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An Illustrative example with involute tooth profiles but the same approach Is applicable with helical,
is given. Application with non-standard profiles and bevel. spiral bevel, and hypold gear teeth.
with bevel, spiral bevel, and hypoid gears Is discussed.* The basic concepts underlying the method are

readily seen by considering involute geometry of
NO1MENCLATURE J~~~ Al'A ,~spur pear teeth. A widely used process for fabricating

\. spur gear teeth is to use a rotating hob cutter. This
c A plane curve, center of curvature process Is based upon the concept of a reciprocating

rack cutter with straight teeth moving across a gear
%: Evlp fafml fcre blank as depicted in Figure 1. Geometrically this

i,j Unit vectors parallel to i andV

1. Step side line segment

N Unit vector normal to E

0 Wheel center and origin of N-V Reciprocatinlg Cutter

P Tvpical point on L, E ti and Out)
p PosItion vector OP ________________.~

p Position vector OC

r Circle radius, wheel radius \ Xl l
T Unit vector tangent to E

t Parameter for a family of curves

% X-V Horizontal and vertical coordinate axes

XY Coordinate axes fixed in W Gear Blanik (Rotat ionl)
X#V Cartesian coordinates of P

iJ Rolling plastic wheel

Roll angle (ed
Radius of curvature

i Inclination angle

S Pressure angle Fig. I Reciprocating Rack Cutter and Gear Bllank.
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process may be viewed as a series of inclined line circle has infinite radius, the involute will be
segments intersecting the circular gear blank, with straight, as with the rack tooth. While it may be
the envelope of the line segments forming the tooth intuitively clear that a tooth profile generated by
profile as shown in Fig. 2. the above process is an involute of a circle, the

proof may be a bit more ellusive. We present a corn-puter graphic proof in the sequel.

ENVELOPE OF A FAMILY OF CURVES

Consider a plane curve C as shown in Fig. 5.

Fig. 2 Generation of an Involute Tooth
Profile by a Rack Cutter.

A second way of viewing this process is to 0X
imagine a perfectly plastic wheel rolling over a ':
I"step" or obstacle in the form of a rack tooth as
shown in Fig. 3. The impression (or "footprint") forms

X|

SFig. 5 A Plane Curve.

Analytically C may be represented by an equation of
Fig. 3 Wheel Rolling Over a Rack Tooth th, form y - f(x). Suppose in this functionalFig. loing ve r Tooth Profildescription we introduce a parameter t defining a

Forming the Tooth Profile. fil of similar curves. Suppose further that as
the gear tooth profile. It is well known that this t changes the orientation of the curves change and
thetgearotoothipran involute of a circle hat Is that they intersect each other as in Fig. 6. The

the envelope of the line segments on the gear blank is curve E, tangent to the intersection curves is then
an involute of a circle. the e of the family.

Recall that the involute of a circle may be
viewed as the locus of the end of a cord being un-
wrapped around a circle as shown in Fig. 4. If the

I .6

' \ i .t \ . ,

Fig. 6 A Family of Intersecting Curves. *" '

It is relatively easy to obtain an analytical .

expression for the envelope. To set this, let the
representation of the family of curves be v - f(x.t)
or F(x,yot) - 0. If t Is replaced by t + . t 4here
Lt is a small increment in t, the expression
F(x,v,t + .. t) , 0 also representq a member of the %.."
family of curves. Hence, the "difference quotient": . o'Fig. 4 Involute of a Circle. [F(x,yt+At) F(,v,t)]/'.t - Is a member of the -,,'.'

