AD-A165 428

UNCLRSSIFIED

IHPLEHENTRTIDN OF A NRTURRL LRNGURGE PROCESSOR USING 11
FUNCTIONAL GRAMMARCU) NAVAL POSTGRRDURTE SCHoOL
MONTEREY CA F G ORCHARD DEC 8 /G 9/2

=
F

—l

oy
9
e

7
2

4

NN

g
3
;

S
A x &R

B 3 A

Ly
| NPT

-
SO S

!
"5
[]

v gt

N2 & = 2
s =
2 flis s

o

I

FEFEEE -
‘R

rrr

T
EF

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANUIARDS-1953-A

A SRS A "“".f.‘«.‘\'\'\----—m u, "E"‘- 3‘}(

o -
L‘h..m.‘;. 'f.\ -\-1.‘:\ RPN SN N-(’“

P N P P o R I O P o N P O T O Y I P W O O O L O T o

Monterey, California
o0
KN
<
D
e
F
A g
: IMPLEMENTATION OF A NATURAL LANGUAGE
' PROCESSOR USING FUNCTIONAL GRAMMAR
j
: by
E g Fred G. Orchard
E o December 1985
5 (W)
—
X (o
Y s Thesis Advisor: Roger G. Marshall
g Approved for public release; distribution is unlimited
" 86 3 19 0438
e A L S e ;';:j:;-;;:;;;;f;::;:;;-.::;::;:;:.;-;;-_;:;;-:--:-*j

X, A,

EX_ X I

-~

SECURITY CLASSIFICATION OF THIS PAGE

el TR T TR T TS T T T e

REPORT DOCUMENTATION PAGE

. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

WK.W"-"K'WJ"T

1b. RESTRICTIVE MARKINGS

e TV T T T T TS g
2a. SECURITY CLASSIFICATION AUTHORITY

S
3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL

7a. NAME OF MONITORING ORGANIZATION

(If applicabie)
Naval Postgraduate School 'gpzha ¢

Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5100

Monterey, CA 93943-5100

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢. ADDORESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

1. TITLE (Include Security Classification)
IMPLEMENTATION OF A NATURAL LANGUAGE PROCESSOR USING FUNCTIONAL GRAMMAR

12. PERSONAL AUTHOR(S)
Orchard, Fred G.

13a. TYPE OF REPORT
Master's Thesis

13b. TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day) ['S. PAGE COUNT
1985 December 81

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Functional Grammar, Natural Language Processor,

Pragmatics, Predications

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis presents the design and implementation of a natural language
processor using Functional Grammar. Traditionally, grammars have consisted
of a set of words and a set of semantic and syntactic rules which combine
the words to form sentences. Thus, the language is looked at as a
syntactic structure which is used to derive meaning. Functional Grammar
looks at language as a means of social interaction and applies the
syntactic and semantic rules only after the meaning, based on pragmatics,
of the sentence has been established. Prolog has been used to demonstrate
how Functional Grammar can be used to provide that meaning.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT
BJ UNCLASSIFIEDUNLIMITED [J SAME AS RPT.

21. ABSTRACT SECURITY CLASSIFICATION

{J oTic USERS UNCLASSIFIED

22b. TELEPHONE (include Area Code) [22c. OFFICE SYMBOL
(408) 646-2509 Code 52M1

22a NAME OF RESPONSIBLE INDIVIDUAL
Prof. MaclLennan

83 APR edition may be used until exhausted.

DD FORM 1473, 8a MAR SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.

1. i fen Bt S DA A % 8 g R S RO R4 S o P AT gt St o B L el B @ R e B VR R VAL e e oy o e S A s . AN g - ML S gk i sa ek o o TPTTVY

4 .1’ a8 >~ .
L, -

-
-4,

ok e o
by

._u
=
&

Approved for public release; distribution is unliﬁited.

Implementation of a Natural Language Processor
Using Functional Grammar

2B
x

-
et R

by

S -

Fred Gregg Orchard
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1973

s
20

§'_ Submitted in partial fulfillment of the

B requirements for the degree of

@

-:*:: MASTER OF SCIENCE IN COMPUTER SCIENCE

<"«

\::.

1300 from the 7
e NAVAL POSTGRADUATE SCHOOL

::’\-:: December 1985 "
s_\x

o ;

S é

@) Author: e @&u%

;,: ',‘ Fred Gregg Orchard

e

O Approved by: 'eﬂ"‘ A . Ml A

¥ 11, Thesis Advisor

,' '}} o

PLA d ‘

ruce ye an, Second Reader

o

3 Lo o

o Vincent Y. Lugr, Eh&irman,

N Department of Cémputer Science

% kT M |
..:,”_,. Kneale

Nk, Dean of Information and Poltwy Sciences

» '-:,: d
Nl

&

.“.:- 3

| \-:_.-

5?‘;;’ 2

n, ",

Pl

ABSTRACT

. This thesis presents the design and implementation of a natural
language processor using Functional Grammar. Traditionally, grammars
have consisted of a set of words and a set of semantic and syntactic
rules which combine the words to form sentences. Thus, the language is
looked at as a syntactic structure which is used to derive meaning.
Functional Grammar looks at language as a wmeans of social interaction
and applies the syntactic and semantic rules only after the meaning,
based on pragmatics, of the sentence has been established. Prolog has
been used to demonstrate how Functional Grammar can be used to provide

that meaning.

Unannounced
Justification

Tt eemiie

Avanabﬂﬂy Codes

Dist Avasii »a"?d lor
PCCial

(]

A

n ¢

150N
Y
o
v’
ot
f:,:
H
D
o TABLE OF CONTENTS
At
> q
iy
oo I. INTRODUCTION 6
< A. TRADITIONAL GRAMMAR 7 !
:.? B. TRANSFORMATIONAL GRAMMAR 7
N C. CASE GRAMMAR 11
iy
e D. CONCEPTUAL ANALYSIS 13
n
, E. FUNCTIONAL GRAMMAR 13
S
BN II. FUNCTIONAL GRAMMAR 18
":.,f:..
OV A. PREDICATIONS 19
e
i
@ B. TERMS 21
2
N C. SEMANTIC FUNCTION HIERARCHY 22
) \’:.
LIRS
s, D. PRAGMATIC FUNCTIONS 24 J
. E. EXPRESSION RULES 27
:\.':' L
o III. PROGRAM DESCRIPTION | 31
o A. APPROACH 32
? B. CONSTRAINTS 41
3._1 IV. PROGRAM RESULTS 43
! }‘.‘w: V. CONCLUSIONS 48
N
1 APPENDIX A- PROGRAM LISTING so
" _‘7“
j:}'j; APPENDIX B- TEST #1 72
o APPENDIX C- TEST #2 74
R
A APPENDIX D- TEST #3 76
4 1.'. ‘ ' q
AN LIST OF REFERENCES 78
:::E BIBLIOGRAFHY 79 J
o~ .
51 .
L INITIAL DISTRIBUTION LIST a0
z‘-f-'. 4
\ .

18 & m .
A e
]

[y

~ 4

e R -"J‘/

"

i
v

ACKNOWLEDGMENT

This thesis was written under the direction of Professor Roger G.
Marshall. His exceptional knowledge of Functional Grammar in particular,

and of Computer Science in general, was an inspiration and an invaluable

asset in the completion of this project.

