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CONVERSION FACTORS FOR U.S. CUSTOMARY
TO METRIC (S1) UNITS OF MEASUREMENT

MULTIPLY $ BY —& TOGET
TOGET «& BY @— DIVIDE
angstrom 1.000 000 X E -10 meters (m)
atmosphere (normal) 101325 XE 2 kilo pascal (kPa)
bar 1.000 000 XE +2 kilo pascal (kPa)
barn 1 000 000 X E -28 meter? (m?)
British thermal unit (thermochemical) 1.054 330 X E +3 Joule ()
calorie (thermochemical) 4 184 000 joule (3)
cal (thermochemucal)/cmz 4.184 000 X E -2 mega jonlo/mz (MJ/mz)
curie 3 700 000 X E «1 *giga becquerel (GBq)
degree (angle) 1 T45§329 X E -2 radian (rad)
degree Fahrenheut o= ("1 s 459.67)/1.8 degree kelvin (K)
electron volt 1 60219 XE -19 joule ()
erg 1.000 000 X E -7 Joule (J)
erg/second 1.000 000 X E -7 watt (W)
toot 3.043000 X E -1 meter (m)
foot-pound ~force 1.355 818 joule (N
gallon (U S. liquid) 3 785412 XE -3 meter® (m%)
nch 2.540 000 X E -2 meter (m)
Jerk 1 000 000 X E +9 joule (J)
joule/kilogram (J/kg) (radiation dose
absorbed) 1. 000 000 Gray (Gy)
kilotons 4.183 un)&lu
kip (1000 1bf) 4.448 222 X E +3 newton (N}
kip/inch? (ksi) 6 894 757 X E +3 kilo pascal (kPa)
ktap nnnon-ngcmd/mz
1.000 000 X E +2 (N-s/m*)
micron 1 000000 X E -6 meter (m)
mil 2.540 000 X E -5 meter (m)
mile (international) 1.609 344 X E +3 meter (m)
ounce 2.834952 X E -2 kilogram (kg)
pound -force (lbs avoirdupots) 4. 448 222 newton (N)
pound -force nch 1.129 348 X E -1 newton-meter (N-m)
pound force/inch 1 751268 XE «2 newton /metet (N/m)
pound -force Moot® 4.798026 X E -2 kilo pascal (kPa)
pound-lorce/mchz {ps1} 6. 894 757 kilo pascal (kPa)
pound -mass {Ibm avoirdupois) 4.535 924 XE -1 kilogram (ig)
pound -mass ~toor? imoment of wnertia) kilogram -meter’
4.214011 X E -2 (ig-m?)
pound -mass/!oot3 kilogram /meter:'
1 601 %46 X E +1 (g /m3)
rad (radiation dose absorbed) 1.000000 X E -2 *Gray (Gy!
roentgen coulomb /kilogram
2579760 X E -4 (C.%g)
shake 1000000 XE -3 second (s)
slug 1.459390 X E 1 kilogram (ig)
torr (mm Hg, 0°C) 1.33322 XE -1 kilo pascal (kPa)

*The becquerel (Bq) s the S1 umt of radioactivity; 1 Bq = 1 event/s.
**The Gray (Gy) is the SI umt of absorbed radiation.
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SECTION 1

INTRODUCTION

1-1 SCOPE AND BACKGROUND.

This report documents the results of an investigation
conducted with the objectives of (1) developing an improved
analytical model for calculating closure and failure resistance
of deep-based tunnels and (2) relating the improved models to
results of laboratory studies.

This study is a continuation of "An Investigation of
the Failure Resistance of Rockbolted Tunnels for Deep Missile
Basing" (AA, 1983). That report described an improved design
methodology for minimally hardened tunnels that relies on
elastoplastic models of a cylindrical tunnel in an infinite
homogeneous rock mass. In these models, the strength of rock 1is
simply defined in terms of a friction angle and a cohesion, and
the volumetric expansion of rock during failure in terms of a
dilatancy angle (the dilatancy angle controls the rate of
increase of the inelastic volume change of the material with the
plastic shear strain). With respect to previous methodologies
(see Reed et al., 1983, for a state-of-the-art review), three
significant improvements were achieved in the course of that
investigation:

° Consideration of an arbitrary dilatancy angle
with wvalues anywhere between zero (no inelastic
dilatation) and the value of the friction angle
(the maximum theoretical limit), thus providing a
generalization of the models of Newmark (1970)
and Hendron and Aiyer (1971) for hydrostatic
far-field stress loading.

° Consideration of a deviatoric component in the
far-field stress (previous analytical models were
restricted to consideration of a hydrostatic
far-field loading), with the consequence that the
model can predict ovalling of the tunnel during
closure.

........................

.....
. . .
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) Development of design charts based on the semi-
analytical nonhydrostatic model. These charts
constitute a powerful and quick means of calcu-
lating the support pressure to be provided by a
support system, to 1limit closure to within a
preset amount.

That investigation concluded that prediction of tunnel
closure (and thus of the support pressure) is very sensitive to
the assumed (constant) value of the dilatancy angle, and that
the dilatation model of rock based on a constant value of the
dilatancy angle is inadequate for this class of problems. In
practice, the rate of increase of the plastic volume change with
the plastic shear strain has not been observed to be constant in
rocks; it changes with the. amount of plastic deformation
approaching zero as the "damage" increases. In contrast, the
theoretical models based on the assumption of a constant dila-
tancy angle predict that there is no upper limit on the maximum
inelastic volume increase that the material can experience. The
inadequacy of the assumption of a constant dilatancy angle is
particularly severe in the tunnel problem, which is charac-
terized by a high distortional strain field in the rock mass.

The principal objective of the present investigation
was then to develop an elastoplastic model of a tunnel under
either hydrostatic or nonhydrostatic 1loading, using a more
realistic dilatation model for the rock. The improved dilata-
tion model considered in this report assumes an exponential
decay of the dilatancy angle, from an initial value equal to the
friction angle. It is a simple law that has the advantage of
depending on only one physically meaningful parameter; the
maximum plastic volume change that the material can experience.
Secondary objectives of this investigation consisted of a review
of the rock dilatation phenomenon and an analysis of physical
model experiments, with the purpose of validating the improved
dilatation model.
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1-2 REPORT ORGANIZATION.

The main body of this report is comprised of three
major sections covering respectively (1) the phenomenon of rock
dilatancy, (2) a general description of the elastoplastic models
of a tunnel under hydrostatic and nonhydrostatic loading, and
(3) an analysis of physical model tests. Mathematical deriva-
tion and description of numerical procedures have been docu-
mented in three Appendices.
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N SECTION 2

: DILATANCY OF ROCKS

~ 2-1 CAUSES OF DILATANCY.
o The phenomenon of volumetric expansion, or dilatancy,

has long been observed during shear deformation of densely Qh;LSi
- packed granular media, where it is associated with relative IR
-] movement of grains and is a geometrical necessity for deforma- fﬁ;f;}
tion to occur. Dilatant behavior of rocks during failure was ﬁjl7;§
observed first by Bridgman (1949) during compression tests on ;;Q;::
soapstone and calcite marble. Dilatancy during uniaxial and 5!‘5,5
triaxial compression tests was subsequently confirmed for a . :
g large variety of rocks: norite and quartzite (Bieniawski,
f 1967), granite (Brace et al., 1966; Zoback and Byerlee, 1975),
marble, sandstone, limestone, etc. Dilatancy therefore appears

to be a pervasive property of many rocks.

"- ‘.l ,- "l !l.

A typical result of a triaxial compression test on a
dense brittle rock is shown in figure la. In the early stage of

the test, the volumetric change is negative (i.e., volume
decrease); which is mainly attributable to the elastic behavior
of the rock but also reflects the closing of some open cracks.
At about 50 percent of the peak stress the curve of the volu-
metric strain versus axial stress starts to deviate from

linearity; the deviation becoming progressively greater with

increasing stress. Eventually, at fracture, the volumetric S
ﬁ curve shows a net volume increase with respect to the original 1-3*3
unstressed configuration. In figure 1b, the data have been pre- i
sented differently, in the form of the variation of the volu-
metric strain with respect to the axial strain. This curve
shows that before the peak stress is reached the accumulated

inelastic volume increase (i.e., the difference between total ?iigzﬁ

N and elastic volume increase) remains relatively small.

Ul |
D
a a a e

The phenomenon of dilatancy in rocks, which finds its

cause in several mechanisms of fracturation, is controlled by

XX

the mean pressure the initial porosity of the rock. In brittle
rock the dilatant behavior observed during compression test is

. Yo
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associated with microcracking and propagation of cracks parallel

ry
.

to the direction of maximum compressive stress (Brace et al.,
1966; Cook, 1970). 1In porous sedimentary rocks dilatancy is not

.

only caused by an increase of the crack space (porosity) but

s,

Al

also by sliding along intergranular surfaces (cataclastic flow).

o

N N

At high confining pressure, tendency of dilatancy is suppressed
or even reversed (Swanson and Brown, 1972), depending on the
E? initial porosity of the rock, as the high pressure forces intra-
crystalline flow to occur. For very porous rock, negative dila-
tancy can even occur at failure, as two processes compete:
(1) dilatancy caused by shearing, (2) volume decrease caused by
RN collapse of the pore structure.
N Dilatation is thus an all pervasive property of hard
;: rock, and the stress values at which it starts reflect more
. permanent changes occuring in the rock structure. It has
fl finally to be noted that, although dilatancy is closely associ-
n ated with the process of macrofracturation, there is no close
correlation — as it is sometimes speculated — between suppres-
sion of dilatancy and the transition between brittle to ductile
o failure (Edmond and Paterson, 1972).

ff 2=-2 CRITICAL REVIEW OF LABORATORY EXPERIMENTS.

' Unfortunately, only a few of the investigations on the
dilatancy of rocks can be used in the understanding of the rock
response around deep underground excavations. Indeed, many
experimental studies of rock dilatation find their motivation in
the analysis of earthquake precursors, and are thus concerned

with measuring rock dilatancy at very high confining pressures
(e.g., Brace et al., 1966; Edmond and Paterson, 1972; Shock et
al., 1973). In contrast, modeling the response of rock tunnels
requires data on rock dilatancy at relatively low confining
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pressure (of the orders of tens of bars, as opposed to the
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X thousands of bars which have been reached in high confining DR
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- pressure experiments). Also rocks around excavations experience SR
s . . . . . .3\"\.- K
v a stress path which involves increase of the deviatoric stress Al
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accompanying unloading of the mean pressure, while most labora-
:{ tory experiments are characterized by a concomitant increase of
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both the confining pressure and the deviatoric stress. Finally,

few data are available beyond peak strength because many experi-
ments were carried out on a "soft" testing machine. (Actually,
not only a knowledge of the rock volume change in the post-
failure stage is required, but also in test conditions where
failure is pervasive throughout the rock sample - the kinematic
constraints during triaxial test experiments allows localized
failure modes to develop.)

2-3 THEORETICAL MODELS FOR ROCK DILATANCY.

The modern approach for modeling the response of
geomaterials is based on the theories of incremental elasto-
plasticity which involve the existence of a yield function, f,
and a plastic potential, g. The yield function, £, marks the
boundary of the elastic state in the stress space; f is not only
a function of the stress but also of some measure of the plastic
deformation, either the plastic work or the accumulated plastic
shear strain. The response to an increment of stress dr is
elastic if the stress point 1 is inside the current yield
surface, or if the current stress point is on the yield surface,
and the stress increment is pointing inside the yield surface
(elastic unloading). During continued plastic flow, 1i.e.,
during a loading history where the stress point remains on the
yield surface, the strain increment de¢ associated with the
stress increment di is compounded of an elastic part de (related
to do by Hooke's law) and a plastic part dgp which is propor-
tional to the gradient to the potential surface (flow rule).
The condition of continued plastic flow is expressed mathemat-
ically by

df = 0 (1)
while the flow rule is given by '

agP =\ & (2)

Like the yield function, £, the plastic potential, g, 1is a
function of the stress and of some measure of past plastic flow.
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In this investigation, we are dealing with material
models characterized by Mohr-Coulomb yield and potential func-
tions intended to simulate the response of pressure-sensitive
dilatant rock materials. The Mohr-Coulomb functions are of the
intrinsic curve type; i.e., the plastic deformation is indepen-

dent of the intermediate principal stress Ty For a Mohr-
- Coulomb material, the constitutive equations for continuous
' plastic flow reduce to

_ ds - pdP = hdy (3)
' da = pdy (4)

where 4P = (d‘[l + d'[3)/2, ds = (dtl - dt3)/2, and dA and dy
B represent, respectively, the variation of plastic volume change
n (dell) + dsg) and plastic distortion (dell) - deg), and where h

represents the hardening modulus. Figure 2 gives the geo~

metrical interpretation of the dilatancy parameter B = sin ¢*
' and the friction coefficient y = sin¢. Note that if the ¢ = ¢*,
- the flow rule is associated (¢ represents the highest theoreti-
' cal value for the dilatancy angle ¢*).

