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o 1. INTRODUCTION

u Many technigques have been suggested for the efficient
3 solution of sparse linear systems; they involve often highly
::” irregular storage schemes and manipulation algorithms for
§ the non-zero elements in the matrix [4]. Although, these
| techniques lead to very powerful sequential implementations
5‘3 (see e.g. ([3]), they are not at all suitable for parallel

architectures. In fact, parallel processing requires, in

general, a rather regular pattern of computation in order to

§ minimize data conflict and communication delays.

;})} In Part 1 of this presentation (see [6]), a method |is

introduced for representing all non-zero elements of a

ﬂ sparse matrix in a stripe structure that provides, in some
} sense, a compromise between efficiency and regularity. More
L 53 specifically, the stripe structure is shown to possess

!; enough regularity to allow for the design of some efficient

networks for the parallel manipulation of sparse matrices.
j Two networks, namely MAT/VEC for the multiplication of a
matrix by a vector, and TRIANG, for the solution of triangu-

lar systems, are given as examples.

Very briefly, a stripe Sk of an nxn matrix A is a set I |

of positions that contains at most one position, (i,j), of A 2

for every row i; that is, Sk = {(i,ak(i)) : ieIt_:In}, where 1 -]

if, for any i and jJj

stripes Sk and sq are ordered by Sk < Sq

I =(1,...,n}, and o, is a strictly increasing function. Two ‘
n K M

in the domains of Oy and o_, respectively, ty Codes

q
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T,
e = 2 -
Ut
b
$§§ i3 implies o0, (1) < oq(j) (1)
o
- A stripe structure of the matrix A is then defined as a
e
$Sﬁ disjoint union of stripes S,, k=1,...,m, which satisfies
]
ﬁh& sk<sk+1' and contains all the non zero elements of A. More
Mﬁ specifically, if a, 470 then, there should exist a unique '
‘'t ’
WO . .
$&| k, such that (i,j)esk. Also, the stripes “l"“'sﬂ' are
%&: said to be non-overlapping if
o (1) % o (i-m) (2)
?;2 for any integers k, i and m such that (i,oK(;))eSk and
l'.‘: I
Tl i - . . .
2 (i m'°k+m(i m))esk+m. If the inequality in (2) is strict,
@$ then the stripes are called atrictly non-overlapping.
& |
. ?5
Y~j The linear network MAT/VEC suggested in [6] for the '
gt multiplication of a matrix A by a vector x consists of n
e
;5' cells, where 7 is the number of stripes in the representa- I
ﬁﬁ tion of A (called the stripe count). Every two consecutive
)
i’; cells k and k+1 in MAT/VEC are connected by two unidirec-
:;; tional communication 1links, where a link is regarded as a
s
,fz queue that may buffer data between cells k and k+1l. One of
;-. the 1links is directed from k+l to k and transmits the ele-
%3
f%f ment.s of the input vector x, and the other is directed from
3
o k+l to k and transmits the elements of the result vector
%f‘ y=Ax. The network is data driven in the sence that the
1338
: i operation of each cell is initiated by the availability of
L .
AN "its input.
o
}g: In order to estimate the running time of MAT/VEC, it is
i

[
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assumed that the execution alternates between two phases,

namely a communication phase, and a processing phase. In

n [6], it 1is shown that if the input matrix to MAT/VEC has

A

non-zero diagonal elements, and non-overlapping stripes,

then no data conflict occurs, and the execution terminates

o
-
L
"

s

in n global cycles, where a global cycle consists of a com-
munication phase followed by a processing phase. The time

for a processing phase is roughly that of one floating point

operation, while the time for a communication phase depends

Y
N on the slopes of the stripes of the matrix.

| Sl

In this paper, we consider a major source of large

- - on
-

"

.y

sparse matrices; namely, finite elements and finite differ-

ence discretizations of partial differential equations

:." i (PDE) . More specifically, we study the atripe structure of
E% ﬁ stiffness matrices that result from discretizations on
b irregular domains using regular grids. Pirst, we specify in
i}‘ ! Section 2 the types of domains and grids used in the satudy.
‘:E E:E Then, in Section 3, we show that for matrices resulting from
. these types of grids, a stripe structure with very few
5 F stripes may be introduced, but the resulting stripes do, in
: - general, overlap. In order to obtain non-overlapping
1N stripes, we suggest , in Section 4, a multicolor numbering
;. & scheme that spreads the stripes within a matrix,” and thus
‘ ) disengages any overlap between stripes. The multicolor
| ﬁ numbering is shown, in Section 5, to decrease the maximum
;‘ I separation between stripes, which minimizes the number of
:: jg data items that should be buffered, at any give time, on the

B ‘.‘~>~ —' = £ ‘P : 4 . w -. F‘ RSN e X
B s R e T B R T L S T T e AR 6 et 1 RN S gy TRy
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communication 1links of MAT/VEC. Finally, in Section 6, we

estimate the execution t.ime of MAT/VEC for some specific

at.iffness matrices.
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A

:\!"'I

o g Let Q be a rectangular domain that is covered by a grid
v. 73

\ré i~ MQ with lines parallel to the sides of Q. If we remove from
b -:‘:

