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SECTION 1
INTRODUCTION

Cavity gas leakage along steam-driven fractures has long been
recognized as one potential failure mechanism which may compromise the
containment of underground nuclear tests. Associated fracture models are
complex, as fluid condensation, heat transfer, fluid diffusion, in situ
stress, rock strength, and rock failure phenomena all play important
roles in the initiation, propagation, and termination of such fractures,
Although a number of models have been developed, there is 1ittle data
available describing steam-driven fractures. The objectives of this
study have, therefore, been to generate c«.ta which can serve as a base
for model development and validation.

Three types of tests have been performed. They involved steam
flow through a dry sand column, and steam fracture at the Nevada Test
Site (NTS) in both G-Tunnel and P-Tunnel tuffs. All tests were tailored
to simulate containment phenomena in a manner consistent with models
incorporated within the Los Alamos National Laboratory (LANL) numerical
KRAK code.

The sand-column flow test was designed to simulate condensation,
heat transfer, and fluid diffusion mechanisms without introducing the
complexities associated with fracturing. The G-Tunnel test examined
fracture initiation and propagation phenomena in a low-permeability
tunnel-bed tuff using simulated post-shot cavity conditions. Steam frac-
ture propagation and termination effects were examined in the high-
permeability paintbrush-type tuff found in P-Tunnel. All tests were
performed using downhole steam generation systems capable of producing
steam at pressures and temperatures up to 10 MPa and 1000°C, respectively.

In the report which follows, the steam generation system is

described 1in Section 2. Results of the sand column, G-Tunnel, and
P-Tunnel tests are given in Section 3. These results are discussed in




Section 4. Conclusions and recommendations are presented in Section 5.
For completeness, site and material property descriptions are presented
in Appendix A, detailed steam fracture data are shown in Appendix B, and
the analysis used to interpret the low pressure in situ permeability test
data is given in Appendix C.

Work described in this paper involved a number of organizations
and numerous people. It was sponsored by DNA Field Command, Albuquerque.
S-CUBED developed, designed, fabricated, and fielded the downhole, steam-
generation system. In addition, S-CUBED was responsible for obtaining = e
all sand-column data and all data within the steam source region. The
G-Tunnel and P-Tunnel diagnostic hole data were obtained by Sandia
National Laborations (SNL). Field operations, including selection and el
preparation of the test sites, were carried out under the direction of !‘:;-
the DNA Field Command Test Construction Division. Site examination and :
material property tests were performed by Fennix and Scisson geologists
and TerraTek, respectively.

10

............................
.......................................................................
..............................




-

kN A

SECTION 2
SYSTEM DESCRIPTION

55 The steam-generation system produces high-pressure, high-

temperature steam from water-cooled combustion of hydrogen and oxygen as
N illustrated on Figure 1. This combustion and evaporation process occurs
within a borehole at the position where the steam fracture is to be ini-
" tiated. The steam-generation system can provide up to 60 moles/second of
the high-pressure (10 MPa), superheated (1000°C) steam required to
simulate post-shot cavity conditions.

The steam-generation system design is described in Section 2-1.
Its instrumentation and control features are reviewed in Section 2-2.°
General results of numerous pre-field tests are summarized in Section 2-3.

2-1 EQUIPMENT DESIGN.

A schematic of the steam-generation system is shown on Figure 2. ijg'
This system is composed of four major components consisting of the steam o
supply manifold and oxygen, hydrogen, and water supply systems. During
testing, the steam supply manifold is installed within the test borehole
as shown on Figure 3. The exit manifolds shown on Figure 4 serve to
provide the required water mist and distributed gas sources necessary to
force hydrogen/oxygen/water mixing, combustion, and vaporization.

The water flow system consists of a reservoir filled with dis- “?‘“_
tilled water, and a high-pressure nitrogen supply used to drive a very o
steady flow from the reservoir at some pre-determined flowrate and
pressure. Water flowrates are monitored using a turbine flowmeter.

Separate hydroger and oxygen supplies are used, as shown on
Figure 2. However, these systems are maintained at a common line
pressure using nitrogen to operate the control sides of dome regulators
located on the oxygen and hydrogen lines. The nitrogen pressure is then
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2. Downstream View of LoweFlowrats Manifold.
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bd. Ocwnstream V{ew of MigheFlowrate Manifold.

Figure 4. Schematic showing the steam supply manifold
exit geometries for the low-flowrate and
high-flowrate steam generation system,
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regulated to provide the desired line pressures. Flowrates are deter-
mined based on pressure drops measured across pre-set metering valves.
Check valves are included in all lines to prevent backflow.

.
(3

I A A

Two steam supply exit manifolds have been used. The initial
design shown on Figure 4a was used for the low-flowrate (< 10 moles/
second) sand-column and G-Tunnel tests. A second exit manifold, shown on
Figure 4b, was developed to provide the 60 moles/second flows required
for the P-Tunnel tests.

{ J ‘l .l 'i ‘.l .‘l

ti: The steam-generation system is installed in the borehole as

. illustrated on Figure 3. First, a 15 centimeter diameter section of
o casing is installed and grouted into the borehole, leaving only the
" fracture-source region open. A steam supply manifold mounted in a 10-
: centimeter diameter pipe is then inserted into a landing sub mounted in
the 15-centimeter diameter pipe. This 10-centimeter diameter casing
contains the gas, water, and pressure-sensing lines, as well as thermo-
couple cables.

A general schematic of the entire system as it was configured
for the G-Tunnel test is shown on Figure 5. The complete system includes
the monitor and control module; nitrogen, oxygen, hydrogen, and water
supplies; valves, regulators, and flowmeter devices; and, the steam-
fracture manifold.

2-2 INSTRUMENTATION AND CONTROL SYSTEMS.

During a test, pressures and temperatures are monitored within
the steam fracture initiation region shown on Figure 3. In addition, the
hydrogen and oxygen line pressures are measured upstream and downstream
of the flow control valves in order to determine the respective flowrates.
Water flow is monitored using a turbine flowmeter. All data plus the
elapsed test time are displayed on a control panel to inform the operator
o of the current system state. These data are also recorded on magnetic

tape and/or stripcharts.
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Schematic showing complete steam
fracture test system.
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Two flow options are available. One provides an approximately

2 constant downhole temperature; the other, an approximately constant down- L::;
o~ hole pressure. In the first, a servo control automatically adjusts the oy
%5 water flow to maintain a constant downhole temperature. In the second, ;‘ ‘¢~
o all metering valve settings and upstream control pressures are fixed. " )

However, actual flowrates are approximately inversely proportional to the

downstream pressure. As a result, a fairly-constant, steam-source region

pressure is maintained. The temperature feedback control system was used

for the sand-column tests with marginal success. It was found that the b
thermocouple and motor-driven valve responses were too slow to maintain a -
constant steam-source temperature. As a result, fixed flow settings were

used during the G-Tunnel and P-Tunnel tests.

3 r.

e
g

Bl e
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Test operation is controlled by the operator's “dead-man" switch. g:i;e
When this switch is depressed, the elapsed time counter is triggered and &?ﬁi
solenoid valves on the water and nitrogen lines energized. Nitrogen then R
pressurizes the dome regulators which, in turn, allow flow of oxygen and
hydrogen. When de-energized, the dome regulators are unloaded by
diverting the nitrogen through a vent. In the event of power failure or
switch opening, all solenoid valves close and the hydrogen, oxygen, and
water flows terminate.

2-3 PRE-FIELD TESTS.

