower level.

Tables 2.2a and 2.2b show that the "best" overflow handling scheme

can be achieved in a system with Overflow Inclusion. Without Overflow

Inclusion, the choice is between a policy (option 1) which is simple

and involves little overhead but does not have the desirable features

of the "preferred" policy and a policy (option 2) which conforms to the

"preferred" policy but imposes heavy overhead on the system. The next

section shows how Overflow Inclusion can be achieved at little cost in
i.

terms of overhead or complexity by simply placing loose bounds on m

The original rationale for DOP (as opposed to SOP) was that DOP

conformed more closely with the "preferred" overflow concept, in that

an overflow from Level i would move from the last slot in the LRU stack

at Level i to the first slot of the LRU stack at Level i+l. This

agrees with the view of the stack at Level i+l being a logical

extension of the stack at Level i. A closer examination reveals that

this advantage of DOP over SOP is largely illusory, if GLOBAL-LRU is
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used. Assuming that there is redundancy in the system, the effect of

DOP is to move X, the overflow from Level i, ahead (in terms of LRU

stack position in Level i+l) of all the pages in Level i+l which

contain sub-pages in Level i. Thus the page, X, which is no longer in

Level i, is, in some sense, being treated as if it were more recently

referenced than pages which are still in Level i. Of course, when

these latter pages eventually overflow from Level i, the DOP algorithm

will restore them to their "rightful" place ahead of X in the LRU stack

in Level i+l. However, Theorem 4 in the following section will show

that SOP, in conjunction with GLOBAL-LRU, has approximately the same

end result, with none of the complexity or overhead of DOP. Since we r

will be using an algorithm based on GLOBAL-LRU, SOP appears preferable

to DOP as an overflow policy.

2.3.4.4 Multi-Level Inclusion (MLI) and Overflow Inclusion (MLOI)

If, at any instant of time, any page X in Level i is a subpage of

some page in Level i+l, the storage hierarchy is said to have the

Multi-Level Inclusion (MLI) property [15]. At first glance, it might

seem that MLI is sufficient to guarantee the Overflow Inclusion

mentioned in the preceding section, but this turns out to be false.

Consider the three level hierarchy shown in Figure 2.6a. In this

hierarchy, the same data, X, is in the next page to be selected for

eviction from both Level 1 and Level 2. Figure 2.6b shows the effect

of a READ-THROUGH from the reservoir in this situation. As a result of

the READ-THROUGH, Level 1 and Level 2 are updated simultaneously,

resulting in a simultaneous overflow of X from each level. Thus at the

instant that X overflows from Level 1, there is no copy of X in Level
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Figure 2.6a - Hierarchy Just Before READ-THROUGH for Z -

2, even though the MLI property holds for this hierarchy. In this

case, discarding the overflow page would leave no copy of X in Level 2,

an undesirable outcome from the point of view of taking full advantage

of temporal locality. An inclusion property slightly stronger than MLI

is needed to prevent this situation from occurring. This property is

Multi-Level Overflow Inclusion (MLOI). MLOI holds if any overflow page

from Level i is a subpage of some page in Level i+l and MLI holds as

well. Thus, MLOI is sufficient to allow overflows to be discarded

under any reasonable overflow handling p",iicy. The following sections

describe the conditions under which the MLI and MLOI properties can be

guaranteed to hold, and briefly discuss the implications of these

properties for performance and reliability of DSH-III.
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Figure 2.6b - Hierarchy Just After READ-THROUGH for Z

2.3.4.4.1 Theoretical Basis for MLI and MLOI

In order to define precisely the conditions under which MLI and

MLOI hold it is necessary to completely specify the data movement

algorithms used by DSH-III. The assumptions that have been made so far F

regarding what would constitute a "good" algorithm are:

- the use of READ-THROUGH with page splitting

- the use of an LRU replacement policy at each level

- the "preferred" overflow handling policy involves logically
moving an overflow page to the next lower level. Recall
that if MLOI holds, this policy imposes no overhead on the
system, since no actual data movement is needed.
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Given these basic assumptions, there are four possible READ

strategies that can be derived by selecting either LOCAL- or GLOBAL-LRU
r.

in combination with either Static Overflow Placement (SOP) or Dynamic

Overflow Placement (DOP). Table 2.3 shows the four possible

strategies.

1
r

Overflow Handling Policy

Static Overflow Dynamic Overflow I
Placement (SOP) Placement (DOP) -

i------------------------------ ------------------
I LOCAL-LRU LOCAL-LRU-SOP LOCAL-LRU-DOP

LRU Policy I------------------------------ ------------------
I GLOBAL-LRU GLOBAL-LRU-SOP GLOBAL-LRU-DOP I

Table 2.3 - The Four Possible READ Algorithms

We now present a series of theorems which characterize the

inclusion properties of hierarchical storage systems using these four

algorithms [161.

Theorem 1: Using any of the four algorithms, if mI > 2 and

m - < mi-1  for some j then there exists a reference string

which leaves the system in a state where MLI does not hold.

This theorem implies that, if MLI is to be guaranteed, mj must be

strictly greater than m j - for all j. In other words, the number of .. ,

pages in each level must be greater than the number of pages in the

next higher level. This is not a restrictive condition since one of

the precepts of the hierarchical design is to have the capacities of

the levels increase from top to bottom of the hierarchy.

- 2.33 - p.

. . .. C ... ,. • .. . . . . . .. . . . . ... .. . _|A. . .• t.. . .. .S "t ", t I . "L A , L " "- r"".• .__g. "" •. " ""



-. . . . .. . . . .- V' s-..

Theorem 1 gives necessary conditions for MLI (and therefore MLOI)

to hold, but these conditions are not sufficient, as is shown by the

next theorem.

Theorem 2: Using LOCAL-LRU-SOP or LOCAL-LRU-DOP, if m > 2,

there exists a reference string which leaves the system in

a state where MLI does not hold.

Based on this theorem, we reject the two algorithms using LOCAL-LRU as

potential candidates for DSH-III .-

i%The next theorem gives conditions on m which guarantee that MLOI

(and therefore MLI) hold for all possible reference strings for the two

algorithms using GLOBAL-LRU.

Theorem 3: Using GLOBAL-LRU-SOP, if m I > 2, MLOI holds for any

reference string if and only if mj > mj -I  Using

1GLOBAL-LRU-DOP, if m > 2, MLOI holds for any reference

string if and only if mj > 2mj-1 .

This theorem gives fairly loose conditions (especially for

GLOBAL-LRU-SOP) on the relative sizes of the levels of a hierarchy I
which are sufficient to guarantee that MLOI always holds.

Thus if a hierarchy is subject to the constraints of Theorem 3, we

can implement a READ strategy based on either GLOBAL-LRU-SOP or -

GLOBAL-LRU-DOP, which constitutes a "good" algorithm based on the

arguments presented so far in this paper.

2.3.4.4.2 Performance Implications of Maintaining MLI and MLOI

The effects on performance of a policy which attempts to maintain

MLI and MLOI can be conveniently partitioned into benefits and

drawbacks. The benefits have been discussed above, and are briefly
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summarized here. They include

- support for a "preferred" overflow policy with no attendant
data transfer overhead

- conformance with the principle of using varying page sizes
in conjunction with page splitting in order to minimize
expected retrieval times

- enhancement of system availability by allowing intentional
(e.g., for preventive maintenance) or unintentional (e.g.,
in case of failure) removal of a level without changing the
logical structure of the system or its data movement
algorithms.

The drawbacks associated with maintaining MLI and MLOI arise from

two sources

- extra complexity and processing overhead within each level

- extra interlevel communication overhead

Each of these sources will contribute to a degradation in performance

in varying degrees, depending on the exact policy used to maintain MLI

and MLOI.

.* As an example of one such policy, the reader is referred to Lam's

* approach [15], which presents a set of READ and WRITE algorithms which

maintain MLI. This approach is based on the idea of associating with

each page at each level a USC (upper storage copy) flag which indicates

whether or not a sub-page of the page is resident in some higher

storage level. Lam uses a modified LRU replacement policy which

selects the least recently used page which does not have its USC flag

set as the candidate for replacement.

In order to maintain the correct USC flag values, a level must

notify the next lower level whenever it evicts the last sub-page of

some page, X. This policy is complicated by the possibility that the
r

notification of the eviction of the last sub-page of X could occur

simultaneously with a READ-THROUGH for some other sub-page of X. This
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situation is called "erroneous overflow". Delicate algorithms are

needed to ensure that the notification is cancelled appropriately in

this case (and in other pathological cases which can arise). In fact,

Lam's original algorithms do not handle all possible cases correctly,

and must be modified slightly in order to prevent erroneous USC flag

settings.

.* Lam's algorithm has the advantage of being conceptually simple

(i.e., it is intuitively obvious that this algorithm does, in fact,

maintain MLOI) but it does entail some communication overhead (the USC

notification messages) as well as some processing overhead (in order to

* determine when the last sub-page of some page is being evicted). In

* addition, as noted above, there are a number of subtle pathological

cases such as "racing requests", "erroneous overflows", and "overflows

-- to partially assembled blocks" that must be dealt with.

The algorithms proposed in this paper attempt to maintain MLOI by

implementing GLOBAL-LRU-SOP subject to the conditions of Theorem 3,

above. In essence, MLOI is obtained as a by product of the data

movement algorithm, and therefore we do not need to consider any of the

pathological cases that greatly increase the complexity of Lam's

approach. The advantages of the approach presented herein include

- no overhead for overflow handling

- avoidance of much of the computational complexity implied
by Lam's algorithms.

On the other hand, this approach has some disadvantages, including

- a need to perform strict LRU replacement

- a need to synchronize LRU updates between levels (in order
to perform GLOBAL-LRU properly)

- 2.36 - r
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- restrictions on the relative sizes of the levels of the
hierarchy, as specified by Theorem 3 (although, as noted
before, these restrictions are not constraining on any
reasonable design, that is, one for which the number of F
pages per level increases from Level i to i+l).
Furthermore, this restriction is implicit in Lam's
ajgorijh s since obviously MLI can not be maintained if
m < m for any j.

Table 2.4 summarizes the comparison between Lam's READ algorithms

and the ones proposed in this paper.

Lam's Algorithms Proposed Algorithms

Replacement Policy unrestrictive fairly restrictive
Restrictiveness

Replacement Policy fairly high fairly low
Complexity

* Overflow Handling moderate none
* Overhead

Constraints on loose loose
"- Hierarchy Structure

* Table 2.4 - Comparison of Two Strategies for Maintaining MLOI

The only significant advantage of Lam's algorithms appears to be in the

first category, replacement policy restrictiveness, while its only

significant disadvantage is in the second category, replacement policy

complexity. Thus a choice between these two policies will turn on

which of the two categories has the greatest impact on performance. In

point of fact, Lam's simulation studies [15] showed that performance is

limited by bus bottlenecks, rather than processing bottlenecks,

although these studies appear to have been based on optimistic

estimates of 1985 micro-processor technology. Both Lam's algorithms

and those proposed herein represent an attempt to lower bus contention
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(by reducing the page transfers needed to support overflow handling) at

the expense of increased processing overhead and complexity. In light

of Lam's simulation results, this general approach appears to be a

plausible method of reducing the bus bottlenecks in the system. With

this in mind, the proposed algorithms, based on GLOBAL-LRU-SOP, would

seem to have an overall advantage, due to their lower bus utilization

and less complex replacement policy. A final choice between the two

policies will depend on the results of emulation studies to be

performed using a proposed Software Test Vehicle (STV) [27). On

balance, however, a set of algorithms based on GLOBAL-LRU-SOP would

seem to have almost all of the properties desirable in a data movement

strategy, while still being quite simple and efficient.

2.3.4.5 Implementation Issues for GLOBAL-LRU-SOP

This section discusses a number of issues relevant to the

implementation of a READ algorithm based on GLOBAL-LRU-SOP. For the

sake of brevity, from now on this algorithm will be denoted GLS. The

issues to be discussed are

1) pre-eviction of pages,

2) LRU update epoch selection,

3) LRU update synchronization, and

4) duplicate READ request handling.
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2.3.4.5.1 Pre-eviction of Pages

Pre-eviction of pages refers to the process of selecting pages for

replacement before they are explicitly forced out of a level by a

READ-THROUGH (compare with post-purge used by Multics (21]). Of

course, MLOI will be destroyed if a page with a sub-page in the next

higher level is evicted in this manner. A pre-eviction algorithm which

does preserve MLOI can be deduced from the following theorem.

