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ABSTRACT S

: A numerical and analytical study of socliton propagation and
- generation in a Raman amplifier is performed. Parameters are

’ amplitude and temporal profile of input optical fields, Raman
line width and detuning.

Soliton excitations will develop, 1if a phase shift of
nearly 180 degrees is introduced into the Stokes seed beam. In
the absence of detuning and for an instantaneous phase shift of
exactly 180 degrees the solitons wilil be stable. In the presence
of detuning and for non instantaneous phase shifts of less than
180 degrees the solitons will be unstable and decay for suffici-
ently large gain. Limiting values are about 10% detuning
relative to the Raman line width, and a fractional, unshifted
Stokes intensity of about 1% .

Stable solitons will show temporal narrowing with a width
inversely proportional to the square root of the total gain. For
large gain the final width is independent of the initial width.

Unstable solitons will reach minimal width at a relative :
amplitude of .5, and begin to broaden on further propagation. )
The minimal width is proportional to the initial width and the
initial relative amplitude. [
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Shhaniat §O0od

Some results obtained under this contract have not vyet
appeared in published form. It was decided to publish these
together with additional theoretical work scheduled for the
second phase of this project. For this reason the technical
section B. of this report is some what longer, and kept in
publication format.
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A. RESEARCH OBJECTIVES

The research reported here deals with the problem of genera-
tion and propagation of Raman solitons in a medium with homoge-

neous broadening (coherence decay). The following questions are
addressed:
1. Conditions under which a soliton excitation will develop in

a Raman amplifier. Parameters are: amplitude and temporal
profile of initial optical fields, Raman line width and detuning
from Raman resonance.

2. Propagation of soliton excitations. Parameters are: soliton
width and amplitude as a function of propagation distance and
parameters under 1. above.

Methods employed are numerical solution of the transient Raman
scattering equations, and analytical studies based on asymptotic
perturbation theory.
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B. TECHNICAL RESULTS

I. INTRODUCTION

Solitons in stimulated Raman scattering (SRS) were first
observed experimentally in 1983 ([1]. Stimulated Raman scatte-
ring involves at least two optical beams, one beam called the
pump and a second beam called Stokes beam at a frequency lower
than the pump. The difference in frequencies is equal or almost
equal to the transition frequency of a Raman active medium,
through which both beams propagate. If the medium is initially
in the ground state ( "Stokes scattering” ) photons are transfer-
red from the pump beam to the Stokes beam as both beams propagate
through the medium, leading to an amplification of the latter
and to depletion of the pump (see [2] for a typical example).

The medium absorbs the excess photon energy and is left in a
partially excited state. The reverse process ( "anti Stokes
scattering" ) occurs if the medium is initially inverted.

Raman solitons are a coherent transient phenomenon in which
photons are transferred back from the Stokes to the pump beam due
to a pulse of coherent excitation of the medium. This excita-
tion is itself sustained by the optical fields. The result is a
stable localized non linear wave of excitation of both medium and
optical fields, which can be observed experimentaily as a pulse
of pump radiation travelling through the medium in an envelope of
Stokes radiation.

This phenomenon shows very close analogies to the phenomenon

of self induced transparency (SIT) (3,4,5.6]). In fact an exact
formal correspondence can be established between the equations
describing the two phenomena (7,8,9,10]. The two levels of the

atomic system in SIT correspond to the two levels of the photon
system defined by the two beams in SRS, while the electric field
in SIT corresponds to the coherent polarization in SRS. Also the
roles of spatial and temporal wvariables is interchanged.

Similar phenomena have been investigated theoretically for
coherent two photon propagation [10,11,12,13] and for three level
systems, where all transitions are nearly resonant with an
optical frequency ("simultons'") ([14,15].

Soliton solutions for SRS under various conditions and
approximations have been studied for quite a while ( see {8,9,10,
16,17,18] and papers quoted in these references ). However it
appears that no successful experimental studies have been under-
taken until the recent discovery of these excitations [1)]
prompted further experimental work (19]. Additional theoretical
studies have appeared since then, which addressed some of the
observed interesting effects of coherence decay, like pulse
narrowing [20,21,22,23] and the extension to higher order Stokes
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generation and four wave mixing (24].

