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SUK MARY

In this report we present a bried description of the research carried out -

by faculty, staff, and students in the M.I.T. Laboratory for Information and

Decision Systems under Grant AFOSR-82-0258. The principal investigator for

this research is Professor Alan S. Willsky. and the co-principal investigator

is Prof. George C. Verghese. The time period covered in this status report is

from November 11. 1984 to November 10. 1985.

The basic scope of this grant is to carry out fundamental research in the

analysis, control, and estimation of complex systems, with particular emphasis

on the use of methods of asymptotic analysis and multiple time scales to

decompose complex problems into interconnections of simpler ones. During the 1

time period covered by this report. significant progress has been made in

several areas, leading to important results and to promising direction for

further research.

The Specific topics covered in this report are:

I. Analysis and Estimation for Finite-State and Hybrid Processes
Possessing Time or Spatial Decompositions'

II. Analysis and Control of Singularly Perturbed and Weakly Coupled
Linear Systems

III. Analysis and Estimation for Singular Systems

A complete list of publications (completed and in preparation) supported by

this grant is included at the end of this report.
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I. Analysis and Estimation for Finite-State and Hybrid Processes Possessing
Time of Spatial Decomposition

Our work in the past year in this portion of our project has focused on

following through on the two major directions described in significant detail

in our preceding status report and proposal: time scale decomposition of

singularly-perturbed finite-state Markov processes (FSMP's): and modeling and
I

estimation for spatially-distributed finite-state processes. Since detailed

descriptions of these research projects are given in the previous status

report and proposal, we present here abbreviated descriptions, together with

discussions of the progress made in the last year.

Our work on time scale decompositions of FSMP's has dealt with a model of

the form

k(t) = A(e)x(t) (1.1)

where A(e) is an infinitessimally stochastic matrix. e is a small parameter,

and x(t) is the probability vector of the FSMP. In our early work in this

area [1]. [2], [4] we had developed a general procedure for constructing a

multiple time scale decomposition of (1.1) and for obtaining aggregated models

at successively slower time scales. Specifically, it is straightforward to

check that A(O) captures the fast time scale behavior (i.e. transitions in the

FSMP that occur in order I time rather than 1/a or longer). Then, if we let

P(e) denote the projection onto the eigenspace of all eigenvalues of A(E) that

are O(e), we can define another matrix

A(e ) = P A() (1.2)

so that we can repeat the procedure at the next time scale: i.e. AI(O)

captures transition behavior of the original process at the time scale 1/6,

.!* **I

. . o ,.."

- - - - -- * .* % *; * **. . . -.. .-- * - * - -- ..-. * . .-. * -. . ... .
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- and
*P (.x _)...

A 2 (1.3)

contains all the information on slower behavior, where Pl(E) is the -

corresponding projection for Al(e).

There are several major limitations to this previous work. Specifically,

the calculation of the full e-dependent projection P(e) is a highly nontrivial

computation, without a simple probabilitistic interpretation. Furthermore,

while the methods of [1]..[1] [4] provide a procedure for aggregation, this

aggregation is accomplished after the fact -- i.e. the computations (2.2),

(2.3). etc. must be carried out on the full process and only at the end can

one perform aggregation.

This is in marked contrast to results of others which apply only to a

rather restrictive subclass of models as in (1.1). Specifically, under the

condition known as "nearly complete decomposability" on A(a) -- in which the

states at each time scale can be grouped into ergodic classes so that there

are no transient states and transitions between classes occur only at slower

time scales -- one can proceed as follows. Note that P(O) is nothing moe than

the ergodic projection of A(O). If ACe) is nearly completely decomposable,

then (2.2) can be replaced by

Ai~e) = P(O)A( ) ().4)

In fact, because of the simple interpretation of P(O) we can go one step

farther. Specifically, since P(O) is the ergodic projection of an FSMP

without transient states, it can be written as

P(O) uv (1.5)

r

• * . . !
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where V is a matrix of l's and O's. where the l's in a particular row

correspond to the states that form a single ergodic class in A(O) and where

the corresponding column of U is the vector of ergodic probabilities assuming 9

the process starts in this class. From this one can deduce that VU =I and

that the slow time behavior captured by Al(e ) is also captured by

F (e A(= )U (1.6)I e

which is a Markov generator on an aggregated state space with one aggregated

state per ergodic class of A(O) and with transition rates between aggregates

representing average transition rates from states in one ergodic class to I

states in another, where the averaging is done using the ergodic probabilities

of A(O) (i.e. elements of U).

