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Large Diffusivity and Asymptotic Behavior !-

in Parabo'lIc Systems

/ by

Jack K. Hale

Abstract

For systems of reaction-diffusion equations with

Neumann boundary conditions, it is shown that the solutions

are asymptotic to the solutions of an ordinary differential

* equation if the diffusivity is large. The methods apply

also to reaction-diffusion systems with time delays.

NT$CRAM9
OTIC TAB

Ullannounce o

* Avai77

tA-



1. Introduction and Statement of Results.

Many models of chemical, biological and ecological U
problems involve systems of reaction-diffusion equations

of the form

au/at = DAu + f(u) in Q

Du/an = 0 in 9Q

N
where 2 is a bounded open set in JR with a smooth,
u E JRN, D = diag(dl ,...,dN) , where each dj > 0 is a con-

N N
stant and f: J N i NR is a C2-function. Other types

of boundary conditions may also occur.

In recent years, there have been many investigations

devoted to the study of stable patterns for (1.1); that

is, stable solutions which are spatially dependent (see,

for example, [1-8]). For the understanding of how stable
patterns are created, it is obviously of interest to char-

acterize those situations for which stable patterns do

not exist and, even more particularly, those systems for

which the flow is essentially determined by the ordinary

r ; differential equation (ODE)

(1.2) du/dt f(u).

This latter problem has been investigated by Conway,

Hoff and Smoller in [91 under the assumption that there is

N
an invariant region Z for (1.1). A set Z c JR is an

:7%



•o g

-2-

invariant region for (1.1) if, for any initial data u0

with u 0(x) E Z for all x E S, one has the solution u(t,x)

through u0 at t = 0 also in E for all x E R. In

[10], [2], it is shown that an invariant region Z for

N
(1.1) must be a rectangle in JR if all the diffusion

coefficients d are distinct. If the diffusion coefficientsJI

are equal, then Z can be any convex set which is positively

invariant for (1.2).

Suppose Z is an invariant region for (1.1), M =

sup{13f(u)/Dul : u E Z), - A is the first nonzero eigen-

value of the Laplacian with homogeneous Neumann boundary

conditions on !Q, d = min(dl,...,dN), and a = dA - M. In

[9], it was shown that a > 0 implies the solutions of

(1.1) with initial data in Z approach a solution of the

ODE (1.2) as t . Since X is inversely proportional

to the squared diameter of Q, the hypothesis a > 0 says

that diffusion on the domain is fast relative to the reaction

term f. In fact, the estimates in (91 show that the spatial

inhomogeneities are quickly damped out if a is very large.

As remarked earlier, the hypothesis that Z be an in-

variant region for (1.1) severely limits the types of equa-

tions that can be considered. In fact, as pointed out by

Smoller [2;p.212], the property that Z is an invariant

region for (1.1) is not continuous with respect to the d..
3

In fact, if E is a convex positively invariant set for
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the ODE (1.2) and each d. = 1, j = 1,2,...,N, then E is

invariant for (1.1). However, if Z is not a rectangle,

then it is not invariant for (1.1) unless the d. remain

equal.

It is the purpose of this paper to begin an investiga-

tion of the behavior of the solutions of (1.1) when the

constant dX is large and the equation (1.1) may not have

an invariant region in JR. The methods will use proper-

ties of the flow defined by (1.1) in function space and

will be applicable to situations where the equation with --

no diffusion is a retarded functional differential equation

or a differential equation with delays. In this latter

case, it is almost impossible to have an equation with an

invariant region.

We now describe the results in some detail. Let X =

L2 (IRN , D(A) E W2(=M N ) an = 0 on 30,

A = -A D(A) - X. In the usual way, one defines the

fractional power spaces X( using the operator A. If

3/4 < a< 1, then it is known that X c W 2 (o,iRN ) l

NL'(Q,IRN  with continuous inclusion. One can then show

(see, for example, Henry [10,p.75]) that, for any u0 E X

a > 3/4, there is a unique solution u(t,.,u0 ) E X of

(1.1) through u0 at t = 0 which is continuous in t,u0 .

