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CHAPTER 1 N

Lo

INTRODUCTION o]

::f—l

In a variety of applications it is desirable to determine the nat- :j@

)

-~ v

ural frequencies or poles of a system from a noisy observation of its i
impulse response. A direct approach of minimizing an error with respect tj&
to poles and residues is a highly nonlinear regression problem. Except :ﬁﬁﬁ
N

for low order cases this nonlinear regression problem is difficult to iji
'

solve directly.

In general, it is easier to estimate the system characteristic

¥ o v'.'_-"'v_"

equation first, and then find its roots from the estimated equation.

Let iML be the maximum likelihood estimate of x. The invariance
property of the maximum-likelihood estimator [1] states that if f(x) is

an invertible function defined for all x, then the maximum likelihood

estimate of f is just f(iML). In our problem if the estimate of the
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characteristic equation coefficients is of maximum likelihood, then the

roots of that equation are the maximum likelihood estimate of the system

‘; z-poles.
‘} The pole estimation techniques are extended to the SEM (singularity ]
;: expansion method) parameter estimation, The SEM formalism began from z;ié
fﬁ experimental observations concerning the transient electromagnetic ;7J
}'; response of complicated scatterers such as missiles and aircraft ifi
i' [2,3,4]. 1Instead of analyzing various parameters of a certain scatterer ;S;
?; analytically, we can compute SEM paremeters directly from the induced EF;
- transient current data. It was observed that damped sinusoids were ;;2}
. <
)

dominant features of typical transient responses [2]. 7he response of a

scatterer to an incident impulse plane electromagnetic wave is expressed

..........................
...........................
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E as a sum of complex exponentials. This sum depends on a few param-
i eters, namely natural frequencies which do not depend on an observation
é location and an incidence direction, coupling coefficients which des-
§ cribe the coupling between the incident field and the scatterer, and
i natural modes which describe the spatial amplitude variation in the
: induced current [2,3,4].
In Chapter 2, we review the covariance method and the singular
i value decomposition (SVD) method. Also a new algorithm is described to
extract the reduced characteristic equation from the weakest eigen-
Qectors when the system order is overdetérmined. .
i In Chapter 3, the iterative preprocessing algorithm (IPA) is pre-

sented. This is related to the Steiglitz-McBride algorithm [5,6]. But
this IPA not only reduces significantly the computational burden of the

existing algorithm; it also improves the stability. The approximate

iterative preprocessing algorithm (AIPA), which further reduces the com-
putational burden, is discussed. The AIPA for the pure sinusoid case is

related to Kay's iterative filtering algorithm (IFA) (7].

A

In Chapter 4, the Cramer-Rao bound for the system transfer function

parameters is described. This is a very important tool for evaluating

_."‘..‘. ". Y .‘u

different estimators.
Some simulation results for the new SVD method, the IPA, and the

7: AIPA are given in Chapter 5. The sample variances of the coefficients
i using the IPA lie exactly on the C-R bound curve for moderate SNR. This
E argues that the IPA converges to the maximum likelihood estimator for
5 some range of SNR values.
i In Chapter 6, the general SEM formalism is reviewed and a new
; algorithm is described for estimating natural frequencies given multiple
J

..............................
..................
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obsgrvations. Also the C-R bound is calculated for the characteristic
equation coefficients for given multiple data sets.

In Chapter 7, an iterative scheme is proposed for estimating SEM
parameters, such as coupling coefficients, natural modes, and

normalization factors.

Some experimental results for SEM parameter estimation are given in

N U R R L e

Chapter 8. 5:{}
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SVD METHOD

2.1 COVARIANCE METHOD AND SVD METHOD
Suppose that there are N samples of the observed data sequence

y(nT) consisting of K complex exponentials plus a zero-mean,

uncorrelated noise e(nT) such that

y(nT) =

ciexp(sinT) +e(nT) forn=20,1, ..., N-1 (1)
j

i R
—

where (Si) are the poles, (Ci) are the residues, and T is the

time increment between successive samples. Let

where the z; = exp(siT) are the poles in terms of the z-trans-

form variable. Then with no loss of generality, (1) becomes

Yo =¥ * oy (3)

%
M.
i
>

The characteristic equation with respect to T is

B(z) = by + byz7l + ...+ b2k (4)

Once we obtain an estimate of B(z) from the data sequence (yn),

G SAR AL SRR

finding the roots of B(z) = 0 is an algebraic procedure. The inverse

- mapping

b

o

v
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s; = [loglz;l + j{arg(zy) }]/T e
is used to convert z-poles to s-poles, and residues can be found by a :I:',:
.~.-‘\
linear least squares method. Thus the main problem is estimating the :Z:-‘
-‘_"w
Wy
' coefficients (bi)’ [d.'-
. A
& In terms of the difference equation
s :-.:
) K
2 bW,y =0 for n =K, K+l, Loo, N-1 (5) .
i=0 -
- ) K .
Define dn = '2 bien-i for n = K, K+1, ..., N-1,
i=0
-
With noise contaminated data, (5) becomes
K
Z biyn-i = dn for n = K, K+1, ..., N-1 (6)
i=0 -
where the (dn) are due to noise and are termed the equation error. 1In .
matrix form (6) becomes =
( L.
yo yl XXX} yK 1 dK -'.v
N L b 1 3
L] L] . bK-l L ] -
. . . bo . \
INK-1  INeK 00 YNl dy-1 Z
. # \ A
Y X = d (7
1_::: """‘
o T
x
) at ~..
"
e T e L T e i e e Tes
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By letting by = 1, (7) becomes

YLxI *yg ® d (8)

where YL is the matrix consisting of the first K columns of Y, YR is the
T L. *
(K+1)th column of Y, and Xy = [bK, Byops +oe» bl] . To minimize d d of

(7), we need to solve
* _ *
LYL* - LR (9)

’This approach to estimating the (bi) is called the covariance method

[8]. It has been observed that this method has a statistical bias in

the estimates [9]. The least squares process converges as N becomes

large, but it yields biased parameter values which are a function of the

standard deviation of the noise. It is unfortunate that even for small .
noise levels, this bias will produce large errors on the estimate sj.

Kay [10] examined a similar problem in autoregressive spectral estima-

tion.

The singular value decomposition (SVD) approach deals directly with

(7). The SVD is used to solve the homogeneous equation, i.e. to find

the null .space of the Y matrix. The SVD of Y is

*
= USV (10)

where S = .
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Here (ci) are termed the singular values, which are the square roots

of the eigenvalues of Y'Y, and o > g, > «o0 2 gy,q5 U and V are unitary
matrices of orders (N-K)x(N-K) and (K+1)x(K+1l) respectively. Let S' be
the resulting matrix obtained by forcing the smallest singular value
O+l = 0 and let W be the matrix which is constructed in the same

manner as Y with noise-free data. The matrix Y' = US'V* turns out to

be the closest matrix of rank K to Y in the sense of Frobenius norm
(11]. Because the rank of the matrix W is K, it is reasonable that the
weakest eigenvector of Y*Y is an estimate of coefficient vector x.

But what statistical properties do the eigenvectors have? 1In particular

can we say that the weakest eigenvector is an unbiased estimator of x?