T, hadihide o cabat oy e d A A Ao SRl) Aok gl ol v

I. INTRODUCTIO

Many attempts have been made to program computers to understand
natural language. Terry Winograd’s "Programmer" project provides an
excellent example. [(Ref. 1:pp. 80-108] Natural language processing is
necessarily based on grammars that have been developed by linguists.
RAlthough many grammars have been developed, Noam Chomsky's
Transformational Grammar has been in the forefront of linguistic study
for the past 30 years. Recently, Simon C. Dik proposed a new grammar,
based on a functional paradigm. Most grammars are based on the idea
that languages are a set of sentences. Dik’s Functional Grammar (FG) is
based on the concept that language is a means of social interaction.
His 1ideas mark a radical departure from the current theories. [Ref. 2:p,
11 This thesis will attempt to provide a working model of FG utilizing
Prolog as the implementation language. The program will evaluate a
paragraph of text and return the theme of the paragraph. It will also
determine whether the paragraph is consistent in its theme,

To understand FG, a discussion of some major grammar theories is
needed, A discussion of Traditional Grammar, Transformational Grammar,
Case Grammar, and Conceptual Analysis will trace the history of grammar
theory in the twentieth century and provide the background necessary to

understand FG.

}*J- =t _L m*&h‘?

A. TRADITIONAL GRAMMAR

Traditional Grammar is the grammar that most laymen recognize. It
is the grammar borne out of a necessity to educate millions of
youngsters in a formal manner. Traditional Grammar is based on a set of
definitions and prescriptive rules. The definitions are those such as:

A NOUN is a person, place, or thing.

* A SENTENCE expresses a complete thought.
Prescriptive rules are those such as:

Never split infinitives.

Don't end a sentence with a preposition.
The grammar is taught by counterexample. That is, a studert is
presented with sentences which he must make "right" by application of
the given rules. It develops in one an intuitive understanding of the
language, but does not give the user an explicit algorithm for

constructing sentences.

B. TRANSFORMATIONAL GRAMMAR

The break from the traditionalists came in the 195@'s. Linguists
were generally divided into two groups. The first group, known as the
structuralists, believed that languages were derived separately and
that any commonality between languages was purely coincidental. The
other group explored the possibility that all languages came from a
single source or wmaybe only a few sources. This theory would axplain
similarities between languages and suggest a possible vehicle for

evaluating all languages in the same manner.

fes
R .(-uu .

J'.&- "' ”&'&w’.ﬁi} !‘i o J-...AI.:}'.::..- ol .‘._"".r NS o

LR Al e din UA dae fiu afe s Md VA B8 M i i uia s a0 b g o s aa s auea s o]

O
o
%*2 Among this latter group was Noam Chomsky. In 1357, he published
X
hﬂ. Syntactic Structures,[Ref. 31 In this, he developed his theory of
N Generative-Transformational OGrammar or as it is more commonly known, |
o
:juj Transformational Grammar (TG). In 1965, he refined and modified his
2R ‘
b e theory in Aspects of Syntactic Theory.[Ref. 41 This book was
D)
e destined to become the yardstick by which all new grammars were
[~ W™
933 measured.
o
e N
1o Transformational Grammar gives explicit rules for processing
;~\ sentences. These rules are of two types (1) Phrase Structure Rules
';_ﬂj (PSR) and (2) Transformational Rules (TR). The "surface structure” of a
{‘I;Jf
fkj sentence is the readable form, that is, the way it appears in print,
L
S5 PSRs provide a path from the sentence’s surface structure to its “deep
)
s structure". The deep structure provides a description of the syntactic
AOAY
o functions that each word performs in the sentence, and with the
¢
‘.(\ exception of §6I, is in a one-to-one correspondence with the surface
h_‘: s\
o structure. SI is an indicator of the type of sentence. From this deep
b
oY structure, TR's are used to transform the sentence back into surface
D
;i A structure and into other deep structures with similar meanings. An
Al "
;QHH example will clarify this process. The following is a set of PSR's:
g
-
O] (1) Sent -) SI + NP + Aux + VP
€ = {2) SI =) (pos)!| (neg) ! {com | (quest) | {(pass)
e (3) VP =) V + NPIPPiAd)le
SN (4) PP -) Prep + NP
o0 (5) NP -) (Articlele) + N + (Sentle)
TR (8) Aux =) Tense Marker + (Modalle)
‘o (7) Modal =) {(can)|{may)l! (shall)l(will)
e SI=Sentence Indicator, NP= Noun Phrage, VP= Verb Phrase,
L0 PP= Prepositional Phrase, e= empty
S5
.:jtj (1) The man went to the store.
:-._"3
B
Y 8
N
N
Ly
:,,-.":‘.
o

"
~.
25
AN
r;u'-—
'_:1:::'.
;~j< Sentence (1) will be transformed from the surface structure to the deep
L .\y
:. T structure by use of the above PSR's. Brackets are used for
;'gj) clarification. Sentence (1) is diagramed in Figure 1,1[Ref. S:pp.
P
Sy 78-801
l¢}c
:‘j STEP RULE
s a. Sent-)SI + NP Aux + VP 1
Af:if b. Sent-)[positivel+ NP + Aux + VP 2
N
o c. Sent-)(positivel+l(Articlele) +N+{(Sentle)J+Rux+VvpP S
o d. Sent-)[positivel+[the+manl+Rux+VP
A
22i- e. Sent-)[positivel+[the+manl+{Tense Marker+(Modalle)l+VP)
o~
.v f. Sent-)[positivel+[the+manl+[pastl+VP
'153 g. Sent-)[positivel+[the+manl+[pastl+[V+PP] 3
o
,;J; h. Sent-)[positivel+(the+manl+[pastl+[go+[Prep+NP]] 4
AN i. Sent-) [positivel+[the+manl+ipastl+[go+(to+lArticle+NI]] S
1¢{§ : J. Sent-)[positivel+[the+manl+[pastl+lgo+lto+tithe+storell]
$2§<
-'4’.1:
5
e si NG Aux
;\' »
! pos A N Tense v ////A\\\\‘
.:;: the man past ge Prep NP
L l /\
o to A N
R
hr the store
oy
(1]
b~ﬁ ’ Figure 1.1 Sentence (1) Diagram
&l
A
220
-;_::. 3
o
T
&
B
..'T'./
) - y ;

y e e - PRI
- L >» 4, - ’ (#’#-' ’. L)
N 2% 474 190

'f- .;-:‘J' ".'.“, .'.‘4;1'.&?

.‘-‘n.-‘._‘ 3 -.‘-'\. 0 \. \. x. .‘,\. KRN '.'.4.::-- '-‘.:-'“'.
AL

*. “- "1""-

f<w “r

:;‘? Y

!!z

S A,

ST
L e

a5 S

l‘ “' l'

l‘ “

Y 21
‘1',:’ e,

Transformational Rules provide a means of changing the form of the
sentence. There are many types of TR'’s, Some TR's, such as the question
transform, the negation transform, and the command transform, change
the meaning as well as the structure. For example, applying the
question transform to the sentence above results in the surface
structure "Did the man go to the store?". To make the transformation
requires two steps. First, the deep structure of the senterce is
changed to reflect the new form. Then the new surface structure is
derived from the new deep structure. Some TR's do not change the
meaning, yet they must also have their deep structure changed in order
to arrive at the new surface structure. This requirement to change the
deep structure of a sentence in order to transform it is one of the
deficiencies of 7T6. The deep structure should express the meaning of
the sentence, but in the case of TG, it must be changed for different
configurations of the same sentence. Consider the following serntences:

(2) John read the book.

