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CHAPTER 1

INTRODUCTION

In a variety of applications it is desirable to determine the nat-Iural frequencies or poles of a system from a noisy observation of its
K impulse response. A direct approach of minimizing an error with respect

to poles and residues is a highly nonlinear regression problem. Except .*

for low order cases this nonlinear regression problem is difficult to

solve directly.

In general, it is earsier to estimate the system characteristic

equation first, and then find its roots from the estimated equation.

Let MLbe the maximum likelihood estimate of x. The invariance

property of the maximum-likelihood estimator [1] states that if f(x) is

an invertible function defined for all x, then the maximum likelihood

estimate of f is just f( In our problem if the estimate of the

characteristic equation coefficients is of maximum likelihood, then the

roots of that equation are the maximum likelihood estimate of the system

z-poles.

The pole estimation techniques are extended to the SEM (singularity

expansion method) parameter estimation. The SEM formalism began from

experimental observations concerning the transient electromagnetic

response of complicated scatterers such as missiles and aircraft

[2,3,4). Instead of analyzing various parameters of a certain scatterer

* analytically, we can compute SEM parameters directly from the induced

transient current data. It was observed that damped sinusoids were

dominant features of typical transient responses [2). T'he response of aIr

scatterer to a incident.implse.p.ane.elecromagnetic.wae.is.expre.se
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as a sum of complex exponentials. This sum depends on a few param-

eters, namely natural frequencies which do not depend on an observation

location and an incidence direction, coupling coefficients which des-

cribe the coupling between the incident field and the scatterer, and

natural modes which describe the spatial amplitude variation in the

induced current [2,3,4].

In Chapter 2, we review the covariance method and the singular

value decomposition (SVD) method. Also a new algorithm is described to
extract the reduced characteristic equation from the weakest eigen-

vectors when the system order is overdet~rmined.

In Chapter 3, the iterative preprocessing algorithm (IPA) is pre-

sented. This is related to the Steiglitz-McBride algorithm [5,6]. But

this IPA not only reduces significantly the computational burden of the

existing algorithm; it also improves the stability. The approximate

iterative preprocessing algorithm (AIPA), which further reduces the com-

putational burden, is discussed. The AIPA for the pure sinusoid case is

related to Kay's iterative filtering algorithm (IFA) [7].

In Chapter 4, the Cramer-Rao bound for the system transfer function

parameters is described. This is a very important tool for evaluating

different estimators.

Some simulation results for the new SVD method, the IPA, and the

AIPA are given in Chapter 5. The sample variances of the coefficients

using the IPA lie exactly on the C-R bound curve for moderate SNR. This

argues that the IPA converges to the maximum likelihood estimator for

some range of SNR values.

In Chapter 6, the general SEM formalism is reviewed and a new

algorithm is described for estimating natural frequencies given multiple
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observations. Also the C-R bound is calculated for the characteristic

equation coefficients for given multiple data sets. __

In Chapter 7, an iterative scheme is proposed for estimating SEM

parameters, such as coupling coefficients, natural modes, and

normalization factors.

Some experimental results for SEM parameter estimation are given in

Chapter 8.
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CHAPTER 2

SVD METHOD

2.1 COVARIANCE METHOD AND SVD METHOD

Suppose that there are N samples of the observed data sequence

y(nT) consisting of K complex exponentials'plus a zero-mean,

uncorrelated noise e(nT) such that

K
r - y(nT) = ciexp(sinT) + e(nT) for n = 0, 1, N-I (1)- i=1.,

where (s.) are the poles, (ci) are the residues, and T is the

time increment between successive samples. Let

K
wn = ncz (2)i =1 "

where the z. = exp(siT) are the poles in terms of the z-trans-

form variable. Then with no loss of generality, (1) becomes

Y Wn + en (3) -
Yn wn en

The characteristic equation with respect to T is

6r
B(z) = b0 + blz-1 + ... + blzK (4)

Once we obtain an estimate of B(z) from the data sequence (y .

finding the roots of B(z) = 0 is an algebraic procedure. The inverse

mapping

. - . .....
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=i [logizil + jjarg(zi)}]/T

is used to convert z-poles to s-poles, and residues can be found by a

linear least squares method. Thus the main problem is estimating the

coefficients (b.i).

In terms of the difference equation

K
I b iwn-i =0 for n =K, K+i,., N-i (5)
i =0

K
Define dn b ben for n = K, K+1, ... , N-1.

n i= =0 n-

With noise contaminated data, (5) becomes

K

i~ 'i- d dn for n K, K+i,., N-1 (6)

where the (dn) are due to noise and are termed the equation error. In

matrix form (6) becomes

Yj 2 K+l b K d K+1
* bl
* . .K-1

y x = d (7)

...........
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By letting b0  1, (7) becomes

YLXI + = d (8) "
L I. + -

where YL is the matrix consisting of the first K columns of Y, yR is the N

(K+l)th column of Y, and x, = [bK, bK-l, ... , b1 ]. To minimize d d of

(7), we need to solve

*, o

Y L Y L Xl = " L YR (9)

This approach to estimating the (bi) is called the covariance method

[8]. It has been observed that this method has a statistical bias in

the estimates [9]. The least squares process converges as N becomes

large, but it yields biased parameter values which are a function of the

standard deviation of the noise. It is unfortunate that even for small

noise levels, this bias will produce large errors on the estimate si.

Kay [10] examined a similar problem in autoregressive spectral estima-

tion.

The singular value decomposition (SVD) approach deals directly with

(7). The SVD is used to solve the homogeneous equation, i.e. to find

the null space of the Y matrix. The SVD of Y is

Y - USV (10)

(2 .--.. .%

where S =

0 aK+1 * r

0 N-2K-1

7m
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Here (ai) are termed the singular values, which are the square roots

of the eigenvalues of Y'Y, and a, t a2 _ . ;. OK4; U and V are unitary

matrices of orders (N-K)x(N-K) and (K+I)x(K+I) respectively. Let S' be

the resulting matrix obtained by forcing the smallest singular value

aK+1 = 0 and let W be the matrix which is constructed in the same

manner as Y with noise-free data. The matrix Y' = US'V* turns out to

be the closest matrix of rank K to Y in the sense of Frobenius norm

[11]. Because the rank of the matrix W is K, it is reasonable that the

weakest eigenvector of Y*Y is an estimate of coefficient vector x.

But what statistical properties do the eigenvectors have? In particular

can we say that the weakest eigenvector is an unbiased estimator of x?

It was pointed out in [12] that

E[Y*Y] = W*W + I(N-K)a 2  (11)

where E is an expectation operator, I is the identity matrix, and a2 is

a variance. The eigenvalue decomposition of (11) is

EEY*Y] = V[D + I(N-K)a 2]V* (12)

where D is the diagonal matrix whose elements are the eigenvalues of

W*W and V is the modal matrix of W*W. Note that the eigenvectors of

*2W*W are preserved and each eigenvalue is increased by (N-K)a2 . This --

property can be used for order selection. But (12) itself cannot be a

proof of the supposition that the expectation of the eigenvectors is

unaffected by noise, i.e. unbiased, because the eigenvectors of E[Y*Y]

7

-.. oC-.•.
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and the average of eigenvectors of Y Y will be different. In fact a

small perturbation on WW might give a large error of eigenvector

estimation, especially when some eigenvalues are clustered together

[13]. At present no proof is available to support the claim that the

expectation of the eigenvectors is unaffected by noise. However, some

Simulation results show that pole estimates using SVD-based methods are

much less biased than those using covariance method [14,15].

2.2 DEFLATION ALGORITHM

So far the matrix Y was taken to be (N-K)x(K+1). But the true (or

* .appropriate) order of a system is usually unknown a priori. Construct-

ing a data matrix as (N-M)x(M+I) and solving it to obtain an estimate

results in M-K extraneous poles. It has been observed empirically that

the presence of extraneous poles seems to protect the true poles against

noise-induced perturbation [14,15]. Unfortunately it is not known how L
to select an optimum M given N and K without examining the error for

"ach M.