In the previous investigations of elastoplastic models
of tunnels (Labreche and Auld, 1980; Reed et al., 1983; AA,
1983) it is assumed that (1) the coefficient of friction is a
constant, (2) the material is nonhardening; i.e., h = 0, and
(3) the dilatancy factor is a constant. These assumptions imply
that both yield and potential functions are fixed in the stress
space, and that only three parameters are needed to describe the
plastic deformation (q, the unconfined compressive strength, the
friction angle ¢, and the dilatancy angle ¢*). However, as
discussed in the introduction, the weakest of these assumptions
is the hypothesis of a constant dilatancy angle, since it
results in unbounded inelastic volume changes. In the present

investigation, the first two assumptions are maintained while
the third assumption is relaxed to a variable condition.

The experimental results reported in the previous
section suggest that the dilatancy parameter is both a function *—'*—

.................
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of the accumulated plastic shear strain and the mean pressure. f?;fjﬁ
4 e
However, since we are interested in the phenomenon of dilatancy

v
..
v..
!

at relatively low confining pressure, and in the interest of

l‘l(.

a st

keeping the model simple, the dependence upon the mean pressure

ey
.

will here be ignored.

ok

The proposed flow rule is based on an exponential
decay of the dilatancy factor K; (which is defined as minus the
ratio of the maximum to the minimum plastic strain rates, i.e.,

x = - PP
Kp 81/83)
K* =1+ (K_-1) exp (- L5 5
x (K, = 1) exp (- 13) (5)
: This law is based on some limited experimental evi- o i-
.ﬁ dence which suggests that (1) the rate of dilatation at peak ‘
‘ stress in dense brittle material appears to be consistent with

an associated flow rule (Ladanyi and Don, 1970; Gerionnopoulos
and Brown, 1978), and that (2) the rate of dilatation progres-

sively drops to zero, beyond the peak stress. The parameters vy,

. in the exponential law (equation 5) can most usefully be related 538
: to the maximum inelastic volume increase A, by integrating the )
éi relation ?a-:uf
N _K* -1

& (6)

dy K* + 1 v

P
to yield

5 K+ 1

A, = ¥y, 2n _PZ_ (7)

Section 3 which follows outlines the development of an elasto-
plastic model of a deep tunnel which is based on the variable
flow rule (equation 5).
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SECTION 3

I ELASTOPLASTIC MODELS OF TUNNELS UNDER
HYDROSTATIC AND NONHYDROSTATIC LOADING

a7

3-1 INTRODUCTION.

In this chapter, the development of two elastoplastic
models of a deep cylindrical tunnel, which implement the
material model described in Section 2 is outlined. Two models
are considered, one for hydrostatic far-field loading, the other
i one for nonhydrostatic loading. The nonhydrostatic model is
4 restricted to loading conditions for which the problem remains
: statically determinate; as is always the case for the hydro-
: static loading. This restriction ensures that many features of
g the solution that were derived for a constant dilatancy angle
still apply for the improved dilatation model (e.g., the extent
and shape of the failed region around the tunnel).

The mathematical foundation of the elastoplastic
. models is developed for a hydrostatic case in Appendix A and in
. Appendixes B and C for the nonhydrostatic far-field 1loading.

Appendix B details a formulation for calculating the tunnel

closure for the case of a constant dilatancy angle that is
- developed for solving the general case with variable dilatancy
! in Appendix C. The formulation discussed in Appendix B is an
alternative to that derived previously (Detournay, 1983). It

2l at AT ST AT,

5 was developed because the original formulation could not be

3 implemented easily with a material characterized by a wvariable

g dilatancy.

' The equations for calculating the closure of the

" tunnel are derived for a stress history intended to simulate the

; excavation unloading of a prestressed rock mass. As discussed

E in the AA report (1983), an elastic correction has to be

’ applied, to account for a stress history with a far-field stress
surcharge.
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3-2 HYDROSTATIC MODEL.

3-2.1 Symmetry Conditions.

In the hydrostatic model, the boundary conditions
consist of an internal pressure p inside the tunnel and a mean
pressure Po at infinity (see figure 4). Because of the symmetry
of the boundary conditions and the geometry for this problem,
the stress, strain, and displacement field in the medium depend
only on the radial coordinate r of the cylindrical coordinate
system which has its origin at the center of the cavity.

Provided that

2 (e . _4g __4g
p<1<p+1(P Kp-l) Ry - 1 (8)

(it is assumed that Po > 2q), the tunnel is surrounded by a
plastic zone of external radius aR . Since the problem is
statically determinate, the normalized radius Ro of the elasto-
plastic interface is only a function of p, P_, and the yield

o
parameters gq and Kp:

1/(Kp-l)
P + - 1)

= 2 ( P

o K.+ 1 +
D P

(9)
(Kp - 1)

Since only the loading processes of interest (either internal
unloading or external loading) cause a monotonic increase of the
radius of the plastic zone, it is advantageous to use Ry instead
of either p or P° as a kinematic parameter. In other words, to
determine the mechanical fields (stress, strain, and displace-
ment) as a dual function of the coordinate r and the history
parameter Ro.

The problem being statically determinate, the stress
field in the medium and the displacement field in the elastic
region r > aRo are actually independent of the flow rule.
(Thei~ expressions can, for example, be found in Newmark, 1970,
or Hendron and Aiyer, 1971.) To calculate the closure of the
tunnel as a function of Ro' determine the displacement field




A T e P

TR PRTRTN -Fvl : ’ ! L ! ’ .y F VN aVeViSTVR VN

SRS T e TP NTNEIN I

ELASTIC

-‘»,:a"\,o‘.
~ ~

Hydrostatic model.

Figure 4.

ATTATA
LuXdYaTas

. R - R . '1.' -
PR IPIL AP CRPIE Y ) RS - S

. _?\.\_._'._'-_._. R SRS

talalac a®ate’latata iaNaat  tata




ACIAS SAS AR tn sie st Jes SO MG SRL e RS AT i - G et pE A A A S S A S

v
s "o "

.Tlp', oo

v ey v ww

u(r, Ro) in the plastic zone (a < r < aRo). However, as proven
in Appendix A, the general form of the displacement field
u(r, Ro) is given by

u(r, R)) = —og 25 (aﬁo) (10)

i.e., the displacement is only a function of the ratio r/aRo.

3-2.2 Concept of the Unit-Plane.

Conceptually, it is advantageous to introduce the unit
plane transformation p = r/aRo. In the unit plane, the circle
of radius p = 1 separates two regions; an interior plastic one
from an exterior elastic one. As the plastic annulus grows as a
consequence of changes in the boundary conditions, the image of
a physical point in the unit plane moves inwards along a radial
line, crossing the unit circle when the radius of the plastic
boundary reaches that physical point.

The concept of the unit plane 1is a powerful one,
because it substantially simplifies the mathematics of the
problem.

3-2.3 Governing Equations.
The normalized displacement ﬁ(p) (p < 1) is calculated

by solving the differential equation

K
2~ ~ ~ p
pSu” + K; pu’ - K; u = =A,p (11)

with

Ay = (Kp - 1) (KS - 1) + (1 - 2v) (Kp + 1) (K; + 1)

subject to the boundary conditions
u(l) = -1 ; u'(1) =1 (12)

The dilatancy factor KS is a function of the maximum plastic
shear distortion y, which can be expressed in terms of p, u, and

u':
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The differential equation can thus be cast in the general form
u” = F(p, u, u’') (14)

which is well suited for numerical solution, using an algorithm
such as Runge-Kutta. (Such an algorithm is usually included in
the math library of a scientific calculator, thus making the
solution of equation 14 straightforward.)

The function u(p) depends only on three dimensionless
parameters: K., v, and A,, which is defined as

B, = 24, (15)

Se
Experimental evidence suggests that the maximum inelastic volume
increase A, is generally less than 5 percent, thus leadiné to a
possible range of values for A, between 0 and 100.
Oonce the function ﬁ(p) has been determined, the dis-
placement at the tunnel wall, as a funqtion. of the history
parameter R, is simply given by

o
arR_ S
_ o "2 ~ {1
u=—=" u (ﬁg) (16)

The variation of the normalized displacement (ZG/aSE) u at the
boundary has been plotted in figure 5 as a function of the
normalized radius of the plastic zone for Kp = 3, v = 0.25, and
various values of the parameter Z*. To illustrate how the use
of a constant dilatancy angle can be misleading, figure 6 pre-
sents the apparent constant dilatancy factor KS which yields,
for any given value of R, the same displacement at the boundary
as obtained with the variable flow rule (equation 5). Figure 7
suggests that the solution for Z*= 0.1 should approximate
closely the solution for a plastically incompressible material
(KS = 1) for values of Ro greater than 1.5; while the displace-
ment for A,= 100 should be close to the one predicted by an
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. associated flow rule (K; = 3) for Ro less than 2.5. The numeri-

P
s

cal analysis indicates that the plastic dilatation on the boun-

dary rapidly reaches its maximum value in the first case
(A = 0.1 for R, = 1.1; &, = 0.1), but that only 45 percent of
the maximum inelastic dilatation has been reached for R, = 2.5

L
'r
'

in the second case (&, = 100).
3-3 NONHYDROSTATIC MODEL.

3-3.1 Modes of Failure.

In this model the stress at infinity is characterized
by a mean pressure P° and a stress deviatoric s° (see figure 7).
In this case, the problem is characterized by two axes of sym~
metry, which are parallel to the principal stress directions at
infinity. Due to the existence of a stress deviatoric s® at
infinity, different modes of failures can develop around the
tunnel depending on the relative values of P°, s°, p, and q.
Consider first the case of an unsupported tunnel (p = 0). The
different types of behaviors can graphically be depicted in the

normalized stress space (Po/q, So/q) (éee figure 8):

° Type 1: Elastic behavior only (region desig-
nated I)
) Type 2: Limited failure in a direction perpen-

dicular to the major in-situ stress
(region designated IIa)

) Type 3: Tunnel completely surounded by an
oval-shaped yield zone (region desig-
nated I1Ib)

° Type 4: A '"butterfly"-shaped plastic region
around the tunnel (region designated
I11)

Region II in the stress diagram corresponds to statically deter-
minate cases; i.e., conditions for which the extent and shape of
the plastic region are entirely controlled by the stress
boundary conditions and the yield parameters g and Kp. The
boundary between statically determinate and indeterminate condi=~
tions corresponds to a line of critical obliquity m* (recall
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R that the obliquity is defined as the ratio of s°/s§). The
* critical obliquity m* is only a function of the friction angle ¢
(see table 1). Far-field stress points on a line of equal

2- obliquity correspond to elastoplastic interfaces that are geo-
metrically identical, but of different sizes.

TABLE 1. Critical obliquity m*.

N 0| 0° 10° 20° 30° 40°

m,| 0.414| 0.437 | 0.466 | 0.500 | 0.542

< The existence of an internal support pressure in the
tunnel causes the boundary between regions I and Ila and the
boundary between regions IIa and IIb to move to the left. As
discussed in AA (1983), the effect of an internal support pres-
o sure can be taken into account by a simple geometrical construc-
t tion, which involves moving the far-field stress point along a
;j line of equal obliquity. Accordingly, the presence of an
internal pressure changes neither the boundary between stati-

‘i cally determinate and indeterminate conditions, nor does it
change the shape of the elastoplastic interface.

" 3-3.2 Consequences of Statical Determinacy.

The semianalytical solution developed in this report
is restricted to far-field conditions for which the problem is
statically determinate; i.e., for obliquity less than the criti-
cal obliquity m*. The restriction to statically determinate
conditions ensures that, similarly to the hydrostatic loading,
the location of the elastoplastic boundary is solely controlled

. by the stress boundary conditions P®, s°, and p, and the yield

parameters q and Kp. For conditions for which the tunnel is
completely engulfed by a plastic zone, the interface is char-
acterized by a major to minor axis ratio equal to

20
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major axis _ (1 + m\2/ (Kg*l) (.17)
minor axis 1 -m
with the obliquity m defined as
o
" o (18)
s©
2

The average radius of the plastic zone corresponds, however, to

the one computed for hydrostatic loading. Also, the stress IR
field in the medium and the displacement field in the elastic ;j-if%f
region are the same as the one computed for a constant dilatancy ;ﬁ;;;;i
angle. To calculate closure of the tunnel, we need to calculate ﬂ;ﬂ!&fﬂ{

the displacement in the plastic region as a function of the
boundary conditions, or equivalently as a function of the
average radius of the plastic zone (as for the case of hydro-

static 1loading). In this case, however, the displacement has
not only a radial component but also a tangential one (except on
the axes of symmetry), and is a function of both cylindrical
coordinates (r,6) and of the kinematic parameter R,-

3-3.3 Governing equations.

