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Typical inward type Pt-Al structures exhibit effect of
pre-aluminizing heat treatments: (a) 1/2 hr. at 870° C,
(b) 2 hrs. at 980° C, and (c) 1 hr. at 1050° C. .

SEM photomicrograph of inward type Pt-Al structure contains
four zones.

Typical outward type Pt-Al structures exhibit effect of
pre-aluminizing heat treatments: (a) 1/2 hr. at 870° C,
(b) 3 hrs. at 1040° C, and (c) 4 hrs. at 1080° C.

The outer=-zone structure of Pt-Al coatings exhibit:
(a) single phase, inward type structure and (b) two phase
outward type structure.

Effect of prolonged exposure of Pt-Al coatings in air at
1080° C exhibit: (a) single phase structure after 1 hr. heat
treatment and (b) single phase structure after 24 hrs. heat
treatment.

Effect of prolonged exposure of outward type Pt~-Al coatings in
air at 1080° C exhibit: (a) two phase structure after 1 hr.
heat treatment and (b) single phase structure after 24 hours
heat treatment.

Elemental distribution across the Pt-Al coatings:
(a) Pre-aluminizing heat treatment, 1/2 hr. at 870° C,
(b) Inward type coating and (c) outward type coating.

Possible modification of NiAl diffusion data (29) with the
addition of Pt.

Surface attack of Pt modified aluminide coatings exposed for
200 hours hot corrosion condition at 900° C with various
pre-aluminizing diffusion heat treatments.

Typical low temperature hot corrosion attack at 700° C:
(a) specimen exhibits little attack on PtAl,; phase and
(b) substantial hot corrosion attack beneath the PtAl, phase.

SEM photomicrographs exhibit: (a) inward type LTHA
platinum=aluminide coating and (b) typical LTHC attack after
100 hours exposure at 700° C.

Typical example of surface rumpling of Pt-Al coatings:

(a) sample exhibits macro surface roughness (8x), (b) enlarged
photomicrograph (64x) and (c) cross-section of same specimen
showing surface upheaval on the order of 50 um.

Ductile to brittle transition temperature (DBTT) and fracture
strain of Pt-Al coatings as function of structure and Al-Pt
content.
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stea¥ch presented in this report is the result of an Office of Naval
Research sponsored program begun in 1981. This effort was jointly funded
at the Lawrence Berkeley Laboratory, University of California and the
Department of Mechanical Engineering, Naval Postgraduate School through
FY84 and completed at the Navgl Postgraduate School through FY8S. During
this program, a number of scientists and students participated in various
phases of the research. They are listed in Appendix I. A summary of the
publications and presentations from this work are listed in Appendix II.
Ongoing research programs and activities initiated during this effort are

listed in Appendix III.
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The use of noble metal modified aluminide coatings has gained renewed .
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interest as the requirements of improved protectivity for gas turbine
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ﬁ engine components has increased. Increasing temperature, severity of

. operating environment and required lifetime extengsion are cited as
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reasons for their selection. While the literature documents examples of Qi‘
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significant improvements in hot corrosion resistance at low (<800° C) and

.
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high (>800° C) temperatures and in cyclic oxidation with Pt additions,

there are also examples of limited improvements and even detrimental
effects. These controversies have been preliminarily ascribed to the T
considerable differences in microstructural features possible in these g

systems and to the variation in test procedures between laboratories, and

between rigs and engines. A systematic study was therefore initiated to

identify the microstructural variations obtained for platinum-modified
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aluminide coatings on IN738 and to develop a fundamental understanding of ';fﬁ

their mechanism of formation. 1In this final report, the several - 5

203 classical structural types are defined together with the beginnings of .g;_
: Ny

their formation understanding. These microstructures were then subjected
to a series of tests under conditions including hot corrosion at 700 and
900° C, and cyclic oxidation. In addition, measurements of mechanical
properties such as DBTT were performed.

It was found that platinum addition to a standard aluminide is
beneficial at 900° C, so far as hot corrosion attack is concerned. Hot
corrosion resistance at 700° C is strongly structure dependent with most
structural types offering little advantage over the unmodified

aluminides. Pre-aluminizing heat treatments and their resulting effect
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on the coating structure and composition are important variables that seem

to be the dominant controlling factors for the tensile ductility and

corrogion resistance. The resulting surface roughness of these coatings

and the selective interaction of the Pt with specific substrate elements
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may play an important role in the ultimate behavior of these coatings and

their performance in cyclic oxidation.
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I. INTRODUCTION

The development of new generation, higher performance, and

A AR
()
P

cogst~effective heavy duty gas turbine engines demands longer service life

[

as compared to the engines used in the early seventies. These engine
components made of superalloys, are generally exposed to very high
operating temperatures in conjunction with a wide variety of lower grade :}}'
fuels, and often are used in marine environments. Therefore, high
temperature hot corrosion and oxidation are common failures modes of
these turbine engine components and/or other fuel fired energy systems.
Diffusion aluminide coatings (1,3), commonly deposited by the pack
cementation process, were first applied on superalloy substrates to

improve high temperature oxidation and hot corrosion resistance and thus

improve the service life of gas turbine engines and their components. It
has been reported that the simple or unmodified aluminides suffer hot
corrosion attack caused by the fluxing of the protective scale by molten

salts and the impurities present in the combustion gases (4). Besides

this, the protectivity and durability of the simple aluminide coatings
depend to a major extent on the substrate alloys composition. This

prompted the development of the MCrAlY class of overlay type coatings

designed to provide a protection system essentially independent of the

substrate and with a variable composition optimized to provide hot A

corrosion resistance and in some instances improved mechanical properties
such as ductility and thermal fatigue resistance. The MCrAlY overlay
coatings are generally produced by electron beam physical vapor

deposition (EB-PVD) or advanced plasma spray techniques (5,6).




The aluminide coatings, modified by the additions of critical
alloying elements, have gained renewed interest because they offer
economical alternatives to the EB-PVD and plasma spray deposition
techniques. A number of alloying elements have been tried to improve the
coatings, including chrominum, silicon, and the "active elements" like
hafnium and, finally, the noble metals such as platinum (7,8).

Aluminide coatings modified by the additions of platinum, rhodium and
palladium have been known for a number of years and used in production
applications for the protection of airfoils in heavy duty gas turbine
engines and various other aircraft and marine engines. However, there
have been some controversies on the advantages of, and the reason for,
the beneficial effects of platinum in the modified aluminide coatings
corrosion and oxidation resistance (9~24). It has been suggested that
these conflicting findings are mainly the results of differences in the
structures reported for the various types of coatings investigated. Few
data are available in the literature on the mechanical behavior of these
systems.

In recent years there has been a renewed interest in the possible
performance and economic benefits to be gained from the use of the
platinum aluminide coatings. It is also seen in the literature that
there has been an increase in research activity into the platinum
modified aluminide coatings. The objective of this final report is to
review the present state of knowledge in this are$ together with the
latest test results developed in this program to provide a better
understanding about these unique surface structures and their performance

under hostile environments.
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II. BACKGROUND

A. THE AVAILABLE Pt-ALUMINIDE COATINGS

In a review of the structures of "standard" Pt-Al structures (1-27),
it was apparent that a wide range of variations were possible for the
available commercial and developmental coatings, and that the existance
of such differences might help to explain some of the apparent test
anomalies reported. The first commercial Pt-Al system was produced by
Lehnert, et al. {(7) and designated LDC-2 with a reported four-fold life
increase in cyclic oxidation and a greater than two-~fold improvement in
hot corrosion resistance over a simple unmodified aluminide coating. The
structure of the LDC-2 coating was found to have a single phase PtAl,
surface structure containing some Ni. It was later learned that Cape (8)
and others (9) had earlier disclosed the possible beneficial effects of
Pt additions to coating systems.

