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ABSTRACT
4 A procedure for computer aided design (CAD) of

gear teeth is presented. It {s developed for generated

teeth fabricated by a hob cutter or a shaper. It pro-

vides a means for analvtically and numerically deter-

mining the tooth profile, given the cutter profile.

An illustrative example with involute tooth profiles

is given, Application with non-standard profiles and

with bevel, spiral bevel, and hypoid gears iz‘discussed.>
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NOMENCLATURE ( -
A plane Lus?, center of curvature

Envelope of a family of curves

o

o Unit vectors parallel to X and ¥

-—

Step side line segment

N Unit vector normal to E

O Wheel center and origin of X-Y
Tyvpical point on L, E

Position vector QP

Position vector db

Circle radius, wheel radius

Unit vector tangent to F
Parameter for a family of curves
Horfzontal and vertical coordinate axes
Coordinate axes fixed in W
Cartesian coordinates of P
Roliling plastic wheel

Roll angle

Radfus of curvature

OTC FILE COPY

Inclination angle
Pressure angle
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Recent advances in computer graphics and com-
puter aided design (CAD) present an opportunity for
developing new procedures for optimizing gear tooth
geometry. In this paper we present a basis for
these procedures. The focus is upon spur gear teeth,
but the same approach is applicable with helical,
bevel, spiral hevel, and hypoid gear teeth.

The basic concepts underlving the method are
readily seen by considering involute peometrv of
spur pear teeth. A widely used process for fabricating
spur gear teeth is to use a rotating hob cutter. This
process {s based upon the concept of a reciprocating
rack cutter with straight teeth moving across a gear
blank as depicted in Figure 1. Geometrically this

Reciprocating Cutter
(in and Out) ’
Geer Biank (Rotation) 5 J«‘i:
\"q
(Fesd)

Fig. 1 Reciprocating Rack Cutter and Gear Blank.
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process may be viewed as a series of inclined line
segments intersecting the circular gear blank, with
the envelope of the line segments forming the tooth
profile as shown in Fig. 2.

Fig. 2 Generation of an Involute Tooth
Profile by a Rack Cutter.

A second way of viewing this process is to
imagine a perfectly plastic wheel rolling over a
"step" or obstacle in the form of a rack tooth as
shown in Fig. 3. The impression (or "footprint") forms

s

Fig. 3 Wheel Rolling Over a Rack Tooth
Forming the Tooth Profile.

—a

the gear tooth profile. It is well known that this
tooth profile is an involute of a circle. That is,
the envelope of the line segments on the gear blank is
an involute of a circle.

Recall that the involute of a circle may be
viewed as the locus of the end of a cord being un-~
wrapped around a circle as shown in Fig. 4. If the

Fig. 4 [Involute of a Circle.

circle has infinite radius, the involute will be
straight, as with the rack tooth. While it may be
intuitively clear that a tooth profile generated by
the above process is an involute of a circle, the
proof may be a bit more ellusive. We present a com-
puter graphic proof in the sequel.

ENVELOPE OF A FAMILY OF CURVES

Consider a plane curve C as shown in Fig. 5.

Y

J
c £(x)

X

Fig. 5 A Plane Curve.

Analytically C may be represented by an equation of
thh form y = f(x). Suppose in this functional
description we introduce a parameter t defining a
family of similar curves. Suppose further that as
t changes the orientation of the curves change and
that they intersect each other as in Fig. 6. The
curve E, tangent to the intersection curves is then
the envelope of the family.

 §

Fig. 6 A Familv of Intersecting Curves.

It is relatively easy to obtain an analvtical
expression for the envelope, To see this, let the
representation of the family of curves be v = f(x,.t) ..
or F(x,v.t) = 0, If t {s replaced bv t + it vhere
it is a small increment in t, the expression -
F(x,v,t +.t) = 0 also represents a member of the .
family of curves. Hence, the "difference quotient™: »

’
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0
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{F(x,vyt+t) -~ F(x,v,t)]/ 't = 0 is a member of the ~: _::'.'
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family as well, Therefore, by a limiting process, a
second expression for members of the family of curves
is 3F(x,y,t)/3t = 0. By eliminating t between F and
3F/3t we obtain an equation of the form G(x,y) = O.
G(x,y) thus represents the intersection of F and
3F/3t. That is, G(x,y) represents the points on the
envelope E and is thus the desired analytical repre-
sentation of E. (See Reference [1]* for additional
details.)