Derivation of the equations governing the displacement
in the plastic region of a material with a variable dilatancy
follows closely the approach adopted for a constant dilatancy
(see Appendixes B and C). The derivation is based on the pro-
perty exhibited by the stress solution that there is no rotation
of the principal stress directions in the plastic 2zone during
propagation of the failure zones around the tunnel. This pro-
perty of the solution ensures that the principal directions of
the incremental plastic strain tensor dgp remains locked in the
radial and tangential directions everywhere in the plastic zone
and at any time during the monotonic loading. This feature of
the problem allows integration of the flow rule

— = - K* (19)
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thus yielding the following relation between the radial and
tangential plastic strain components eg and eg.

el = - Rx(v) ep ' (20)

D « B ©
Y = & T &9
The symbol R; stands for the secant dilatancy factor, which, on
the basis of equation (5), is given by
1 o Y K. +1

R* = ;i @ = — &n P ; (21)
p l -« Y 2 + (Kp - l)e-Y/Y*

Figure 9 illustrates the geometrical interpretation of the
tangent and secant dilatancy factor (note that for a constant
dilatancy, the distinction between tangent and secant dilatancy
factor disappears).

The governing equations of the displacement in the
plastic region are deduced from equation (20) as follows: the
plastic strain is expressed as the difference between the total
and the elastic strain; the elastic strain field in the plastic
zone is explicitly determined, using Hooke's law and the stress
solution; and, the total strain can be related to the partial
spatial derivatives of the displacement. These relationships
result in a set of partial differential equations for the dis-
placement that are solved using the elastic displacement on the
elastoplastic interface as boundary conditions. It turns out,
that as for the hydrostatic case, the general form of the dis-
placement is given by
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u (r, 8; R ) = (aRo , e) (22)

unique function of the coordi-

[

The displacement field is thus
nates of the unit-plane.

All calculations done, the partial differential equa-
tions governing the normalized displacement in the plastic zone
are given by

2u, 9% 2, 3
(a_,’(. + __¥) cos 2¢ - (5-—¥ - 3_¥) sin ¢* = Hl (p:¢)

3 3y X b4
au au au au
i 4 __X - X - . 4 i =
(ay’ + ax’) cos 2¢ ( x’ ay') sin 2¢ Hz (p.0)
(23)
where
2%, K -1
H (p,0) = - — p P cos 2¢
(% = 1) (Rg *+ 1)
K. +1 R*x -
+ 2(1-2v) KE*:—I cos 2¢ + 2m :E————
P K* + 1
; p
HZ (p,o) = 2m sin 2¢ (24)
with
Xy = (Kp - 1)(R; - 1) + (1 - 2v)(Kp + 1)(25 + 1) (25)

This nonlinear system of equations is of the hyperbolic type,
and can thus be solved by the method of characteristics. This
system is however very stiff and as a result, poor accuracy is
achieved if standard algorithms of solution are uséd. Because
of the ill-conditioned nature of equation (23), a special scheme
had to be used. This involved tranforming the equations into a
system of two ordinary differential equations along the char-
acteristics and solving them using a central node finite dif-

ference technique.




3-3.4 Validation and Abplication.

As a means of validating the numerical algorithm
(program KINVAR) developed to calculate the closure of a tunnel
in the presence of a nonhydrostatic far-field stress, two hydro-

static test cases were run and compared with results obtained by
the code GROUND, which solves the differential equation with the
Runge-Kutta algorithm. The comparison is shown in figures 10
and 11, where the normalized radial displacement at the tunnel
wall is plotted as a function of the radius Ro of the elasto-~
plastic interface. These figures indicate that with relatively
few points, (which 1is indicative of a relatively coarse
characteristic mesh), KINVAR is able to faithfully predict the
closure of the tunnel.

Two nonhydrostatic cases have also been solved, and
the results shown in figures 12 and 13 (radial displacement on
the two axes of symmetry as a function of Ro). These plots
confirm that the tunnel ovals during closure, with the direction
of maximum closure becoming perpendicular to the maximum com-
pressive far-field stress, once the plastic region around the
tunnel becomes sufficiently large.
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SECTION 4

LABORATORY EXPERIMENTS

4-1 MODEL STUDIES.

Over the past 15 years or more the Department of
Defense, through several agencies and contractors, has conducted
a large number of scaled model studies of underground excava-
tions, mostly in rock simulant. The studies have investigated a
number of significant parameters governing the behavior of
hardened excavations, including: alternative ground support

systems, monotonic loading, and static versus dynamic loading.
The tests have undoubtedly contributed significantly to the
understanding of the behavior of underground excavations and the
results of the scaled model tests have been demonstrated to be
qualitatively similar to those observed during testing of full-
scale structures in the vicinity of underground weapons tests.

The most extensive series of tests have been performed
by the Stanford Research Institute (SRI), using cylindrical
specimens 4 in. and 12 in. in diameter into which excavations
have been drilled or cast. Emphasis during the earlier tests
was on simulating the behavior of excavations in tuff, and a
number of rock simulants with relatively low friction angles

were used to fabricate lined and unlined tunnels in intact and
jointed rock. Emphasis was also placed on understanding the
impact of static versus dynamic loading. More recently the

'

interest in siting a deep based missile system in a sedimentary e
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types of structures in rock simulants exhibiting higher friction
angles.

As part of the present investigation a detailed review
of the scaled model tests was conducted, with a view to identi-
fying data that may be used to validate the variable dilatancy
model described in the previous sections of this report.
Despite the large number of tests that have been performed, very
few lend themselves easily to the desired purpose. There are
two important reasons for this difficulty. The first is that
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the majority of the tests have been performed under conditions
intended to reproduce the uniaxial strain loading that might be

N
o
“

experienced by an excavation as a consequence of a distant
nuclear burst, for example. As will be discussed later, the
selected loading path rapidly leads to conditions that are
statically indeterminate and are, therefore, not amenable to
analysis in closed form. The second problem is that the region
of failed rock around the tunnels is typically relatively large
when compared to the dimensions of the cylinder within which it
is located. Under such circumstances the influence of the
boundary can significantly modify the response. Again, this
effect cannot be accounted for in the analytical model. The
third problem is that most of the support systems tested exert a
nonuniform pressure on the rock simulant unless the model is
subjected to isotropic loading. As currently developed, the
analytical model requires that the support be approximated as a
uniform internal pressure. The approximation may be acceptable
for rock bolted or backpacked structures, but is inappropriate
for integral steel or concrete liners subjected to nonisotropic
loading.

In the following sections the results of a number of
laboratory tests are discussed. Considering the problems
associated with the uniaxial loading conditions, emphasis is
placed on cases in which the loading was isotropic. However,
there is also a discussion of the results of selected tests
under uniaxial strain conditions.

4-2 ISOTROPIC LOADING OF LOW FRICTION SIMULANTS.
A large number of tests have been performed using a
tuff simulant designated RMG-2C2. Typical results from early

tests on lined and unlined tunnels in intact rock subjected to
static and dynamic loads are reproduced in figure 14. These
tests revealed a significant difference between behavior under
static and dynamic loads, and dry and saturated conditions. The
differences were attributed, in the most part, to pore water
effects; with the pore water weakening the specimens in the

static tests and strengthening them in the dynamic tests.
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Figure 14. Tunnel closure versus applied pressure for isotropic
loading of SRI RMG 2C2. Liner: 6061-TO aluminum,
a/h = 11.5.
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Following this finding, testing has emphasized static loading of
saturated samples. Under such circumstances the properties of
the RMG-2C2 simulant are reported to be (SRI, 1979):

Young's Modulus E = 1.6*%10 psi
Poisson's Ratio v = 0.18
Unconfined Compressive Strength q = 3200 psi
Friction Angle ¢ = 2.5°

For reasons discussed above we shall consider the case of lined
excavations subjected to isotropic loading. Typical results of
such tests conducted with different thicknesses of Al 6061
aluminum liner are reproduced in figure 15. Superimposed on the
laboratory data are closure versus applied pressure curves
computed using a model that assumes associated behavior (¢ = ¢,)
for the simulant and the strain hardening property illustrated
in figure 16. It may be observed that the analytical model
reasonably reproduces the laboratory data. However, as dis-
cussed below, this finding cannot be regarded as evidence of the
validity of the constitutive model assumed for the rock
simulant. .

The most important factor affecting the wvalue of this
data is the very low friction angle. 1In figure 17 the tunnel
closure histories predicted using full dilatation (¢* = ¢) and
zero dilatation (¢* = 0) are illustrated for lined and unlined
tunnels in the RMG-2C2 simulant. (Models based on these two
extreme assumptions have been referred to as the Hendron and
Newmark models respectively.) I1f figure 17 is compared to
figure 15 it is clear that the differentiation between the full
dilatation and zero dilatation is not an important phenomenon
for such a low friction material.

The second consideration for these tests on low fric-
tion materials is the boundary conditions. For the isotropic
loading conditions considered here this effect can be investi-
gated analytically wusing the solution for a thick-walled
cylinder subjected to uniform internal and external pressures (p
and Po). The extent of the plastic region in the cylinder is
given by the equation (Kennedy, 1975):
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based on a closed-form solution that neglects
out-of-plane plastic strain .
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Figure 17. Calculated tunnel closure versus applied pressure
curves using closed form solution with constant
dilatation angles. SRI rock simulant RMG 2C2 with
lined (1015 steel liner, a/h = 18) and unlined tunnel.

T N P LI e et ca WU e
e e P R N I T LU AR S P A SN SR B P P S o L AR S
e et e et CIPRE TR WAL P T LT WA TP T R A TP DA T AT DT I "W R, DR, DAL, DL - SURLAL AU SO AU, Sl S TR St W, Wl WO WO W AR LN




L A I A A AR AR AL e A AP A S i Al U WL LG aa Al o 0 200 AR 2ie 208 e e LaME M AR gt aia LS5 a0~ An LRl - At i~ o
......... g
e LT e

(K. +1) (K. + 1) ;112 (K_-1)
R P _.E___(b) R P

(Kp - 1) \a
(26)
P° +
2 K -1)
*(Kz-l)(g) 2 =0
P Pt T

in which a and b are respectively the internal and external
radii of the cylinder and R is the radius of the plastic zone
normalized by a. As noted earlier, the radius of the plastic
zone around a tunnel in an infinite region is given by:

_ 1/(K,-1)
P+ o
R =|_2 ®p = 1)
= (27)
o K +1 + q
P P ®; - 1)

which is a special case of the thick walled cylinder equation,
that can be deduced by allowing (b/a) to approach infinity.
Equation (26) can be solved to define the minimum thickness
below which the thick-walled cylinder will be completely plas-
tic. This thickness is a function of the internal and external

pressures and the material properties:

1/(Kp—1)
P° + i
(’9-) = B (28)
min Pt oy

Referring to equation (27), it can be seen that this
minimum thickness can be much larger than the extent (Ro) of the
plastic zone around a hole in an infinite region. Specifically:

1/(K_-1)
b - {2 o
(a) = (Kp —~ 1) R, (29)

Clearly the difference is more important for very low
friction angle materials, such as the RMG-2C2 rock simulant.

min
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This can be illustrated best by solving equation (26) to obtain

the relationship between the radius of the plastic zone and the
dimensions of the thick-walled cylinder for a particular choice
of material properties. Such a relationship is illustrated in
figure 18. That figure is for the case of a thick-walled cylin-
der of RMG-2C2 without internal pressure and with external
pressure expressed as a multiple of the uniaxial strength. At
relatively high loads the extent of the plastic zone in the
finite region is considerably enlarged, which indicates that the
displacements observed in these models will be much greater than
would be observed in the field. Hence the results of tests of
tunnels in RMG-2C2 simulant are unsatisfactory for validating
the variable dilatancy model on two counts. First, the friction
angle is too small to provide a differentiation between alterna-
tive dilatation models. Second, the results of the model
studies are strongly influenced by the boundary conditions.

4-3 ISOTROPIC LOADING OF HIGH FRICTION SIMULANTS.

A series of tests on lined and unlined tunnels were
performed by SRI on a relatively high friction simulant desig-
nated 6B. Material properties of this simulant are reported
(Lindberg, 1983):

Young's Modulus E = 2.0*%10 psi
Poisson's Ratio v = 0.25
Unconfined Compressive Strength q = 4300. psi
Friction Angle ¢ = 33°

Results for four cases of isotropic loading are reproduced in
figure 19 (Lindberg, 1983). Superimposed on the experimental
data are theoretical results obtained using the full (associ-
ated) dilatation model. The theoretical results are for three
different steel 1liner thicknesses in addition to the unlined
case.

It may be observed from figure 19 that there are
significant differences between the experimental data and the
theoretical model. The most obvious is that the effect of the
liner is overestimated in all cases.
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This is relatively easy to explain for the very thin liner since
it was reported that the thin liners were severely buckled
during loading. For the thicker liners it must be assumed that
their effect is delayed by a certain amount of "consolidation"
and elastic response before the full support pressure is
mobilized, when the liner is fully yielding.