In section II we give the SRS equations used in this and
other related work, discuss some of their relevant properties.
and distinguish different regimes by the time scale of variation
of the physical guantities.

N R At

In section III we discuss the one soliton solutions, which
are valid in the absence of coherence decay. We then give a
simplified theoretical treatment of pulse narrowing in the
presence of coherence decay and detuning, which is based on
earlier work by Kaup [25].

In section IV we present numerical studies of soliton
propagation for pulse widths comparable to or smaller than the

coherence decay time, and compare these to the theoretical
results of section III.

II. TRANSIENT SRS EQUATIONS AND THEIR PROPERTIES

The equations for transient SRS including coherence decay

i are given by [8,16]:

Xe =-e€X+aA a5 (2.1)

. Ay =-XAap , (2.2)
Agy = XA (2.3)

Here A, and A 5, are the Stokes and pump field and X is
the off diagonal matrix element for the molecular Raman transi-

- tion. T and x are time like and space like coordinates, which

a are related to time t and propagation distance 2z in the

) laboratory frame by T =t - z/c , X =z . Partial differenti-

- ation with respect to these coordinates is indicated by the

) corresponding subscript. The first term in (2.1) describes

_ collisional coherence decay with decay time 1/¢ , where &£ is
the angular Raman line width (HWHM Lorenzian) in radians per unit

» of time. Suitable units have been chosen to render all coupling

- constants equal to unity. We shall discuss below how to arrive

- at observable quantities from solutions of (2.1) to (2.3) by
using intrinsic scales of time and length.

L SRR A

Certain effects are neglected in these equations. In
- addition to higher order Stokes generation and four wave mixing
B these are effects of dynam.c Stark shift, medium polarization
- and medium saturation (population of the upper level). Their
J
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validity is hence limited to low intensities, where these
effects can be neglected. To compensate for this, the gain
length can be increased to arrive at a desired value for the
total gain. A formal expression for this is the fact that
equations (2.1) to (2.3) are invariant under certain scaling
transformations. These are:

X=X/r ,Xx=rx' ,a V= (2.4)

T =T /s / Vs a’ . (2.5)

W

M
I
)
m
>
0

Equation (2.4) can be considered as a change in length scale, or
as a genuine invariance under simultaneous change of gain length

and intensities. Equation (2.5) describes a change in time
scale and becomes a physical invariance in the limiting case &€ =
0 (hyper transient case, see below). Solutions have to be

functions of guantities which are invariant under both transfor-
mations.

A convenient and physically intuitive way of checking this
is a dimensional analysis. We denote the dimension of a quantity
Q by [Q] and introduce independent temporal and spatial

dimensions [ r ] and [ 7 ]. Then:
-/ - -
[X] = (%] ,[A;A3]=([')(][—c])'.[e]=[t]'(2-6)
Additional symmetries are:
/ /
A = A, expliy(T)+i ¢, 1, AZ=Azexp[i? ()1, (2.7)
X = X, exp(i Yo |
! / *
?( =-%X . A, =A, , X =X . (2.8)

e g .
‘ N N
s PR
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Equation (2.7) states that the fields are defined from (2.1)
to (2.3) only up to an arbitrary time dependent phase factor,
which is determined by the initial conditions. Equation (2.8) ‘f'
is a discrete symmetry which maps physical solutions into o
unphysical ones (pulses travelling at group velocity larger than
the velocity ¢ of light) and vice versa. Some solutions of
({2.1) to (2.3) given in the literature [16,17] are actually
unphysical, and can be transformed into physical ones by using
(2.8).

We shall now discuss three different regimes distinguished
by the time scale of variation for the physical quantities, in




5

which distinctly different types of phenomena occur: oy

o

Steady state: X, «<eX Ry

In this regime the matrix element is determined by the instanta- Q;ﬂ
neous value of the optical fields. The Stokes field sees gain,

« the pump field sees loss, and no soliton solutions are possible. A
f The gain coeeficient g and the total linear gain constant G S
: corresponding to propagation over distance X at pump intensity

, I, are given below. G is dimension less, as required: 4;&
B - x -
o x=¢ea a; , (2.1') R
£ P L
- Ay = —e"I2 Ay |, (2.2")

- ¢ X N
o P = . .= . . i= t . .
h Ay I, A, 5 Iy =AjA; ., j=1,2. (2.3') .
5 gI,=2¢ I,, 6 =gI,Xx =2¢I,X . (2.9) ‘-
L

= Transient regime: Xe 2 ¢ X

ii No closed form analytical solutions are known except in the 'J
. - .

linear regime[::], where depletion of the pump is negligible and
A, 1is assumed to be independent of Z . Numerical studies
{see below) show however that for certain initial conditions

’

L S
) .

