PULSED CHEMICAL LASER TECHNOLOGY DEPARTMENT TEST PLAN

SINGLE PULSE DIAGNOSTIC TESTING

DOCUMENT IDENTIFICATION

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

ACCESSION FOR
NTIS GRAA1
DTIC TAB
UNANNOUNCED
JUSTIFICATION

DISTRIBUTION STATEMENT

DATE ACCESSIONED

DATE RETURNED

DATE RECEIVED IN DTIC

REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDAC

DTIC FORM 70A DOCUMENT PROCESSING SHEET
PREVIOUS EDITION MAY BE USED UNTIL STOCK IS EXHAUSTED.
PULSED CHEMICAL LASER TECHNOLOGY DEVELOPMENT

TEST PLAN

SINGLE PULSE DIAGNOSTIC TESTING

Contract No. DAAHC1-83-C-0282

Prepared For

Department of the Army
U.S. Army Missile Command
Redstone Arsenal, Alabama

Prepared By

James P. Moran
Avco Everett Research Laboratory
Everett, Mass.
Pulsed Chemical Laser Technology Development Program Test Plan

Single Pulse Diagnostic Testing

1.0 INTRODUCTION

Single pulse DF and DF/CO₂ transfer laser testing will be conducted to expand the data base for verification and extension of performance scaling relations. Scaling relations are currently based on the analytical effort completed under Task I and the comparison of this analysis with available data.

Tests will explore the effects on performance of gas composition with constituents including F₂, D₂, O₂, HF, NF₃, He, N₂, and CO₂ at both DF and CO₂ wavelengths. Tests will explore the nature of the gas medium in terms of F atom initiation level and gain, the nature of the initiating electron beam source in terms of energy deposition level and uniformity and pulse length, and laser yield in terms of total energy, pulse shape and time resolved spectra. The system will operate at pressures ranging from 200 to 760 torr.
The test plan is preceded by a detailed schedule for implementation of special diagnostics and repetitive pulse power as well as single pulse laser testing. This illustrates the timing of applications of special diagnostics and the availability of time for single pulse testing. Coordination of this with implementation of repetitive pulse power is crucial to the scheduled start of repetitive pulse laser testing in July 1984. Single pulse testing capability will be retained throughout the repetitive pulse testing period. This will allow continued laser testing even in the event of temporary down time for the repetitive pulse power system.

The first two single-pulse test intervals (total two weeks) are viewed as system shakedown and have been described in a letter to MICOM (J.M./Walters) dated 3/1/83. These tests are included in this document for completeness.

2.0 OVERALL EXPERIMENTAL PROGRAM

All elements of laboratory effort through to the start of repetitive pulse testing are listed in schedules of Table I (3 parts), Table II and Table III. Final system shakedown of all new gas handling will be completed 2/24/84. On-line fluorine system shakedown and laser optics installation will be completed 3/2/84. Diagnostics for F-atom production measurements will be installed in the same period.
Laser performance shakedown will be conducted during the week of 3/5 - 3/9. This test will repeat a previous run with a composition of 20 percent F₂, 6 percent D₂, 1 percent O₂, 73 percent He. Calorimetry and laser pulse shape data will be compared with earlier studies to verify the workability of the system after the extensive modifications completed under the current contract. The operational capability of the F-atom formation diagnostics will also be tested.

An improved E-beam cathode will be installed and tested during the week 3/12 - 3/16. This cathode as described in CDR will substantially improve efficiency of conveyance of electrons to the cavity. It will thereby improve electrical efficiency and reduce the power demand on the power supply system.

Laser performance shakedown with the new cathode will be conducted during the week 3/19 - 3/23. In this period, the operation of the jet pumps will be tested in combination with laser testing at subatmospheric pressures.

The test period proper begins 3/26/84. A two-week test period is indicated. During this time, the laser spectrometer will be installed and time integrated spectral measurements will be conducted. The parallel development of time resolved spectral measurements is shown in Table I. After this two-week test period, additional E-beam performance testing will be conducted in the week 4/9 - 4/13.
Implementation of the repetitive pulse power system is shown in the schedule of Table II. Much of the construction is done as modular subassemblies. Certain of the components may be installed in the facility without disrupting laser testing. The period between 4/9 and 5/4/P4 is to provide for installation and testing which may be disruptive to laser performance testing. During this period, the facility is dedicated to this effort although diagnostics implementation continues.