[F~x,,,t +.t) -F~x~vt)]/.t 0 s.a mmber f't"



family as well. Therefore, by a limiting process, a The envelope, as expected, is a circle, with the
second expression for members of the family of curves family of lines being tangent to the circle.
is 3F(x,y,t)/at = 0. By eliminating t between F and
F/at we obtain an equation of the form G(xy) = 0. DEVELOPMENT OF INVOLUTE SPUR GEAR TEETH

G(x,y) thus represents the intersection of F and
aF/3t. That is, G(x,y) represents the points on the A similar procedure can be used to examine a
envelope E and is thus the desired analytical repre- spur gear tooth profile. Consider again Fig. 3 where
sentation of E. (See Reference [11* for additional the involute profile is generated by the step's im-
details.) pression on the plastic wheel. To describe the

To illustrate these ideas, consider the envelope impression we need to find the envelope, in the wheel,
of a family of lines, each a distance r from a fixed of the line segments representing the sides of the
point 0 as depicted in Fig. 7. Let 0 be the iaclina- step. To this end, consider Fig. 8 where L is a step
tion angle of a typical member L of the family and let

Yy

A
Y

o w

- ---

r 0 -X
Fig. 8 Representation of a Perfectly Plastic

Wheel Rolling Over a Step. -

O X side, line segment. L is inclined at an angle to the

0 X-axis and it intersects the X-axis at a distance x0
from the origin. The wheel W has a radius r, center

Fig. 7 A Family of Lines Equidistant 0, and roll angle P. X and Y are coordinate axes fixed
From a Point. in W with origin at 0. The objective is then to

express the envelope of L in the X-Y system. ....
be the inclination of the line normal to L and Let (x,y) and (x,y) be coordinates of a typical - "

passing through 0 as shown. The equation of L might point P on L, relative to the X-Y and X-" systenms.
be written as Then it is easily shown that x and are related to

x and y by the expressions:
- v =m(X - Xp) (1)_

P P x rA + xcos,- + ysin; (7)
where m is the slope of L and are the coordi- - .
nates of P, the point of intersetign of L and its
normal line through 0. But, m = tan, and tan: = -cos. y r - xsinl + ycos0 (8)
Also, xp and v may be expressed as rcos- and rsin'.
Hence. the equation of 1. might be rewritten as The equation of 1. is

y - rsin- = (-cot-)(x - rcos-) (2) v = (x - X )tan¢ (9)
*0

oraUIsing Equations (7) and (8), 1. may he described In

vsin' + xcos- - r = 0 = F(x,y,-) (3) terms of x and Y as:

Equation (3) may be considered as defining the ,(cos, - tan sin-) - x(sin
a 
+ tan: cos-) ..

family of lines with being the family parameter.
By differentiating with respect to ". we have + r + (xO - r.)tan: - 0 - F(0 ,,- ) (10)

.F/ = vcos - xsin., = 0 (4) Equation (10), like Equation (3) can be considered as

describing a family of lines relative to X-Y with
Finally, the equation of the envelope may be being the parameter. Hence, by differentiating with

obtained by solving Equations (3) and (4) for x and respect to we have
y, leading to the expressions:

* 9F1 ,s = 0 v'(sin- + tan: cos
x = rcos and v rsin' (5) g

+ x(cos' - tan: sin ) + rtan: (11)
or, by eliminating ;. as:

2 2 .2 y solving Equations (10) and (11) for x and v. we
x + y r (h) obtain:

*Numbers in brackets refer to References.
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x rsIne + (xo-r ))sinO cos0(sinO+tano cosO) What remains to be shown is that the envelope is

and indeed an involute of a circle. A comparison of Fig. 4
and Fig. 10 suggests that it is. However, to show this

y - rcos9 - (xO - re)sin¢ cos (cosG- tan¢ sine) analytically, let P be a typical point of the envelope

(12) E. The radius of curvature p of E at P may be expressed
as 12,3]:

Equations (12) are a pair of parametric equations 2 -2 3/2representing the envelope of L relative to W. There- (x + y0,2 ")
fore, Equations (12) describe the tooth profile im- (13)

pression created by the cutter step. To show this yeoxo - XooY O
numerically, the line segments generating the envelope
were plotted with a computer for r= 1, 1= 700, where the subscript 0 indicates partial differentiation

Xo 0.70021, and 0 ' 270*. Fig. 9 shows the with respect to e. By substituting from Equations (12)
Into Equation (13) and after reduction, - takes the
relatively simple form:

P - /[rcos¢ + (x0 - rO)sinf] (14)

The center of curvature C of E at P is located on
a line perpendicular to E at a distance p from E.
Hence, C may be located relative to the wheel center

by the vector p+cN. where p locates P relative to , -
0 and N is a unit vector perpendicular to E as shown