.t solutions develop into the hyper transient regime discussed below
- {pulse narrowing), for which exact and approximate analytical A
methods of solution exist. ;j
[

e b

v e e
PR

- Hyper transient regime: X, > € X

Sl Vol Wt S

LI A
»

In this regime the physical quantities vary on a time scale much 1}j

Pf shorter than the dephasing time 1/& . In the limit & = 0 - j
- equations (2.1) to (2.3) are integrable, and exact solutions can e
be found by using the inverse spectral transform (16,17]. From

these solutions the case of non vanishing & can be studied
through perturbation theoretical methods[25]. In the following
we shall discuss the one soliton solution for the case € = 0
and its generalization to the case ¢ > 0 by perturbation theory.

.
e
Adivet A b s 8

: III. ONE SOLITON SOLUTIONS AND PULSE NARROWING IN THE HYPER e
- TRANSIENT REGIME. ]

For € = 0 the SRS equations have soliton solutions [8,9,16,
17)}. The one soliton solution is given by [16,17]:

b ce - . -
R R IR, R o] R R T R I T T I T T LT e e T e e e L. e e T e e e T
e e N i e 0 R el e P I R P S S SIS IR SCR S IR SR S, |




/uIexp(-iB) sech A , (3.1)

VP;U; exp(iB) sech A ,

-V [wg tanh A = 10p 1

= WRT - MyX + Ay , B = LT + lUpqd (3.2)

Po = To 0e/(Wwd +0F ), He= T, Wp/(ud + W)

¥ _ ¥ >
Io- AIAI + A2AZ

X
A
A
A

This solution describes a coherent excitation of both medium
and fields travelling at a speed v smaller than the speed ¢
of light. The total intensity (or photon density) in both
Y fields is equal to I, . The excitation can be observed as a
~ localized pulse of pump radiation or as an (infinitely) extended
e pulse of Stokes radiation with a localized dip in intensity.

The temporal width of the excitation is equal to AT = 1/wg
R which defines an intrinsic time scale. The solution will
be valid if At <c 1/€& , where € is the Raman line width.
_ The frequency of the pump field is detuned from exact Raman
g resonance by * = Qy . At maximal height the pump pulse
reaches a fraction ¢ of total intensity given by & =
» UQ: /(g + 92" ) . Eqgquations (3.3) summarize the observabile

) parameters of the soliton and their relations. Note that we

have introduced the Raman line width as an external time scale in

;- order to express the speed of propagation v in terms of the

: experimental gain coetfficient g (see(2.9)).

AT 1/, Aw = Wr |, (3.3) J

: Q = 1/(1 + aw’at? )y, .

2
1/c + g I, €4T g/2

1/v = 1/c + br/wg

We now discuss the question of boundary conditions. We
- assume a Raman medium which 1s located in the half space %4> 0
and is not excited initially. For optical pulses of finite
duration the boundary conditions are:

X(x ,T =0) =0: (3.4)

A;\(’>’=0,t)=a-<t), T 0 ;

.

. .
R I
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Aj(x=C,T) =0 , T< o0

Depending on the sign of A, ,the solution (3.1) will or will
not satisfy these boundary conditions approximately. The two
cases are:

o > 0, A{ ?0, T =0)=0 for ‘yo> o . (3.5)

In this case the solution will describe an initial excita-
tion of the mediun. For sufficiently large A, the fields at
the entrance of the Raman cell (x = 0) will be almost equal to
their asymptotic values. This situation corresponds to super
radiant scattering from an initial macroscopic dipole moment,
and has not been realized experimentally so far. It is not in
agreement with (3.4).

