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Large Diffusivity and Asymptotic Behavior

in Parabo’ic Systems

/ Jack K. Hale

Abstract

—-- , For systems of reaction-diffusion equations with

Neumann boundary conditions, it is shown that the solutions
are asymptotic to the solutions of an ordinary differential
equation if the diffusivity is large. The methods apply
also to reaction-diffusion systems with time delays.
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1. Introduction and Statement of Results.

N Many models of chemical, biological and ecological
o problems involve systems of reaction~-diffusion equations

of the form

du/3t = DAu + £(u) in Q

& (1.1)
du/dn = 0 in 3Q

where @ 1is a bounded open set in I@q with 232 smooth,
e N N 2 :
- stant and f: R -+ R is a C"-function. Other types

of boundary conditions may also occur.

In recent years, there have been many investigations

N devoted to the study of stable patterns for (1l.1); that
is, stable solutions which are spatially dependent (see,
Sﬁ- for example, [1-8]). For the understanding of how stable
e patterns are created, it is obviously of interest to char-
acterize those situations for which stable patterns do
not exist and, even more particularly, those systems for
which the flow is essentially determined by the ordinary

differential equation (ODE)
(1.2) du/dt = f(u).

This latter problem has been investigated by Conway,
Hoff and Smoller in [9] under the assumption that there is

an invariant region I for (l.1). A set I < n@‘ is an

u € I@J, D = diag(dl,...,dN), where each dj >0 is a con-
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invariant region for (1.l1) if, for any initial data Ug

with uo(x) € I for all x € @, one has the solution u(t,x)

through U, at t =0 alsoin I for all x € 2. 1In
[10], [2]1, it is shown that an invariant region I for

(1.1) must be a rectangle in IRN if all the diffusion

coefficients dj are distinct. If the diffusion coefficients

are equal, then I can be any convex set which is positively

invariant for (1.2).

Suppose I 1is an invariant region for (1.1), M =
sup{|%f(u)/du] : u € £}, - X is the first nonzero eigen-
value of the Laplacian with homogeneous Neumann boundary
conditions on @, 4 = min(dl,...,dN), and o0 = dx -~ M. In
{9}, it was shown that ¢ > 0 implies the solutions of
(1.1) with initial data in I approach a solution of the
ODE (1.2) as t - =, Since X 1is inversely proportional

to the squared diameter of §, the hypothesis o0 > 0 says

that diffusion on the domain is fast relative to the reaction

term f. In fact, the estimates in [9] show that the spatial

inhomogeneities are quickly damped out if o0 is very large.
As remarked earlier, the hypothesis that It be an in-
variant region for (1.1) severely limits the types of equa-
tions that can be considered. In fact, as pointed out by
Smoller [2;p.212], the property that I 1is an invariant
region for (l.1) is not continuous with respect to the dj.

In fact, if I is a convex positively invariant set for
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the ODE (1.2) and each dj =1, j=1,2,...,N, then I |is

invariant for (l1.1). However, if I is not a rectangle,
then it is not invariant for (1.1) unless the dj remain
equal.

It is the purpose of this paper to begin an investiga-
tion of the behavior of the solutions of (1.1) when the
constant dX is large and the equation (1.1) may not have
an invariant region in I@J. The methods will use proper-
ties of the flow defined by (1.1) in function space and
will be applicable to situations where the equation with
no diffusion is a retarded functional differential equation
or a differential equation with delays. 1In this latter
case, it is almost impossible to have an equation with an
invariant region.

We now describe the results in some detail. Let X =

2,2 N

LZ(Q,JRN), D(a) = {¢EW (2,R ):3¢/3n = 0 on 3N},

A =-A : D(A) » X. In the usual way, one defines the

. o. .
fractional power spaces X using the operator A. 1If

1,2 N

3/4 < a <1, then it is known that x* cw (Q,R") N

Lm(Q,ng) with continuous inclusion. One can then show

(see, for example, Henry [10,p.75]) that, for any u, € Xa,

0
o > 3/4, there is a unique solution u(t,-,uo) € x* of

(1.1) through U, at t = 0 which is continuous in t,u

A set o cx* is a compact attractor for (1.1) if

0°

&/ is compact, invariant and there is a neighborhood U of

o such that the w-limit set of U is /. By the w-limit




set w(U) of U, we mean

ww) = N cL U u(t,+,U0) .
>0 t>T1

In a similar way one can define a compact attractor in :mN

for the ODE (1.2).