(3) The book was read by John.

Sent
/N
SI NP Aux _ v
|
pos John Tense v NP
AN
read A N
the book

Figure 1.2 Sentence (1) diagram

R T BRI T SRR SRS S PR N
T T T T e T T T T T
Bt B S s Aa N An BB R aB N

DI ST U St S T
Tl mNalaTaduA-n

Sent
_— | T
SI NP Aux vp
/N N
os A N Tense Modal \’% PP
| AN
the book past is read Prep N
by John

Figure 1.3 Sentence (2) diagram

Figures 1.2 and 1.3 show the diagrams of sentences ((2) and (3),
respectively. While it is true that syntactically, these sentences are
different, semantically they are the same. "There exists a book which
was read by John." RAs will be seen later, Functional Grammar treats

this situation in a completely different manner.{Ref. S:pp. 81-881

C. CASE GRAMMAR

When Chomsky published his AfAspects of the Theory of Syrtax,

many linguists questioned the primacy of syntax. ARmong these was
Charles Fillmore. Fillmcre subsequently published "A case for Case"
where he presented his new (se Grammar (CG).[Ref. 61 Fillmore
maintained that the semantics of a sentence should dictate the syntax
of the sentence. To illustrate this, he developed a set of semantic
cases. These cases, although not exhaustive, are considered the minimum
necessary to adequately process a language.
*# Agentive (A)- the person or animate object that performs the

action specified by the verh.

11

m‘mvva

Instrumental (I)- the object or force used by the verb.

Dative(D)- the person or animate object affected by the verb.
Factitive (F)- the object or being resulting from the action
of the verb.
Locative (L)~ the location or orientation specified by the verb.
Objective (0)- things that are affected by the action of the verb.
A sentence is composed of two parts, modality and proposition (Sent

-) M+P). Proposition is further decomposed into a verb and a number of
cases, results in the following construction: Sent =) M + V + C1 + C2 +
«set+ Cn. The cases are from the above list. A sample senternce might be
decomposed as follows:

* John gave the book to Mary.

a. Sent =) M +V + Cl1 + C2 +...+ Cn

b. Sent -) past + V + C1 + C2 +...+ Cn

c. Sent -) past + give + C1(R) + C2(0) + C3(D)

d. Sent -) past + give + John + book + Mary
John 1is the Agentive case, book is the Objective case, and Mary is the
Dative case. By this process, Fillmore was able to capture some of the
semantics of a sentence. But CG was still a Transformational Grammar
requiring transforming of the deep structure to change a senterce into
a similar sentence with the same meaning. Additionally, Fillmore's

cases were hardly exhaustive and did not capture the caontext of a graoup

of sentences. [Ref. 6:pp. 21-311

{f D. CONCEPTIONAL ANALYSIS

. At about the same time that Fillmore was developing his Case
Grammar, Roger Schank pr;sented a new approach to natural language
processing. He felt that transformations of structures and syntactic
parsing were not the right direction for natural language processing.
Instead, he offered his theory .of Conceptional Analysis of

Language(CAL). CAL deals with the meaning of the sentence rather than

the structure and the syntax. Thus sentences such as (4) and (3),

ﬁﬂi below, have the same meaning even though their structures are gquite
-’1.“‘1
’“ﬂt different.

ot
‘. ; (4) John gave the book to Mary.
T} N (5) The book was given to Mary by John.

25

%

:¢: Schank developed a set of conceptual cases. These cases, which were
w
) language independent, would capture the conceptual content of a word or
‘\ v phrase. A sentence was evaluated and each time a word or phrase was
D o
p:ﬁ encountered which had the meaning of a particular conceptual case, that
(L
i case was substituted for the word or phrase. At the end of the sentence
*\A‘ evaluation, one meaning was achieved. A program using this approach was
N '
:f: developed at Stanford University. [Ref. 7:pp. 187-247]
‘ _.-f.
-
) E. FUNCTIONAL GRAMMAR
‘ffff Shortly after Transformational Grammar and Case Grammar gained
o respectability, Simon Dik published a dissertation challenging
L

.? Chomsky's Transformational Grammar. His main criticisms were that the
<
,:27 treatment of syntax and ssemantics was inadequate and that a
f:%: non-transformational method was possible. He formalized his theory of
LHEY

&
S
-

o 13
oy
2

25\

'.2
‘ ‘:é-‘w; RGO CRTR O RO S P RN S T A TP S N e e e e e e e e e e N L T S ettt AN
D M A N A S (R A N, Ve v ey AN RTINS v PN Y NN y .

5 ",,u
}:{ Functional Grammar in 1978 with the publication of Functional
T N‘i‘
g-: Grammar. Dik based his theory on Functional Grammar on two
s principles:)
N
A {1) A language system should be more than just a grammar that
t}}: conforms to a set of syntactic rules. It must also be able to
e explain the wultimate use of the rules and how they are 1
.*j interpreted.

(2) A language system should be devised so that it can most easily be
incorporated into a wider pragmatic theory of verbal
interaction. [Ref. 2:p. 21

DTS
W

Pa 1
ST
4
% A Gy

Dik’s theory of Functional Grammar differs from Transformational

a2

LI R

Grammar in some very basic ways. Transformational Grammars are defined

v
S
T e

,; by a set of syntactic rules. These rules state that a noun phrase must
;7 be followed by a verb phrase, or a noun phrase may be preceeded by an
w4
juj adjective, etc. Because of this dependence on the syntax of the
1 l_;'r
,iiﬁ language, the language is forced into a priority system where syntax
L
o
comes first, followed by semantics, and lastly by pragmatics. On the
Sy other hand, Dik's Functional grammar has the language being defined as 4
‘ﬁ%: a method of social interaction. Starting from this premise, Dik ends up
{ii' with a priority system that places pragmatics at the top of the list,
?i? followed by semantics, and lastly by syntax.
‘:;: A Functional Grammar should be able to adequately recognize all of
".._‘-
'ti the linguistic expressions of a particular language. This requires
i;ﬁ defining rules which cover what Dik terms "the most significant
R
:Ej generalizations of the language."[Ref. 2:p 6] Standards of adequacy are
Lo
.E used in grammar development as a baseline assessment tool. After
i}:i exploring the many standards available, Dik established three standards)
AR
) of adequacy that he felt FG had to canform to in order to be usable.
.(‘_'d s
L%
&
¥
: 3 14
ol
‘ \J'.
7
4
-
'O
)\-'- AP AL LI », TR
e e e ALY ¢ 5 o .
G N s TR SO R ool RoEAnd

The first of these is pragmatic adequacy. This is the heart of
Functional Grammar theory. A Functional Grammar must recognize the
properties of lingustic expressions from the everyday use of the
language. Dik believes that FG needs to resolve the pragmatic aspect
before any resolution of the semantic and syntactic functions of a
linguistic expression can be attempted. If such is the case, then it
shall be considered pragmatically adequate.