Ac < 0, A{ 7 =0,7,) =20 for T7,> O. (3.6)

In this case the value for the polarization X in the
medium ( x> 0) will be exponentially small for sufficiently
large absolute value of Ay, . The fields in the Raman cell
will be almost equal to their asymptotic values at T = 0, and
assume values at soliton center ( A = 0 ) for some finite T )> 0.
This solution is a close approximation to the initial conditions
(3.5). Note that the field values can to a good approximation
be set equal to zero in the region where solution (3.1) becomes
asymptotic ( [Al > 1 ). This then gives optical pulses of finite
duration.

Solution (3.1) can be generalized to the case where €>0
by using asymptotic perturbation theory in € [21,23,25]. In
view of the physical initial conditions (3.4) we would like to
assume the fields and polarization as given and equal to their
one soliton form at the entrance of the Raman cell ( X = 0 ),
and then calculate their evolution, as the pulses propagate into
the cell (x> 0 ).

This problem however requires some non trivial reformulation
{18,21,23). An explicit discussion for the case Wy = 0 may be
found in [23]. The reason for this is the fact that the
additional term involving € appears in the equation for X ,
which describes evolution in T and not in X . An alternative
is to assume that all quantities are given and equal to their
one soliton form through out the cell at T = 0, and then to
calculate their time evolution. A formulation of asymptotic
perturbation theory appropriate for this case is given in [25],
and the results from this work can be readily applied to our
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problem.

Although this approach does not solve the physical initial
value problem, we argue that the results can still be applied.
In fact the solutions are of one soliton form as functions of %X
however with more general T -dependence of their coefficients.

By linearizing these coefficients in T about the soliton center

given by A = 0, we obtain also one soliton solutions as

functions of T . The equation for the soliton trajectory,
A = 0 , is then solved to obtain the spatial position X,of the
soliton center as a function of the temporal position 7, , and

is used to express all coefficients obtained as functions of
time. 1In detail this approach leads to the following results:

For €7 O the one soliton contribution to the solution of

(2.10 to (2.3) is of the form (3.1), where the argument func-
tions A and B however have the more general form:

A= o (T) - peox B= flo) v L)X 3.7

The equations for the coefficients are [25]:

frr=- 2€MUp . MrT =0 . (3.8)

e + 2ex  =UW0g (5t=4)r . (3.9)

Equations (3.8) can be derived in a very straight forward way by
using constants of motion (26]. Let us denote the coordinates
of the soliton center by %, and T, . and linearize the
functions A and B about the soliton center:

/
ACK +x T+t Ay X + AT . (3.10)

B, +% . T+ )

B?/)(/ + By 1!

Then the coefficients of this expansion are obtained from (3.8)
and (3.9) as:

Ay = - Me(T) » A = wp (T, (3.11)
It follows that the coefficients of the linearized arguments are
exactly of the same form as for € = 0, except for the addi-
e RS N,
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tional dependence on the temporal position Top of the soliton. Do
The solution for the soliton trajectory is: T
T
= 2 J
exp( 4€Tp ) = exp(N%Kp) + (}430//,(«) [exp(X Ro) - 1] (3.12) j‘
r 1+ ! %, , where O
'}'
1 - ! 2 =1 1
X =4e hg ;! r o = 4E U, I,

The approximation given is valid for o{A,<<! and agrees with the
results obtained in [23]. In terms of observable parameters L
(3.3) the coefficients ¥ and «'are given by: ’

. .
s alm

M
o

2
20, (1 -S0 Jleart ) g I, . (3.13)
[

2 | Qo € AT )‘Lg I, . ['J

The results for the relative pump intensity £ at center, ~j¥
temporal soliton width AT and detuning 4w are given below .
(initial values at = 0 are denoted by a subscript 0):

8 = €o exp( -XX ) , (3.14)

A= peT exp(-XF ) [1 4 ( hg/ug ) (1 - exp(-x K ))], (3.15)