Laser performance testing will be conducted during the weeks 5/7 - 5/11 and 5/14 - 5/18. During this time, the F-atom production and the time resolved laser spectral diagnostics will be operational and will be implemented. Time resolved laser spectral measurements require a multichannel data acquisition system which will be implemented as shown on the schedule of Table I.

The above laser measurements will address DF performance. Conversion to DF/CO₂ operation will be conducted during the week 5/21 - 5/25. Performance measurements for DF/CO₂ transfer laser operation will be conducted during the weeks 5/28 - 6/1 and 6/4 - 6/8. This will complete single-pulse laser performance testing, and the system will be converted for repetitive pulse testing.
Implementation of time dependent gain measurements is scheduled for completion in the week 4/30 - 5/4; however, the tight schedule shows only tentative testing in this single-pulse test period. It may be necessary to postpone these measurements until the repetitive pulse test period. The single-pulse Marx bank driver will be available and operational during the repetitive pulse test period. This will allow operation in this mode, should there be down time for the repetitive pulse power system.

Additional studies in PCL development, which are supported under IRAD funding are shown in Table III for completeness. These efforts address E-beam foil survival under PCL stress and thermal environmental conditions and the development of novel mechanical valving for DF laser applications. Their development does not impinge on single-pulse laser testing.

3.0 SINGLE PULSE DIAGNOSTICS TEST PLAN

3.1 DF Laser Performance Test Plan

Shakedown testing during the week 3/5 - 3/9 (Table I) will duplicate operating conditions of a previous test series. This will reestablish operational capability after the extensive changes which have been made to the system under the current contract. This device baseline operation at 20 percent F₂, 6 percent D₂, 1 percent O₂, 73 percent He yielded
25 J/(atm (DF) with outcoupling of 63 percent and a 100 cm gain length. Electron energy deposition was computed to be 4.1 J/\text{cm}. Scaling relations developed by Mirels predicted an initial F-atom production level of F/F_2 = 0.13 percent for this laser energy yield. Modeling by Physical Sciences Inc. predicted these same initiation/yield conditions when results were scaled on the basis of past comparisons with experiments. On this basis, the code was "anchored" to present device performance, and modeling tests were conducted. The principal guides to development of a test matrix are system capabilities, and the pursuit of operating conditions and performance which are predicted by the PSI modeling effort to be advantageous to Army applications.

Modeling results predict an improvement in baseline yield of 30 percent by decreasing the outcoupled fraction from 63 percent to 40 percent. Implementation of this change is not practical in the present experiment due to added laser optics alignment difficulties. It does, however, indicate a potential improvement in larger devices since the same benefit is obtained by increasing the gain length.

Laser performance with increasing initiation strength, i.e., electron energy deposition level, has been explored with this device for atmosphere pressure operation and with Helium diluent. These results were reported in the September 25th review and will not be duplicated in this test series. The
primary conclusion from these tests was that the laser yield increased with E-beam initiation strength so long as the E-beam pulse length did not strongly overlap the laser pulse. On this basis, the current system will incorporate an new cathode design which will double energy delivered to the gas during a 0.5 μsec pulse. After implementation, the laser energy yield will be measured during the week 3/19 - 3/23 under conditions otherwise identical to the baseline case described above. With electron beam characterization for both E-gun configurations, comparison of laser energy yield will provide a determination of the relationship between yield and initiation strength. F-atom production diagnostics will be implemented during these tests to provide a direct determination of initiation strengths.

Since the F-atom production diagnostics measure HF concentration, the above tests will include a comparison of performance with minimum attainable HF concentration with that which is present in delivered Fluorine cylinders without cleanup. The tests of 3/19 - 3/23 will also examine laser yield as a function of cavity pressure. This will provide the first testing of jet pump operation in combination with laser performance testing.

The above tests are shown in the Test Matrix of Table IV. These will complete shakedown and allow commencement of the test series proper. Test elements listed in Table IV refer to laser performance measurements only. Electron beam testing and other testing is shown in Tables I, II, and III.
The effects of Helium diluent removal will be examined during the test period 3/26 - 4/6. This is of primary importance to Army applications where chemical pumping of all laser exhaust is required. It is also of interest in systems studies since modeling results predict no degradation in DF laser yield with He diluent removal. These predictions are based on constant concentration of stabilizing O2 at 0.01 atm. It is anticipated that O2 concentration will necessarily increase with decreasing He in the experiment to maintain stability. Since the requirements for minimum O2 must be determined experimentally, we anticipate two weeks will be required for these tests. One notes from previously reported modeling results that O2 has a dramatic negative impact on laser yield, hence its minimum stable concentration must be established for each level of He removal. The laser spectrometer will be installed during this test period in a configuration which will allow time integrated measurements.