If we overestimate the order, then the SVD of W (of order (N-M) x

(M+I)) becomes

W = USV (13)

a1  0

whereS= 2

... ~ °M+l . .

"° , .' °

0 N-2M-1

* .. -

,- . - .

[: . .
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1-r 2 _ 41 K2 *=
0 + and U and V are the

unitary matrices of the appropriate orders. The last M-K+1 columns of V

are in the null space of W. Let

,

,Y Sunita~whr v.tis he ith columnofraeodes V.as - olmso

K-

The couni o pn the null space of W. Defnean(M1)x.-],,-

G btc o (15)

1 -

0 b~
0

bo

It is shown in appendix A that every column of G is in the null space of.i ( M
.

related as follows.

.4G=HR (16)
m;-.-...

.. ' * &.a . .' p t,
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Given the SVD of Y, we can examine the o's. If there is a signifi-

cant drop between successive values of am and am+l, and if the

singular values after -m+1 are relatively small and there are no big

changes between successive singular values, then the order can be selec-

ted as K = m. Now any column vector of H is a candidate for a coeffic-

lent vector. The problem is how to estimate G efficiently, given H.

The essence of Henderson's deflation algorithm [16] is as follows.

1) Perform a forward Gauss elimination with partial pivoting to

reduce HT to an upper trapezoidal matrix, leaving a

triangular pattern of zeros in the lower left corner.

2) Perform a backward Gauss elimination without pivoting to reduce

a triangular pattern of zeros in the upper right while

preserving those in the lower left.

This resulting matrix was suggested [16] as an approximate GT

except for row scaling. There is a problem with this algorithm.

Because of the finite word length of a digital computer, the use of a

backward Gauss elimination without pi-voting may result a large error.

-- '. This error may emphasize certain directions which are not dominant.--

originally.

We suggest an algorithm that overcomes this difficulty. Let gm)

be the mth column of G and r(m) be the mth column of R, then from

Equation (16)

FHr(in) = g(in) for m = 1, 2, ... , M4-K (17) i:)
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By partitioning, (17) is rewritten as

0

r(m) b ~ K (18)
H 2

0

H3

Because the (b) are unknown, r cnb stmtdsuhta

r(m) satisfies the following set of M-K homogeneous equations.

---r(m) 0 (19)L

Intentionally (19) is changed to the set of inhomogeneous equations

such that

H 1L h 1R

r ()- (20)

H K h 3R
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where r (m) is the vector consisting of the first M-K elements of r(m ),

HIL (H3L) is the matrix consisting of the first M-K columns of H, (H3)
and hlR (h3R) is the last column of HI(H3). Gauss elimination with

(possibly) complete pivoting is used to solve Equation (20) for each m

to get R. Now

HR G (21)

in (21) is intended to approximate G except for column scaling. From

G, a (K+1)x(M-K+I) matrix Q is obtained by eliminating the zeros and

shifting every element of the kth column of G upward (k-I) times for

k = 1, ... , M-K+I. Each column of Q should be an estimate of the

coefficient vector. Taking an average of (M-K+1) columns of Q after

normalizing each column with respect to the last element of that column

is the final reduced estimate of the true coefficient vector. Gauss

elimination with complete pivoting to estimate each r should cure

the problem of emphasizing a particular direction with Henderson's

deflation algorithm. And averaging normalized columns of Q should

alleviate the problem further. Simulation results for the examples

chosen for Experiment I in Chapter 5 show that sample variances for

coefficients with the new algorithm were always smaller than those with

Henderson's deflation algorithm for K = 2 case. Also Experiment II in

Chapter 5 shows that the bias with the new algorithm was relatively

smaller than that with the existing method.



CHAPTER3

ITERATIVE PREPROCESSING ALGORITHM

The problem of estimating poles can be posed in terms of a

time-domain system identification problem. Suppose the unknown system

has a K-th order transfer function given by

H~)== a + a ZI+ *.. + a Z_(K-1)
A (z') 0 1 K-iBHZ -1 -K (22)b + bz +a-*+ b z0 1 K

=0 +1~~ + 2r+
where b0  I for convenience and (w )are samples of the impulse0 n
response. This can be written in terms of the difference equation

n
ban9 n 0 , 1~ , K-i

0, n>K (23)

or in matrix form (with N samples of the impulse response)

w0  a0

a1
*K-K

Wi w .. WK 0 (24)

w .... wK - b10

1 0
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(24) can be rewritten as -

I W
0a 0

1wK 1  a 1 (5

bK ..... b1  1 *wK0

0bK b 1  1 wN~

B w 0 E

We observe y w + en for n =0, 1,.. N-i, where (e )are samplesn n nn
P of uncorrelated, zero-mean noise. In vector form[

Y w + e (26)

T Twhere y = 
t O'***'YNi 1  and e [ eo...,eNi1 . Given y we want to

estimate the denominator coefficients in (22). Let Y be the matrix

which is constructed in the same manner as W with (y )as elements.n
Then f rom (24) we have....

* = + d (27)

Iwhere d =(Y -W)x =Be is called the equation error vector. Now (27)

can be rewritten as



15

Be Yx-f (28)

0r

Because Matrix B is lower triangular and has I's as diagonal elements,

it is nonsingular and invertible. The inverse of matrix B is easily

obtained by forward substitution.

1

f f1  1

F =B 1  (29)

~N-2 N-3 .... 1

~N-1 N-2 ~ 2  f1  1

where f =10

i~j 1 f-j1 < j <K
and f. j K* L ~= b bf ~ K+1 < j

1 mi

Note that 1IB(z) =1 + f fzi

By introducing the matrix F, (28) becomes

ar

e F[Yx )=FYx F Fa '30')-...
(0 J L
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where F is the matrix consisting of first K columns of F. Let YL be
LL

the matrix consisting of first K columns of Y and YR be the K+1th column

of Y. Note that y = Define xI = [bK, bK., ... , blf] Then (9) -

becomes

e = FYLXI + Fy - FLa (31)

Because F (and so FL) is a function of (bi), minimizing a sum of squared

error J = e e is unfortunately a highly nonlinear problem. But fixing F

as a constant matrix and setting the derivatives of J with respect to x

and a, we get two conditions: - -

* * - .

FL FL a - FL FYL xI = FL Fy (32)

(FYL)FL a + (FYL)FYL xI  -(FYL) Fy (33)

For a fixed F, the problem is linear in a and xI  An iterative pro-

cedure can be used to minimize J. The first estimate of a and x

(0) (1)results from taking F as the identity matrix. With this x 1
) we can

F( e anw simt) (2) (2)
construct F to get a new estimate a and x2 , and so forth. At