A second coating structure described by Seelig, et al. (10), and
designated RT-22, though formed by the same process, i.e., initial Pt
electrodeposition followed by pack aluminizing, exhibited a two-phasc
structure. In comparison with the LDC-2 version, a more uniform,
deeper gradient of a lower concentration of Pt dissolved in the cubic

8(Ni,Al) phase is present in the RT-22 together with a dispersion of a
PtAly second phase. 1In this coating system as well as others, the
density and distribution of this second phase appears to vary in a number
of the samples examined and is hence a fruitful area for research.

A potential third version (although not necessarily a different type)

of Pt=-aluminide structure developed at Johnson Mathey in collaboration
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with Rolls=-Royce, designated JML-l, was perfected and described by Wing
and McGill (11). A fused salt platinum electrodeposition technique was
used followed by a high activity aluminizing treatment. This coating is
reported to have a different structure and platinum distribution with the
presence of a thick PtjyAlj outer layer over a duplex (Ni,Pt); Al + PtAl
structured zone. The apparent absence of PtAlj, the Pt-rich phase
reported in many Pt-aluminide coatings, is not explained. (Note that
this PtjyAl3 phase has not been reported in other studies, and a
subsequent paper identified the phase as PtAl,).

It was apparent from these and other observations that a range of
possible Pt-aluminide structures could be produced within a fairly
standard envelope of coating processing parameters. (Unfortunately, in
most of the earlier studies, little information on actual processing
parameters or the resulting structures was provided). The possible
variables included amount (thickness) and deposition mode of the initial
Pt layer, the possibility of pre-aluminizing diffusion of the platinum
with the substrate, the aluminizing cycle at activities varying from high
to low, followed by post aluminizing coating diffusion and substrate
solution heat treatments at varying temperatures for varying times.

B. PRESENT STATE OF KNOWLEDGE ON HIGH TEMPERATURE CORROSION AND

OXIDATION BEHAVIOR

A variety of results have been reported on the hot corrosion and
oxidation resistance of platinum modified aluminide coatings. The major
conclusion of these studies are discussed in this section. In a
comparative investigation on a series of aluminides containing noble
metals, i.e., Pt-aluminide and Pt-Rh~-aluminide, on two cobalt-base

superalloys X-40 and MAR=-M-509, tested along with a standard aluminide
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and a CoCrAlY coating in a low-velocity atmospheric-pressure burner rig,
R. M. Clarke (12) has shown that in high temperature 900° C hot corrosion
conditions, the Pt-aluminide was the most corrosion-resistant aluminide
coating tested. It performed almost as well as the CoCrAlY composition
specially designed to resist high temperature hot corrosion. The ranking
of the tested coatings after 500 hours of attack indicated an increase in
corrosion resistance from the modified aluminides to Pd, Pt-Rh, and
Pt-aluminide coatings. The Pt-aluminide exhibits half as much oxide
penetration as the standard aluminide. However, in low temperature

(704° C) hot corrosion tests, the Pt-aluminide was found to be only
slightly more resistant than the sgsimple aluminide and performed more
advantageously than CoCrAlY, while in high temperature burner-rig tests
the Pt-aluminide on MAR-M=-509 and the CoCrAlY coating had nearly identical
corrosion rates. Both a structural effect and a substrate effect were
observed for these Pt-aluminide coatings. The two-phase RT-22* coating on
MAR-M-509 appeared to have slightly better hot corrosion resistance, in
both temperature ranges, than a single CODEP B2 + Pt (experimental coating
structure attempted for this study) on the X-40 substrate.

Bauer, Schneider and Grunling (13) confirmed the improvement with Pt
additions for two common Pt-aluminide coatings, RT-22 and LDC-2 in a
laboratory hot corrosion crucible test as well as in engine service
operation. In the tests Bauer et al. found that, at the 850° C

intermediate temperature, both Pt-aluminide coatings were able to prevent

*It should be noted here and elsewhere that distinctions between
coating types should not be made on the simple basis of the letter
designation (i.e., LDC-2, RT22, etc.) but rather on the specific
coating structure and Pt content of the specimens tested.
Unfortunately in many studies this information is not provided.
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::, IN 738 base material corrosion attack for periods of about 1000 hours :::_\J
~ while an unmodified aluminide of similar thickness was degraded in less 'i.:":
‘ than 500 hours. Microstructural analyses revealed that one Pt-Al coating _:':%;
:3 suffered extensive internal corrosion of the NiAl layer near the : ‘;r*'.
s interdiffusion zone. This attack could be considered to be the ; .
predominant failure mechanism. In engine service testing on first stage ,,-r
::'_E blades, more pronounced internal attack of one structure than the other -__
also occurred. At the higher termperature, 950° C, less severe corrosion E‘—‘
( conditions exist where the SO3 partial pressure drops to a level where -r-v~
-‘ acidic fluxing becomes negligible compared to the rate of oxidation and 'l'
- the protection lifetime of the Pt-aluminide increases dramatically. The E
protection mechanism seems to be based on the formation of adherent _._.h
: scales and possibly the form and distribution of the Pt in the NiAl layer :‘_
in juxtaposition. No more corrosion attack occurs and the ch-z coatings i‘:—

5.‘, become much more protective providing twice as long a penetration life as
‘ RT-22.
. A gimilar result is reported by Hanna, et al. (14) for the 1000° C @
i:: oxidation of a series of Pt-aluminized IN 738 samples with various ':::E:
.‘ structures obtained by aluminization of electroplated platinum of various
.' thickness. They observed that the initial oxidation rate (i.e., weight [:
gain) for any of the Pt-aluminide coatings was more than one order of
. magnitude slower than for the unmodified aluminide, and that the
- perforﬁance of the (Ni,Pt)Al single-phase coating, i.e., the homolog of 'L"
:: the LDC-2, was slightly superior to the other platinum~aluminides. i
j The JML-~1 coating, tested for a 500-hour period by Wing and McGill ‘
> (11) on the two MAR=-M~002 and IN 738 alloys in burner rig cyclic r‘:‘
S —r
‘-, conditions shows apparent outstanding performance, slightly better for
x 6
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the 850° C intermediate temperature than for the 750° C low temperature
hot corrosion attack. A comparison with a JML-2 system (a modification
of JML-1 with a different platinum distribution provides fair protection
at the higher temperatures but has an even greater limitation for low
temperature hot corrosion) enabled them to conclude that the single phase
PtAl; layer system JML-1 is a better corrosion resistant coating.

Chigasaki, et al. (15) have reported that in burner rig testing at
850° C and below, in sulfur bearing fuel, the hot corrosion resistance of
a two zone aluminide coating structure (i.e., outer layer is a high Al
NiAl and the inner layer consists mainly of low Al NiAl), can be improved.
This is accomplished by increasing the thickness of the outer layer of the
coating to >80 um. This system then becomes even more resistant than the
platinum aluminide coatings where they found preferential attack of the
PtAl; phase dispersed in the outer layer of the modified coating.
Preferential attack of PtAl; in a two phase structure has also been
reported by Bauer, et al. (13), as previously noted.