Theorem 4: Define SI(X) to be the LRU stack position of page X

in the LRU stack at Level j. Thus SJ(X) = 1 for the most

recently referenced page, and SJ(X) = m3 for the least

recently referenced page in Level j. Using GLOBAL-LRU-SOP,

if m1 > 2 and mj > mj-1 , then for any page X in Level j and

sub-page, Y, of X in Level j-l, S-I(Y) < k => SJ(X) < k.

Proof: First note that the statement of the theorem can be
j-1-

written as SJ(X) < sI(Y). We will show that the theorem

is true immediately after any reference to Y, and that

succeeding references do not change the inequality.

Immediately after Y is referenced, we have SJ(X) = si(Y)

S1. A succeeding reference either touches X, or it does

not. If it does not reference X, then as a result of the

reference both Si (X) and Sj - (Y) increase by one. If it

does reference X, but does not reference Y, then, as a

result of the reference, SJ(x) = 1 and SJ-(Y) increases by

one. In either case, the inequality holds. QED

What this theorem says is that a page is always closer to the top of

the stack than any of its children in higher levels. Based on this

theorem, a page, X, can be safely pre-evicted from Level j as long as

-2.39-



Sj (X) > mj -I + 1. Intuitively, what is going on is that pre-eviction ['.

is reducing the effective size of Level j, and as long as the effective

size of Level j is not reduced below the limit specified by Theorem 3,

MLOI will be preserved. This ability to dynamically alter the

effective size of a level is a reflection of the "stack inclusion"

property of stack algorithms, such as LRU [20]. Note that the criteria

for pre-eviction at Level j, as specified by Theorem 4, depend only on

the stack at Level j and the number of pages in Level j-l. Thus the

pre-eviction algorithm does not depend on any dynamically changing

information which is not local to Level j.

In practice, it will turn out that some pages in a level may be

locked against eviction. This would be the case if, for example, a

page was in the process of being retrieved in preparation for a

READ-THROUGH, but the LRU update for the page had not yet been

performed. In this case, it is not possible to evict the locked page.

In order to prevent this situation from degrading performance, the
pre-eviction algorithm does allow some deviation from strict LRU

eviction by skipping over locked pages. Once again, appeal to the

stack inclusion property of LRU shows that this process does not

violate Theorem 3, and thus preserves MLOI.

One problem with pre-eviction is that if all pages, X, with

MJ- < SJ(X) < m3 are locked, then there are no candidates for

pre-eviction at Level j. Thus, Level j could run out of available page

frames, and all READ-THROUGH's from below Level j would be blocked.

To see that this blocking phenomenon can not cause a deadlock,

note that a level can only block levels below it. Therefore, Level 1

can never be blocked in this fashion, and can always accept a

- 2.40 -

* . .. . . . * * . * . . . * *]

. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . .



-- -.,. ',R'W

READ-THROUGH (after waiting for a previous READ being satisfied at

Level 1 to complete, if necessary). Thus, Level 2 can not be involved

in a deadlock because it can always eventually initiate a READ-THROUGH

to Level 1, thus freeing a page frame in Level 2. Similarly, this

implies that Level 3 can never be involved in a deadlock, and so on for

the rest of the levels in the hierarchy.

One final problem with pre-eviction is that, by reducing the

effective size of a level, it degrades system performance. Thus, the

ideal pre-eviction algorithm should strike a balance between not

pre-evicting enough pages (thus potentially blocking READ-THROUGHs

temporarily), and pre-evicting too many pages (thus reducing

performance by reducing available storage at some level).

2.3.4.5.2 LRU Update Epoch Selection

It is possible that some time might elapse between the initial

READ request and the reflection of the reference in the LRU stacks at

the various levels. The GLS algorithm attempts to perform the LRU

update as closely as possible in time to the point at which the actual

READ-THROUGH of data to Level 1 is performed. This policy has been

adopted so that the LRU stacks reflect as accurately as possible the

sequence in which references are satisfied, rather than the sequence in

which they are initiated. This policy seems to adhere most closely to

the spirit of LRU replacement, and minimizes anomalies wherein a page

has become a candidate for eviction from the cache before it has

actually been retrieved. This would clearly be an undesirable

situation.
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2.3.4.5.3 LRU Update Synchronization

GLOBAL-LRU requires "simultaneous" LRU stack updates at each of

the levels. In this context, simultaneous means that LRU updates

should be seen in the same order by each of the levels in the

hierarchy. These updates will be accomplished by broadcasting an LRU

update message to all levels just prior to initiation of a

READ-THROUGH. The READ-THROUGH itself can not be used as a

synchronization signal because that would require that a READ-THROUGH

be sent to all levels, not just higher levels.

2.3.4.5.4 Duplicate READ Request Handling

The final GLS implementation issue is duplicate READ request

handling. Suppose two READ requests, for pages Xl* and X2*, are

received simultaneously, and both Xl* and X2* are sub-pages of the same

.2page, X**, of size N2 . Also suppose that X** is not in Level 2

(implying that neither Xl* nor X2* are in Level 1, by MLI). Without

loss of generality, assume that the request for Xl* reaches Level 2

before the request for X2*. Then, when the request for X2* reaches

Level 2, that level will already be expecting X** to be read through to

Level 2, in order to satisfy the reference to Xl*. We say that X** is

"pending" at Level 2. Instead of forwarding the request for X2* to

Level 3, Level 2 can hold the request until X** is transferred into

Level 2, and then continue processing the request for X2* as if X** had

been in Level 2 all along. This policy has been adopted in the

expectation that the processing overhead involved in keeping track of

pending requests will degrade performance less than processing

duplicate requests (such as the one for X**) independently, and thus
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incurring duplication of effort in the retrieval of X**. This policy

also avoids the complication of having X** read through to Level 2 (as

a result of the request for X2*) and finding a copy of X** already in

Level 2 (as a result of the request for Xl*).

2.3.5 WRITE Strategies

We now turn to a discussion of the WRITE strategies employed by

DSH-III. It turns out that many of the problems encountered in

designing suitable WRITE algorithms have already been addressed in the

development of the READ algorithms for DSH-III. Indeed, many of the

design issues mentioned previously were included in anticipation of

their relevance to specification of WRITE strategies for DSH-III.

Therefore, the brevity of this section is not an indication that WRITE

is simpler than READ, but rather reflects the fact that READ and WRITE

strategies have many common issues and problems which have already been

dealt with. With this in mind, this section will concentrate on those

issues particularly relevant to developing a WRITE strategy for a

hierarchical storage system. These issues include reliability, update

consistency, and buffer management. As always, the emphasis will be on

maximizing performance, subject to constraints imposed by

considerations of reliability, maintainability, and cost.

The WRITE process is initiated by a user issuing the command

WRITE(request_id,virtual address,data).

This command is passed, via the UBUS, to Level 1 of DSH-III. At this - -

point, Level 1 takes a number of actions in order to process the WRITE.

These actions include
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- making duplicate copies of the updated data in local memory
at Level 1 in order to increase availability, i.e., in
order to decrease the chance of losing an update if there
is a (non-fatal) failure within Level 1,

- sending a "WRITE-complete" acknowledgement back to the
user,

- ensuring that the N1 -byte page containing the virtual
address to be updated is present in Level 1,

- possibly combining the update with other updates for the
same page in Level 1, and

- initiating the process of transferring the update from
Level 1 to the reservoir.

The remainder of this section will enlarge upon these points and

justify the data management policies implied by them.

L.

2.3.5.1 Initial Level 1 WRITE Processing

In order to guard against the possibility of lost updates, Level 1

will make a duplicate copy of every update. The copies of each update

will be kept in independent memory modules at Level 1, thus providing

protection against lost updates in the case of a memory failure at

Level 1. Only after the update has been duplicated will a

WRITE-complete acknowledgement be returned to the user. Thus, from a

user's point of view, a WRITE will complete almost as fast as a READ

which is satisfied at Level 1. The process of making a permanent copy

of the update in the reservoir can now proceed asynchronously with the

handling of subsequent user requests.

The first step in this process is to ensure that the Nl-byte page

containing the virtual address to be updated is present in Level 1.

This is done by issuing a READ for that page, if it is not in Level 1.

In most cases, however, the user will have read the page, preparatory

to modifying it, and the page will already be in Level 1.
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The second step in this process is to transfer the updated N -byte

page from Level 1 to the reservoir. u

2.3.5.2 Alternative Store Policies

We refer to the process of transferring an updated page from Level

I to the reservoir as a Store process. There are four plausible Store

policies which will be presented here. They are

- Store Through, v
- Store Replacement,

- Store Behind, and

- Staged Store Through.

The function of any of these four policies is to transfer an updated N1

byte page from Level 1 to Level r (or, more precisely, to an input

buffer in Level r)

Before discussing the pros and cons of these policies, we

introduce the concept of "coalescing" of updates. Suppose X* has been

updated by the request

WRITE(request_ idl,Xl,newvalue ofXl)

Further suppose that the request

WRITE(requestid2,X2,new valueforX2) F

arrives after the previous update to X* but before the Store process

for X* has been initiated. Now, rather than initiating two Store

processes for X*, the two updates, to sub-pages Xl and X2 of X*, can be

coalesced and only one (twice-updated) copy of X* need be transferred

to Level r. The coalescing of updates reduces the number of Store

actions needed in this case by a factor of two. r
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Now consider a series of WRITE requests. In the short term, these

requests can complete at a rate which is dependent mainly on the speed

of Level 1. In this case, one can view Level 1 as a buffer between the

user and the reservoir (which is the final repository for all updates).

In the long run, however, the average throughput for WRITEs is limited

by the speed of the I/O devices in the reservoir. The effects of this

limitation can be mitigated in either of two ways:

1) reducing the number of updates reaching the reservoir, and

2) increasing (in some unspecified way) the effective size of
the buffer between the user and the reservoir.

Point 2 has the effect of making the system less sensitive to transient

peaks in the arrival rate of WRITEs, but does not address the

fundamental limitation on the average arrival rate of WRITEs imposed by

the long term rate at which the reservoir can absorb the updates.

Point 1 does address this issue. For example, suppose k WRITEs per

second is the highest rate which can be supported without coalescing.

Then a coalescing algorithm which, on average, combined two WRITEs, as

in the above example, would allow the system to support, in the long

run, a gross WRITE arrival rate of 2k per second. The arrival rate of

updates to the reservoir would be half this rate, or k per second,

which, by assumption, is within the processing capacity of Level r. In

general, if the system can coalesce an average of c WRITEs into each

Store action, it will be able to support a gross arrival rate of WRITEs

up to c times higher than the rate which could be supported with no

coalescing. Since the ratio of READs to WRITEs is fixed for any

application, this implies that a coalescing strategy can have a

significant impact on overall system throughput. Of course, the

overall improvement in throughput would be less than the factor of c
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since coalescing does not effect the rate at which READs can be

processed.

A final point ot be made regarding coalescing is that the degree

of coalescing attainable (i.e., the value of c) is dependent on two

factors:

1) the amount of time that elapses between the receipt of an
update and the initiation of the Store for that update, and

2) the degree of WRITE locality exhibited by the system.

These two factors will play an important role in the selection of a

suitable Store policy for DSH-III.

We now turn to a discussion of the advantages and disadvantages of

the four Store policies.

2.3.5.2.1 Store Through

Under a Store Through policy, as each update is received, Level 1

broadcasts it to all the lower levels. Under this policy, there is no

opportunity for coalescing at Level 1 and there is no flexibility in .'

the choice of epoch at which the Store is performed. On the other

hand, Store Through is inherently reliable, since the update is

reflected to all levels immediately. Under this policy, we could

dispense with duplicating the update at Level 1, as long as the WRITE

complete acknowledgement was delayed until after the update had been

broadcast.