The steam generation system was tested extensively at the jaﬂ'f
S-CUBED operated Green Farm Test Site. Objectives of these tests were to
develop the system, generate the necessary operation skills required for
fielding, and to determine the hydrogen, oxygen, and water flow settings
required to produce the desired field test pressure and temperature e
conditions. General results of these tests will be described in the igi:;T
following paragraphs.




Preliminary steam generation system tests showed that continuous
downhole temperature control was not feasible because:

« I ¥ v v -

. ® The thermocouple/valve-control response was slow compared
- to the rate at which the flame temperature changed with
water addition,

° The thermocouples in the combustion region were continually
subject to changing temperatures as a result of an unsteady
flame position, and

. ° Run-to-run differences in measured temperature occurred h:
(even with identical downhole pressures)--again suggesting
a variability in flame position.

- Typical varfations in the measured downhole temperature are represented
i by the G-Tunnel and P-Tunnel test results.

The temperature measurement problem was recognized during the S
initial steam-generation system development tests. Since solutions to
. this problem are time-consuming and expensive, emphasis was placed on o
performing the tests described in this report. It is, therefore, recom-
mended that all associated analysis use the measured downhole pressure and
calculated energy associated with the hydrogen/oxygen/water combustion/
- vaporization process as initial conditions.

Field simulation tests were also performed. The in situ source - -
region was modeled by attaching a section of steel oil field tubing to
? the steam-generation system shown on Figure 3. This tubing possessed a '
L diameter and Tength equivalent to that of the in situ source region.
Diffusion or fracture flow from the source region was simulated by
placing a number of small (approximately 0.2-centimeter diameter) holes
around the tubing circumference. The steam-generation system performance
was assumed satisfactory if the source region pres-ure equaled that

W

calculated based on the hydrogen/oxygen/water flow and energy values.
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Uniformly-low temperatures were measured during the field simu-
lation tests. Measured temperatures ranged from 0°C (thermocouples burned
off) to about two-thirds of the calculated value. The low temperature
reading is partially the result of heat transfer to the tubing which makes
up the pressure chamber. In addition, the variable temperature readings
may result because of the aforementioned unsteady flow conditions.

A number of tests were conducted to verify ignition in the 10-
centimeter diameter by 46-centimeter long P-tunnel (SFT No. 2) source
region. During these tests, which were run using the field test flow
conditions, ignition always occurred. In fact, ignition always occurred
during tests conducted at the Green Farm Test Site.

Video records of the simulated P-Tunnel test confirm that imme-
diate ignition occurs. They also show that the quantity of steam flowing
from the circumferential holes varies with time. This confirms previous
results which suggested non-steady flow within the steam-generation/
vaporization region.

Mt Gna Sam Jhah 2 ani o 4
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SECTION 3
TEST RESULTS

3-1 SAND-COLUMN FLOW TESTS.

A sand-column steam-flow test was performed to simulate steam
condensation, heat transfer, and diffusion effects in a setting which was
independent of crack initiation, propagation, and termination phenomena.
Results of this test were transmitted to LANL where they have been used
for model validation studies (Reference 1).

A schematic of the sand-column geometry, pressure, and tempera-
ture instrumentation is shown on Figure 6. This column was filled with
Overton sand having a 48-percent porosity, 37-darcy permeability, and an
approximate 0.3-percent saturation. The steam-source region consisted of
a 6l-centimeter long by 19.5-centimeter diameter plenum located directly
between the steam supply manifold and sand surface. Gas and water mixing,
combustion, and vaporization take place within this void region. During
this test, the steam generator controls were set to provide 2.7 moles/
second of steam at a pressure and temperature of 1.5 MPa and 650°C,
respectively.

The sand-column test steam-source region pressure, temperature,
and flowrate are shown on Figure 7. These data were taken from digital
recordings with the data points plotted every 15 seconds. Variations in
the temperature and flowrate, therefore, do not reflect the actual fre-
quency response, but rather illustrate the inability of the temperature/
water flow feedback control system to maintain a constant steam-generation
temperature. The chamber pressure is seen to slowly rise to the 1.48 MPa
level, with the temperature and flowrate oscillating around the 500°C and
2.5 moles/second values, respectively. The 1lower, measured chamber
temperature, as compared to the design temperature, resulted primarily
f m heat loss to the structural apparatus and to the liner. Some uncer-
tainty in the chamber temperature reading also exists because of the non-
uniform conditions prevalent within the combustion/vaporization region.
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The pressure distribution within the sand column is shown on Lt
Figure 8. As the initially-unsaturated column fills with fluid and steam, ‘;;&Q;;
the pressure is seen to gradually rise to an approximate steady-state RN
value within the first 5.0 minutes of the test.

Temperature histories within the sand column are shown on
Figures 9 and 10. It is of interest to examine one of these histories in
some detail. Consider the response T5 shown on Figure 9. For the first
approximately 30 seconds there 1is no response. A water slug whose

temperature increases rapidly with time is then observed. At about 1.0 j_?
minute, water at position T5 has approached the saturation temperature at B '
the local pressure and, as indicated by the knee and first relatively-flat R
portion on the data curve, the flow passing T5 is in the mixed-phase QVH:?*
region. After about 4 5 minutes, the flow consists of super-heated steam !;;1;
and the temperature rapidly rises to that within the chamber region. j;,~
Flow at the top of the sand column is non-uniform. Temperatures L
Tl and T2 on Figure 10 show that at a depth of 10 centimeters into the !¥:
sand, the center of the column is cooler than the outside. A similar non-
uniformity may exist within the plenum region. This disparity between
the centerline and off-center temperatures rapidly disappears, as indi- ST
cated by the T3 (Figure 9) and T4 (Figure 10) data at the 20-centimeter F?*f-
depth. Coe
The sand-column test results provide both pressure and tempera- 1;_
ture data for use in validation of multi-phase flow models describing !}
condensation/vaporization, heat-transfer, and fluid/vapor diffusion {‘ 
effects. These data show flow of fluid, multi-phase steam, and saturated ﬁf
steam through an initially dry, ambient-temperature, sand column. 'fd
&
5-2 G-TUNNEL TEST e
The first steam fracture test (i.e. SFT No. 1} was conducted at ilfQ
NTS in G-Tunnel on May 26, 1982. The test objective was to obtain data on ;”;
24 A
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Figure 8. Sand-column test pressure distribution history.
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and at positions T3, TS5, and T7 shown on Figure 6.

Figure 9.
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Figure 10. Sand-column test temperature histories at positions
T1, T2, T4, T6, and T8 shown on Figure 6.




steam fracture initiation and propagation in a typical low-permeability,
welded, tunnel-bed tuff. Results of this test were transmitted to LANL,
where they have been used for model validation studies (Reference 1).

This test was conducted in the G-Tunnel RS-14 drift in the middle
of a 2.5-meter thick layer of red ashfall tuff, at a depth which exhibited
a 8.2 MPa overburden pressure (Reference 2). Laboratory tests performed
by TerraTek on cores taken at this location had an average 40 percent
porosity, 94.1 percent saturation level, and a calculated 2.3 percent air
void. Permeability tests performed on these core samples, using a brine
solution with the sample maintained at a 1.4 MPa overburden stress and
0.69 MPa pore fluid pressure, resulted in an average 7.8 microdarcy fluid
permeability. Detailed site and material properties information is
provided in Appendix A.

Prior to performing the steam fracture test, a short, Tlow-
pressure, in situ, air permeability test was performed from the steam
fracture source region. During an 8-minute period, there was no observed
pressure decay from a shut-in pressure of 0.2 MPa. Within the accuracy
of the instrumentation, this implies a relative gas permeability of less
than 100 microdarcies.