& " Q any number of rectangular subdomains whose boundaries
Eh v

?3 §2 coincide with some lines in MQ. then we obtain a new domain
J 'J O

iz 1 € Q, which we will call a pierced rectangular domain. The
a : E; part of MQ that covers N is denoted by Mh and is called a
; T pierced rectangular grid (see Fig l(b)).
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" (c) an irregular domain (d) an irregular grid MD
covered by Mn isomorphic to Mn

]

A,

Fig 1 - Examples of finite elements grids

If D is an irregular domain, we may approximate D by a
pierced rectangular domain and cover it by a pierced rec-

tangular grid (see Fig 1l(c)). Another alternative (usually
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used 1in automatic grid generation), is to map D, iso-
parametrically [9], into a pierced iectangular domain 0,
cover 1 by a pierced rectangular grid Mn, and then map Mn
back to a grid MD that covers D (see Fig 1(d)). In this
case, the zero pattern of the stiffness matrix that results
from the discretization of a PDE on MD is the same as that
resulting from the discretization of the PDE on Mh. For

this reason, we consider here only discretizations on

'pierced rectangular grids.

Given a pierced rectangular domain N1 covered by a gr.

a nodes, let MQ be a rectangular grid th:

includes Mn and contains nQ nodes, nQ>nn. Each node in M

may be identified by a unique number x,_lskan, assigned to

Mn that contains n

it by some numbering scheme (greek letters will be used to

identify nodes in Mb). On the other hand, the nodes in Mn

may be renumbered such that each node XGMn is assigned a

unique number t=v(\), lslsnn.

Defipition 1: A renumbering of M, is said to be deduced from

the numbering of Mb

node xeMn is derived as follows:

if the number t=v(\), assigned to any

L =0

For » = 1,...,n. Do

Q
I1f xéMn Then { t=£4+1 ; v(\) = 2 }

Else { v(A) is undefined }

Clearly, the renumbering function v satisfies the fol-

lowing relations:
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AN D> u <==> vy(\) > v(u) (3.a)
N> p ==) A-ug = v(A)-v(u) (3.b)

The inverse v-l of the function v will be used to map
the number f of any node in M, into its identity x=v-1(l) in
MQ. It is also useful to define a function which deter-
mines, for each node Gch, the smallest node larger than 8

that is in M_.. For uniformity, we define such a function for

]
any oeMQ as follows:
Definition 2: The function Next(§) : MQ~MQ is defined by:
{nun{u : #»b and ueMn} if such u exists
Next (o) = n otherwise

Q

Note that the minimum does not exist if every node u=0 is

not in Mh, which may happen only if 8>v ( ) []

Without entering into the details of the generation of
stiffness matrices, we just mention that the matrix A gen-

erated from the discretization of a PDE on Mn is an nnxnn

matrix in which each row & corresponds to a node x=v— (2) in

Mn.

positions (&,m), where usv-l(m) is a node that is a neighbor

The only non zero elements in row &t of A are those at

to node A in Mn. The definition of neighboring nodes
depends on the specific discretization used. For example,
in finite element discretizations, two nodes are neighbors

if there exists an element that contains the two nodes.

From the above discussion, it is clear that the scheme

used to number the nodes determines the zero structure of

R R Vo A PR DLy S I AR Y BRI VI R A TP e L SRRy JU PR VI L S S SO SR SN N

L | ', 3 iy PN LA D ,{- o, J‘ r‘
‘ ) ( ! ; W (‘ -/' ‘! '!. R -
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the matrix A. In the following subsections we consider two
different numbering schemes. For ease of reference, we
refer to the 5-points star finite difference discretization

by FD and to finite elements discretizations with 3-nodes

5'
triangles, 6-nodes triangles, 4-nodes rectangles, and 9-

nodes rectangles by FE3, FES' ?E4, and FEQ, respectively.
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ke 3. BEGULAR NODE NUMBERING

i

:_ n A regular node numbering is one in which the nodes are

*j ’- numbered sequentially, column-wise or row -wise. We will con-

: sider only column-wise numbering and note that our results

'.  K apply to row-wise numberings, as well.

non

\ Let MQ contains H horizontal 1lines and W vertical

ip - lines, and identify each node in MQ by the number assigned

%S )_' to it by the column wise numbering of My, that is, identify

a the node located at the intersection of the ith horizontal

‘ ,« line and the jth vertical line of MQ by the integer (j-
L)H+1. It is easy to see that the column-wise numbering of
Mn is the one deduced from the above numbering of MQ. Let v

! be the renumbering function introduced in Definition 1.