The second standard is that of psychological adequacy. To be
considered psychologically adequate, a Functional Grammar must be
consistent with strongly established and supported psychological
hypotheses about language. An example of this type of concern would be:

Q@: How did you arrive?

A: By United.
Without knowledge of airline company names, one might not understand
the answer to this question. This is a general expression accepted in
our language yet not served by any syntactie, semantic, or pragmatic
rules. It is therefore contained in what Dik considers psychological
issues.

The third and last stardard is that of typological adequacy. A
Furctional grammar must be applicable to typologically different
larguages while at the same time addressing the similarities and
differences =f the larnguages. A Functional Grammar that accomplishes

this would be cornsidered typologically adequate. [Ref. 2: pp 6-31

'l:. Ky

c_':g,.

ST 12

iy
e
LI

a PR
] y
» :,l'l
b,

NN ™
R4

Y

Rel |

EREACRE
‘Ir . 3

s

LY
*

i Dl
a2
e} AU

)

2 .

L3 ")‘
Nt
A

} ':"-

A0
X

A grammar can fail in two ways. It can be so constrained that it
does not include expressions that assure that it attains descriptive
adequacy. That 1is, it does not fully describe the expressions that the
language requires. 0On the other hand, it could be so large that too
much is included. Functional Grammar’s approach to this is to restrict
the range of descriptive devices allowed. This is accomplished in three
Ways.

Functional OGrammar uses very few transformations. Transformations
are of two types, those that effect changes in pre-established
structures and "structure sensitive" transformations. The latter are
rules in which the elements are affected by the envirorment that the
rule 1is in but do not alter the structures. Functional Grammar does not
allow transformations of the first type with the one exception that it
allows for deletion of variables in certain situations. Essentially, no
other structure changes are allowed.

Functional Grammar uses no filtering devices, which are used
extensively in transformational grammars, A set of expressions is
axparded into a larger superset of expressions which are used to
avaluate sernterces that are not in the orthodox form of (noun
ahrase) {(verh phrase). After evaluation of the sentence, the useless
structures of the set are “"filtered out." This allows a let of freedom
but adds extra structures that later must be discarded. Functional
Grammars strive to immediately recognize the target set of well-formed
a2xoressions thereby negating the need for filtering devices.

Functional Grammar also differs in its treatment of lexical items,

The lexical items are the basic words, purictuation, anc their usage.

The abstraction of a grammar is constrained by its definition of
lexical items. As a grammar gains more and more lexical items, the

possible combinations grow exponentially. A grammar must deal with all

E§E of these combinations. Most grammars do so by constraining the number
-;"j of lexical items, which in turn constrains the grammar. Because
"y Functional Grammar puts the treatment of lexical items at the bottom of
o8 its priority 1list rather than the top it is less constrained than
traditional grammars.[Ref. 2:pp 10-121

e Functional Orammar is a radical approach to linguistic theory when
Ié&g logked at from the Chomsky point of view, However, it compares
W
o favorably with the traditional approach. The traditional approach
'jj alliows one to develop an intuitive understanding of the grammar but it
,313 does not pravide an algorithm to build the language. Functional Grammar

maintains that intuitive understanding, Dik's "method of social

interaction, " and provides the algorithm missing in Traditional

Grammar.

II. EUNCTIONAL GRAMMAR

In Functional Grammar, language is defined first to be an
instrument of social interaction, which is opposed to Transformational
Grammar's view of language as being a set of sentences. To provide a
framework in which the FG definition will work, Functional Grammar
utilizes the following definitions:

Predication - an expression that governs the application of
a predicate to an appropriate number of terms functioning as
arguments of that predicate.

Constituent - a term acting as an argument of a predicate.

Syntactic function - the role a constituent plays in presenting

the perspective from which the state of affairs is presented in the

linguistic expression.

*# Semantic function - the meaning a constituent has within the state
of affairs presented in the predication.
Pragmatic function - the informational status of the constituent

in the context that the predication exists. [Ref. 2:p. 131
In this framework, pragmatics is seen as the most important function,
followed by semantics and lastly by syntax. Functional Grammar provides
a structure, the predication, that encompasses the syntactic, semantic,
and pragmatic meanings of all of the constituents of a sentence. The
primary emphasis in Functional Grammar 18 on the meaning of each
constituent, not on where it is located in the sentence. Only after the

constituents’ meanings have been established is syntactic placement

18

by
A' -\
=
‘T'
ot
"t
A
’é§ given consideration. This is done through the application of expression
\
R rules.
-
-
k '.;§ A. PREDICATIONS
>
Ak - Predications form the basic components of Functional Grammar. Each
"3‘ predication is based on a sgingle predicate from the lexicon. The
T
e lexicon consists of the basic terms of the grammar and the basic
-4:\
;(ﬁ predicate frames. The bhasic terms and predicate frames are described
below. A predication describes a complete thought. More often this is a
~:‘
:}3 sentence, but it may be a partial sentence, as, for example, in a
~;: compound sentence. The predication is expressed by means of a structure
KA
called a predicate-frame.
3
L (1) [p A1 (X1) A2(X2) ... An(Xn)1]
[l CAT
3ﬁ The predicate-frame provides the following information.
* The predicate. (p)
38
;} # The category of the predicate. (Verb, Noun, Adjective)
A
;ﬁ: # The argument positions. (X1,X2,...,%Xn)
C) # The semantic function of each argument. (Rgent, Goal, Recipient,
*
M
qﬁ etc.)
v
#:: *# The selection restrictions for each argument. (R1,A2,...,An)
!
‘E The predicate-frame in (1) is a nuclear predication. This means it has
.
|§j the minimum number of arguments and their types which are needed to
3
o express a complete thought for a given predicate. For example,
o
ted
) (2) give (Xi:Animate(X1)) (x2)
‘ot VERB AGENT GOAL
X
Jg (X3:Animate(X3)) i
e REC
. 1
h\:
19

>

AR
Lo .L’L"'L Jd

"
ey

- - - -
=
P
> P
A a'a

4, i‘

[

DI J. [y
, dy Sty

TaTr
FRV RV R

-
3

i
PR Rt it]

Y
et
,

A
R

2
s b
i S

4

.
2"
[

B
‘g Ay

(YIRS

rv" M
ALY

s
.

i
.
L

g
YO A

L4 s

::::

.o

s
[Nty

NASNS

The predicate is 'give', of category VERB. There are three arguments;
X1, X2, and X3, whose semantic functions are AGENT, GOAL, and
RECIPIENT, respectively. ARdditionally, X1 and X3 are restricted to
being animate objects. A predication in the form of (2) is said to be
an open predication. It gives all of,the semantic arguments and their
attributes that are required to form a complete sentence using that
verb. When all of the arguments have been filled, the predication is
considered fully specified.

AR predication may have more semantic functions added to it for
further clarification. This is done through satellites. Satellites are
specified in the same manner as the arguments in (1) and they would be
represented by Y1,Y2,...,Yn, along with Bl ... Bm which represent the

selection restrictions for the satellites.