A schematic of the test layout is shown on Figure 11, Details
of the source and diagnostic hole layouts are given on Figure 12. The
source region was located at a depth of 10 meters from the working face.
The source and diagnostic holes were located at 0.5-meter spacings, with
diagnostic hole "B" located directly above the source hole.

The steam-generation system was installed within the source hole
shown on Figure 12 1in the manner illustrated on Figure 3. The steam-
source region consisted of the open portion (approximately one-third o1
the volume was filled with grout) of a 25-centimeter diameter by 1l12-
centimeter long section located at the bottom of the hole. Hydrogen/
oxygen/water mixing, combustion, and vaporization (i.e., steam generation)
occurred within this region.
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During the test, straddle packers were installed in diagnostic
holes 1, 2, 3, and 4 to isolate a 3.0-meter interval centered around the
source region. Holes A, B, and C were shut-in at the tunnel face. Prior
to initiation of the steam-fracture test, the enclosed regions of the
diagnostic holes were water-filled at low pressure to ensure immediate
recognition of a pressure signal associated with any fracture penetration.

Test results are shown on Figures 13 and 14. The initial break-
down pressure of 8.1 MPa occurs at 8.4 seconds and is seen on Figure 13
to be followed by an approximate 6.9 MPa sustaining pressure. A source
region temperature and flow of about 625°C and 8.8 moles/second, respec-
tively, are maintained until test termination after 187 seconds at which
time the hydrogen supply is expended.

A summary of the diagnostic hole pressure histories is shown on
Figure 14. Detailed diagnostic hole pressure data are given in Appendix
8. Pressure arrivals are seen to first occur at the innermost diagnostic

holes A (9.5 seconds), B (8.9 seconds), and 1 (8.9 seconds). The
advancing pressure front then intersects holes 2 (11.9 seconds), 3 (18.8
seconds), 4 (28.5 seconds), and C (46.4 seconds) in sequence. Diagnostic
hole pressures are of only qualitative interest, unless the state of the
fluid entering these holes can be accurately defined. Arrival times
should, therefore, be used for model development and validation purposes.
It is, however, of interest to note that once the diagnostic holes were
pressurized by the fracture fluid they maintained an almost constant
pressure of about 5.2 MPa. This 1{s only slightly larger than the
estimated minimun 4.9 MPa in situ stress (Appendix A and Reference 2).

Prior to initiation of the test, the steam-generation system was
configured to provide 5 moles/second of 700°C steam at a 10 MPa downhole
pressure. Because the sustaining pressuie was lower, 1130°C steam was
produced at an approximate 8 moles/second flowrate.
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Pressure versus time history recorded in the diagnostic

holes during the G-Tunnel steam fracture test.
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The 625°C measured downhole temperature is thought to be lower
than the 1130°C calculated value primarily as a result of heat loss to
the borehole wall. For analysis purposes it is, therefore, recommended
that the downhole pressure and hydrogen/oxygen/water combustion/vaporiza-
tion energy density be used to define the source conditions and that wall
heat transfer be included in the model.

During this test, the steam-generation system was operated in
the constant flow mode described in Section 2-2. As seen on Figure 13,
the downhole pressure and steam flowrate traces are relatively constant
throughout the test. In contrast, the measured temperature fluctuates
significantly--again, reflecting the turbulence (e.g., the thermocouple
may, at times, be partially in a water spray area) existing within the
steam-generation region.

3-3 P-TUNNEL TEST.

Three steam-fracture tests were performed at NTS in P-Tunnel.
The test objectives were to obtain data on steam fracture propagation and
termination phenomena in a typical high-permeability paintbrush-type tuff.

The first P-Tunnel steam fracture test (i.e. SFT No. 2) was
performed at CS 11*90 on December 16, 1982, The second and third
P-Tunnel tests (i.e. SFT No. 3 and No. 4) were conducted at CS 11+24 on
December 22, 1983.

A1l P-Tunnel tests were conducted in a coarse-grained, porous,
vitric ashfall tuff at a depth which exhibited a 3.9 MPa overburden pres-
sure. A summary of the site and material properties information is given
in the following paragraphs. Detailed information is provided in
Appendix A,

Laboratory tests performed by TerraTek on P-Tunnel core samples

taken at this location had an average 44.2 percent porosity, 83.2 percent
saturation level, and a calculated 7.6 percent air void. Airflow tests
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performed on dried samples gave an average 541 millidarcy gas permea-
bility, while tests performed on samples heated to 1000°C had an average
165 millidarcy value. Tests performed on these samples in their native
state gave relative air permeabilities ranging from an initial value of
56 millidarcies to a final value of 147 millidarcies after approximately
¢5 minutes of testing. Water flow tests performed on native state samples
gave an initial permeability value of 360 millidarcies, and final values
of 216 millidarcies after 25 minutes of testing.

Core samples taken from the source hole had an average tensile
strength of 1.1 MPa, as measured by TerraTek. An overcore test performed
by Fenix and Scisson in 1982, at the 1.05 meter to 1.21 meter depth in a
{ hole drilled at CS 15+33, indicated a minimum principle stress of about
0.75 MPa. Grout fracture tests performed at CS 15+80, at a depth ranging
between 4.0 and 7.3 meters in a vertical hole, implied the breakdown
pressure was less than 3.1 MPa.

3-3.1 CS 11*90 Test (SFT No. 2).

A schematic of the source and diagnostic hole layouts is given
; on Figure 15. The steam-source region was located 9.75 meters (or
l approximately 2.7 tunnel diameters) outside the tunnel wall. Stress con-
' centrations which may exist close to the wall should, therefore, have
little impact on either the fracture breakdown or sustaining pressure.
A1l holes are separated by a 38-centimeter spacing, with diagnostic hole
B located directly above the source hole.

Low pressure gas flow tests were performed in the source and all
diagnostic holes prior to conducting the steam-fracture test. The
resulting relative gas permability values, determined as described in
Appendix C, are summarized in Table 1. Permeabilities are seen to range
between 450 and 60 millidarcies, with the average being 267 millidarcies.
As shown in Table 1, the relative gas permeability decreased as the tunnel
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Table 1. In situ relative gas permeability values determined
Trom Tow pressure (e.g. .12-.15 MPa) gas tests
conducted in the Ul2p steam fracture source and
diagnostic holes located at CS 11+90 (SFT No. 2).

B DAY

Test *

. Hole Interval Permeability
l (meter) {darcy)
2 Source .46 .44

A 4.6 .30
B 3.4 .14
c 3.3 .06
1 3.1 .06
2 3.6 .45
3 3.0 .29
4 3.1 .16

* The test interval is measured from the bottom of the hole
as shown on sketch.
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wall was approached. The measured source area in situ permeability values

were a factor of two to six times higher than the laboratory-determined
native state relative air permeabilities.

The steam-generation system was installed within the source hole
shown on Figure 15 in the manner illustrated on Figure 3. The steam-
source region consisted of a 10-centimeter diameter by 46-centimeter long
open section located at the end of this hole. Hydrogen/oxygen/water
mixing, combustion, and vaporization (i.e., steam generation) occurred
within this region.

During the test, packers were installed in diagnostic holes 1, 2,
3, and 4 to isolate the bottom three meters. Holes A, B, and C were
shut-in at the surface. Prior to initiation of the steam-fracture test,
these isolated regions of the diagnostic holes were water-filled at low
pressure to ensure immediate recognition of the pressure signal asso-
ciated with fracture penetration. It should be noted that even though
the diagnostic hole surfaces had been glazed with a sodium silicate wash,
pressure decay occurred within a few minutes after shut-in at an initial
0.03 MPa pressure.

