A PORTABLE SOLID STATE DARK ADAPTOMETER

Gary A. Wheeler and Harry Zwick, PhD

Laboratory Note No. 85-55

Final

Gary A. Wheeler and Harry Zwick, PhD

Letterman Army Institute of Research

Division of Ocular Hazards

Presidio of San Francisco, CA 94129-6800

October 1985

27

Dark adaptometry; Portable vision tester; Microprocessor; LED sources.

Many technological advances produced the field-portable dark adaptometer. The LED light source provides an inexpensive, rugged and entirely portable alternative to conventional illumination sources. Microcomputer technology facilitated dark adaptometry data acquisition and analysis. Further refinements in the microcomputer industry have produced smaller, truly portable, and relatively inexpensive computers with the IEEE-488 communications interface standard. The IEEE-488 interface, in turn, is a powerful tool for streamlining the clinical dark adaptometer. Its power and utility come from its inherent ability to...
Abstract cont.

maintain communications among many devices concurrently and from the wide availability of IEEE-488 support products.

These technologies are integrated in this dark adaptometer to produce a unit that is a compact and rugged alternative to laboratory and clinical visual function test equipment, and brings new sophistication to visual function diagnosis in field work.
A PORTABLE SOLID STATE DARK ADAPTOMETER

GARY A. WHEELER
and
HARRY ZWICK, PhD

DIVISION OF OCULAR HAZARDS

OCTOBER 1985

LETTERMAN ARMY INSTITUTE OF RESEARCH
PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129
A PORTABLE SOLID STATE DARK ADAPTOMETER

Present ground and air combat poses a constantly growing threat to the visual health of today's soldier, due in part to the increased use of laser targeters and rangefinders. At the same time, the soldier must use increasingly complex weaponry where unimpaired visual acuity is a critical requirement. This paradox raises the urgent need for comprehensive measurement of the soldier's visual function. One measurement is dark adaptometry, which indicates the increase in visual sensitivity that occurs with time in darkness after exposure to a standard bright light. This test is relatively simple to administer and is extremely sensitive to various environmental and pathological conditions that might affect a soldier's visual performance (1).

Conventional dark adaptometers often use complex incandescent tungsten light sources in conjunction with a variable optical density wedge to measure dark adaptation. While these adaptometers measure dark adaptation over a range of frequencies, they have the disadvantages of being complex and expensive, and of requiring time-consuming manual data processing. The solid state dark adaptometer utilizes LED sources, which eliminates the need for complex tungsten optical systems.

A microcomputer controls the various functions of the solid state dark adaptometer. The computer provides control flexibility and processing capability important to visual function testing. Since the computer is responsible for data acquisition and manipulation, we have been able to develop a highly efficient dark adaptation protocol for use in our laboratory. The computer provides a complete set of the patient's dark adaptometry data after 25 minutes of testing. Also, readily modifiable software directs dark adaptometer control. As such, the dark adaptometer has test protocol extensibility, and flexibility in data storage format and data analysis. Dedicated integrated circuit (IC) chip timers allow microcomputer control of the apparent intensity of the appropriate LED display source by varying the LED duty cycle (Fig. 1). This scheme allows the computer to adjust the intensity of the LEDs to the patient's threshold, as defined by the patient's response through an input line to the computer. Since this threshold decreases as a function of increasing dark adaptation time, a plot of LED intensity over time gives a characteristic curve for patients with normally functioning photoreceptor cells (Fig. 2). The
Figure 1. LED intensity with varying duty cycle.

Figure 2. Threshold response of normal patient during dark adaptation.
computer also has the option of testing photoreceptor function at either 8 or 16 degrees of arc on the transverse foveal plane of the retina, both in the paramacular region.

The solid-state dark adaptometer design presently used in our laboratory employs an H-8 computer, dual floppy disk drive chassis, H-19 monitor, as well as a 36-inch (91.44 cm) hemisphere used to light adapt the patient and to house visual sensitivity measurement boards (dark adaptation). This system represents a cumbersome complex of equipment when field portability is required.

Straightforward, rapid visual function testing is needed. While our laboratory’s dark adaptometer is sufficient as a standard clinical unit, visual function testing also is needed on the battlefield, where a soldier’s visual integrity determines success or failure during a mission or training exercise. In the present paper we describe the use of modern electro-optical and computer technology to design a field portable visual function test apparatus for measurement of dark adaptation. This design yielded a portable dark adaptometer that meets those characteristics essential to field equipment.