Finally, note that each update reaches the reservoir as part of an

1
N -byte block.
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2.3.5.2.2 Store Replacement

Under this policy, an updated page is held in Level 1 until it is

selected for replacement by the LRU replacement algorithm. It is then

moved to Level 2, where it is held until selected for replacement, at

which time it is moved to Level 3, and so on. As with Store Through,

this policy completely restricts the choice of epoch at which the Store

is performed, and has the added drawback of imposing a delay on each

eviction operation. On the other hand, Store Replacement does provide

a maximal "window" during which coalescing can take place, and, in

fact, allows coalescing at each level as the update is moved down the

hierarchy.

2.3.5.2.3 Store Behind

A Store Behind policy attempts to alleviate the major drawback to

Store Replacement, while retaining most of the advantages. Store

Behind is identical to Store Replacement except that the update is

moved down from level to level whenever it is convenient (e.g., during

idle bus cycles) rather than when the page is evicted.

An availability enhancing modification to Store Behind, called

Two-Level Store Behind has been proposed (15]. Under this policy, each

update is maintained in two adjacent levels, j and j+l say, and not

removed from Level j until the update has been propagated from Level

j+l to Level j+2. Thus, two copies of the update will exist at any "
o r

time, providing protection against the failure of any single level.

This sort of modification is clearly applicable to Store Replacement

also.
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Finally, note that both Store Replacement and Store Behind involve

the transfer of increasingly larger blocks as the update moves down the F
hierarchy. Under either policy, each update reaches the reservoir as

part of an Nr-l-byte block. These large update blocks could

potentially lead to bus contention or buffer management problems at

Level r.

2.3.5.2.4 Staged Store Through

Both Store Replacement and Store Behind take advantage of

coalescing at every level, but could lead to excessive bus loads and/or

Level r buffer space requirements due to the large data blocks being

moved under either policy. Additionally, the size of the data blocks

associated with each update reaching the reservoir could lead to

excessive I/O loads on the storage devices at Level r. Store Through,

on the other hand, involves the transfer of relatively small data

blocks (assuming that N1 << Nr- but does no coalescing, thus

increasing the potential number of updates reaching the reservoir by an

order of magnitude or more, depending on the degree of WRITE locality

exhibited by the system. Staged Store Through represents a compromise

attempt to combine the best features of Store Through and Store Behind.

Under Staged Store Through, updated pages are held in Level 1 until it

is convenient for them to be broadcast to all lower levels. Therefore,

Staged Store Through can take advantage of coalescing at Level 1, while

restricting the size of the update blocks reaching the reservoir to N1

bytes.
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It is also possible, under Staged Store Through, to perform some

coalescing in Level r for updates which are in the Level r buffer

awaiting transfer to permanent storage.

2.3.5.3 Evaluation of Alternative Store Policies

*Table 2.5 summarizes the tradeoffs among the four Store policies

discussed above.

Store Store Store Staged Store
Through Replacement Behind Through

degree of none very high high fairly high
coalescing

size of data N1 Nr-l Nr-l N1

block reaching
level r

flexibilty of none none high high
update epoch

algorithmic very low moderate moderate low
complexity

Table 2.5 - Comparison of Four Store Policies

Based on these observations, the choice of Store policy would appear to

be between Store Behind and Staged Store Through. The relative merits

of these policies will depend on the degree of coalescing achievable in

1 r-l
Levels 2 to r-l, the relative magnitudes of N and N , and the

relative speeds of the various levels. The STV will provide a

framework for deciding between these two policies. The algorithms

- presented in this paper are based on Staged Store Through because it

* involves somewhat less algorithmic complexity.
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We close this discussior by pointing out how each of Store Behind

and Staged Store Through attempt to take advantage of the two

strategies for increasing WRITE performance mentioned above, namely,

reducing the effective number of updates and increasing the effective

buffer size. Table 2.6 summarizes these concepts.

Store Behind Staged Store Through

reducing the number coalesces at coalesces at
of updates reaching each level Level 1 only
the reservoir

increasing effective uses entire transfers updates
size of the buffer hierarchy as 1
between a user and a buffer in N -byte pages,

the reservoir as opposed to
Nr-l1Nr-byte pages

Table 2.6 - Comparison of Performance Enhancing Strategies

2.3.6 Automatic Data Duplication

The final point to be discussed in this section deals with the _

issue of reliability. In the design of DSH-III, the reservoir

represents a key component in terms of reliability. Reliance on the

reservoir as the storage component of last resort can be viewed as both

a liability and and asset in terms of overall system reliability. On

the one hand, if a storage device in the reservoir fails, there is a

potentially unrecoverable loss of database integrity. On the other

hand, if reservoir failures can be avoided, then the databse will be

preserved no matter what failures occur in other components of the

system. Of course, in this case the system may be inoperative until

the cause of the failure can be found and corrected, but once this has
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been accomplished normal operation can resume with no loss of data. In

light of this reasoning, it makes sense to support the designation of

"critical" data for automatic data duplication.

Critical, in this sense, can refer to two types of data. The

first type is that data which DSH-III itself decides is critical for

its internal operation. This type of data might include page tables

and other important system control information internal to DSH-III.

The second type of critical data is that data which a user decides is

critical. It is solely up to the user to decide which of his data is

critical in this sense. DSH-III supports a primitive, SETSECURE,

which a user can use to designate ranges of virtual addresses for

automatic data duplication.

For data which has been designated "critical", either by a user or

by DSH-III itself, the system will perform automatic data duplication.

DSH-III will maintain duplicate copies of any data so designated, and

will automatically replicate the data if one of the copies is damaged

by a failure.

This strategy should provide almost complete protection from loss

of data or database integrity due to isolated component failures.

--.
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3 FUNCTIONAL DESIGN OF DSH-III

This section describes a proposed hardware architecture for F

DSH-III. Section 3.1 contains a brief summary of the rationale for the

overall hardware design philosophy adopted for DSH-III. In Section

3.2, the functioning of the various classes of components comprising

the system is described. Section 3.3 presents some preliminary

reliability and availability estimates for the proposed hardware

design, and shows how high availability can be attained by combining

minimal hardware redundancy with an appropriate software strategy.

3.1 Overview of DSH-III Architecture

3.1.1 Overview of DSH-III Hardware

Figure 3.1 depicts the hardware design proposed for a typical

level of DSH-III. Each level consists of a number of components of

various types. In particular, each level will contain:

Processing Elements (PE's) - these components are general

purpose micro-processors which will execute the system

control and data management algorithms at each level.

Local Memory (LM) - this component consists of some number of

high-speed semi-conductor memory modules, used for program

and temporary storage at each level.

Processing Modules (PM's) - these modules will perform

specialized hardware functions such as associative searches

or hashed index calculations. (Initial versions of DSH-III

will contain no PM's. They will be added if and when
• r

performance considerations justify their incorporation into
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the system design.)

Local Storage System (LSS) - this system will be used by each-.

level to store portions of the virtual address space managed

by DSH-III. In some cases, for example, Level 1 where data

retrieval speed is a primary concern, the LSS may consist of

the same storage technology as the LM. In fact, the LSS and

* the LM may actually share the same physical memory modules.

In the interests of clarity of exposition, we have opted to

retain the conceptual distinction between LSS and LM at each

level, and will treat these components as if they were

separate pieces of hardware. Figures 3.2a and 3.2b depict

two possible LSS configurations, suitable for the "cache" and

"reservoir" levels, respectively.

Local Bus (LBUS) - this is a high speed bus which will carry

all intra-level communication traffic, including instruction

fetches (from LM to PE) and data transfers (PE to LM, LSS to

LM, and vice versa).

Gateway Controller (GC) - this component serves as the

interface between the LBUS and the Global Bus (GBUS). As

shown in Figure 3.3, the GBUS is a common data path which

inter-connects all levels of DSH-III.

Bus Interfaces (BI's) - each one of the above components is

connected to a bus by a Bus Interface. These interfaces are

responsible for supporting the split transaction Pended Bus

Protocol [28]. In effect, each BI creates the illusion of an

infinite buffer between the device and the bus, with the

result that the device never has to wait due to a bus busy

S-3.3- 3
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condition.

In addition to all the components listed above, level 1 contains

an additional GC which provides an interface between the level 1 LBUS

and the User Bus (UBUS) which carries all traffic between DSH-III and

°* its user(s). Figure 3.4 depicts a complete DSH-III system. Of course,

in any actual implementation of DSH-III, key system components will be

replicated in order to increase system availability. In particular,

the LBUS's at level 1 and the reservoir, as well as the GBUS, might

each be implemented as two, or more, physical buses since a failure of

any one of these components would render DSH-III inoperative.

There are two fundamental reasons why this design was selected. -

First, the physical structure of the system corresponds closely to the

structure chosen in Section 2 as being most suitable from purely

logical considerations. The match between the logical and physical

designs eliminates the need for a complex mapping of logical functions

onto physical components and furthers the goal of being able to

substitute alternate hardware components with only localized impact onaL
the logical structure of the system.

The second reason for the selection of this design is that it

represents the most cost effective way of providing the high bandwidth

communication paths between various system components which are

necessitated by the data management algorithms presented in Section 2.

This design represents a cost/performance compromise between a design

which provides a dedicated bus for every communication path and a

single bus structure such as the one depicted in Figure 3.5. While the - -

structure of Figure 3.5 is the least costly, its performance is

severely degraded due to bus contention as more and more components are

-3.6- 1



- ~' '. -.- ~77

UBUS

Level 1

GC PE's PM's

GBUS

Level r

PE's PM's

LSS

Figure 3.4 DSS-II Hardware Structure

-3.7-



PE's

PM's Level 1

LM c

PE's

PE's

Level r

LM *

LSSVI

Figure 3.5 DSH-m as a Uni-Bus Structure

3.8 -V



added to the system. Even if a Pended Bus Protocol is used, bandwidth

limitations make a single bus structure unsuitable for DSH-III. The [

structure actually selected represents a compromise which allocates a

dedicated bus (the LBUS) to the intra-level traffic at each level, and

uses a separate bus (the GBUS) for all inter-level traffic. This [

structure, coupled with the use of the Pended Bus Protocol, represents

a fairly parsimonious configuration which should provide adequate

support for DSH-III.

A further advantage of this multi-level structure is that the

processing power of each level can be adjusted by simply adding or

removing PE's at that level. The next section describes a Local

Operating System (LOS), responsible for processor management and

resource allocation within each level, which allows this sort of

hardware reconfiguration to proceed dynamically and independently of -

the algorithms currently executing at that level. This facility has a

significant impact on system availability by allowing the incorporation

of recovery algorithms which will make single-processor failures more

or less transparent to the rest of the system.

3.1.2 Overview of DSH-III Local Operating System (LOS) Software

Each level of DSH-III operates completely independently of the

other levels, with the only inter-level interaction being provided via

the message passing facility described later in this section. Within

each level, all PE's are treated as equivalent units with respect to

both hardware and software. The PE's can be viewed as a set of

identical resources which are used to adva.-re the "algorithm"

represented by the software and control information residing in the LM.
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This software consists of both LOS and application software.

All software is written as if it were intended to run on a single

processor, except for the inclusion of interlocks to protect writable

shared data. From the point of view of an individual PE, its

processing cycle consists of

1) executing the LOS dispatcher/scheduler which

selects an eligible application task to be executed

removes the selected task from the eligible list;

2) executing the selected task until

the task completes; or

the task becomes blocked waiting for some event, such

as a message arrival, or waiting for a non-sharable

resource to become available;

3) go to 1.

Assuming that appropriate interlocks are used to protect shared data,

the above three steps can be executed by any number of processors

simultaneously and independently.

This design should lead to a system which is more flexible and

reliable than a system based on specialized processors. In effect,

replication of hardware in order to increase processing power has the

desirable side effect of increasing reliability at the same time. For

an example of a working system based, in part, on these concepts, the

reader is referred to [22].

- 3.10 -
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3.2 Functional Characteristics of DSH-III Hardware Components

The previous section briefly introduced the various hardware -'

components which are combined to produce a DSH-III system. In this

section we will describe some of the key features of these components.

* 3.2.1 Processing Elements (PE's)

The PE's at each level will be identical general-purpose

micro-processors such as Intel's iAPX 432 (10]. As noted above, from

both a hardware and software viewpoint, the PE's within each level will

be indistinguishable. The LM at each level will serve as program and

data storage for each PE at that level. Each PE will independently

execute a shared copy of the Local Operating System code which resides

in the LM. The LOS will allow each PE to independently schedule its

own activities. Task scheduling and processor allocation will be

coordinated via shared databases which also reside in LM.