Test results are shown on Figures 16 through 18. Figure 16 shows
that following test initiation, the source region pressure increased to
an unexpectedly high value of about 5.5 MPa within 1.7 seconds and, there-
after, remained relatively constant until 40.5 seconds--at which time
there occurred a pressure spike exceeding 6.9 MPa. This pressure excur-
sion was coincident with observed blowouts from both the source hole and
diagnostic hole 1. During the blowout, the source region pressure dropped
to less than 0.7 MPa--after which it slowly increased to the 6.2 MPa
Tevel. Following the initial blowout there occurred intermittent leakage
with corresponding burning in the tunnel. The test was, *therefore, termi-
nated after 59 seconds.
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The source region pressure history over the initial 5 seconds is

s shown on Figure 17. By the time signal arrival occurred in adjacent ;;if;
fi: diagnostic holes A and 1, the source region pressure had increased to f§§§§
o about 4.6 MPa. The first pressure peak of 5.6 MPa was approached at % &f\5
. about the time of signal arrival in hole 2. After a slight decay, a ! 4,;
iﬂf maximum source pressure of 5.8 MPa was attained at 3 seconds. It is not f;ﬂ:
N clear that either peak represents a meaningful fracture breakdown }
- pressure. These early-time pressure variations may be associated with ;;.*7
the steam generation system starting dynamics. [ 28

A summary of the diagnostic hole pressure histories is shown on

Figure 18. Detailed diagnostic hole pressure data are given in Appen-

Fﬁ dix B. Pressure arrivals are seen to first occur at the innermost
‘ diagnostic holes A (1.1 seconds), B (2.4 seconds), and 1 (0.9 seconds).
“u The advancing pressure front then intersects holes 2 (1.9 seconds), 3

;{ (3.6 seconds), 4 (7.5 seconds), and C (10.5 seconds), in sequence. The

A source region pressure spike at 40.5 seconds can be seen in hole 1. B
“ Following this spike the source and diagnostic holes A, B, 1, 2, 3, and 4 i;:{?
Q; simultaneously (i.e. within 0.2 seconds) begin to lose pressure. Pressure j}i:i
&N decay began in hole C about 0.7 seconds later. RO

Prior to initiation of the test, the steam-generation system was
configured to provide 60 moles/second of 700°C steam at a 3.1 MPa down-
hole pressure. Because the sustaining pressure was higher, a flow of 42 Tl

. moles/second of 1300°C steam should have been generated. o

Temperature measurements indicate that sustained combustion did

not occur in the source region. As shown on Figure 16, only two small

= temperature spikes were observed. The first occurred when the test !;Ji
started, while the second took place at 40.5 seconds. This second

excursion is coincident with the observed pressure spike. Similar data

were recorded on both thermocouples located in the source region. Sub- S

sequent visual examination of the thermocouples also indicated that they iﬁ:;

had not been subjected to high temperatures. Except for the short time
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periods shown on Figure 16, combustion and associated vaporization
apparently, did not occur in the region where the thermocouples were

» positioned. Ej;;;i
Examination of the thermocouple data suggest a cold flow mixture :iﬁii

i of hydrogen, oxygen, and water. (at least in the source region) was respon- !!5;<
i; sible for maintaining a steady-state, downhole pressure which signifi- Effi}f
': cantly exceeded that of the overburden. However, when the tunnel was ififﬂ
- re-entered approximately 10 minutes after the test, loud boiling sounds ;Q;Li
could be heard which seemed to originate within the formation in the '!f;a:

vicinity of the test and diagnostic holes. These sounds were identical
to those heard following SFT No. 4, in which steam is known to have been e
produced. This latter observation suggests steam generation occurred, Libﬁjf
but not in the vicinity of the thermocouples.

Tests were subsequently conducted at the S-CUBED operated Green o

Farm Test Site to determine if the small (10-centimeter diameter by 46- ;f;iﬁ

centimeter long) source region could have inhibited ignition and subse- !‘;f,

quent hydrogen/ oxygen/water combustion and vaporization. As discussed B

i% in Section 2-3, satisfactory ignition and steam generation were obtained

- during all tests including those which simulated the SFT No. 2 flow,
~ pressure, and source volume conditions.

3-3.2 CS 11+24 Test (SFT No. 3).

~ A steam-fracture test was performed at NTS in P-Tunnel at CS
11+24 on December 22, 1983. This test was intended as a replicate of the NN
becember 16, 1982 test in order to resolve uncertainties concerning steam T
generation and fracture versus diffusion flow. The objective of the SFT §§‘E
No. 3 test was to obtain data on steam-fracture propagation and termi- ;kikl
0 nation phenomena in a typical, high-permeability, paintbrush-type tuff, !géj:
’E::ﬁ
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A schematic of the source and diagnostic hole Tayouts is given
on Figure 19. The steam-source region was located 12.8 meters (or
approximately 3.2 tunnel diameters) outside the tunnel wall. Stress
concentrations which may exist close to the wall should, therefore, have
little impact on either the fracture breakdown or sustaining pressure.
A1l holes are separated by a 38-centimeter spacing with diagnostic holes
B and F2 located directly above the source hole.

The source hole at CS 11+24 was surrounded by 13 diagnostic ;;ié
holes. Seven of these holes were used to monitor pressure, while six
were designed as fracture-monitor holes. The hole spacings were
developed based on results of the CS 11+90 test (SFT No. 2). During that
test, a pressure signal traveled 190 centimeters to the outer diagnostic
hole in 10.5 seconds. The hole layout for the CS 11+24 test was, there-
fore, extended an additional 190 centimeters to ensure that the generated
diffusion or fracture front did not penetrate beyond the diagnostic
system.
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Since diffusion flow and fracture propagation produce virtually
identical diagnostic hole pressure data, six diagnostic holes were
equipped with fracture identification systems. These systems consisted
of optical fibers mounted, using stand-offs, to PYC tubes. The tube/
optical fiber was then grouted in a diagnostic hole. The intent was that
if a fracture penetrated a diagnostic hole the fiber would break, or at
least stretch, and the resulting arrival signal would be recorded. This
first attempt at isolating and measuring fracture (i.e., rather than
fracture and/or diffusion) arrival did not work. However, the concept
warrants additional consideration.

Low-pressure gas flow tests were performed in the source and
diagnostic holes prior to conducting the steam-fracture test. The
resulting relative gas permeability values, determined as described in
Appendix C, are summarized in Table 2. Measured relative gas permea-
bility values for Holes C, 1 through 4, and Fl, F3, and F4 ranged
between 13 and 41 millidarcies, with the average being 25 millidarcies.
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Table 2. In situ relative gas permeability values determined from
Tow préssure (e.g., .10 - .15 MPa) gas tests conducted
in the Ul12p steam fracture source and diagnostic holes
Tocated at CS 11+24 (SFT No. 3 and No. 4).

Test *
Hole Interval Permeability Comment
. (meter) (darcy)

Source 2.2 .042
A 6.1 44 Consistent with fracture
B 6.1 .33 Consistent with fracture
c 6.1 .013
1 6.1 .013 e
2 6.1 .021 -
3 6.1 .023 =
4 6.1 .025 i
F1 6.1 .033 g5
F2 6.1 .16 Consistent with fracture z,ii:.
F3 6.1 .032 L 4
Fa 6.1 .041 e
F5 - - Did not test el
F6 - - Did not test

* The test interval is measured from the bottom of the hole iﬁ;lf“

as shown on sketch below

Test
e——Interval —=

\

Packer

\
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. The source region had a 42-millidarcy value. Fenix and Scisson geologists ;;;éf'?
- (Reference 4) reported a visual fracture between Holes A and B. These §ﬁg§j
N holes, plus F2, had relative gas permeabilities of 440, 330, and 160 t“;;;j'
E millidarcies, respectively. With the exception of Holes A, B, and F2, g%g;;.
i these measured in situ permeability values are similar to the laboratory- %ié'

determined native state relative air permeability (see Appendix A).