PORTABLE DARK ADAPTOMETER CRITERIA

Many criteria must be considered in the design of field equipment. Reliability and portability are essential characteristics. The LED threshold detectors, chosen for their simplicity and ease of being computer controlled, offer the added advantage of being extremely rugged light sources. Then the major criterion in the redesign challenge for making the laboratory dark adaptometer suitable for field use is portability.

The first step to reducing the size of the solid state dark adaptometer was to redesign the visual display unit. The light adaptation hemisphere was sized down to 12 inches (30.48 cm) in diameter and mounted pronated to the top of the visual display unit. This facilitated the use of a much smaller LED display board enclosure (Fig. 3).

The major obstacle to full portability of the dark adaptometer, however, was the bulky computer equipment normally required to support the device. Advances in computer technology offer a number of alternatives. Inexpensive single-board 8-bit computers in combination with programmable read-only memory chips (proms) have been used in our laboratory to run fixed-protocol dark adaptometry. While such computers provide adequate portability, they are limited in data storage as well as program modifiability. Inexpensive portable computers complete with two disk drives and multiple external device control offer portability along with increased memory capacity and programming capability. Such machines generally have 8- or 16-bit data
Figure 3. Laboratory and field dark adaptometer visual displays.
words, at least 64K Random Access Memory (RAM), and come equipped with a standard communications bus for control of external devices. Many of the units are now available at costs of less than 600 dollars.

A critical design requirement for portability is controlling various functions with a portable microcomputer. Although there are a number of ways to accomplish this, we chose an Osborne I portable computer in conjunction with its IEEE-488 interface. The IEEE-488 interface is vitally important in implementing the dark adaptometer control functions.

THE IEEE-488 INTERFACE

The IEEE-488 (Institute of Electrical and Electronics Engineers -488) interface standard is the heart of the system's control. This standard, developed by an IEEE committee in 1975, offers compatibility among equipment adhering to the standard which has widespread support by manufacturers. It also features straightforward handshaking and a liberal (one megabyte/second with tristate buffers) maximum data transfer rate. ("Interface" is defined here as a means of communication among different devices. As such, an "IEEE-488 interface" means the IEEE-488 standard, the lines on which the standard is used, or the electronic circuitry that implements the standard.)

In an IEEE-488 system, any of four different devices may use the interface concurrently: the controller, devices that talk, devices that listen, and devices that both talk and listen.

Although more than one controller per system is possible, our system has only one, an Osborne I microcomputer. Talkers are devices that put data on the data bus (e.g. a digital voltmeter or other measurement device). Listeners take data from the data bus (e.g. printers, plotters). A digital multimeter is an example of both a talker (gives measurement data) and listener (listens for functions and range settings). Concurrently, up to fifteen devices can use the interface.

The IEEE-488 interface has an 8-bit-parallel byte-serial data transfer format with additional lines dedicated to interface management and control. The lines used in the Osborne interface are described in Table 1.
IEEE-488 lines used in Osborne I dark adaptometer interface

<table>
<thead>
<tr>
<th>Group</th>
<th>Line used</th>
<th>Line function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Management</td>
<td>Attention (ATN)</td>
<td>Used by controller to signal impending interface information. It is set low (true) to signal to devices that the data contains address or control bytes.</td>
</tr>
<tr>
<td>Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer Control Lines</td>
<td>Data Valid (DAV)</td>
<td>Set low (true) by a talker after it has put a byte of data on the data bus. This tells all listeners that the data bus information is valid.</td>
</tr>
<tr>
<td></td>
<td>Not Data Accepted (NDAC)</td>
<td>Set low (true) by listener when it is acquiring data from the data lines.</td>
</tr>
<tr>
<td></td>
<td>Not Ready for Data (NRFD)</td>
<td>Set low (true) by any listener not ready to receive data from the data lines.</td>
</tr>
<tr>
<td>Data Lines</td>
<td>DIO-7</td>
<td>IEEE-488 data bus. These lines carry information between the devices.</td>
</tr>
</tbody>
</table>

The parallel data are carried on an 8-bit bidirectional data bus. The handshaking lines, collectively known as the Transfer Control Bus, consist of the Data Valid (DAV) line, the Not Ready for Data (NRFD) line, and the Not Data Accepted (NDAC) line. One line of the Interface Management Bus, the Attention (ATN) line is used in the Osborne interface. All lines are active low to make certain hardware simplifications (page 15).