It was pointed out in [12] that

ELY*Y] = W' + I(N-K)o? (11)

where E is an expectation operator, I is the identity matrix, and o2 is

a variance. The eigenvalue decomposition of (11) is

ECY*Y] = V[D + I(N-K)o2JV* (12)

where D is the diagonal matrix whose elements are the eigenvalues of
W*W and V is the modal matrix of W*W. Note that the eigenvectors of
W*W are preserved and each eigenvalue is increased by (N-K)g2. This
property can be used for order selection. But (12) itself cannot be a
proof of the supposition that the expectation of the eigenvectors is

unaffected by noise, i.e. unbiased, because the eigenvectors of E[Y*Y]




and the average of eigenvectors of Y*Y will be different. In fact a

small perturbation on W*W might give a large error of eigenvector ;;?
estimation, especially when some eigenvalues are clustered together ;jé
[13]. At present no proof is available to support the claim that the EEE
expectation of the eigenvectors is unaffected by noise. However, some [
simulation results show that pole estimates using SVD-based methods are 'ff
much less biased than those using covariance method [14,15]. ;i;
2.2 DEFLATION ALGORITHM -
So far the matrix Y was taken to be (N-K)x(K+1). But the true (or ff'
appropriate) order of a system is usually unknown a priori. Construct- "N
ing a data matrix as (N-M)x(M+1) and solving it to obtain an estimate E:%
results in M-K extraneous poles. It has been observed empirically that ::}
the presence of extraneous poles seems to protect the true poles against f;ﬁ
noise~-induced perturbation [14,15]. Unfortunately it is not known how . Eji
SE to select -an optimum M given N and K without examining the error for :'
EE: sach M, : {
Fi If we overestimate the order, then the SVD of W (of order (N-M) x Eéf
(M+1)) becomes Eéiz
W= usv' (13) o
.
4 01 0 Y )

- where S = %




Here o5 > 05 > eee 2 = Oy = Ogup = eoe = Oy © 0 and U and V are the

unitary matrices of the appropriate orders. The last M-K+1 columns of V

are in the null space of W. Let

H = [VK#l, VK+2’ cs ey VM+1] (14)
where Vi is the ith column of V.
The columns of H span the null space of W. Define an (M+1)x(M-K+1)
matrix
[ b 0 ]
) 0
b1 P
b1
G = . . by . (15)
ba ' By-1
0 bo
by

It is shown in appendix A that every column of G is in the null space of
W so that columns of G are the linear combinations of columns of H and
vice versa. By introducing (M-K+1)x(M-K+1) matrix R, G and H are

related as follows. -

HR (16)

(2
"

y '4" 'v .
5 a0, '1'1

R
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»
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Given the SVD of Y, we can examine the °i's' If there is a signifi- f?
cant drop between successive values of m and O] and if the ;E
singular values after opmy1 are relatively small and there are no big ;::
changes between successive singular values, then the order can be selec- EEE
ted as i = m, Now any column vector of H is a candidate for a coeffic- ;25
jent vector. The problem is how to estimate G efficiently, given H, fﬁj
The essence of Henderson's deflation algorithm [16] is as follows. E??

1) Perform a forward Gauss elimination with partial pivoting to ;;:
reduce HT to an upper trapezoidal matrix, leaving a %ﬂ?
triangular pattern of zeros in the lower left corner, IE&?

2) Perform a backward Gauss elimination without pivoting to reduce i%ﬁ

a triangular pattern of zeraos in the upper right while ;;f
preserving those in the lower Tleft. ) iii

This resulting matrix was suggested [16] as an approximate GT ;i?
except for row scaling. There is a problem with this algorithm, %;3
Because of the finite word length of a digital computer, the use of a %ié
backward Gauss elimination without pivoting may result a large error. HBS
This error may emphasize certain directions which are not dominant o
originally, ;isg
We suggest an algorithm that overcomes this difficulty. Let g(m) i;ij

be the mth column of G and r(m) be the mth column of R, then from =
Equation (16) G.

el o oM e =1, 2, ..., MK (17)

A L
. L .| *y ‘l 'l et
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By partitioning, (17) is rewritten as

Pm ° (18)

Because the (bi) are unknown, r(m) can be estimated such that

r(m) satisfies the following set of M-K homogeneous equations.

_____ r(m) =0 _ (19)

Intentionally, (19) is changed to the set of inhomogeneous equations

such that

WL MR
----- rl(m) = = |eme-a (20)

Rl
RO

\ ]

_n_ A

7, 8

P{"' .
l. a
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(m)

where r (m) is the vector consisting of the first M-K elements of r‘"/,

I

H1L (H3L) is the matrix consisting of the first M-K columns of H1 (H3)

and h is the last column of Hl(H3). Gauss elimination with

i ("3
(possibly) complete pivoting is used to solve Equation (20) for each m

to get ﬁ. Now

HR = G (21)

é in (21) is intended to approximate G except for column scaling. From
6, a (K+1)x(M-K+1) matrix Q is obtained by eliminating the zeros and
shifting every element of the kth column of é upward (k-1) times for
k=1, ..., M-K+1l. Each column of Q should be an estimate of the

coefficient vector. Taking an average of (M-K+1) columns of Q after

~rormalizing each column with respect to the last element of that column

js the fina) reduced estimate of the true coefficient vector. Gauss

(m)

elimination with complete pivoting to estimate each r should cure
the problem of emphasizing a particular direction with Henderson's
deflation algorithm. And averaging normalized columns of Q should
alleviate the problem further, Simulation results for the examples
chosen for Experiment [ in Chapter 5 show that sample varijances for
coefficients with the new algorithm were always smaller than those with
Henderson's deflation algorithm for K = 2 case. Also Experiment II in

Chapter 5 shows that the bias with the new algorithm was relatively

smaller than that with the existing method.
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CHAPTER 3
ITERATIVE PREPROCESSING ALGORITHM

The problem of estimating poles can be posed in terms of a

time~domain system identification problem. Suppose the unknown system

has a K~th order transfer function given by E"]
- (K- T

a, + a,z L, .. +a, .2z (k-1) e

_A(z) _ 0 1 K-1 SO

H2) =5y - 1 = (22) R

bo + b].z + oo + sz ,‘:..:'.]

! » Lo

- - e

= wo + wlz + wzz + eoscen .:;.;3

where b0 = 1 for convenience and (wn) are samples of the impulse ri{:;

response. This can be written in terms of the difference equation

n
y bW s = a, n=0,1, ..., K-1
j=g 1 n-i n , (23)
K
o _z biW._y = 0, n2>K
- i=0
t':\
. .
, or in matrix form (with N samples of the impulse response)
2
( ( 3
2 O o 1 %
*F-: L) Wy 3
;’ . [ bK .
. .- . . . aK - 1
E wo wl L N I} wK 4 = 0 ( 24 )
F.j. Wl Wz Seses WK+1 bl 0
[
v:: . . . 1 .
'I:: . . . » J .
. 0
b’.’ ' t wN"K‘l wN-K sesese wN_l
’ \ P
= ~ a ——
W X = o
- : 0 '? -‘:‘
- ‘ "l':‘
"' o
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We observe Yo S W, T e, forn=20,1, ..., N-1, where (en) are samples

' of uncorrelated, zero-mean noise. In vector form
. y=w+e (26)

SRS LN

T .
where y = [YO""’yN-l] and e = [eo,...,eN_l]T. Given y we want to
estimate the denominator coefficients in (22). Let Y be the matrix
which is constructed in the same manner as W with (yn) as elements.

- Then from (24) we have -,;—

SN EEE (27) £ J

cAEmT. . L L,

where d = (Y - W)x = Be is called the equation error vector. Now (27) ) ol

Ju-m-~
'.‘l':..'t.:'.
. e
' ‘ I’. ..' .u. v.' ‘e l"
, R

can be rewritten as e
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Be = Yx - (28)

Because Matrix B is lower triangular and has 1's as diagonal elements,

it is nonsingular and invertible. The inverse of matrix B is easily

R A rommmm v o~

obtained by forward substitution. 27

F = B = 3 . . L] (29) : _:.’:

fuep frog eeeeee fp 1

-l fyg eeeeee T2 T L

By by f. .,
: jap 13
Note that 1/8(z) =1 + § fiz'i . e
i=1 -

0

”,
é s
.

r
!u

[ By introducing the matrix F, (28) becomes

D
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- a -
e = F[yx - ] = FYx - F_a (30)
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where F

.
[ S
'\1'
Ny
N
.
o
e
.
o

L is the matrix consisting of first K columns of F, Let YL be

the matrix consisting of first K columns of Y and YR be the K+1th column

of Y. Note that y = y,. Define x; = [b,, by <, eees b, ]'. Then (9)
R 1= (B By 1

N SV X

becomes
e = FYLXI + Fy - FLa (31)
l Because F (and so FL) is a function of (bi)’ minimizing a sum of squared

*
error J = e e is unfortunately a highly nonlinear problem, But fixing F

as a constant matrix and setting the derivatives of J with respect to Xy

i and a, we get two conditions:

* - *
: FL FL a-F FYL,XI =F_Fy (32)
| Yo" Y VEY. x. = -(FY,)'F 33

For a fixed F, the problem is linear in a and Xy An iterative pro-

(1)

cedure can be used to minimize J. The first estimate of a and xI

(1)

results from taking F(o) as the identity matrix. With this x%l), we can

2 construct F(l) to get a new estimate a(z) and xI(Z), and so forth. At

»

o each iteration, the previous denominator coefficients are used to get
new estimates, so that a(m)and xl(m) are found by solving a system of
linear equations

|

" : -1)y*.(m-1)

, (n-1) e (m1) _p(mel) g mn; | [m] [EeDyeen,

;‘ (F2)F) (F, F Y, a AL

. - (m=1)7 \*-(m-1)

' - - - -

: -(F -1)YL)F(m1) (F(™1y ) F(ml)Y x§"‘) F2y ) F

]

N

f form=1, 2, ..., and F(0)= I. (34)

!