A second important departure of the experimental
behavior from the theoretical model is that the theoretical
model appears to overestimate the closure at higher 1loads.
Unfortunately the uncertainty as to the efficiency of the liners
makes it difficult to quantify this effect. Despite this uncer-
tainty 1t is instructive to compare these test results with
predictions made using the variable dilatancy model. First,
however, it is appropriate to evaluate the importance of the
boundary conditions, and to ascertain whether these are an
important consideration in this case.

In figure 20 the relationship between the radius of
the plastic region and the radius of a thick-walled cylinder of
6B rock simulation subjected to external pressure is
illustrated. The format of that figure is the same as fig-
ure 18, except that the vertical scale has been enlarged because
the effect of using a higher friction simulant is to restrict
the growth of the plastic region. From the figure it is clear
that once the boundaries lie beyond approximately six tunnel
radii they cease to have a significant influence. Since the
tests performed by SRI satisfy this constraint we conclude that,
for high friction simulants, the tunnel deformation should be
relatively unaffected by the fact that the test specimen is
finite.

Figure 21 illustrates the relationship between tunnel
closure and support pressure for alternative assumptions regard-
ing the maximum inelastic strain. Superimposed on the plots are
the results extracted from figure 19, using the theoretical
level of support offered by the three liners. It is evident
that either the effect of the liners is being overestimated or
that there is an initial displacement that is not accounted for
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in the theoretical model. It is difficult to reconcile either
of these alternatives with the fact that the closures appear to
be underestimated at 1low loads. Despite this problem, the
results of this comparison do tend to suggest that the variable
dilatancy model will provide an improved simulation of observed
behavior. There 1is evidence that the rate of increase of

closure does decrease at the higher loads. If forced to esti-
mate the maximum inelastic strain using this limited data base
it might be set at approximately 10 percent.

4-4 BIAXIAL LOADING OF HIGH FRICTION SIMULANTS. *i{?f;

Additional data for the response of lined tunnels in Tl
SRI rock simulant 6B is provided by Lindberg (1983), but for the
case of simulated uniaxial loading. In this case the solution
for the closure is not available in closed form because the

b

!; problem rapidly becomes statically indeterminate. However, in DA
[ an attempt to gain further data on the properties of the 6B, it )
was considered appropriate to perform analysis of the uniaxial

loading tests using a finite element code capable of simulating

a Mohr-Coulomb material, providing associated behavior is
assumed.

Results from the uniaxial strain model studies per-

formed by SRI are reproduced in figure 22. Before attempting to
reproduce those results a preliminary calculation was performed
for the case of isotropic loading. The result of that calcula-
tion is illustrated in figure 23, where it is used to verify
that the numerical prediction was in good agreement with the

earlier closed-form solution. Having thus confirmed the ade-
quacy of the numerical model, two alternative simulations of the
uniaxial strain condition were investigated. First, uniaxial
strain was imposed by restraining lateral displacement of the
model. To be reasonably consistent with the laboratory configu-
ration, the lateral boundary was placed 6.5 tunnel radii from
the centerline of the tunnel. Since this boundary is compara-
tively close to the tunnel, it is probable that the first boun-

dary conditions unrealistically restrains the model. Second, a

confining stress equal to that generated in the free field under
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conditions of uniaxial strain was imposed. This second condi-
tion is probably too compliant, which suggests that displacement
of the tunnel wall would be overestimated.

Results from the two numerical simulations of uniaxial
strain loading are illustrated in figure 23. Two aspects of the
behavior are very interesting. First, the results are extremely
sensitive to the assumed boundary conditions, with larger dis-
placements resulting from the stress controlled boundary.
Second, the displacements are significantly smaller than
observed in the 1laboratory, even though the liners were not
incorporated in the numerical simulation. Since the stress
controlled boundary conditions should have resulted in an over-
estimate of the tunnel closure it appears that there must be
some deficiency in the material model. Probably, either the
reported properties are incorrect, or the Mohr-Coulomb model
does not adequately describe the material behavior. These
observations are reinforced by the fact that the numerical model
assumed associated behavior, and therefore predicts the maximum
possible dilatation.

4-5 EFFECT OF TUNNEL REINFORCEMENT.

SRI provided data on a series of tests to evaluate the
effect of rockbolts as a means of tunnel hardening. These tests
were intended to simulate 18 ft diameter tunnels either unsup-
ported or supported with #20 rockbolts on 2 ft centers. This
degree of reinforcement amounts to an internal pressure of
approximately 680 psi (4.7 MPa), if i1t can be assumed that the

bolts exert a pressure equal to the yield stress of the steel.
The tests selected for analysis here were designated by SRI as
LSUX-35 and LSUX-39. The reported properties of the rock simu-
lant HFS used for these two tests are, for material from the mix
used in LSUX-39:

Young's Modulus E = 1.4*%10 psi
Poisson's Ratio v = 0.25
Unconfined Compressive Strength q = 4900 psi
Friction Angle ¢ = 40°

Tt e A T e Je el
F- LA PR PORD PN PP PE A P PP




I

."-".'-“‘l

R IR
'y 4y ,

LR RN

PARAN
R A

o

Since the results of the simulation of the uniaxial
loading tests performed on material 6B indicated a considerable
sensitivity to the boundary conditions, the load path used by
SRI was followed as closely as possible. The record of the
relationship between the vertical and lateral pressures during
the LSUX-39 test is reproduced in figure 24. (This relationship
is generated by slaving the lateral pressure to maintain zero
circumferential strain at sample points close to midheight of
the cylinder of rock simulant.) To simplify the numerical
modeling, this load path was idealized as three linear segments
and the internal support pressure was applied incrementally
during the first load segment.

Results of the laboratory tests are reproduced in
figure 25 and those of the numerical simulation in figure 26.
In both cases the predicted displacements are substantially less
than observed in the laboratory. Since any uncertainty in the
loading conditions was removed by carefully following the
laboratory procedure, it is concluded that there are deficien-
cies in the material description. Once again, this may be in
the definition of the properties or in the constitutive model.
The most likely explanations are either that the Mohr-Coulomb
model substantially under-predicts the extent of the plastic
region or that some other failure mechanism, such as near sur-
face spalling, is occurring.

4-6 CONCLUSIONS.

The results of evaluation of the results of laboratory
tests using models based on the closed-form solution and a
finite element procedure indicate that the Mohr-Coulomb model
substantially under-predicts the closure even when associated
behavior is assumed. This implies that the material description
used is inadequate, either in the choice of material properties
or in the constitutive model. Not enough is Kknown about the
material ©properties (uniaxial strength, elastic modulus,
Poisson's ratio, and friction angle) to determine whether that
is the source of error. However, it is reasonable to question
whether appropriate account has been taken of scale effects that
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Figure 24. Load path for SRI test LSUX-39 on HFS5 rock simulant.
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EFFECT OF #20 ROCK BOLTS IN HFS SIMULANT
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Experimental results from SRI
LSUX-35 and LSUX-39.
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Figure 26. Numerical predictions of closure of reinforced
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are important in reality but are ignored in the mathematical
descriptions.

Given the uncertainty in the material properties it is
difficult to draw any firm conclusions about the adequacy of the
Mohr-Coulomb model. However, the fact that the models based on
associated behavior consistently under predict the observed
deformation, except in the case of isotropic loading, suggests
that the simple constant friction plasticity model is inade-
quate. Additional laboratory testing would be required to
identify the nature of the deficiency, but it seems most likely
that the model underpredicts the extent of the plastic region
around the tunnel. Careful inspection of cross sections of a
tunnel structure after testing could be used as a means to test
this hypothesis. Also, consideration could be gi?en to moni-
toring microseismic emissions during tests to detect regions of
inelastic behavior.
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SECTION 5

CONCLUSIONS

This study had as its main objective the development
of a mathematical model of a deep tunnel based on an improved
dilatation model of the rock, so as to overcome the principal
shortcoming of existing models based on the assumption of a
constant dilatancy angle.

A review of published laboratory experiments on rock
dilatancy revealed that very few experimental data could be used
to support the development of an improved dilatation model for
rock at low confining pressure. Reasons for this deficiency can
be found in the use of '"soft" testing machines, which are
responsible for the lack of data beyond the peak stress, or in
the fact that many experiments were conducted at very high
confining pressure, so as to simulate the behaviors of rock at
great depth. Some 1limited experimental evidence suggest, how-
ever, that at peak strength, the maximum theoretical dilation
rate 1s achieved (associated flow rule) and that it progres-
sively diminishes afterwards with the plastic shear strain. On
that basis, a very simple dilatation model was implemented which
involved the introduction of a single parameter, the maximum
inelastic volume increase, in contrast to the constant dilatancy
angle parameter used in previous dilatation models. This con-
stitutive model fits between the two extremes: constant dilata-
tion models — the so-called full dilatation model (dilatancy
angle constant and equal to the friction angle) — and the zero
dilatation model (zero dilatancy angle). It has the advantage
of relying on a physically meaningful parameter.

The improved dilatation model of rock was then used
for the development of two mathematical models of a deep cylin-
drical tunnel, one for hydrostatic, the other one for nonhydro-
static loading. For the hydrostatic loading, it was shown that
closure of the tunnel requires the solution of a nonlinear
ordinary differential equation, and for the nonhydrostatic

loading a system of nonlinear partial differential equations of
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the hyperbolic type. 1In both cases, the numerical procedures
are discussed in detail: Runge-Kutta for the hydrostatic load-
ing, and the method of characteristics for the nonhydrostatic

4 LEANRAS ] A

Oy case. The numerical models have, however, been devised in such
i a way that more elaborate dilatation models - accounting, for
AN . .

N example, for the influence of the mean pressure — can be imple-

mented in a straightforward manner.

R

Model test experiments were then reviewed in an
attempt to validate the improved dilatation model. The review
proved, however, to be inconclusive because:

. 1. Many tests have been performed using a very low

- friction angle (2.5 deg) rock simulant, which,

g because it hardly dilates, can never provide a
clear differentiation between full dilatation and
zero dilatation models.

2. Numerical simulation of tests conducted with a
high-friction rock simulant demonstrates that the
observed closure is generally underpredicted with

i a linear Mohr-Coulomb material even if a full-

dilatation model is assumed. This implies that a

»

s s -
(] 11'1.',.‘...

Sl

simple 1linear Mohr-Coulomb criterion is not
sufficient to describe the behavior of rock
. during failure.

N Although the elastoplastic models developed in the RESRO
o course of this investigation are based on a relatively simple E%g;;ﬁf

w constitutive law, they nonetheless represent a significant e
E improvement over previous analytical models. These models are, {gigfl
however, best used for parametric analyses and/or to delimit the 7

conditions for which a more sophisticated (but costly) finite ;;]ﬁfﬂﬁ
element analysis 1is warranted. In that regard, design charts o :
similar to those developed during a previous investigation
should be devised (AA, 1983). Such charts would enhance the
practical usefulness of the models developed in this study.
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APPENDIX A

ELASTOPLASTIC MODEL OF A DEEP TUNNEL FOR A
ROCK WITH VARIABLE DILATANCY

A=1 INTRODUCTION.
The hydrostatic model of a deep tunnel has been the

subject of so many papers (see Brown et al., 1983, for an

exhaustive list of references), that it might appear unnecessary

to devote yet another to the subject. A review of the existing

models reveals, however, that in most accounts the dilatancy of

the rock — defined as the rate of increase of the inelastic

volume change with the plastic shear strain -~ is assumed con-

stant. This assumption may be responsible for unrealistic

prediction of tunnel closure, since it does not set any bound on

the volume increase that the material can experience. In some

investigations, a variable dilatancy has been implemented, but

calculation of the tunnel closure is then based on an approxi-

mate solution method.

The objective of this paper is to present a rigorous

solution of the tunnel closure, for a general class of materials

characterized by a Mohr-Coulomb yield envelope and a plastic

dilatation, which may be an arbitrary function of the stress and

the plastic shear distortion.

A~2 THE HYDROSTATIC MODEL.
Consider the plane strain model of a cylindrical

tunnel of radius a, driven in a homogene.us and isotropic rock

mass (see figure 27). A far-field stress of magnitude P° acts

at infinity (it is assumed that the gravity force can be

ignored). Excavation unloadinguéf thévpréstfessed rock mass is
simulated by a monotonic decrease of the internal pressure p,
from an initial value P, to zero. The rock is assumed to behave .- "*i
as an elastoplastic material with a 1linear Mohr-Coulomb
envelope:

Ty = Kp T, -aq (30) ;i
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Hydrostatic model.
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Figure 28.

PLASTIC

Unit-plane transformation.
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in which g is the unconfined compressive strength, Kp the pas-
sive coefficient, a function of the friction angle, and tension
and extension are taken as positive. We restrict consideration
to cases where the out-of-plane principal stress is the strict
intermediate stress 1, in regions of plastic deformation, so
that the normal elastic strain, perpendicular to the plane of
deformation, vanishes everywhere. (It can be proven that satis-
faction of the inequality (Kp + 1) > 1/v represents a sufficient
condition to that effect (Detournay, 1985).)