A set - c Xa is a compact attractor for (1.1) if

JCV is compact, invariant and there is a neighborhood U of

-' such that the w-limit set of U is . By the w-limit "-."

ri

I:.'-" ....""""" '" ."""""-. S. -'. .""''' .... ,....-" ", ," ". " ".2 -.", : . " ' ' -. ' ' : ' -' ' 2



A%

-4

set w(U) of U, we mean

w (u) = l c, U u(t,.,U)
T >0 t>T

In a similar way one can define a compact attractor in 3RN

for the ODE (1.2).

If JQO is a compact attractor for the ODE (1.2), then

it can be considered as a subset of the constant functions

in Xa  and it will be a compact invariant set for the PDE .

(1.1). However, it need not be an attractor without some

conditions on D and Q. If d = min{dj, j=I,2,...,N} and f"..

-X is the first nonzero eigenvalue of A with Neumann

conditions, then the main result of the paper is the follow-

ing

Theorem 1.1. Suppose _ is a compact attractor for the

ODE (1.2). Then there exists a 6 > 0 such that Q con-

sidered as a subset of the constant functions in X ,

a > 3/4, is a compact attractor for the PDE (1.1) if

dX > 6. More precisely, there is a neighborhood V of

a
in X and constants K > 0, c > 0 such that, for any

u 0 E V, the solution u(t,',u0 ) of (1.1) through u0 at

t = 0 satisfies

lu(t,.,u 0  - u(t) I < Ke -  t >0

where u(t) = u(t,x,u)dx and u(t) satisfies

the equation

°- .- --,. .. . -- -.- .... . .. . . . .- ,.. .,., -. ... .... .... ..-. , -. .-.., -.. ..-, ..i:
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du(t)/dt = f(u(t)) + g(t,u 0)

tW
where iLg(t,u01) < Ke- c , t > 0.

The technical part of the theorem states that the solu-

tion u(t,',u 0 ) approaches its average value u(t) ex-

ponentially as t in the space X. Since a > 3/4,

this implies, in particular, that the solution approaches

u(t) exponentially as t in L (, R). The conclu-

sions in Theorem 1.1 are the same as the ones in Conway,

Hoff and Smoller [9] mentioned above.

The proof of the theorem is given in Section 2 and

uses elementary properties of Liapunov functions for ODE's

and a special decomposition of (1.1). In Section 3, we

consider invariant regions and show how the method presented

here gives the same qualitative results as in [9], but

the rates of decay are not as sharp. Generalizations to

functional differential equations are given in Section 4.

2. Proof of Theorem 1.1.

N N
If M c JR is a given set and x E IR is given,

we let d(x,M) denote the distance from x to M. Suppose

- is a compact attractor for the ODE (1.2). From the book V-I

of Yoshizawa [ll,p.lll], there is a neighborhood U of

_Q and a Lipschitz continuous function V: U JR such
-. athat, for any x E U,

- ",

,a-.'

9 .------ ,- - -? ' %: -? < .i.; .: ?:.: .i .; ": .: ."-'- "i."-'".i -: .: -2 -i '.? ,i."-'-" - ?.-- i.'- 2."-' "-.i' -.: .. ? .".-.



-6-

Vi V(X) =0 if xE (

(ii) a (d (x, -)) < V (x) < b(d(x,jV')) where a(r) is

continuous, nondecreasing, a(r) > 0 if r > 0, and b(r)

is continuous, b(O) = 0.

(iii) (.)(x) < - V(x) where

()= lixnh, 1Vu ~)-V(x)] with u(t,x)

being the solution of (1.2) through x at t 0.

In the following, for any c > 0, we let V {x E U:
C .