To illustrate these ideas, consider the envelope
of a family of lines, each a distance r from a fixed
point O as depicted in Fig. 7. Let ¢ be the iaclina-
tion angle of a typical member L of the family and let

Y

(o)

Fig. 7 A Family of Lines Equidistant
From a Point.

- be the inclination of the line normal to L and
passing through O as shown. The equation of L might
be written as

R m(x - xp) (L

where m is the slope of L and (x_,v ) are the coordi-
nates of P, the point of intersegtign of L and its
normal line through O, But, m = tand and tan: = -cos”.
Also, x, and v, mav be expressed as rcos~ and rsin®.
Hence, the equation of . might be rewritten as

v - rsin® = (-cot?)(x - rcos®) )
or as:
vsin: + xcos? - r = 0 = F(x,v,") (3)

Equation (3) mav be considered as defining the
familv of lines with * being the familv parameter.
By differentiating with respect to ', we have

“F/+ = yeos— = xsin- = 0 (%)
Finallv, the equation of the envelope mayv be

obtained by solving Equations (3) and (4) for x and
v, leading to the expressions:

X = rcos and v = rain® (3
or, bv eliminating . as:
R (6)

*Numbers in brackets refer to References.
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The envelope, as expected, is a circle, with the
family of lines being tangent to the circle.

DEVELOPMENT OF INVOLUTE SPUR GEAR TEETH

A similar procedure can be used to examine a
spur gear tooth profile. Consider again Fig. 3 where
the involute profile is generated by the step's im
pression on the plastic wheel. To describe the
impression we need to find the envelope, in the wheel,
of the line segments representing the sides of the
step. To this end, consider Fig. B where L is a step

Y

X

0o

Fig. 8 Representation of a Perfectly Plastic
Wheel Rolling Over a Step.

side, line segment. L is inclined at an angle % to the
X-axis and it intersects the X-axis at a distance x
from the origin. The wheel W has a radius r, center
0, and roll angle ¢. X and Y are coordinate axes fixed
in W with origin at 0. The objective is then to
express the envelope of L in the X-Y svstem.

Let (x,y) and (x,y) be coordinates of a typical
point P on L, relative to the X-Y and X-Y svstems.
Then it is easily shown that x and y are related to
x and v by the expressions:

X = rf + xcos® + vsin® (7)
and

v=or- xsind + §cosD (8)
The equation of L is
veE(x- xo)tanc )

Usinp Fquations (7) and (8), L. mav be described in
terms of x and v as:

&(c05~ - tan* sin?) - x(sin® + tan! cos?)
+ 1 (xg - rf)tan: = 0 = F(X,v,) (10)
Equation (10), like Equation (3) can be considered as

describing a familv of lines relative to X-Y with
> heing the parameter. Hence, bv differentiating with

respect to - we have
JE/ 45 = 0 = v(sin- + tan: cos )
+ %(cos+ - tan: sin ) + rtan: (1

By solving Equations (10) and (11) for x and v, we
obtain:
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X = rsiné + (xo~ r9)sin¢ cos¢(sin® + tand cosb)
and
9 =~ rcosf - (xo- ré)sin¢ cosd(cosf - tany sin6)
12)

Equations (12) are a pair of parametric equations
representing the envelope of L relative to W. There-
fore, Equations (12) describe the tooth profile im-
pression created by the cutter step. To show this
numerically, the line segments generating the envelope
were plotted with a computer for r=1, ¢= 709,

Xy = 0.70021, and 07 ¢ < 270*%. Fig. 9 shows the

Fig. 9 Computer Drawn Cutting Lines at 5°
Intervals for ¢=700, r=1,
x0= 0.70021, and G < ¢ < 720,

results for 5° increments in . Fig. 10 shows a
computer drawn graph of Equations (12). The "natural"

Fig. 10 Graph of Equations (12).

envelope in Fig. 9 is thus seen to be the same as the
"analvtical” envelope of Fig. 10.

when ~ =0, the coordinate axes X-¥ and X-~Y are
parallel and O {8 on the Y-axis. Also, x, has the
value r(l - cost)/sin¢ so that L {s tangent to W when
vwm (),
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What remains to be shown is that the envelope {s
indeed an involute of a circle. A comparison of Fig. 4
and Fig. 10 suggests that it is. However, to show this
analytically, let P be a typical point of the envelope
E. The radius of curvature p of E at P may be expressed
as [2,3]):