Conceptually, one can think of the address space of each PE as

being composed of three separate segments, as shown in Figure 3.6.

(Strictly speaking, one should refer to the address space of the level

rather than the address space of a PE, since all PE's, being

indistinguishable, share a single address space.) "

Segment A consists of read-only program storage. This segment

will contain all operating system and application program code for a

level, and will reside in a write protected area of LM. One design

alternative would be to place some or all of the read-only code in

separate per-PE ROM's in order to reduce LBUS contention. This

alternative will be further explored if experience shows that the LBUS

is a significant bottleneck.
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Segment B differs from segment A only in that it is not write

protected. This area will be used for program temporary storage,

system control tables, etc., as well as for data storage for those

levels that do not have a physically separate LSS. The coordination of

access to this area is part of the memory management function of the

LOS.

Segment C is a portion of the address space of each PE which is

used for transferring data to other levels of the hierarchy. Segment C

does not correspond to any physical storage device; rather, data which

is stored into addresses which map into segment C is transferred

directly to the GC which, in turn, moves the data onto the GBUS, where

it is accessible to the GC's at the destination level(s). Figure 3.7

shows an addressing scheme which would reflect this architecture in a

32 bit micro-processor. - -.

In this scheme, if the high-order bit of a destination address is

set, the next n bits are interpreted as a bit map which indicates which

of the n levels in the system should receive the data stored into the,,2

address. For example, suppose XB refers to some address in segment B,

and that XC refers to address 10011100 .... Then the instruction

"MOVE XB,XC,32" might mean "transfer the 32 bytes, starting at address

XB in LM, to levels 3, 4, and 5."

From the viewpoint of a PE sending a message, the data to be

transferred is being stored directly into LM at the receiving levels,

as if XC specified a physical address in the receiving level's LM.

However, it is the responsibility of the receiving level to determine

exactly where in the receiving level's LM the incoming message should .

be stored. The mechanism whereby the GC's operationalize this scheme

- 3.13 -
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is described in the next section.

3.2.2 Gateway Controller (GC)

The GC at each level serves as the interface between the LBUS at

that level and the GBUS (and at level 1, between the LBUS and the UBUS,
I

as well). For outbound messages, the GC merely moves the data bytes

from the LBUS to the GBUS, and sets address lines on the bus as

directed by the segment C address of the store instruction which

initiated the message. It is the responsibility of the GC at the

destination level(s) to extract the appropriate data from the GBUS

(based on address lines set by the sending GC) and place it in the LM

where it can be referenced by the PE's at the receiving level. The

mechanism by which the GC determines where in LM to place inbound

messages will now be described.

As currently conceived, the inter-level message protocol supports

two types of message which are designated 'D' and 'S', respectively.

Table 3.1 shows the distinguishing characteristics of these two message

protocols.

Message Type
'DR 'S'

Processing Order I arbitrary I FIFO
------------------- I------------------I

Length I fixed I variable I

Table 3.1 - Characteristics of 'D' and 'S' Message Protocols
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It is intended that 'D' format messages be used for bulk data transfers

between levels, while 'S' format messages be used for passing service r
requests and control information between levels. The arbitrary

- processing order permitted for 'D' messages allows data blocks to be

processed in a flexible order, while avoiding the overhead that would a:
be incurred if incoming messages had to be physically removed from the

incoming message queue in strict FIFO order. The variable length of

'' messages is well suited for handling control information and

service requests which come in various sizes and for which the fixed

length 'D' protocol would be inappropriate. For 'S' messages, the

limitation to FIFO processing is not a severe restriction since IS'

messages are expected to be fairly short, and thus the cost of

physically moving them out of the incoming message queue should not be

significant.

There is a separate sub-system within each GC for handling

incoming 'S' and 'D' messages, respectively.

3.2.2.1 'S' Message Handling

A receiving GC places any incoming 'S' message in a circular

buffer in LM called a Service Request Queue (SRQ). Acces to the SRQ is

controlled via two registers in the GC, denoted SRQIN and SRQOUT,

respectively. Register SRQIN contains the LM address of the next

available location in the SRQ, and is updated by the GC whenever an S'

message is stored into the SRQ. Register SRQOUT points to the first

unprocessed message in the SRQ, and is updated by the LOS whenever a

message is extracted from the SRQ. Figure 3.8 illustrates these

operations. It can be seen that SRQIN and SRQOUT are continually
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I

"chasing" each other. If SRQIN catches up to SRQOUT, the SRQ is full,

and the GC returns a busy signal to the sender. If SRQOUT catches up

to SRQIN, it is an indication that the SRQ is empty.

3.2.2.2 'D' Message Handling

The handling of incoming 'D' messages is also based on a circular

buffer in LM and a pair of registers in the GC. As before, the two

registers, DRQIN and DRQOUT, are used to control access to the circular

buffer which is designated the Data Request Queue (DRQ). In this case

however, the DRQ contains addresses of data areas, rather than the data

areas themselves, and the roles of the GC and the LOS in filling and

emptying the circular are reversed. In other words, the LOS is

responsible for keeping the DRQ filled with pointers to available

(fixed size) data storage areas in LM. The GC extracts these pointers

from the DRQ and uses them to place incoming data blocks in the

appropriate place in LM. Management of the actual data storage areas

must be handled by the LOS. All details of storage management are

hidden from the GC, which sees only the DRQ.

As before, DRQIN and DRQOUT "chase" each other around the DRQ.

DRQIN is incremented by the LOS after it places a new pointer into the F
DRQ at location DRQIN. If DRQIN catches up to DRQOUT, the DRQ is full.

Similarly, DRQOUT is incremented by the GC after the pointer at

location DRQOUT is used to place a data block in LM. If DRQOUT catches F

up to DRQIN, there is no available storage for the incoming data block,

and the GC returns a busy signal to the sender. Figure 3.9 illustrates

the operation of the 'D' protocol sub-system.
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One final piece of bookkeeping is needed. After the GC has

finished filling a data storage block, it increments the DRQOUT

register. It then generates an interrupt which signals the LOS that an

incoming 'D' message has been completed. The LOS must then take note

of the fact that an unprocessed message is located in LM at the address

pointed to by DRQOUT-l.

3.3 Reliability Estimates for DSH-III

Due to the inherent redundancy of the multi-level structure of

DSH-III, the system can be made extremely reliable by

a) replicating key components, such as the level 1 LBUS and

the GBUS; and/or

b) employing a hardware/software strategy which enables the

system to detect/diagnose failures and dynamically

reconfigure itself to bypass failed components.

This strategy can have a dramatic effect on reliability, as is

: illustrated by the following development. (These calculations are very

approximate, and are only intended to give order-of-magnitude estimates

of the reliability attainable via various design choices.)

Define the Mean Time Between Failure (MTBF) for a component as the

expected length of time between successive failures of that component.

Define the Mean Time To Repair (MTTR) of a component as the average

o time needed to correct a failure in that component. Then we can define

the Availability (A) of a component by

A = MTBF/(MTBF + MTTR) (1)

Intuitively, A is the fraction of time that the component is expected

to be operational.
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*A system, S, composed of n redundant components with

Availabilities given by A(l) to A(n) can be represented by

I-IA (1) I-

I I--I A (2) -I 1
---------------------- I I_ __I -----------------

A( ) I IT _____) (2

A (1) - (2 A (n) -------

and tse Availability, A(S), is given by

A(S) ) 1 TA(i) )(2)
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Now consider a system consisting of a single bus and some number,

n, of Processing Elements (PE's). Each PE is interfaced to the bus by

a Bus Interface (BI). To estimate the reliability of this system we

make the following assumptions:

1) The bus itself will never fail.

2) If a BI fails it may hang the bus.

3) The system can continue to operate as long as the bus is

operational. In this developemnt, we ignore the

possibility of simultaneous failure of all n PE's, a very

unlikely event if n is sufficiently large (>15).

Under these assumptions, the system will fail if a BI fails. (We

assume, conservatively, that every BI failure will hang the bus.) The

system can therefore be represented by

I I I I I I
I--- I BI1  I--- B82 I-- . . • -- I BI I-------

I _ _ I I _ _ I n2 n

Here we are using the approximation that the failure of a single PE

does not affect the operation of the system. Now, let the MTBF for

each BI and PE be 10000 hours, let the MTTR for a BI be 24 hours, and

suppose that n=30. Then the Availability of this system can be

obtained from Eqs. 1 and 3 as

A(BI) = 10000/(10000+24) = .9976
30 30"

A(S) = A(BI) = •9976 = .9305

The system MTBF, MTBF(S), can now be computed by inverting (1) to give
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MTBF A*MTTR/(l-A) (4)

which leads to

MTBF(S) = A(S)*MTTR/(l-A(S)) = .9305*24/(i-.9305) = 321.32 hours.

In this case, redundancy has led to a lower system reliability than the

individual component reliabilities by increasing number of ways in [

which the system can fail.

Now introduce an additional assumption

4) Firmware within each processor can be used to diagnose and

"amputate" failed BI's, thus freeing the bus.

Under this further assumption, the system can be represented by

I - PE II II PE --I -- PE n

-- BI1  _--___-- .BI2 .---- BI

1 I 2 n _-_ _

since the bus is disabled only if a BI and its corresponding PE fail

simultaneously. Under this set of assumptions, we get (using

Eqs. 1 - 4)

A(S) = .9998, and

MTBF(S) = 119,979 hours. r

Now consider modifying the structure of the system by replicating the

bus. Replace assumption 4 by

- 3.23 -



J..%

4) If a BI fails and hangs a bus, the system can continue

operation using the other bus. r

This assumption leads to a system represented by

II I.I.I,

BUS 1 I I-- BI I--- BI 2 .. BI -- I 

BI I I IBUS 2 I I--I BI1  I---I BI2  I-- • • • -- I BIn  -- II
1 2 n

since the system fails only if at least one BI on each bus fails. This

system has

A(S) = .9952

MTBF(S) = 4,976 hours.

If this system is enhanced by incorporating logic which allows the

system to perform self-diagnosis and reconfiguration as long as at .

least one bus is working, then the effective MTTR for the failed bus is

greatly reduced. In other words, if the system can fairly rapidly

restore a hung bus to normal operation, the "window" during which

multiple bus failures can occur is greatly reduced. If we assume that

the system can amputate failed components within .1 hours, we get

A(S) = .999999 L

MTBF(S) = 2.4*106 hours.

This analysis illustrates the fact that a highly reliable system can be

built using only double redundancy. Of course, this analysis takes

advantage of the fact that there is multiple redundancy of BI's and
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PE's. We are making the implicit assumption that a system with 30 PE's

is essentially equivalent to a system with 29 PE's. This assumption

justifies our treatment of amputation as restoring a system to normal -"-

* operation. '.- ... 4

The system just analyzed corresponds closely to Level 1 of

DSH-III. A similar analysis can be performed for other key DSH-III

sub-systems, the reservoir and the GBUS. Analysis of the reservoir is

similar to that of level 1 except that an LSS must be included. Assume

for simplicitly that the LSS is composed of two independent redundant

disk subsystems, each with an MTBF of 5000 hours. Then the reservoir

can be represented by

__ I IDTSK 1-1 I I I I I I ___1 ___ I 1 "

I PE's I
- --- I I . I LSS I .---

BI's __I II _ _ II I I _ _ I I _ _ I
I __ DISK 2_ I _ D _ IS 2IL

This system has an MTBF of approximately 1 million hours.

Assuming that the GBUS can be made at least as reliable as the

reservoir allows the entire DSH-III system to be represented by

- 3.25 -
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* 4 ALGORITHMS TO SUPPORT THE READ OPERATION

This section describes the transaction protocols, software F.

algorithms, and major data structures necessary to implement the READ

algorithm presented in Section 2 in an environment such as the one

provided by the hardware and software architecture presented in

Section 3.

The organization of this section is as follows. First, we provide ii]

an overview of the READ algorithm together with a number of examples I
*' which illustrate major features of the implementation. Next, the key

data structures used by the algorithms at each level are described.