each iteration, the previous denominator coefficients are used to get

new estimates, so that a(m)and xi(M) are found by solving a system of

linear equations

(m"I)L*F (m-) -((m'I)Y)*F(mI ~ t M) -(F m l " (m- I) ,.*F-"y

- ~~~~( Y )F F)Lx)Y*F y .:.,- (in .(min'l (*(in...l 1*~-)
[(t 1)L)*in1 'LW) W a L j~m

for m = 1, 2, ... , and F(0 )= I . (34)

. .. . . . . . ..

S' ,- . --- , - .". --.- " . . . .-.-. , -. ... . "-...-' "" -"- " 
-

*" - .. . . . ,. . ,.. , .,.i -
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If convergence is obtained, J = e e is minimized, which is the error

we want to minimize. But if the SNR is very low, it is hard to expect

convergence in general. One can check that (34) is an explicit form of

the Steiglitz-McBride iterative algorithm with an impulse input [5,6].

This method has been widely used and the convergence and accuracy prop-

erties for large data lengths and/or high SNR assumptions are well-known

[17]. At each iteration, it is necessary to solve a system of 2K linear

equations.

3.1 ITERATIVE PREPROCESSING ALGORITHM

Because the rank of the matrix F is K, the matrix F F is theL L L
hermitian positive definite and invertible. From (32), we get

.--,-

a = (FLF [FL FYLXI + FL Fy] (35)

Substituting (35) into (33) we obtain

(FYL) Q FY x, -(F Q Fy (36)

where Q I - FL(FL FL) FL

With a fixed F, this equation is linear in xI. An iterative procedure

analogous to that mentioned above is used to solve (36). The first

estimate of x 1  results from setting F(0 ) = I. With this x (1) we can
(1)*F 1) ]-1,-..

construct F( I ) and calculate [FL FL to get new estimate xi(2)
L• L

and so forth.

.. . . . . . . ° . . . - - . . . .. . .. • .. .. U
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(F(m-1) Y* Q(m-1)(F(m-l)y (m) .(F(m-l)YL Q(Ml)F(M-l)y
,'-:, YL)  YL)  'I  L ) Qm-) m' y

, (3_7)
( -) (m -I) *F I"',

where Q(m-l) I F (FF (m-1))'I(Fm

for m 1, ... , and F

At each iteration we need to solve a system of only K linear equations

which is an advantage compared to the S-M algorithm. If convergence is

obtained, then again the mean-square error is minimized.

Before proceeding further let us introduce the Evans-Fischl

algorithm [18]. Partitioning the matrices in (28), we get

De = Yx d (38)

where D is the matrix of the last N-K rows of B, and Y and d are as in

(7). The error we would like to minimize is e*e. Because the matrix

D is (N-K)xN, we cannot solve for e directly. But using the SVD

D USV (DO* U(SS*)U* )

Thus, e = VS U d which is the minimum norm solution so that

min e e = min d U(SS) U d = min d (DO )ld

i.e., e

min e e : min (VLXI + yR)* CD)'(YLXI + YR) (39) .7
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where YL and y are defined as in (8). With a fixed OD , the minimum of

e*e would be given by the solution for x1 from the normal equation

YL (DD* -YL x : "YL (DD*)'IyR (40)

Since D does in fact depend on xI , we can use (40) but with itera-

tions. It is shown in Appendix B that the iterative preprocessing

algorithm, i.e., Equation (37) is basically the same as the Evans-Fischl

algorithm. At each iteration an (N-K)x(N-K) matrix inversion is

required in the E-F algorithm, but inversion of KxK matrix is required

for the IPA. Readers might notice that the matrix multiplication FY is

nothing but an inverse filtering and it requires only about NK-K 2/2 mul-

tiplications. When N is very large, the IPA which avoids inversion of a

large matrix ((N-K)x(N-K)) should be more stable than the E-F algor-

ithm. For large N, about (N' + N2K)/6 multiplications except for

solving a system of K linear equations are required at each iteration of

the E-F algorithm. The Equation (36) is rewritten as

[(FY) (FY) - (FL FY)*(FL FL (FL FY)] x 0.

As mentioned before NK-K 2/2 multiplications are required to compute each

of F and FY. To obtain (FY) (FY), NK2/2 multiplications are required.

Because of the special forms of FL and FY, only 2NK is required to com-r,-,
pute (FL FY). Thus, including an inversion of (FL FL), about (3K3/2 +

4NK + NK2/2) multiplications except solving a system of K linear equa-

tions are required at each iteration of the IPA which is a great advan-

tage compared to the E-FA especially when N >> K.

"..

.. :.::-::. -: ._ ,-,--.. ,-..-...-........................... .. . .....
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3.2 APPROXIMATE ITERATIVE PREPROCESSING ALGORITHM

The disadvantage of the IPA is that a KxK matrix inversion is

required at each iteration. In at least two cases of interest we can

avoid such a matrix inversion.

3.2.1 Damped Sinusoid Case

If the signal consists of damped sinusoids, i.e. each zil < I for

i = 1, 2, ... , K, then from a practical viewpoint the signal has finite

duration. This observation can be used to simplify the calculation of

(FL*FL) 1 As a result both the computational load and the stability

of the IPA are improved. Suppose the B matrix is partitioned as

K(C B0  0

B= K _ BI (41)

B2  N-K

N-2K 0 J--
K N-K

Let R = lim (FL FL). It is shown in Appendix C that R relates to the
N. -

matrix B very simply as

R BOB0 - B1 BI  (42) 7
Approximating (FL FL- 1 for finite N'by R 1 , (36) becomes

".';'

(FYL) FYL xI -(FYL) Q Fy (43)

where Q = R - FLR"FL

L.L

<
U~U . . .. . . .. . . . . . .

S, i"'.'°.['. " ''°' 'jo. .x o -- :-o- -'o. . - . .'• :. o: % .-. '. ,,. . , -% ° . o. . " - -,. .. ° . ° - . :
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Convergence and accuracy properties are not available yet, but

simulation results for the examples chosen in Chapter 5 show that this

approximate iterative preprocessing algorithm (AIPA) converges to the

maximum-likelihood estimator for moderate SNR.

3.2.2 Pure Sinusoid Case

It'is shown in Appendix D that lim (Ft FL) ' = 0when the signal

consists of pure sinusoids, that is when the roots of B(z) = 0 are on

the unit circle. Because

lim a : lim (FL FL) FL FYLXI - FLy] =0
N+c N +w

(33) becomes

(FYL) FYL x, = (FYL)Fy (44)

These equations are the same as Kay's IFA (iterative filtering algor-

ithm) [7]. Our derivation emphasize that (44) is an approximation which

is good when N + - . We show in Appendix B that (36) can be rewritten ..-

as

(F2 YL) Q F2YL x --(F 2 YL) Q F2yR  (45)
2 -I* A I 2 * 2 iR

where Q = I- FI (F L FL) F,

Here YL and YR are defined as in (8) and= F o:O )K FL"
F0  0 KFO-'""

0 K

F = -....... F L = ---.
F, F2  N-K F..,

K N-K

K 22

* ............ . :
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For large N we can use (FL FL)_ 0 to approximate (45) as

(F2 YL) (F2YL) xI  -(F2 YL)F 2YR (46)

Equation (46) is the same as (44) when N = - . Note that the matrix

multiplication F2Y is different from the matrix multiplication FY, be-

cause the former filters the columns of Y separately and the latter

filters the data (yo, yl, ... 9 YN-1 )"

Equation (30) for the error is rewritten as

e = FL(Yox - a) + F2Yx (47)

L 0 2

where YO is the matrix of the first K rows of Y. To minimize e e given

a = Y x with a fixed F2, we need to solve the set of normal equations

which is identical to (46) with iterations. Both Equations (44) and

(46) are good when N = - . Equation (44) comes from setting a = 0.

This corresponds to setting the initial conditions in the difference

equation to zero. If we use Equation (44) to estimate frequencies when

N is small, a = 0 is not appropriate. This explains why Kay C7] got a

large sample variance for the frequency estimates with large SNR. On

the other hand Equation (46) assumes a = Y0 x, i.e. sets initial condi-