’ Depending on the specific discretization, we may intro-

\\ duce few functions that define the neighbors of each node \

/ L in MQ. For example, for FE!4 discretization, the following

j ) nine neighboring functions may be defined for each )\eMQ (see

,~ = Pig 2):

DS A-H+1 A+l A+H+1

x ; \-H A A+H

\-H-1 -1 A+H-1

L Fig 2 - the neighbors of node \

.ri: :
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RS 1

‘o p_4(X) = \ -H-1 H p4(X) = A+ H + 1
n pZ3(A) =\ - H ; p3(\) = X +H

p_o(A) = X - H+1 ; p(\) = X + H -1 (4) a
2 pZI(A) = x -1 ; pPI(A\) =\ + 1 !
D po%x) - x
i Similar neighboring functions may be defined for other

el

discretizations, and then used to determine the stripe

P _puC palV g

structure of the corresponding matrix as illustrated by the

:".".-"‘".;’an - - -

v following theorem: ﬁ
.- ;"Cj
Ai\ Theorem l1l: Let the numbering of Mh be deduced from that of @
;? MQ, and let A be the stiffness matrix that results from a E
g specific discretization of a PDE on Mh (with’ a specific

)

definition of neighboring nodes). If there exists » func-

-
-
x

tions pk:Mb~M . k=1,...,7m such that for any two neighboring

Q .
& nodes X and g in MQ, pk()\)au, for some k, lzk=w, and the a
L.
s; functions Py satisfy ;Q
L% M
) o
¢
* P (V) < P (A+1) k=1,...,m (5.a) -
i pk(k) < pk+l().) k=1l,...,m-1 (5.b) ,':"5
'i Then, it is possible to construct a satripe structure for A ~
-
. with stripe count . ﬁ
< -
> Proof: Define, for k=1,...,7, the following sets: 3
8 -
¢ I‘-
b Sk = ((l,ok(l)) ; l‘l‘nn and ak(l) I} (6) -
W where ;
e
K«
‘ -1 £ -1
(VP (v (D)) 1f p (V7 7(L)) € My )
. O () = 1, otherwise ﬁ
o Where ¢ and t are used for "defined®, and "not defined", g:
" -H-
. r
»

A
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B T A T M A oo e S S Ly
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respectively. It is readily seen that if the (l,m)th ele-
ment of A is non zero, then nodes v-l(l) and v-l(m) are
neighbors, and there exists a k such that v_l(m)=pk(v-l(t)).
Thus, (L,m)esk. In other words, every position of A that

has a non-zero element is in some set Sk’ l=ks=w.

In order to prove that each set Sk’ l«<k<w, is a stripe,
we consider any two elements (l,ok(l)) and (m,ok(m)) in Sk.

If t=v(\) and m=v(x), then by the definition of both

Ok,

pk(X) and pk(u) are in Mh, and hence both v(pk(X)) and

v(pk(u)) are defined. Now if ¢ > m, then from (3.a) \ > u
and from (5.a) pk(X) D pk(u). Thus v(pk(X)) h v(pk(u)), that
is ak(L) > ak(m), which proves that Oy is a strictly

increasing function and that S, is a stripe.

k

k ¢ Ske1-

consider the two elements (l,ok(l)) € Sk' and (m,ok+1(m)) €

Finally, we need t.o show that S For this, we

S Following the same steps as above, we may show that

k+1°
if 2 =m, then A= g and pk+l(x) x pk+l(“)‘ But from

(5.b), pk+l(u) h pk(u), which leads to ok+l(2) > ok(m). (]

Note that the above theorem does not depend on the
specific numbering of MQ. For column wise numbering, the
functions (4) may be used (assuming H > 2) to prove the fol-

lowing:

Corollary 1: If the nodes in a pierced rectangular grid Mn

are numbered column-wise, then the matrix that results from

FE4 on Mn is a striped matrix with stripe count 9 (].

A Bl Sl Jint

e
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4 on MQ has nine

parallel stripes (6], Corollary 1 proves that piercing MQ

and renumbering the nodes do not change the stripe count of

Given that the matrix resulting from FE

the matrix (however, the stripes are no longer parallel).

Results similar to Corrolary 1 may be proved for other
discretizations (see table 1 for a summary). Although
these results indicate that the network MAT/VEC may be used
with the corresponding stiffness matrix, they do not guaran-
tee that the stripes of the matrix are non overlapping, and
thus, that the operation of MAT/VEC is not delayed due to
internal data conflict. For example, the matrix shown in
Fig 3(b), which has overlapping stripes, is obtained from
the column wise numbering of the pierced rectangular domain

shown in Fig 3(a).

FD5 FEB FE4 FEB FEQ
regular 5 7 9 19 25
3-color 7 (NO) 9 (NO) 11(NO) | 23 29
5-color X X X 23(NO) | 29(NO)

*) NO = Not overlapping if Lemma 2 applies

Table 1 - Stripe count. for different numbering schemes

(I o N X o X W
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3 16 22 29 ;613 )
7 .