In a study of the composition and morphology of platinum aluminide
coatings produced by one aluminizing process, Jackson & Rairden (16)
have found that the morphology of the resulting coating is highly
dependent upon the thickness of the platinum pre-deposit. With thick
platinum layers, the refractory metals from the substrate alloy are
excluded from the outer surface of the coating. Herein may reside, at
least in part, the reason of the improvement of hot corrosion resistance
of superalloys when protected by platinum aluminide coatings. If
potential deleterious elements from the alloy, such as Mo, W, Ti, etc. are
"buried" beneath or somehow tied up near the substrate interface, they

cannot contribute to accelerated hot corrosion at the surface.
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In electrochemical measurements of a platinum modified (designated
LDC-2) and a platinum-free aluminide coating in a (Na, K)2504 melt at
900° C, Rahmel (17) observed that the Pt-rich surface layer exhibits a
broader passive range than the Pt-free surface. The Pt-free coating
corrodes significantly faster in the passive range. The resistance to
acidic fluxing is similar for both coating types, but the Pt-rich surface
has a significantly higher resistance to basic fluxing. Finally, in an
earlier investigation and later rerun as part of a study of Cr effects,
Boone, et al. (18) found little difference between any of the commercial
structural variation of platinum—-aluminide coatings in furnace hot
corrosion testing in the low temperature range.

This survey of the present understanding of the corrosion behavior of
platinum modified aluminide coatings reveals that the performance of
these systems is strongly dependent on structure and composition. 1In
these studies there is some controversy about the optimum Pt level
required for these coatings, with 40-60% often being mentioned. When a
PtAl, phase is sampled, clearly a "high" Pt level is reported. However,
volume fraction of PtAls and the composition of the matrix NiAl phase
may be even more critical in the resulting protectivity such that
reliance on Pt level alone may not be sufficient. Because these
structures vary with the source and the production time frame (21), it is
not possible today to have a clear view on critical factors affecting
protectiveness of these systems in the various hot corrosion conditions.

For these reasons studies by Boone, et al. (18-21) were initiated
under Office of Naval Research sponsorship aimed at defining the
relationship between the platinum modified aluminide coating structure
and their protective properties. A preliminary investigation (19) of the
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thermal stability by heat treatment in air at 1080° C of a series of 32:

. Pt-aluminide coatings from two commercial sources, i.e., with the two ?E’

. archetype structures, (1) single phase PtAl, and (2) two-phase has r‘i

% pointed out that the oxidation resistance may also be markedly dependent fii
;3 on the structure. A sequence of specific structures of the "A" geries of l";;
o the platinum modified coatings, which will be outlined below, related to !i£~
%‘ the processing parameters, i.e., the platinum deposition treatment and EEE
g the aluminizing conditions, has been established (19). This series of Ei;
o structural types were evaluated in furnace hot corrosion tests under both LOER

.i} low temperature acidic fluxing conditions at 700° C, and high temperature Ei;i
:; basic fluxing conditions at 900° C (20). Results are reported in the §3§

following sections.
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III. PRESENT STATUS OF PLATINUM MODIFIED ALUMINIDE COATINGS UNDERSTANDING

v v

4

»
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A. STRUCTURE AND FORMATION MECHANISMS OF PLATINUM MODIFIED ALUMINIDE
COATINGS

The structure and formation mechanisms of diffusion aluminide coatings
are well understood (1,2). However, their performance under harsh
environments, i.e., especially under hot corrosion, is limited and they
are highly substrate composition dependent. As mentioned earlier, the
addition of noble metals such as platinum to the aluminide coatings may be
beneficial under hot corrosion and oxidation environments. It is reported
that the addition of Pt to the aluminide coatings improves hot corrosion
resistance at high temperature but that it is not as beneficial at lower
temperatures. In the following paragraphs, the structure and formation
mechanisms of Pt modified aluminide coatings as they are presently
understood are discussed in greater detail. It should be noted that
during the course ;f this research, significant progress has been made in
the development of the understanding of these mechanisms. However,
additional research is needed particularly in the areas of phase diagrams
and diffusional mechanisms and is in progress.

Several application techniques are commercially available for the
deposition of Pt on superalloy substrates (22). They include (i)
electroplating, (ii) ion plating, and (iii) sputtering. Of these
application techniques, the electro-deposition technique (i.e.,
electroplating) is the most commonly used for the production of Pt-Al
coatings. The amount of Pt deposition can be varied, but in these
studies, was kept constant at 8-10 ym. It is known that these process
variables can produce different surface structures, but at present, there
is no indication of any benefit of one over the other except in the
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possible area of cost. 1In these studies to be reported here, the
electroplated specimens* are given a selective pre-aluminizing diffusion
heat tratement as listed in Table I. Pre=-aluminizing diffusion heat
treatments facilitate Pt diffusion and thus change the surface Pt content
which result in selective interaction with substrate elements. The heat
treated specimens are then aluminized by pack cementation and vapor phase
processes (20,23). Two aluminizing conditions (1) high activity, aluminum
rich packs at low temperatures (about 700-900° C) known as LTHA and (2)
low activity, lean aluminum packs at high temperatures (1000-1100° C)
known as HTLA are generally used for the deposition of aluminum on the
pre-diffused platinum enriched layer. These aluminizing conditions
control the as-deposited aluminum level, surface phase structure and
hence, the nature of diffusion processes occurring in the Pt enriched
layer. A complete understanding of the effect of Pt level on Al and Ni
diffusion processes in high Pt alloys is not known but some preliminary
thoughts will be presented separately. The amount of Al deposited is
mainly controlled by time in the aluminizing process. Preliminary studies
however, revealed that the presence of Pt increases the rate of Al pick up
over the unmodified aluminide coatings for both types of aluminizing
processes (24).

In a manner similar to the processes found for the diffusion
aluminide coatings, two major types of structures, i.e., (1) inward and
(2) outward can also be defined for the Pt modified aluminide coatings.

Inward type Pt-Al coatings are formed by aluminizing pre-diffused

*All data reported herein are based on IN=738 superalloy.
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electroplated platinized layer in LTHA packs*. The aluminum diffuses
through the pre-diffused Pt enriched surface layer and thus results in a
high aluminum gradient across the Ni=-Al coating. After the aluminizing
treatment, the specimens are given a further heat treatment referred to
as the post-aluminizing heat treatment which is mandatory for the Pt-Al
coatings produced by the LTHA process and for many substrates as well.

The magnitude of the Pt level and the extent of diffusion distance
are strongly dependent on the pre-aluminizing diffusion heat treatments.
A very high level of Pt in a limited zZone near the surface can be
achieved with a minimum pre-aluminizing diffusion treatment. This high
level of Pt near the surface interacts with the incoming aluminum atoms
during the aluminizing process and thus produces a thin continuous single
phase layer. Streiff, et al. (20) have identified this single phase
layer as PtAl;. However, there is some ambiguity regarding the
identification of this single phase structure (11). Throughout this
report, this continuous single phase structure will be designated as
PtAls. 1In these studies it became very apparent that the aluminum
activity level in the coating process was extremely critical in
controlling the final structure of the coatings. Unfortunately, it was
not always possible to control this variable to the degree required such
that some coating structural variability was seen even for samples

produced under the so-called "same condition".