Finally, detailed descriptions of the READ algorithms are presented. LA;4
Recall, from Section 2, that the READ algorithm implements a

GLOBAL-LRU-SOP data management policy, and, therefore, embodies the

following properties: 17

- MLOI is automatically maintained at all levels of the
storage hierarchy;

- overflows can be ignored, since Static Overflow Placement
(SOP) reduces to a vacuous operation if the MLOI property
holds.

In order to obtain these properties, the READ algorithm must observe a

number of constraints, including: L4
- the number of blocks in each level must be strictly greater

than the number of blocks in the next higher level, i.e.,

we must have m' > m = 2,...,r, as prescribed by
Theorem 3 of Section 2;

- pages must be selected for eviction from each level using a
Least Recently Used (LRU) replacement policy;

- each level must perform exactly the same sequence of LRU
stack updates.
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4.1 Overview and Examples

In Section 2, the overall functioning of a READ operation was F

described. Briefly, the READ request is percolated downward through

the hierarchy until it reaches a level containing the requested data.

This data is then broadcast to all higher levels, and passed back from

Level 1 to the user.

The algorithms at each level are organized around three major data

structures: The LSS, the directory, and the pending request queue

(PRQ).

The LSS contains that subset of the DSH-III virtual address space

currently residing in the level. Recall that the LSS may consist of a

disk storage sub-system, may actually reside in LM at the level, or may

be implemented by some other storage technology. However the LSS is .-

actually implemented, for the purposes of this discussion it is viewed

as a black box which is accessible via the following primitives (or

their equivalents):

- STORE(data area specification,LSS id) - instructs LSS to
store the data block specified by data area specification
and to return LSS id which is an identifier for the data
block which is used for subsequent LSS accesses to the
data.

- RETRIEVE(data area specification,LSS id) - instructs LSS to
retrieve the data block specified by LSS id and place it in
LM at the location specified by data area specification.

- DELETE(LSS id) - instructs LSS to delete the data block

specified by LSS id, thus freeing its storage for reuse.

- UPDATE(data area specification,LSS id) - instructs LSS to
update the data block specified by LSS id with the data
specified by data area specification.

The directory for a level consists of two components. The first

component is a data table which contains an entry for every data block

which is either stored at a level or in the process of being retrieved

4.2 -
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into the level. Entries for stored data blocks are chained together on

a bi-directional linked list in LRU order. In addition, each data

table entry contains a number of status and control fields, e.g., the

. LSS id for the block. The second component of the directory is a

hashed scatter table which contains pointers to data table entries, and

is used to access individual data table entries.

The pending request queue (PRQ) is a per-block list of READ

requests for a block which have yet to be satisfied at a level. The

major function of this list is to record duplicate requests for the

same data block. For example, requests for Xa and Xb will both result

in references to X* at Level 1. If X* is not in Level 1, one READ, for

Xa say, will be passed on down to Level 2, and the other READ, for Xb,

will be saved on the Level 1 PRQ for X*. When X* is eventually

broadcast to Level 1 from below, the PRQ for X* will be processed and

Xb will be returned to the requesting user. Use of the PRQ in this

case has eliminated a duplicate request for X* at Level 2. The

examples which follow show that use of the PRQ also eliminates

duplicate LSS requests and, in addition, allows all requests to be

handled in a uniform manner, thus simplifying the algorithms.

Detailed descriptions of the fo:mats of the directory and the PRQ

are given in section 4.2.

We now present three examples, in order of increasing complexity,

which illustrate some of the foregoing ideas, and serve as an

ir.troduction to the detailed algorithm descriptions which follow.

- 4.3 -
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4.1.1 Example 1: READ With Data Found in Level 1

This example illustrates the simplest possible READ. A user

issues a request to READ data block Xa, and its parent block, X*, is

present in Level 1. Figure 4.1 shows the processing steps which are

detailed below. [

(1) User issues READ(request id,Xa), and a READ transaction is sent
to Level 1 via the UBUS.

(2) The directory at Level 1 is searched, and data block X* is
located. The LSS id for X*, LSS id.X*, is extracted from the
directory.

(3) The request for Xa is put on the PRQ for X*.

(4) RETRIEVE(LSSid.X*) is sent to the LSS.

(5) The LSS returns the requested data to the LM via an LSS DATA
transaction.

(6) The arrival of X* in LM triggers the processing of the PRQ for
X*. In this case, the only entry on the PRQ for X* is the READ
request for Xa.

(7) A DATA(request id,Xa) transaction is sent to the requesting
user.

This example, and the two following, ignore the issue of LRU stack

handling. This issue is dealt with in the detailed algorithm

specifications in Section 4.3. F

4.1.2 Example 2: READ With Data Found in Level 3

This example illustrates the percolation of a READ down through

the hierarchy until the requested data is located. In this case, the

* highest level containing the requested data, block WXYZ, is Level 3.

Figure 4.2 illustrates the processing steps which are detailed below.

(1) READ(request id,WXYZ) sent to Level 1 via the UBUS.
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(1) READ (7) DATA (X*)
for Xa IiF

I [ (4) RETRIEVE (X*) LS

(5) LSS-DATA (X*) 0

(2) SEARCH for X*

(3) Put request on
PRQ for X*

(6) Process PRQ for X*

Figure 4.1--Example of READ
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(1YREAD (16) DATA (WXYZ)

(2) SEARCH for WXY*

(3) Put request on PRQ for WXY*
(4) READ (WXYZ)

(15) Process PRQ for WXY*

wx**

(5) SEARCH for WX**

(6) Put request on PRQ for WX**
(7) READ (WXYZ)

(14) Process PRQ for WX**

(13) BROADCASTFIII

(12) Process PRQ for W***

Figure 4.2--Example of a READ
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(2) The Level 1 directory is searched for WXY*, which is not found.

(3) The READ request for WXYZ is put on the PRQ for WXY*.

*. (4) READ(request id,WXYZ) is sent to Level 2 via the GBUS.

*- (5) The Level 2 directory is searched for WX**, which is not found.

(6) The READ request for WXYZ is put on the PRQ for WX**.

(7) READ(request id,WXYZ) is sent to Level 3 via the GBUS.

(8) The Level 3 directory is searched for W*** which is found. The
LSS id for W***, LSSid.W***, is extracted from the directory.

(9) The READ request for WXYZ is put on the PRQ for W***.

(10) RETRIEVE(LSS id.W***) is sent to the LSS.

(11) The LSS places the requested data in the LM via a LSSDATA
transaction.

(12) The PRQ for W*** is processed. In this case, the request which
was saved in (9) triggers a broadcast to all higher levels.

(13) The requested data is broadcast to Levels 1 and 2. The data is
broadcast as follows:

Data Destination
WX** Level 2 -.

WXY* Level 1

(14) When WX** arrives at Level 2, the PRQ for WX** is processed.
In this case, since the broadcast has accomplished the goal of
sending WXY* to Level 1, nothing further need be done, and the
READ request for WXYZ on the PRQ is discarded.

(15) When WXY* arrives at Level 1, the PRQ for WXY* is processed.
The only request on the queue is the READ for WXYZ.

(16) DATA(request id,WXYZ) is sent to the requesting user.

For the sake of clarity, this example has glossed over the details of

data block eviction and LSS storage of incoming data. The reader can

think of these functions as being handled by background processes

asynchronously with the rest of the processing.
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4.1.3 Example 3: Simultaneous READS for the Same Data Block

This example illustrates the major function of the PRQ, namely the F

elimination of duplicate READs for the same data. Briefly, two READs,

for XYa and XZb, are issued close together in time. The common parent

for the requested data blocks, X**, is not currently in Level 2, and so

must be retrieved from lower down the hierarchy. The algorithm

operates in such a fashion that only one of the two original READs

triggers a search below Level 2. The other READ is saved on the

appropriate PRQ at Level 2, and is finally processed when X** arrives

at Level 2 as a result of the first READ. Figure 4.3 illustrates the

processing steps for the two READs. The numbering of the steps is

somewhat arbitrary, since much of the processing can be done in

parallel. In the explantion below, a parenthesized number after the

description of a step indicates a prerequisite step.

(1) READ for XYa is issued.

(2) READ for XZb is issued.

(3) Level 1 directory is searched for XY*, which is not found. (1)

(4) READ for XYa is put on PRQ for XY*. (3)

(5) READ for XYa is sent to Level 2. (4)

(6) Level 2 directory is searched for X**, which is not found. (5) L--

(7) READ for XYa is put on PRQ for X**. (6)

(8) READ for XYa is sent to Level 3. (7)

(9) The hierarchy below Level 2 is searched for a block containing
X**. Eventually this block is located, and a READ THROUGH is
initiated in Step 15. (8)

- (10) Level 1 directory is searched for XZ*, which is not found. (2)

(11) READ for XZb is put on PRQ for XZ*. (10)
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(19) DATA (XYa)
(1) READ (XYa)

(21) DATA (XZb) "Al

(2) READ (XZb) K

XZ* XY*

(3) SEARCH for XY*

(4) Put request on PRQ for XY*

(12) READ (XZb) (10) SEARCH for XZ*

(11) Put request on PRQ for XZ*
F (18) Process PRQ for XY*

(20) Process PRQ for XZ*

" ~X**I ..
(17) Broadcast I LSS

(6) SEARCH for X** L.-.
(7) Put request on PRQ for X**

(8) READ (XYa) (13) SEARCH for X**

(14) Put request on PRQ for X**

(18) Process PRQ for X**

(9) Locate XYa somewhere
in hierarchy

(15) Broadcast

Figure 4.3 Example of Two Simultaneous READs
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(12) READ for XZb is sent to Level 2. (11)

*(13) Level 2 directory is searched for X** This block is not found
but the pending read for X** (put on the PRQ in Step 7) is-
noted. (12)

(14) READ for XZb is added to the PRQ for X. Since there is
already an outstanding READ for X**, the request for XZb is
held until X** arrives at Level 2. (13)

(15) The request for XYa sent to Level 3 in Step 8 is finally
satisfied, and the requested data is broadcast as follows:

Data Destination
X** Level 2
XY* Level 1

(16) When X** arrives at Level 2, the PRQ for X** is processed.
There are two requests on the queue, the first for XYa and the
second for XZb. Since the broadcast of Step 15 has satisfied
the first request, it is discarded. The second request results
in a broadcast of XZ* to Level 1. (15)

(17) XZ* is broadcast to Level 1. (16)

(18) When the broadcast generated in Step 15 arrives at Level 1, the
PRQ for XY* is processed. The only request on the queue is the
READ for XYa. (15)

(19) XYa is sent to the requesting user. (18)

(20) When the broadcast generated in Step 17 arrives it Level 1, the
PRQ for XZ* is processed. The only request on the queue is the
READ for XZb. (17)

(21) XZb is sent to the requesting user. (20;

4.2 Data Structure Formats

by This section describes the formats of the key data structures used

by the READ algorithms of DSH-III.

4.2.1 Directory Format

The directory at each level consists of a data table containing a

fixed number of information entries ("slots"), and a scatter table

which allows hashed access to the data table. Hash collisions are
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handled via overflow chaining. This policy has been selected since it

performs better than other policies, such as open addressing, in

situations where the majority of references are successful searches [].

Figure 4.4 shows a typical directory. Note that unused ("free") data

table slots are maintained on a free chain. We show the logic for the

SEARCH, ADD, and DELETE functions to show how this data structure is

managed. "

The logic descriptions which follow are presented in a . _

"pseudo-PL/I" format. Program variables (e.g., the fields in a

directory entry) are all lower case. The keywords of "pseudo-PL/I"

have initial upper case letters (e.g., Select). Subroutine names are

all upper case (e.g., SEARCH).