............................................
...................................
..........................




17

q’-'.' '..'
P S

*
[f convergence is obtained, J = e e is minimized, which is the error
we want to minimize. But if the SNR is very low, it is hard to expect
convergence in general. One can check that (34) is an explicit form of -

the Steiglitz-McBride iterative algorithm with an impuise input [5,6].

This method has been widely used and the convergence and accuracy prop-
erties for large data lengths and/or high SNR assymptjons are well-known
[17]. At each iteration, it is necessary to solve a system of 2K linear
equations.

3.1 ITERATIVE PREPROCESSING ALGORITHM BOS

*
Because the rank of the matrix FL is K, the matrix FL FL

hermitian positive definite and invertible. From (32), we get

is the

_ %* -1 * ~ *
a=(F F )" [F FY x; +F Fy] (35)

Substituting (35) into (33) we obtain

. ke - - x -
- (FY_) QFY_ x; = -(FY_) QFy (36)
~ x ] *

x where Q = I - FL(FL FL) FL

.

,il With a fixed F, this equation is linear in X An iterative procedure
i; analogous to that mentioned above is used to solve (36). The first

f; estimate of xx(l) results from settihg 0 . [. With this xl(l) we can
;I; construct F(l) and calculate [F'_(l)*FL(l)]'1 to get new estimate XI(Z)’
N and so forth,

¢

.

...................................
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Q(m-l) =1 - FL(m-l)(FL(m-l)*FL(m—l))-I(FL(m-l))*

form=1,2, ..., and F{O) = 1

obtained, then again the mean-square error is minimized.
Before proceeding further let us introduce the Lvans-Fischl

algorithm [18]. Partitioning the matrices in (28), we get

De =¥x =4d

where D is the matrix of the last N-K rows of B, and Y and d are as

D is (N-K)xN, we cannot solve for e directly. But using the SVD
%* * * *
D=usv (DD = U(SS)U )

*
Thus, e = VS+U d which is the minimum norm solution so that

*

-] * -
minee 1 1

* * * *
min d U(SS ) "Ud =mind (DD ) d

ie€a,

. o %]
min (Y, x; +yg) (00 )7 °(Y x; + ¥g)

min e e

(m) _ _(F(m'l);L)* d(m'l)F(m'l)y

18

(37)

At each iteration we need to solve a system of only K linear equations

which is an advantage compared to the S-M algorithm. If convergence is

(38)

in

(7). The error we would like to minimize is e*e. Because the matrix

L e gy
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algorithm. At each iteration an (N-K)x(N-K) matrix inversion is

L.
.
* e
where YL and yR are defined as in (8). With a fixed DD , the minimum of R
e*e would be given by the solution for X from the normal equation é‘;
1Yy x, = -y, F(o0*)7? o
YL (DD ) YL Xy = -YL (oD ) Yr (40) iij
Since D does in fact depend on x;, we can use (40) but with itera- gfy
tions. It is shown in Appendix B that the iterative preprocessing ot
algorithm, i.e., Equation (37) is basically the same as the Evans-Fischl E;i
i
L

2

required in the E-F algorithm, but inversion of KxK matrix is required
for the IPA. Readers might notice that the matrix multiplication F; is iif
nothing but an inverse filtering and it requires only about NK-K2/2 mul- E?;
tiplications. When N is very large, the IPA which avoids inversion of a

Targe matrix ((N-K)x(N-K)) should be more stable than the E-F algor-

ithm. For large N, about (N® + N2K)/6 multiplications except for S o7
solving a system of K linear equations are required at each iteration of }:i
the E-F algorithm. The Equation (36) is rewritten as :;i

PO (FY) - ) (FUFO)THE TP x = o

-
As mentioned before NK-K2/2 multiplications are required to compute each -
of F and F;. To obtain (F;)*(F;), NK2/2 multiplications are required. .
Because of the special forms of FL and F;, only 2NK is required to com- }:
pute (FL*F;). Thus, including an inversion of (FL*FL), about (3k3/2 + Si;
4NK + NK2/2) muitiplications except solving a system of K linear equa- E%;
tions are required at each iteration of the IPA which is a great advan- ii:
tage compared to the E-FA especially when N >> K. f;i

=

.....
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3.2 APPROXIMATE ITERATIVE PREPROCESSING ALGORITHM

The disadvantage of the IPA is that a KxK matrix inversion is
required at each iteration. In at least two cases of interest we can
avoid such a matrix inversion,

3.2.1 Damped Sinusoid Case

If the signal consists of damped sinusoids, i.e. each 'Zi' <1 for
i=1,2, ..., K, then from a practical viewpoint the signal has finite
duration. This observation can be used to simplify the calculation of
(F, *F )'1. As a result both the computational load and the stability

L L
of the IPA are improved. Suppose the B matrix is partitioned a§

. 1
kK By i 0
B = K T B, ' (41)
N-2K o !
. || ,‘
K N=-K

* -
Let R = Tim (FL FL). It is shown in Appendix C that R  relates to the

N+

matrix B very simply as

-1

_ * *

*x . -
Approximating (FL FL) L ¢or finite N by R 1, (36) becomes

~

(FY )" Q FY, x, = =(FY)" Q Fy ' (43)

- Sl *
where Q = I - FLR FL
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Convergence and accuracy properties are not available yet, but 3;:
simulation results for the examples chosen in Chapter 5 show that this gﬁj
- I

approximate iterative preprocessing algorithm (AIPA) converges to the Sig
maximum-likelihood estimator for moderate SNR. ﬁgﬁ
3.2.2 Pure Sinusoid Case gﬁﬁ

L . : . * -1 . Ei"i.

It is shown in Appendix D that lim (FL FL) = 0 when the signal iy

Noo S

consists of pure sinusoids, that is when the roots of B(z) = 0 are on ;i;
the unit circle. Because E_,
. Cvs * a1 *_ = * _

;1m a=lim (F F ) [F FY x, -F Fy]=0, o

o N-veo S0

(33) becomes i
. ~ k" _ F~ *F :\
(FYL) FYL Xy T '( YL) y (44) St

i

PR N
E R A A

These equations are the same as Kay's IFA (iterative filtering algor-

Al
14

A,
.Il..l "I".r" 'r ll

ithm) [7]. Our derivation emphasize that (44) is an approximation which

is good when N + = ., We show in Appendix B that (36) can be rewritten e

as e
q-, -

* * -—
(Fa¥y ) QFpYy xp = =(FpY ) QFpyg (45) —

*

= *e -1
where Q = [ - FI(FL FL) Fy

Here Y_ and YR are defined as in (8) and

]
F = =g -—— FL = - -
1 - >
Fy : Fy }N K Frl e o
el B
K N-K
e e e e e e A e e e e e e e =

L T T T T T

X . A e e e T e e e s R PR UL - e e . - .
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* - ‘:::
For large N we can use (FL FL) 1. 0 to approximate (45) as A
* *F 46 ":
(FaYL) (FpY ) xp = =(FpY ) Fovg (46) e
e
N
()
Equation (46) is the same as (44) when N = » , Note that the matrix §§;
multiplication FoY is different from the matrix multiplication FY, be- fﬁ:
cause the former filters the columns of Y separately and the latter E;
filters the data (yo, Yy» eees yN_l). ?;
Equation (30) for the error is rewritten as :ﬁﬁ
e = FL(Yox -a) + F2Yx (47) a;
- N j:-:j::
where Y, is the matrix of the first K rows of Y. To minimize e e given f“‘
a-= Yox with a fixed Fz, we need to solve the set of normal equations
which is identical to (46) with iterations. Both Equations (44) and
(46) are good when N = = , Equation (44) comes from setting a = 0. E;;
This corresponds to setting the initial conditions in the difference i?
equation to zero. If we use Equation (44) to estimate frequencies when e
N is small, a = 0 is not appropriate. This explains why Kay [7] got a é:;
large sample variance for the frequency estimates with large SNR. On
the other hand Equation (46) assumes a = Yox, i.e. sets initial condi-
tions to Yogs¥ys eees Ygoqo which is more reasonable especially when N is ;}“
small. Because (46) filters the columns of Y separately, it requires an IE;
additional (N-K)s(K-1)2 multiplications compared to Kay's method. fﬁﬁ
N
L
N
3 -
‘. ::i-
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CHAPTER 4
CRAMER-RAO BOUND FOR COEFFICIENT ESTIMATION

The previous chapter described an algorithm for estimating natural
frequencies. We do not know how to describe generally the convergence
property of the IPA, Simulation results using the IPA can be compared
with simulation results using other methods. But is is more interesting
to compare with the Cramer-Rao lower bound.