If o/ is a compact attractor for the ODE (1.2), then
it can be considered as a subset of the constant functions
in x* and it will be a compact invariant set for the PDE
(1.1). However, it need not be an attractor without some
conditions on D and Q. If 4 = min{dj, j=1,2,...,N} and
-2 1is the first nonzero eigenvalue of A with Neumann
conditions, then the main result of the paper is the follow-

ing

Theorem 1l.1. Suppose o is a compact attractor for the

ODE (1.2). Then there exists a 6§ > 0 such that g con-

. . . Q
sidered as a subset of the constant functions in X,

a > 3/4, is a compact attractor for the PDE (1.1) if

dx > 8. More precisely, there is a neighborhood V of

. o
o in X and constants K > 0, ¢ > 0 such that, for any

u, € Vv, the solution wu(t,*,u,) of (1.1) through wu, at

0

0
t = 0 satisfies

lutt,*,uy) - Sce)] < ke %, £ >0

X

where u(t) = IQI_IJ u(t,x,uo)dx and u(t) satisfies
Q

the equation
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? du(t)/dt = f(u(t)) + g(t,u,) _! |
35
2 where |g(t,uy)| < ke %, t > 0. 2
3 T o
Y G0N
K] The technical part of the theorem states that the solu- k%;
X tion u(t,-,uo) approaches its average value u(t) ex- Ejﬁ
e e
S ponentially as t + © in the space x*. Since a > 3/4, R
: this implies, in particular, that the solution approaches :ﬁ;i
e u(t) exponentially as t > « in Lm(QpRN). The conclu- Eﬁ§
; sions in Theorem 1.1 are the same as the ones in Conway, e
K
¥ Hoff and Smoller [9] mentioned above.
»
n The proof of the theorem is given in Section 2 and
i uses elementary properties of Liapunov functions for ODE's
o,
N
ij and a special decomposition of (1.1). 1In Section 3, we
g consider invariant regions and show how the method presented
- here gives the same qualitative results as in [9], but
o the rates of decay are not as sharp. Generalizations to
N functional differential equations are given in Section 4.
5
.
b 2. Proof of Theorem l1l.1.
N . . N . .
o If Mc R is a given set and x € R is given,
. we let d(x,M) denote the distance from x to M. Suppose
.{ i
o & is a compact attractor for the ODE (1.2). From the book
[ 3
;% of Yoshizawa [11,p.1l11], there is a neighborhood U of
=,
o & and a Lipschitz continuous function V: U > R such
= that, for any x € U,
N
.
'-"'s':-. ; N e T e T e T T T
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(i) Vv(x) =0 if x € ¥

(ii) a(d(x,2)) < V(x) < b(d(x,9/)) where a(r) is
continuous, nondecreasing, a(r{ >0 if r > 0, and b(r)
is continuous, b(0) = 0.

(iii) 6(1.2)(x) < - V(x) where

Vii.2)® = Tim o h" V(u(h,x))-V(x)] with u(t,x)
being the solution of (1.2) through x at t = 0.

In the following, for any ¢ > 0, we let Vc = {x € U:
V(ix) < c}, Vc = CLV_. From property (ii) above, VC is
compact for any c¢ > 0.

Let Wc x° be the linear subspace consisting of the
constant functions, *=we Wt, u=v+W where v € W,

w € wl,
o

(2.1) v = lnl'lj u(x)dx, j'W(x)dx =0
Q Q

We can identify W with I@J and therefore will consider
v as an element of W as well as a vector in IRN
Suppose u(t,+) 1is a solution of (1.1) and let

u(t,+) = v(t) + wit,*), v(t) € W, w(t,*) € w:. Then

dv/dt = P(v,w)
(2.2)
aw/3t = DAw + Q(v,w)
where
P(v,9) = |Q|-lj (v + ¢(x))dx
(2.3) a

Q(v,9) (x) f(v + ¢(x)) - IQI-II f(v + ¢(y))dy.
Q
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Observe that

i
§

X (2.4) P(v,0) = £(v), Q(v,0) =0 . »
X "y
S i

Also, for V € W:, we have

a7
"