As pointed out in the previous status report, the simplified procedure

just described can break down if there are transient states, at any time

scale, as the averaging implied by P(O) will miss potentially important

couplings of aggregated states through transient states. It is this I

phenomenon that requires the retention of at least some e-dependent terms in

P(e). In our recently completed paper [16] (see also [12], [25]) we have

succeeded in solving the same general problem as in [1]. [2]. [4] but with a

far simpler procedure that maintains the advantages of the proceudre developed

in the nearly completely decomposable case: the computations are

straightforward, with clear probabilistic interpretations, and at each stage

of the procedure we work on increasingly aggregated versions of the original

process. The proof of this result involves rather delicate arguments and

careful accounting for the dominant transition paths between states (and hence if

there is a graph-theoretic flavor to the result). The end resullt of this

...

T-i-°
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analysis is that in th general case, the slow time scale behavior of (1.1) is

capLured by an aggregated Markov generator

C V(e)A(e)U (1.7)

where U is as before, and where the "ergodic class membership matrix" V(e) is

now not simply a 0-1 matrix but is in fact e-dependent. This e-dependence

captures the fact that some transient states of A(O) may in fact have

c-dependent transitions into more than one ergodic class of A(O), and

* therefore the "membership" of this class must be split accordingly. As

discussing in [16]. the elements of V(e) can be interpreted and calculated as

trapping probabilities of simplifed FSP's and in fact all that is needed is

to make sure that the leading order terms of V(e) match those of the

corresponding trapping probabilities and that the columns of V(e) all add up

to 1 (corresponding to the "total membership" of each state in the original

chain). The result is a straightforward computational procedure described in

detail in [16].

The result just described represents a significant breakthrough for

several reasons. First, we now have a computationally feasible method for

multiple time scale decomposition of FSMP's. and this opens the door for the

consideration of the application of this theory to a variety of problems,

ranging from reliability analysis to analysis of networks of queues. Also,

the theoretical machinery we have developed should allow us to make

significant extensions of these results -- to discrete-time chains, perturbed

semi-Markov processes, and to interconnected systems described as in (1.1) but

in which A(e) is not a Markov generator and x(t) is the state of a system

rather than a probability vector. A number of these research directions are

L.i
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elaborated upon in significant detail in [25].

!he other portion of our research during the past year focused on the

development of a modeling methodology and estimation strategies for extremely

complex event-driven systems. As discussed in our preceding status report,

the modeling of cardiac activity and electrocardiogram (EOC) analysis provided

us with an excellent context for this study, since distributed models of the I..,

heart and the ECC analysis problem capture many of the key features found in

numerous applications involving complex signal analysis or the monitoring of

distributed systems. Specifically, our work has focused on the modeling of

coordination, or more specifically timing and control, in interconnected

systems and on the development of distributed estimation structures for such . .

systems. The latter problem has as a major component the design of

coordination strategies for the processors charged with monitoring individual

subsystems. A second major problem we have addressed in our investigation is

the development of meaningful measures of performance for such event-oriented

estimation problems.

During the past year we have completed a major research project in this

area. This research is described in the Ph.D. thesis [10]. Also, we have

completed one paper [15] detailing our approach to constructing distributed

models of cardiac activity, and a second paper [18] describing our methodology

for the design and performance evaluation of distributed estimators for such

models of interconnected systems is in preparation. A variety of directions

for further research have been identified and documented [10].

Or
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r. Ana!vsis and Control of Sin.i..- Pru-'rbed ad Weak y Coupled
Linear Systems

A major part of our research has been devoted to developing an algebraic -

approach to the study of time-scale structure in perturbed, linear.

time-invariant systems of the form

x(t) = A(e)x(t) + B(e)u(t) (2.1)

where x is the N-dimensional state vector, u the m-dimensional vector of

control inputs, and e a (small, positive) perturbation parameter; the entries

of A(E) and B(e) (as well as of other functions of e that are introduced

lrter) are taken from the ring of functions of e that are analytic at 0. Our

accomplishments so far in this direction are contained in the recently

completed thesis [9]. A summary of those results of the thesis obtained

during the last year is presented first.