In this chapter we shall describe a calculation of the C-R bound
for the coefficients of the charécteristic equation. The maximum-like-
lihood estimate is an unbiased estimate whose conditional variance sat-
isfies the C-R bound with equality. As mentioned in the introduction if
the IPA converges to the ML estimate for the characteristic equation
coefficients then it is maximum-likelihood for the. natural frequencies
as well, The C-R bound is stated as follows [1]. Let y be an observa-
tion vector and 5 be any unbiased estimate of a vector 8, then the con-

ditional variance is bounded by
var(a, l0,) > [J'l] (48)
ithi) &~ i

where the matrix J is

3= (L g piyin}’] e

and p(yle) is the probability density function for the observation given

the unknown parameter vector. In our case, the model is either
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- a (
w=-Wx, + 5Q0)
LI 0
or from (25)
w=Fa (51)
The observation is
Y =W + e = . (52)
; where now we assume that e is a white Gaussian noise vector with
3 variance o2,
' _ a7 L .
- Let 8 = [bK, bK-l’ vees bl’ ays eees aK-I] , then the conditional den
2 sity function of y is
R -N T
- p(yle) = (2m0?) /Zexp[- 5‘11—2 (y=w) (y~w)] (53)
To evaluate the bound we must compute the second partial derivative of
: log p(yl!e) with respect to 8, First we will evaluate %% . Because
N FL in the Equation (51) is not a function of a, %g is simply
e
: ¥ -F (54) N
Y a’ L :-?:-3
i S
.
E -

. H . - - PIRI L S A e . “a N . . . .
.. DTSRI B e ] LI O R N S A A L O e
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We claim that

w | .
[WI] = FNL (56)

Let 1™ = mth row of the identity matrix,

f(M - th row of the matrix F, and

5 (m) o :.
NL mth column of the matrix NL. = ]

Then from (29) it is easy to show that 1

K .y i P

-3 biF(m i) . F(m) - I(m) (57) ~

i=1 _
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And it is obvious that

- N~ W . for m+j>K+2
1 (my(3) ={ m+j = (K+2) (58)
0 for m+j<K+2

We will use induction to show that (56) holds. From (55), it is clear

that

for i=1,2, e, K

Thus, Equation (59) satisfies Equation (56). Suppose Equation (56) . j;;?i
holds for m = 0, 1, ..., M, i.e. f'-.'f-f;:f;é
,' Sy

aw - s S

! oo

Ei\q

fori=1,2, oo, Kand m=20, 1, ..., M

Then for m =M + 1, ?i;
o
-
aw K <o
M+1 3
= [ ) bWy, :] (61) 1
By By oy I T
SEN
K v, . .
= - - _Mtl-j
41 - le ®j T,
K (M+2-1)7 (K=i+1)

..............................................

.............
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(M+2) . (M+2) (K-i+1)
- Wi o F W (K-i+1) + 1 W by

fori=1,2, .., K.

By induction (56) holds for any i =1, 2, «as, Kand m =0, 1, ..., N-1.

Thus, from (54) and (56)
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because E[(y-w)] = 0 and [2%] = G(8),
] 3 T
. J=-Fiz [35 Tog P(YIQ)] (65)
2
o 1 T
E =z G (8)G{9)
.. = T TNT
E: i l-i (FNL) FwL - (FwL) FL
: o T2 T
- F FW FLFL
Finally,
- P Q '
7t (66)
0 R

What we are interested in is the C-R bound for the denominator

" coefficients 815 855 +ees 8. It is easy to show that

-1

P o= (W) TCI-F_(F TR TIRe 17! (67)

so that

N 2
.-8,) > ..
var(e1 91) >0 P11

where ei = b for i =1, 2, eee, K

K-+l

Note that the C-R bound is related to the noise free data and the coef-

B LT

ficients of the characteristic equation. The matrix P'1 is the
- matrix of the normal equation which is solved at each iteration of the
,
s IPA.
v
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SIMULATION RESULTS
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In this chapter we give two kinds of experimental results to o

W. '.-

. support the algorithms proposed in previous chapters. ;:;ﬂ

! 5.1 EXPERIMENT I

9

[ B
* [N . Yt
. . AR
. H .
a B
- ‘ ' PR L4

First we consider two data sets consisting of a pair of complex

,
r
(e §

conjugate damped sinusoids in white Gaussian noise.

y.=c,z0 +8.2. "+ e forn=0,1, ..., N-1
n 171 171 n

i The first data set has ¢, = 1 and z; = -0.8 + j0.5 so that
; 2 + 1,627

: Hy(2) =
-. ! 1+ 1627 +0.8927°

SNR is defined as SNR = 20-10g,,(2/0) where o is the standard deviation

- of the additive noise e,. Note that this is peak SNR. C-R bounds for

E by = 1.6 and b2 = 0.89 were calculated by the method suggested in

i} Chapter 4., The variances with respect to the true coefficients were fﬁf;
'; calculated after 500 trials at different SNR's for each method. The i:;}
g data record length N was 30 so that the AIPA is very close to the IPA, __;
EE A 21x10 data matrix was used for the SVD method. As shown in Figure 1, :ii
E both the AIPA and the S-M algorithm performed as maximum likelihood i::j
E. estimators up to 12 dB of SNR. But when the SNR was 10.5 dB, the AIPA §5§§
5 definitely outperformed the S-M algorithm. This indicates that the AIPA iiii
g was more stable than the S-M algorithm. For the SVD method, eigenvec- =
; tors corresponding to the 8 weakest eigenvalues were used to estimate ii;é
i j
; -
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RN

formed at different SNR for each method.

L.

it

the coefficient vector as described in Chapter 2. The sample variance Sﬁ;f
of coefficients obtained by the SVD method was about the double the C-R quk‘
;—*%

bound. NS
'\._" ._‘|

ey

As a second example, ¢ = 1 and z, = -0.7 + j0.5 were used, :}:31
DANR

The SNR is defined as before and N = 20. Again 500 trials were per- e
E o

2 +1.4771

1+ 1.4270 + 0.742"

Holz) = 7

As shown in Fiqure 2, results from both the AIPA and S-M algorithm are
poor below SNR = 17 dB. But still we can see that the AIPA performs
better than S-M algorithm for low SNR., A 14x7 data matrix was used for
the SVD method. Again the sample variances for the coefficients
obtained by the SVD method was about the double the C-R bounds. It
should be noted that the new SVD method that combines some weakest
eigenvectors always performed better than Henderson's deflation algor-
jthm. Because the difference was about 1-2 dB for both examples, we do
not show that on the graph. For higher order cases, we would expect to Elinﬂ
see a bigger difference. As mentioned in the introduction, if the esti- ijf}
mator is the maximum-likelihood estimator for the coefficient vector
then pole estimates via this estimator are also maximum-likelihood.

This notion is demonstrated in the next examples.