15 21 28
’ 35
A 14 20 27 34
5 13

26 33

4 12
3 11 19 25 12
Z 31
, 10 18 24

9 17 . 23 30
(a) The grid {b) The FE4 matrix

Fig 3 - column-wise numbering
4. MULTI-COLOR NODE NUMBERING

Many multicolor nuﬁbering schemes have been used by
different authors to obtain stiffness matrices that have
some desirable properties (see e.g. [1l,7,8]). In this sec-
tion, we introduce a multicolor scheme that spreads apart
the stripes of A such that they do not overlap. we consider
only 3-color numbering, and we assume that H=3h-l, for some
integer h. This may be satisfied, always, by increasing the

height of Mb appropriately.

In order to explain the 3-color numbering scheme, we
assume that each horizontal 1line in Mb is given a color.
Namely, lines 1,4,...,3h~-2 are white, lines 2,5,...,3h~1 are
black, and 1lines 3,6,...,3h-3 are red. Numbers are, then,
assigned to the nodes in Mb as follows:

Por each column j=1,...,W Do

1) number the nodes in the white lines of column j,

e T e T T T T e T e Tt a S e e N N N e O LS e
(AR RSO AT IR PR O S PN e DR AP S N - L)
AERIS A NI I TIPS IS TN NS AN NNt ) S I e i e A G S L R A, DY
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2) number the nodes in the black lines of column j,

3) number the nodes in the red lines of column j,

The 3-color numbering of the nodes of Mh is then the

numbering deduced from the 3-color numbering of MQ. As an

example, we show in Fig 4(a) the 3-color numbering of the
same grid of Fig 3(a).

black 6 14 20 27 34
i+

white 3 I 18 7 31
red 8 36

16 22 29 ;
black 5 13 T 33
white 2 10
red 7 15 35

21 28

black 4 32

12 19 25 {
white 1

9 17 23 30
(a) The grid (b) The FE, matrix

Pig 4 - 3-colors numbering schem3

As we did for regular numbering, we assume that FE4
discretization is used and we introduce the appropriate
neighboring functions in MQ. However, in this casé, the
neighbors of a given node \ depend on the color of \. In
orde; to be more specific, we show in Fig 5 the numbers that
are assigned by the 3-color numbering to the nine neighbors

of A\. Clearly, at least eleven functions are needed in

order to include all the neighbors. Namely:
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ﬂQf pS(X) a A\ + 5h - 2 : p_S(X) = \ - 5nh + 2
e Pa(X) = X\ + 4h - 1 ; P_a(X) =\ - 4h + 1
X g 03(X) =x+3h -1 ; p_'3(x) = X -3nh + 1 (7)
¥ pZ(X) =\ + 2h - 1 : p_Z(X) =\ - 2h + 1
1;5 oy Pl(\) =\ +h H p_l(k) =X -h
b pp(A) =\
)
';:‘.;l ﬁ A=2h+l A+h A+4h-1 A-2h+l A th A+4h-1 A-Sh+2 A-2h+1 A+h
i
c".: . A~3h+l A A+3h-1 A=3h+l LY A+3h-1 A=3h+l A A+3h~1
.:0". a
N
A=h A+2h-1 A+5h-2 A=4hel A~h A+2h-1 A-4h+l A-h A+2h-1
::' LA
: g
3;'-‘.\‘ %, (a) A is white (b) \ is black (c) N\ is red
Y
' e Fig 5 - The neighbors of \.
KN
R 3
% i If ha2 (H»5), then the functions (7) satisfy the condi-
k)
Lt % tions of Theorem 1, and hence, the resulting matrix may be
§ﬁ covered by eleven stripes, which is more than the number of
0 A
b -
%% 53 stripes resulting from the regular numbering. However, the
o
ﬁ? g; stripes in this case are non overlapping provided that Mn
?:j " does not have very narrow regions. This condition on Mn is
W
p% o better phrased in the following Lemmas:
. ¥
il Lemma 1: Assuming 3-color node numbering and 4-nodes quadri-
ﬁﬁ lateral elements, if each column in Mn contains at least
IS T
YR four elements that are either contiguous or divided into two
[
Ei - groups of two contiguous elements each, then
'~.:' g.
N
j‘q Next(06) - 6 s h - 2 for any 8 € Mb (8)

b e
}
r-?:.:it

where the function Next is as given in Definition 2.

Uy

w2 Proof: For ease of reference, we indicate the position of a
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4 P 4 oLl @ € N T T e N ap T ats P mANANA YN
G ¥ . N y ‘-‘$ o \p‘v .', ‘* Q A W N }. A " V”’ “‘)

. S all

Bl




v -
L
LY N

e

2

- o
ot Rf AP 355 Wb AW 3

—
K

-
-

B SESIR Y

__

- 16 -

th

node that 1lies on the intersection of the 2z horizontal

th

line, lszs3h-1, and the v vertical line, lsvsW, of MQ by

the pair (z,v). If 8eM_, then Next(0)=5 and (8) is trivial.