4.2.1.1 Logic for SEARCH Function

SEARCH is invoked by SEARCH(key,slot), where virt addr is the

search key of the item to be located and slot is the data table entry

number of the item (returned by SEARCH). SEARCH returns the string

'FOUND' or 'NOTFOUND' to its point of invocation, as appropriate.

returnval = 'NOTFOUND'; /* assume item not in table L4
searchloop:
Do index = scatter table(HASH(virt addr)) /* loop over overflow chain

Repeat data table(index).overflow
While (index = 0);

If datatable(index).key = virt addr /* is this the one?
Then Do; /* yes, it is

slot = index;
return val = 'FOUND';
Leave searchloop;
End;

End;
Return ( returnval );

- 4.11 -
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free over-
list flow

Scatter Table Key chain chain

1~~ -- ---

2 2 A --- 7

3 3 D -- 0

4 --- 4 5 ---

5 5 0 --

6 -- 6 B --- 0

7 --- 7C -

8

Hash Function: Key H(Key)

A 2

B 3

C 2

D 5

Free chain anchor: 1

Figure 4.4 Directory Structure f7
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4.2.1.2 Logic for ADD Function

ADD is invoked by ADD(virtaddr, slot) where the arguments have U

the same meaning as for SEARCH. For the sake of simplicity, this

version of ADD assumes that the item to be added does not already exist

and that at least one free slot is available.

slot = free chain anchor; /* get slot off free chain
free chain anchor = data table(slot).free chain index;

7* pop new slot off chain

index = HASH(virtaddr); /* compute scatter table index

If scattertable(index) = 0 /* check for collision
Then Do; /* no collision

scatter table(index) = slot; /* point scatter table at slot
datatable(slot) .overflow = 0; /* initialize overflow chain
End;

Else Do; /* a collision
Do index = scatter table(index) /* loop over overflow chain

Repeat data table(index) .overflow
While (data-table(index).overflow "= 0); ".End;

data table(index).overflow = slot;
/* point to new entry

data table(slot).overflow = 0; /* initialize overflow chain
End;

4.2.1.3 Logic for DELETE Function

DELETE is invoked by DELETE(slot), where slot is the data table

entry number for the item to be deleted. For simplicity, we assume

that slot refers to a non-free entry.

- 4.13 -
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key = datatable(slot).key; /* get item key from table
scat index = HASH(key); /* get scatter table index
index = scatter table(scat index); /* get index of first item

/* on chain
If index = slot /* is this the one?
Then Do;

scatter table(scat index) = 0; /* just erase scatter entry
End;

Else Do;
Do index = index

Repeat data table(index).overflow
While (data-table(index) .overflow "= slot);

End;
data table(index).overflow = data Iable(slot).overflow;
End;

data table(slot).free chain index = free chain anchor;
/* put slot on free chain

free chain anchor = slot;

4.2.2 LRU Chains and PRQ Format

LRU processing is handled via a bi-directional chain running

through the slots in LRU order. The PRQ for a block is accessed via a

pointer in the data table slot for that block. Figure 4.5 illustrates

these pointers.

Each PRQ is implemented as a linked list which is anchored by the

pointer in the corresponding data table slot.

4.3 READ Algorithms and Transactions

This section presents a fairly detailed description of the

algorithms and transactions supporting the READ operation. However,

there are a number of implementation issues which are somewhat

peripheral to the logical structure of the algorithms; these issues -

are not dealt with here. They include

- precise specification of LSS operation for various classes
of LSS technology;

- 4.14 - r
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Forward
Backward LRU chain
LRU chain

PRQ___________I- ptr PRQ for A

2 A 0 4

4 B 2 3 "I
PRQ for D

5

6 D 3 0

7

LRU order is: A, B, C, D

Figure 4.5 Illustration of LRU &PRQ Pointers
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- details of LM management in general, and buffer management
in particular;

- precise specification of inter-level message handling
including packet assembly/disassembly and SRQ/DRQ
management.

This section does describe management of the key data structures, the

directory and the PRQ, and gives a logically complete description of

the data flow for READs within DSH-III.

The transactions on which the READ algorithms are based are

summarized in Table 4.1. The FORMAT column of Table 4.1 shows the

message protocol used for each transaction type. Possible values of

FORMAT are: 'D', used for inter-level data transmission; '', used

for inter-level control and service request messages; and 'I', used "

for intra-level messages.

The arrival of any one of these transaction types triggers the

activation of an appropriate process to handle the transaction. Thus,

a READ transaction triggers the READ process. In addition, there are

some background processes which perform tasks that are not keyed to

transaction arrivals. For example, the EVICT process attempts to

maintain the number of free blocks at a prespecified level

asynchronously with the reuse of these blocks by other processes.

Table 4.2 summarizes some of the utility subroutines invoked by the

transaction handling processes.

There are also a number of low-level utility subroutines used by

the READ algorithms. These subroutines are summarized in Table 4.3.

The following sections describe the transaction processes under

the assumption that they are running in a uni-processor environment at

each level. That is, concurrent update issues are ignored. There are

two related problems in this area. Shared data must be locked to

- 4.16 -
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Transaction/ ___'j

Arguments Format Description

READ S sent by user to Level 1, or by a level to next

lower level, requesting data
req_ id user assigned request identifier
virt addr virtual address of requested data block

LSSDATA I sent by LSS to LOS within a level; contains C

data requested from LSS by previous RETRIEVE .
transaction

im_ptr pointer to LM location of retrieved data block
slot directory slot number of data block

BCASTDATA D broadcast by a level to all higher levels in
response to READ request

lm_ptr pointer to LM location of data block
virt addr virtual address of data block

DATA D sent by level 1 to a user
req_id user supplied identifier for request
data data block requested by READ request

NOTIFY I intra-level message signalling the availability
of a previously requested data block

slot directory slot number of data block

STORE I sent to LSS to request storage of a data block
lm_ptr LM location of data block to be stored
slot directory slot number of data block

STOREACK I sent to LOS by LSS acknowledging STORE request
lss id LSS assigned identifier for stored data block
slot directory slot number of data block

RETRIEVE I sent to LSS to request retrieval of previously
stored data block

lss id LSS identifier of previously stored block

LRUUPDATE S request for LRU stack update broadcast to all
levels simultaneouslyvirt addr virtual address of block for which LRU update

is to be performed

Table 4.1 - Summary of Transactions Used by READ

prevent update inconsistencies and the locking of shared data could

cause bottlenecks due to contention. Later in this chapter, we
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Routine Name/
Arguments Description

p SEARCH performs directory lookup; invoked as a function,
returns 'FOUND' or 'NOTFOUND' as appropriate

virt addr virtual address of data block
Is id LSS assigned identifier for data block
slot directory slot number for data block

DIR ADD adds a directory entry
virt addr virtual address of entry to be added
slot- directory slot number of new entry (output)

PRQADD adds an entry to the PRQ for a block
virt addr virtual address of block
req_id request identifier for request to be added
slot directory slot number of data block
addr address of update data for WRITE

NULL pointer for READ

PRQPOP pops entries off PRQ in FIFO order; invoked as a F
function, returns 'EMPTY' if the PRQ is empty

slot directory slot number for PRQ
virt addr virtual address of popped request
reqid request identifier of popped request

DOLRU performs an LRU stack update

slot slot number to be moved to top of stack

Table 4.2 -Summary of Functional Routines Used by READ Transactions

indicate the modifications that would be necessary to permit these

programs to run in a multi-processor environment. These modifications
ki"

address the locking problem and minimize the possibility of bottlenecks

by segmenting the address space at each level, thus allowing n-fold

overlapped processing for n independent sets of system tables at each

level.
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Routine Name/
Arguments Description

LEVEL returns the DSH-III level of its caller

FREE releases a block of LM storage
ptr address of block to be freed

RECYCLE relinquishes control to allow higher priority

tasks to run

The following routines generate destination
addresses for message sending subroutines.

ALL returns a destination list containing all levels

USER returns the address of the user of DSH-III

HIGHER returns a destination list containing all
levels above its argument

level

LSS returns address of LSS at level
level

LOS returns address of LOS at level
level

Table 4.3 - Summary of Utility Routines Used by READ Transactions

4.3.1 T"he READ Transaction - READ(req_id, virt addr)

Select( SEARCH(virt addr, lss id, slot) ); /* directory lookup

When( 'NOTFOUND' ) Do; /* block not in level
DIR ADD(virt addr, slot); /* create directory entry
dirTslot) .status = 'PENDING'; /* note waiting for block
PRQ ADD(virtaddr, reqid, slot, NULL);/* remember request
READ(req id, virt addr, LEVEL+1); /* forward READ downwards
End /* of handling data not found in level */;
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When( 'FOUND' ) Do; /* block in directory
PRQ ADD(virt addr, reqid, slot, NULL);/* remember request
Select( dir(slot).status ); /* branch on status r
When( 'PENDING' ); /* already waiting
When( 'HOLD' ); /* data already in LM
When( 'INLSS' ) Do; /* data is in LSS

dir(slot).status = 'PENDING'; /* note waiting for block
RETRIEVE(Iss id, slot, LSS(LEVEL));/* ask LSS for data block
End /* of INLSS processing */;

Otherwise Error; /* illegal status
End /* of status selection */;
End /* of handling data found in level */;

Otherwise Error; /* bad Search return code

End /* of READ processing */;

4.3.2 The LSSDATA Transaction - LSSDATA(lm_ptr, slot)

dir(slot) .lm_ptr = lm ptr; /* save LM location of block
NOTIFY(slot, LOS(LEVEL)); /* alert arrival of data

4.3.3 The BCAST DATA Transaction - BCASTDATA(lm_addr, virtaddr)

If SEARCH(virt addr, lss id, slot) ^= 'FOUND' Then Error;
/* get slot number

dir(slot).lm_ptr = lm addr; /* save LM pointer
If LEVEL ^= 1 Then PRQ_POP(virtaddr, req_id, slot, type);

/* discard first request
/* since broadcast sends
/* data to upper levels

STORE(dir(slot).lm_ptr, slot, LSS(LEVEL)); /* send data to LSS

4.3.4 The NOTIFY Transaction - NOTIFY(slot)

dir(slot).status = 'HOLD'; /* lock the block

Do While( PRQ POP(virtaddr, req_ id, slot, type) = 'EMPTY' );
Select( LEVEL ); /* branch on level
When( 1 ) Do; /* if level 1 ...

LRUUPDATE(virtaddr, ALL); /* send LRU update to all
/* levels

DATA(dir(slot).lm_ptr, virtaddr, USER);
/* send data to user

End /* of level 1 processing */;
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Otherwise Do; /* if not level 1..
DATA(dir(slot).lm_ptr, virtaddr, HIGHER(LEVEL));

/* broadcast data to all F
/* higher levels

End /* of processing for all levels except 1 */;
End /* of level selection */;
RECYCLE; /* redispatch to enhance - -

/* interleaving
End /* of loop over all requests on PRQ */;

dir.status(slot) = 'INLSS'; /* note block is in LSS
FREE(dir(slot).lm_ptr; /* free block's LM storage

4.3.5 The LRUUPDATE Transaction - LRUUPDATE(virt addr)

If SEARCH(virt addr, lss id, slot) 'FOUND' Then Error;
DOLRU(slot); /* perform LRU update

4.3.6 The STOREACK Transaction - STOREACK(lss is,slot)

dir(slot) .Iss id = lss id; /* save LSS identifier
NOTIFY(slot, /OS(LEVEL)); /* awake PRQ process

4.3.7 The EVICT Process

At any point in time, three classes of slots may exist in a

directory. These classes have been mentioned briefly above. The

classes are

free - slots currently on the free chain;

stored - slots currently assigned to data blocks stored at
the level, and on the LRU chain;

pending - slots to which a pending data block has been
assigned, but which have not yet been added to the LRU
stack.

These classes are mutually exclusive and collectively exhaustive.

Figure 4.6 shows a state transition diagram which illustrates how

various transactions cause a slot to move from one class to another.
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Figure 4.6 Status Transitions
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In order for the GLOBAL-LRU-SOP algorithm to operate correctly,

the class to class transitions must be restricted by certain logical

constraints. Denote the number of slots in each class by mf, ms, and

mi , respectively. Then we have the following logical constraints:

Ll: m < m , i.e., the number of data blocks stored at Level i
can not exceed the capacity of Level i;

L2: No block, X, may be evicted unless S i(X) > mi , i.e.,
unless X's LRU stack position is strictly greater than the
maximum capacity of Level i-l. This constraint represents
the sufficiency conditions of Theorem 4, and guarantees
that MLOI will hold;

L3: No block may be evicted unless its status is 'INLSS', i.e.,

unless the block is currently not being processed.

We can also propose operational constraints. These are

constraints on the size of each class which are imposed for performance

reasons. These constraints are defined in terms of parameters, pj,.

which can be adjusted in order to tune the system. The operational

constraints are:
1

01: ms > p1
m l , i.e., the utilization of storage at Level i

should be as high as possible;

02: mf > i.e., the number of available free slots at Level

i should not be allowed to sink below some predetermined
number.