¥ [Q, (v, )¥] (x) = f'(v+¢(x))w(x)-|n|‘1[ £' (v+o(y)) Wy)dy T
Q R
= [£' (v+o(x))-£ (V) 1V (x) + £' (V) (x) i:"

- - IQI-IJQ[f'(V+¢(y)) - £ (V) 1v(y)dy ges
Y since J ¥ =0. Since « > 3/4, ¢ € x* implies ¢ € L(Q,R") %i;
Q i

- and there is a constant k such that |[¢| , < k|¢]| . Let NS
> L X RN
. M_ = sup{[f'(v)]: v € Vc}. For any ¢, < c, there is a N
A § >0 such that |¢|] . < 8, v € V_ implies v + ¢(x) € ¥ >
x €1 c A

for x € Q. Since f 1is a Cz-funqtion, it follows that :il

N there is a constant N_ such that ig?
=

[£' (v+d(x)) = £'°(v) | < Nc|¢| o S ch|¢| o o

L x ~:._-:.

- vev, ., |¢] , < 6§ Therefore, E%g
..'.: l x '_-\‘.s
3 |10, (v, )] (x) - £' (Mv(x)| < 2k2Nc|¢|Xa|w|xa e
iﬁ which implies L
K 2 1y =
(2.5)  |Q (v, 0¥ = £' (VIy[, < 2k N_ |2 |¢|Xa|w|xa ;2:

ol

KR

Relation (2.5) and the triangle inequality imply that %?3

) r~‘~‘

- (2.6) letv,e) | < e|¢lxu 0
g S
= 6 = M Kk + 2k°N |n|1/26 s
~ o (o] a,

A,
r

o




in the set v € V_, || o <6
1 X
Let T(t) be the semigroup on wi, 0 <a <1, generated

by the equation

aw/ot DAwW : in Q

ow/dn on Q.

[
(=

. . .‘
>
e

]

Now, fix a > 3/4. There is a constant k; > 0 such that \

0

2 e .'." * ‘.',
AL,
A

A

IT(t)w] < ke®tw] , t>0, wew e
XG - 1 xa a - et
(2.7) N od)
;"?.)'.::
IT(tyw] < kg P wl,, £ 20, we wt o
x¢ - X gy
w o
We can now use the variation of constants formula to rewrite g%?
e
the initial value problem for (2.2) as Sﬁﬁ
N

dv/dt = £(v) + [P(v,w) - £(v)], Vv(0) = Vo -

& e
(2.8) .
2 w(t) = T(t)w, + J T (t-s) [Q(v(s) ,w(s))]ds. e
- 0 o
Ef For any c¢; < c, choose ¢ as before so that |¢] o < §, l%i
= - X e
[ v €V  implies v + ¢(x) € V. Choose a constant o , e
1 Y
Ej 0 <o < A, let k2 be the Lipschitz constant for V on e
v, L= I s~%t179/M) 835 and let v(v) > p > 0 for E

0

Y

(o]
—
."’.I':' v ‘s
L}
wen

.t
.-.‘: v
5]
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With the constants as in (2.6), choose dx > 0 and n < §

A S
b Y s X!

%,

so that

;r
A

t 98 Le(an®! <1

e R

b

PRI 4
-
e

v

Let v(t),w(t) satisfy (2.8). If v(s) € vc ’
1
|w(s)| , < n for 0 < s < t, then relation (2.6) implies that
X

1
'y

.
L B

T

v..
£
EAE AN

VV(E)) < = V(V(E)) + ky|P(v(t) ,w(t)) - £(v(t))| -
< = V(v(t)) + kchklw(t)|xa %fg
.‘}::,
< = V(v(t)) + kZMck" ;:;
LR
- t
2(t) < kle'd“ o) t, o) + k1°[ (t-s) "Pe~d(A-0)(£=8) (o ao

0

e - g

where z(t) = |w(t)] (SXpdot
X

' l-' - L; '0'.".