N
Hence, let 0 ¢ Mn be at position (z,v) and have the color R.
Let also Rl be the color that follows R, that is Rl= black,
red or white, if R= white, black or red, respectively. From
the hypothesis, the vth column of elements in Mn contains
either four contiguous elements or two pairs of contiguous
elementa. That is there exists two horizontal lines a and b
with basa+2 such that all the nodes at positions (c,v) and
(c,v+l), €for aZcsa+Z2 and bscsb+2, are in Mn (see Fig 6).

Clearly, we may have one of three cases:

H v :v.1 | H—Y :v+1 H —Y— v ve2
; : i‘j*§':
b b -
. b
i z--<'-:—- [ ] .
Y . .
2--34 - a - a
Case (1) Case (2) Case (3)

Fig 6 - Column v of Mn

Case 1; z ¢ a: In this case, a node ueMn with color R should
exist at a position (¢,v), ascsa+2, and u-0-1 = the number
of lines with color R between 1lines 2z and a. In other
words, u-0-1 is less than the number of lines with color R
below line a. Since this number is [aglj, the largest
integer less than ‘gl, and given that b+243h-1 and asb-2, we

obtain u-0-1¢ |3B=Bj = n-2. By definition, Next(s)su, and

hence Next(8)-08sh-2.
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Case 2; a ¢ z ¢ b: In this case a node ueMn with color R
should exist at a position (c,v), b=csb+2, and u-6-1 is less
than the number of lines with color R between lines a+2 and
b, that is less than (R=08f21=li.1  gince b+243n-1 and a»l,

then u-6-1¢ [30=Lj+1 = h-2. That is, Next(d)-8 = u-0 sh-2.

Case 3; z > b+2: If v=W and R=red, then, there is no nodes
in Mh larger than 6. Hence Next(6)=nQ, and Next(8)-8 = the
number of lines of color R above 1line 2z = L&h;l:zj. ‘But

zxb+32a+526, which gives Next(d)-08=h-3.

On the other hand, if v<(W, or R¥red, then a node ueMn
with color Rl should exist at a position (c,v+l) if R=red or
at a position (c,v) if R=white or black, where asc=a+t2.
Here, u-06-1 = [the number of lines of color R above line z]

+ [{the number of lines of color Rl below line a]. But at

most 3h§l=zj lines with color R may be above line z, and at
most [agl] lines with color Rl may be below line a. Hence

3h-1-2

u-o-1 « (3051=2) 4 3fhy o (AB=2=ZER) Gjven that zaass,

then p-0-1 € h-3, which gives Next(8)-0=<h-2.[]

Lemma 2: Assuming 3-color node numbering and 4-nodes quadri-
lateral elements. If each column in M, contains at least
seven contiguous elements or two separated groups of at
least three contiguous elements each, then

Next(8) - 6 s h-3 for any 0 eMQ (9)

Sketch of the proof: Let OtMn be at position (z,v). Then

from the hypothesis, there exists two horizontal lines a and
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oy

2 b, b > a+3 such that all the nodes at positions (c,v) and
()
! (c,v+l), for asc<a+3 and b<csb+3 are in M- The rest of the ;
e proof proceeds in a way similar to the proof of Lemma 1. [] -
58 3
ﬁ? Lemma 3: If for any 0 € Mb, Next (0) - 8 = p, then, 3
:" -l -l w
54 v (+1) - v (L) s p + 1 for ¢t = 1,...,nn—l (10) ‘ 3
E Proof: let ft=y(\) and !+l-v(;). Given that I is numbered ﬁ
; right after )\, then any node 08 with A<O<\ is not in Mn, and 0
) - - 2
& hence, Next(8)=\A. But, from the hypothesis, \-0sp, and B
) - - - -
Ky hence, if A>A+l, then A-A(A-0sp. That is A-A=p+l. (] E
L
- The condition (10) may be translated to an upper limit é
on the number of columns that a stripe in a stiffness matrix
bl
may jump in one row. More specifically, Iif a, and ﬁ
% a£+l,ak(l+l) are in the same stripe, then condigion (10) -E
% limits the value of 0, (2+1)-0,(2). This may be used to '
™

prove that the stripes will not overlap if they are ade-

quately separated from each other.

—~
1 4 l‘l

R A
g

Theorem 2: Let the nodes in a pierced rectangular grid M, be

4

WX

numbered using the 3-color numbering scheme, and let A be

et el

the matrix that results from an FE4 discretization on Mn.

| 24

It Mn satisfies the conditions of Lemma 1, then A has eleven

g non overlapping stripes. Moreover, if Mn satisfies the con- Iﬁ
rf ditions of Lemma 2, then the eleven stripes are strictly non .
%, overlapping. &
g .
; Proof :Consider the eleven functions given by equs (7). It t;
A

< I

‘d .

-
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is straight forward to check that

s

pk(x+1) - pk(X) = 1 k=-5,...,5 (1l.a)
pk+l(X) - pk()\) x h-1 k=-5,...,4 (11.b)

L)
>
e

Clearly, these functions satisfy the conditions in Theorem

O
2

l, and hence, A has eleven stripes Sk, k=-5,...5 of the form

_..t“ -
i
v

I':....;— .
2

o) = .