+ While designated here as an Inward Type, selective Al diffusion
through the pure Pt has not yet been clearly established. However,
once aluminum penetrates through the Pt-enriched zone, the coating
is of sufficient aluminum content (i.e., hyperstoichiometric
3 NiAl) to result in inward aluminum diffusion.
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Figure 1 illustrates the typical optical photomicrographs of an
inward Pt-Al coating with various pre-aluminizing diffusion heat
treatments. The inward type Pt-Al coating exhibits the four zone
structure shown in Figure 1(a). The surface zone consists of a high
platinum content single phase PtAl;. It should also be noted that random
grit blast particles are also present at the interface of the initial
substrate surface and the Pt over layer. These particles act as an
excellent marker for the identification of suhsequgnt diffusion
processes. The outer intermediate zone can consist of either fine
platinum-rich precipitates in an Nial* matrix enriched in Al or an
Al-rich NiAl precipitate in continuous PtAls; phase. The matrix and
morphology of these precipitates depend on several factors including the
Al activity level during the aluminizing treatment and possibly the
structure of the platinum interdiffusion layer. The i;ner'intermediate
zone is a single phase NiAl (Ni-rich) denuded of any other phases or
substrate elements. The innermost zone is the so-called interdiffusion
zone which consists of substrate phases and elements insoluble in B (NiAl)
which formed when Ni was withdrawn by the Al-rich surface as previously
established for simple aluminides. Any Pt pre-diffused into these outer
zones would be expected to be precipitated as PtAl,; (at sufficiently high
Al levels as discussed below).

Figures 1(b) and 1(c) exhibit the typical three zone structure. The
outer zone is platinum rich PtAl; phase in an NiAl matrix rich in Al;

while the intermediate zone is a single NiAl phase and the innermost zone

*There is some indication of two types of NiAl phase structure (20).
Besides this, a variety of single phase NiAl structures can be formed
by varying the relative amount of Ni and Al.
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is the so-called interdiffusion zone. Streiff, et al. (20) have reported
the structural changes of Pt-Al coatings produced by the LTHA process, as
determined by x-ray diffraction study. The x-ray data of Pt-Al coatings
are listed in Table II. It is interesting to note that the surface
structure changes from single phase to two phase and then followed by a
single phase B(NiAl) with prolonged pre—aluminizing heat treatments.
When these specimens were examined under the Scanning Electron Microscope
(SEM), it was found that much better microstructural detail was obtained
than with optical metallography. This c;uld be the result of two
factors; (1) resolution limitation (i.e., optical microscope) and (2)
polishing problem with very brittle surfaces and the complicated etching
technique necessary to reveal clearly the presence of microconstituents
in the various zones of the Pt-Al coating. A typical SEM photomicrograph
of an inward Pt-Al coating is shown in Figuré 2 which exhibits the four
zone structure. The surface zone is Pt-rich single PtAl, phase. As
mentioned earlier, the outer intermediate zone consists of fine
platinum-rich PtAls and refractory metal enriched precipitates in an NiAl
matrix rich in Al. It should be noted that the fine PtAl, precipitates
are present in the upper region while refractory metal enriched
precipitates are present in the lower portion. However, the volume
fraction of these (refractory metal enriched) precipitates in an NiAl
matrix is increased substantially as Ni content increases in the NiaAl
phase. The inner intermediate zone is a single phase NiAl containing
high nickel and the innermost zone is the interdiffusion zone.

As pointed out earlier, outward type Pt-Al coating structures are
produced by a HTLA process. Like the inward type structure, the

diffusional interactions among the elements during the low activity
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aluminizing process are algso very complicated. Aluminum apparently

A

diffuses inward until it forms a single NiAl phase containing low Pt and

Al through which essentially only Ni (not Al) diffuses outward from the

-'" "‘ l‘ ‘l

subgstrate to the pre-diffused Pt enriched layer, thus resulting in a lower

Al gradient across the Ni-Al coating. Furthermore, platinum diffusion
continues during the aluminizing process, and it is limited near the

substrate at much higher temperature for longer times presumably by the

19 hd .
NN

outward flux of Ni. The actual Al and possible Ni level were found to be
extremely important in influencing the relative movement of the elements
. and the resulting phase distribution. However, the observation of

i diffusion of platinum through the NiAl (containing low Al) is still
considered significant and is an area of active investigation. Present

- - understanding and speculation in this area will be presented later.
Figure 3 illustrates typical optical photomicrographs of the outward

type Pt=Al structures given various pre-aluminizing diffusion heat

v
Fa

KRN

treatments. Figure 3(a) exhibits a typical two-zone structure. The

surface zone consists of platinum rich PtAl; phase and the inner zone is

the interdiffusion zone. Figures 3(b) and 3(c) exhibit typical three=~zone

< .
’-l..t B

. O
DR

structures. The surface zone consists of Pt-rich precipitate (i.e.,

0

PtAls) in the Al rich NiAl matrix while the intermediate zone is a single

phase NiAl rich in nickel, denuded of any other phases or substrate

elements. It should also be noted that the PtAl; in this structure is not

a continuous phase although in some structures it appears to be and this

difference in distribution is an area for further evaluation and

clarification. The formation mechanisms of fine PtAlj precipitates in Al

rich NiAl matrix is not yet understood but may be related to the
N pre-aluminized diffusion structure. It is reported (20) that the
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structure of Pt-Al coatings produced by HTLA process changes from a single
phase to two phase structure with increasing pre-aluminizing diffusion
time and temperature, as determined by x-ray diffraction analysis. The
x-ray data are also listed in Table II.

Therefore, the microstructure of Pt-Al coatings produced either by
the LTHA or HTLA process is strongly dependent on such factors as, (1)
the amount of platinum (although not an intentional variable in this
study), (2) the pre-aluminizing diffusion time and temperature and the
resulting structure, (3) the aluminum activity level and the time and
temperature condition of the aluminizing process. As an example, Figures
4(a) and 4(b) exhibit structural changes as a result of variations of the
pre-aluminizing time, temperature and aluminum activity level. Figure
4(a) exhibits the typical single phase PtAl; in the outer zone of an
inward Pt-Al coating while Figure 4(b) depicts a typical two phase (PtAl;
plus NiAl matrix) structure in the outer zone of an outward type Pt-Al
coating.

Streiff, et al. (20) have also reported that the oxidation behavior of
Pt modified aluminide coatings is significantly dependent on the
structure, i.e., the amount and the distribution of Pt (and possible Al
level) in the coating. The effect of prolonged annealing in air at
1080° C of two commercial Pt=-Al coatings is shown in Figures 5 and 6. It
can be noted that the single phase inward Pt=-Al coating (Figure 5(a)) did
not change structure during prolonged annealing (i.e., 24 hours) at 1080° C
(Figure S5(b)) while the initial two phase structure shown in Figure 6(a)
in the ouéer zone of the outward type Pt-Al coating rapidly changes to the
single phase structure shown in Figure 6(b) during prolonged exposure (24
hours) at 1080° C. Although, in coatings produced by the high activity
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composition across the coating will not remain the same and a structural
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A annealing produces a more uniform single phase structure and elemental
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distribution in the outer zone of low activity Pt-Al coatings. The Al

%

- level of the NiAl is now postulated to affect the movement of Pt as it
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f. does for Ni and Al and hence initial coating Al contents can have a
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j- significant effect on the system's structural and diffusional stability.
< Summarizing the x-ray diffraction and electron probe data of two
structural types of Pt=Ai coatings, it is found that the diffusional

- interaction between the elements present in the coatings and in the

. substrate is very complex in nature. In the following paragraphs, the
formation mechanisms of these coatings as they are presently understood
- will be discussed in greater detail. As presented earlier,
pre-aluminizing treatments produce a higher concentration of Pt near the
surface. The extent of Pt diffusion is strongly dependent on the amount
of time and the prewaluminizing temperature. Figure 7(a) presents an

- initial schematic representation of Pt diffusion during heat treatment.
- A typical elemental distribution across an inward type Pt-Al coating is
- shown in Figure 7(b). It is further important to note that as a result
. the Pt concentration profile is relatively flat to about 25 ym of the
final coating thickness followed by a sharp drop in concentration level to
zero. At these lower pre-aluminizing temperatures, platinum

interdiffusion is not significant. Therefore, a high level of Pt is

available near the surface to interact with the incoming aluminum atoms

PPl

B e

during the aluminizing treatment and thus produces a continuous PtAlj

phase during the LTHA aluminizing process. With longer Jdiffusion times at

PR .