3

... ,
AR P
; o PR

If y(t) = sup{z(s), 0 < s < t}, then

-d(A~0)t

z(t) < ke z(0) + gy(t).

o
2,4, 0,

[
v A
2otes T

This implies that vy (t)

IA

kl(l-c)-lz(O). . This implies

u

that

LI
Y
(‘l L
te b
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A
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o
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£

[wit)| <
xG

-
&
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>
Q
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V(v(t)) < - V(v(t)) +k

2Mck"
(2.10)
hate) | ¢ L ey |
if it is assumed that v(s) € v, . |wis) ] .
X
Now choose 61 so that kl(l-!) 161 < n. If
v

0 € Vcl, IwolxOl < 6, then relations (2.9), (2.10) imply
that v(t) € v_, |w(t)|] . <n for all t > 0.
¢, & Z

Relation (2.10) also implies that [w(t)| o approaches

zZzero exponentially as t + «®. Thus, the w-limit set of

every solution of (2.2) with initial value Yo € V. ~and
1

|w0| o < & must have w = 0; that is, the w-limit set
X
of any solution of (1.1) with ug = vy + W, satisfying

the above condition must lie in the set wn Vc . Further-

1
more

av(t)/dt = £(v(t)) + [P(v(t),w(t)) - £(v(t))]

and the second term approaches zero exponentially as ¢t + =,

Therefore, the limit set of v must be a union of invar-
iant sets of dv/dt = f£(v) which belong to Vc (see

1l
Yoshizawa [11]). However, all such invariant sets must

belong to . This completes the proof of the theorem.

3. The Case of an Invariant Region.

If equation (1.1) has an invariant region I in

Iﬁq, and v €I, ¢ € wé, v+ ¢(x) €L for x € Q, then
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¢ Conway, Hoff and Smoller [9] prove a more global version of th
. Theorem 1.1. In fact, assuming the initial data U €
Ck'l(Q,ngq), uy,(x) € £ for x € Q, they prove that the o
solution u(t,x) through U, satisfies Iqu(t,°)| 97 iﬁi

fu(t,*) - u(t)| _ -0 as t > » exponentially with L
L
exponent ¢, To obtain the L2 estimate on qu and an l“-

L2 estimate on u(t,.) - u(t) is not difficult using simple

integration by parts and the variational characterization Se

of the first eigenvalue of A. The Lco estimate uses more ﬁEL

sophisticated properties of parabolic equations and the ;ﬂz

g reader is referred to [9] for details. g;i
The method used in the previous section can be ;:,

applied to this case but the exponential estimate is not ;gg

as precise. We briefly indicate how this can be accom- Iif

s
g

plished. If wuj € x*, a > 3/4 and ug(x) € I for x € Q,

then the solution u(t,x) through u, remains in I for QEé
N

all t>0. If ¢ €W., v+ é(x) €I for x € 9, then R
1 EE

one easily shows that |Q¢(v,¢)| < 2|0|*kM where k is such T
that |¢| , < kl¢| , and M= sup{|f'(v)|,v € L}. Using o
L X N

the variation of constants formula :;5:
o

t IO

wit) = P4+ f eP2{t=8) g (v(s) ,w(s))ds P

0 e

: b . AN

and letting k, = 2k, |Q|*, one obtains PN
3 1 f‘i

l ( )I k "d)\tl I DA

w(t < e w A

x¢ =1 0y N

t RRSN

+ 2k kM| e ON(ETS) (pg) *lw(s)| ds NS

3o x® B

2

RO




W

) n
? Let z(t) = |w(t) |xaexp Bt, dx = B > 0, y(t) = suPOiSitz(s) .
rs Then -
&

. t -(dA-B) (t-s) -a
a z(t) < klz(O) + 2k3kM e (t-s) "z(s)ds
e 0
N - \
' < kyz(0) + 2k3kMJ e~ (dA=B) s =%4q y (¢)

0
~
N It is clear that one can choose B8,d so that the coeffic-
il ient 6 of y(t) is <l. Then,
e

-1 -Bt
» lw(t)lXOt < ky(1-8)"Te Tlwyly, 20 .
;: This estimate implies that [w(t) | . and so lw(t)| _+ 0 B
= X L
exponentially as t + ®, This also implies that
N
as P(v(t),w(t)) - £(v(t)) = 0 exponentially and we obtain
Gl
'~

43 all of the conclusions of Theorem 1.1. Of course, the

' exponential estimate is not a good one.

: 4. Functional Differential Equations.