(3) {Cp A1 (X1) A2(X2) ... An(Xn)] B1(Y1)
CAT

B2(y2) ... Bm(Ym)}
The semantic functions of the arguments together with the verb provide
a state of affairs for the sentence.

There are four states of affairs: action, position, process, and
state. These are defined by two processes, (+)control and
(+)dynamism. These are shown in Table 2.1. Control implies that a
being in the sentence controls what is happening. Dynamism implies that
something is taking place as opposed to describing a situation. Verbs,
such as run and stand, may be used in more than one state of affairs.

It is their relationship to the semantic functions of the arguments

2o

R ol
s

4 4
=

N

s
b

7

.I

X G R
ST

2
Wty

.)

L'
gy

a3 A',
DA A

S

-
%

¥
St

'—*"‘"- - g -
=1 W)

Oy o "?’
L b

that defines the state of affairs. In sentence (4), Bill controls the
action in a dynamic setting. In sentence (5), Bob controls the act of
standing, but is in a static setting. In sentence (6), the refrigerator
does not control, but it is a continuing or dynamic situation. In
sentence (7), the car does not control its color and (7) merely
describes a static situation. [Ref. 2:pp. 25-391

(4) Bill ran down the street. (action)

(5) Bob stood on the corner. (position)

(6) The refrigerator is rumning. (process)

{7) The car is blue. (state).

Table 2.1 States of Affairs

controlled uncontrolled
dynamic action process
non~dynamic position state

B. TERMS

The argument slots are filled with terms, which are found in the
lexicon of the grammar. Terms are nouns, verbs, and adjectives. They
are defined thus:

(8) (wXi 3 p(Xi))
w is a term operator which describes whether the term is definite or
indefinite, singular or plural. p(Xi) is a predication. The phrase 'the
ten butterflies' would be expressed:

(9) (10dXi : butterfly (Xi))
N

=3

‘afhe e i A e e A A A 5 e K R D e !

Terms may be modified by use of referents. Referents normally take the
form of adjectives and are added to the term in the following way.

(10) (wXi : pl(Xi): p2(Xi): ... pn{Xi))
In the phrase 'the ten bright orange butterflies', the referents are
‘bright' and 'orange'’. The phrase would be expressed as:

{11) (10d Xi: butterflyN(Xi): orangeg(Xi): brightn(Xi))

This phrase could then be inserted into an argument slot of a

predication.

C. SEMANTIC FUNCTION HIERARCHY

Dik has established what he terms a Semantic Function Hierarchy
(SFH) . The hierarchy establishes a relationship between various
.syntactic and semantic functions that is language independent. The
ordering/hierarchy is as follows:

Agent)Goal)Recipient)Beneficiary) Instrument)Location) Temp

Each noun term in a sentence is assigned a semantic function.
Rdditionally, one of the terms is also assigned the syntactic function
SUBJECT. Once that term has been identified, its semantic function is
marked in the SFH. Then, if a syntactic function OBJECT exists in the
sentence, the word which has this function must have a semantic
function that is to the right of the semantic function that was marked
for SUBJECT. Each language may have sentences that place the SUBJECT in
various positions in the hierarchy, but a cut-off point is generally
established where asssignment of SUBJECT to semantic functions beyond
that point results in poorly formed or nonsensical sentences. The

cut-off point for English is BENEFICIARY. At or near the cut-off point,

. T TN T L
- I RS AT R

A & e, . \ e . -
St e '.." S N S N T s It S R . ’ A . LT, CaSra 'i
PEAY. L PEPAFIARTN V& C U S ORI S N S0 A WA PR I, W , G S RN S A T N A RN

N
o
LI
S
;i,% it is more difficult to find sentences that are "good English". The
P following sentences illustrate some of the possible SUBJECT and OBJECT
»?:{ ' assignments. The last sentence illustrates a sentence that tries to go
Loy
‘iﬁi beyond the cut-off point. It is clearly a poorly formed sentence.
2
vy a. Bill gave the bread to Tom .
) AG-SUBJ GO-0BJ REC
b. Bill gave Tom the bread .
AG-SUBJ REC-0BJ GO
o |
w2 c. Bill bought Tom the bread .
RG-SUBJ BEN-0BJ GO 1
. d. The hread was given to Tom by Bill .
o, GO-SuBJ REC-0BJ RG
i’ﬁﬁ e. Tom was given the bread by Bill .
?‘; REC-SUBJ GO AG
o f. Tom was bought the bread by Bill .
e BEN-SUBJ G0 AG
oSS
o g. In the kitchen was brought the bread for Bill .
L.0C-suBJ GO REC

‘ >.‘..‘-;‘.‘_- Ll

l‘

These relationships are shown in Table 2.2.[Ref. 2:pp. 70-75]

Table 2.2 Subject-Object Relationship

2

:x . Semantic Functions

A |

t £

lQ‘

&t AGENT GOAL REC BEN

€ —_— _— _—
N a SuBJ OBJ

by b SUBJ 0BJ

2 e SUBJ 0BJ

20N d SUBJ

e e SUBJ

f SUBJ

ey

‘ o

A

D. PRAGMATIC FUNCTIONS

R predication that has been assigned semantic functions, syntactic
functions, and a state of affairs appears fully specified. But certain
situations are not represented. Consider the following sentences.

(12) BILL drove to Chicago.

(13) Bill DROVE to Chicago.

(14) Bill drove TO Chicago.

(15) Bill drove to CHICAGO.

By emphasizing a different word in each sentence, a different meaning

is achieved. To account for such differences, it 1is necessary to
consider the speaker's context, his assessment of what he means, the
addressee's assessment of what he has heard, intonation, etc.
Functional Grammar provides a set of four pragmatic functions to deal
with these situations. The assignment of pragmatic functions to a
predication will result in a fully specified predication.

The four pragmatic functions are TORPIC, FOCUS, THEME, and TRIL. The
latter two are external to the predication while the first two are
internal to the predication. The pragmatic function THEME describes the
universe of discourse of a given predication. It is normally associated
with left-dislocated phrases such as:

(16) That pgirl, I like her.

The second external pragmatic function, TRIL, describes an afterthought
or something that clarifies the predication. It is normally associated
with right-dislocated phrases, such as:

(17) She's a nice lady, my wife.

Functional Grammar assumes that THEME and TRIL are external to the

24

T W T vw

3 “r N
oA

«
1y
s
.

':' l\.'

:
1

P -
e P, L T,

e .
S

SN

1.
L4

l.l

.

N
‘. 0 -

predication and iv uses the following representational schema:
(18) (Xi)THEME, Predication, (X3)TAIL
where Xi and X] are FG representations of the phrases.

Internal to the predication, Functional Grammar utilizes two
pragmatic functions. TOPIC describes a constituent about which the
predication predicates something. FOCUS repreéents the relatively most
important information with respect to the pragmatic concerns of the
speaker and the addressee. TOPIC and FOCUS may be assigned to any
constituent in the predication, including the verb. A sentence does not
necessarily have all four pragmatic functions assigned. Most often,
only the internal functions will be assigned.

It is in the treatment of a text or sentence grouping that the
external functions play a major role in Functional Grammar. Consider
the following paragraph.