) [
s dme £ 4 o o,

5.2 EXPERIMENT II
In this experiment we used three data sets consisting of complex

damped sinusoids in white Gaussian noise.
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..............
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K
Yy = 121 exp(sin) * e n=0,1, ..., 24 g

= -q. + 1 . A
where Si a; JZIIf1 s

These three data sets were chosen by Kumaresan and Tufts [14]. The

sequence ep is white, and complex Gaussian, with variance 202, SMR s
10.10g,,(1/20%). The IPA was used to estimate the coefficient vector R
and then the pole damping factors (aj) and pole frequencies (fi)
were calculated for each trial. The SVD method described in Chapter 2
was used for the K = 1 case. The C-R bounds as well as the backward :
covariance method using the SVD _results have been extracted from [14].

For K =1, f; = 0.52 was used. As shown in Figure 3, for «; = 0.1, the

IPA indeed performed as a maximum-likelihood estimator up to 10 dB of

SNR. The new SVD method performed as well as K-T's method. An 18x8 ;;;é
data matrix was used for the new SVD method compared to 7x18 data matrix Eﬁfg
for K-T's method which means computing time for the new SVD method is E:Ei
much less. Note that the sample variance of the estimates in this one 1fij

pole case show broad minimum somewhere between M = 6 to 10 for the new

SVD method. For the resuits in Figure 4, «, = 0,2 was used. Again the

IPA performed as a maximum-likelihood estimator up to 15 dB of SNR, The
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sample variance using the new SVD method was larger than that for K-T's i

method. But as Table 1 shows, the bias for aj is smaller with the new ;i;j
:i SVD method. Averaging reduced coefficient vectors as mentioned in Chap- 1;{§
- R
- ter 2 might have reduced the bias. S
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Table 1.

Comparison of SVD Methods

30
25
20
15

0.7382x10-"
0.2873x10-3
0.6458x10" >
0.1365x10-2

0.3574x10-3
0.3059x10" 2
0.9733x10" 2
0.3174x10-!

0.3538x10- 3
0.6849x10-3
0.1279x10" 2
0,1132x10-2

For K = 2, we set @ = 0.1, a, = 0.2, f1 = 0,52, and
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f. = 0.42. Figure 5 shows that IPA performs well up to
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CHAPTER 6 :}2
-.':\‘
APPLICATION OF THE IPA TO THE SEM [N
-
The singularity expansion method (SEM) form of the surface current iii
density on a finite-dimension, perfectly conducting object in free space ii:
[..
is written as [2,3,4] :E:
> ;'.‘:;‘
J (Fgot) b
_ p (max) + 2 ) :f&
- £, E ACLY nk(al,apnsk(rs) exp(s thu(t-t )  (68) 3
+ other SEM terms + noise Eﬁ:
where gff
to =, turn-on time .
b

35 (FS) = natural mode (appropriately normalized)

k
Sy = natural frequency ,f{
b
nk(max) = normalization factor gg;
My = coupling coefficient (appropriately normaliied) f;i
31 = direction of incidence =
AR
ap = polarization vector N
fp(s) = Laplace transform of incident waveform fp(t) ;jb
. . P

E0 = scaling constant for incident wave (in V/m) -~
Fs = coordinate on the surface S of the object. i
The problem of computing aircraft SEM parameters has been considered by ;if

several investigators. Because of the complexity of aircraft surface .

geometry, it is difficult to formulate and solve the scattering problem _3‘

..........
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analytically for an exact model. When an electromagnetic pulse (EMP)
strikes an aircraft, it induces a surface current, For EMP testing,
several sensors are placed at different locations of the aircraft sur-
face to measure this current. Also the angle between the incidence dir-
ection and an aircraft is changed to obtain muitiple EMP data sets for
several directions of incidence at each observation location. The
source of noise is mostly from nonlinear distortion and quantization in
the instrumentation system. A typical number of samples for each data
set is 512 with a sampling interval of 5 nsec. It is desired to esti-
mate SEM parameters of Equation (68) given noisy multiple observations.

As a special case of the general Equation (68), we consider a

.

simple thin wire scatterer. Suppose the wire is struck by a plane
electromagnetic wave. The direction of propagation d of the incident
field makes an angle o with the normal to the center of the scatterer as

shown in Figure 6, The induced current on the scatterer for any o and

0<e<L is represented as [19].

0,0 = T 0 ™) n (05, (0F(s,) exp(s,thultet,) (69)

k

+ other SEM terms + noise

Note that the parameters in (68) are now simplified to one-dimensional
case, Unlike the complicated aircraft case, the SEM parameters for a
thin wire have been determined by théoretical methods based on Maxwell's
equations [3]. The normalized natural mode, which describes the spatial
amplitude variation in the induced current, is given approximately by a

simple equation

3 (2) = sin (kne/L).
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Figure 6. Geometry of the thin-wire
scatterer and incident field.
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There is no simple equation for the coupling coefficients., But from
Figure 6, it is easy to see, for example, that nk(90°) = 0 for all k
and that n2(0°) = 0, etc.
Hereafter we consider an impulse as an exciting function so that
;(sk) = 1, We also assume that the other SEM terms are zero, and that
the noise is additive Gaussian white noise. In general it is hard to
estimate natural frequencies, coupling coefficients, and natural modes
at a same time. Our strategy is first to get an estimate of poles using
muitiple data sets., We discuss this problem in the present chapter. In
the next chapter we show how to estimate the other parameters.
6.1 POLE ESTIMATION USING MULTIPLE OBSERVATIONS
In this section, we present an algorithm for pole estimation given
multiple observations. Equation (68) shows that measurements made at
different locations or with different directions of incidence have the .
same poles. We can use multiple data sets efficiently to get an
improvement in the estimate of natural frequencies. A currently exist-
ing simple technique for using multiple data sets is simply to compute
poles for each data set and then average the results [20]. This is not

the best approach as we argue below.

Let the vector y(l’i) be the observation vector at each location
2 (2=1,2, ..., L) for each incidence direction o5 (i =1, 2,...,1).
There are M = LI observations available. Without considering incidence
directions and observation locations, any observation vector form =1,
2, «vey, M can be represented as
K

yn(m)= k=21 Clgm) 7 + er(1m) (70)




2 a1
.
-: where en(m) is zero-mean, uncorrelated noise. Because natural frequen-
%)
' cies do not depend on m, i.e., each data set shares the same transfer
) function denominator coefficients but has different numerator coeffic-
» ients, we set up an equation as follows.
™ < gy My s py(m gy (71)
L 1 L
form=1,2, ..., M )
where (e(m)) are noise vectors and F, YL(m) , y(m), a(m), x; are defined jﬁt}
ke
-
in (31). Suppose the ngise variance is the same for all m, By intro- iﬂm*
ducing the augmented vector 3, (71) becomes
! i T 1 (e , Yl T W
s (1) - 0 YL(1) D] [/ o 2l
" (2) ¢ (2) (2) (2)
e F YL y FL a
. = . . X + . - . .
. I
| e(M) 0 F YL(M) y 0 M) e
. Lt \ y ~ s L / ‘j::-.;::
: SN
- ey
&= (ox +9)-F 4 (72) ]
.\ "-:':1
* 5 ':
Now we want to minimize J = & &. If the noise is Gaussian then the X e
. o
z and a that minimize J are the maximum likelihood estimates. Note that J P
,3 is a sum of squares of all the errors. Fixing f as a constant matrix ::ﬁS
‘- )
5 and setting the derivatives of J with respect to x; and a, we get two ;;ji
: N
: conditions ;,,
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?L*[?VL Xp * y - ?Lg] =0 (73a)
F ) (M +y -3 =0 “(73b)
It is easy to see that the matrix ?L* ?L is nonsingular. Thus, from
(73a) we get
3= (?L* ?L)'I?L* ?[YLxI +y) (78)
Substituting (74) into (73b) we obtain
(WL)* 6 WL Xy = - (WL)* 6 ?.‘Y’ (75)
where § = 1 - ?L(?L* ?L)'l ﬁL*
(75) is rewritten simply as
[z S EACN R DEEAL Fy("”} (76)
m m

- %* -1 *
where Q = | - FL(FL FL) FL

Since F (and so F|) depends on X[» we can use (76) but with itera-
tions. It should be noted that the éomputational burden associated with
this algorithm is considerably less than that with the averaging scheme

which takes an average of poles obtained using the IPA for each data

...................................
...................................................................




, .__
SIS S R s A ERR. G,

."\.\“- S ,' .".