2 R
Aw = Ao [1 + (pro/He ) (1 - exp(- XX ))] . (3.16) -

The maximal pump intensity decays exponentially with a rate RO
that is approximately proportional to the residual Stokes SO
intensity ( 1 - % ) I, , and hence to the square of the ;ﬁjj
detuning. For zero detuning QO = 1 .This prediction is in ;_j
excellent agreement with our numerical results (see below) and
experimental observations at LANL (27]. The soliton width
decreases initially and reaches a maximum when the relative pump
intensity has decayed to g = .5 . Its minimum is given by:

BTy = ATo 4 S (1 -85 ) . (3.17)

- |
PV DN

For § = 1 or for zero detuning the soliton width will decrease
with an inverse square root law:

'..'I-l‘

[

L
——a e tata

2
AT =Ar01 /(1 + b('?( ] . (3.18)
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In the limit of large gain for this case the width becones
independent of its initial value and is inversely proportional to
the square root of the total gain:

-2
L\:cz = € /(2 g:‘ g I X ). (3.19)

These results can be understood physically as the effects of a
frequency chirp in the optical pulse, which is of dynamical
origin. This is described by the explicit time dependence of the
phase argument B above. The local frequency detuning is given
by (3.16) above. Its maximum value for x¥ D1 is:

Miyay = W /(1 = €5 ) . (3.20)

As mentioned above these results are obtained by linearization
and are wvalid if:

€ AT,<< | (3.21)

For the case of zero detuning they have been shown to be a good
approximation to a more complete perturbatisn theory, which is
valid to the extent that the solution can be described as a
soliton with <X -dependent parameters, and distortions of the
temporal pulses be neglected [23]. For the general case this
question is difficult, and still under study.

IV. NUMERICAL STUDIES

Both soliton buildup from certain initial conditons and the
propagation of fully developed solitons were studies extensively
by numerical integration of equations (2.1) to (2.3). The
features of soliton narrowing at increasing gain and soliton
decay for detuning were verified and excellent agreement was
found with the analytical results discussed in section III.
Furtnermore it was found that some anaiytical results obtained
for propagation of solitons at large gain could also be applied
to give information about soliton buildup and its dependence on
the initial optical fields.

We start with a discussion of real solitons (no detuning).
The initjial Stokes field was assumed to undergo a change of sign
in the form given by (3.1). The only dimensionless parameters
are the threshold gain, or the gquotient of input intensities and
the width of the region of phase change, measured in units of
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the dephasing time 1/e . The resulting pulse shapes were
found to be almost the same for a large region of variation of
both parameters. The transition region, in which the Stokes
intensity goes to zero, broadens in the iinear regime conside-
rably to about ten times the dephasing tinme. As soon as pump
depletion sets in, however, pulse narrowing occurs. As the
pump becomes depleted in the asymptotic temporal regions away
from the transition region, a soliton develops with pulse shapes
closely approximated by (3.1). The subsequent narrowing of this
soliton at large gain is described very accurately by the
approximate formulae (3.18) and (3.19).

A very detailed analysis and comparison between different
analytical and numerical result si given in [23]. In figures
{1.1) to (1.3) we show results from that analysis. Figure (1.1)
shows a plot of the sguare of inverse soliton width versus gain.
The uppermost broken curve is the sitraight line predicted from
the approximate equation (3.18). The lower solid curve is from
an extended perturbation theory discussed in [23]. The dotted
line, which oscillates about the solid curve, gives numerical
results. It is seen that the simple approximate theory gives
very reasonable agreement.

Figure (1.2) shows results for the positon of the temporal
soliton center, which depends only weakly {(logarithmically) on
propagation distance, rather than linear, as for e = 0 . While
this general devendence is confirmed, there is a slight discre-
pancy between the numerical results (upper dotted line), and the
analytical results (lower broken and solid lines). This corres-
ponds to a small constant error in soliton position, and is due
to the difficulty of extracting the exact position of the one
soliton contribution reliably from the total, distorted puls
shapes.

Figure (1.3) shows the sguare norm of the pulse distortions

as a function of gain. The initial pulse were assumed to be of
exact soliton form, and distortions are seen to build up
rapidly. Eventually however their amplitude decreases, and a

pulse develops which is well approximated by the one soliton
solution. This final situation always occurs if the soliton is
allowed to build up from a weak Stokes pulse by Raman amplifica-
tion.