The DAV line is used by the talker to verify to listeners that data are on the data bus. The NRFD and NDAC lines are used by all active listeners. The listeners allow NRFD to go high (inactive) when they are ready to receive each byte of data. They let NDAC go high when they have accepted each byte.
Data Transfer

Communication between devices in parallel format requires a method of verification of data transfer, known as handshaking. When sending parallel data to a single device, a printer for instance, the designer may develop a very simple handshaking scheme. An example of such a scheme is the Centronics printer interface standard. Data are sent on a parallel data bus along with a signal on a STROBE line which indicates that the data are present. The printer confirms that it has accepted the data by returning a signal on the ACKNOWLEDGE line. Such a straightforward handshake is fine for communications with a single device, but when several devices may be using the interface concurrently, some "on-line," some "off-line," all with potentially different information processing speeds and capabilities, a more sophisticated handshake is necessary. The IEEE-488 accommodates these different interface requirements.

There are two modes of data transfer on the IEEE-488 bus in this system configuration: one, the controller (Osborne 1) is a talker, and two, it is a listener. The handshake associated with each is unique.

Controller as talker handshake

Figure 4 shows a timing diagram of the controller talker handshake as well as a flowchart of the software the controller uses to perform the handshake. The controller sets the ATN line low (logic level 1 or "true" due to active low logic) to indicate that it is changing the interface status of a device (whether it is a talker, or listener, or on standby). In this case the data sent to the device are called an interface message. If the ATN line is left false, the information sent over the data bus is device data, and constitutes a device message. Step one of the controller talker handshake is to condition this line.

In their quiescent state, all listening devices on the IEEE-488 interface have a N RFD status false which indicates readiness to receive data, and a NDAC status true which indicates none have yet accepted the data to be put on the data bus (Step 3). The controller makes a final check that the N RFD line is false (Step 4) and indicates that the data are available by setting DAV true (Step 5). The talker enters a timed loop (Step 6) where it waits for all devices to respond as having accepted the data by setting the N D A C line false (Step 7). The duration of this loop is determined by the slowest anticipated device on the interface. If
*When outputting an interface message, ATN set high

When outputting a device message, ATN set high

Figure 4. Flowchart and timing diagram for Osborne 1 as controller/talker.
this "timeout" occurs, there must be a problem with a device on the interface, and the software returns an error.

If the NDAC line is set false, which indicates that all the devices have accepted the data, the talker pulls the data off the interface by first setting DAV false (the data are no longer valid) (Step 8), and then removing the data from the data bus (Step 9). Finally, in an interface message transfer, the ATN line is set high to denote interface message termination (Step 10).

Controller as listener handshake

The handshake for the Osborne as the controller listener is similar to the controller talker handshake, except, since it is a listener, it must condition the NRFD and NDAC lines, and monitor the DAV line. The flowchart and timing diagram for this configuration are summarized in Figure 5.

As a listener, the Osborne sets the NRFD line false (ready for data), and sets the NDAC line true (it has not accepted the data) (Step 1). Then a timer is set according to the same considerations as discussed in the previous subsection. The Osborne checks to see that the DAV line is set true, which means data are available on the data lines (Step 2). If this timer "times out" before a DAV true condition, the software returns a "talker timeout" error flag.

When the Osborne detects that the DAV line is true, it reads the data on the data bus (Step 3). It then signals the talker that is has accepted the data by setting the NDAC line false and that it is no longer ready for data during this byte transfer handshake by setting the NRFD line true (Step 4). The Osborne then waits for the talker to pull its data off the line and set the DAV false (Step 5). When this has occurred, it sets the NDAC true to conclude the handshake (Step 6). The software then returns a "data received" flag.