T ‘—‘l‘l‘l‘l.

............

43

set. The latter calculates inverse filter coefficients, and (FCFL)"1 at
each iteration, and the roots of the polynomials after obtaining conver-
gence for each data set, but the former calculates these jusg once.

So far, the assumption was that the variance of the noise is the
same for all m, But in general, the noise variance may be different for
each data set. If the SNR is known a priori, it is possible to weigh
the data sets differently for each m. For example, the weight for the
data set, whose SNR is relatively smaller than others, should be smaller
than other weights. Because the Equation (76) is in quadratic form one
possible form of weight is

w = w(m)*w(m)/ (Nomz)

where op2 is the variance of the noise for mth data set and w(m) is

an observation vector without noise. In practice, noise~free data sets
are not available so that y can be substituted for w. The purpose of
weighing data sets like above is to emphasize the relatively good data
sets, and to weaken the bad data set, for instance from a location at
which natural mode is supposed to be pretty small for all k.

Considering weight (76) is rewritten as

m

- [ T )
m -

where Q is as in (76).
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o Simulation results in Chapter 8 show that both the bias and the sample =
‘. variance using the Equation (76) are less than those with the averaging -
! scheme. - o
-~ 6.2 C-R BOUND i
b R
i In this section we calculate C-R bound for the characteristic .:‘::
equation coefficients, for which sample variances can be compared, given f-_:.j:'
muitiple observations, Suppose (wn(m)) are real numbers., Using the
. results obtained in Chapter 4, it is easy to show that for Gaussian .,.
noise the conditional density function of any y(m) is rewritten as
'._ :\
m
i p(y" )IXI) s (78) £
(2n)'N/2(detV(m))l/zexp[- %(y(m)+ wL(m)xI)T(V(m))-l(y(m)+ wL(m)xI”
- (my-1_ 1 T Tyl Ty 1 51 "
. where (V'7')7" = —— F I -F (F'F)"F ]F=—"" :

g g F'x<
N m m ol
- Thus the conditional density function of the augmented vector ; becomes ~j? ;'
i ~'~_'e
E . L
- ply |XI) = (79) G
- ()" ™2 (et 2 expl- 3 (7 + H x)T TG+ W x)] 5
N .
- 17l 0 mS
. % 1 - '::.
" where ¥ -1 = L p-1 - X
0y SReA
5 i N
. 11 i
0 oz F X
| M 3
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and the derivative of the log of this is

AR

’

3 sy e Tyl
'5;(—1- 109 p(leI) == wL v (,Y + WLXI) .

The second derivative of the log of (79) is given by

B AARSAR

’

3 3 > T_o+oTg-1
-3 Lo e pllxp] T RTT TR

L 1

=

P

' . Therefore, C-R bound for the coefficients of the characteristic equation
t}f . .

- is given by

LY

L=

var (51 - ei) i[[ % _0_1_2_ QLT(m) 5-1 QL(m)]-lJ i (80)
m

'.—.-..’,

S PR

e » S s
[

. where 85 = bk_j+1  for i = 1, 2, ..., k.

If the noise variance is the same for all m, then (84) becomes

- " 2 - - .
var (8; - 8;) > ¢ [[ %NLT(“‘) pl wL(“‘) ]'IJ it (81)
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CHAPTER 7
ESTIMATION OF COUPLING COEFFICIENTS AND NATURAL MODES

In this chapter an algorithm for estimating coupling coefficients,

natural modes, and normalization factors given natural frequencies is

presented.
The induced current data on the scatterer for any incidence direc-
b‘ tion 8; and observation location 2 is represented as (from (69))
- ) K . .
[ .- 1,42 max 1) . (2 n 1,2
& y (08 o g (man) () (1) ny o (6h0) (82)
=2 k=1
k forn=0,1, ..., N-1
= ;
- where nk(max) is the normalization factor, “k(1) is the normalized coup-
1ing coefficients, jk(z) is the normalized natural mode, and en(1!£) is

the noise which is assumed to be zero-mean and uncorrelated. Note that
max (nk(i)) = 1, and max (jk(z)) =1
for each k. Let

diag [nl(max)’ nz(max)’ e, nK(max) ],

X
1]

o
—
-
~—
1]

= diag [n1(1)9 n2(1). ceey T\K(1) ]

(o (1, (1) OB

.......
‘‘‘‘‘
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Also let

2 es e ZK

Z = 21 z2 ceve zK

ss e ZK .

Then in matrix form (82) becomes either

g8 gy ) () o (83a)

G2 g o) j) (5,0 (83b)

(2) (%)

where g(1) = Hg(1) and j = Hj .

*.
Suppose the (zK) are known., We want to minimize @ o where @ is as
g afq ~
defined as in (72). Minimizing & @ with respect to (9(1)) and (j(z)) is

a nonlinear problem even though (zy) are known a priori. We use an

jterative scheme to solve this problem, From (83a)

A S R PG MU A o)

Fixing J(l) as a constant matrix for all & and setting the deriva-

* ~f3
tives of & & with respect to 9(1) to zero, we obtain

R . R T T S e e e e
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for i=1,2, ..., I .
(2)

%*
Similarly using the Equation (83b) e e is minimized with respect to Jj

by solving following equation

1}
~—
T~
Pamn)

~N
o
~—
-
o
| —
*
<
Pam}
— e
-
~
=
| —4
—
—
[¢ ]
[e,}
g

[ 3 (ZG(”)*ZG“)] 5(9-)

1 i

fOf‘z:l, 2, co.,L .
Let matrices

6 = [9(1), o2, .., ol

3=uM, 5, L, M
6= 91, o®, .., 1], and
3 = [5(1)9 5(2)s seey S(L)] .
Then from (83a) and (83b),
é = Hé and (87a)
) = HJ. (87b)

Note that the normalized coupling coefficient (natural mode) is obtained

by normalizing the rows of G (J) so that the maximum element of each row

of G (J) is 1.




Now

1)

2)

3)

5)

S T T

...............

the algorithm is as follows.

Set (G(i)) as the identity matrix, solve (86), and normalize
(1)).

the result to obtain an initial estimate of (j
Set (J(l)) using the preceding estimate of (j(z)) and solve the
Equation (85) to obtain (é(i)).

Form G and normalize every row of G to obtain G (i.e., g
(max))

(1))
and normalization factors (n,

Set (G(1)) using the preceding estimate of (g<1)) and solve the
Equation (86) to obtain (3(2)).

Form J and normalize every row of J to obtain J (i.e., J(

(maX) )

z))

and the normalization factors (nk

If convergence is obtained then stop. If not then go to 2) and
[}

continue.

x
If convergence is obtained, then e e given (zk) is minimized. The
normalization factors obtained both in procedure 3) and 5) may be

averaged to obtain a better estimate.
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CHAPTER 8

SIMULATION RESULTS

Experiments I and Il in this chapter are to support the algorithms
proposed in Chapters 6 and 7 respectively.
8.1 EXPERIMENT I

Multiple data sets which share the same poles but have different
residues were considered in this experiment. The system order was
chosen to be K = 2. Data sets consisting of a pair of complex conjugate
damped sinusoids in white noise were used. The data set for any m {m =

1, ««.s M) is represented as

Number of data points N was 20 and the standard deviation of the.noise
was 0.1 for all m.

For the first example, four data sets were used. The pole z
was -0.7 + j0.5 so that the characteristic equation

1

By(2) =1+ 1.4z + 0.742°2

The residues were: cl(l) =1, cl(z) = 0.3 + jO.4,

¢, = 0.4 + 0.2, M) <07 4 jou7.

Method I is the averaging scheme which takes the average of coefficients
obtained using the IPA for each data set separately. Method II is the
algorithm presented in Chapter 6. The C-R bound for the coefficients

was calculated using noise free data. The variances with respect to the

true coefficients were calculated after 100 trials for each method.
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Table 2(a) shows that both the bias and the sample variance with method
I1 were about the half of those with method I. Note that sample :gé
variances with method Il were very close to the C-R bounds. A

For the second example, 6 data sets were used and z; = -0.8 + N
-:»- .
j0.4 so that Loy

Bylz) = 1+ 1.6277 + 0.8272 .