A second focus for our work in this past year on systems of the form

(2.1) has been the study of their orders of controllability. Considerable

progress has been made on questions we raised earlier in this regard, and this

-" is summarized in the remainder of the section.

1. Time-Scale Structure

Ccnsider first the undriven form of (2.1). namely

k(t) = A(e)x(t) (2.2) _

Assume A(E) to be Hurwitz for a in (O.eo]; the extension to the more general

case where A(e) is semistable is described in [9]. If A(O) is singular, the

system (2.2) is termed sinularly perturbed, because some eigenvalues that are r
nonzero for e = 0 become 0 at a = 0. causing the matrix A(e) to become

. -.

. . ° . . - • . . . , . . . ..' . -'. . -" • - - '.".-- . - - " ' .. . '-. . -. "-. . -. .- ' - ' . .: _ _ . . ' - - -
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singular at e = 0. We consider only this singularly perturbed case in this

sec ion.

There has been much interest in the question of when (2.2) has

well-defined time-scale structure, as defined by Coderch et al. in [1]. The

objective is to expose and exploit this structure by obtaining a time-scale

decomposition of the system. It was shown in [4] that (2.2) has well-defined

time-scale structure if and only if A(e) satisfies a so-called multiple

semistability or MSST condition.

Our algebraic approach to this problem begins by performing a unimodular

similarity transformation of (2.2):

x(t) = P(e)y(t), det[P(O)] nonzero constant (2.3)

The above condition on P(e) causes it to be a well behaved transformation

at e = 0. because its inverse is well defined there. P(e) is chosen such that

the transformed system takes the so-called explicit form

k(t) = D(e)A(e)y(t) (2.4)

where A(e) is also unimodular. i.e. det[A(O)] = nonzero constant, and where

k1 kn
D(e) = diag {e eil ...... nin} , k1 <...< kn (2.5)

The diagonal elements of D(e) are the invariant factors of A(e). The

existence of a Smith decomposition for any A(e) that has entries analytic at 0

is what guarantees the existence of such a transformation.

What underlies many of our results now is the idea that, since A(e) is

nonsingular at e = 0. any time-scale structure of the system (2.4) must be

explicitly displayed by the matrix D(e). (This would be trivially true if we

had A(e) = I.) This time-scale structure should in turn reflect that of the

underlying system (2.2). because the transformation matrix P(e) is unimodular.

- - . . . .. .
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Carrying the same idea one step further, one might believe that significant

errur w n1 n bt be incurred if A(e) in (2.4) is replaced by A(O), yielding what

we call the reduced explicit form of (2.2): [

z(t) = D(6)A(O)z(t) (2.6)

The results below show to what extent these intuitive expectations are

fulfilled.

Let A(O) in (2.6). henceforth represented simply by A. be partitioned

conformably with D(e):

A1 A12 i.. Aln

A A
A= 2 2n (2.7)

A ... A
ni "- nn

Denote the Schur complement of A11 in A by C2 2 and let its leading block

entry be denoted by A22 (=A 22.-A2A11A12). Let C33 then denote the Schur

complement of A in C . and denote its leading block matrix entry by A33.22 22.3-*

Construct A.. for i > 3 similarly. It is then shown in [9] that A(&) in (2.2)

satisfie, the MSST condition of [1] if and only if all the A.. for i > 1 are

Hurwitz (where A11 = A ll) . Furthermore. the multiple semi-simple null

structure or MSSNS condition of [1] is shown to be equivalent to

nonsingularity of the A ii Under the MSST condition, we have shown how to

construct a constant matrix T such that

lim sup Ijexp{A(e)t} - Texp{A(E)t}T-11 = 0 (2.S)
E-40 .,



where
i ^ < .... kn~ .'"-

At ) = amag j"A 1l..... a } (2.9) .
n

This leads directly to an explicit time-scale decomposition of the system ;

" ~(2.2). --

Last year's proposal noted that we seemed to have ready the seeds of an

extension of time-scale decomposition ideas to systems that do not posses C

well-defined time scales in the sense of [1]. An important accomplishment of

our research in this past year has been to obtain results along these lines,

fulfilling the expectations listed last year. To see the issues involved,

consider the following example.