Appropriate values of pj will be experimentally determined.

The EVICT process attempts to maintain 02 by moving slots from

stored to free, without violating 01, if possible, and without

violating Ll, L2, or L3 under any circumstances. The logic of EVICT is

as follows.

1) determine whether an EVICTION should be performed. If not,
Exit. If so, find the slot number of the block to be
evicted.
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2) DELETE the slot to be evicted from the directory.

3) Put the evicted slot on the free slot chain. IF

4) Send a DELETE transaction to the LSS to free the LSS
storage for the block.

4.3.8 Pipe-Lining

The algorithms presented in Section 4 derive a portion of their

simplicity from the fact that they are "pipe-lined." By this we mean _

that the various processes that constitute a READ operation are -"

designed to execute serially, rather than in parallel. In other words, ' '

each process terminates by generating the transaction which will awaken

the next process to be executed. Opportunities for parallelism have

been deliberately avoided. This strategy should not degrade

performance, since in a multi-processor system, parallel processing of

separate transactions is just as effective a way of utilizing the

system resources as is parallel processing within individual

transactions.

4.3.9 Multi-Processor Implementation Issues

The algorithms presented thus far assume a uni-processor

environment. That is, no logic was included to lock shared data to

prevent update inconsistencies. In order to run the algorithms in a

multi-processor environment, they must be modified to lock shared

tables during updates. This raises a number of issues:

- deadly embraces must be avoided,

-the most appropriate granularity for the locks must be
determined, and F
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* - the performance impact of contention for locked data must
be estimated.

Presumably, deadly embraces will not be a serious problem. Since a.q*

L. -.

any process will need to have very few locks at any point in time, and

will hold these locks for a very short period, it is reasonable to

require processes to obtain all locks to be used for some function at

the same time. This strategy will prevent deadly embraces, since

refunctions will not start until their completion is assured.

The granularity issue is not so simple. Coarse granularity, i.e.,

locking entire tables, has the advantage of being simple and imposing

little processing overhead. on the other hand, locking entire tables

forces serial execution for functions that could perhaps be performed

in parallel. Thus, system throughput is reduced. Fine granularity,

* i.e., locking individual table entries, allows as much parallel

processing as is logically possible, thus minimizing contention for.

shared data. On the other hand, this strategy is more complex since a

transaction may lock multiple entries, rather than a single table.

Furthermore, more overhead is imposed in setting and resetting locks.

l In order to estimate the performance impact of contention, suppose

that some function requires 5 machine instructions which must be

executed while some resource is locked. Using 1 MIP processors, this

function could be performed at most 200,000 times per second, assuming

ethat locking and unlocking the resource take no time at all. If the

resource in question is the directory (using coarse locks), then the

system is limited to at most 200,000 directory updates per second. If

the locked resource is an individual directory entry, or a small set of

entries (using fine grained locks), contention will be orders of

magnitude lower than with coarse locks.

-4.25-
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Thus, a fine grained lock strategy would seem to be necessary if

DSH-III is to be able to process over 200,000 requests per second.

Unfortunately, the LRU UPDATE function causes special problems.

Recall that LRU updates must be performed in the same order at every

level. The way this is achieved is by broadcasting LRUUPDATE

transactions, and then processing them at each level in the order in

which they captured the GBUS. The requirement for FIFO processing

effectively prevents parallel processing for these transactions. One

possible way around this potential bottleneck is to divide the virtual

address space into n segments, each with its own set of directory

entries. Thus, each of the n segments would have an independent LRU

chain. These chains could be updated in parallel, with FIFO processing

within each segment. Assuming that references to virtual memory are

evenly distributed among the n segments, this strategy would allow

n-fold parallelism of LRU updates. The EVICT process could also

operate in parallel. Therefore, the only interaction between segments

would be the selection of the overall oldest slot from among the oldest

slots on each of the n LRU chains. (Eviction must still be done in

strict FIFO order, overall.) Note that this strategy implies that

slots are time-stamped, as well as being chained together in LRU order.

The effect of this strategy is to replace contention due to

updates by contention due to evictions. Assuming 90% locality, there

are 10 times as many LRU updates as there are evictions at Level 1.

Therefore, this strategy, by shifting contention from updates to

evictions, could increase throughput by an order of magnitude.
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The n-fold parallel eviction scheme could be implemented as

follows. Reserve a n word area of shared memory, each word of which is F.-

to contain the time stamp of the oldest slot on the corresponding LRU

chain. Dedicate a separate eviction process to each of the n LRU

chains. Each of these processes would incorporate the following logic: .

1) Find the oldest slot on LRU chain (each process is
dedicated to a single LRU chain). Let tstamp = the time
stamp of this slot.

2) Store tstamp in the appropriate location in the n word
reserved area.

3) Compare tstamp with each of the other n-l time stamps
stored in the reserved area. If tstamp is not the
smallest, repeat Step 3.

4) Evict the oldest slot on LRU chain, and release its LSS
storage.

5) Go to Step 1.

Note that no locks are required to coordinate the n processes.

All synchronization is provided by the shared list of time stamps which

is updated by an atomic Store instruction in Step 2. Also note that

the delay between evicting a block (in Step 4) and updating the time

stamp list (in Step 2) causes no problems since the time stamps are

monotonically increasing, and thus Step 3 always produces the correct

result.

Finally, note that under the segmented address space strategy, the

LRU update could use coarse locks, or their equivalent, since updates

must be serialized within each segment of the address space. One way

to accomplish this is to have n dedicated processes responsible for

performing LRU updates for each of the n segments. Since there is only

one process at a time updating any segment, this is effectively a

uni-processor system, and no locks whatsoever are needed.

-4.27 - r
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The avoidance of software bottlenecks in DSH-III by the use of

strategies such as the one just suggested, will be a subject for "

further research.

4 .2
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5 ALGORITHMS SUPPORTING THE WRITE OPERATION

In Section 2, we discussed the advantages and disadvantages of

four possible WRITE strategies. In this section, we present the

software algorithms and transactions which can be used to implement one

of these strategies, Staged Store Through.

5.1 Overview of the WRITE Operation

A WRITE request is initiated when a user sends a WRITE transaction

to Level 1 of DSH-III. The format of the WRITE transaction is

WRITE(req_id,virt_addr,data)

where

req id is a user assigned identifier for the request;

0-data is the N -byte block of data to be written (recall

that N is the size of the unit of transfer across the userinterface of DSH-III);

virt addr specifies the virtual address of data.

The first action taken by Level 1 is to make duplicate copies of

data in separate memory modules. This minimizes the possibility of

lost updates due to isolated recoverable memory failures at Level 1. -

In order to support this type of operation, we introduce a fifth LSS

primitive, STORESPLIT. STORESPLIT takes an lss id and a data block L

as arguments, and attempts to store the data block in a storage module

which is physically independent of the memory module implied by lss id.

Thus, a sequence of LSS transactions and their responses to create

duplicate copies of a update might be

STORE(virt addr,data) - store first copy of data

STOREACK(virt addr,lss idl) - receive lss id from LSS

STORESPLIT(virt addr,data,lssidl) - store second copy

-5.1 -
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STOREACK(virtaddr,lss_ id2) - receive second issid

After the data has been replicated, a WRITEACK message is sent to the

user, informing him that the WRITE operation has been accepted by

DSH-III. From the user's point of view, the WRITE has completed; all
."- ..

further processing for the WRITE request is handled internally to

DSH-III.

Next, the N byte page containing virt addr is modified. (A READ

is issued to bring this page into Level 1 if it is not already there.)

Then the updated N byte page is broadcast to all lower levels via

a WRITEBCAST transaction. Each level, j, upon receiving the

broadcast, attempts to apply the update to the corresponding N3-byte-

parent page of the updated page.

Finally, the duplicate copies of the original update are deleted

from Level 1.

WRITE processing has a number of problems in common with the LRU

updating discussed in Section 4. In particular, WRITEs must be

performed in the correct sequence or else updates will be lost. Lam

(151 addresses this problem in his Two Level Store Behind algorithm by

associating a time-stamp with each page and with each of that page's

sub-pages at the next higher level. Thus, each page in Level j will

have NJ/N3 -1 + 1 time-stamps associated with it. Using Lam's figures

of N1 = 8 and N2 = 128, we have the result that 36% of the LSS storage

at Level 2 is devoted to time-stamps, assuming that a time-stamp is 4

bytes in length. Unfortunately, the situation is even worse for Staged

Store Through. The number of time-stamps associated with each page is

one more than the size of the page divided by the size of the unit of

update. Thus, for Staged Store Through, since the unit of update is N1

- 5.2 -
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bytes at every level, a page at Level j will have NJ/N + 1

time-stamps. This implies that close to one third of the data base

will be devoted to time-stamps.

The next section presents a set of WRITE algorithms which assume a

uni-processor environment at each level. This allows us to serialize

the processing of WRITEs, and thus guarantee that they are processed in

the correct order. Section 5.3 presents a segmentation strategy,

analogous to the one used to solve the LRU update problems, which

allows n-fold overlapping of WRITE processing, while still ensuring

that no updates are lost.

For this first version of the algorithm, we omit the details of L
making duplicate copies of the update in Level 1. These details are

not an integral part of the logic of the WRITE operation.

5.2 WRITE Algorithms

This section presents the processing logic for each of the

transactions used by the WRITE operation.

5.2.1 The WRITE Transaction - WRITE(req_ id,virt addr,data)

The WRITE transaction is sent by a user to Level 1 of DSH-III.

The basic functions of the WRITE process are to enter the request onto

the PRQ (creating a directory entry if necessary) and to retrieve the

page to be updated. As for the READ operation, this retrieval may be

either from the LSS or from lower down in the hierarchy. The logic of

this transaction is almost identical to that for READ.

Select( SEARCH(virt addr, lss id, slot) ); /* search directory
When('NOTFOUND') Do; /* not in level 1

DIRADD(virt addr, slot); /* add to directory
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dir(slot).status = 'PENDING'; /* note waiting
PRQADD(virtaddr, req_id, slot, ADDR(data)); V.

/* add to PRQ F
READ(req_ id, virt addr, LEVEL+l); /* retrieve page
End /* of page not in level 1 */;

When('FOUND') Do; /* page in level 1
PRQADD(virtaddr, req_id, slot, ADDR(data));

/* add to PRQ
Select(dir(slot).status); /* branch on status
When('HOLD'); /* already in LM
When( 'PENDING'); /* already waiting
When('INLSS') Do; /* page in LSS

dir(slot).status = 'PENDING'; /* note waiting
RETRIEVE(lss id, slot, LSS(LEVEL)); /* retrieve from LSS
End /* of page found in LSS */;

Otherwise Error; /* invalid status
End /* of selection on status value */;
End /* of page found in level 1 */;

Otherwise Error; /* invalid SEARCH code
End /* of WRITE processing */;

5.2.2 The NOTIFY Transaction - NOTIFY(slot)

The logic of this process is very similar to the logic for the

READ operation NOTIFY given in Section 4. The only difference is the

incorporation of logic to handle WRITE requests on the PRQ, and the

addition of the modified flag which the process uses to keep track of

which blocks have been modified, and should therefore be rewritten into

the LSS.

modified = False; /* assume READs only
dir(slot) .status = 'HOLD'; /* lock page in LM

Do While( PRQ POP(virtaddr, req_id, slot, ptr) ^= 'EMPTY' );
Select( LEVEL ); /* branch on level
When( 1 ) Do; /* if level 1 ...

Select(ptr); /* READ or WRITE?
When(NULL) Do; /* READ

LRUUPDATE(virt addr, ALL); /* send LRU update to all
/* levels

DATA(dir(slot).lm_ptr, virt addr, USER);
/* send data to user

End /* of READ at level 1 */;
Otherwise Do; /* WRITE

MODIFY(dir(slot).lm_ptr, ptr, virt addr);
/* apply update

WRITEBCAST(virtaddr, dir(slot).lm_ptr);

-5.4- _
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/* broadcast update
WRITE_ACK(req_id,USER); /* signal completion -J
modified = True; /* note page modified
End /* of level 1 WRITE processing */;

End /* of level 1 processing */;
Otherwise Do; /* if not level L I..