Production of gaseous F2 from solids by current techniques produces NF3 as a by-product. The ratio of NF3 to F2 is to date 6/5, however, current studies indicate that this may ultimately be reduced to nearly zero. It is important to know the overall impact of NF3 presence on laser performance. It acts as a chain reaction terminator on the negative side but it acts as a stabilizer and as a source of F-atoms in E-beam pumped systems on the positive side. Modeling studies predict a degradation in laser yield of a factor of 0.77 when 0.24 atm of NF3 is added to a diluent free mix of
0.2 atm F₂, 0.06 atm D₂ 0.01 atm O₂. This compares with a degradation of 0.94 with equivalent N₂ dilution and no degradation with equivalent He dilution. These results are based on constant O₂ concentration and do not address the added F-atom yield from NF₃ or N₂. Test series 5/7 - 5/12/84 will address laser performance with NF₃ dilution from zero to 0.24 atm and with N₂ dilution from zero to 0.73 atm. Nitrogen dilution is of interest since further reduction in NF₃ yield from solids is attended by an increase in N₂ yield. The test matrix thus far addresses all the major issues associated with laser mixtures appropriate to Army applications. It is also of interest to explore other diluents such as SF₆ and Ar. These have not been included due to the tight test schedule. They will, however, be addressed in the repetitive pulsed test period. Gain measurements diagnostics are scheduled to be installed during this period. Implementation will depend upon system availability in view of the competing scheduling of other diagnostics. If implementation is not practical here, it will be postponed to the repetitive pulse test period.

3.2 DF/CO₂ Transfer Laser Test Plan

Laser calorimetry and medium probing techniques must be changed for DF/CO₂ performance studies. The calorimeter will be placed inside the mirror box and medium probing will be done through small ZnSe windows. Spectral measurements will require a different grating in the spectrometer.
After modifications, DF/CO$_2$ transfer operation will be studied in the test period 5/28 - 6/8/84. DF/CO$_2$ transfer laser performance studies will begin with no diluent and explore the dependance of laser yield on CO$_2$ concentration. Modeling predicts optimum performance near CO$_2$:F$_2$ = 1:2 whereas Aerospace experiments were conducted with high ratios of CO$_2$:F$_2$. Efficient laser performance at low CO$_2$:F$_2$ ratios would have a favorable impact on system weight and size. After establishing optimum CO$_2$ concentration, the effect of NF$_3$ diluent will be explored. If one neglects absorption, modeling studies predict no degradation in energy yield with NF$_3$ addition. However, absorption by NF$_3$ may be an issue and must therefore be resolved.

4.0 SUMMARY

The test plan addresses all the major issues relevant to Army applications. The test laser is a flowing gas laser. It is currently configured for repetitive pulse operation with the exception of a pulse power system which will be incorporated in June, 1984. Since laser gas handling is nearly the same for single and for repetitive pulse operation, it is much more efficient to broaden the test matrix in the repetitive pulse mode. For example, laser yield vs D$_2$ concentration may be explored in a single run with a large number of data points simply by reducing D$_2$ flow rate continuously with time through the run in a known way. Dependence on concentration of other species may be explored similarly.
<table>
<thead>
<tr>
<th>TABLE I: TEST PLAN TASK III - SINGLE PULSE TESTING</th>
</tr>
</thead>
</table>

A GAS HANDLING
- A1 TEST JET PUMP WITH CAVITY FLOW
- A2 INSTALL SINGLE PULSE FLUIDIC VALVE DRIVE
- A3 TEST FLUIDICS D _m _ _ _ _ 1.0 ATM
- A4 TEST FULL FLOW D _m _ _ _ _ 1.0 ATM, 0.5 ATM

B FLUORINE GAS HANDLING
- B1 INSTALL F 2 SUPPLY GAS CLEANUP
- B2 INSTALL HF HCL PLUMBING
- B3 SHAKE DOWN F 2 GAS HANDLING