Example I Suppose

A(E) (2.10)

Here A(E) is already in explicit form, and

A 1  A(O) 0 (2.11)

1 1 . .

is nonsingular but (unlike A(E) for small positive 6) is not Hurwitz. In

* other words, A(e) satisifes the MSSNS but not the MSST condition. The

associated system (2.2) therefore does not have well-defined time scales in

the sense of [1], and there is no constant matrix A0 such that

00
lim sup 6exp{A()t} - Texp{Aot}T-11 = 0 (2.12)
&-.0 t >0-



The problem is that the system has a dampling of order higher than its natural

oscli'ation frequency, so that its solutions are of the form

t 2 tx (t)= e - tsin(t+e) (2.13)

If. however, we used the e-dependent matrix

Ao(e) = -e (2.14)

instead of A0 in (2.12). we would find that the equality now does hold.

The above example suggests that if we keep some e-dependent terms in our

system we may obtain valid time-scale decompositions even if the system

satisifes only MSSNS and not MSST. Following up on this idea, we shall say

that the system (2.2) has extended well-defined time scales if there exist

unimodular matrices A.(e). i = I to n. and a constant invertible matrix T such

that (2.S) holds, with A(e) now defined by

kl knA(e) = diag {e Al(e)..... A n(e)} (2.15)

instead of by (2.9). Note that (2.9) and (2.15) then lead directly to the

extended time-scale decomposition. The thesis [9] describes how, under the

assumption that A(e) satisfies MSSNS (and with the standing assumption that it

is Hurwitz for a range of e > 0). one can always obtain such an extended

time-scale decomposition.

Our work over the last year has also rounded out several of our earlier

results on e-dependent amplitude scaling of systems of the form (2.2) in order

to achieve MSSNS in systems that do not already satisfy this condition. The

importance of MSSNS is clear from the above results on extended time-scale .. "
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decomposition. Furthermore, we have earlier shown. see [12]. that under MSSNS

- one can approximate the eigenvaiues of A(E) via those of e" A. e A
rn

where the matrices A.. are as defined above. The thesis [9] describes a IF
.111

p

systematic scaling procedure, along with certain conditions sufficient to

" ensure that the procedure results in a MSSNS system. Though the sufficient

conditions are rather strong (reflecting what we believe to be the intrinsic

difficulty of the problem), we have found that they are applicable to the

sorts of high-gain feedback problems considered by Sannuti and Wason (IEEE . -

Trans. Auto. Control. AC-30, 7. 633-644. July 1985), for example. I

2. Orders of Controllability

Major progress has been made during the last year on the problem of El.-
* defining and understanding the structure and significance of "orders of

*controllability" in systems of the form (2.1). We believe we have now found a

sound, satisfying and self-consistent definition of this notion, and this will "

be outlined here. Our development has been carried out in the context of the

discrete-time system

x[k+l] A(e)x[k] + B(e)u[k] (2.16)

but a similar development can be carried out for the continous-time model

(2.1). (Difference between the considerations for discrete- and continuous-

time systems may be expected to appear when we examine the interaction between

orders of controllability and feedback control of time-scales).

We assume that the system is controllable for a range of e > 0. The set

of states controllable (or, more correctly, reachable) from the origin in N L2

steps, starting at time k = 0, is given by

• o - .-

:- .: .:T .

:::-~~~~~~~~~..'........-.-.. ..... .................. ...... ....,.. ..., .... ... .. . ......:........ .... -. ..-... :.- .-'....- . t.a..-
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!I
x[N] = CN(e)U[N] (2.17a)

CN() = [Be).A()Be) ..... A (a)B(a)] (2.17b) r
and

u[N-1]'

U[N] =u[N-2] (2. 17c)

u[O] i
We now say a target state x[N]=x(e), with entries analytic at 0. is

eJ-controllable if there is a control sequence U[N] = U(e), also analytic at -- "

0. such that

6x(6) = CN(e)U(6) (2.18)

The following examples will help to make this definition more concrete.

Example 2 Suppose

A =e) 6 B(e) = [J

so that

CN(E) = [ e

It is then evident that the target state El 0]
T is 0-controllable, while the

target state [1 1] is only e -controllable. (In the limit of e 0. of

- C.