The residues were: cl(l) =1, cl(z) = 0.3 + jO.5

0.8 + j0.3,

(3) - o5 + jouz, ¢(Y

- -0.7 + 0.7, c1(6) = 0.6 + j0.2.

—_—

(8]
~—
1}

Table 2(b) shows that method II outperformed method I.

For the third example, 10 data sets were used and z) = 0.75 +

j0.48 so that

'.l "l"l"'

st
AN 'n"a’

r

By(z) = 1+ 1.52° + 0.7929272 .

v

The residues were: “ =1, cl(z) = 0.8 + j0.2,
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0.4 + j0.3,_c1(6) = 0.2 + j0.5,

"l "' )y

003 + j0.3, c1(8) = "0.2 + j0.3’
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Table 2. Comparison of Pole Estimators

bias: |Ei'bi'

var (bi'bi)

I

Il

I

I1

C-R Bound

8.24x10-3

3.76x10-3

3.85x10-"

1.67x10-"%

1.79x10-"

5.88x10- 3

2.89x10-3

2.67x10-"*

1.08x10-*

1.12x10-*

(a)

bias: |Bi-bi|

-~

I

II

I

I1

C-R Bound

4,50x10-3

3.49x10"

31 1.01x10-*

6.16x10-3

5.54x10-°

3.39x10-3

2.54x10"

3 7.74x10-°

4.99x10-°

4.42x10-3

(b)

bias: |61-bi'

var (bi'bi)

I

I1

I

I

C-R Bound

4,97x10-3

7.46x10"

*1 8,53x10-°>

5.22x10~3

3.94x10-°3

4.62x10-3

1.30x10"

31 8.11x10-3

3.95x10~5

3.38x10-°

(c)

.........
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Again Table 2(c) shows that method Il was a better estimator than method
I. Especially the bias for b1 with method 11 is about the one-fifth
of that with method I.

From all three examples, sample variances were pretty close to the
C-R bounds.
8.2 EXPERIMENT II

In this experiment we used 25 data sets from 5 observation loca-
tions for 5 incidence directions. The SEM parameter values are repre-
sentative of those for a thin wire [19]. Any data set for i =1, ..., 5

and ¢ =1, ..., 5 is given by

= (max)= (i): (2)= n (i,2)

i -3 i
yn(1’z) . kZI(r\((maX)nk(‘l)jél)an + nk nk Jk Zk ) + e

forn=0,1, ..., 49

where e(i’l) is an uncorrelated zero-mean noise vector with standard
deviation a.

Three complex conjugate z-pole pairs (s-poles in [20] were
translated) were:

= 0,5589 + j0.7325, z, = -0.2831 + j0.8396,

4 2

and 24 = -0.8320 + j0.2237

Normalization factors were:

nl(max) = -7.0728 - j1.9371, nz(max) = 1,4320 - j4.6624,

and 03 ™) = 3,0331 + j1.2755




Actual normalization factors in [20] were the above numbers multiplied

N
'.-"-.
. ::"..

by 10°.

Coupling coefficients were:

8, 8, N 8, 8s
g=1 1.0 0.92-30.005 0.76-3j0.008 0.60-j0.012 0.28-30.01
k =2 0.02 0.76+j0.01 1.0 0.92-j0.021 0.48-30.028
k = 3{-0.74-30.018 jo.02 0.76+j0.025 1.0 0.60-30.03

= Q° = = o = o = o
where 61 = (°, 62 = 20°, 63 35°, 64 48°, and 95 70°,
Natural modes were taken as:
=1 =2 =3 =4 =5
k =1 0.52-j0.01 0.71-j0.007 1.0 0.71-3j0.007 0.52-j0.01
k =2 0.088-j0.014 1.0 0.02 -1.0 -0.88+j0,014
k =3 1.0 0.71+j0.032 1.0 0.72+30.032 1.0

where five locations on the thin wire were at 0.18 m, 0.245 m, 0.5 m,
0.755 m, and 0.82 m (the length of the wire was 1 m).

For the first example, o = 0.5, Exact values of z-poles were
given. Each parameter converged to within an order of 10-® at 5th iter-
ation. The sum df the absolute values of the estimated parameter errors

is shown in Table 3 as a measure of fit.

Y pos s




We intentionally omit the results of some iterations because there were
no big changes in the errors after the 2nd iteration.

that the errors in the natural modes decreased significantly at the 1lst

Eie B g ey
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Table 3 shows

iteration. But after the lst iteration the errors seem to remain aimost
the same.
Table 3. Sum of Errors at Each Iteration (o = 0.5)
~ (i i () . (2) ~ (max)} _ (max)
1D ] 1 5,00, | 1[5 -
i k k K e k k L k k
init. est. -—- 0.74923 ---
lst iter. 0.23367 0.41741 0.19006
2nd iter., 0.23869 0.41665 - 0.18112
5th iter. 0.23862 0.41653 0.18026

For the second.example, o= 1,0, Again the exact values of the
z-poles were given. Convergence was obtained at the 6th iteration.
Table 4 shows that the errors in the natural modes decreased by about
half of at the lst iteration. For both examples, errors in the
normalization factors decreased at each iteration. We performed some
more experiments for o < 0.5. In all cases, the errors in the natural

modes decreased significantly only at the 1lst iteration.
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Table 4.

Sum of Errors at Each Iteration (o = 1.0)

RRRY

17 [3Hn 0]

11|

5 (g, ]

)

k

';k(max)_nk(max)

init. est.

R OO0

1st iter.
2nd iter.

6th iter.

0.69081
0.62938
0.62042

1.43337
0.71039
0.72258
0.72486

1.36592
1.30901
1.30044
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CHAPTER 9
CONCLUSIONS

In this dissertation we have introduced two new algorithms for
estimating poles given noise-contaminated impulse response data. One is
an algorithm to extract the reduced characteristic equation from the
weakest eigenvectors when the system order is overdetermined. This
algorithm is closely -~elated to Henderson's deflation algorithm [16] and
simulation results show that new method performed better than the exist-

ing method. The other algorithm is the iterative preprocessing algor-

i ithm (IPA) which is related to the Steiglitz-McBride method [5,7] and to
the Evans-Fischl technique [18] but has an advantage over either in both
E stability and computational complexity. The approximate IPA (AIPA)
l. ' which reduces the computational burden further was described. The AIPA
for the pure sinusoid case is related to Kay's IFA [7]. A
Also the C-R bound for the estimated characteristic equation coef-

| ficients, which is a valuable tool for evaluating different estimators

-~

: without finding roots of the equation was evaluated.
The IPA was extended to SEM parameter estimation. Using the IPA,

] it is possible to process multiple data sets at the same time to get an

improvement in pole estimation. Finally, an iterative scheme to esti-

mate coupling coefficients, and natural modes was introduced. Simula-

i tion results indicate that the estimation errors decrease most at the P
first iteration aftér the initial estimate. Together these results pro- :?;;J
vide a way to estimate the SEM description of a scatterer from muitiple f;;}j
data sets taken at different locations and with different directions of Eiii
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incidence, For large to moderate signal-to-noise ratios these estimates

meet the C-R bound and thus have the minimum variance of any unbiased

L2 PRE NN
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P
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estimators.,

So far the theoretical convergence and accuracy properties of the

Lo i e
.. N

TEAN I

IPA are not known. The IPA assumes the system order is given., The next
phase of research should be to investigate the convergence property of

the IPA, and to devise an algorithm combined with order selection.

2

Another interesting problem would be to improve the AIPA., As discussed
in Chapter 3, the AIPA approximates (FL*FL)'I. It would be useful to

h imation for F, (F, F, )"IF, i
ave an approximation for L( L FL)TFL instead.
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APPENDIX A

The data matrix W and the matrix G are as in (13) and (15)

respectively.,
Th, Every column gy of G is in the null space of W.

(proof) Let wj be the jth row of the matrix W. If wjgm =0

1, «.os M=K+l, then the proof is done.
M. T
]

for all j =1, ..., \-M and m

M]T and u; = (1, Z., vees Z;

Let = [1, 2, «v., 2 i [ ; ; where (Zi) are system

poles. And let v = [1, z, ..., zK]T vi = 11, Zis eens ziK}T and x =
b T. Then ngu1 = m 1(xTV

(b ) =0 for all m,i.
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N, APPENDIX B

Here we want to show that the Equation (36) is identical to the

Equation (40).