17

Res

)
.“...‘.-—'-'-

.' 1.' l'...-. -'. .. e I.. ... ... '0 '-l .
- 0 - b » -
P P PR PR ACAOATIE A I A




higher temperatures prior to aluminizing the Pt is distributed over a
wider zone near the surface and the surface Pt content is lower.

Figure 7(c) illustrates the elemental distribution across the outward
type Pt-Al coating. It is important to note here that the Pt
concentration decreases gradually from the surface to a minimum near the
substrate followed by a small peak in the interdiffusion zone near the
interface between the substrate and the coating while the Ni concentration
profile maintains a fairly high level close to the surface (see Figure
7(c)). The Al concentration profile is also found to decrease (not as fast
as Pt) from the surface to near the interface. The initial level of Al
available in the HTLA process (see Figure 7(c)) is also less than that in
the LTHA process (see Figure 7(b)), as expected from the aluminum activity
level in the pack. However, the presence of a sufficiently high level of
Pt'neaf the surface can interact with the (presumed} incoming Al atoms and
thus results in PtAl; phase (either as formed or precipitated during
subsequent cooling). These fine discontinuous PtAl; phase precipitates
are present in Al-rich NiAl phase. The formation of Al rich NiAl phase
(as opposed to the continuous PtAl, layer) is mainly the result of the
high level of Ni (i.e., about 40%) near the surface which thus interacts
with the available Al atoms.

The simultaneous diffusion of Pt and Ni through the NiAl phase during
the HTLA process is also very complex. Figure 8 is a schematic
representation of possible platinum diffusion effects for the NiAl phase
component. Elegant measurements of Dp31/Dyj have been made in the Al-Ni
system (25). It is reported that the Ni is the predominant diffusing
constituent in hypo-stoichiometric NiAl while in hyper-stoichiometric
NiAl, Al becomes the predominant diffusing species. Therefore, it is of
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'&E interest to speculate as to the the effect of Pt additions to the Al-Ni

‘j system at 1150° C. The solid lines in Figure 8 show the interdiffusion

. coefficient ratio of Dpy/Dyj in an Al-rich NiAl which contains a large

2 number of lattice vacancies. Pt additions to Al-Ni system are found

-E experimentally in these studies to move these interdiffusion coefficient

x ratio lines toward the left (i.e., towards lower Al levels) as shown with E};
Ef the broken line. The extent of this shift has not yet been established Ei;;
i- but it is now postulated to be a strong function of Pt level. Pt aadition ;Eg

to NiAl reduces the apparent Al content of NiAl at which Al is the

Yial

e
.'

- dominating diffusional element. Then apparently once the g (NiAl)

e

.
»
o Pt

o
r
R IR

-f composition falls below a critical Al level (i.e., a new stoichiometry of

the ternary NiAl containing Pt), Pt can diffuse very rapidly (as does Ni

in pure NiAl) and the PtAl, phase is not stable.
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- B. HOT CORROSION DATA

1. High Temperature

Recently Deb, et al. (26) reported that the low aluminum activity

process, in general, appears to be less sensitive to surface attack at .Eé
?: 900° C as compared to samples produced by the high aluminum activity i
f process (Note: in this study the HTLA coating was applied in the vapor ;}f
E phase, so-called out~of-the pack and the effect of this variable has yet Eii

to be assessed). However, surface degradation of both types of platinum
aluminide coatings is very severe as is obgerved in Figure 9 when both
- the specimens were given a prolonged pre-aluminizing diffusion heat
. treatment (i.e., 1080° C for 4 hrs.). Even with this diffusion treatment, e
however, specimens given either LTHA or HTLA aluminizing treatments were

attacked at a rate of only 0.2 um/hour, at least a factor of six times
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more corrosion resistance than the unmodified aluminides (1.5 pm/hour)
exposed in the same test as control samples.

The increased surface degradation behavior of both the HTLA and
LTHA type coatings after prolonged diffusion may probably be the results
of the formation of the two-phase structure in the outer zone. It is
reported that the single phase structure is produced in the outer zone of
both the coatings when the specimens are given 0.5 hours pre—aluminizing
diffusion at 870° C.

2. Low Temperature

Streiff, et al. (21) and Deb, et al. (26,27) have studied the hot
corrosion behavior of platinum modified aluminide coatings on the IN-738
superalloy substrate at 700 and 900° C respectively. 1In these studies
(24,30,31) it is observed that the addition of platinum to a standard
aluminide is not found to be beneficial at 700° C (i.e., about a two-fold
impact) as compared to hot corrosion behavior of platinum additions at
900° C (i.e., a six-fold increase). However, they have reported that the
three-zone inward type coating showed much less attack than the standard
two=-zone outward type coatings. They have also noted that a continuous,
pure, PtAl; phase, shown in Figure 10(a), is present in the more
resistant coatings. In low temperature hot corrosion environments, this
continuous PtAl, layer apparently prevents (i.e., acts as a barrier to)
hot corrosion attack. Figure 10(b) exhibits a typical low temperature
hot corrosion attack.

Recently Dust, et al. (28) have studied the low temperature hot
corrosion behavior of platinum=—aluminide and chromium modified
platinum-aluminide coatings at 700° C in an air:SO; (i.e., 2000ml/min.:

S ml/min.) environment on the IN-100 superalloy substrate. They have
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reported that the LTHA platinum-aluminide coating did not display
particularly good resistance to LTHC (i.e., about 50 um minimum
penetration in 100 hours) as compared to HTIA platinum-aluminide
coatings. However, the LTHA platinum-aluminide coating showed (i.e., 0.5
pm/hour surface attack) little improved LTHC resistance (i.e., two-fold)
over the unmodified-aluminide coatings (1.0 um/hour) at 700° C reported
by Deb and Boone (27). This is also consistent with the above results
(21,26) reported here. Although this sample had a surface layer of PtAl,
as shown in Figure 11(a), there was little improved LTHC resistance (see
Figure 11(b)) over the HTLA platinum-aluminides. The two HTLA
platinum-aluminide coatings did provide a good resistance to LTHC attack
(i.e., about 40 ym minimum penetration) and it is interesting to note
that a thick two-phase structure of PtAl, and {-NiAl (Al-rich) was
present underneath the thin surface layer of PtAl;. Even after this
surface layer was penetrated, the Pt-rich PtAl; precipitates provided gré
some ‘hot corrosion resistance. 1In other testing (11,27,30,31) the

continuous PtAl; layer has been reported as the LTHC resistant structure

with the two-phase PtAly/ B-NiAl structure performing little better than
the unmodified-aluminide. Recently Dust, et al. (28) and Deb, et al. (29)
noted that the Pt diffusion through the hypo-stoichiometric Nial
composite is not yet well understood but it is apparently a strong
function of Al level. It appears that once the (-NiAl composition falls

below a critical Al level (i.e., a new stoichiometry of the ternary NiAl

containing Pt), Pt can diffuse very rapidly (as does Ni in

"
N
[P

hypo-stoichiometric B-NiAl) and thus PtAlj becomes unstable. This could

oo
’

.
.t

be one of the reasons why the LTHA platinum-aluminide coating, even

£

B

though it had a thick (i.e., about 20 um) continuous layer of PtAl; at
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the surface, did not show good resistance to LTHC attack as compared to
the HTLA platinum-aluminide coatings. In these tests, the coating's
lifetime may be dependent on the optimum thickness and stability of this
PtAls; surface layer.