V(x) < c), V=CtV From property (ii) above, V is
C C C

compact for any c > 0.

a
Let W CX be the linear subspace consisting of the

aI
constant functions, Xa =WeDW u=v+w where yEW,L

aa

(2.1) v I101f u(x)dx, fn w(x)dx= 0

N
We can identify W with 3R and therefore will consider

v as an element of W as well as a vector in 3 N*

Suppose u(t,*) is a solution of (1.1) and let

u(t,*) =v(t) +I w(t,*), V(t) E W, w(t,*) E W.1 . Then
a

dv/dt =P(v,w)

(2.2)

w/at D~w + Q(v,w)

where

(2.3) P(v,) f t f(v + 4(x)) dx

* ~~~~Q(V,4 )(X) =f(v + O(iX)) -I~
1 fv+~y)y
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Observe that

(2.4) P(v,0) = f(v), Q(v,0) = 0 .

Also, for * E W , we have

[Q (v, )P] (x) = -l f (v+$(y)) iPy)dy

[f'(v+(x))-f'(v)1](x) + f'(v)*(x) I,.

- Vfl - [f'(v+O(y)) - f'(v)h]J(y)dy

since = 0. Since a > 3/4, E X a implies L (S,2RN )

and there is a constant k such that < k Xol Let
L X

M = sup{If'(v)I: v E V }. For any cI < c, there is ac c

6 > 0 such that W Ia < 6, v E V implies v + f(x) Vc

2_ 1for x E S. Since f is a C -function, it follows that

there is a constant N such that
c

If'(v+O(x)) - f'(v) I < NcI1I < N kiol a
L X

V E V, IIXc < 6. Therefore,

xxI[Q (v, 0)*](x) -f (v)*(x)l 2k2Ncl a1*x a

which implies
r

(2.5) IQ (v O)* - f'(v)lx <__ 2klNcl~l2I~I l Wx11
x

Relation (2.51 and the triangle inequality imply that

(2.6)Io v )l _ el l :-,

e M k + 2kN2 ni,/ 11 2&
- "

......................................................................
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in the set v V cl, lI < 6.

Let T(t) be the semigroup on WL, 0 < a < 1, generated

by the equation

aw/3t = DAW in 1.

..,. .,

aw/an = 0 on an.

Now, fix a > 3/4. There is a constant k > 0 such that

P"~~ ,r*-'

IT(t)wl < ketdXtwx a > 0, w E

(2.7)

IT(t)wlxa < ke- tt-IwIX, t > o, w . E WI
- - ,9 V,

We can now use the variation of constants formula to rewrite
'

the initial value problem for (2.2) as

dv/dt = f(v) + [P(v,w) - f(v)], v(0) v v ,

(2.8)
t

w(t) = T(t)w0 + fT(t-s) [Q(v(s),w(s))]dS.

For any c _ < c, choose 6 as before so that a< 6,

v E V implies v + O(x) E V. Choose a constant a,
1l C

0 < a < X, let k be the Lipschitz constant for V on

a, L=s and let V(v) > p >0 for
% - C Js

vEV. "

L

* . . . .. . . . . . *-,
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With the constants as in (2.61, choose dX > 0 and n < 6

so that 4"

CdfklLe (dX)-i < 1

(2.9) p k2 M kn > 0

Let v(t),w(t) satisfy (2.8). If v(s) E V

1wlsl1 ia < n for 0 < s < t, then relation (2.6) implies that

V(v(t))< - Vlv(t)) + k~lP(v(t),w(t)) - f(v(t)l.

< - V(v(t)) + k2Mcklw(t) a

< - V(v(t)) + k M kin2 c
": kl e  I(N-dr) t [ t " "

z(t) < kIe' z(O) + kle (t-s)-e-d('-)(t-sz(s)ds

where z(t) = Iw(t)I1 expdat
x

If y(t) = sup{z(s), 0 < s < t), then

[" -~d (A-a) t-,
zt) < kIe z(0) + CY(t).

This implies that y(t) < k(1-0) z(0). This implies

that

k
Iw(t) I < edGt wI

* Thus, we see that

'p'

,'p.l

.";. "?< .? .-,:." -'.'. ,. .- .,'.-°.'.'.-.. v . ... '.. . . . " .,.-...... ....... '-...,.'. -,,.. . , .'...'-.
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V(v(t)) < - V(v(t)) + k2Mckn