By partitioning, F and Y become

Fo | T K 0 |3«

= Lt Frl L - R N-K _—
. K N-L o]

A A3 S B RS B

Y| Nk Y

Using (B-1), (36) becomes E;;}

x ~
(B-2) (FLYOL + FRYL) Q (FLYOL + FRYL) X1

‘
oL,

!
it

. -
= - (F¥oL * FRYL) Q@ (Frygr + Frig)

. e g e e e
Tt
Ch e e e
B ‘ Tt L.
. o . BT
. P L
. st e e e
' PR

"- * _1 *
where Q = I - F (F F )7°F

NI

Equation (B-2) is sfmp]ified to

RIS TR

(8-3) (FRYL)*[I - FL(FL*FL)'IFL*](FRYL) X1

¢

™
D

A
[ ]

1

C 1 . .‘.I.'..‘A .'.:
% BRI

A ’ ] - B .

s : -

FoF

* * -
== (FRYL) [T - FL(FUFL)TFL ] Fryg S

.
it

) I'.':'n': ’

a = aa A
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1
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aalarale el e -

A A o

=" =F,'F
=F, F = F,

*
2 Fq and FR F

*
From (B-1), Fp F| ” g *

Thus, (B-3) is rewritten as

(B-4) (FZYL)*[I - Fl(FL*FL)-lFl*] (FZYL) X1

_ * * L1 *

Equation (40) is

* * -1 * L |
(8-5) Y (oD ) Y xp ==Y, (oD ) Yq

tf (00")7te £, (1 - Fy(F R LF

cal and the proof is done.

1 2°

* .1 * * 1. *

(proof) By partitioning, B becomes

K

....................................
.......................
..............................

.....
',

then (B-4) and (B-5) are identi-
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X WL

o )
N 'tij
R .l . .1 roey
: : _ -1 _ - el
e left side = (0D )™ = [0;D; + DyD, ] 2
o _-'_-
-1 * -1. * -* .1 _ .

::' < \.'.':
* * - .- '.-'

e rignt side = F, [I - F(F F)7F 7T F, R0

1.

:' _ % * * -1. * _ -
: = Fp [1-Fy(Fg Fg*Fy Fy) 7 1F = 0 I

We want to show that P~Q = I. -
- ;‘_-._:1
2 Because i
:_:i .’.'1

2
* _1 * _ * ® _1 %*
I+ (Fg Fg) 'Fy Fy = 1+ (F Fo)TF, Fp, Eﬁﬁ
it is obvious that 7 e

* -1 * %* _ * -1 *
(Fg Fo) ™ (Fg Fo * Fy Fy) = I = (Fg F) T Fy Fpe

Postmultiplying (FO*F0 + Fl*FI)-l on both sides yields

.
»

e -

- * _1 * * _1
(Fg Fo)™" = (Fg Fg * Fy Fy)

.r-__:-

_ * L] * * LY |
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APPENDIX C
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Let F(N) be an NxN matrix as defined in Chapter 3. In this

.,

5

% Y

(]

appendix, we want to describe what happens to FL(N)*F (N) for

e
(Q:P

large N. Note that notations are slightly changed in this appendix.

1
A

| Fedt

Consider the infinite matrices

+
. £

’

w

te

“n
1]
oo
(=]

—
O

[ ]
—
A
-

no

]

()

-
[

= - FaB3Fy

For convenience, assume matrices B and F are real, But the result can E' .
[--]

be extended to complex case immediately. Also assume fjfj-i < w®
3=

for i =0,1, ..., K.

It is obvious that
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R can be interpreted as an autocorrelation matrix of the inverse filter

coefficients such that

ro rl eece rK_l
rl ro ease ,‘K-z -
(C‘Z) R = . . XXX . where r-i = g fJfJ~-‘
. 'Y ° J"1
-1 "k-2 0 "o and
(C-3) Rxy=-r where r = [r,, r r ]T
I 1’ 2’ ceey K .

Because we consider infinite matrices, the following holds (by C-1)

. ) Fo O 81 . FaBiFo
F. = = F By = - Fo= -
1 2730 FooOF 0 0 F.B.F

1 P2 18:Fp

so that

T T T

(C-4)  FyFy =Fg By RByFy

] T T

Now we want to show that R~

-1 T T
The R ™ = BOB0 - 8, B1
(proof) Denote [0 1]
J = 1
1 0
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Premultiplying (postmultiplying) a matrix by J results in swapping all
the rows (columns) of the original matrix. Then one can show that

(using C-3)

BlRBOJ

is always symmetric. Thus,

(C-5) BIT(RIRBOJ)BI is symmetric.

It can be shown easily that

(c-6a)  JB, =B,'J and that
(C-6b) BOBlTJ is symmetric.
From (C-5),
T T T
(C-7)  B,'B,RBJB = B,'B,RByB, ") by (C-6a)
TToo T
= (BOB1 J) RB, '8, by symmetry
o T T
= 8,8, RB, 8, by (C-6b)

Because B1 is nonsingular for bK + 0, postmultiplying Bl'1 on both sides

of (C-7) yields

B.'B.RB.J = BB

T T

1 1

T
B1 BIRB0

T
1

T
1

BOB JRB, 'J

.
= BB, (JRJ)B, by (C-6a)

4 3 0




Thus,

' (C-8)

-1 _ T
To show R * = BOB0 - B1

T _ T

T

T T -

T T

Substituting for R = F0 F0 + F1 1°

oo T T To (¢ T
= BBy Fq Fy - By B (Fy Fg * Fy

T

T T T
(BOBO - B1 Bl)(F0 F0 +Fy Fl)

T
00 1°'1

Tee T T T
BOBO (FO B1 RB1Fo) - B1 BIR + 1

1

T
(BgBy RBy - By B,RBy) Fo + 1

=1

B1 , we need to show

F)+ 1

by (C-4)

by (C-8)

Q.E.D.
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APPENDIX D
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‘l

In this appendix we want to show that .

Y
—l ...

L 2
‘)
T,

©-1)  lim FLNFLN = 0 o

when the roots of the characteristic Equation B(z) = 0 are on the unit
circle. Suppose the roots are distinct, then each f, can be rewritten »‘i"‘

as

a; exp (jein)

—
o
)
N
S
-ty
H
Hpe &R
=
N
>
[}
i A

-
T,
Y1)

X LR
IR

'
L4
y

¢
:

where 0 < 91. <2n

1} . . '."‘
a8y Ay ety

It is easily shown that ‘ .

« 0. ,....,.
"." Iy byt
. a ¢t » B 8
e
v .
'

v

z,0 0z = lims explj(e -8, )n] = s
n=0 * N n=o m ok 0 ifm#k -

Using (D-3), it is easy to show that .
” n N " N - ‘rt::\'
o M "2 Tka -
. 1 * - L) _ - ~ ~
(D-4) Tim 'N' FL FL =R = l"o Pl xx rk_z -:
hermi . . e
tian . .
o
\.;'

~

K
. 2
where r = 121 exp(-Jmei) |a1.| , form=0,1, ..., K-1, l-";i:}_
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i 1 1 ’ cee s 1 ]
exp[ jé, ] exp( jo, ] cees exp[ o]
Let Q = exp[j281] exp[jzez] cees exp[jZeK]
EXD[J(K-E)GI] exp[j(K-l)ez] cone exp[j(K-l)eK]

and

. 2 2
A = diag [l°1|2 , l°2| yoeees o] ], then

(D-4) is rewritten as
*
= QAQ .

Because 0 is nonsingular and A is positive definite and diagonal, it is

shown easily that R is positive definite and invertible,

Let R(N) = FL(N) FL(N) .

2|

*
As mentioned in Chapter 3, FL(N) FL(N) is nonsingular for each N and so

is ﬁ(N).
FLN) FL(N) = NR(N)

* -1
It is shown [7:Ch.4] that if A is nonsingular and 1im A(k) = A then for
all sufficiently large k, A(k) is nonsingular and 1im A(k)-1 = A-1,

Because 1im R(N) = R and R is nonsingular,

Vim [F (NF ] = tim & R1=0,

N+ Nooo
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