The chromium-modified platinum-aluminides also differed greatly in
LTHC resistance. Process D (Cr-Pt-Al) which exhibited a good LTHC
resistance (about 34 um penetration), had a high PtAl; surface content
with little Ni or Cr, again confirming the observation that a continuous
single PtAls phase at the surface is beneficial. Process B (Pt-Cr-Al),
which ewhibited poor resistance to LTHC attack (about 66 um penetration),
had less continuous PtAl; phase with high amounts of Ni (probably NiAl)
and some chromium. In both coatings, the most important factor for the
LTHC resistance appeared to be the PtAl; content at the surface layer
because they both had a relatively high level of chromium concentration
near the surface. Applying chromium first and then platinum prior to
aluminizing allows an effective layer of PtAl; to form at the surface,
while reversing the alloying addition sequence (i.e., Pt=Cr-Al) disperses
the Pt in the intermediate zone. As a result, a continuous single PtAlj
phase cannot form at the surface during subsequent aluminizing and
post-aluminizing heat treatment. It is therefore important to emphasize
that the structure of these chromium=modified platinum=-aluminides is

strongly dependent on the modifying element which is first applied.

C. CYCLIC OXIDATION
It is known that pre-aluminizing diffusion heat treatments produce
an exaggerated micro-surface roughness on the platinum modified aluminide

coatings, as compared to the un-modified coatings. Recently, the effects
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of surface structure under cyclic oxidation at 1100° C of the two
structural groups of unmodified and platinum modified aluminide coatings
were studied (24). In that investigation, variously heat treated
platinum free and platinum modified aluminide coatings were exposed to
cyclic oxidation environment at 1100° C for times up to 250 hours. The

specimens were cycled for 60 minutes at 1100° C and then cooled 10

minutes outside the furnace prior to reheating. It was found that
surface plastic instability occurred, called "rumpling”, shown in Fiqure
12(a) and 12(b), and that the degree of rumpling was observed more in the
platinum modified aluminide specimens. Figure 12(c) shows SEM
photomicrograph of the corresponding cross-gsection. Surface upheavals on
the order of 50 ym were found on both systems. The amount of surface
rumpling during cyclic oxidation testing can be attributed to several
factors such as coefficient of thermal expansion mismatch between coaéing.
and substrate, thermal gradients across the specimen (i.e., thermal
strains) produced during heat and cooling, coating strength which depends
on the microconstituents and composition present in the coating, and
finally, the coating thickness (which also affects coating composition
and structure). Therefore, the resulting performance of the coatings is a
complex interplay of the above mentioned variables. At present, there is
no mention in the literature of surface rumpling of the platinum
aluminide coatings or even of the unmodified aluminides. However, similar
surface rumpling has been reported on some overlay MCrAlY coating system.
In this study, it was established that the rumpling observed
could not be attributed to simple coating affected substrate melting. It
was, however, observed that the platinum modified aluminide coatings did
not show oxide spallation and that oxide spallation of the un-modified
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. coatings appeared with a secession of further rumpling. Finally it was
l'
o
o found that the thicker coatings on the IN-738 substrate showed a lower

propensity to rumple as compared to the thinner coatings. However, for

the thick coating samples which showed minimum rumpling, transverse

L ¥ -
» "ot
et

coating cracks were found while no such cracks were observed in the
thinner coatings which underwent significantly more plastic deformation.

Further studies of this phenomena and the variables operating are

L[] e« s "
1S

*
[y

underway.

D. MECHANICAL PROPERTIES

-
-
5y
-
-

As mentioned earlier, a wide range of structures and compositions of
Pt-Al coatings can be prepared by varying the pre-aluminizing and
post-aluminizing diffusion heat treatments. There are several variables
which directly or indirectly control the coating performance under severe
environmental conditions. It is therefore expected that the mechanical
properties of diffusion type coatings such as the Pt modified aluminides
will depend on the type of structure and the corresponding elemental
distribution within the coating as well. There are however, little data

available on the mechanical properties of the platinum modified aluminides

and none relating to specific structures. There are only limited data

DafaC il BINLENE, §

available on the un-modified aluminides (32-34) and the overlay type

MCrAlY coatings (35).

Lan aL o g ah

It is reported (24) that in high temperature cyclic testing, the

platinum modified aluminides showed surface rumpling which is mainly

attributed to the coefficient of thermal expansion mismatch induces

N

strains between the coating and the substrate. It is also known that the

coating's ability to accommodate additional strain is its ductility. ;;ﬂkﬁ
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Therefore the ductile to brittle transition temperature (DBTT) of these
coatings is very important so far as coatings mechanical properties and
the engineering design of coated components is concerned.

Recently Vogel (36) has studied the DBTT of several structural
variations of the Pt-Al coatings. It was found that the DBTT is strongly
structural dependent. It is also interesting to note that the DBTT of
outward type Pt-modified aluminides (i.e., HTLA) is in the range of
640-700° C, while inward diffusion type Pt-modified aluminides did not
show DBTT up to the maximum experimental temperature (i.e., 800° C) shown
in Figure 13. As might be expected, the data reveal that structures with
high Pt concentrations near the surface and high Al levels have higher
DBTT's. Lower Al levels and two-phase structures (i.e., PtAl; plus NiAl)
which are generally provided by the HTLA coating process are more ductile.
Because it is difficult to separate out the platinum, aluminum and
structural effects which are produced by the various aluminizing
treatments, additional testing and more detailed structural
characterization is underway.

A high DBTT of any given coating is undesirable since the coating
remains in the brittle mode fo. » longer period of time as compared to a
coating which has a lower DBTT. A low DBTT will place the coating
substrate system into a ductile mode at lower operating temperatures.
Therefore the probability of cracking type failure for a low DBTT coating
is much less than in high DBTT coating when turbine engine experienced
various spectrum loading over a wide range of temperatures under hostile
enviconments. Optical metallographic examination of these tested Pt=-Al
specimens revealed wide and well spaced cracks in the coatings tested
above the DBTT while the inward and the outward type coatings tested below
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the DBTT exhibited straight, very fine and closely spaced cracks. These
obgervations are also in good agreement with the published crack
morphology data of the unmodified aluminides (36~38). Even though the
high Al and Pt content coatings exhibited a high DBTT, their room
temperature ductility appeared greatgr than that of the "more ductile”

coatings. Initial analysis has related this to a high level of residual

compressive stress in the coatings at room temperature, the higher Al and
Pt content coatings having the higher compressive stresses. The magnitude
I of these stresses and their effects on handling and rumpling properties

are being investigated, but a strong correlation is postulated.

E. CONCLUSIONS

The following salient conclusions are the outcome of FY85 research

< effort*:

1. Hot Corrosion

The presence of platinum in an aluminide coating improves hot
; corrosion resistance at 900° C; the degree of improvement depends on the
- structures and possible processing parameters. Low aluminizing activity
processes (i.e., HTLA) apparently produces coatings with improved hot
corrosion resistance over those produced by the high aluminum activity

process (i.e., LTHA). In low temperature hot corrosion little benefit

PR | IV L

(about 2.5 times improvement) of platinum additions were found over the

unmodified aluminide coatings.

Rt . LI

*FY81-FY84 research results are already published (see Appendix II =
publication #1 to 7.
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2. Cyclic Oxidation

In an initial cyclic oxidation test, it is found that cycling to
elevated temperature produces surface rumpling in both unmodified and
platinum modified coatings. The degree of rumpling is a function of
platinum level and structure and appears related to coefficient of

thermal expansion mismatch induced strains and coating properties.