(19) John gave Mary a book. Mary gave Bill some money. Bill gave
Tom a coat.

Analyzing the first sentence by itself might result in various
assignments. John might be assigned as TOPIC and Mary as FOCUS. Book
could also be assigned as FOCUS. The assignment might depend on the
speaker's intonation. However, looking at all three sentences together
reveals several possible combinations of TOPIC and FOCUS. The common
thread of this paragraph is the act of giving and thus provides us with
the THEME., The THEME cculd change over time as more sentences are
added.

(22) They all wanted to help somecre,

(21) Thiy all had firnally repaid their debts.

Padf il 2l
l.l'l‘.l.

.
L
DA
oSt

b
‘)' ’

VX

"l
s b

el

(4
-

b %<,

The addition of sentence (20) would change the THEME to 'generosity’.

Adding sentence (21) instead, the THEME is probably 'paybacks'. One of
the strengths of Functional Grammar lies in the ability to look at a
group of sentences and provide an overall meaning to the
predications. [Ref. 2:pp. 127-1321

With the addition of the pragﬁatic functions, it is possible tc
obtain a fully specified predication. The following example using
sentence (22) shows how a sentence is taken from its sentential form to
a fully specified predication.

(22) John gave the big red book to the sweet little girl on Tuesday.
The sentence is based on the predication for 'give’.

(23) give [(X1:Animate(X1)) (xe)
\% ARG GO

(X3:Animate (X3)) 1
REC ACTION

Adding the satellite (Yli:time-period(Y1)TIME to (23) results in the

extended predication:

(24) {give [(X1:Animate(X1)) (X2)
% ARG GO

{X3:Animate(X3))] (Yl:time-per(Y1l)) ¥
REC ACTION TIME
The terms are then inserted intoc (24) resulting in the following

predication.

(25) {give [(diX1l:John (X1))
v N AG-SUBJ

(diX2:book (X2) (d1X4:red (X3) (d1XS:big (X5))))

N A A GO
(d1X3:girl (X3) (diX6:little (X6)
N A
(d1X7:sweet (X7))))] ~ (d1Y1:Tuesday (Y1)) ¥
A REC ACTION N TIME
26
T N T e T L e S

"
To i o

1
r
.

- - ‘L- -
Silen?

) e

>

o

Next the pragmatic functions, TOPIC and FOCUS, are assigned to (295)
resulting in the fully specified predication:

(26) {give C[(diX1l:John (X1))
v N AG-SUBJ-TOP

(d1X2:book (X2) (diX4:red (X3) (d1XS:big (X5)))
N A A G0

(d1X3:girl (X3) (diX6:little (X6)
N A

(d1X7:sweet (X7))))] (dlY1:Tuesday (Y1)) }
A REC-FOC ACTION N TIME
E. EXPRESSION RULES
Once a fully specified predication has been achieved, a means for
mapping the elements of the predication onto a linguistic expression is
required. A set of language dependent expression rules provide a means
of accomplishing this. Although many types of expression rules exist,
they can be generally divided into three groups: case marking, word
order, and intonation. These rules work together to form the linguistic
expression.
1. Case Marking
Each of the syntactic, semantic, pragmatic, and operator markings
gives a clue as to how the sentence will appear. The term ~perator
(1dX1: elephant) would map to 'the'. Had it been (2dX1: elephart), it
would have mapped into 'the two' and ‘'elephant' would change to
'elephants’. Using syntactic and semantic marking and the Semantic
Function Hierarchy provides more rules. For example, if a term is
marked as AGENT but not SUBJECT, the preposition 'by’' will be mapped

onto the term. Having a term marked as AGENT and SUBJECT wculd indicate

n
~

a
NN
“

3 : that the sentence begins with the SUBJ-AGENT and therefore does not
3N need the preposition 'by’. Verbs are also affected by case marking. The
Y (’

il different tenses and the use of auxiliary verbs are triggered by
\1'-.
iﬁﬁii expression rules. [Ref. 2:pp. 158-1611]
Y,“L:'h»

S {
{4e0) 2. Word Order

»
A Functional Grammar provides a language independent preferred
PN

T

:yfi order of constituents (LIPOC) which form ancother section of the
\':;.",
{lf expression rules. LIPOC can be expressed as
i PROcl (PRO (NP (NPP (V (NP (PNP (SUB
A

ol where:

~ :—ﬁ

Ry PROcl = Clitic Pronoun

)% PRO = Pronoun
X L NP = Noun Phrase
SN NPP = Postpositional Noun Phrase
R v = Verb

. PNP = Prepositional Noun Phrase

¢*} SUB = Subordinate Clause

¢

oy An example of where this ordering is apparent is shown below.

(27) The man in the uniform gave a ticket to the boy.

where:
NP = The man
NPP = in the uniform
V = gave
NP = a ticket
PNP = to the boy

Most sentences do not contain all of the constituents, but the
constituents that are present conform to LIPOC. Rdditionally, languages

have a syntactic ordering. The ordering of English is

Subject-Verb-0Object (SV0). [Ref. Z:pp. 132-134]

..

R M
e’ n
L B i]

eI X700 d,
AR

.'r" -
k1

ot}
-

T A I DA I e am e ar e ne e AT
A . . . , . AR i . " A R R
R O L R e R B R TR U CA RN ‘ »,("'IQ-J-, AR S "

Y a e i a = Ll Ll L v wa g NITWINT o - < g AR AR SEA Al A bl Skl MR At et A vwv*j

§

N

l. L

5\. 3. Intonation
2

3 The pragmatic function TOPIC and FOCUS provide the information to
A give the proper intonation to the sentence. The predication in (i)
(.

ﬁ?') would result in the sentence in (2).

"

. (28) {drive _ [(d1X1:John)]

oy i v-FOoC N AG-SUBJ-TOP ACTION

00

Wy

" (Y1:Chicago))

Q N LOC

(29} John DROVE to Chicago.
Of course, sentence (23) is not the only interpretation of the

predication in (28). In (29), the past tense of give was used. (38) and

X,

{31) are also possible interpretations.

L

:g (30) John WILL DRIVE to Chicago.

Ty

:: . (31) John DRIVES to Chicago.

WS These rules can be grouped together to provide a means of mapping
rﬁ the predication onto the linguistic expression. Although not in
sij standard Backus Naur Form (BNF), the rules follow a similar format. The

following rules illustrate this concept.

19"

X -iX1 =) the indifinite article "a" or "an".

4

‘*< -dX1 =) the definite article "the".
E‘- -d2X1 -) the number "two".

3}ﬁ Figure 2.1 summarizes the organization of a Functional Grammar and
iji shows how the concepts outlined above are related. [Ref., 2:p. 23]
S5

-

<

=

i

s

' -

"

. -

) z93

LY,
'\.. Il'I“l\.l‘l LY

M

s

»
Yy
N .