tions to yo,yl, "''"YK-1' which is more reasonable especially when N is

small. Because (46) filters the columns of Y separately, it requires an

additional (N-K).(K-I) 2 multiplications compared to Kay's method.
"4,

".-..-i " ;'"~~~~~~~~~~~~.. ..-.-'.--'. .-....-.-.-.-.-... . .... "....--.. ... . -............ . ".".
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CHAPTER 4

CRAMER-RAO BOUND FOR COEFFICIENT ESTIMATION

The previous chapter described an algorithm for estimating natural

frequencies. We do not know how to describe generally the convergence

property of the IPA. Simulation results using the IPA can be compared

with simulation results using other methods. But is is more interesting

to compare with the Cramer-Rao lower bound.

In this chapter we shall describe a calculation of the C-R bound

for the coefficients of the characteristic eqtmtion. The maximum-like-

lihood estimate is an unbiased estimate whose conditional variance sat-

isfies the C-R bound with equality. As mentioned in the introduction if

the IPA converges to the ML estimate for the characteristic equation

coefficients then it is maximum-likelihood for the. natural frequencies

as well. The C-R bound is stated as follows [1]. Let y be an observa-

tion vector and e be any unbiased estimate of a vector 8, then the con-

ditional variance is bounded by

var( ili) > J i (48)

where the matrix J is

-- EE-j { g log p.(y8) T] (49)

and p(yle) is 'the probability density function for the observation given

the unknown parameter vector. In our case, the model is either

i:5~~.o.. ...............-
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- [at

IL I
!l'W = "- LX + 0) (50) >- .""''

or from (25)

w =F a (51)

L

The observation is

y w + e (52)

where now we assume that e is a white Gaussian noise vector with

variance 02

Let 6 = b, b ., a , then the conditional den-

sity function of y is

p(yI) (21a2)N/2 exp 1 (y~w)T(y-w) (53)

To evaluate the bound we must compute the second partial derivative of

log p(yle) with respect to e. First we will evaluate -w Because

FL in the Equation (51) is not a function of a, !- is simply

IT FL (54)
!a'J

"°. ,

• ,.. .~' -I .
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Rewrite Equation (50) as 1

W0 0 . ... *t 0 8
0

I~)

b K

wK~ 0 w0 ......... WK2+ ai (5

WKWO Wi ........ w

WK~ W1 ~ W2  ..**... WK 0

wN- wN-K-i wN-K ... N-20

N~ 
11 10*

We claim that

( aw) - FW(56)

Let I(m) =mth row of the identity matrix,

F m mth row of the mat ri x F , and

WL (i) mith column of the matrix W L*

Then from (29) it is easy to show that

K F(in-i) F(m) 1(M) 
(57)
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And it is obvious that

(wm+j - (K+2) for m+j>K+2
=~)-j (58)

for noj<K+2

We will use induction to show that (56) holds. From (55), it is clear

that

1w wm -o_ _

w and 0 m<i (59)

for i 1 1, 2, ,,., K

Thus, Equation (59) satisfies Equation (56). Suppose Equation (56)

holds for m = 0, 1, .. , M, i.e.

m (m+1) (K-i+l)
-F F WL (60)

for i = 1, 2, .,,, K and m = 0, 1, ,,,, M.

Then for m = M + 1,

aw K
WM+1 a -bw:'?

Ib = 
- .F [ - w M+1- j ]  (61) F

K w
- - __ -M+1-j

K bF(M+2.j)' (K-i+l )  ...

" WM+l I + I b• i FM WL by (60)
jai

I:-A
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- M~ ~ (M+2)L (Kii M+ Kil by (57)

w M+I- (KFiwL)L

- (M+2)-W Kil by (58)
L

for i =1, 2, ... , K

By induction (56) holds for any I ,2, .. ,K and mn 0, 1, .,N-i

Thus, from (54) and (56)

[-FW F](2

so that

.. log p(ylo) =~L [-FL1' r~(Y-w) (63)1

Let G(8) (-FWL FL] then

~ ~ lgp~OjT (64)

-f [-[(y-w G(e)]

- -~ L ~~}G(e) -(yw)T G(e)jFa
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because Er(y-w)] =0 and [.w G= )

- E+. . log P(Ylej } (65)

2 1 G(e)G(e)

~1 (FL)TFL L) ~r L

-~ ~FTF T ]
Final ly,

~-l 2[ 0 T ](66)
a- T -

S(FW) rI-FL(FL F1  FL ]FWL (67)

so that

var(e 6e. > a2  .

where e. = b Ki+1 for i 1, 2, .. ,K

Note that the C-R bound is related to the noise free data and the coef-

ficients of the characteristic equation. The matrix P is the

matrix of the normal equation which is solved at each iteration of the

r IPA.



CHAPTER 5

SIMULATION RESULTS

In this chapter we give two kinds of experimental results to

support the algorithms proposed in previous chapters.

5.1 EXPERIMENT I

First we consider two data sets consisting of a pair of complex

conjugate damped sinusoids in. white Gaussian noise. j
n n- n

Ynclzl+ C + en for n = 0, 1, ... , N-1

The first data set has cI = 1 and z -0.8 + jO.5 so that

2 + 1.6z-

HI(Z) =I + 1.6z "1 + 0.89z "2

SNR is defined as SNR= 20. logi0 (2/a) where a is the standard deviation

of the additive noise en. Note that this is peak SNR. C-R bounds for

b= 1.6 and b2 = 0.89 were calculated by the method suggested in

Chapter 4. The variances with respect to the true coefficients were

calculated after 500 trials at different SNR's for each method. The

data record length N was 30 so that the AIPA is very close to the IPA.

A 21x10 data matrix was used for the SVD method. As shown in Figure 1,

r both the AIPA and the S-M algorithm performed as maximum likelihood

estimators up to 12 dB of SNR. But when the SNR was 10.5 dB, the AIPA

definitely outperformed the S-M algorithm. This indicates that the AIPA

was more stable than the S-M algorithm. For the SVD method, eigenvec-

tors corresponding to the 8 weakest eigenvalues were used to estimate

- ,
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* 4P

1P

10 log (1/var) 10 log (1/var)

*50- b 1  1.6 50 b2 0.89

*40- 40

C-R bound C-R bound

30" 30.

20 420

SAIPA *AIPA

101 0 S-MA 10. 0 S-MA

A New SVD A New SVD

0 10 20 30 0 10 20 30.

SNR dB SNR dB
(a) (b)

Figure 1. (a),(b) Comparison of pole estimators.
(b1  1.6, b2  0.89)

2 .
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the coefficient vector as described in Chapter 2. The sample variance

of coefficients obtained by the SVD method was about the double the C-R

bound.

As a second example, cI = 1 and zI = -0.7 + jO.5 were used.

The SNR is defined as before and N = 20. Again 500 trials were per- __,.

formed at different SNR for each method.

2 + 1.4z 
"

-

H2(z) 1 2
- 1.4z + 0.74z-2

As shown in Figure 2, results from both the AIPA and S-M algorithm are

poor below SNR = 17 dB. But still we can see that the AIPA performs

better than S-M algorithm for low SNR. A 14x7 data matrix was used for -.

,. the SVO method. Again the sample variances for the coefficients

obtained by the SVD method was about the double the C-R bounds. It

should be noted that the new SVD method that combines some weakest

eigenvectors always performed better than Henderson's deflation algor-

ithm. Because the difference was about 1-2 dB for both examples, we do

not show that on the graph. For higher order cases, we would expect to

see a bigger difference. As mentioned in the introduction, if the esti-

mator is the maximum-likelihood estimator for the coefficient vector

then pole estimates via this estimator are also maximum-likelihood.

This notion is demonstrated in the next examples.

5.2 EXPERIMENT II

In this experiment we used three data sets consisting of complex

damped sinusoids in white Gaussian noise.

• •'Z'~~.............-- 
- °

" " .o o. ''..."--....-."-• " . . ...
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10 log (1/var) 10 log (1/var)

b1  1.4 b 0.74

*40- 40-

30- 30-

C-R bound dC-R bound

20--.. 20-

IA AIPA ~, *AIPA

10- 0i OS-MA 10- S-MA

4 New SVDNe V

*0 10 20 30 0 10 20 30

(a)SNR dB () SNR dB

Figure 2. (a),(b) Comparison of pole estimators.
(b1  1.4, b2 0.74)