3. Mechanical Properties

At comparable aluminum levels, the presence of platinum increases
the DBTT and room temperature residual compressive stress level. DBTT
and residual stress can bey varied by changing the composition and

structure of the coating.
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8. Platinum Aluminide Structural Effects on Hot Corrosion Resistance at
900" C, Deb, P., Boone, D. H., and Streiff, R., presented at the
12th International Conference on Metallurgical Coatings, lLos
Angeles, CA, April 1985 and published in JVSTA, Nov-Dec 1985.

9. Surface Morphology of Platinum Modified Aluminide Coatings, Boone,
D. H., Deb, P., Purvis, L. J. and Rigney, D. V., presented at the
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Technical Paper.
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Coating, Dust, M., Deb, P., Boone, D. H., and Shankar, S., to be :;E
presented at the June 1986 Gas Turbine Conference, Dusseldorf, W. .
Germany and will be published in ASME Technical Paper.

12. Structure and 700° C Hot Corrosion Behavior of Chromium and AR
Platinum Modified Aluminide Coatings, Deb, P., Boone, D. H., Dust, A
M., and Shankar, S., to be presented at the 13th ICMC, San Diego, E_'
California, March 1986 and will be published in the proceedings. t;j
13. Surface Instability of Platinum Modified Aluminide Coatings During }:{
1100° C Cyclic Testing, Manley II, T. F., Deb, P., and Boone, D. H., f’;
to be presented at the 13th ICMC, San Diego, California, March 1986 Yy

and will be published in the proceedings.

14. Platinum Aluminide Structural Effects on Hot Corrosion Resistance at S,
700° C, Deb, P. and Boone, D. H., to be published, 1986. .
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1. Substrate and Processing Effects on Carbon-Carbon Coating Systems,
Boone, D. H., presented at the Conference on Composite Materials,
sponsored by NASA and DOD at Ceramic-Metal Systems Division, 6th
Annual Conference, American Ceramic Society, Cocoa Beach, FL,
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2. Coating Systems for Synthetic Fuel Combustion, Boone, D. H.,
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presented at the Conference on Corrosion-Erosion Wear of Materials Q
in Emerging Fossil Energy Systems, Berkeley, CA, 27-29 January 1982. .::
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The Structure and Performance of Electrophoretically Applied
Aluminide Coatings, Boone, D. H., Barber, M. J., Pacala, T.,
McMurray, N. and Lee, S. G., presented at the International
Conference on Metallurgical Coatings, San Diego, CA, April 1982.

High Temperature Gaseous Corrosion and Protection, Boone, D. H.,
invited lecturer and participant in "1982 Short Course on
Corrosion”, Naval Postgraduate School, Monterey, CA, 3=-7 May 1982.

Ceramic Coatings in Advanced Energy Technologies, Boone, D. H.,
invited talk presented at the Colloquiem: Ceramics in Advance
Energy Technologies, Petten, the Netherlands, 20-22 September 1982.

Oxide Structure of Aluminide Coatings Using Deep Etch Technique,
Boone, D. H. and Whittle, D. P., presented as poster at the High
Temperature Alloys for Gas Turbines Conference, Liege, Belgium, 4-6
October 1982.

The Substrate Hf Effect in Aluminide Coatings, Boone, D. H., and
Exell, J. R., presented at the Fall AIME Meeting, St. Louis, MO,
October 1982.

Low Temperature (700° C) Corrosion Testing of Modified Aluminide
Coatings, Boone, D. H. and Rose, B. R., presented at the Fall AIME
Meeting, St. Louis, MO, 25 October 1982.

The Effect of Aluminide Processing Variables on Oxide Structures,
Boone, D. H. and Lambertson, R. L., presented at the Fall AIME
Meeting, St. Louis, MO, 25 October 1982.

Structural Variations  in Platinum Modified Aluminide Coatings,
Boone, D. H. and Purvis, L. J., presented at the Fall AIME Meeting,
St. Louis, MO, 25 October 1982.

Protective Oxide Characterization of Mn Modified Aluminide Coatings,
Boone, D. H., Lambertson, R. L. and Barber, M. J., presented at the
Fall AIME Meeting, St. Louis, MO, 25 October 1982.

Repair Coatings, Boone, D. H., presented at the Electrochemical
Society Boston Meeting, the Fundamental Aspects of Coatings Session,
Bogston, MA, October 1982.

Turbine Protection 5y§tems and Implications of Other Propulsion
Agglications, Boone, D. H., seminar, Materials Science Laboratory,
Aerospace Corporation, El Sequndo, CA, 9 February 1983.

Erosion of Hard Metal and Ceramic Coatings, Boone, D. H., Levy, A.
and Kelley, J., presented at the TMS-AIME Annual Meeting, Atlanta,
GA, 6=-10 March 1983.
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16.

17.

18.

19.

20.

21.

22.

23.

24.

APPENDIX II

Effect of Coating Processing Techniques on Superalloy Properties,
Boone, D. H., presented at the ASME 28th International Gas Turbine
Conference, Phoenix, AZ, 30 March 1983.

Erogsion Behavior of Ceramic Coatings, Boone, D. H. and Lambertson,

R. T., presented at the International Conference on Metallurgical
Coatings, San Diego, CA, 18-22 April 1983.

The Effect of Aluminide Processing Variables on the Oxide Structure

Using the Deep Etch Technique, Boone, D. H. and Lambertson, R. T.,

presented at the International Conference on Metallurgical Coatings,
San Diego, CA, 18-22 April 1983.

Hot Corrosion Resistance of Modified Aluminide Coatings, Boone, D.

H., Peacock, D. E. and Rose, B. R., presented at the International
Conference on Metallurgical Coatings, San Diego, CA, 18=22 April
1983.

The Formation and Structure of Platinum Modified Aluminide Coatings,
Boone, D. H., Purvis, L. and Streiff, R., presented at the
International Conference on Metallurgical Coatings, San Diego, CA,
18=-22 April 1983.

Structure and Erosion Behavior of an Ultrafine Grained SiC, Boone,
D. H. and stiglich, Jr., J. J., presented at the American Ceramic
Society Meeting, Chicago, IL, 26 April 1983.

The Protective Oxide Structures of Thermal Spray Applied MCrAl
Coatings, presented as poster at the 10th International Thermal
Spraying Conference, Essen, West Germany, 2-6 May 1983.

Wear of Protective Coating Systems, Boone, D. H., Levy, A. V. and
Davis, A., presented at TMS-AIME General Abstract Session, Fall
Meeting, Philadelphia, PA, October 1983.

The Role of Hf as Active Element in Oxidation Resistant Coatings,
Boone, D. H. and Streiff, R., presented at the High Temperature
Erosion and Corrosion Symposium of the High Temperature Materials
and Corrosion Division, Electro=Chemical Society, Washington, DC,
9-14 October 1983,

The Development of Chromium Coatings, Boone, D. H., Streiff, R. and

Godlewska, E., presented at the High Temperture Erosion and
Corrosion Symposium of the High Temperature Materials and Corrosion
Division, Electro-Chemical Society, Washington, DC, 9-14 October
1983.
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APPENDIX II

Plasma Spray Coating Experience in Diesel Engines, Kvernes, I. and
Boone, D. H., presented at the 7th Annual Energy-Source Technology
Conference and Exhibition, New Orleans, LA, 12-16 February 1984.

Results of Combustion Zone Durability Program, Levy, A. and Boone,
D. H., presented at the 7th Annual Energy-Source Technology
Conference and Exhibition, New Orlenas, LA, 12-16 February 1984.