We seek to determine the stress and displacement
fields in terms of the radial coordinate r (the problem is
axisymmetric) and the internal pressure p, for a general class
of materials characterized by a plastic dilatation function of
the stress and the accumulated plastic shear strain.

In the early stage of unloading, the rock around the
tunnel remains elastic; however, provided that

' P P
the problem is characterized by the existence of a plastic zone
(a < r <aR)) surrounded by an infinite elastic region
(aRo < r). Since the problem is statically determinate, the
normalized radius Ro of the elastoplastic interface is the only
function of the stress boundary conditions p and P° and the

yield parameters q and K_ (e.g., Salencon, 1969):

P
] 1/(K,=1)
P+ - 1)
R = |—2 R (32)
(o] K +1p + gq
(Kp - 1)

Since Ro is a monotonic function of p, it can be used as a
kinematic parameter instead of p (at least beyond the elastic
limit); in other words any mechanical field (such as stress,
strain, displacement) can be viewed as a dual function of r and

Ro.




The stress field in the plane is indepeﬂdent of the

flow rule of the material. In the cylindrical coordinates
system (r,0) the stresses are given by (e.g., Salencon, 1969):

Plastic

Elastic

Ltre =0 (34)

in which the symbol sg

deviatoric at infinity:

denotes the limiting value of the stress

K -1 S
Sy = B v T (P° + —‘1—) (35) %

g TK_+1 K- 1 -
p P SR
within the elastic region the induced displacement field is ‘5;;}‘:
given by: ;~Q:Lf§
*‘t'_ -

asg r L I

u=- 5% R (-——aRo) r: aR, (36) -
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A-3 DISPLACEMENT IN THE PLASTIC REGION.

Within the plastic region (a £ r £ aRo), the displace-
ment cannot be described in simple form except for the case of
constant dilatancy angle. Instead, it 1is necessary to solve
numerically the differential equation that is developed in the
following text.

Since R, is used as the kinematic parameter, the rate
of change of a mechanical quantity is defined as its partial

derivative with respect to | The velocity v is thus defined

by:
au
aRo
and the strain rate ¢, &, by:
d¢e d¢
. r . 6
£ =T =— ; £, = — . (38)
r 3Ro 0 2] o
The strain rates are also related to the velocity by:
. =9V . _V
rTar i %o T T . (39)

In the plastic region, the strain (and strain rate)
consists of an elastic and a plastic part. The elastic part can
be expressed in terms of the stress (and stress rate) by means

of Hooke's law. The plastic part of the strain rate tensor is
controlled by the flow rule

‘P _ _ P
e, K; €9 (40)

. -. -.where the tangent dilatancy factor Ks can be an arbitrary func-
tion of the stress (generally the mean pressure) and the accumu-

N lated plastic shear strain, y = ag - sg. The flow rule (equa-
tion 40) can then be rewritten in terms of the total and elastic

strain rate:

(41)
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The elastic strain rates éi, ég

computed from Hooke's law and the partial derivative of T and

in the plastic zone can be

1 given by equation (33), with respect to R_.. Specifically:
o

el
(o]
S” A
€, iz€ _ o8 Mk (x
£+ K8 ES = 5 ( ) (42)

in which

Mo = (K = 1) (KX = 1) + (1= 2v) (K, + 1) (K5 + 1:43)

The differential equation for the velocity field in the plastic
zone can then be deduced from equation (41) using equations (39)
and (42),

o K -1

Sy

* r ) P
=s35an |33 a
2 Ro (aRo

Q’IQ?
Rl
i
>
A
a
1A

+ KS aRo (44)
The velocity field in the plastic zone can thus be calculated
from equation (44) using as boundary condition, the wvalue of
velocity on the elastopléstic interface. This boundary value,
which is obtained by differentiating equation (36) with respect
to Ro’ and setting r = aRo is equal to

VvV =« 2 (45)

ﬁ
2G

Once the velocity field has been calculated from equations (44)
and (45), the displacement is obtained by integrating v(r,Ro)
with respect to Ro. However, calculation of the displacement
can be dramatically simplified by noting that the displacement
field (like the stress and velocity) is actually only a function
of the dimensionless ratio r/aRo. For the purpose of demon-
stration it is convenient to introduce the unit plane (p,8)
defined by the affine transformation

(46)

.........
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In the unit plane, the circle p = 1 separates an internal plas-
tic region from an external elastic region (see figure 28).
Using the transformation (equation 46), the differential equa-
tion for the velocity field becomes:

Kp-l
= Ae P P

A

av

=— + K* 1l 47
3p P (47)
in which Vv stands for the velocity normalized by the character-
istic length L defined as:

o
aS2

L = 36 (48)

Equation (47), subject to the boundary condition v = -2 at
p = 1, demonstrates that v is indeed a function of only the
cylindrical coordinate p of the unit plane. Hence, the general
form of the displacement field is necessarily given by:

- - ~ _r__. R
- u(r,R)) =R LT (aR ) (49)
» o]

ii The differential equation (47) can now be expressed in terms of

= the normalized displacement u, using the fact that

5 v(p) = u(p) = p U (p) (50)
ﬁ thus
_ K
' 250 b g% ol - KX B = oAup 51
"oy ‘o U= -
pu 5 pu 5 %P (51)

This differential equation is subject to the boundary conditions

u(l) = - 1 ; u’' (1) = 1 (52)

YR

which are deduced from the elastic solution (equation 36) for
the displacement.

If the dilatancy factor Ks is assumed constant

(1 < KS < Kp), equation (51) is an Euler equation which can be

solved in closed form to yield

~-(K*+1)
A, + 2K+ 2K*
- * p P P

u(p) = -pl1+ p
KX + 1)(K_ + K*
( b )( p p)

-1




.....

N K,-1 >
%*
+ p -1 (53)
K - K. + K*
( P _1)( P Kp)

Realistically, K; should be a function of the accumulated plas-
tic shear strain, and possibly of the mean pressure. In such
circumstances, equation (51) must be solved numerically; this
involves expressing K; (and thus A,) as an explicit function of

the radial coordinate p and the displacement u. Any dependence
of K; on the mean stress can be transformed into a function of p

by means of equation (33), since the problem is statically

determinate. The dependence of K; on the plastic shear strain y g ?f£¥?
involves expressing y in terms of p, u, and u’. R

From equation (49) and the strain-displacement AR
relations:

(2]

o .
—e =22 (W) - el
°r “ % T ZG (“ (p) = =5 )

(54)

The elastic components of the deviatoric strain in the plastic
region are deduced from Hooke's law and equation (33):

" e€ - % = EZ 2 e (55)
"¢ r 8 2G p
Hence
sg .
Y =355 Y (56)
in which: -
- 3 K, -1
Y= W - Wl 5 (57) L
- P T
Y. e
. It follows from equations (57) and (33) if K; depends ——
- on the stress,

that the differential equation

(51) can be
rewritten in the general form

u” = F(p, u, u’) (58)
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This equation can be solved readily using a numerical method,
such as the fourth-order Runge-Kutta technique (Henrici, 1962),
which is summarized in Attachment A-1. Applicable solvers are
often contained within the math library of a scientific pocket
calculator, thus making the solution of equation (58) straight-
forward even with limited computational resources.

A-4 APPLICATION.

As a simple application of the theory developed above,
we investigate a material characterized by a tangent dilatancy
factor K; that decays from an initial value Kp according to an

exponential function of the plastic shear strain y:

= - - X
- KS 1+ (Kp 1) exp ( Y*) (59)

The parameter y, can most usefully be related to the
maximum inelastic volume increase A,, by integrating the

relation
K* -« 1
dy K* + 1
P
to yield
K +1
By = Yu 20 B (61)

Equations (59) - (61) indicate that the normalized
displacement field u(p) only depends on three dimensionless
parameters, K,, v, and A,, which is defined as

A, (62)

Experimental evidence indicates that the maximum inelastic
volume increase is less than 5 percent; thus K* should lie in
the range 0-100.
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o A-5 CONCLUSIONS.

" Y

= The preparation of this paper was prompted by the need
o to improve predictions of tunnel closure. The assumption of a
:ff constant dilatancy angle is believed to be unrealistic because
f% the dilatation should be a function of the plastic strain (dam-

-

age) and the confining stress. Accordingly, a variable dilata-

v

tion model was sought. Here we have shown that (1) the

T
4

. [
et Tl

A

differential equation for the tunnel closure can be derived in a

rigorous manner for a plastic dilatation which is an arbitrary
function of the stress and the plastic shear strain and (2) that
by using the unit-plane transformation, the differential equa-
tion can be cast in a form which is well suited for numerical
resolution.
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Attachment 1: Solution of a second-order differential
equation by the fourth-order Runge-Kutta Method.

Consider a second-order differential equation of the

form y" = £ (X, ¥, Y'), with initial values of Xy Ygr yé. The

fourth-order Runge-Kutta method leads to a recursive algorithm

Ex for calculating the values of Yit1r Yiep 3% X540 = x;+h, from
o the known values of y., y. at x.:
o 1 1 1
yl.. =yl + = (k + 2k, + 2k, + k,)
i+l i 6 1 2 3 4

— ' 1
Yisp = Y3 v B Ly] + 5 (kp + ky + kj))

k and k, are given by

where the coefficients kl, kz, 3 4

k

]

L = hE(xXy, ¥y, v))

o

- , _;)
k, = hf (xi + kl’ Y + 3
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where h is the integration step size.
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APPENDIX B

DISPLACEMENT FIELD IN THE PLASTIC ZONE
CONSTANT DILATANCY ANGLE

B-1 INTRODUCTION.
This analysis of the closure of a tunnel in a cohe-

sive, frictional, and dilatant medium, under nonhydrostatic
loading, 1is based on the elastoplastic solution derived by
Detournay (1983) (see also AA, 1983). In that model, the exca-
vation of the tunnel is simulated by quasi-static unloading of a

hole located in an infinite prestressed plane. The particular

load path selected for that analysis was characterized by the

fact that, beyond the elastic limit of the system, unloading of

the hcle corresponds to a decrease of an internal pressure p.

Two successive stages could then be differentiated in the B
plastic response of the rock system: first, the development of ;'JIQZL
two isolated plastic zones on either side of the hole, and, R
then, the formation of a unique yield region around the hole.

For cases where the hole is completely surrounded by a plastic

region and for cases where the problem is statically determi- : ﬁﬁ:
nate, the equation of the interface is given in complex formu- R
lation by: -
x + iy = aR_ (o) (63) R
where
2/(K_+1) ~
®(c) = Ao (1 + "‘—2) P77 g =etf (64)
ag
-1(K ~1)
A= [F (-6 -6 1 03] P (65)
(F is the Gaussian
hypergeometric series)
K -1
= P
8 R, 1 (66)
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1/(K_-1)
o P

P" + K =1

R = |2 P (67)

o) K _+1 q
- p PYg -1
P
m = the obliquity of the stress at infinity
a = the tunnel radius

The equation (63) for interface was shown to be asymptotically
correct for small departures from hydrostatic loading; nonethe-
less, it provides a good approximation of the interface, for
cases where the solution is statically determinate.

In the original analysis, the tunnel closure was
calculated by integrating the variation of the incremental
displacement S6u at the tunnel boundary with the loading para-
meter; the incremental displacement 6u at the boundary being
calculated by solving a system of hyperbolic partial differ-
ential equations governing 6u in the plastic zone, using as a
boundary condition the value of 6u on the elastoplastic inter-
face. The implementation of a variable dilatancy angle neces-
sitates, however, that the governing differential equations in
the plastic zone be expressed in terms of displacement instead
of incremental displacement. As a first step toward implement-
ing the complete mathematical model with variable dilatancy (of
Appendix C), we describe in this appendix, the new model for the
case of a constant dilatancy angle. After giving in Sec-
tion B-2, the explicit expression of the elastic displacement
along the elastoplastic interface, we detail in Section B-3 the
derivation of the equations governing the displacement field u
in the plastic zone and the numerical calculation of u by the
method of characteristics.

B-2 ELASTIC DISPLACEMENT AT THE ELASTOPLASTIC INTERFACE.
The induced stresses ll in the infinite elastic region
bounded by the elastoplastic }nterface can be expressed in terms
of the complex potentials ¢1(C) and WI(C) of Muskhelishvili
(1962) and the analytic function w({) which maps the region
exterior to the unit circle in the parametric plane { onto the
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elastic region in the unit plane z' = z/aRo (z is the complex
variable x + 1y defined in the physical plane):

; g * Tyy = 2 S§ [«;1(@) + ¢1(c)] (68)
l 1 1 .1 o | T ;. "

1 -1 + 21t =2 S (L) + ¥ (C)] (69)
! Yy XX Xy 2 [@'(C) 1 1

Where Sg is the limiting value of the stress deviatoric s® at
infinity, and a function of the mean pressure p°

K -1
O_E (o} g
S;z‘1<p+1 [P +Kp-1] (70)

The induced displacement in the elastic re:gion can
also be expressed in terms of the complex potentials ¢1(C) and

i wl(c), and w({). For this particular elastoplastic problem, it
. can be shown that on the interface, the Cartesian components ug,
of the elastic displacement are given by (Detournay, 1983):
o

. R_S
' (U, + du) = =2 L (71)
) x y) T 26

where ) )

U = 4(1-v) @(0) ¢,(0) = (3-4v) x(0)
~ A A K -1 =
I _ w(o) w(ao) P _
: 3 + 3 r* (o) l{ll(cy)
; o = i
i o
' R(0) = f @CE) @1(E) dg (72)
[e.]