(2.10)

lw(t) I  I edat I

if it is assumed that v(s) E V lw(s)j < n.

Now choose 61 so that k1- 1 a n . If

v0 E VcI  1w0 x a < 6 then relations (2.9), (2.10) imply
1 x

that v(t) E Vc, lw(t) I < n for all t > 0.
c a

Relation (2.10) also implies that Iw(t)1 a approaches

zero exponentially as t - . Thus, the w-limit set of

every solution of (2.2) with initial value v0 E V and

lwol < 61 must have w = 0; that is, the w-limit setX
of any solution of (1.1) with u0 = v0 + w0  satisfying

the above condition must lie in the set W n Vc. Further-

more

dv(t)/dt = f(v(t)) + [P(v(t),w(t)) - f(v(t))]

and the second term approaches zero exponentially as t -,

Therefore, the limit set of v must be a union of invar-

iant sets of dv/dt = f(v) which belong to V (see
c1

Yoshizawa [11]). However, all such invariant sets must

belong to . This completes the proof of the theorem.

3. The Case of an Invariant Region.

If equation (1.1) has an invariant region E in

mN, and v 6 Z, E C W, v + O(x) E Z for x E P, then

7-..



Conway, Hoff and Smoller [9] prove a more global version of,

Theorem 1.1. In fact, assuming the initial data u 0 E

ck'I(0,IRN ) , u0(x ) E E for x E 0, they prove that the

solution u(t,x) through u0 satisfies IVxt,) ".',

Ju(t,') - u(t) l 0 as t exponentially with . ._

1L 2
exponent 1. To obtain the L estimate on V u and an

kx

L estimate on u(t,-) - u(t) is not difficult using simple

integration by parts and the variational characterization

of the first eigenvalue of A. The L estimate uses more

sophisticated properties of parabolic equations and the

readbr is referred to [9] for details.

The method used in the previous section can be

applied to this case but the exponential estimate is not

as precise. We briefly indicate how this can be accom-

plished. If u0 E Xa, a > 3/4 and u0 (x) E Z for x E 0,

then the solution u(t,x) through u0  remains in E for

all t > 0. If 4E V, v + 4(x) E E for x E 0, then

one easily shows that IQ (v,)I < 2101 kM where k is such --4

that 14)1 , < k) l a and M = sup{lf'(v)l,v E E}. Using. L Xe

the variation of constants formula

DAt (t-s)

w(t) = e w+ Q(v(s) ,w(s))ds

and letting k3 = 2klISI one obtains
k -d xt  .=7.

Iw(t) Ixa < k e W0 a

+ 2k k! e0dX(ts) (t-s)- aIw(s) I X a-ds: 2k o xaM

B).'
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Let z(t) = Iw(t)I1 exp at, dX - 8 > 0, y(t) = suP0<s<tz(s).

Then

z(t) < klz(0) + 2kek (t-s) az(s) ds

< klz(0) + 2k3kMJ e(d-)Ss-ads y(t)

It is clear that one can choose a,d so that the coeffic-

ient e of y(t) is <1. Then,

jw(t) ~ < k (1-e) -le-St1w0 I , t > 0
;.4,

This estimate implies that Iw(t) 'a and so Iw(t) IL - 0
L

exponentially as t - .This also implies that

P(v(t),w(t)) - f(v(t)) - 0 exponentially and we obtain

all of the conclusions of Theorem 1.1. Of course, the

exponential estimate is not a good one.

4. Functional Differential Equations.

Suppose r > 0 is a given constant, C([-r,0],] ),

f:C((-r,0],IRN ) +JN is a given C 2-function and consider

the equation

3u(t,x)/at = DAu(t,x) + f(u (-,x)) in
t 4

(4.1)

Du(t,x)/;n = 0 on a