Handshake comments

The IEEE-488 handshaking scheme may appear to be somewhat cumbersome and unnecessarily complicated. To some extent, this is accurate. However, this design provides flexibility necessary for the dark adapatometer which is unavailable from simpler handshake schemes. First, implicit error-checking is integral to the IEEE-488 handshake software. Secondly, there is redundancy in the lines used by listeners to acknowledge the receipt of data - both NDAC and NRFD are used in the handshake. These two characteristics provide reliable data transfer critical to physiological test equipment. The IEEE-488 communications standard has provisions for communication among more than two devices. This is crucial when there are several functions
Figure 5. Flowchart and timing diagram for Osborne as controller/listener.
that need controlling such as in the dark adaptometer and other physiological test equipment.

The IEEE-488 interface is a standard communications interface. This means that the dark adaptometer interface is compatible with any computer that has an IEEE-488 interface. This computer transportability is another important feature of this IEEE-488 interface.

Handshake software

The Osborne as talker and listener handshakes are implemented by Assembly Language (AL) program subroutines, which are called from BASIC programs. These AL routines are included as Listing 1 (Appendix). Input-output (I/O) ports in the Osborne provide hardware support for the IEEE-488 interface. Individual I/O port lines correspond to the IEEE-488 handshake lines (e.g., ATN, NRFD, NDAC, etc.). These I/O ports are memory mapped, meaning that the AL software may treat them as though they were actually memory locations, the bits of which correspond to IEEE-488 lines. This makes controlling the handshake lines the relatively straightforward task of conditioning I/O memory locations. The Osborne has the added complication of having the I/O memory locations in an alternative memory "bank", which serves to add virtual memory to the system. Listing 1 outlines the method needed for alternate memory bank addressing.

BASIC language programs use the AL talk and listen routines through USR function commands. The BASIC program must first DEFine the address of the AL routine to be used. Then the command D = USR (A) executes the AL routine at the defined address. In the Output Interface Message and Output Device Message routines, the USR argument, A, is sent to the IEEE interface as data. D returns with the AL routines' error status. In the Input Device Message routine, the argument, A, is arbitrary, and D returns with both the routine's error status and with data from the interface.

In the Osborne, there is a software quirk where the USR function does not properly send its argument to the assembly language routine. In lieu of this, BASIC POKE statements are used to place desired output data in a pre-defined memory location for access by the AL routines.
IEEE-488 Interface Hardware

A number of considerations determined the framework for the hardware design to implement the dark adaptometer interface functions. These are:

* **Compatibility.** The design must be compatible with the IEEE-488 interface bus.

* **Power consumption.** The dark adaptometer is designed to be a portable unit. As such, battery operation is desirable. This makes low power devices a priority.

* **Drive capability.** The interface is required to run signals through several feet of cable to the dark adaptometer and to the Osborne. It must therefore have the capability to drive such signals.

* **Availability.** "Down-time" due to chip failure can be costly in weeks or months lost clinical time. A design with readily available chips is a valuable asset in the event of a failed device.

Transistor-Transistor Logic (TTL) was chosen as the device family with the optimum combination of these considerations. Where possible, Low-Power Schottky (LS) devices were used to minimize power consumption.

Figure 6a shows a block diagram of the Osborne IEEE-488 interface circuitry. The interface circuitry has two main functions: first, to interpret and manage incoming interface messages, device messages, and data output, and second, to provide the signals necessary to support the dark adaptometer visual display unit. Boolean logic gates decode the incoming Osborne IEEE-488 handshaking lines: NDAC, NRFD, DAV, and ATN. When these lines indicate the Osborne is sending an interface message, the data lines, DIO-7, are loaded into the first 8-bit latch and decoded into select lines for the timer, buffer, and latch chips of the dark adaptometer control circuitry. If the handshaking lines indicate an incoming device message, the latch is not accessed; rather, the lines are decoded into a device enable line which loads the data on the data lines into the device previously selected by the interface message. Finally, if the handshake lines indicate that the Osborne is configured as a listener, then whichever talker was enabled by the most recent interface message loads data onto the data bus. This is a general description of how data are transferred between the Osborne and the interface circuitry. A detailed explanation of how data are input to and output from the interface will now be presented.
Figure 6a. Osborne I/Deck Adapter Board IEEE-488 interface block diagram.
Interface input select logic

Figure 6b shows the part of the IEEE-488 interface that comprises the input select logic. The explanation of the select logic assumes a basic knowledge of digital Boolean logic gates.