' [0
- ¥ (o) = f B'(E) ¥ (8) at (73)
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K_-1 (K -1)/2
P (o) = [‘(o) 6(0)] P
D Sl
6 = R, + 1 (74)

For the asymptotic solution of the elastoplastic interfacg, the
Laurent series expression of the analytic functions X({), Wl(t),
¢1(§) are:

m .
~ a. . j it
4’1(C) = —g% P ayy = - %_ (‘;) F(-6; 6+J,J+;,m2)
5=1 ¢ F(=5;=6;1;m?)
(75)
=4 X
R = _gg%;
; 4
j=1
with
. j=-1
J K
= - A . 1-68\ ( &
i - - A 3 200 (7 ()
k=0
F (=6;-8+j-k;j-k+1;m%)
(76)
~ ﬁ gn . + h..
= 2 -1 _ 2 2
¥ (8) = :E: ¢23-1 Boj-1 = ———%g:f——l +mAmy. (77)
with

I 8 1-6
g. AK m__ 2(3-1+k)
23 6 Z j=1+k k
k=0 .

m2K F(-6;-6+j+k-1;j+k;m?)

(78)
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(79)
K -3
+ RE:I (qéj]
P J
but
K =3
h, = AK [ 12 (5-1) .\ (1 s mz)
+
1 Kp 1
- oJfl-0
ij m ( i ) (80)

Note that for an incompressible frictionless material,
the displacement at the interface is given by

m
(o] 1l + —
arR_ s 2
o "¢ |2m ( m) g
u, + 1u_ = - (0 + =} 2n
X y 2G o o 1 + mo2
(81)
- (mz + 1> g
where
P°P-p 1
Ro = exp 5c = (82)
Sz = C (c is the cohesion of the material) (83)
B-3 CALCULATION OF THE DISPLACEMENT FIELD IN THE
PLASTIC ZONE.
B-3.1 Governing Partial Differential Equations for

the Displacement.

B-3.1.1 Integration of the Flow Rule. The monotonic load path
responsible for the propagation of the plastic zone around the

tunnel ensures that there is no rotation of the : rincipal stress
directions in the plastic zone. Once the stresses at one point
reach the yield surface (i.e., the point becomes plastic), from
then on, the principal stress directions remain locked along
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the radial and tangential directions. It thus follows that the
principal directions of the incremental plastic strain tensor
GgP are radial and tangential everywhere in the plastic zone and
at any time during the monotonic loading. This feature of the
problem allows us to integrate the incremental flow rule

Gep
6—; = - KX (84)
o

To obtain the following relation between the plastic strain
increments in the radial and tangential directions:
P
f.£ = = K% (85)
P P
¢

The integrated flow rule (equation 85) is actually equivalent to

the following two equations which are expressed in terms of the

Cartesian components of the plastic strain tensor gp

(ep + eg) cos 2¢ - (eg - eg) sin ¢, = 0 (86)

X

p - p__.P i
sty cos 2¢ (ex ey) sin 2¢ (87)

K* - 1

(88)
K* + 1
p

sin ¢, =
In order to relate to the displacement, equations (86) and (87)
are expressed in terms of the total strain, using the decomposi-
tion of the strain into a plastic and an elastic part:

£ = ge + P (89)

X + sy) cos 2¢




h]
l'\{ Cirk

Zexy cos 2¢ - (ex - sy) sin 2¢ ?

.
a f_
e

e e e ,
Zexy cos 2¢ - (ex - sy) sin 2¢ ;¢4—LAL

1
L]
‘4
Pl
4
H

.88
>~
) )
PR W

X
el 3ot 3¢ )

(91)

The strain components Eqr ey, and exy can be written as partial

derivatives of the displacement components u, and uy. Before
doing so, however, we derive an explicit expression for the

elastic strain in the plastic zone.

B-3.1.2 Expressions for the Elastic Strains in the Plas-
tic Zone. The elastic strain in the plastic zone can be derived
explicitly as a function of the cocordinates, using Hooke's law
and the closed-form expression for the plastic stresses. Under

the constraint
e® =0 (92)

which is assumed to hold, the elastic stress-strain relations in
the plane (X,y) can be written as

e _ 1 - -
€ T 3G [(1 v) Atx vAtY]

e _ 1 - -

sy = 3G [(1 v) Aty vAtx]

e _ 1

sxy = %G Atxy (93)

Where A 1t denotes variation of the stress with respect to a
reference state characterized by the uniform stress Lo' Thus

_ o _ <0
Atx = Ix + P )
o o
At =71. + P + S
b4 Y
Atxy = Tyy (94)

Using equation (94), the plane stress-strain relations (equa-
tion 93) can be rewritten as
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e e _ 1=2v 1-2v o]
x * 8y - 2G (Ix + ty) * 726 2P
o
e = 1 - _ 25~
N Ex 8y T35 (Tx = Ty) = 3
3 e _1
b xy = 2G 'xy (95)

In terms of the cylindrical coordinates (p, ¢) of the unit-
plane, the plastic stresses read:

L
N

)

- -
2

K +1 K -1

3 = 29  _ o P ____,P
‘ Tx ¥ Ty K, - 1 zszxp-lp
A K -1
- = o P
Ty ty 2 S2 cos 2¢ p
K -1
- c9 <d P
txy = S2 sin 2¢ p (96)

Using equation (96), the expressions (95) for the elastic
stresses in the plastic zone transform into

o

] K +1 K -1
e -2 - _2__(-p)
€y + ey (ZG) 2(1 2v) Kp 1 1 P

o
S K -1
e _.¢© 2 P -
€y Ey 3G (2 P cos 2¢ m)

o
S K -1
e 2 P .
exy = (Ea)p sin 2¢ (97)

where m is the obliquity defined as SO/SE.

B-3.1.3 Normalized Partial Differential Equations. The strain

components €y ey, and 8xy in equations (90) and (91) are now
expressed as partial derivatives of the displacement components
u, and uy. We will, however, operate the differentiation in the
unit plane (x',y’) instead of the physical plane (x, y). Thus
Coo L ¥ 1 ¥y (3“x+3“y)
X aRo 9X Y aRo dy Xy aRo Yy 9X
(98)
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since

X = aR_ x
Yy =aRr_ Yy

Using equation (98) and the closed-form expressions (equa-
tion 97) for the elastic strain, equations (90) and (91) beconme:

u ou au Ju
X ., _X -l 2 _ _X ; *
(ax' + ay’) cos 2¢ (ax’ ay'> sin ¢

o)
S
- 2
= aRy — H; (p,9)
2G
du du Ju du
X, X - (__5 - __X) i
( 3y’ + ax’) cos 2¢ 5%’ 3y’ sin 2¢
s°
= aR, - Hy (p,0)
2G

(99)
where
2A, Ky-1
H.(p,¢) = P
1 K. = 1)(K* + 1
( D ) P )
K +1 K* - 1
cos 2¢ + 2(1 - 2v) KR_:_T cos 2¢ + 2m g7
p P
Hz(p,¢) = 2m sin 2¢ (100)
with

Ay, = (Kp - l)(K; - 1) + (1 - 2\))(Kp + 1)(K; + 1) (101)

The system of partial differential equations (99) and
the expression (equation 71) for the displacement at the elasto-
plastic interface (equation 71) represents the boundary condi-
tions for the differential (equation 99), indicate that we can
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define a normalized displacement (ﬁx, ﬁy), which is the only
function of the coordinates of the unit plane:

o}
S2 .
u=aR, 55 4 (102)

The normalized displacement field § in the plastic zone is

controlled by the three material parameters v, Kp, KS, and the
stress obliquity m. Note that the consistent "normalized"
strain field &, which is defined as ‘

au. ou.
~ _ 1%, %7
€i§ = 2 (ax:’i + 8xi) (103)

is related to the physical strain field ¢ by

N »n
al<"o
1M

£ = (104)

we now have to calculate the normalized displacement components

~

u,. Gy in the plastic region of the unit plane, by solving the

following set of partial differential equations:

(aﬁx au ) (aﬁx au )
—— —X - — - _X 1 * =
3%’ + 3y’ cos 2¢ 5% 5y sin ¢ Hl(p,¢)
au du au au
X 2) - ( X _ _X) i =
(5;7 5% c°s 2¢ 5% 5y sin 2¢ Hz(p,¢)
(105)
with the boundary conditions
~ ~e. o~ ~e
u, = Re [U"] ; uy Im [U7] (106)
along the curve I'’', which 1is the image of the elastoplastic

interface in the unit plane. As shown in the next section, the
system of equations (105) is hyperbolic; it can therefore be
solved by the method of characteristics.




B-3.2 Differential Equations along the Characteristics.

B-3.2.1 Normal Form. The partial differential equations
(105), together with the expressions for the differentials dﬁx
and dﬁy in terms of the partial derivatives i.e.,

[
™.
™.
.

a3 , L, du
~ X + Y ’
dux 5—}(-;' dx 3 Y 7 dy
5 - du au
- duy = §§¥ dx’' + §§¥ dy (107)

can be used to calculate the first partial derivatives of ﬁx and
u, at a point (x’, y') at which the differentials du, and du

are known in a given direction dy’/dx’. Rewriting equa-
tions (105) and (107) as a system of four equations in the

unknown first partial derivatives of u. and ﬁy we obtain:

X
B < o 2u N
cos 2¢ - sin ¢* /] 0 cos 20 + sin ¢* -ﬁ’—‘w rﬂl(p,¢)
. 23
-sin 2¢ cos 2¢ cos 2¢ sin 2¢ 5§¥ Hz(p,o)
i 7Y > (108)
, , aux -
dx 0 dy 0 5y dux
au .
L A (=T

If the system of equations (108) is hyperbolic, there exist two
real characteristic directions dy’'/dx’, for which the determi-
nant D of the system (equation 108) vanishes. (Along the
characteristics, the first derivafives o{‘ﬁx and ﬁy cannot be
determined from the differential dux and duy.) The vanishing of
the determinant D leads to the quadratic equation

2 ’ 2
(cos 2¢ - sin ¢*) (%ﬁ) - 2 sin 2¢ (%%)

- (cos 20 + sin ¢*) = 0

(109)
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o This quadratic equation has 2 real roots:

%% = tan (¢ ¥ ¢) (110)
:E.'T where
2
3 e =24+ (111)
b (The upper sign refers to the oa-, the lower to the pB-character-

istic, see figure 29). The system of equations (105) is there-
< fore hyperbolic.

The differential equation along the characteristics
are determined by specifying that one of the determinants Dj’
obtained from D, by replacing its jth column by the column of
the right members, is zero (requirement for a consistent solu-

X tion). Taking, for example, Dy (corresponding to 3ﬁx/ay’):
2 Tcos 2¢ - sin ¢* 0 H,(p,0) cos 2¢ + sin o* ]
EJ - sin 2¢ cos 2¢ H2(0,¢) sin 2¢

- D. =

N 3 r ~

o dx 0 dux 0

- 0 ’ du dy’

3 L ax Uy Y i
:5 (112)
- or

5 D, = H,(p,¢) dx’ (sin 2¢ dx - cos 2¢ dy)
fz - Hy(p,9) ax'? (cos 2¢ + sin ¢%*)

+ dﬁx [-2 dx’ sin 2¢ cos 2¢

+ dy’' cos 2¢ (cos 2¢ = sin ¢*)]

+ dx’ dﬁy cos 2¢ (cos 2¢ + sin &%) (113)

Imposing the vanishing of D, in the characteristics direction,

3
yields for the o-characteristics:
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~ ~ H,(p,0)
dux + tan (¢ - ¢) du_ = dx’ >
4 2 cos“(¢ - £) cos 2¢
+dx’ Hy(p,0) B2 =) (114)
for the B-characteristics:
. . Hy(p,9)
dux + tan (¢ + ¢) du_ = dx’ 5
y 2 cos“ (¢ + £) cos 2¢
+ dx’ Hy(p,¢) LB 102 E)
(115)

The system of equations (114) and (115) represents the normal
form of the system of partial differential equations (105); it
gives the directional differential of ﬁx and ﬁy along the char-
acteristics.