- The steam-generation system was installed within the source hole S
. shown on Figure 19 in the manner illustrated on Figure 3. The steam- o eind
' source region consisted of a 25-centimeter diameter by 6l-centimeter long Sy
open section located at the end of the source hole. Hydrogen/oxygen/ el
water mixing, combustion, and vaporization (i.e., steam generation)
occurred within this region.

During the test, straddle packers were installed in diagnostic
holes 1, 2, 3, and 4 to isolate the 3-meter interval centered around the
source region. Holes A, B, and C were shut-in at the tunnel face. Prior i
to the initiation of the steam-fracture tests, these isolated regions of g!?:;;
the diagnostic holes were water-filled at low pressure to ensure an RSB
immediate recognition of any pressure signal associated with either i
fracture or diffusion flow. The diagnostic holes were glazed with a I;?nji"
sodium silicate solution to retard water flow from the hole into the .
, formation. Once glazed, these holes could maintain pressure for a few
Eﬁ minutes after they were shut-in at 0.03 MPa pressure.

Test results are shown on Figures 20 and 21. Following test
initiation, the source region pressure increased to 3.9 MPa within 13
seconds. The pressure remained at this level for approximately 4 seconds, e
and then gradually decayed to 3.5 MPa at 56 seconds--after which the test e
was terminated. Following the 5 second starting transient, both the water ' !E;s_
and oxygen flowrates remained relatively constant.
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Pressure versus time history recorded in the
diagnostic holes during the P-Tunnel CS 11+24
steam fracture experiment (SFT No. 3).
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During this test, a hydrogen line fitting separated. This may
have occurred during the first 2 seconds, when the small irregularity is
seen on the source-region pressure curve shown on Figure 20, Since there
was no hydrogen flow to the source region, combustion/vaporization did
not occur. The pressure histories shown on Figures 20 and 21, therefore,
result from injection of a cold water/oxygen mixture.

It should be noted that the test had run between 10 and 30
seconds before it was determined that an ignition failure, and associated
hydrogen leak, had occurred. Since the fracture/diffusion signal had
already penetrated to diagnostic hole No. 2, the test was continued in
order to obtain fracture arrival time data out to larger radii. The test
was terminated at 56 seconds because of the hydrogen leak.

The source-region pressure history is shown on Figure 20. Pres-
sure increased from 2.5 MPa to 3.0 MPa during the interval in which
pressure front arrival occurred in adjacent diagnostic holes A, B, and
1. Pressure front arrival also occurred in hole No. 2 before the source
region pressure peaked.

A summary of the diagnostic hole pressure histories is shown on
Figure 21. Detailed diagnostic hole pressure data are given in Appen-
dix B. Pressure arrivals are seen to occur at the innermost diagnostic
holes A (3.9 seconds), B (3.2 seconds), and 1 (4.10 seconds). The
advancing pressure front then intersects hole No. 2 (11.5 seconds), and
finally reaches hole No. 3 (62.7 seconds) at a time after the source
region flow had been terminated. There was no signal arrival at hole
No. 4. Beginning at 7.1 seconds, diagnostic hole C exhibited an unusual
response which was uncharacteristic of other diagnostic hole data.

Pressure decay began in holes A (2.0 seconds), B (2.0 seconds),
and 1 (2.2 seconds) after shutdown. This decay was seen promptly in hole
No. 2 (4.4 seconds), but was quite slow in affecting hole No. 3 (145
seconds). The decay signal could not be distinguished in hole C.




DR  ORASOAAY - R
oo BUa e e B .
. . LR I L .. N

>y ¥V Y U, w eammy ¥ oY T
s PR .

i Y

Prior to initiation of the test, the steam-generation system was
configured to provide 60 moles/second of 700°C steam at a 3.1 MPa downhole
pressure. These conditions are identical to the flow conditions for the
P-Tunnel CS 11490 test (SFT No. 2). An actual flow of about 44 moles/
second (i.e., water and oxygen) was obtained with a 3.5 MPa downhole
pressure.

3-3.3 CS 11+24 Test (SFT No. 4).

A second steam-fracture test was perfoémed in P-Tunnel at CS
11+15 on December 22, 1982. This test used the source and diagnostic
holes described in the previous section. Prior to this test, the hydrogen
line fitting was replaced.

The primary test objective was to, again, evaluate steam-fracture
propagation/termination phenomena. However, the probability of realizing
this objective was limited by the possibility that fracturing had occurred
during SFT No. 3. A second objective was to gain field experience with
the steam-generation system.

The as-built P-Tunnel source and diagnostic hole layouts used
for this test are shown on Figure 19. Two changes were made. Because a
relatively-small pressure signal had been obtained in diagnostic hole No.
3, and none in hole No. 4 during SFT No. 3, the straddle packers were
removed and single packers installed at a depth of approximately 3
meters. This change was made in case the fracture had bypassed the
stradaie region in the outer two diagnostic holes.

Prior to the steam-flow test, a low-pressure airflow test was
performed in the source hole. Results of this test indicated the source
region had a 0.52 darcy relative gas permeability. This is approximately
one order of magnitude larger than that obtained prior to SFT No. 3.
During this low-pressure test, air was observed to flow into diagnostic
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holes A, B, and 1. This increased permeability value was not surprising,
since the SFT No. 3 results suggested a fracture may have been produced
which connected the source region with holes A, B, 1, and 2.

Because of the possible presence of a fracture, diagnostic holes
A, B, and 1 were not filled with water. If filled, the water may have
flowed into the source region, thereby preventing combustion. Since
these diagnostic holes were not water-filled, sharp pressure arrivals
would not be expected.

Test results are shown on Figures 22 and 23. Following test
initiation, the source pressure increased to 4.6 MPa within 4 seconds.
The pressure then slowly decayed to 3.3 MPa by the time the test was
completed at 80 seconds. The recorded source-region temperature peaked
at 1000°C, and remained higher than 800°C for the duration of the test.
A second temperature probe, which was read only on a meter contained on
the control panel, provided readings which were higher than 1000°C
throughout the entire test. A relatively-constant 48 moles/second steam
flow- rate was produced.

A summary of the diagnostic hole pressure histories is shown on
Figure 23. Detailed diagnostic hole pressure data are given in Appen-
aix B.

During this test, the diagnostic hole timing signal did not
trigger the diagnostic hole recording system upon steam generator ini-
tiation. However, the time between the signal arrival and decay initia-
tion at diagnostic holes A, B, and 1 was identical to the 80-second test
duration. This suggests that there exists a fracture connecting these
holes to the source region. Note that if one assumes that the diagnostic
hole pressure decay begins 2.0 seconds after completion of the test (as
it did in SFT No. 3), then it must also be assumed that the first arrival
in these holes occurred 2.0 seconds following test initiation. Ouring
this test, a pressure arrival was measured in hole No. 2 after 21.5
seconus. The pressure signal did not penetrate to holes 3, 4, or C,
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Figure 23. Pressure versus time history recorded in the
diagnostic holes during the P-Tunnel CS 11+24
steam fracture experiment (SFT No. 4).
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This test provided three important results. First, it demon-
strated that the high]y-porous'P-Tunnel formation could sustain a downhole
steam pressure greater than the minimum in situ stress. Second, the test
region emitted post-test boiling sounds identical to those heard following
SFT No. 2--thereby suggesting that steam generation did occur during the
test at CS 11+90., Finally, the test again demonstrated successful steam
generator ignition and operation under field conditions.