~~~f-:~ 2L.<..~~~i- *IC ~ . .-
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K
Y= exp(sin) + en n = O, , ..,24i=1 - .

n* n

where s. " i + j2 1fi

These three data sets were chosen by Kumaresan and Tufts [14]. The

sequence en is white, and complex Gaussian, with variance 2a2. SNR is

10log10 (1/2a
2). The IPA was used to estimate the coefficient vector

and then the pole damping factors (ai) and pole frequencies (fi)

were calculated for each trial. The SVD method described in Chapter 2

was used for the K = I case. The C-R bounds as well as the backward

covariance method using the SVD-results have been extracted from [14].

For K = 1, f, = 0.52 was used. As shown in Figure 3, for l = 0.1, the

IPA indeed performed as a maximum-likelihood estimator up to 10 dB of

SNR. The new SVD method performed as well as K-T's method. An 18x8

data matrix was used for the new SVD method compared to 7x18 data matrix

for K-T's method which means computing time for the new SVD method is

much less. Note that the sample variance of the estimates in this oneL pole case show broad minimum somewhere between M =6 to 10 for the new Al

SVD method. For the results in Figure 4, a, = 0.2 was used. Again the

IPA performed as a maximum-likelihood estimator up to 15 dB of SNR. The

sample variance using the new SVO method was larger than that for K-T's

method. But as Table 1 shows, the bias for al is smaller with the new

SVD method. Averaging reduced coefficient vectors as mentioned in Chap-

ter 2 might have reduced the bias.

or. . . .... - ..-.....
,, ,, ,-z. ._%Y._. ,.. ... .: <j'_.. Z.','--.,,. .Z -.:. '.. -- '.._..L :."'.-..'.""....-'-i-.X Y .,K..." " - . - "'.,-. '.-:'-" '': .'""'':-
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Figure 3. Comparison of pole Figure 4. Comparison of pole
estimators. estimators.
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Table 1. Comparison of SVD Methods

a- al K- T K
SNR New SVD Unmodified Modified

30 0.7382x10-4 0.3574x10° 3  0.3538x10 3-

25 0.2873x10 0.3059x10 2 06849x10-

20 0.6458x10 0.973310 2 0.1279x10- 2

15 0.1365x0-
2  0.3174x10"1 

0.1132x10- 2

For K 2, we set cI  0.1, 2 = 0.2, f, 0.52, and

f= 0.42. Figure 5 shows that IPA performs well up to

11 dB of SNR.

L_

*-.%

-1.

* %
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10 log (1/var) 10 log (1/var)

C= 0.1, f1 =0.52 Hz M= 0.1, f 1 = 0.52 Hz

L2 =0 .2, f 2  0.42 Hz c'2 = 0.2, f2 = 0.42 Hz

60 60

50 50 C-R bound O0

40 C-R ound f .4

30 30

0 IPA 0IPA

20 2 2
40 K-T SVD 200 K-T SVD

10 I 10 I0 10 20 30 0 10 20 30

SNR dB SNR dB
(a) (b)

Figure 5. (a),(b) Comparison of pole estimators.

(al = .1 L2 0-.2, fl 0.52, f2 =0.42) 1.



CHAPTER 6

APPLICATION OF THE IPA TO THE SEM

The singularity expansion method (SEM) form of the surface current

density on a finite-dimension, perfectly conducting object in free space

is written as [2,3,4]

J's(rs ,t)

= fpSkn(max)nk +
E0  f ( ( )J (rs) exp(skt)u(t-t (68)

k p kk k 'p Sk sk0k k
+ other SEM terms + noise

where

t =,turn-on time0

JS( S) = natural mode (appropriately normalized)

s k - natural frequency

n(max) normalization factor

n= coupling coefficient (appropriately normalized)

= direction of incidence

=polarization vector
p

fp(S) = Laplace transform of incident waveform f p(t)

E0  = scaling constant for incident wave (in V/m)

rs  = coordinate on the surface S of the object.

The problem of computing aircraft SEM parameters has been considered by

several investigators. Because of the complexity of aircraft surface

geometry, it is difficult to formulate and solve the scattering problem

* .. . . * . . . . . . . . . . . . . .
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analytically for an exact model. When an electromagnetic pulse (EMP)

strikes an aircraft, it induces a surface current. For EMP testing,

"- several sensors are placed at different locations of the aircraft sur-

face to measure this current. Also the angle between the incidence dir-

ection and an aircraft is changed to obtain multiple EMP data sets for

several directions of incidence at each observation location. The

source of noise is mostly from nonlinear distortion and quantization in

the instrumentation system. A typical number of samples for each data

set is 512 with a sampling interval of 5 nsec. It is desired to esti-

mate SEM parameters of Equation (68) given noisy multiple observations.

As a special case of the general Equation (68), we consider a

simple thin wire scatterer. Suppose the wire is struck by a plane

electromagnetic wave. The direction of propagation d of the incident

field makes an angle e with the normal to the center of the scatterer as

shown in Figure 6. The induced current on the scatterer for any e and

O<t<L is represented as [19].

J(t,e,{) = Z nk(max) k()Jk()f(sk) exp(skt)u(t-to ) (69)
k k k.k

+ other SEM terms + noise

Note that the parameters in (68) are now simplified to one-dimensional

case. Unlike the complicated aircraft case, the SEM parameters for a

thin wire have been determined by theoretical methods based on Maxwell's

equations [3]. The normalized natural mode, which describes the spatial

amplitude variation in the induced current, is given approximately by a

simple equation

jk(") = sin (krIL/L).

. . . . . .*.. .-...
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EI

L- L meters

Figure 6. Geometry of the thin-wire
scatterer and incident field.
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There is no simple equation for the coupling coefficients. But from

Figure 6, it is easy to see, for example, that nk(9 0 ) = 0 for all k

and that n2(O) = 0, etc.

Hereafter we consider an impulse as an exciting function so that

) = 1. We also assume that the other SEM terms are zero, and that

the noise is additive Gaussian white noise. In general it is hard to

estimate natural frequencies, coupling coefficients, and natural modes

at a same time. Our strategy is first to get an estimate of poles using

multiple data sets. We discuss this problem in the present chapter. In

the next chapter we show how to estimate the other parameters. -

6.1 POLE ESTIMATION USING MULTIPLE OBSERVATIONS

In this section, we present an algorithm for pole estimation given

multiple observations. Equation (68) shows that measurements made at

different locations or with different directions of incidence have the

same poles. We can use multiple data sets efficiently to get an

improvement in the estimate of natural frequencies. A currently exist-

ing simple technique for using multiple data sets is simply to compute

poles for each data set and then average the results [20]. This is not

the best approach as we argue below.

Let the vector y(,i) be the observation vector at each location

.(t = 1, 2,..., L) for each incidence direction ei (i = 1, 2,...,I).

There are M = LI observations available. Without considering incidence

directions and observation locations, any observation vector for m = 1,

2, ... , M can be represented as

( k I C m) zk + e~m) (70)Yn k=1 k

for n = 0, 1, , N-I

°. ..
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where en(i) is zero-mean, uncorrelated noise. Because natural frequen-
n

cies do not depend on m, i.e., each data set shares the same transfer

function denominator coefficients but has different numerator coeffic-

ients, we set up an equation as follows. .' .4-

e(m) = FYL () Fy(m) - FLa(m) (71)

L I L

for m 1, 2, •••, M
(in) - (on (in) (in

where (e(m )) are noise vectors and F, YL ym, a m , xI are defined

in (31). Suppose the naise variance is the same for all m. By intro- L
ducing the augmented vector e, (71) becomes

e(1) F YL(1) Ly(1) FL a.(1)

e(2) F Yk(2) y(2) FL a(2)

e(M) F L(M) (M) FL a(M)

L- L

e =~ xI +) - A+ (72)

Now we want to minimize J = e e. If the noise is Gaussian then the x
I

and a that minimize J are the maximum likelihood estimates. Note that J

is a sum of squares of all the errors. Fixing as a constant matrix

and setting the derivatives of J with respect to x, and a, we get two

conditions

" _I

*-: . .. . . ... .* .********-* .*t*..*,*.-*- . . .