2- ..°. - % . . . . - . - S
5

* . .. . . . - , . . -.. ,. . . . * . . -
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course, the first target state remains controllable while the second target

szaze is no longer controllable.)

Example 3 If. in A(e) of the above example, we change the e to -e. then

I.I

CN(e) ]
T 0- T

We now find that, while [1 0] is still e-controllable, the target [1 1]

2_
is only e -controllable.

J. j

.The set of -controllable states is denoted by X and constitutes the

SJ-controllable submodule; it is A(e)-invariant. The following inclusion

-: property is then evident from the definition:

X 0C.. X1C.... (2.19)

* We have shown that the structure of these submodules is determined by the

invariant factor structure of CN(e), i.e. by the Smith form of C(e). As with

our time-scale studies, therefore, we are very naturally led to an algebraic

characterization and study of the problem. To see the reason for the role of

the Smith form, let

CN(e) = R(e)M(e)Q(e) (2.20a)

be the Smith decomposition of CN(e ) , where R(e) and Q(e) are unimodular

matrices, and

M(a) = [M(e) 0]. (2.20b)

M(e) diag {eSl iSPI a } sl < ... < sp (2.20c)

i
The structure of the 6 -controllable submodules can then be read off directly

D*. from the matrix R(e)M(e). Rather than describing this here in general ."

OoOL

,% •..
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notation, we simply illustrate the results on the two examples above.

ExazDle 2a For Exampie 2 we have

IF

6 103

of I = a naytia0b
as the Smith decomposition (2.20a). We then have an a -controllable submodule

of the form [Xl(e) ex2() 3T , where xl(e) and x2(e) are analytic at 0 but

otherwise arbitrary, and an e -controllable submodule of the form [x l(e)

:!: x2(_) ]T

Example 3a For Example 3 we have

'".. (e) = ] E :] 7]= 0 ](I: 1  ")4 2X2 '-]T

|There is now an 0 -controllable submodule of the form Ix( 4|__1 2
an e -controllable submodule of the same form, and an e-controllable

* " submodule of the form [xl(6) 2(e)]T

The Smith decomposition also allows us to transform the original system

". (2.16) into a standard form of the type that was conjectured in our proposal

.- last year (written below for the case where si = i-1I to keep the notation

simple)

% a
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Al l(e) Al2(6) ... Alp(e) Bi(e) 14-

R1~ A~( A R =

21 .22(_ A2p(. 2 ! r °%

F2A31(e) eA3 2(e) ... A3p(e) 6 B3(e).

(2.21)

I

With this standard form in hand, we are in a position to more simply discuss

issues such as eigenvalue placement by state feedback. The eigenvalues of

A(e) are clustered around those of the A. (a) in (2.21) above. It turns out

now, as might be expected, that the eigenvalues of A (e) can be shifted by

0(l) using state feedback if and only if we use feedback gains that are

1-i0( ). We have obtained an algorithm to pick, in a way that is directed by

the system structure, a feedback gain that effects a shift of all the

eigenvalues to desired positions.

We believe the road is now open for several useful and interesting _

results to be obtained, aimed at structuring the design and implementation of

feedback control in accordance with (not only time-scale structure but also)

the orders of controllability of the system. Directions for further research

* in this vein are discussed in the accompanying proposal.

" I

. . . . . . . .. . . . . . . . . . . . . . . . ... •.
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III. Singular Systems

During the past year we have continued our research on the class of

discrete-time, boundary-value singular models of the form r

Ex(k+l) = Ax(k) + Bu(k) (3.1)

v =Vox(O) + VNX(N) (3.2)

In the year preceding this past year we had made significant progress in

analyzing the estimation problem for such systems, and this analysis raised a

number of open questions that related directly to the fundamental properties

-- well-posedness. stability, minimality. etc. -- of models of this type. For

this reason we focused most of our efforts during the past year on the

development of a complete system theory for models as in (3.1). (3.2), and in

this area we have made substantial progress. Our results in this area are

outlined in the S.M. thesis proposal [24] and will be described more

completely in the completed thesis and in a paper to be written on this

subject.