![Diagram of Interface Input Select Logic]

Figure 6b. Interface input select logic.

The handshake diagram of Figure 4 provides the basis for understanding the input select logic of the interface. As seen in Figure 4, the first step in the handshake is to set the ATN line to indicate an interface message or a device message. If the data comprise an interface message, an 8-bit "active device" latch stores the device number indicated on the data lines. The enable for the latch (NOT LATCH) depends on the status of both the ATN and DAV lines. A NOR gate decodes these two lines and provides the NOT LATCH enable line for the device latch. The decoding works as follows. When the Osborne sends an interface message, it brings the ATN line low [(Step 1) Fig. 4]. It then puts the interface data on the data bus [(Step 3) Fig. 4] and pulls the DAV line low to indicate the data is valid [(Step 5) Fig. 4]. At this point in the handshake, both the ATN and DAV lines are low. The NOR gate output now goes high, unlatching the device latch and allowing the data on the data bus to enter the latch. When the Osborne sets the DAV high [(Step 8) Fig. 4], the NOR output goes low, latching the new data into the latch. Since there is only one device latch, there may be only one active device accessed by the
interface at a given time. This does not take advantage of the full potential of the IEEE-488 interface standard, but is quite adequate for this application.

Interface messages define not only which devices are active on the interface at any given time, but also whether they are talkers or listeners. A talker enabling interface message has bit 6 set to 1; a listener enabling message has bit 5 set to 1.

With a device message, the Osborne may output data to any device that it has previously activated with an interface message. In a device message, the ATN line is left high (which precludes unlatching the active device latch). The ATN line, along with the DAV and bit 5 of the device latch (listener enable) are decoded as a device enable line that enables various dark adaptometer support chips on the interface.

In addition to decoding the handshaking lines mentioned, the input select circuitry must also condition the NDAC and NRFD lines appropriately. These lines were provided on the IEEE-488 interface primarily to accommodate devices of different data acquisition and assimilation rates. Since TTL circuitry gate delays are on the order of nanoseconds and the processor speed of the Osborne is several hundred nanoseconds, this provision is unnecessary in this application, and inverters are added from DAV to both NDAC and NRFD to conform to the handshaking standard. These inverters are open collector gates, whose outputs go low when their input is high, but whose outputs "float" or go "open" when their input is low. This allows many devices to access the NDAC and NRFD lines. Either line will stay low until the open-collector gate output of the slowest device on the line releases it high. This is why these handshake lines are low level true.

Interface output select logic

When the Osborne activates a talker, the Osborne sets itself as a listener and performs the handshake (Fig. 5). Figure 6c shows the interface circuitry specifically responsible for output to the Osborne in this handshake. In the handshake, the Osborne signals its readiness for data by setting NRFD high and NDAC low. If bit 6 of the device latch indicates that a talker is active, and if the ATN line is high, then the NDAC line is encoded onto the DAV line [(Step 2) Fig. 5]. NRFD is used as a Not Device Enable line for the dark adaptometer support chips. After receiving data from the data bus, the Osborne sets the NDAC high [(Step 4) Fig. 5]. The interface output circuitry then sets DAV high accordingly and completes its portion of the handshake.
Dark Adaptometer Support Circuitry Overview

A dual 2 line - 4 line decoder (74LS139) decodes the device latch data into select lines for the devices which support the dark adaptometer. Two 8253 programmable interval timers control the elapsed time of the dark adaptometer runs (timer 1) and the duty cycle of the LEDs in the dark adaptometer (timer 2). Two 8-bit latches select various LED display options and control timer gates on the 8253s. Finally, an octal buffer relates patient response and timer status back to the Osborne.

Although the interface is configured for dark adaptometer control, the interface is quite flexible for configuration to other clinical and research control applications. With little modification, the output latches could just as well drive lights, buzzers, solenoids, shutter releases, and many other stimuli and mechanical devices. Likewise the buffer can be configured to receive multiple inputs from various monitoring devices, as well as the patient's own responses. In this way, this IEEE-488 interface may be adapted to many clinical and research uses that until now may have been restricted to larger, less flexible, and more expensive computer/controllers.