where u (O,x) = u(t+,x), 9 E [-r,0], x E Q.
t
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As before, let X = L2 (Q,), define the spaces a

and choose 3/4 < a < 1. For any E E C([-r,0],X) with

a4 (e ,x)/3n = 0, -r < 0 < 0, one can define a solution

u(t,x,) of (4.1) on an interval -r < t < a, a > 0,

with u(e,x,4) = f(6,x), -r < 0 < 0. This solution

au(t,',) will be in X , it will be continuous in t, and

continuously differentiable in . The proof of this fact

follows along the lines of Henry [101 or Travis and Webb

If we let T(t,4) E C([-r,0],X ) be defined by

T(t,f)l(e) = u(t+O,.,f), -r < 0 < 0, then T(t,') defines

a local semiflow on C([-r,0],X ). Positive, negative and -

complete orbits are defined in the usual way as well as

a-limit sets, w-limit sets, invariant sets and compact

attractors.

If ' c C([-r,0],3 ) is a compact attractor for the

retarded functional differential equation (RFDE),

(4.2) dv(t)/dt f(vt "

then there is a Liapunov function V defined in a neigh-

borhood of _/ and satisfying conditions (i)-(iii) of

Section 2 (see Yoshizawa [il]). ..

N
If E E C([-r,0],]RN 1- and v(t,) is the solution of

(4.2) through t at t = 0 and t(O)(x) = J(x), -r <_ < 0,

x E Q, then E € C([-r,O],X a ) and u(t,x,) =V(t,

x E 0, is the solution of (4.1) through p. Thus, every

NJ

".-r

-a-','
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solution of the RFDE (4.2) is a solution of (4.1) .

To obtain the analogue of Theorem 1.1 for (4.1), we

make the decomposition of X as X =U (D as was

N
done in Section 2, where U is identified with mR and

u = V+W, v EU, w EUa implies v = IQ2I-ulxf d

This decomposition of Xainduces in a natural way a de-

composition of C([-r,O],X )as

C( ~ [-,lX C -,l1N IDC -rO '

= + Ep (e) = II-1fJCe,x)dx

If u is a solution of (4.1) with initial valueu

and

u(t,x) =v(t) + w(t,x)

v(t) In Izlu(t,x)dx

then it follows from (4.1) that

(4.3) v~)=P(v~it

(4.4) w(t) =D~w(t) + Q (v tiwt)

where the initial values v0 1w0  of v,w are given by

v0 (e) =Q V~lu 0(O,x)dx

w (8,x) =u (O,x) -v(6), -r < 6e 0,
0 0

and

vN
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=( ) 121I1f f( P 0(,X))dx

(4.6) (x) = (C + (.x)) - P(.,iP)

E E C([-r,01,JN), E C C([-r,0],U } •E

Equation (4.4) with initial data wO can be written

as

w(t,x) = eDAt w0(,x) + r eDA(t-s) Q(VsW )ds, t > 0
00

w(t,x) = w0 (t,x), t < 0

or, for -r < 0 < 0,

wt"0 eDA (t+e) (+ e DA(t+e-s)Q )s'">"w(t+Olx) e w0(0,x) + f e Q VsWs)ds, t+0>0,10
w(t+e,x) = W0(t+O,x), t + 0 < 0

If we define the n x n matrix function X(0) and semi-

group S(t) by

!.:: X0 (0) = 0 for e < 0, X0 (0) 1 , the identity"!1

[S (t)w0 (,x) eDA(t+) (,x), t + 6 > 0

tV.,h I :: r Wo(t + O,x), t + e < identity

then the above formula for the solution w becomes

(4.7) wt(O,x) = [S(t)w 0 1 (0,x)

f teDA 

"-s)

S (Sx] (8)Q(v sw )ds

0 0 s.

i'.' '' , " " ." .. ' ' -,.,.,.% ' ,", ,' '-','_ e -', ..."-""' . ..'' ."'•" ..'' . - .-, ."' .'"" " .
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for all t > 0, -r < 0 < 0. We will write this last

equation as

rt eD(t-s)x0
(4.8) wt = S(t)w0 + e (Vsws)ds,

t > 0