42

L[ L xI+ -L]- 0 (73a)

+ -"L] = (73b)

It is easy to see that the matrix L* L is nonsingular. Thus, from
L L

(73a) we get w.

a ( L)' " [ LX + + (74)

Substituting (74) into (73b) we obtain

where 1- L

(75) is rewritten simply as

(L~ .'m) F_ (m)LJ X, [F- (m)] Fyyy J (76)

where Q = I -F (  F L) F L

Since F (and so FL) depends on x, we can use (76) but with itera-

tions. It should be-noted that the computational burden associated with

this algorithm is considerably less than that with the averaging scheme

which takes an average of poles obtained using the IPA for each data
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set. The latter calculates inverse filter coefficients, and (FLFL) at

each iteration, and the roots of the polynomials after obtaining conver-

gence for each data set, but the former calculates these just once.

So far, the assumption was that the variance of the noise is the '-

same for all m. But in general, the noise variance may be different for

each data set. If the SNR is known a priori, it is possible to weigh

the data sets differently for each m. For example, the weight for theI

data set, whose SNR is relatively smaller than others, should be smaller

than other weights. Because the Equation (76) is in quadratic form one

possible form of weight is

W w(m)*w(m)/ (No 2 )(m m ,

where am2 is the variance of the noise for mth data set and w(m) is

an observation vector without noise. In practice, noise-free data sets

are not available so that y can be substituted for w. The purpose of

weighing data sets like above is to emphasize the relatively good data

sets, and to weaken the bad data set, for instance from a location at

which natural mode is supposed to be pretty small for all k.

Considering weight (76) is rewritten as

L%~Y(m) 1* QFYj)jX (77)

Q, •

m FYL."

r- wm[FYL(m)]* Fy(m_

where Q is as in (76).

S*'.~. . . . .. * .. *......-]
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Simulation results in Chapter 8 show that both the bias and the sample

variance using the Equation (76) are less than those with the averaging

scheme.

6.2 C-R BOUNDlI In this section we calculate C-R bound for the characteristic

equation coefficients, for which sample variances can be compared, given -

multiple observations. Suppose (wn(m~)) are real numbers. Using the

results obtained in Chapter 4, it is easy to show that for Gaussian

noise the conditional density function of any y(m) is rewritten as

( ()in) (78)

(211) N/2(detV (m))1/ 2 exp[- 1 (m) (n (Vm)lri) N(y W x LL IL

(m))-1 1 T[ (T 1  T
where (V ) 2 F L (LL) L a

Thus the conditional density function of the augmented vector ybecomes

P(;1X1) =(7q)

-NM/2 1/2 1+ + T -1

(2n1) (detV) exp[-~( L I Y+ WxT

o12

where ' 1 2 -1

0 1 -
Ic

MJ
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and the derivative of the log of this is

0.

log T -1.,"x- log p ( xI) W L (Y- + ,'.',o

The second derivative of the log of (79) is given by

-log P(Ix)]T T -1

Therefore, C-R bound for the coefficients of the characteristic equation

is given by

var - ) p ' WL ii (80)
L; - m 0 2: . ... .

where ei = bk.i+ I  for i = 1, 2, .,., k.

If the noise variance is the same for all m, then (84) becomes

var (ei - ei) > a 2 W L P WL ii* (81)

i-

..°

m -. . * . .:. :.*.
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CHAPTER 7

ESTIMATION OF COUPLING COEFFICIENTS AND NATURAL MODES

In this chapter an algorithm for estimating coupling coefficients,

natural modes, and normalization factors given natural frequencies is

presented.

The induced current data on the scatterer for any incidence direc-

tion ei and observation location t is represented as (from (69))

K
(i i) (max) xi) ( ) n (i,)
' = nk  nk k Zk + en (82)

k=l

for n 0 0, 1, , N-i

isis the normalized coup-
where nk~m x  is the normalization factor, nk~ i  stenraie op

ling coefficients, j is the normalized natural mode, and en(i'9) is

the noise which is assumed to be zero-mean and uncorrelated. Note that

max (nk(i)) = 1, and max ) = I "

for each k. Let

(max) (max) (max)
1 diag [n ,K N

G(i) = diag [n i) 2(i)' nKi) '

a. •(i) : [n1(i), n12 (i), (-

J( diag [l i  2 ..., jK ] , and

)[j, () (t) T
='' " " KT I2
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Also let

S 1 .... I'
1  2  zK
z2 22 Z2 .-.

Z z..-.

N-1 N-i N-iz z2  .... zK

Then in matrix form (82) becomes either

(i,1) () e (it)) (8-a.

where g(i) =( and J(W Hj ..

defined as in (72). Minimizing e( ct to (g

a nonlinear problem even though (zk) are known a priori. We use an

iterative scheme to solve this problem. From (83a)

e e [y - ZJ qg 1 - Zj ] (84)

Fixing J as a constant matrix for all L and setting the deriva-

tives of e e with respect to 9 ()to zero, we obtain

No

-. -..-
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[ M ZJt)*ZJ(0)I ^M I (zJ( t))*y Ui)] (5

for i 1,* 2,

Similarly using the Equation (83b) e+e is minimized with respect to j

by solving following equation

I (ZG(i))*ZG(i) jt (ZG(i))yi,) ] (86)

for x. 1, 2, .. ,L

Let matrices

.(2) M]L

G [g(l), ;(2) , () , and

3 (1) (2) **~L

Then from (83a) and (83b),

G HG and (87a)

J =HJ. (87b)

Note that the normalized coupling coefficient (natural mode) is obtained

by normalizing the rows of G (J) so that the maximum element of each row

of G (J) is 1.
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Now the'algorithm is as follows.

1) Set (G(') as the identity matrix, solve (86), and normalize

the result to obtain an initial estimate of ()

Equation (85) to obtain 9g-M).*S

3) Form G and normalize every row of G to obtain G (i.e., 9(M)

and normalization factors(fkm).

4) Set (Gi) using the preceding estimate of (g() and solve the

Equation (86) to obtain ~~2

5) Form J and normalize every row of J to obtain J (i.e., J()

and the normalization factors (ma)

6) If convergence is obtained then stop. If not then go to 2) and

conti nue.

If convergence is obtained, then e+e given (z )is minimized. The
k

normalization factors obtained both in procedure 3) and 5) may be

averaged to obtain a better estimate.-



CHAPTER 8

SIMULATION RESULTS

Experiments I and II in this chapter are to support the algorithms

proposed in Chapters 6 and 7 respectively.

8.1 EXPERIMENT I

Multiple data sets which share the same poles but have different

residues were considered in this experiment. The system order was

chosen to be K = 2. Data sets consisting of a pair of complex conjugate

damped sinusoids in white noise were used. The data set for any m (m

1, ... , M) is represented as

(m) (m) n E(im) Zln +(m)
-n "1 e1  n

Number of data points N was 20 and the standard deviation of the noise

was 0.1 for all m.

For the first example, four data sets were used. The pole zI

was -0.7 + jO.5 so that the characteristic equation

BI(z) = 1 + I.4z 1 + 0.74z 2

The residues were: c1 (1) = 1, ci(2) = 0.3 +jO.4,

ci(3) = -0.4 + jO.2, c (4) = 0.7 + jO.7.

Method I is the averaging scheme which takes the average of coefficients L

obtained using the IPA for each data set separately. Method II is the

algorithm presented in Chapter 6. The C-R bound for the coefficients

was calculated using noise free data. The variances with respect to the

true coefficients were calculated after 100 trials for each method.
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Table 2(a) shows that both the bias and the sample variance with method

11 were about the half of those with method I. Note that sample

variances with method II were very close to the C-R bounds.

For the second example, 6 data sets were used and zi = -0.8 + r J-)

jO.4 so that

-1 -2
B2 (z) = 1 + 1.6z + 0.8z

The residues were: c (1) = I, c1(
2 ) 0.3 + jO.5

(c 0.5 + jO.2, c1 ( 0.8 + jO.3,

S(5) -0.7 + jO.7, c (6) 0.6 + jO.2.

Table 2(b) shows that method 11 outperformed method 1.