One of the basic results we have obtained and used heavily in our work is

the following. Suppose that (zE-A) is a regular pencil (i.e. its determinant

is not identically zero). Then (3.1) (3.2) is well posed if and only if

(oN N
(V E + V A is invertible. In this case, we can always put the system in

standard form, so that

Vo0 + N :I (3.3)

aE + PA = I (3.4)

for some pair of real numbers a and t (note that (3.4) implies that EA = AE).

This result by itself answers an important question posed in our previous

proposal, and, more importantly, it has opened the way for the development of
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a complete theory for this class of systems. In particular, we have developed

results for controllability, observability, and minimality for these systems.

While previous efforts have produced results on these concepts, they are

significantly different from our results for two reasons. The first of these -

is that our use of standard form allows us to obtain far more compact and

easily understood conditions using a generalized Cayley-Hamilton theorem for

regular pencils in standard form. The second is that our investigation of

discrete-time singular models is unique thanks to our inclusion of the general

boundary condition (3.2) (which seems to be the natural choice given the

intrinsic noncausality of (3.1)).

An important property of the class of systems described by models as in

(3.1). (3.2) is that they require two notions each for controllability and

observability. In particular. we can define an inward boundary process

obtained by using the original boundary condition (3.2) and the inputs near

the boundary. i.e. u(k), k e [0. ko) L)(k,N-l] to propagate the boundary

conditions in to corresponding constraints on x(ko) and x(kl). Similarly, we

can define a map propagating outward from the center of the interval. Using

these constructions, we have obtained results on controllability for each of

these mappings and for corresponding notions of observability. Our work here

has paralleled that of Krener in his study of nonsingular continuous-time

boundary-value models (i.e. i = Ax + Bu, with boundary conditions analogous to

(3.2)). although the possible singularity of both E and A leads to several

important differences in our theory. An interesting and perhaps surprising

part of Krener and our theories is the more complicated nature of minimality.

Specifically, minimality does not require both controllability maps to be onto
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nor both observability maps to be one-to-one, and furthermore alternate

minia i realizations may not be related by a similarity transformation.

In addition to the results cited above, we have obtained further results

in the case of stationary processes -- i.e. models for which the weighting

pattern kernel from u in (3.1). (3.2) to

y = cx (3.5)

is shift-invariant. Note that this isn't generally the case even with A. B. C

constant and it in fact requires the commutativity of E. A with V0 and VN .

Our development of a system theory for boundary-value singular systems L

has also led to new results in two additional areas. First, we have derived

and have begun to analyze a boundary-value Lyapunov equation for stationary

models with u(k) a white sequence with covariance Q and v an independent

random variable with covariance ff. This equation differs considerably from

any that have appeared in the control-oriented descriptor literature. "

Once one has a Lyapunov equation, it is natural to ask questions about

stability of models as in (3.1). (3.2). However, stability refers to an

asymptotic property of a recursion, and this raises two questions: what are

"recursive" solutions of (3.1), (3.2) and how do we deal with asymptotic

properties when the interval of interest. [0. N], is bounded. We have made

significant progress on both of these questions. Specifically, in [17]. [19]

7 we discuss a "two-filter" solution to (3.1). (3.2) obtained by decoupling

(3.1) into a causal and anticausal part. These two parts can always be made

stable (in the usual discrete-time linear system sense) if IzE-AI has no roots

on the unit circle. While this is interesting (and is related to previous V _

stability analyses of descriptor systems) it is not completely satisfying,
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used in previous work (on standard, non-singular systems) to obtain recursive

implementations of the optimal smoother. Our results will be described in

detail in [19]. Beyond our results to date, there is much left to be done in F

improving our understanding of the structure of the estimation problem for

these systems and in particular in analyzing the singular Riccati equations

that arise in this procedure and their relationship to the somewhat different

equations that have appeared in other, control-oriented studies of singular

models. In addition, we have continued our work on estimation for 2-D

singular models. In particular [17] contains a description of our work on a

class of such models with sufficient spatial symmetry to allow us to obtain an

extremely efficient solution to the smoothing problem. This is obtained by

decoupling the dynamics in one spatial variable through the use of a discrete

Fourier transform and then using the Hamiltonian diagonalization procedure to

obtain an efficient method for solving the dynamics in the other variable.

Much still remains to be done in this area In considering more general models V
and in obtaining more efficient methods to account for the effect of boundary

conditions.

P
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