Select(ptr) ; /* READ or WRITE? .....
When(NULL) Do; /* READ .;.

DATA(dir(slot).im ptr, virt addr, HIGHER(LEVEL));l

/* broadcast data to all
/* higher levels

End /* of READ at level j */;
Otherwise Do; /* WRITE

MODIFY(dir(slot).lm_ptr, ptr, virt addr);
/* apply update

modified = True; /* note page modified
End /* of level j WRITE processing */;

End /* of level j processing */;
End /* of level selection */;
RECYCLE; /* redispatch to enhance

/* interleaving ""

End /* of loop over all requests on PRQ */;

If modified /* was page modified?
Then UPDATE(lm_ptr, slot); /* yes, update LSS
Else Do; /* no, free LM page

dir.status(slot) = 'INLSS'; /* note block is in LSS
FREE(dir(slot) .lm_ptr; /* free block's LM storage

5.2.3 The UPDATE _CK Transaction - UPDATE ACK(slot)

This transaction is sent by an LSS to acknowledge the completion

of an update to a previoiusly existing page of LSS storage.

dir(slot).status 'INLSS'; /* note page in LSS
FREE(dir(slot).lm_ptr); /* release the LM storage

5.2.4 The WRITEBCAST Transaction - WRITEBCAST(virt addr, data)

This transaction operationalizes the Staged Store Through

operation, by broadcasting an updated Nl-byte page from Level 1 to all

other levels of the hierarchy. Actually, the algorithm presented here

represents Store Through, rather than Staged Store Through, since the

broadcast of the update immediately follows the processing of the

NOTIFY at Level 1. To implement a true Staged Store Through algorithm,
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one would simply have to keep track of a list of queued update

broadcasts, and actually do the broadcasts at convenient times e.g., F

just before the block overflows, or at a time of low GBUS utilization.

If a WRITE BCAST does not find the block to be updated in a level,

some error must have occurred. This is because READs and WRITEs are [

serialized in strict FIFO order in order to avoid lost updates. This

implies that the WRITEBCAST must be processed before any READs which

left Level 1 at a later time. But these READs are the only possible

way the page could have been forced out of Level 1, and therefore out

of any lower level. This in turn implies that the WRITE BCAST must be

handled before the target page is evicted.

If SEARCH(virt addr, lss id, slot) 'NOTFOUND' Then Error;
PRQ ADD(virt addr, dummy, slot, ADDR(data));
Select(dir(slot) .status);When('PENDING','HOLD'); . .

When('INLSS') Do;
RETRIEVE(lss id, slot, LSS(LEVEL));
End /* of retrieval of block for updating */;

End /* of status selection */;

5.2.5 The BCAST DATA Transaction - BCAST DATA(lm addr, virt addr)

The version of BCAST DATA given in Section 4 discards the first

PRQ entry at all levels except Level 1, since the broadcast has already
F

sent the data to all higher levels. At first glance, it would appear

necessary to distinguish between WRITE and READ PRQ entries, since

WRITE entries must not be discarded. However, it turns out that the

top PRQ entry can never be a WRITE entry when a BCASTDATA is received. -

Therefore, the version of BCAST DATA given in Section 4 will handle

WRITES correctly.
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5.3 Multi-Processor Implementation

The discussion of multi-processor implementation issues in Section [

4 applies here as well. In particular, there are problems with order

of execution of transactions in a multi-processor environment. In

order to prevent 'lost updates", WRITEs must be performed in the b

correct order, i.e., in the order in which they are presented to the

system. Also, in order to produce consistent results for READs, WRITEs

must be correctly sequenced with respect to READ operations. This

situation is analogous to the LRU update problem, wherein LRU updates

had to be performed in the correct order. The same solution is

appl icable.

1) Segment the address space and dedicate a process to each

segment so that each N -byte page is always handled by the
same process. This dedicated process serializes the READs
and WRITEs for its segment of the address space. This
implies that READ and WRITE handling must be combined into
a single process at Level 1. Also, READ and WRITE BCAST
must be handled by a single process at all other levels.

2) Use 'S' message protocol for WRITE and WRITEBCAST in order
to assure correct ordering of WRITES with respect to READs.
In essence, READs and WRITEs will be processed in FIFO L
order.

or F
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6 SUMMARY AND FURTHER RESEARCH

This paper has had three major goals. The goal of Section 2 was

to present a coherent summary of the design issues and tradeoffs

involved in the specification of an architecture for a Data Storage

Hierarchy. While a lot of issues were raised and a lot of options

discussed, most of the arguments pro and con in any area were based on

experience with storage and file systems in general, and on intuition

with regard to how a hierarchical system should behave under various

conditions. There is very scanty relevant empirical data in this area.

Performance evaluations of this type of structure 115, 29] have used

macroscopic modeling methods such as simulation (e.g., GPSS),

analytical queueing models [231, and Operational Analysis [7]. These

efforts have provided valuable insights into the behavior of a

hierarchical storage system under various macroscopic conditions (e.g.,

differing locality assumptions). However, these studies could not

(because of the nature of their modeling methodologies) examine the

reaction of the system to changes in microscopic architectural details,

such as the choice of a replacement algorithm. The Software Test

Vehicle (STV) [27], currently being built, will provide valuable

insight into the effects of varying many of the detailed design r
parameters of DSH-III. These detailed simulation results could then be

fed back as parawet'rs into a GPSS or analytical model. This would

allow examination of the macroscopic effects of microscopic design

changes, thus answering many of the questions that were left open in

Section 2 because of a lack of solid performance data.
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multi-processor operating system whir', can support the high throughput :

'a'7

rates required by DSH-III. :"
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Sections 4 and 5 presented a set of algorithms and transaction

protocols which implement the READ and WRITE and automatic data

migration functions of DSH-III. An STV implementation of these

algorithms is planned. As noted above, the STV will allow

investigation of various design questions. These include

- what is the best WRITE policy: Store Behind, Store
Through, Store Replacement, or Staged Store Through?

- what is the best replacement policy? The basic algorithm
GLOBAL-LRU-SOP will still work if LRU is replaced by any
other replacement policy for which Theorem 4 holds.
Perhaps there is a replacement policy which performs
approximately as well as LRU, but which is much easier to
implement.

This last point raises some interesting theoretical issues. It is

conjectured that the eight theorems proved in (161 for LRU based

policies can be extended to hold for a general class of replacement

policies. The development of characterization theorems for this class

of policies will immediately produce a means of identifying substitute . -

replacement algorithms for DSH-III. A final interesting question is

how this class of policies relates to the class of "stack" algorithms

discussed in (20].



.. . . .. . . . . . . . . . . . . . ...... " " ... . . ... • '

REFERENCES

S-

[1]: Abdel-Hamid, T.K. and Madnick, S.E., 'A Study of the
Multicache-Consistency Problem in Multi-Processor Computer Systems,'
Proc. Sixth Workshop on Computer Architecture for Non-Numeric
Processing, 1981.

[2]: Abe, Y., 'A Japanese On-Line Banking System,' Datamation,
September 1977, pp 89-97.

[3]: Abraham, M.J., "Properties of Reference Algorithms for
Multi-Level Storage Hierarchies,' Master's Thesis, Sloan School of
Management, MIT, Cambridge, MA, June 1979.

[4]: Bartlett, J.F., 'A "NonStop" Operating System,' Tandem Computers
Inc., Cupertino, CA, 1977.

[51: Belady, L.A., 'A Study of Replacement Algorithms for a
Virtual-Storage Computer,' IBM Systems Journal, Vol. 5, No. 2, 1966,
pp 78-101.

[6]: Belady, L.A., Nelson, R.A. and Shedler, G.S., 'An Anomaly in
Space-Time Characteristics of Certain Programs Running in a Paging
Machine,' Comm. ACM, Vol. 12, June 1969, pp 349-353.

(7]: Denning, P.J. and Buzen, J.P., 'The operational Analysis of
Queuing Models,' Computing Surveys, Vol. 10, No. 3, September 1978.

[8]: Dijkstra, E.W., 'The Structure of the "THE" Multiprogramming
System,' Comm. ACM, Vol. 11, May 1968, pp 341-346.

[9]: Greenberg, B.S. and Webber, S.H., 'MULTICS Multilevel Paging
Hierarchy,' IEEE Intercon, 1975.

[10]: Hemenway, J. and Grappel, R., 'Intel's iAPX "Micromainframe",'
Mini-Micro Systems, May 1981, pp 73-89.

[11]: Hsu, M., 'A Preliminary Architectural Design for the Functional
Hierarchy of the INFOPLEX Database Corouter,' Working Paper No.
WP1197-81, Sloan School of Management, MIT, Cambridge, MA, November
1980.

[12]: 3033 Processor Complex & 3033 Multiple Processor Complex
Functional Characteristics, Form No. GA22-7060, International Business
Machines Corp., White Plains, NY.

(13]: IBM 3850 Mass Storage System (MSS) Principles of Operation, Form
No. GA32-0036, International Business Machines Corp., White Plains,
NY.

- R.1 -



[14]: System/370 Reference Summary, Form No. GX20-1850-3,
International Business Machines Corp., White Plains, NY.

[15): Lam, C., 'Data Storage Hierarchy Systems for Database
Computers,' Doctoral Thesis, Sloan School of Management, MIT,
Cambridge, MA, August 1979.

[16]: Lam, C. and Madnick, S.E., 'Properties of Storage Hierarchy
Systems With Multiple Page Sizes and Redundant Data,' ACM Transcations

on Database Systems, Vol. 4, No. 3, September 1979, pp 345-367.

(17]: Madnick, S.E., "Storage Hierarchy Systems,' Report No. TR-105,Project MAC, MIT, Cambridge, MA, 1973.

[18]: Madnick, S.E., 'Trends in Computers and Computing: The
Information Utility,' Science, Vol. 185, March 1977, pp 1191-1199.

(19]: Madnick, S.E., 'The INFOPLEX Database Computer: Concepts and
Directions,' Proc. IEEE Comp. Con., Februrary 1979, pp 168-176.

[20]: Mattson, R.L., Gecsei, J., Slutz, D.R. and Traiger. I.L.,
'Evaluation Techniques for Storage Hierarchies,' IBM Systems Journal,
Vol. 9, No. 2, 1970, pp 78-117.

[21]: Organick, E.I., The Multics System: An Examination of Its
Structure, Cambridge, MA: MIT Press, 1972.

[22]: Ornstein, S.M., Crowther, W.R., Kraley, M.F., Bressler, R.D.,
Michel, A., and Heart, F.E., 'Pluribus - A Reliable Multiprocessor,
Proc. National Computer Conference, 1975, pp 551-559.

[23]: Reiser, M. and Kobayashi, H., 'Queuing Networks with Multiple
Closed Queues: Theory and Computational Algorithms,' IBM Journal of
Research & Development, Vol. 19, No. 3, May 1975.

[24]: Robidoux, S.L., 'A Closer Look at Database Access Patterns,'
Master's Thesis, Sloan School of Management, MIT, Cambridge, MA, June
1979.

[25]: Rodriguez-Rosell, J., 'Empirical Data Reference Behavior in Data
Base Systems,' Computer, November 1976, pp 9-13.

(26]: Simonson, W.E. and Alsbrooks, W.T., 'A DBMS for the U.S.
Bureau of the Census,' Proc. Very Large Data Bases, September 1975, pp
496-497.

[27]: To, T., 'SHELL: A Simulator for the Software Test Vehicles of
the INFOPLEX Database Computer,' Bachelor's Thesis, MIT, Cambridge, MA,
June 1981. %

[28]: Toong, H.D., Strommen, S.O. and Goodrich II, E.R., 'A General
Multi-Microprocessor Interconnection Mechanism for Non-Numeric

Processing,' Proc. Fifth Workshop on Computer Architecture for
Non-Numeric Processing, 1980, pp 115-123.

- R.2 -



S. ..

[29]: Wang, R. 'Performance Evaluation of the INFOPLEX Data Base
Computer,' Sloan School of Management, MIT, work in progress.



(

p -'V
~f. .I~

I
* a-,

d.

S. a-

L.

5'56
'--a

5-

4.

a.

- a.

I

* a - *. -: . - . . - ..-..