"

p s

1
D ﬁ. ',

SECTION 4
DISCUSSION OF RESULTS

The G-Tunnel test (SFT No. 1) was conducted in a low-permeability
(approximately 10'6 darcy) welded tuff 1in which fluid diffusion from
the fracture would not be expected to influence the fracture propagation
rate. The resulting data were classic in form. As shown on Figure 13,
the initial breakdown pressure of 8.1 MPa occurred at 8.4 seconds, and
was followed by a 6.9 MPa sustaining pressure. Furthermore, the propa-

gating fracture sequentially intersected the diagnostic holes, as shown
on Figure 14,

A plot of fracture penetration distance versus time is shown on
Figure 24. Signal arrivals in this plot are measured from the 8.1-second
breakdown time for SFT No. 1. Note that the fracture tip moved at a rate
which is nearly proportional to the one-third power of time. This is the
rate at which a fluid-driven fracture would propagate assuming a constant
source flowrate and zero formation permeability. At the time of the
test, this apparently-low propagation velocity was confusing.

Subsequent calculations (Reference 1) have shown that the
G-Tunnel test fracture propagation velocity is heat-transfer dominated.
The crack surface area was found to increase at a rate which allowed
sufficient heat transfer to produce nearly-complete steam condensation.

As a result, the steam fracture propagation rate is similar to that of a
standard hydrofracture.

The SFT No. 1 results show the strong heat transfer influence on
steam fracture propagation. Results of calculations which neglect heat

transfer give propagation rates which are much faster than obtained during
this test.

The P-Tunnel tests (SFT No. 2, 3, and 4) were conducted in a
high-permeability (> 10~2 darcy) low-strength, paintbrush tuff in which
fluid diffusion from the fracture was expected to influence the fracture
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propagation rate. The resulting data were not classic in form. The most j{-.T
surprising result was a sustaining pressure which was high compared to E:%é
either the overburden pressure or the minimum in situ stress. In addi- ﬁljs

I’ Y ‘
tion, as shown on Figures 16 through 23, it was difficult to identify a i:$

breakdown pressure.

Fracture penetration distance versus time results for P-Tunnel RO
are also shown on Figure 24. In the absence of an identifiable fracture 35;;i
breakdown, signal arrival times were simply measured from the beginning i;;;'
of the test. The P-Tunnel velocities implied by these data are, there- B
fore, not as accurate as the G-Tunnel results. Even so, the measured ,f%fﬁ
propagation velocities for the G-Tunnel and P-Tunnel formations, whose o
permeabilities differ by at 1least four orders of magnitude, were 3\;;
surprisingly similar.

Modeling was performed to understand the P-Tunnel data. Results
of those studies are described in detail in Reference 5. Briefly, it was
found that:

° Poroelastic pressures, induced by fluid penetration around RO
the borehole, tend to increase local compressive stresses R
by an amount which could be comparable to the rise in pore g
pressure. This increase in the total confining stress
tends to inhibit fracture growth--thereby increasing
borehole pressure.

° Poroelastic stresses tend to decrease the effective el
stresses (total compressive stress less pore pressure) E .
arouna the borehole--thus leading to earlier failure (which EDADAS
could not be identified during the starting transient) ;:;f}
since the stress within the rock matrix becomes Tess RIS
compressive. ;{Tiy
R
P-Tunnel and G-Tunnel fracture propagation rates are similar and !%’T%‘
are both controlled by diffusion processes. In the P-Tunnel test, fluid ff; i
diffusion from the fracture into the surrounding material slowed fracture L £<
growth. In G-Tunneln the slow growth rate was caused by heat transfer i; :i
from the fluia within the fracture to the surrounding formation. -?fffj




RO /88

L5

SECTION 5
CONCLUSIONS AND RECOMMENDATIONS

The downhole steam-generation system can be used to simulate
high-temperature, high-pressure, post-shot cavity conditions. This
system has been used to perform steam-flow tests in a sand column; a
low-permeability, welded, tunnel-bed tuff; and, a high-permeability
paintbrush-type tuff. This system could also be used to study heat
transfer, surface blow-off, or material erosion rates under typical
post-shot cavity conditions.

The sand-column test generated data which describe phase changes
and flow of water, mixed-phase steam and water, and superheated steam
through a porous medium. These data can be used for verification and
development of models describing condensation/heat-transfer/fluid dif-
fusion phenomena.

Classic fracture data were obtained from the G-Tunnel test.
Results show the fracture breakdown pressure, sustaining pressure, and
fracture propagation velocity. These data provide an excellent base for
development and/or verification of steam-fracture models for 1low-
permeability materials where heat transfer is significant, but in which
fluid diffusion from any resulting fracture is small.

The P-Tunnel test results are somewhat ambiguous, as one cannot
be certain that steam generation occurred within the source region during
SFT No. 2. However, these tests did provide data which may be of great
significance to containment. In particular, the data showed that the
high-permeability, low-strength, paintbrush-type tuffs can support
sustaining pressures on the order of (or larger than) the overburden
pressure. The existing P-Tunnel data can be used for development and
verification of fracture models for high-permeability materials where
fluid diffusion and, possibly, heat transfer is large. It is suggested

59

LA Ay




that the SFT No. 2 test results can be used for these studies under the
assumption that steam generation did occur. If the studies disprove this
assumption, then an additional steam fracture test in the paintbrush
tuffs may be required.
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APPENDIX A
SITE AND MATERIAL PROPERTIES

PO e D P S .

In situ and laboratory test data relevant to the steam fracture
experiments are presented 1in this Appendix. Results of laboratory
physical properties tests, in situ permeability tests, and in situ stress
measurements are included. The G-Tunnel and P-Tunnel data are presented
in Sections A-1 and A-2, respectively. Note that the data and associated

oS JER Y Y 2

'
wa .,

I discussion presented in Appendix A were predominantly taken from the
X listed references. T
. A-1 G-TUNNEL MATERIAL PROPERTIES.

i Tests were performed by TerraTek (Reference A.l) on core obtained

from the Ul2g steam fracture hole Nos. 1, 2, and 4. In addition to a
liquid permeability measurement, for each sample the standard suite of
mechanical, ultrasonic velocity, and physical properties tests were
- conducted.

Table A-1 Tists the physical properties, ultrasonic velocities,
measured permanent compactions and permeabilities. Permeabilities, which
i ranged between 6.8 to 9.2 microdarcies, were measured at a nominal stress

state of 1.36 MPa overburden stress and 0.68 MPa pore fluid pressure

using a 1 percent Ca(‘,l2 brine as the permeating fluid., A transient
: pulse technique similar to that used by Brace (Reference A-2) was used
‘- for each test.

Figures A-1 through A-3 show the volume strain versus mean normal
stress, and Figures A-4 through A-6 show the confining stress versus

stress difference. The permanent compactions for the three samples ranged
from 1.1 percent to 2.8 percent. The maximum stress differences ranged
from 30 to 50 MPa.

!-’;
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Estimates of in situ stresses have been made by Sandia (Reference
A-3) at numerous locations within G-Tunnel. The most relevant data for
the RS-14 drift mineback region are thought to result from the HF 20,
HF 39 and HF 40 tests. These data suggest in situ stresses for oy,
gs and ) of 8.79 MPa, 6.63 MPa, and 4.90 MPa, respectively; o is
vertical and is within 7 percent of the estimated 8.2 MPa overburden
pressure, o, is horizontal in the plane of the fracture N42°E, and o3
is directed horizontal and normal to the fracture plane N48°W. Table A-2
shows the fracture breakdown, driving and shut-in pressures observed
during tests conducted in the HF 20, HF 39, and HF 40 holes.