always remembering that it is evaluated as in (4.7).

Using the estimates (2.7), equations (4.3), (4.8) and .

the same type of arguments as in the proof of Theorem 1.1,

one obtains the following result.

Theorem 4.1. Suppose 'C C( [-r,0] ,RN) is a compact

attractor for the RFDE (4.2). Then there is a 6 > 0

such that j considered as a subset of C([-r,0],X ),

a > 3/4, is a compact attractor for (4.1) if dX > 6. More

precisely, there is a neighborhood V of a in C([-r,0],X )

and constants K > 0, c > 0 such that, for any u0 E V,
the solution u(t,x,u0 t > -r, of (4.1) with

u(8,x,u0 ) u0 (6,x), -r < 0 < 0 satisfies

Ju(t,.,u 0 ) - u(t) < Me - c t  t > 0

where u(t) l (t,x)dx, t >-r and u(t) satis-

fies the equation

du(t)/dt = f(u t ) + g(t,u )  t> 0

where Ig(t,u 0) I < Kect, t > 0.

. *%***** > ~,...'.* ..V
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) I5. Examples.

Examples in ordinary differential equations are very

easy to obtain. Conway, Hoff and Smoller [9] have several

interesting ones for the case in which there is an in-

variant region E. Any two species Volterra-Lotka model

for which the ode's have a unique stable limit cycle in the

positive quadrant JR+2 would have a compact attractor -Q
2

in R+ Therefore, this model with large diffusion would

have the same attractor _2( in the function space.

As remarked earlier, it is almost impossible to have1
an invariant region when the equation without diffusion .- ..-

is an RFDE. Therefore, we give an example illustrating

an implication of the theory for this case.

Consider the scalar differential difference equation

(5.1) v(t) = -( + i)v(t-l) [1 + v(t)]

in a neighborhood of p =0, v =0. Zero is always a

solution of this equation. Also, for < 0, the origin 9..

g is asymptotically stable. At p = 0, the linearized

equation has two eigenvalues on the imaginary axis with the

remaining ones having negative real parts. For p > 0 there

r is a Hopf bifurcation to a stable periodic orbit. (See,

for example, Hale [13], Chow and Mallet-Paret [14], Stech

I_ [15].) Therefore, there is a Po > 0 and a neighborhood

W of zero in C([-l,0],]R) such that (5.1) has a compact

.I.
% -, , ". . ...
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attractor W in W and W = {O} for -p0 < p < 0

Uand j = w (0) U y for 0 < P < P0 , where y is the

periodic orbit obtained from the Hopf bifurcation and

W (0) is the unstable manifold of the zero solution.

Theorem 4.1 implies that j2 is an attractor for the

equation

au(t,x)/Dt =du(t-x)-( + p)u(t-lx)[l+u(t,x)] in

Du(t,x)/3n = 0 on 3Q

in C([-I,0,Xa), a > 3/4, if dX > 6 where 6 is sufficiently

large. Furthermore, the estimates in Theorem 4.1 show, in

particular, that the orbit Y is asymptotically orbitally

stable in C([-I,0],X) if dX > 6.

It is clear that the above remarks remain valid for

any RFDE in a neighborhood of a Hopf bifurcation. In

particular, a stable Hopf bifurcation remains stable if

dX is sufficiently large which is a result previously ob-

tained by Yoshida [16].

a r

........................
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