For the third example, 10 data sets were used and z 0.75 +

jO.48 so that

B3 (z) 1 1 + 1.5z 1 + 0.7929z -2

The residues were: cl(1) = I, ci(2): 0.8 + jO.2,

c1 (
3 ) 0.7 + jO.4, c1 (4) 0.5 + jO.3,

c1 (5 =-0.4 + jO.3,_ci(6 ) 1 0.2 + jO.5,

(7) 0.3 + jO.3, c(8) 0.2 + jO.3,

(9) j1, c( 1 0.2 + ja.8.

.. 1 ",
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Table 2. Comparison of Pole Estimators

* bias: Ib var (bb)

III I II C-R Bound

b1  8.24X10-3 3.76x10-1 3.85x1O-4 1.67X1O-4 1.79X1O-4

5810-3  28X10-3  26X10-4  1.O8X1O-x 2.926 1.12x1O-4

bias: I.b var(.-)

I III11 C-R Bound

b1 4.50x10 3.49xl0 1Q-1O 6.16410-5  5.54x10-5

b2 3.39x10
3' 2.5410 7.74x10-5  4.99X10 5  4.42x10"5

(b)

bias: 1b1-b var (b1-b)

I I I I I I C-R Bound

Kb 1  4.97x10- 7.46xO 8.53xI0 5  5.22x10" 5  3.94x10

4.62x10-3 1.30X10- 8.11X10-5  3.95X10- 5  3.3840-5

(c)
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Again Table 2(c) shows that method II was a better estimator than method

I. Especially the bias for b1 with method II is about the one-fifth

of that with method I.

From all three examples, sample variances were pretty close to the

C-R bounds. I
8.2 EXPERIMENT II

In this experiment we used 25 data sets from 5 observation loca-

tions for 5 incidence directions. The SEM parameter values are repre-

sentative of those for a thin wire [19]. Any data set for i = 1, ... , 5

and I.=1 .,5 is given by

3yni" = .0 (max)k (i)J W)Zn +n(max)-k(i)jk()Z n ) +(i , )-."'"'"

kY1 \ "k k k -k k k,

k=1"

for n =0, 1, 49 L

where e(i'L) is an uncorrelated zero-mean noise vector with standard

deviation a.

Three complex conjugate z-pole pairs (s-poles in [20] were

translated) were:

zI  0.5589 + jO.7325, z2 : -0.2831 + jO.8396,

and z3  -0.8320 + jO.2237

Normalization factors were:

(max)
S1 x= -730728 - j.9371, n2(max) = 1.4320 - j4,6624-

.'-. ~and n3(max) = 3.9331 + ji,2755 ....

i,.. - " ..-*

. -o.-i, -I..o'.z ~~~~~~~~~~~~. ...... °?.Z - oZ . . ...... '........ . °. ". . .. .... ..............-. ,
L : ....• * . ......... '= ,'-,'- :-'----'.-',.''- :-: , -L'':,';, _ ,i" i--,-_-- - ---- - - - - - - - - - - -'- -.-- - - - ---- - -"-----;.---- -- ,-.'.'.'-.-'.-i-'..'i ,
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Actual normalization factors in [20] were the above numbers multiplied

by 101

Coupling coefficients were:

61 02 63 64 05

q= 1 1.0 0.92-jO.005 0.76-j0.008 0.60-jO.012 0.28-jO.01

k = 2 0.02 0.76+j0.01 1.0 0.92-jO.021 0.48-jO.028

k = 3 -0.74-jO.018 jO.02 0.76+jO.025 1.0 0.60-j0.03

where 61 = 00, 62 = 200, 6 = 350, e4 48', and 65 = 70 .

Natural modes were taken as:

Z=1 t=2 t=3 Z=4 t=5

k 1 1 0.52-jO.01 0.71-jO.007 1.0 0.71-jO.007 0.52-jO.01

k = 2 0.088-jO.014 1.0 0.02 -1.0 -0.88+jO.014

k = 3 1.0 0.71+jO.032 1.0 0.72+jO.032 1.0

where five locations on the thin wire were at 0.18 m, 0.245 m, 0.5 m,

0.755 m, and 0.82 m (the length of the wire was 1 m).

For the first example, a - 0.5. Exact values of z-poles were

given. Each parameter converged to within an order of 10-6 at 5th iter-

ation. The sum of the absolute values of the estimated parameter errors

is shown in Table 3 as a measure of fit.

.4.-
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We intentionally omit the results of some iterations because there were

no big changes in the errors after the 2nd iteration. Table 3 shows

that the errors in the natural modes decreased significantly at the 1st

iteration. But after the 1st iteration the errors seem to remain almost

the same.

Table 3. Sum of Errors at Each Iteration (a = 0.5)

I.T nk(i)-nk i) Ik(t)-jk({) I nk ma )-nkma ' -- "

ki

init. est. 0.74923 ---

Ist iter. 0.23367 0.41741 0.19006 L

2nd iter. 0.23869 0.41665 0.18112

5th iter. 0.23862 0.41653 0.18026

For the second example, a = 1.0. Again the exact values of the

z-poles were given. Convergence was obtained at the 6th iteration.

Table 4 shows that the errors in the natural modes decreased by about

half of at the 1st iteration. For both examples, errors in the

normalization factors decreased at each iteration. We performed some

more experiments for a < 0.5. In all cases, the errors in the natural

modes decreased significantly only at the 1st iteration.

- -. - -.
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Table 4. Sum of Errors at Each Iteration (~=1.0)

n 1  ~ ~k (max) (max)l
k i k i k

init. est. -- 1.43337--

a1st iter. 0.69081 0.71039 1.36592

2nd iter. 0.62938 0.72258 1.30901

6th iter. 0.62042 0.72486 1.30044
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CHAPTER 9

CONCLUSIONS

In this dissertation we have introduced two new algorithms for

estimating poles given noise-contaminated impulse response data. One is

an algorithm to extract the reduced characteristic equation from the

weakest eigenvectors when the system order is overdetermined. This

algorithm is closely elated to Henderson's deflation algorithm [16] and

simulation results show that new method performed better than the exist-

ing method. The other algorithm is the iterative preprocessing algor-

ithm (IPA) which is related to the Steiglitz-McBride method [5,7] and to

the Evans-Fischl technique [18] but has an advantage over either in both

stability and computational complexity. The approximate IPA (AIPA)

which reduces the computational burden further was described. The AIPA -

for the pure sinusoid case is related to Kay's IFA [7].

Also the C-R bound for the estimated characteristic equation coef-

ficients, which is a valuable tool for evaluating different estimators

without finding roots of the equation was evaluated.

The IPA was extended to SEM parameter estimation. Using the IPA,

it is possible to process multiple data sets at the same time to get an

improvement in pole estimation. Finally, an iterative scheme to esti-

mate coupling coefficients, and natural modes was introduced. Simula-

tion results indicate that the estimation errors decrease most at the

first iteration after the initial estimate. Together these results pro-

vide a way to estimate the SEM description of a scatterer from multiple

data sets taken at different locations and with different directions of



58

incidence. For large to moderate signal-to-noise ratios these estimates

meet the C-R bound and thus have the minimum variance of any unbiased

estimators.

So far the theoretical convergence and accuracy properties of the

IPA are not known. The IPA assumes the system order is given. The nextp L
phase of research should be to investigate the convergence property of

the IPA, and to devise an algorithm combined with order selection.

Another interesting problem would be to improve the AIPA. As discussed

in Chapter 3, the AIPA approximates (FL FL . It would be useful to

have an approximation for FL(FL FLfFL instead.

[ L L) L

"o .

Kd

- VA - %'.%
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APPENDIX A

The data matrix W and the matrix G are as in (13) and (15)

respecti vely.

Th. Every column gm of G is in the null space of W.

(proof) Let w. be the jth row of the matrix W. If wjg m = 0

for all j = 1, ... , N-M and m : 1, ..., M-K+I, then the proof is done.