Surface Structural Effects on Pt Modified Aluminides, Boone, D. H.,
Purvis, L. and Rigney, D. V., presented at the International
Symposium on Precious Metals, 113th AIME Annual Meeting, Los
Angeles, CA, 26 February=-2 March 1984.

Plasma Spray Surface Processing Effects on Oxide Adherence, Boone,
D. H., Norton, Pu R., Peacock, D. E. and Rigney, D. V., presented at
the 113th AIME Annual Meeting, lLos Angeles, CA, 26 February=-2 March
1984.

700° C Hot Corrosion Resistance of Pt Modified Aluminides,
Boone, D. H., Purvis, L. and Peacock, E. E., presented at the 113th
AIME Annual Meeting, Los Angeles, CA, 26 February-2 March 1984.

The Protective Coating of ODS/MA Superalloys, Boone, D. H., Brown,
Boveri and Cie Seminar, Baden, Switzerland, 26 March 1984.

Advances in Superalloy Coating Science and Technology, Boone, D. H.,
Fiat Research Laboratory Seminar, Turin, Italy, 28 March 1984.

Structure Protection Relationships for Platinum Modified Aluminide
Coatings, Boone, D. H., Streiff, R. and Peacock, D. E., presented at
the Coatings for Heat Engines, NATO Advanced Workshop, Italy, 1-6
April 1984.

Interaction of Coating Systems with Substrate in Engine
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Applications, Boone, D. H., presented at the Coatings for Heat
Engines, NATO Advanced Workshop, Italy, 1-6 April 1984.

High Temperature Corrosion Resistant Platinum Modified Coatingsg for
Superalloys, Boone, D. H. and Streiff, R., presented at the 9th
International Congress on Metallic Corrosion, Toronto, Canada, 4-7
June 1984.

Protectivity of Platinum Modified Aluminide Coatings, Boone, D. H.,
presented at panel on “Coatings, Corrosion and Repair®™, ASME Gas
Turbine Conference, Amsterdam, the Netherlands, June 1984.
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. 36. EB Coatings on Repaired Blades, Boone, D. H. and Halnan, W. K., Teg
. presented at the REP-TECH ‘84 Jet Engine repair Technology Workshop, :'-’:\_
oy San Antonio, TX, 15=17 October 1984. NN
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'r:: 37. The Evolution and Revolution in Coatings for Gas Turbines, Boone, D. :‘.:."{.
H., invited speaker, ASM meeting, San Antonio, TX, 18 October 1984, i .
- 38. High Temperature Coating Processing for Jet Engine Repair Workshop, :j:-'.'_:
Boone, D. H. and Rigney, D. V., course directors and lecturers, San *
g Antonio, TX, 18=19 October 1984.
= 39. Research Activities in High Temperature Protective Coating Systems,
l Boone, D. H., seminar of University of Minnesota, Department of E._ -
Materials Science, 3 May 1985.
j::: 40. Advanced Coatings for High Temperature Corrosion Protection of Gas S
.::- Turbine Materials, Boone, D. H., Seminaire De Chimie Des Materianx, e
i Universite De Provence, Marseille, France, 28 Mai 1985. " i
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. The following ongoing research are in progress: !EE\
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ABROAD A
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1. Australia, Dr. Johnston = Rutherford Backscattered (RBS) analysis of >
platinum modified aluminides; initial stages of oxide formation. e
N
AN
2. University of Nancy, France, Dr. Steinmetz - Fused salt corrosion };}2
testing. s
3. Universite de Provence, France, Prof. Streiff - Phase diagram o
consideraction. !F._
4. Institute of Metals Achedemia Since, China, Prof. Wu - Surface :":}
: analysis of fused salt electrolysis and initial stages of oxide RO
' formation. R
P
NAVAL POSTGRADUATE SCHOOL, MONTEREY, CALIFORNIA I:ZTZ::C
..‘:-:-.
1. High and low temperature hot corrosion behavior of platinum and v
) platinum chromium modified aluminide coatings on nickel and cobalt ;ff{:
I bagse superalloys. : ey

2. Cyclic oxidation behavior of platinum modified aluminide coating at
1100° C as affected by surface structure.

. 3. Surface morphology and performance of platinum modified aluminide
| coatings on various superalloy substrates.

4. Determination of DBTT of platinum modified aluminide coating of
various nickel base superalloy substrates.

5. High cycle fatigue response of platinum modified aluminide coatings e
at elevated temperature. - -
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! DIFFUSION TIME, ’ A
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: TABLE II. X-RAY ANALYSIS OF PT MODIFIED ALUMINIDE COATINGS "_
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¢
! Heat As-coated RO
,.::: Sample Treatment As=coated 4 hrs @ 1080° C As-coated _\'
L N
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i IN=-738 NijAlj NiAl NiAal
1 Platinum PtAl,+PtAl PtAl,
- IN-738+Pt 1/2 hrs PtAly PtAl,
>, -]
- @ 870 C .
- IN-738+Pt 2 hrs @ PtAlp+ NiAl PtAl,+ NiAl a0
- 980° C -
B IN-738+Pt 3 hrs @ PtAly+ NiAl PtAlp+ Nial o
o 1040° C o
3 F-
= IN-738+Pt 4 hrs @ PtAly PtAly+ NiAl T
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Figure 1. Typical inward type Pt-Al structures exhibit effect of
pre-aluminizing heat treatments: (a) 1/2 hr. at 870° C, (b)
2 hrs. at 980° C, and (¢) 1 hr. at 1050° c.
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Figure 2. SEM photomicrograph of inward type Pt=Al structure containsg
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Figure 3. Typical outward type Pt-Al structures exhibit effecz of
pre-aluminizing heat treatments: f{a) 1/2 hr. at 870° C, (b)
3 hrs. at 1040° C, and (c) 4 hrs. at 1080° C.
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Figure 4.

The outer-zone structure of Pt=-Al coatings exhibit: (a)
single phase, inward type structure and (b) two phase outward
type structure.
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Figure 5. Effect of prolonged exposure of Pt~Al coatings in air at 1080° ¢
exhibit: (a) single phase structure after 1 hr. heat treatment L
and (b) single phase structure after 24 hrs. heat treatment. S
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Effect of prolonged exposure of outward type Pt=Al coatings in
air at 1080° C exhibit: (a) two phase structure after 1 hr.
heat treatment and (b) single phase structure after 24 hours
heat treatment.




Figure 7.

ELEMENTAL DISTRIBUTION, WT% ——»

Elemental distribution across the Pt=Al coatings: (a)
Pre-aluminizing heat treatment, 1/2 hr. at 870° ¢, (b) Inward .
type coating and (c) outward type coating.
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Figure 8. Possible modification of NiAl diffusion data (29) with the £
addition of Pt.
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- Figure 9. Surface attack of Pt modified aluminide coatings exposed for
200 hours hot corrosion condition at 900° C with various
pre-aluminizing diffusion heat treatments.
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" - Figure 10. Typical low temperature hot corrosion attack at 7QO° C: (a)
specimen exhibits little attack on PtAl,; phase and (b)
substantial hot corrosion attack beneath the PtAl, pnase.
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Figure 11. SEM photomicrographs exhibit: (a) inward type LTHA platinume

. aluminide coating and (b) typical LTHC attack after 100 hours e
= exposure at 700° C. e
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Figure 12. Typical example of surface rumpling of Pt-Al coatings:
(a) sample exhibits macro surface roughness (8x), (b) enlarged
photomicrograph (64x) and (c) cross-gsection of same specimen
showing surface upheaval on the order of 50 um.
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