G2+ 35302
o= (13)
Y0¥ = *ee”e
where the subscript ¢ iIndicates partial differentiation
with respect to 8. By substituting from Equations (12)
into Equation (13) and after reduction, o takes the
relatively simple form:

p = 1/[rcos¢ + (x0 - ré)sin¢] (14)

The center of curvature C of E at P is located on
a line perpendicular to E at a distance ¢ from E.
Hence, C may be located relative to the wheel center
0 by the vector p+cN, where p locates P relative to
0 and N is a unit vector perpendicular to E as shown
in Fig. 11. Recall that a unit vector T tangent to E

A
Y

{

Fig. 11 The Center of Curvature C at a
Typical Point P of the Envelope.

———.i
~

at P may be expressed as (3):

. . 2002
T=(x 1+ vy /0 +vD) (15)
Hence, N may be written as:

No= (9,1 + % DIGE + 35" (16)

Ya A W T ¥a
Let p. be the vector from 0 to C. Then, using Equation
(13); pe may be written as:

PP+ el = xd+ vl 2.
o T @ e
=xi+vj+ (-vi+x})) —————— (17
‘ (v . = vax)

where (X,\V¢) are the coordinates of C relative to the
X~Y svstem, fixed fn W, By substituting from Equations
(12) and by performing the @ndicqsed differengigtions.
it is seen that the ratio (x4 + vo)/(x ¥ . - v x )
fs unity and that x. and y. are: )

ic = % - %W/0i = -p(cosh - tant sinf)sing cos:

and
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ﬁc = y+ 3x/36 = ~r(sinb+ tan¢ costv)sind cosy (18)

The locus of the centers of curvature can now be
seen to be a circle. That is, from Equations (18),
we find that

2 2 2 2
X ry o =r sin" ¢ (19)

By recalling the construction of an involute as the
locus of the end points of an unwrapping cord around

a circle, we see that the cord is perpendicular to

the involute and its unwrapped length is the radius of
curvature of the involute. Hence, the centers of
curvature of the envelope are located on the generating
circle (the "evolute”). Therefore, the envelope E
above is the lnvolute of the circle of Equatien (19).

DISCUSSION AND APPLICATION

Recall that for a spur gear the circle generating
the involute tooth profile is called the base circle.
Recall also that if meshing spur gears are viewed as
rolling cvlinders, the cylinder cross sections define
the pitch circles. Then, if the pressure angle is
defined as the angle between the radial line and the
tooth profile at the pitch circle, it is readily seen
{4] that the ratio of the radii of the base and pitch
circle is

RB/RP = cos; (20)

In the above analysis, the wheel profile is the
pitch circle, the pressure angle is the complement
of : (that 1s, cosy = sing), and the generating
circle is the locus of the centers of curvature of the
involute (the evolute). Then, from Equation (19), the
base circle radius is rsing (= rcosy) where r is the
pitch circle radius. Therefore, the ratio of the
radii of the base and pitch circles is simply sin#, or
cos, -- a result consistent with Equation (20). Fig.
12 shows a computer generated drawing of the base
circle, the pitch circle, and an involute curve
forming a portion of a tooth profile.

involute
e

Tooth Prothe

Piten Circle =

\

Base Circle

Fig. 12 Computer Drawing of Base Circle,
Pitch Circle, and Involute.

A major applfcation of the procedures of this
paper is with the computer aided design and analysis
of nonstandard tooth forma. For example, suppose
that the cutter proffle is not straight, but has a
profile defined by the expression v = f(x) [instead of

y = (x - x.)tan as in Equation (9) . Then, in terms
of the X-Y coordinate system of the gear blank, the
resulting tooth profile is determined from the expres-
sions:

r ~xsin + ycos - f =10 (21)
and

~xcos - ysin =~ (r - xsin + ycos )f' = Q (22)

where from Equation (11) the argument of f is

(r + xcos + ysin ) and where f’' is the derivative
of f with respect to its argument. When Equations
(21) and (22) are solved for x and y in terms of ,
they form a pair of parametric equations for the
envelope of the cutter profile, which is the tooth
profile,

A second major application of the procedures is
with the design and analysis of bevel, spiral bevel,
and hypoid gears. In this case, the procedures are
generalized to three dimensions, and the cutter
profile creates a family of surfaces whose envelope
in the gear blank is the tooth surface. When these
procedures are developed numerically, the resulting
representation of the tooth surface appears tn a form
suitable for kinematic, stress, and life analyses.
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