;: Suppose r > 0 1is a given constant, C([-r,O],nsq),
fj f:C([-r,O],an) +{RN is a given Cz-function and consider

':3 the equation

R du(t,x)/3 = DAu(t,x) + f(ut(-,x)) in @

', (4.1)

e

A au(t,x)/sn = 0 on 2Q

where ut(e,x) = u(t+o,x), 6 € [~-r,0), x € Q.
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) As before, let X = LZ(Q,ng), define the spaces x*
and choose 3/4 < o < 1. For any ¢ € C([-r,O],Xa) with
3¢ (6 ,x)/9n = 0, -r < & < 0, one can define a solution

u(t,x,¢) of (4.1) on an interval -r < t < a, a > 0,

with u(6,x,9) = ¢(6,x), -r < & < 0. This solution

u(t,*,¢) will be in xa, it will be continuous in t,¢ and
v continuously differentiable in ¢. The proof of this fact
follows along the lines of Henry [10]) or Travis and Webb

[11].

NN -,

If we let T(t,¢) € C([-r,0],X") be defined by

b <

T(t,9) (8) = u(t+6,+,¢), -r < 6 < 0, then T(t,*) defines
a local semiflow on C([—r,O],Xa). Positive, negative and
complete orbits are defined in the usual way as well as

a-limit sets, w-1limit sets, invariant sets and compact

i attractors. :?j
;g If o c C([-r,O],ng) is a compact attractor for the f:
F. retarded functional differential equation (RFDE), éé
.
a (4.2) dv(t)/dt = £(v (*)) i
then there is a Liapunov function V defined in a neigh- é:
borhood of o and satisfying conditions (i)-(iii) of Ef?
‘i Section 2 (see Yoshizawa [11]). ;ﬁé
: If ¢ € C([-r,0],R") and v(t,y) is the solution of -
: (4.2) through y at t =0 and $(8)(x) = y(x), -r < 8 < O, ;}i
x €0, then ¥ € C([-r,01,Xx%) and u(t,x,9) = v(t,¥), 3
R x € Q, is the solution of (4.1) through ¢. Thus, every }:;
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solution of the RFDE (4.2) is a solution of (4.1). ¥

To obtain the analogue of Theorem 1.1 for (4.1), we

make the decomposition of x* as x*=uveo U: as was

done in Section 2, where U 1is identified with I@‘ and
u=v+w,VveEU, we€ U; implies v = |Q|-1J u(x)dx .
Q

This decomposition of x* induces in a natural way a de-

composition of C([-r,0],Xx%) as
c(l-r,01,x*) = c(-r,0],RY) & c([-r,01,U})
b=+, E(0) = |sz|'1j 6 (6, %) dx
Q

If u is a solution of (4.1) with initial value u

and

u(t,x) = v(t) + wit,x)
v(t) = |Q|_1J u(t,x)dx
Q
then it follows from (4.1) that
(4.3) v(t) = P(v ,w)
(4.4) w(t) = DAw(t) + Q(vt,wt)

where the initial values VO'WO of v,w are given by

vy (8) = |9|'1f u, (8,x)dx
Q
(4.5)

wo(e,x) = uo(e,x) - v(8), =-r <6 <0,

and

‘o

o

B

rrEaL

A
rJ

-
v
b

-
X
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P(E,¥) = Iﬂl-lf £(E + Y(+,x))dx 28
0

---------

(4.6) Q(E,¥) (x) = £(E + Y(*,x)) = P(E,¥) P

£ € c([-r,01,R"), ¥ € C([-r,0],U) . 9

Equation (4.4) with initial data v,

as

t
wit,x) = epétwo(o,x) + j e

0

DA (t-s)

w(t,x) = wo(t,x), t<o

or, for -r < 6 < 0,

t+6
w(t+d,x) = eDA‘t+e’w0<o,x) + f

0

w(t+8,x) wo(t+6,x), t + 6

If we define the n x n matrix function X(8) and semi-

group S(t) by

xo(e) =0 for 6 < 0, XO(O) = I, the identity S

[S(t)wol(e,x) eDA(t+e)w

o(olx) ’

Wo(t+ 8,x),

then the above formula for the solution w becomes

(4.7) wt(e,x) = [s(t)wol(e,x)

t
. I [eDA(t—s)

0

.......