3&& 8) = {(%,0,(2)) ; lstsn, and o, (1) !} (12)

$$ f§ where

ol L

. -1 . -1

gy ?-‘ {v(pk(v (L)) if p (v (1)) € M,

a ok(l) 1 otherwise

;‘\'-'\ &

L Q In order to prove that these stripes do not overlap, we

C

E‘:} ﬁ consider any integers &, m and k such that (!.,c:vk(!.))ei’»k and

,'lg' -_—

§§‘ (l—m,ak+m(l-m))esk+m, and we let ft-m = »(A\) and 2 = v(\).

R B From (12), we get

ol

o -

s Opam( M) = (1) = ¥(py (X)) = ¥(py(X)) (13)

N ™

i - .

:? L But from (ll.b) pk+m(X) - pk(X) 2 m(h-1), and from (ll.a),
LAY -_— -—

1l pk(x) - pk(x) = (A-\). That is

L .

Sedle

SV - -

el Prem() = P(X) » m(h-1) - (A-})

- o

'fﬁ - Now, if the conditions of Lemma 1 are satisfied, then from

* - —

S (8) and (10), A-Aem(h-1) and thus p, ., ()\)-p, (A)x0. By pro-

LWy

“ - perty (3) of the renumbering function and equation (13), we

A
N finally obtain ok+m(l-m) » ok(L), which is the condition (2)
> for non overlapping stripes. On the other hand, if the con-
C ditions of Lemma 2 are satisfied, then from (9) and (10),
X A-A<(m(h-1). This leads to o,, (f-m) > 0, (1), which is, the
*'

;.‘ I"\‘ . -.)- e i VAT ) I S TN SRS i B G R I e iy L L N B A R T IR
N AR L0 TR MHDR%) | .»\l?aa.t':"h".n'. 3 ..‘0. ),
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condition for strictly non overlapping stripes. [] {?
The result of Theorem 2 proves that if an nxn stiffness a

matrix generated by FE4 and 3-color numbering is used as

input to'MAT/VEC, then, execut.ion terminates in n global 53

cycles. In fact, assuming that each y-stream communication i

line in MAT/VEC may buffer only one data item, the progres-

sion of the execution may be described by the following com- e
putation fronts: d
CFt'{at-k,ak(t—k)' -5¢k«5 and o, (t-k)¢} t=1,..,n (14) “3
: ]

The 3-color numbering scheme introduced here causes
also the stripes of the matrices obtained from FD5 and FE3 %3
discretizations to be non overlapping (as indicated in Table |
1). However for FEG and FEg discretizations, this numbering ?3
does not spread the stripes enough and overlap may still ‘

occur. A 5-color numbering scheme is needed in this case to
guarantee non overlapping stripes. The analysis of the 5- a
color scheme is similar to that discussed in this section. .
o

Although the property of non-overlapping stripes is
important. for the efficient operation of MAT/VEC, the g
multi-color numbering scheme has an additional advantage ‘s
over the regular scheme. Namely, it produces matrices in 2
which the stripes are uniformly spread, thus minimizing the ﬁ
maximum separation between stripes. This is explained in :
details in the next section. é
:
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2. TIHE MAXIMUM SEPARATION BETWEEN STRIPES

It was shown in [6] that the multiplication of a
striped matrix by a vector may be performed on the network
MAT/VEC efficiently, only if each communication link
directed from a cell k to the previous cell k-1 may buffer
at least dmin data items, where dmin is a measure of the
maximum separation between the stripes of the matrix. More

specifically, if the stripes of the matrix are full, then

dmin may be estimated from

d < max{ak+l(t) - ok(t)}

min K,t
On the other hand, if the stripes of the matrix are not

full, then
dmin = gai{xp (k+l) - th(k)} (15)

where xP t=1,...,n, are the x-stream data profiles

y
corresponding to the execution of MAT/VEC.

In order to observe the effect of the node numbering
scheme on the separation between stripes, we consider a rec-
tangular grid MQ, with H=3h-1 horizontal lines and W verti-
cal lines, and we assume that A is the stiffness matrix that
results from FE4 discretization on MQ. If regular node
numbering is applied, then the functions (4) may be used to
construct nine parallel full stripes Sk, k=-4,...,4, that