The 25 cm diameter by 112 c¢m long steam fracture source region
was examined using a borescope subsequent to the G-Tunnel steam fracture
test. The borehole surface appeared undamaged. There was no evidence of
any fractures or spall. However, it was evident that the grout mass,
which prior to the test had filled one-third of the test region, had been
subjected to high temperatures as it had been rubblized.
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Table A-2

Hydrofracture data and inferred in situ stresses

determined from Sandia hydrofracture test holes
in the vicinity of the Ul2g RS-14 drift mineback.
(Taken from Reference A-3)

Hole No. (Orientation)
Zone (m)

Overburden
(m)

Breakdown
Pc (MPa)

Frac/Driving
Pf (MPa)

Inst. Shut-In
Psi (MPa)

HF 20 (H) N71°E

4.5 - 11,5
22.5 - 29.5
42.5 - 49.5
62.5 - 69.5

437

(Yo Jo o Q-3

HF 39 (H) S19°E

17.5 - 22.5
42.5 - 47.5
72.5 - 77.5

442

HF 40 (H) N19°W
40 - 45
40 - 45

437
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Figure A-1 Mean normal stress versus volumetric strain for sample
taken at the 9.63 m to 9.97 m depth in U12g tunnel steam
fracture hole No. 1. (Taken from Reference A-1)
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A-2 P-TUNNEL MATERIAL PROPERTIES.,

Tests were performed by TerraTek (Reference A-4 and A-5) on core
obtained from the Ul2p UG No. 2 and SH No. 3 holes located at CS 15+80
and CS 11+24, respectively. Mechanical properties, physical properties,
permeability, and ultrasonic velocity tests have been completed on the
Ul2p UG No. 2 core. Measurements of moisture content and gas permeability
were conducted on the Ul2p SH No. 3 core.

Table A-3 lists the physical properties, measured permanent com-
paction and ultrasonic velocity data as a function of hole depth. Table
A-4 1lists the permeabilities of oven dried samples to nitrogen, and of
native state core to both nitrogen and water. Results of the heat
addition tests are presented in Tables A-5 and A-6.

The permeability data listed in Table A-3 were acquired from
steady-state measurements on 2.5 cm long by 2.5 c¢m diameter samples. A
sample from each depth was vacuum-oven dried at approximately 60°C for 24
hours. This sample was then tested to determine its permeability to dry
nitrogen. Native state cores of the same dimensions were also tested for
nitrogen permeability. The range of values listed under "Native State
Air Permeability” in Table A-4 results from the permeating air drying the
sample during the test. The effect of this drying is to cause a steady
increase in the nitrogen permeability. This was observed over the entire
25-minute test duration. Presumably, it would continue until the sample
was completely dried. The maximum permeability value that would be even-
tually attained is best estimated by the permeability of the oven dried
samples. In the case of the liquid permeabilities, the opposite trend is
observed. The initial measurement is the highest. The decrease in per-
meability is likely due to mobile fines restricting the pore throats. The
total time span over which the permeabilities were measured was approxi-
mately 25 minutes.
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Table A.4 Air and liquid permeability of oven dried and native state core
taken from Hole Ul2p UG No. 2 located at CS 15+80 (Taken from
Reference A.4).

Sample Dried Sample Native State Sample
Depth
Air Permeability | Air Permeability { Water Permeability
(m) (md) {md)* (md)*
4.51 - 4,75 445 28-84 224-180
5.55 - 5.91 720 88-252 570-250
6.74 - 7.04 459 53-104 285-218 S

* Approximately 25 minutes elapsed between the high
and the low permeability readings.
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. . Table A-6 Permeabilities and moisture contents obtained from Ul2p .
o source hole No. 3 (CS 11+24) tuff (12.4-12.8 meter depth) .
o exposed to 1000°C for 30, 60, and 300 seconds. (Taken from
- Reference A-5)

P
.

H
.

N
19

Y

-

Total Time Post-Test Post-Test Native State
Sample in Oven Permeability Moisture Moisture W
. I.D. (seconds) (md) Content (Percent)| Content (Percent)* i

Rl

~N
p—
[=4]
o
]
[ ]
\}
L]
»
!

1 30 -- 19.8 25.2

30

28.1
3 60 - 15.8 ~_.‘L":'~:

LSO
« L

t
‘-
b

4 60 163 -
27.4

5 300 -- 3.7

6 300 1063 -- 28.0

* Determined on material adjacent to the tested samples.
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! Heat addition tests were conducted on core taken from the Ul2p

=~ SH No. 3 hole source region. In these tests, native state samples were

ﬁk exposed to 1000°C for either 30, 60, or 300 seconds. Measurements were

l--

o then conducted on these samples to determine moisture content and gas .
ﬂ permeability. The permeability tests were performed using nitrogen; con- X
:ti fining pressure and pore pressure were 1.7 MPa and .027 MPa, respectively. ol

Results of the heat addition tests are presented in Tables A-5
and A-6. Table A-5 contains sample dimensions and weights, both before
and after the heating tests. Percent weight and volume reductions
obtained from these data are included. Presented in Table A-6 are
permeability and moisture content data for the heated samples; native
state moisture contents obtained from material adjacent to the test
samplies are also included. As shown in this table, Samples 2 and 3 are
associated with the same moisture content. This is because material used
for the moisture content determination was taken adjacent to the
locations of both samples on the 10-inch diameter core. The same
situation also applies to Samples 4 and 5. '

An expected result of these heating tests was the increase in
weight loss with increasing exposure time to 1000°C. Weight reductions
ranged from 6.5 percent to 25.4 percent for samples exposed for 30 and
300 seconds, respectively. Heating the samples for 30 or 60 seconds
produced no measurable changes in their pre-test (native state) dimen-
sions. Samples heated for 300 seconds did show slight decreases in both
length and diameter. Calculated bulk volume reductions for both samples
were approximately 1.6 percent.

Permeabilities measured for sampies heated for 30 - to 60 seconds
were 165 and 163 md, respectively. The measured permeability of native
state material was approximately 50 md. These data show that, while
permeabilities were nearly identical in samples exposed for 30 or 60
seconds, there was a noticeable change in the permeability of these
samples relative to native state material. The most significant effects
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of heating on permeability were observed in the sample heated for 300
seconds. This sample had a measured permeability of 1086 md. Multiple
fissures induced in the sample during heating probably contributed sig-
nificantly to the relatively large permeability. Surface fissures were
prominent up to a depth of approximately 0.1 inch below the sample sur-
face. Surface fissures were not apparent in either of the other samples.

Samples heated for 30, 60, and 300 seconds had subsequent mois-
ture contents of 19.8, 15.8, and 3.7 percent by weight, respectively. As
seen in Table A-6, the native state moisture contents associated with
these samples are 25.2, 28.1, and 27.4 percent by weight. These values,
however, probably do not reflect the actual moisture contents of the test
samples prior to heating because, as previously explained, the native
state moisture content measurements were made on adjacent material. An
effect of this is seen in Sample 3 where the moisture loss (34.5 g) cal-
culated using the native state and post-test moisture contents is greater
tuan the total weight loss of the sample due to heating (28.9 g).