B-3.2.2 An Explicit Finite Difference Scheme. The normal form

of the governing equations of the displacement field in the
plastic zone lends itself naturally to an explicit finite dif-
ference scheme. If equations (114) and (115) are rewritten as

Ri dux + Si duy = Ti dx’ ; 1 =1, 2 (116)

The finite difference discretization of equation (116) is then
simply given by (see figure 30)

~3 ~1 ~3 ~1
R, (uy, = u) + s, (uy - uy)
(117)
=T, (X' - x'); i=1, 2
i .
3 i
The displacement (ﬁi, ﬁg) at point 3 - whose coordinates (xé,

yé) are computed by calculating the intersection point of the
tangent to the characteristics at points 1 and 2 - is thus
calculated by solving the linear systems of equations
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~3 PR ~1 ~1

R1 S1 uy Tl(x3 xl) + Rl u, + Sl uy
= (118)

~3 't ~2 ~2

R2 82 uy Tz(x3 x2) + R2 ug + S2 uy

where the coefficients Ri’ Si’ 'I'i are evaluated at (xi, yi).

Numerical tests, using an algorithm based on this
scheme (Algorithm 392 of CACM) revealed poor accuracy of the
solution (the test case was the hydrostatic problem), unless a
high density characteristic mesh was used. The problem of
accuracy was caused by (1) the curvature qf the characteristics,
which leads to an error in the evaluation of the intersection
point of the two characteristics, and (2) the stiff nature of
the differential equation. Because of this problem of accuracy,
another scheme was implemented, that was based on expressing the
components of the displacements in the curvilinear coordinate

system of the characteristics.

B-3.2.3 The Characteristics Coordinates (a, B). The displace-
ment characteristics are logarithmetic spirals, having the

origin of the plane as an asymptotic point. The equation of the

two characteristics intersecting at the point (po, ¢o) are given
by
(¢, -0) tan (n/4-0*/2)
p=p, € (119)

(upper sign a-characteristics, lower sign B-characteristics).

It follows from equation (119), that the «a- and
B~characteristics can be identified as the coordinate-lines of a
curvilinear coodinates system (a,8). (Constant B and « coordi-
nates, respectively) defined as:

= - K* 2 +
o "pnp ¢

B

K; fnp -0 (120)

The characteristic coordinates (o, B) have been defined in such

a way that the base vectors e, and e, are pointing towards the

B
asymptotic point (see figure 29). The contravariant components

83

.. o Wk

c c e e e e v_w . a.mLW_E_ Y T WV, '\"err».r\-r'.':';:‘r‘-‘
L




'_.;‘-_.' T A A e I AN e Bie e e 4 ——— Ty T
..-\ Aty “‘.'_.‘. ''''' AL S T ) . ’ A i YT Ty
N ‘ A .- h} & y N ; :.‘,,-,-- RO A e e . . . )
ﬁ-ﬁﬁA\a O S TR R e
42 s Ty e N e e
. & . e« . e
MR LA P S S T L R e ...- . .'.'.“.. .'., . . K 3 -" ‘-‘v 8. J
."-J‘-
T
o
..",.l-*
)
-~ -~ : : : : r»—:"
u, and uB in the characteristic coordinate system (a, f$) are R

given by (see figure 31).

u, = - cos (¢ - ¢) u, - sin (6 - €) uY
EB = - cos (¢ + ¢) ﬁx - sin (¢ + ¢€) ﬁy (121)
B-3.2.4 Ordinary Differential Equations Along the Character- i?;;
istics. The governing differential equations of the displacement :_Jf
field in the plastic zone can now be rewritten in terms of the =
contravariant components of the displacement. Inverting equa- -f_
tion (121), =
* N = - ad ~ : - ~ '.'*'_;A.
cos ¢ uy, sin (¢ + ¢€) u, + sin (¢ £) uB e
cos o¢* ﬁy = ~cos (¢ + ¢) ﬁa - cos (¢ - ¢€) GB (122) i
and differentiating the above equations, we obtain ,3w;
* " = - \ 1 - u - s
cos ¢ dux sin (¢ + ¢) dua cos (¢ + ¢€) u, d¢ -
+ sin (0 - ¢) dlig + cos (¢ = ) Uy do ésii
cos ¢* dﬁy = cos (¢ + ¢) dﬁa - sin (¢ + ¢) ﬁa do S
+ cos(¢ - ¢) dﬁB + sin (¢ - ¢) GB d¢ %éé
(123)
Substituting dﬁx, and dﬁy as given by equation (123) 1in the
udl differential equations (114) and (115), and expressing dx' as a e
?i. function of d¢ leads to: ;!E
e S -3 5 . - —___0do o
o . dua (ua tan ¢* + uB sec ¢*) d¢ 2 sin ¢ cos 20 R
K. . s
e [Hl(p,rb) + 2 sin (¢ - ¢) cos (¢ - ¢) H, (p,tb)] _ﬂ
gee (124) s
! s
- "
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du_, + (uB tan ¢* + u, sec o*) d¢ Z 5in ¢ cos 2¢

......

[Hy(p,0) + 2 sin (¢ + &) cos (¢ + ) Hy, (p,9)]
(125)

Since

dx’ = = cossiﬁ ; £) pde along a-characteristics

dx’ = C°Ss§£ Z £) pd¢ along B-characteristics

and noting from equation (120) that

da

de 3 along B = constant

de = - %ﬁ along a = constant

the differential equations (124) and (125) can finally be
rewritten as

du
a 5 3 =
2 3o - (ua tan ¢* + uB sec ¢*) = ta (126)
d~ ~ ~
2 EEE - (fg tan ox + U, sec o%) = ¢ (127)
‘where, after simplification, ta and tB are given by
' Ay K,-1 .
ta = sin ¢ p| - - 1)(K*+1)p } :"iﬁ(
P o Y
K +1 L
+ (1-2v) ER:I - mcos 2 (p=-¢) IR
p
(128)
Ay K -1 K_+1
tg = sin e p|- —p P+ (1-2v) EETI
(Kp-l)(Kp+l) p

m cos 2 (¢o+¢)

(129)
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The cylindrical coordinates (p,¢) in the above equations can
simply be expressed in terms of ¢ and B by

6 = 5L ; (130)
p = exp (- g_+_ﬁ) (131)
2 ‘pg
B-3.3 Numerical Calculation of the Displacement

Field in the Plastic Zone.

The numerical determination of the displacement field
in the plastic zone is carried out by the method of characteris-
tics (Masseau, 1899), which is based on the discretization of
the differential equations (126) and (127).

Consider the point P, inside the plastic 2zone (see
figure 30). The displacement at P is controlled by the values
of the elastic displacement along the arc AB of I, which is
intercepted by the two characteristics intersecting at P. (In
other words, the domain of determinacy of the arc AB is the
curvilinear triangle ABP bourded by the two characteristics «
and B.) In the method of characteristics, the displacement at P
is approximately solved by first defining N nodes along the
noncharacteristic arc AB, then progressively computing the
displacement at all the nodes of the characteristic mesh
(located at the intersection of the characteristics emerging
from the initial nodes), using a discretized form of the dif-
ferential equations (126) and (127).

In the following, we derive the equations needed to
calculate the displacement at any node (a3, 33), assuming the
displacements known at the two "parent" nodes (al, Bl) and (az,
By). (ag = ay; By = By.)

A class of numerical algorithms to calculate the

displacement at the node (a is based on the so-called

» By)
{-method. The {-method z:elies2 on 1two assumptions:

1. The contravariant components (ﬁa, GB) vary

linearly with the characteristic sordinate

between two adjacent nodes located on the same

characteristics.
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The differential equations (126) or (127) hold at
a certain point "E£" of the characteristic arc
defined by two adjacent nodes.
For example, consider the point "{(" of coordinates (a, Bl)
located on the characteristic arc defined by the two end nodes
(al, Bl) and (uz, Bl). The value of £, which must be in the
range (0,1) is given by

a - a

The displacement at point £ is given by

(1-8) 8 +¢

= (1-¢) 8+t (133)

On the basis of equation (133), the differential
equation 126, which is assumed to hold at point "{", becomes:

2 [62 - ﬁi] - (o, = ay) 3tan o* [g ’{iz + (1-E) a;.]

+ sec ¢* [g Ez + (1-£) T
(134)

where Eu is used to denote the value of ta at point "(". The
discretization of equation 127 can be carried out in a simi-
lar way:

- ﬁ;] = (B; - B,) ;tan O * [.g ﬁ: + (1-¢) ﬁg]

+ sec o* [§ 32 + (1-£) u 0
(135)

The above equations can be written in matricial form as:

P
a
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{ where N
y NIy
4 e
= - * el
D,, = 2/8a - ¢ tan ¢ .
FIFIFD
: AR
! D ., = - £ sec ¢* A
h :: a B g ‘..::'_.'::.::'_.::'
0 o _-.'_*.::.
q Dgy = - £ sec o e
. D = 2/08 - tan ¢*
: BB /58 £
: P = (D _ + tan ¢*) al o+ (D ., + sec ¢%*) il s+ T
.- a ao o ap B o
. P, = (D,, + tan ®*) B2 + (D, + sec ¢*) U2 + E
N B BB B Ba a B
f‘ with
- Ao = az - “1
3 8B =By - B
. A class of algorithms can thus be generated depending on the
» value of §, from full explicit (£ = 0) to fully implicit A
- (¢ = 1). Some parametric investigations confirmed that the R URESANC
; central-difference method (£ = 0.5) provides the most accurate Q*:fkf
o scheme. ol
- For the central-difference method, the components (ﬁz, :‘_';ii
ﬁg) of the displacement at node k are given explicitly by R
. D D
~3 _ _ 2 - x 0B ) o x Qo B
N u, = u, + (1 tan ¢ 2 ) D + sec ¢ 2 D
33 = -4l 4+ [1 - tan ex éﬁ) Eﬁ + sec ox A8 " (137)
B B 2 /D D
where
_ [~1 , ~2 Ae (=1 _ ~2 : Ao
Da = (ua + ua) + tan ¢* py (ua u |+ ta > |
” - {31 ~2 x AB [~x2 _ 1 = OB
: DB (uB + us + tan ¢ ) uB uB + ta >
y Aa

D = (1 - tan ¢* 7 1l - tan ¢* %ﬁ

- Ao A (sec2 o* - tan2 d*)
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APPENDIX C

DISPLACEMENT FIELD IN THE PLASTIC ZONE-VARIABLE DILATANCY

c-1 INTRODUCTION.

In this appendix, we develop the theoretical basis of
a numerical algorithm to calculate closure of a circular tunnel
subject to a nonhydrostatic far-field stress, for a class of
materials characterized by a variable dilatancy. The following
analysis closely parallels the one outlined in Appendix B, for a
material with a constant dilatancy.

C=2 VARIABLE DILATANCY FACTOR.
The dilatancy factor K;, which is defined as
de‘{
—_ = « K* 13
deg p (138)

is assumed to decay exponentially with the accumulated plastic
shear strain y, from an initial value Kp:

Kk =1+ (K, - 1) e~ Y/ Vx (139)

The flow rule (equation 139) is associated at the
elastic limit (K; = Kp if y = 0); but as the material is yield-
ing, the rate of increase of the inelastic dilatation A with y
progressively decreases so as to eventually vanish, when the
'‘maximum dilatation A, is reached. The parameter y, in equa-

tion (139) can be related to 4, by integrating

K* = 1
da
a; T {140)
P
to yield
K+ 1
A, = Y, 2D (—25——-) (141)
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c-3 GOVERNING EQUATIONS. Ny

c-3.1 Partial Differential Equations.

As for a constant dilatancy angle, the flow rule
(equation 138) can be integrated, since there is no rotation of
the principal direction of the incremental plastic strain tensor
gp during loading; i.e.,

eP
r -
—_ = - K* 142
P D (v) ( )
¢
where I'(S is defined as the secant dilatancy factor. From Ri;, we i','j-.'-::-_lfj
can also define a "secant" dilatancy angle &, L
_ R* - ‘:;;‘..-':'.‘*_'.; :
¢, = avc sin :;; (143) "“f"‘
K +1 et
Derivation of the differential equations governing the »
displacement field in the plastic zone follows step-by-step the o
approach detailed in Appendix B, except that all the constants __g.
depending upon the dilatancy angle ¢, must now be understood as '
- e
functions of the (variable) secant dilatancy angle ¢,. In R

particular, the concept of the unit-plane still holds; in the iﬁ;j-i“»
unit-plane, the governing equation of the normalized plastic W
displacements u, which is defined as RO

u = R U (144)

are given by

au au au au
) cn 2o - (2 ) s
(ax’ + 5y cos 2¢ +] sin ¢ Hl (p,0)

au ) au au
(#+—¥) cos 2¢ -(—5-—X,) sin 2¢ H, (p,0)

(145)
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where
2X, K,-1
H, (p.9) = - = P cos 2¢
(Kp - 1)<Kp * l)
+1 Kx -1
+ 2(1-2v) cos 2¢ + 2m
K -1 1‘(5+1
HZ (p,9) = 2m sin 2¢ (146)
with
A, = (Kp - 1)(K; - 1) + (1 - 2v)(Kp + 1)(K§ + 1)

(147)

Despite their similarity, an important difference exists between
the two sets of equations (99) and (145). In the case of a
constant dilatancy, the normalized displacement field § in the
plastic domain of the unit-plane depends on the material para-
meters K_, K;, v, and the stress obliquity m; hence the same
normalized displacement field holds for any shear elastic modu-
lus and/or any stress at infinity characterized by the same
obliquity m. In the case of a variable dilatancy angle, how-
ever, the governing equations for g depend on the ratio y/4A, (by
virtue of the law of variation of K;) besides the parameters Kp,

v, m. Since

(o}
S2 -
where
~ ~ ~ K ~1
- 9 u 9 p
=L .-L£_.1_20_ 5 (149)
ap p p 20

the coefficients of the system of equation (145) are actually
functions of the ratio y/A,, where A, is given by

B, =284, (150)
S
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Consequently, the normalized plastic displacement field §
depends now on the dimensionless parameters m, Kp, v, and Z*.
(The same conclusions would hold for other forms of variation of
KS.) Hence, some of the properties of the solution for a con-
stant dilatancy angle (e.g., independence of i on sz, G) do not
hold anymore.

c-3.2 Differential Equations along the Characteristics.