P. in Fig. 11. Recall that a unit vector T tangent to E

k%

'P. A

Fig. 9 Computer Drawn Cutting Lines at 50 " "
Intervals for - 700, r= 1, Aj

0 =0.70021, and 0 '720.

results for 50 increments in . Fig. 10 shows a

computer drawn graph of Equations (12). The "natural" ft
6%

Fig. 11 The Center of Curvature C at a
Typical Point P of the Envelope.

at P may be expressed as [3' "

T = (xi + v,)/(C + (15)

Hence, N may be written as:

N-(- ,i + ,<i)/(X; + ,2) (16)

Let pc be the vector from 0 to C. Then, using Equation
5 (13); Pc may be written as: .. , "'

Fig. 10 Graph of Equations (12). + y ,2
Xi + y+ (-^i + x_ .(17)envelope in Fig. 9 is thus seen to be the same as the " i+v +(v (x v -~ v X )

"analvtical" envelope of Fig. 10.

where (XcYc) are the coordinates of C relative to the
X-" svstem, fixed in W. By substituting from Equations

h (12) and by performing the indicated differentiations,When - 0, the coordinate axes ix-Y and X-Y are .'2 + 21/ . ..

parallel and 0 is on the Y-axis. Also, x has the it is seen that the ratio,(x
2 + v)/(v - X, )

value r(l-cosi)/sin¢ so that L is tangent to W when is unitv and that xc and y. are:

...0.
Xc - / . -r(cos- tani sinO)sin cos.

and

4
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c y y+ -xS =-r(sinD+tan4 cosb)sin coso (18) y , (x - x )tan as in Equation (9) . Then, in terms
of the X-V coordinate system of the gear blank, the

The locus of the centers of curvature can now be resulting tooth profile is determined from the expres-
seen to be a circle. That is, from Equations (18), sions:
we find that

r - xsin + ycos - f - 0 (21)

X2 + v
2  

r2sIn 2 (19) andXC

-xcos - ysin - (r - xsin + ycos )f' - 0 (22)

By recalling the construction of an involute as the
locus of the end points of an unwrapping cord aroumd where from Equation (11) the argument of f is
a circle, we see that the cord is perpendicular to (r + xcos + ysin ) and where f' is the derivative
the involute and its unwrapped length is the radius of of f with respect to its argument. When Equations

* curvature of the involute. Hence, the centers of (21) and (22) are solved for x and y in terms of
curvature of the envelope are located on the generating they form a pair of parametric equations for the
circle (the "evolute"). Therefore, the envelope E envelope of the cutter profile, which is the tooth
above is the involute of the circle of Equation (19). profile.

A second major application of the procedures is
DISCUSSION AND APPLICATION with the design and analysis of bevel, spiral bevel,

, and hypoid gears. In this case, the procedures are
Recall that for a spur gear the circle generating generalized to three dimensions, and the cutter

the involute tooth profile is called the base circle, profile creates a family of surfaces whose envelope
Recall also that if meshing spur gears are viewed as in the gear blank is the tooth surface. When these
rolling cylinders, the cylinder cross sections define procedures are developed numerically, the resulting
the pitch circles. Then, if the pressure angle is representation of the tooth surface appears in a form
defined as the angle between the radial line and the suitable for kinematic, stress, and life analyses. r
tooth profile at the pitch circle, it is readily seen

Support for this research was partially provided

R /RP - cos1 (20) under grant NSG 3188 from the NASA Lewis Research %
B* I .Center. The authors also acknowledge the assistance.:..e

In the above analysis, the wheel profile is the of Mr. Dimitrios MavrIplis who helped prepare some of
pitch circle, the pressure angle is the complement the drawings.
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Fig. 12 Computer Drawing of Base Circle,
Pitch Circle. and Involute. i '..c:i

peA major application of the procedures of this .
paper is with the computer aided design and analysis
of nonstandard tooth forms. For example, suppose
that the cutter profile is not straight, but has a "'
profile defined by the expression v f) [instead of
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