In figures (1.4.a) to (1.4.d) we show numerical results for
soliton buildup. Shown is the pump amplitude as a function of
propagation distance. Gain values and amount of depletion are
given below:

event gain pump depletion
a 8 3 %
b 12 56 %

A RS Atk 4 2 aNR A AL BR 200 ad oo o4

.
b
At

NI aad

. ” > > - - W b S 2 O AL latalaia x ata . tal
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c 16 99 % o
d 20 100 % R
d 30 100 % o
d 40 100 %
The pulses in events a to ¢ , although not soliton like, are T
seen to narrow with increasing gain [22]. For the three events -,
under d the pulses approach the one soliton form, and their ~

narrowing is in agreement with the analytical predictions
discussed above.

For complex solitons (non zero detuning) soliton decay

occurs in addition to initial narrowing. When the soliton has
decayed to a relative maximum of § = .5 , the width has a minimum
and broadening begins. For our numerical studies we used quasi
realistic pulse shapes. Three types of initial conditions were
studied:

a) non zero detuning, real optical fields with change of
sign for Stokes field by tanh function ("detuning");

b) zero detuning, real pump, complex Stokes field with
constant imaginary part as for soliton solution ("leakage");

c) combination of a) and b) as in the on. .oliton solution,
however at reduced total Stokes intensity.

Cases a) and b) give almost identical results for soliton
decay, 1if the residual Stokes intensity (leakage) of 1 -¢ is
equal to the square of the relative detuning Aw /€ (see
3.3). The name "leakage" is used since this case models an
experimental situation in which the phase change is effected by a
Pockels cell with residual transmission. Case c) gives a
slight reduction in soliton decay.

In figure (2.1) we show superimposed pump intensities in
five stages of propagation for case a) with a detuning of 1 %
(relative to the Raman line width). The central pump pulse is
seen to narrow initially, until is relative height reaches about
.5 (fourth stage). 1In the final fifth stage no further reduc-
tion in width occurs (the apparent reduction is due to a shift in
position and a decrease in amplitude).

In figure (2.2) we show sequences of propagation for a
leakage of .1 % (2.2.a) and 1 % (2.2.b) (initial condition

case b)). The first sequence is almost identical to the
sequence in figure (2.1). The last sequence shows rapid soliton
decay. Decay rates are in all cases in agreement with the

theoretical prediction (3.14).

In figures (3.1) and (3.2) we compare events with increasing
amount of detuning and leakage. Values are listed below:

o - h « e - . . o tel I Y BRI . Lot . .
T N o T o R TR AR AL AL 1P S I P SR B 2 -t I SUUS SR V. AP )
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event a b c d
(3.1) detuning 1.5 % 3 % 30 % 300 %
(3.2) leakage 0 % .76 % 6.7 % 11.7 %

Event (3.1.b) corresponds to a situation between events
(3.2.a) and (3.2.b), while (3.1.c) lies between (3.2.c) and
{3.2.4). Event (3.1.d) demonstrates a case of extreme detuning,
in which no soliton formation 1s observed. L,

t

V. SUMMARY AND CONCLUSIONS

TR T
"4. TP
FEEURY WY U SRR N

Soliton excitations in a Raman amplifier will develop, 1if a
phase shift of nearly 180 degrees is introduced into the Stokes
seed beam. In the absence of detuning and for an instantaneous
phase shift of exactly 180 degrees the solitons will be stable.
In the presence of detuning and for non instantaneous phase A
shifts of less than 180 degrees the solitons will be unstable and jgd
decay for sufficiently large gain. Limiting values are about 10% el
detuning relative to the Raman line width, and a fractional, S
unshifted Stokes intensity of about 1% . e

Stable solitons will show temporal narrowing with a width
inversely proportional to the square root of the total gain. For
large gain the final width is independent of the initial width.

Unstable solitons will reach minimal width at a relative
amplitude of .5, and begin to broaden on further propagation.
The minimal width is proportional to the initial width and the - A
initial relative amplitude.

These results show that media with large Raman line width
will b2 impcrtant for practical applications. These will give :
porn narrow final pulises, and pose less stringent requirements - 3
on detuning. ~v -1

. T el L ST T e e . o . ‘.._.’ N L TN e T e e,
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