C MAIN LASER OPTICS
- C1 INSTALL LASER OPTICS AND CALORIMETER
- C2 INSTALL LASER PULSE SHAPE DETECTOR
- C3 SHAKE DOWN CALORIMETER DIAGNOSTICS
- C4 SHAKE DOWN LASER ALIGNMENT OPTICS

D SINGLE PULSE ELECTRON BEAM
- D1 PUT CARBON FELT ON NEW CATHODE
- D2 TEST TRANSMISSION OF OLD CATHODE, 1/2 IN. FOIL BAR SPACING
- D3 INSTALL NEW CATHODE
- D4 TEST NEW CATHODE TRANSMISSION, 1/2 IN. FOIL BAR SPACING
- D5 TEST NEW CATHODE, FOIL BARS REMOVED

E LASER PERFORMANCE MEASUREMENTS
- E1 TEST OF LASER 1.0 ATM 20 F 2, 6 D 2, 1 O 2, 73 Hz
- E2 TEST OF LASER 0.5 ATM 1.0 ATM 20 F 2, 6 D 2, 1 O 2, 73 Hz
- E3 TEST OF LASER PERFORMANCE MEASUREMENTS, COMPOSITE
- E4 CO 2 LASER PERFORMANCE MEASUREMENTS

Figure
- Anchor Performance
- Improve Electric Eff.
- DP Pulse Shape
- Energy Pulse Spectra
- CO 2 Energy Pulse Spectra
- DP Pulse Shape
- Rep Pulse System Setup
- SHAKE DOWN
<table>
<thead>
<tr>
<th>TABLE I: TEST PLAN: TASK III - SINGLE PULSE TESTING (Continued)</th>
</tr>
</thead>
</table>

- **F** FLUORINE ATOM PRODUCTION MEASUREMENTS
- **F1** FABRICATE F-ATOM REFERENCE AND TEST LEGS
- **F2** SHAKE DOWN LUMINICS OF LASER
- **F3** INSTALL F-ATOM CONVEYANCE OPTICS
- **F4** SHAKE DOWN F-ATOM DETECTORS
- **F5** MEASURE F-ATOM FORMATION

- **G** TIME INTEGRATED LASER SPECTRAL MEASUREMENTS, DF
 - **G1** INSTALL SPECTROMETER
 - **G2** FABRICATE FILM HOLDER
 - **G3** INSTALL FLASH LAMP
 - **G4** IMPLEMENT LASER/SPECTROMETER ALIGNMENT
 - **G5** MEASURE LASER / DF (λ, I) (I)

- **H** TIME RESOLVED LASER SPECTRAL MEASUREMENTS, DF
 - **H0** MEASURE DF (λ, I) - TIME RESOLVED SPECTRA

- **I** TIME RESOLVED LASER SPECTRAL MEASUREMENTS, CO₂
 - **I0** MEASURE CO₂ (λ, I) - TIME RESOLVED SPECTRA

- **J** DATA ACQUISITION SYSTEM
 - **J0** IMPLEMENT 2-CHANNEL A/D DATA ACQUISITION
 - **J1** FINALIZE SELECTION OF DATA ACQUISITION SYSTEM
 - **J2** OBTAIN DATA ACQUISITION SYSTEM
 - **J3** IMPLEMENT DATA ACQUISITION SYSTEM

Note: The table and diagram are not rendered in this text format due to limitations.
TABLE I: TEST PLAN: TASK III - SINGLE PULSE TESTING (Continued)

|------|------|------|------|------|-------|-------|------|------|------|------|-------|-------|-------|------|-------|-------|------|------|

K1 INSTALLED PROBE LASER GAS SUPPLIES
K2 OBTAINED PROBE LASER LINE SELECTIVE OPTICS
K3 ASSEMBLED LASER OPTICS
K4 SHAKE DOWN FLASHLAMPS
K5 INSTALLED PROBE LASER CONVEYANCE OPTICS
K6 SHAKE DOWN GAIN MEASUREMENT DETECTORS
K7 MEASURED GAIN DF (λ, l)
TABLE II: TEST PLAN: TASK III - REPETITIVELY PULSED TESTING

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

L. E BEAM FOIL, REPETITIVE PULSE OPERATION
L1 MODIFY FOIL SUPPORT STRUCTURE FRAME
L2 FABRICATE FOIL SUPPORT BARS
L3 OBTAIN BACKUP 6 MIL KAPTON/10 MIL A FOIL
L4 TEST NEW FOIL STRUCTURE TRANSMISSION, 3/8 IN. FOIL BAR SPACING
L5 TEST NEW FOIL STRUCTURE, BURST MODE REP PULSE