Alternative Computer Controllers

This interface circuit is described as one for the Osborne 1 IEEE-488 bus. One should note, though, that the IEEE-488 standard is
just that - a standard. As such this interface is compatible with any computer with an IEEE-488 bus. Many computers have an IEEE-488 bus or an option for one. These include the Hewlett-Packard line, any using the S-100 bus, the Commodore Pet, the IBM PC, DEC, and Apple. This list is not comprehensive, but it serves to illustrate the computing power available for the IEEE-488 interface standard.

CONCLUSION

Many technological advances produced the field-portable dark adaptometer. The LED light source provides an inexpensive, rugged and entirely portable alternative to conventional illumination sources. Microcomputer technology facilitated dark adaptometry data acquisition and analysis. Further refinements in the microcomputer industry have produced smaller, truly portable, and relatively inexpensive computers with the IEEE-488 communications interface standard. The IEEE-488 interface, in turn, is a powerful tool for streamlining the clinical dark adaptometer. Its power and utility come from its inherent ability to maintain communications among many devices concurrently and from the wide availability of IEEE-488 support products.

These technologies are integrated in this dark adaptometer to produce a unit that is a compact and rugged alternative to laboratory and clinical visual function test equipment, and brings new sophistication to visual function diagnosis in field work.

RECOMMENDATIONS

Computer technology advances will inevitably produce increasingly smaller computers with greater processing capability. As miniaturization is crucial to greater portability, we recommend that the portable dark adaptometer design utilize smaller, more powerful microcomputers as they become available.
REFERENCES

Listing 1.

;***
; Assembly language drivers for Osborne I
; IEEE-488 interface.
; Written 6/85 by Gary A. Wheeler
;
;***
;
; Transfer routine to high memory 850605
;
C000 =
 destin equ 0c000h
 org 100h

; Transfer routine
;
 0100 010601
 lxi b, finish-begin+1 ; no of bytes to move
 0103 111401
 lxi d, begin ; where they come from
 0106 210000
 lxi h, destin ; where they're going
 0109 1A
 movm ldx d ; get byte
 010A 13
 inx d ; increment pointer
 010B 77
 mov m, a ; store byte
 010C 23
 inx h ; increment pointer
 010D 0B
 dcx b ; decrement count
 010E 7B
 mov a, b ; both B and C must be 0
 010F B1
 orc c ; so OR them to see
 0110 C20901
 jnz movm ; otherwise not done
 0113 C9
 ret ; return to CP/M

 0114 =
 begin equ $3

 BEEC =
 offset equ destin-begin

 : Variables

 2900 =
 porta equ 2900h
 2901 =
 cporta equ 2901h
 2902 =
 portb equ 2902h
 2903 =
 cportb equ 2903h
 EF08 =
 flagpos equ 0ef08h

 : Output Interface Message (OIM) routine 850604

 C000 =
 cim equ $+offset

 : Make Osborne Talker (NOT) routine 850603
A-2

Set: To direction reg. value:
 PIAO-7 DATAO-7 1 (output)
 PB0 ENABLE DATA OUT 1
 PB1 ENABLE NDAC/NRFD 1
 PB2 ENABLE EOI/DAV 1
 PB3 EOI 1
 PB4 ATN 1
 PB5 DAV 1
 PB6 NDAC 0 (input)
 PB7 NRFD 0

; make osborne talker

0114 00 nop
0115 03 di ;disable interrupts
0116 0300 out 00h ;switch to memory bank 2
0118 3E00 mvi a, 0h
011A 3208KF sta flagpos
011D 320129 sta cporta ;make per/dir porta dir
0120 320329 sta cportb ;make per/dir portb dir
0123 3BFF sta porta ;make dir port a output
0125 320229 mvi a, Offh
0128 3B5F sta portb ;make dir port b output
012A 320229 mvi a, 00111111b
012D 3B04 sta cporta ;make per/dir port a per
012F 320129 sta cportb ;make per/dir port b per

;Output Interface Message 850604

;returns error status to FAC

0135 3B12 mvi a, 00010001b
0137 320229 sta portb ;make ATN-low, disable NDAC/NRFD out
013A 0B10 mvi c, 00010000b ;ATN mask
013C CD5CCO call bout ;output interface message
013F 3B02 mvi a, 000000010b
0141 320229 sta portb ;make ATN-hi, disable NDAC/NRFD out
0144 3D01 out 01h ;switch to memory bank 1
0146 3B01 mvi a, 01h
0148 3208KF sta flagpos
014B 72 mov a, d ;return status to FAC
014C 23 inx h
014D 3600 mvi a, 00h
014F F8 ei ;enable interrupts
0150 C9 ret