Q(v_,w )ds, t > 0 Ev

eDA(t+6-s)

Xo1(8)Q(vg,w )ds P,

can be written <

’ L

Qv ,w )ds, t+620, ni

<0

t+6>0

£t +0 <0 s
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for all t > 0, -r < 6 < 0. We will write this last

equation as ’Qf‘
'2*

t "y

_ D(t-s) ]

(4.8) Wt = S(t)wo + [0 e XOQ(Vsts)dsl 35!

t >0

always remembering that it is evaluated as in (4.7).

Using the estimates (2.7), equations (4.3), (4.8) and 3
the same type of arguments as in the proof of Theorem 1.1,

one obtains the following result.

Theorem 4.1. Suppose ¥ < C([-r,0] ,]RN) is a compact

attractor for the RFDE (4.2). Then there is a ¢ > 0

such that o/ considered as a subset of C([—r,O],Xa),

a > 3/4, is a compact attractor for (4.1) if dx > 8. More

precisely, there is a neighborhood V of o/ in c(l-r,0],x%)

and constants K > 0, ¢ > 0 such that, for any uo € Vv, '4¥;
the solution u(t,x,uo), t >-r, of (4.1) with
u(e,x,uo) = uo(e,x), -r < 8 < 0 satisfies
= -ct
lu(t,-,uo) - u(t) | <Ke "7, t>0
a—— —
X
where u(t) = |Q|-1J u(t,x)dx, t > -r and u(t) satis-
Q

fies the equation

du(t)/dat = f(Gt) +gltyug), €20

where Ig(t,uo)l < ke Y, ¢ > 0.
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5. Examples.

Examples in ordinary differential equations are very

oo B BN A, . Y
S -

easy to obtain. Conway, Hoff and Smoller [9]) have several

interesting ones for the case in which there is an in-

variant region I. Any two species Volterra-Lotka model
for which the ode's have a unique stable limit cycle in the

positive gquadrant :mf would have a compact attractor o

2

in R, . Therefore, this model with large diffusion would

O LN T A ]

have the same attractor & in the function space.

i As remarked earlier, it is almost impossible to have
E an invariant region when the equation without diffusion
is an RFDE. Therefore, we give an example illustrating
I an implication of the theory for this case.

Consider the scalar differential difference equation

(5.1) V(E) = - (5 + WV [1 + v(t)]

YRS
. PR AT U

- in a neighborhood of u =0, v = 0. Zero is always a
solution of this equation. Also, for u < 0, the origin

is asymptotically stable. At uy = 0, the linearized

R

equation has two eigenvalues on the imaginary axis with the

remaining ones having negative real parts. For yu > 0 there

‘a
E
\-'.
Xy
s

is a Hopf bifurcation to a stable periodic orbit. (See,
for example, Hale [13], Chow and Mallet-Paret [14], Stech
Eﬁ [15].) Therefore, there is a Mo > 0 and a neighborhood
W of zero in C([-1,0],R) such that (5.1) has a compact
-~
oY

L 3 v
R
[} ’

fe v et
e -
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z;
) attractor JXL in W and o = {0} for -my <mw <0 g
and of = w7(0) Uy, for 0 < u < u., where Y is the

" U u u - 0 U .
N reriodic orbit obtained from the Hopf bifurcation and
Ny
d? WE(O) is the unstable manifold of the zero solution.

, Theorem 4.1 implies that 544 is an attractor for the
‘ ‘I
e equation
(Nl
o du(t,x) /3t = dbu(t-x)-(3+ W ult-1,%) [1+u(t,x)] in Q

du(t,x)/on = 0 on 3R

in ¢([-1,0,Xx%), a« > 3/4, if d) > 6 where ¢ is sufficiently
e large. "~ Furthermore, the estimates in Theorem 4.1 show, in
particular, that the orbit Yu is asymptotically orbitally

stable in C([-1,01,X%) if dx > 6.

t

It is clear that the above remarks remain valid for

Vr,
PR
.

",'.'..‘.'

KA

any RFDE in a neighborhood of a Hopf bifurcation. 1In

s

X 3

particular, a stable Hopf bifurcation remains stable if

dA is sufficiently large which is a result previously ob-

Dl AR

:

'
LIS

tained by Yoshida [1l6].
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