M. REPETITIVE PULSE POWER SYSTEM
M1 COUPLE D.C. POWER SUPPLY TO ENERGY STORAGE CAPACITORS
M2 ASSEMBLE CHARGING THYRATRON MODULE
M3 ASSEMBLE CHARGING REACTOR SYSTEM
M4 ASSEMBLE DISCHARGE THYRATRON MODULE
M5 ASSEMBLE INTERMEDIATE STORAGE CAPACITOR SYSTEM
M6 INSTALL H.V. PULSE TRANSFORMER AND TRIGGER TRANSFORMER
M7 ASSEMBLE PULSE FORMING NETWORK
M8 INSTALL MAIN SPARK GAP AND TRIGGER ISOLATION GAP
M9 INSTALL DUMMY LOAD
M10 COMPONENT CHECKOUT
M11 ASSEMBLE GAS FLOW CONTROL
M12 ASSEMBLE SYSTEM CONTROLS AND TIMING AND DIAGNOSTICS
M13 SYSTEM INTEGRATION
M14 TEST TO DUMMY LOAD
M15 INTEGRATE PPS CONTROLS WITH LASER SYSTEM CONTROLS
M16 INSTALL COAXIAL CABLE COUPLING TO E-Beam BUSHEING

N. LASER PERFORMANCE MEASUREMENTS, REPETITIVE PULSE
N1 DF LASER PERFORMANCE
N2 CO2 LASER PERFORMANCE

Test Start: 6/30/84
TABLE III: TEST PLAN: AERL-IRAD: REPETITIVELY PULSED TESTING

<table>
<thead>
<tr>
<th>Date</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/20</td>
<td>E-beam foil environment simulator</td>
</tr>
<tr>
<td>3/24</td>
<td>Assemble flow train</td>
</tr>
<tr>
<td>3/27</td>
<td>Assemble gas supply and control plumbing</td>
</tr>
<tr>
<td>3/30</td>
<td>Bench test fluidic valves</td>
</tr>
<tr>
<td>3/30</td>
<td>Assemble valving and mixer</td>
</tr>
<tr>
<td>3/31</td>
<td>Assemble spark plugs and ignition circuitry</td>
</tr>
<tr>
<td>3/31</td>
<td>Fabricate foil support structure assembly</td>
</tr>
<tr>
<td>3/31</td>
<td>Install flow and temperature diagnostics</td>
</tr>
<tr>
<td>3/31</td>
<td>System shake down</td>
</tr>
<tr>
<td>3/31</td>
<td>Test candidate rep pulse foils</td>
</tr>
<tr>
<td>3/31</td>
<td>Mechanical D2 valving</td>
</tr>
<tr>
<td>3/31</td>
<td>Complete valving design</td>
</tr>
<tr>
<td>3/31</td>
<td>Design valve drive train and timing</td>
</tr>
<tr>
<td>3/31</td>
<td>Fabricate valves</td>
</tr>
<tr>
<td>3/31</td>
<td>Obtain and assemble drive train components</td>
</tr>
<tr>
<td>3/31</td>
<td>Modify PCL gas handling to accommodate valves</td>
</tr>
<tr>
<td>3/31</td>
<td>Install mechanical valves</td>
</tr>
<tr>
<td>3/31</td>
<td>Test mechanical valve performance</td>
</tr>
<tr>
<td>SERIES DESCRIPTION</td>
<td>PARAMETER</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>3/5-3/9 SHAKE DOWN SYSTEM IMPLEMENT F-ATOM DIAGNOSTICS</td>
<td></td>
</tr>
<tr>
<td>3/19-3/23 SHAKE DOWN SYSTEM WITH CATHODE MODIFICATIONS</td>
<td></td>
</tr>
<tr>
<td>3/26-4/6 LASER PARAMETRICS He REMOVAL IMPLEMENT TIME INTEGRATED SPECTRA</td>
<td></td>
</tr>
<tr>
<td>5/7-5/18 LASER PARAMETRICS ALTERNATE DILUENTS IMPLEMENT TIME RESOLVED SPECTRA</td>
<td></td>
</tr>
<tr>
<td>5/28-6/8 LASER PARAMETRICS DF/CO$_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
END
FILMED
5-86
DTIC