Derivation of the differential equations along the
characteristics is identical to the procedure detailed in Sec=-
tion B-3 of Appendix B, but for the substitution of ¢, by &,.
The normal form of the differential equations is

Hy(p.90)

2 cos2(¢ - £) cos 2¢

dux +.tan (¢ - €) duy = dx

tan (¢ - €)
+ dx Hy(p.0) — 53 7%
along the a-characteristics
(151)
~ -~ Hi(p,9)
dux + tan (¢ + ¢) du_ = dx 5 -
y 2 cos“ (¢ + £) cos 2¢
+ dx H2(p'¢) tagoé02; E)

along the B-characteristics

and the characteristic directions are given by

%§ = tan (¢ + ¢) (152?

(upper sign for -, 1lower sign for B-characteristics). In
equations (151) and (152), the symbol ¢ denotes the inclination
of the characteristics on the radial direction:

+

£ = (153)

Nll
*

n
4
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Since the inclination £ is a function of the solution
(i.e., the displacement §), it is not anymore possible to define
explicitly the characteristic coordinates (a,8). However, the
formal form of the differential equations (126) and (127) still
holds; i.e.,

]
(34

o ~ & prd ¢
2 =— - (u_ tan ¢, + u,3 sec ¢.) o (154a)

i
(ad

2 2 - (G, tan &, + U sec &,) 6 (154b)

Provided that da and dB are defined by

do =90 . 40 . g _dp, do
P Jﬁ P Jﬁ

p P
Indeed, the relationship between the increments dp and d¢ -
characterizing the variation of the cylindrical coordinates
between 2 points infinitesimally close on the same characteris-
tics (see figure 32) — is given by da = 0 for the B-characteris-
tic, and by df = 0 for the a-characteristic. Note that in
equations (1~54) ~the curvilinear components ﬁa and GB are given
in terms of u uy, by equation (121), with ¢ replaced by &, and
the values of tu and tB are obtained from ec{uafiions_ (128) and
(129) respectively with ¢, KS, A, replaced by ¢, Ks, Ay

(155)

C-4 NUMERICAL SOLUTION OF THE DISPLACEMENT FIELD.

C-4.1 Preamble.

The system of differential equations (154) will be
solved by the method of characteristics. A sequence of N nodes
is selected along the elastoplastic interface, that defines a
fan of characteristics in the plastic domain. The displacement
at the initial nodes on I are calculated from the solution of
the displacement field in the elastic domain, while the dis-
placement at the nodes of the characteristic mesh is progres-
sively computed by moving away from I, using the discretized
form of the differential equations. These discretized equations
will be derived for a class of methods (the £(-method), which
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Figure 32. Geometrical relation between p, dp, and d¢
for two points infintesimally close on the
same characteristic.
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Figure 33. Calculation of displacement by the method
of characteristics.
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Figure 34. Calculation of average extension between
A and B.
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provides a full spectrum between fully explicit to fully :jt:::{3
implicit. 'uhrb@&

Several complications arise in the calculation of the ;;;-Q;f

plastic displacement field, that are introduced by the variable . Lo
character of the material dilatancy. First, the position of the L ﬂfﬁ
nodes of the characteristic mesh cannot, as previously, be o j fﬁ‘
calculated prior to the displacement of these nodes. Instead,

f they are an integral part of the solution and must be calculated
. concurrently to the displacement at the nodes. Second, the
. differential equations are nonlinear, and so are their dis-
_ cretized form (except for the fully explicit case). As a con-

sequence, the calculation of the displacement at a new node, and
; the position of this node requires an iterative computational
: procedure. The following sections detail the basis of a numeri-
cal algorithm to calculate the displacement field in the plastic
zone.

c-4.2 Discretized Equations.

Consider two close points 1 and 2 of the plastic zone,

at which the displacement is known (see figure 33). Let Py @i
denote the cylindrical coordinates of point i (i = 1,2) and up

i} the cylindrical components of the known displacement at those

¢
points. For the sake of definiteness, it is assumed that

¢2 > ¢1. wWe need to calculate the coordinates (p3, ¢3) of '-a:‘i\f
point 3, the intersection of the a-characteristic through .
point 1 and the B-characteristic through point 2, and the dis-
placement (ﬁz, ﬁ:) at that point.

First introduce the characteristic "coordinates" o, B ?IQIE‘;
which are only valid on the two arc segments 13 and 23

on 13:

. UGB
L.."J LRI R S




oo gl n o

B” = - (f(*)B 2np - ¢ (157)

p

where (RS)U and (R;)B represent an "average'" value of the secant
dilatancy factor along segments 13 and 23, respectively
(actually the value of RS at point "“g").

The characteristic "coordinates" (ai, Bi) of point 1
are given by equation (156), with p and ¢ substituted by Py and
¢q- Similarly, the "coordinates" (“5' Bs) of point 2 are
obtained from equation 157.

The segment of characteristic 13 is characterized by

and 12 by

o = ag (159)

As for the case of a constant dilatancy angle, we can define the

B

related to the cylindrical components ﬁp, 60 by

";‘(*
3 = - —1 3 - _¥XpP

curvilinear components ﬁa and u, of the displacement, which are

u
o = P = 0
R* + 1 Rx + 1
P P
1 RS
u, = - = u + ——LB_—— 3 (160)
B Re+1 P Rx +1 ¢

where RS is either (R;)a or (RS)B' depending on whether the

point is on the 13 or 23 arc segments.

The numerical procedure to calculate p;, 04, ﬁg, ﬁi

relies on the following assumptions:
1. The curvilinear components Ga and GB vary
linearly with o' on the arc 13, and with B” on

the arc 23.
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2. The differential equation (154a)applies at point j:.‘_:.j::l‘_.:.}-
wgw (00 £ £ 1) of segment 13, with coordinates jﬁ?ﬁ%ﬁ_

(gai + (1 - &) ag, ﬁi), and equation (154b) at
the coordinates (GS' £ Bg + (1 - &) Bi) on the
arc 23.

3. At point 3, ag = aé = ag and B3 = Bé = Bg, which
is only correct if (KS)G and (l'(l’;)ﬁ correspond to
the value of the secant dilatancy factor at

IR

point 3, and if uz {and ug) is equal in both . .0

characteristic systems (a’, B’') and (a”, B"). I;flﬁff
4. The "average" secant dllatancy factor (K*) is i;lggfi

equal to the value of Kp at point Yg" on seg— w-??'f

ment 13; similarly (K;)B is the value of KS at
point "£" on segment 23.
It follows from the assumptions that the discretized form of the

two differential equations (154) are fj, e

2 _ =\ %3 car Fx T3
(Aa £ tan ¢;) u, - £ sec ¢3 uB

_2 ry ~l - A -
= (ZE + (1 - §) tan ¢;) u, + (1 - ¢) sec ox u; +t
=% ~3 2 = ~3
- sec ¢ + | &= - *
£ 8 u (AB ¢ tan ¢B) ug
= 3 2, =
=[5 + -
(AB (1 - £) tan ¢* ) ua+ (1 £) sec ’5 -y * tB
(161)
where
t and tB = ta and tB calculated at point "{" on seg-
ménts 13 "and 23, respectively
5: and 5; = the secant dilatancy angle at point "{" on
segments 13 and 23, respectively

” !
-

Ao = u2 al

aB = B - B,
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h the discretized equations (163) can be rewritten in matricial Layfag
NS QRN
\ form: RNV
g -
~3 _' 3 ‘\‘#
Daa DaB o Pa ) :\ $
~3 = ' (162) :';‘:";‘ i N
D D u P A :‘ “.‘\ S
Ba BB B B ;ti;L_
with ,*_,-.;!,:.r.:.‘
_ z NG
Daa = 2/Aa - £ tan ¢(’; ::.._;,:::_;
= - & * . -:
DaB £ sec X .
= - b *
DBa £ sec ¢B
D,, = 2/AB - & tan &%
e =~ 2/8B - & g
P = (D _ + tan &%) Ul + (D . + sec $*%) U + T
o oo o o af o B o
P, = (D,, + tan &%) 32+ (D, + sec &% W+ T
B BB B’ B Bo B o B
The components E: and ﬁg of the displacement at point 3 are then
given by
D - P, D
‘{13 =( Pﬂ BB B “B)
o D
P, D -P D
~3 __( B oa a Ba)
uB = B (163)
with
D=D

ae Opp = Pup Dpo

Finally, the cylindrical components (ﬁz, ﬁz) of the displacement o
at point 3 read Ahifuff

sk (Y@t Y @®)( - 5)

H

J('*) +1 (R*)_+1 SRS
) uz - 4l I-J o + g g (164) :\\
r—;—— " oG
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while the position of point 3 is given by

ay + By

p, = exp |- —
3 V&, + &y

(165)

5 Cc-4.3 Iterative Procedure.

The quantities (ﬁ;)a and (R;)B, and the related con-
stants which appear in the systems of equations (162), are not
known beforehand since they are functions of the plastic shear
distortion Yy at point "£". An exception, however, is the fully
explicit case for which point "{" on segments 13 and 23 cor-
responds to the known points 1 and 2, respectively. Thus, but
for the case § = 0, the system of equations 162 is nonlinear
and has to be solved iteratively. The iterative procedure
consists of tak%gg as a first approximation of (R;)u and (R;)B,
the values of Kp at 1 and 2, solving the systems of equa~
tions 162, calculating the positions and displacements of
points "£" to determine new approximations for (R;)u and (R;)B,
and iterating until satisfactory convergence is achieved.

C-4.4 Calculation of the Plastic Distortion y.
The plastic distortion y can be calculated from the
flow rule

A = sin &* § (166)

P in a non-

" and the knowledge of the plastic normal strain ¢
characteristic direction. Indeed, assume that ¢P is known in a
direction which is inclined by an angle n on the x-axis; thus

P =L (zp P\, L - P _ P
£ 5 (sp + e¢)+ 5 cos 2 (n $) ep e¢ (167)

Using equations (166) and (167), we obtain for Y




j=——2° (168)
sin ¢* + cos2(n-¢)

If n defines a characteristic direction, cos 2(n=-¢) = - sin ¢*
and Y is wundefined from equation (168) (ep vanishes in the
characteristic direction).

Let us now calculate the approximate normal strain ¢
between two adjacent points A and B at which the displacement is
known (see figure 34). The angle n, which gives the inclination
of the segment AB on the x-axis, and the distance AL between A
and B are given by

n = arc tan ;E—:—;A ;
B A
3 3 (169)
oL = oy (x5 = %)% + (v - ¥p)
Let ud  denote the displacement at point A in the n-direction
and Urp the displacement at B, also in the n-direction. u:B and
uza are related to the cylindrical components of the displace-

ment at A and B by

Upp = Cos (n-9) up + sin (n-¢) u¢ (170)
The average extension £ between A and B is thus given by
B A
;- B~ "ap (171)
AL

The average strain &, represents an approximation of the normal
_strain ¢ in the n-direction at both points A and B.

The elastic past t€ of the normal strain in the direc-
tion n is given in terms of the Cartesian components of the
elastic strain tensor by

~e _ 1 (~e ~e 1 [~e _ ~e ~e .
e” =3 (sx + ey)+ > (e Ey) cos 2a0 + €xy sin 2«
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Since

K. +1 K -1
1z 428\ = (1 - 20) BT (1 -, P )
2(x+ey)—(l 2v)K_1(1 p
P

K -1
% (~§ - E;) =p P cos 20 -m

K -1

Ezy =p P sin 2¢ (173)

. ~e
the expression for & becomes

K. +1 K -1
Ee = (1 - 2v) EE_:—I (1 - p p )
P

K -1

+ cos 2(n -~ ¢) p p - m cos 2n

The plastic part ¢P is then determined by the difference & - &-.
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