WEARNR)

N

h)

o

1

LEXTCON

derived
pred

frames

basic basic

pred

2 terms
rames

derived

terms

nu redicate

=

extended
red fr

PREDICATE FRAMES

term
insertion

PREDICATIONS

syntactic

fully specified
PREDICATIONS

EXPRESSION
RULES

form intonation

order

LINGUISTIC
EXPRESSIONS

FIGURE 2.3 FUNCTIONAL GRAMMAR ORGANIZATION

30

e
o
FAPALINS

-
* ‘e ."
“Al:.,',

III. PROGRAM DESCRIPTION

To develop a program which will process natural language using
Functional Grammar requires looking at Functional Grammar from a
completely different view than was explained in Chapter Il1. In Chapter
II, the placement of terms into their proper syntactic, semantic, ard
pragmatic argument positions was done from a linguist’s perspective. R
linguist selects the various functions by looking at the sentence anc
deciding intuitively what role each word in the sentence plays. He
accomplishes this by means of his background in language. It is the
duplication of this thinking process in the computer that the program
which has been developed attempts to attain. Many constraints must be
imposed in order to keep this project manageable., The approach taken
and constraints imposed are discussed below. The program folliows the
general flow shown in Figure 3.1. It is designed to read a paragraph,
convert each sentence into Functional Grammar notation, and then
ascertain the pragmatic constituents of the sentence, in particular the

overall theme of the paragraph.

CONTROL
,— UTILITY
L DATABASE
INPUT PREDICATION {QRQGMQTICS QUTPUT
ASSIGNMENT ASSIGNMENT

Figure 3.1 Program Flow

-

*x

P
S lete)
»
¢ PO
b ot S

i

-

L~

PP

&,
L.

AT
e ey
AR

[
%

Ny

Sag -t

s

¥
|

Ly

¢

»

z
2

R S AR

b Mime Aas son Aae B sae- s -Bae s mesfasBan S e ot el ARl Rl Nl cal el we e Sl el it acals Bah Sad hokh G Sh i snd aadh dnh gl B sedi Sk Sad b - A S it B A ARl iy

A. APPROACH
1. Control
The CONTROL module acte as the traffic director of the progran.
It starts the program, prompts the user to get the input file, ard 4
sends the input file to the INPUT module. The INPUT module is a
straight forward application of an input routine found in
Programming in_ Prolog [Ref. 81, which places the paragraph
into a 1list of lists. Each sentence is a 1list and each word or
punctuation wmark is an element of that list. When the list is complete,
the CONTROL module sends the list to the PREDICATION module where gach
sentence is converted into Functional Grammar notation. The predication
is then passed to the PRAGMATICS module where the pragmatic functions
are assigned. Control then sends the resulting predication to the
OQUTPUT module for presentation to the user.
2. Predication stiﬁnment
The PREDICATION module receives the list of sentences and puts
them into Functional Grammar notation. Doing this requires that the

sentence be looked at word by worde In a Functional Grammar, each

sentence is based on a verb, which determines the required semantic

arguments. Terms are then inserted into the semantic argument slots.
This provides a convenient division of the sentence for processing. The
sentence can be looked at as a series of clauses, each clause
containing a noun term. In sentence (1), the clauses have been

underlined to illustrate the division.

(1) John gave the book to Mary in the library. ‘

ST L e e e T T]

N
e P W -" -

JLiLJh A ﬁ}hmw AT T St TV S

- Rt e il icodih - af A aind BAS Shat Al S h et gealn faais sak el Saie o inet- hescad s A Aadh Sk Sl e b o diadh i il ahan) e~ o A drath- it aidt ShS Sied Bra 4

|. -
A
o5

oo The first task of the program is to divide the sentence into clauses
\':
Lo ' and then process each clause in turn. A term 1list is maintained
‘nj throughout the processing of the sentence to store the clauses. A
Pt
';f Predication 1list is also maintained throughout the processing. The tern
R4 list has the following format.
.
{:. (Term, Code, Adj]
) .

e
':f Code is further formatted as follows.

1

: {Syn, Sem, Def, Num, Prep, Pos]
;:? where:

.‘-::

Fa Syn = syntax (noun, verb, adjective)

o
Dy

Sem = semantics (agent,goal,recipient,..etc)

4
. Def = definite/indefinite
T
o Num = number

b

‘ Prep = preposition
g
:fﬁ Pos = position

]

{; The 'Ady® slot is used to store adjectives or referent clauses. A noun

-

e O

term is placed intoc the list with the term in the 'Term’ slot, an 'r’

in the 'Syn’' slot, a number in the '"Paositior’ slot, and an empty set

-:;

:;§ indicator in the 'Adj' slot. The rest of the slots contain '2' for 'not
: E assigned’. After a clause 1is processed, many of the slcts will be
,ﬁi filled.

:i; Once the term has been placed in the term list, the clause
:; leading up to the term is processed word by word. If the word iz an
Qé adjective, it 1is placed in the 'Adj’ slot. The adjective has the same

L

RRA

format as the noun term, that is, [adjective,Code,Ad;]l. Determiners,

numbers, and prepositions are all stored in the code list of the

AR

. o e e
Ay Ay Ay Ay g
s s s
(2]
(&)

R

P
B

N o mgr a e P . e - . P PR PR . Ve a - . . Coa
& L T I A MR S £ RS LR R A R T B . TP
‘i'(N “"- ’\."n."!':-*". > L . Ao

an

%

R

[3
. "
PR RN
v %
RS

»
te

LN 4,8, 4

P
LA O]
RARIR.

p 4

e

e
S
'

S L
IR
POF R
r.'.‘)-‘
e

P
P N
o5 .'u‘;":}-‘:.
PR AT LIS
r .O,“'l’l<l'l

T

kl

=
U
0

P
. 1t
P

T
).
s Cet

.}:5
o
P
ok

AN
v

LAY S
'y
o

current term. For example, the partial sentence (2) results in the term
notation in (3).

{(2) The red box in the drawer...

(3) (box, [n,z,d, z, 2,31, lred, la, z, 2,2z, 2,21,

(drawer, [n,2,d,2,in,61, (1111

As can be seen, adjectives and referent phrases can nested in the *Ad]’

slot. Adjectives are placed in the term list in the clause placement
module. Referent phrases are placed there later.

If a word is a verb, the open predication for that verb is
placed in the predication list. The open predication is in the

following format.
[verb, [v,state, z, z, z, pos]l, [att,sem, att,sem,...att,semnll
list The third element

The code is similar to the one for noun terms.

of the verb list is Semantics. It contains/each of the verb's semantic

arguments with their corresponding attributes. For example, the
semantics for the verb 'give’ is shown below.
[human, ag, any, go, animate, reecl
Particular circumstances will be encountered that require

special processing. These can be discovered at the clause-process

level. If a sentence contains a series of terms, such as in sentence

{4), the series will be treated as a single term.
(4) John, Jack, and Bill have rew cars.

Since a series of words used in this manner must perform the same

semantic functiorn, the program processes the clause using the first

term of the series and then recombines the terms after the clause is

processed.

A TP
> e '."‘." g

Ao ik Sah. Balk &l

L L
FALN

3
LW S

1
.l

(e
0]

‘o

v

In some instances, the pragmatic functions THEME and TAIL are
readily apparent and should be processed as such. Left dislocated
sentences, such as (35) show the theme. Right disclocated sentences,
such as (6) give the Tail.

(3) As_for Bill, he already owns a car.

(6) I like her, my wife.
When these situations are encountered the relevant clause will be saved
outside of the term list.