satisfy for any t

Il if k’-4'-3'-l'0'2'3
Op+1() = (X)) =iy if k=-2,1
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i e
l.
+ This gives d . (H-2=3(h-1). On the other hand, if 3-color 2
\- [R5
o numbering is applied, then the functions (7) may be used to _
' produce eleven parallel full stripes Sk’ k=-5,...,5, that e
gz satisfy for any t
' i h-1 if k=-5'-2'll4
! - = bies
T+1(B) = O () =1 if k=-4,-3,-1,0,2,3 5
<
3
; That is dmin<h‘ Hence, although the multi-color numbering 4
s 3
' produces a matrix with a larger band width (5h-1 instead of L
E 3h+1l), the stripes are spread within the band almost uni- E%
" formly, thus decreasing the maximum separation between the 7
1 "
e stripes from 3(h-1l) to h.
.,
The natural question to ask 1is: does dmin remains .g
unchanged if Mb is pierced and the nodes in the resulting &
. pierced domain Mn are renumbered?. More specifically, if we e
N
< consider the stripe structure discussed in Section 4 and .
[ given by (12), can we construct some profile functions that
) correspond to the fronts (l4) such that the maximum in (15) ﬁ
i
is h?. A positive answer to this question may be provided “
Y .
: by considering the following profile functions -
* -
w th(k) = v(Next(pk(v-l(t—k)))) t=1,...,n (16) i
: where the function Next is defined in Definition 2. i
Clearly, if o, (t-k) i, then from (12), p,(w (t-k)) € M, .
2 o,
N and hence Next(pk(v‘l(t—k))) - pk(v'l(t—k)). which by (12) "
i and (16) gives %
L&
A
: th(k) = ak(t-k) if ok(t—k) [} (17) %
)
L}
A
) ’
R e e e e g e e R e Y e e e Y N s e e v ]
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';i N That is, the knots of the profile (16) coincide with the
Ei . fronts (14). It is also straight forward to check that

Efﬁ {< th(k+1) if ok+l(t—k—l) ]
s O e s xp (k+1) otherwise

AT

.‘\ ‘_\ {( th+l(k) if ok(t—k) |

e xP_ (k) _ .
‘ﬁi t < th+l(k) otherwise

NP

SAEES which are necessary conditions for profile functions [6].
SR

2E £ In order to estimate the maximum in (15), we substitute
"’l

q%fa o (16) in (15) and get

IS

- dnin = max{v(Next(p, ,(}))) - v(Next(p,(2)))} (18)
N krl

".\'. -

"o _

kbﬁ g where x=v—1(£) and \=v l(l~1). Now, let ¢ = max{u |
. ) uj uspk+1(f) and ueMn}. That is ¢ is the first node before
;f} pk+1(;) that is in M, (take ¢=0 if no such u does exist).
SN -

e Given that Next(p,,,())) is the first node in M, after
e ’

L/ J &" -

) pk+l(X), we get v(Next(pk+1(X))) v(¢)+1l. Hence

el

‘:% : v (Next ( (X)))-v(Next( (X)) = v(¢)-v(Next(p, ()\)))+1
ﬁ . Pr+1 Px Px (19)
‘ b - : :

.}g Cﬂ But ¢£pk+l(X) and Next(pk(X))hpk(X). This gives

w3

v

D IR - NI

SN ¢ — Next(p, (V) = P 1 (X)) = P (X)

wha '!‘n

b « pp(}) - p(\) +h (20)
:::u.; 0N

,iﬁ o, where we used pk+l(I)-pk(I)sh, which may be verified from
b ' ‘:’ -— —

liw L. (7). Also, from (7), A>\ implies that pk(X)< pk(X), which
i& fﬁ together with the property (3.b) of the renumbering function
SR

o

) L

. L
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v and (20) gives

v(¢) - v(Next(p, (}2))) < h (21)
From (21) and (19) in (18), we finally get dmin < h. That
is, for matrices which are generated from FE4 discretiza-
t.ions on pierced rectangular grids with hight H and 3-color
node numbering, a buffer capacity of g is sufficient to

ensure that MAT/VEC terminates execution in n global cycles.
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NN ¥ 6. PERFORMANCE OF MAT/VEC APPLIED TO STIFFNESS MATRICES

e ! As defined in [6], the global cycle of MAT/VEC consists
o

’ﬁ3 3 of a communication phase and a processing phase. The time
.ls. }.\v

‘?ﬂ for the processing phase is the time needed to complete a

floating point multiply/add, which is constant for a given

s -

ﬁm“d architecture of the cells of MAT/VEC. On the other hand,
5&‘ 5§ the time for the communication phase depends on the stripe
'qh ?f structure of the matrix. More specifically, given the stripe
:&% i structure of the input matrix and a corresponding data pro-
g‘!. 2 ﬂ file, the time for the communication phase of the tth global

cycle, lst<n, is the time for et data transmission, where

-v. o» o ..n.r"‘.

€ = max(xPy (k)-xPy_, (k) (22)

»
-

= 2y

l".

%f' Assuming that the time needed to complete a
[ A .

'$*.ng multiply/add operation is T’ and the time needed to

transmit a single data item between two cells is Ter then

A

.iu the total execution time of MAT/VEC .is

7

x n

J°H T=7_+ 7T r ¢ (23)
" X m ] t=1 t

‘E‘ For stiffness matrices resulting from 3-color numbering

5’ and FE4 discretizations, it is easy to show that the profile
functions (16) lead to

Et‘h t'l,..-'n

However, the actual value of €t is usually much smaller than

|

h, as shown by the following example.