M T M TLet =[,z, .,., z and u =f1 zi , ..., z where (zi) are system

KT KTpoles. And let v = [1, z, ... , z ] ,V i = 11, zi, ... , zi I and x =
"T. mT  x1Tv

fb K bKi ., bo] Then g u i  zm'1(xi) = 0 for all m,i.

Now

K K K
"1- b , _ .-

K K Kw [J-1 cz j 1  j-1 M

_ ?i1 i=1 i=i"1

c i. ( , ci  , .. (z c • (zi ) ].

K "K iT 1i = ciz 1)

i=1

r u

Thus,

mT T K K T
wj gm T gm m =1 X %"

Q.E.D.

0_ ; .., ....' ' .' - ' ' ' ' , , .' ..' ., - . .-, .- • , . "
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APPENDIXB

Here we want to show that the Equation 
(36) is identical to the

Equation (40).

By partitioning, F and Y become

F=[L FRI FL F )N-K FR F [.F N K

K N-L2

(B-i)

= ~]~~K = [OL_ iYOR]

Using (B-i), (36) becomes

(B-2) (FLYL + FRY) Q (FLYL +. F Y~9x

(F LYOL +F R YL) Q (F LYOR F FRYR)

where Q =I F L(F*F )FL

Equation (B-2) is simplified toF

-1

(FRY)[I F FL(F L FLf F L F RYR
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From (B-I), F F F F and F F F F
R L 2 1 R R 22

Thus, (B-3) is rewritten as S."

(F I- L L)  (F2YL) x1

(B(F Y2J F (F F 1 F F

- - CF2YL [I - FI4FL FL) FI F2YR

Equation (40) is

(B-5) YL (DD )" YL Xl =  YLDD-R'">
• *1-

If (DD*) - = F2*[I - FI(FL F L)1 F ] F2, then (B-4) and (B-5) are identi-

cal and the proof is done.

Th. (00)1F *F-F,(F

F2 [I I L )  2

(proof) By partitioning, B becomes

K N-K

B = E-- 2-- =[Di 102]D1 , D2  N-K ..'

r

It is easily shown that

DO  FO1 , 02 = F2"1, D1 -=. 2 "F1 Fo"1  ..
o F D F FF

p02 1 2 1

---.... . -.-
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left side = (DD*)"  D + D2D 2
-* 22

[F2  {FI(F 0 FO) F1  + I} F I-= P

right side = F2 [I - FI(FL FL)-'F*] F2

SF 2 [I - FI (FO*FO+FI F1 ) 1 F, F2 =
2- 

"

We want to show that P-Q = 1.

Because

(F F 1 F I + (Fo*F )-lF *F0 + o  1 F1  0 0 + 1 F ,

it is obvious that

(F0 F0) (F 0 + 0 F F) - I = (F0 FO F F1 .

0- 0)-.01-

Postmultiplying (F0 F0 + F1 FI  on both sides yields

(F FO)-1  (F0 FO + F1 F1 f-1

= (F0 F0 ) F1 F,(F0 F0  FI*F 1 ) *1
Thus, the following holds

(B-6) FI[(F0 FO )  - (FL FL) " (FO*Fo)lF*Fl (FL *FL) 1I F1  . f I

T T0
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F inal1ly,

p- Q F2  [I + F F01 F F, F [I Fl(F FLYF, F2

F F2  [1 + T] F 2

=I (by B-6) Q.E.D.



APPENDIX C

H Let F(N) be an NxN matrix as defined in Chapter 3. In this

appendix, we want to describe what happens to FL(N)*FL(N) for

large N. Note that notations are slightly changed in this appendix.

Consider the infinite matrices .--

= B.I

B3 O JK[Bj13KF - - F B ' ~ F -- F - B 3 03B3  = ~ FI F 2J
B3  ;B 2  1w 3

K 0 K 0

It is easy to show that

F0

2 .2

F F B FQ

21 2 3 0

For convenience, assume matrices B and F are real. But the result can

be extended to complex case immediately. Also assume f f <

j =i..-

for i = 0, 1, ... , K.

It is obvious that

R = lim F (N FL(N) = F + F"F

°. o

L..L...........1
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R can be interpreted as an autocorrelation matrix of the inverse filter

coefficients such that .-

r r ro 1 K-1
r r .. rK.2

(C-2) R . . . .... . where ri = Z fjfj -i.
j=i

rK-1 rK- 2  0... ro and

T(C-3) R xI = - r where r = [r,, r2, .,., rK T

Because we consider infinite matrices, the following holds (by C-1)

[F 0 o] F B FQF1 = - F2 B3 F0 =- 1 F0  - "1 0F1 2 2 0 0IIo"'-

so that

T T T(C-4) F = F B R B F0

-1T TNow we want to show that R BoBoT  B1 B1.

Th. R"1 B BT - B

(proof) Denote 0 1

j1

1 0
• 99-

9.9 ' Si -



68

Premultiplying (postmultiplying) a matrix by J results in swapping all

the rows (columns) of the original matrix. Then one can show that

(using C-3)

B RB J

is always symmetric. Thus,

T(C-5) B1 (R1RBQJ)Bl is symmetric.

It can be shown easily that

(C-6a) 1BB J adta

T
(C-6b) B B1 J is symmetric.

0 1

From (C-5),

TTT
(C-7) B1 B RB JB1  B B B TJ by (C-6a)

(B TJB TRBTB1  by symmetry

01 1 1

Because B1 is nonsingular for bK 0, postmultiplying B1  on both sides

of (C-7) yields

BTB RB T0

BTB RB J B BJRBT
1 1 0 0 1 1

T
B BB (JRJ)Bl by (C-6a)

0-----------------------



69

Thus,

(C-8) B TBRB = BoB TRB1

To show R = BoBoT - BITB1 , we need to show

8~T -IBI

(BOBO B 1 TBl R I1.

T TF
Substituting for R = F + F' .

.(BoBT - B 1TBI )(FOTFO + FITF I )

SBBTFTF - BTBFoTF + FFIT ) + I
0 0 1 1 1 I F1 1 )

B B 0(FTB TRB Fo) B B R + I by (C-4)

(BoB 1TRB1 - B1
TB1RBo) F0 + I

by (C-8) Q.E.D.

J..

. . .~ 
.. -'.



APPENDIX D

In this appendix we want to show that

(D-1)im[F()F(NN]- 0 r

when the roots of the characteristic Equation B(z) =0 are on the unit

circle. Suppose the roots are distinct, then each fn can be rewritten

as

K K
(D-2) fn z a~~t1 = exp (jein)

where 0 < a < 211

It is easily shown that

N0) N 1if m k
N~~ n0k l~~ ki

Using (0-3), it is easy to show that

r0  r1  r fee r

0 1 2 A-1

(D-4) lrn FL FL R ro r1  r rk-2

U hermi.;
ti an

K 2
where rm = exp(-jnie)11 for m =0, 1, ..so K-i.

1=1r-C:qk
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exp[ je 1  exp[ j82 1 .. explieK]

Let~ = exp[ j2e1  exp~j2e2  .... exp[j2eI

*exp[j(K-2-)8 1 ] exp[j(K.-1 )e2] .... exp~j(K-1 )6K1

and

Adiag [OL 1%Kj 12 **~ ]. then

(0-4) is rewritten as

R=AQ

Because 0 is nonsingular and A is positive definite and diagonal, it is

shown easily that R is positive definite and invertible.

Let R(N) ~ FL (N)*F (N)

As mentioned in Chapter 3, F L(N) F L(N) is nonsingular for each N and so

is R(N).

FL(N) FL(N) =NR(N)

[FL(N)*FL( -1 = i(N)-

UIt is shown [7:Ch.4] that if A is nonsingular and lim A(k) =A then for

all sufficiently large k, A(k) is nonsingular and lini A(k)l1 A-1.

Because lrn R(N) =R and R is nonsingular,

lim [F L(N) F L(N)) -=lim IT R -1=
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