;Output Device Message (ODM) routine 850604
BYTE OUTPUT (BOUT) TO IEEE-488 BUS ROUTINE

; Proper data direction assumed from M0T routine
; Memory addressing to bank 2 assumed set up
; Uses value in mem #0000 as device data
:returns error status in reg D
:Reg C carries ATN mask

0050 = bout equ $+offset
0170 JAO229 lda portb ;get device status
0173 E680 ana 10000000b ;NRFD = HI?
0175 C26FC0 jsr nod ;no, jmp "no device"
0178 JAO229 lda portb ;get device status
017B E640 ana 01000000b ;NRFD = HI?
017D C66FC0 jsr nod ;yes, jmp "no device"
0180 C572FC jmp ad ;device on-line - send data
0067 = nod equ $+offset
0183 JAO291 mvi d, 01h ;no, set status "device not present"
0185 C9 ret
0072 = ad equ $+offset ;send data to interface
0186 3A0000 lda 00000h
0189 2F cma
0198 320029 sta portb
0079 = dchk equ $+offset
0199 3A0229 lda portb ;get device status
A-4

0190 B680 ani 1000000b ; NRFD = HI?
0192 C29C0 jnz dchk ; no, loop
0195 3E22 mvi a, 00100010b
0197 81 ora c
0198 320229 sta portb ; set DAV = LO
019B 060A mvi b, 0A0h ; set timer = 1 ms
019D = dac equ $-offset
0199 D05 dc b ; decrement timer
019B C290C0 jnz tatr ; if not time up, test for NDAC
01A1 1602 mvi d, 02h ; yes, set status "listener timeout"
01A3 C9 ret
01A0 = tatr equ $-offset
01A4 3A0229 lda portb ; get device status
01A7 B6.7 ani 01000000b ; NDAC = HI?
01A9 C289C0 jnz dac ; no, loop
01AA 3E02 mvi a, 00000010b
01AB 81 ora c
01AC 320229 sta portb ; clear DAV
01B2 3E0F mvi a, 0F0h
01B4 320029 sta ports ; remove data from I/O bus
01B7 1600 mvi d, 00h ; set status "data sent"
01BB C9 ret

; Input Device Message (IDM) routine

; Input Device Message

CoA6 = idm equ $-offset
01BA F3 di ; disable interrupts
01BB 8300 out 00h ; mem bank 2
01BD 3800 mvi a, 00h
01BE 3208EF sta flagpos

; Make Osborne Listener (MOL) routine

Set:

<table>
<thead>
<tr>
<th>Reg</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIA0-7</td>
<td>DATA0-7</td>
</tr>
<tr>
<td>PB0</td>
<td>ENABLE DATA OUT</td>
</tr>
<tr>
<td>PB1</td>
<td>ENABLE NDAC/DRFD</td>
</tr>
<tr>
<td>PB2</td>
<td>ENABLE EOI/DAV</td>
</tr>
<tr>
<td>PB3</td>
<td>EOI</td>
</tr>
<tr>
<td>PB4</td>
<td>ATN</td>
</tr>
<tr>
<td>PB5</td>
<td>DAV</td>
</tr>
<tr>
<td>PB6</td>
<td>NDAC</td>
</tr>
<tr>
<td>PB7</td>
<td>NRFD</td>
</tr>
</tbody>
</table>

; Make Osborne Listener
Byte input routine (BIN) from IEEE-488 bus routine

Proper data direction assumed from MOL routine
Memory addressing to bank 2 assumed set up
Returns device data in FAC lo byte
Returns error status in FAC hi byte

Byte input routine (BIN) from IEEE-488 bus routine

Proper data direction assumed from MOL routine
Memory addressing to bank 2 assumed set up
Returns device data in FAC lo byte
Returns error status in FAC hi byte
A-6

0217 FB ei ;enable interrupts
0218 C9 ret

0219 finish equ $
0219 end 100h
DTIC

END

4 - 86