M2
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’., EXAMPLE 1: §
o
i 1
7 f\a
(.',' ‘
i | X
9 i 3
N
- | .
' d
) :
N §|
< .,
¢ 8
4
¢ <y
»
1
gl (a) The grid (b) The corresponding matrix g
A
o Fig 7 - Example 1
Q}' Consider the pierced rectangular grid shown in Fig 7(a). It ﬂ
e .
' contains 130 4-nodes rectangular elements and 174 nodes. a
: The stiffness matrix corresponding to the 3-color numbering -
* scheme (Fig 7(b)) has a band width b=49 and, in accordance i:l;f
™ 1
x with Theorem 2, has 1l strictly non-overlapping stripes.
’ ho
& The construction of the data profiles (1l6) and the applica- o
B 174 .
e tion of (22) gives [ & =~ 241. That is MAT/VEC completes 3
t=1 '
) the multiplication of the matrix by a vector in time T = EE"
1741'lll + 24lrc. Note that if the multiplication is performed -
" on a systolic network [5], then 49 cells are needed and the g
computation is completed in time Ts - 358(1'“l + -rc). The a
saving in both the number of cells and the execution time is rﬁ
i
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obvious. Also, the number of cells 7 in MAT/VEC is indepen-
dent of the size of the grid, while the number of cells used
in the systolic approach [5], namely b, depends on the size

of the grid (usually, b = 0(\{3)).

In order to observe the effect of the numbering scheme,
we also consider the matrix corresponding to the coluﬁn-wise
numbering of the grid of Fig 7(a). This matrix has a band-
width bn = 35 and may be covered by nine stripes. Howe#et,
the stripes are not "strictly non overlapping®”, and the con-
struction of the computation fronts (see [6]) shows that 326
global cycles are needed for the completion of the execution
of MAT/VEC. Hence, the size of MAT/VEC is smaller for regu-
lar numbering than in the 3-color numbering (9 cells instead
of 11 cells), but execution is slower (326 global cycles

instead of 174 cycles).

Clearly, general results, of the type proved in the
previous sections, may only be obtained for grids that are,
in some sense, regular. Howaver, given any sparse matrix,
and in particular a stiffness matrix, a stripe structure may
be constructed for the matrix and the number of computation

fronts needed for the execution of MAT/VEC may be estimated.
EXAMPLE 2:

Highly irregular grids may be obtained if triangular
elements are used. Consider, for example, the two grids

shown in Fig 8 that are extracted from [9).The Cuthill-Mckee

T R R e S A
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(a) (b) L

Fig 8 - Irregular grids
number ing scheme [2] is used for both grids starting from
the encircled nodes. The stiffness matrix corresponding to
the grid of Fig 8(a) is of order 145 and has a band-width
25. The minimum number of stripes that may cover the matrix
is 9 (overlapping) and the number of computation fronts is
found to be 283 fronts. For the grid of Fig 8(b), the order
of the matrix is 289 and the bandwidth is 49. The number of
stripes 1is found to be 13 and the corresponding number of
computation fronts is 533. By comparision with systolic mul-
tiplication, in which all trivial operations are performed,
it is clear that the organization of the non-zero elements
into a stripe structure, which is independent of the size of
the problem, reduces the hardware needed for the completion

of the multiplication, without slowing down execution.

Finally, we note that the grids in Pig 8 are

[ ¥ — =g = [ == iiaana— Alamen.
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T

constructed without any consideration for the regularity of

“.‘
§ ” >

—

o a8 3 J

. the stripe structure. More specifically, the same domains
Al ) may be easily covered by grids that have the same element-
i L\ density distribution of the given grids, but that are iso-
N morphic to some pierced rectangular grids. The matrices
'C: - generated from these grids should obey the results of Sec-

R tion 3 and 4.
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2$ 1. CONCLUSION

4_. !

e ' It is shown that the number of stripes » in the stripe
oy

k{n structure of a stiffness matrix is independent of the size
|}

Eﬁﬁ of the problem, and is much smaller than the band-width of
g' the matrix. For pierced rectangular domains, the stripe
Kt

? 3 count 7 may be estimated analytically and the stripe struc-
o

Q*’ ture of the matrix may be constructed from the finite ele-
Ay ment grid.

o

I:l >

?ﬁ‘ ‘The multicolor node numbering presented in this paper

has two favorable effects on the resulting matrix: First, it

;ET produces non-overlapping stripes, which prevents any data
3}' conflict during the execution of MAT/VEC, and second, it
distributes the stripes uniformly, which reduces the maximum

i;f separation between stripes and thus minimizes the number of

.$; buffers needed in MAT/VEC.

J

#h In brief, the construction of stripe structures for

&ﬁ stiffness matrices allows for the efficient utilization of
o

[ VLSI networks. Moreover, the number of cells in such net-
¢$ works is determined by the stripe count 7, which is indepen-

S

\i dent of the size of the problem.
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