Recall that Tow pressure in situ gas permeability tests were
performed in both the source and diagnostic hole layouts as CS 11+90 and
CS 11+24 prior to conducting the steam fracture tests. Relative gas per-
meabilities of 260 md and 25 md (results from fractured holes A, B, and
F2 were not included) were measured at the two locations, respectively.
These should be compared to the initial 60 md native state value obtained
from the core samples from the UG No. 2 and SH No. 3 holes.

The 10 cm diameter by 46 cm long steam source region located at
CS 11+90 was examined using a downhole T.V. subsequent to the steam
fracture test. The initially circular hole was elongated (approximately
2 cm) in the horizontal direction, and its surface had been severly
pitted. In addition, there existed a vertical fracture whose approximate
1 cm wide base ran the entire length of the top of the hole. It is
possible that the hole damage and fracture occurred as a result of the
pressure excursion described in the main body of this report.
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A number of high and low pressure flow tests were conducted in
the post-steam fracture test source region. Test results are shown in
Table A-7. The resulting permeability values (determined as described in
Appendix C) are surprisingly close to the pre-steam fracture fluw test
results. It should be noted that there was no evidence of fracture
breakdown even during the 5.1 MPa water flow test.

The tensile strengths (as determined by Brazil test) and the
unconfined compression strengths are listed in Table A-8 for core taken
from the UG No.2 borehole. Figures A-7 through A-13 are plots of the
data from the mechanical tests. Uniaxial strain data are shown on
Figures A-7 through A-10 where mean normal stress versus volumetric
strain, and stress difference versus confining pressure are plotted.
Unconfined compression data are shown on Figures A-11 through A-13 as
stress versus axial and lateral strain.

Analysis of the mechanical test data shows that the material
undergoes large amounts of permanent compaction. All three samples
exceeded the measurement range of the transducers. Further testing with
extended range transducers was not possible due to a lack of sufficient
sample material.

A grout fracture experiment (Reference A-6) was conducted in
P-Tunnel in core hole Ul2p UG No. 2 located at CS 15+80. This hole was
drilled vertically up and entirely through Sub-unit P-27 of the Paint-
brush Tuff (Reference A-7). At this location in P-Tunnel, the unit is
composed of vitric (non-zeolitized) ashfall tuff with a few thin silici-
fied beds. The zone from approximately 4.3 m to 7.3 m (TD) in the hole
is fairly uniform in composition and texture. No natural fractures were
visible in the core.

During the grout fracture test, breakdown occured at an undefined
pressure value which is known to be less than 3.1 MPa. After the test,
the hole was reamed to a 15 cm diameter and deepened to 7.5 meters. A

80

A A et s b= e




Table A-7

.............

Results of post-steam fracture flow test
conducted in the 10 centimeter diameter by
46 centimeter long P-Tunnel steam source
region located at CS 11+90.

Fluid

Drive
Pressure Permeability
(MPa) (Darcy)

Air
Air
Water
Water

.15 .70
1.4 .32
.47 .36
5.1 21




Table A.8 Tensile and unconfined compression strengths for
. core taken from U12P.UG No. 2 located at CS 15+80.
l (Taken from Reference A.4).
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black and white T.V. camera was run in the hole and the resulting video
tape showed a vertical fracture running parallel to the axis of the hole,
from approximately the 3.5 m to 6.6 m depths. The fracture was orfented
approximately normal to the drift (N4O°E to N50°E). However, the orien-
tation of the fracture beyond 5.4 m, up to 6.6 m was very difficult to
determine., The drill hole was then reamed to a 25 cm diameter, and
another black and white T.V. camera run made. The fracture was still
visible, extending approximately from 3.6 m to 5.3 m. The orientation of
the fracture was determined to be approximately N75°E. In the final
measurement made by Fennix and Scisson geologists using a borescope, the
fracture orientation at 3.6 m and at 4.8 m was N58°E and N73°E, respec-
tively, for an average of N65°E as shown on Figure A-3. This orientation
appears fairly constant from the 3.5 m to 5.3 m depths. The fracture is
0.16 to 0.32 cm wide, and is made up of one to three planes.

In situ stresses were measured in P-Tunnel (Reference A-8) using an
overcoring operation which followed the USBM procedure. The test was
conducted at the 1.05 m to 1.21 m depth in a hole drilled vertically up
at CS 15+33. The measured major secondary principal stress of 1.50 MPa
had a bearing of N90°E, while the minor secondary principal stress of
0.75 MPa had a bearing of NO'E.

In situ stress measurements were also made in drill holes in
P-Tunnel during operations NOUGAT and STORAX. The data from these
measurements were presented by Obert (Reference A-9). During those
tests, a borehole deformation-overcore technique was used to determine
the stress value in two horizontal NX core holes labeled P-1-1 and P-1-2
located at CS 20+00.

In drill hole P-1-1 the vértica] component of stress, approxi-
mately 20° off horizontal, was found to be nearly equal to that
calculated for gravity stress. The horizontal stress, however, was much
greater than the vertical stress--possibly indicating the presence of a
horizontal tectonic force.




In horizontal drill hole P-1-2, drilled perpendicular to P-1-1,
the vertical component of stress was very close to perfectly vertical,
and was much stronger than the stress in the horizontal direction. The
vertical stress component was also much stronger than the calculated
gravity stress. This phenomenon may be related to the greater fracture
frequency in core from drill hole P-1-2.

The report notes that compressive tests on 1D NX test samples
indicated that core from drill hole P-1-2 averaged 70 percent greater in
strength than core from drill hole P-1-1. It may be possible that P-1-2
was drilled along a particulary strongly silicified bed (Reference A-7).
The NOUGAT and STORAX study is thought to offer little insight to the
fracture orientation study performed at CS 15+80 or the stress measure-
ments made at CS 15+33.
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APPENDIX B
DETAILED STEAM FRACTURE TEST DATA

Detailed diagnostic hole pressure data are shown in this Appendix
for the G-Tunnel (SFT No. 1) and P-Tunnel (SFT No.'s 2, 3, and 4) steam
fracture tests. These data were digitized and expanded from smaller
analog plots.

Since the data are difficult to read, the pressure arrival and
decay times are shown on each figure. The G-Tunnel diagnostic hole
pressure histories are considered good data, since the water-filled
diagnostic holes did not leak. In contrast, the P-Tunnel diagnostic
holes leaked to varying degrees. Consequently, the pressure rise times
and associated peak values should be used with extreme caution. However,
the arrival and decay times are considered to be accurate.
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APPENDIX C
IN SITU PERMEABILITY TEST ANALYSIS

Prior to performing the P-Tunnel steam fracture tests, low pres-
sure airflow tests were conducted in the source and diagnostic holes.
Test results are given in Tables 1 and 2. 1In addition, air and water
flow tests were performed in the CS 11+90 source region following the
steam fracture test. These results are presented in Table A-7. Permea-
bility values were determined from the test data, as described below,

The in situ tests were conducted as follows. Air or water was
injected at a relatively constant downhole pressure, and the test con-
tinued until the flowrate approached a constant value. The reported per-
meability values were then determined from the measured pressure and flow
data using the steady-state air and water flow equations Cl and C2,
respectively. No attempt was made to consider the affects of flow in a
partially saturated formation. It must be emphasized that these tests
were performed to obtain a rough (i.e., within factors of two or three)
permeability values.

o k"o 0
""LEF;M_r7F: (CI)

(C2)

P
"
N
=4
-~
©
)|
3o
:l

where, the symbols are

Permeability (cml)

Test Region Length (cm)
Pressure (dyne/cmé)
Radius (cm)

Flowrate (gr/sec)
Density (gr/cm3)
Viscosity (dyne-sec/cm3)

- 0 £ s Orx

and the subscripts denote

0 Test Region
% Free Field
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