When all of the terms have been placed in the term list ard the
verbs have been placed in the predication list, two resolution checks
are made. The predication list is checked for multiple predicates and
the term 1list is checked for pronouns. If a sentence has more than one
verb as in sentence (7), one of the verbs must be an auxilary verb. The
auxiliary verb is therefore not needed and is discarded ard the
remaining verb is used for the predication.

{(7) John was given the book by Mary.
In the case of sentence (7), give is used. Consequently the auxiliary
verb (was) is discarded.

Next, the term list is searched for pronouns. Pronours are used
frequently in natural language. If used properly, the term they are
used in place of will often be apparent. In the case of naminative
pronouns (referred to as case 1 proncuns), the most likely referent is
the AGENT of the previous sentence. This is illustrated in sertences
(8) and (9).

(8) John carried the book home.

(3) He read it after dinner.

2 < - Bl N e T N T TN T T T T T T e e Y

b

R

oo

N

?5 In the case of objective pronouns (case 2 pronouns), a similar relation

5V! exists, ¢this time with the recipient or beneficiary of the previocus

iz statement as shown in sentences (1@) and (11).

S (19) John gave the book to Bill.

SRS

? (11) It was an ideal present for him.

t& The use of 'it' in (3) and (11) should be noted. In most situations,

.

:Ié 'it' will refer to the goal of the previous sentence. In both pairs of
sentences 'it' referred to ‘'book'. The program replaces the pronouns

{i; with the terms they represent in accordance with the guidelines

g; mentioned above.

5 The program is now ready for syntactic and semantic function

Eg assignment, which are done concurrently. It is accomplished by the set

ot

;EH of 'assign’ rules. The rules were designed with the following

D -

f ' principles in mind.

}Eg # SV0- English is an SVO language (Subject-Verb-Object). Therefore '

:?? all sentences will have their syntactic functions in that order.

Ei{ # SFH - As discussed in Chapter 1I, there are definite positioning

‘ii rules and relationships between the syntactic and semantic

Y

:%: functions.

’jﬁ *# Attributes- every semantic function has certain attributes to which

j;;; it must adhere. For example, 1in the predication for 'give!, the

5:: AGENT must be a human. This is an implementation depercernt

.i; restriction. These attributes can be clearly defined.

:::: # Prepositions—- Each semantic function uses a distinct set of

prepositions. Although the sets are not mutually excliusive, they

RN PNl
v S

lower the range of possibilities. The prepositions used for this

36

.l'l
Celplel
LA SN

D

"

v{\"o

e e P R L R R P R
S . "¢ " R P T -

73

K
=

P‘: 1y A
L

:'l 'I':f.l"':: I"j ;] ia

A
. 2'a'a"s"4’a

v e
S
R e

program’s database and their semantic uses are shown in Figure 3.:2.
#*# Referents- A clause positioned after the subject clause but before

the verb necessarily refers to the subject.

Prepositions

ARARABBBBEBBDFFIIINOOPTTTUUWUWW
BBFGTEEEEEYUORNNNENVAHOONNTITII
00TA FHLNS RRO STA ESR WDTTTT
UVETLI 0OIDE!L I M IOR RTO ARAEIHHH
TERS RNWAD N D U RRL IC
T ED TE & E G D N U
H H T
AG X
GOAL
REC X X
BEN X X
INST X X
SOR X
DIR X X
TIME X X X X XX X X X X X X X X
Loc X XX XXXXX X X XX XX X X
"

Figure 3.2 Preposition-Semantic Relationships

Using all of the above principles, the semantic and syntactic
functions can be pinpointed. An example of the use of the principles
follows using sentence (i2).

(12) The man in the library gave the book to Mary.
Prior to entering the function assignment module, the program will have
provided the following terms.

{man, [n, z,d, 2, 2,21, (1]

flibrary, [n,2z,d,2,1in,5], (1]

{book, (n,z,d,2,2,,81, (1]

{Mary, [n, z,d, z, 2, t0, 101, (11

Caun - st AN it A ik Y i SRl M i e S Sl Da” o £ R=p At et ™ o A ety

The predicate will be:
(give, [vyaction, z, z, z, 61, Chuman, AG, any, GO, animate, REC11
The terms are looked at in the order they appear in the sentence.

The first term (man), has a position before the verb and its
attribute matches all semantic functions. Its position makes it the
SUBJECT, but at ¢this point its semantic function is unresolved. It is
assigned temporarily as SUBJECT and as AGENT, since RAGENT is the first
semantic function. The second term (library), also has a position
before the verb. Since the first term is the SUBJECT, the second terus
acts as a referent to the first term. It is therefore placed in the
*Ad)’ slot of the term 'man’. This results in the following partiallly
filled predication.

Cgive, Lv,action, z,2,2,61,
L Lman, [n, z,d, 2z, 2, 21,
LClibrary, [n,2z,d, z, in, 51, (111, SUBJAG,
any, 60, animate, REC]
The third clause (book), is the first clause after the verb, which is
the object position. An OBJECT is assigned when the semaritic function
AGENT acts as SUBJECT, in accordance with Table 2.2. Since that is the
case in this example, ’'book' is assigned as OBJECT. Additicnally,

'book! matches only the attribute of the semantic functiorn GOAL. Any

RECIPIENT or AGBENT used after the verb must always have a preposition.
'Book! does not have a oreposition. It is therefore assigrned the
semantic function of GOAL. The last term (Mary), has a position afier

the verb, matches all atributes, and has the preposition 'to'. Figure

-
.

.

S
* .

T .
=
-

-

3.2 reveals that "to’ is used with RECIPIENT, DIRECTION, ard TIME. Mary

U
a 4

CRE]

28

.
a4 s

Ay

s

R . St R . e AT e
P - + T .

NS - N W A, O Tt Y P R P T T i N _’
A !) T T R A LR - e .- DS .o et e e
i U VR APYEE YT T TS SR T U, SR . T P 1, % U, ol L L L W A AT S 5. . S S, W) R AT Y. SU-S S, U IR Ui U - S W

therefore must be assigned as RECIPIENT, since the other semantic
functions do not exist in this predication. The resultant predication
is shown below.
fgive, {v,action, z, z, 2,61,
{Lwman, n, z,d, 2, 2, 21,
[[library{[n,z,d,z,in,5],[]]],SUBJQG,

Cbook, [n, z,d, z, 2,81, (11, 0BJGO,

{Mary, [n,z,d, z, 2, t0, 121, [1], REC]]

It should be noted that <the program makes assignments
temporarily as was the case in the assignment above of the first term.
In this regard, Prolog’s backtracking technigques provide the proper
mechanism to achieve the trial and error method required. At any point
in the assignment process that a match cannot be made, the program
backtracks until it finds a good permutation. Should there be more
terms left over when the predicate’'s semantic functions have been
assigred, these terms will be assigned as satellites and placed in the
extended predication. Once the predication has been assigred, it is
sent to the PRAGMATICS ASSIGNMENT module.

Syntactic/Semantic Functions

SUBJ OBJ ARG GC REC BEN

TOPIC X X
TOPIC X
FOCUS X X
Pragmatic FOCUS X X
Functions FOCUS X X
Facus X X
FOCus X X
FOCUS X X

Figure 3.3 Internal Pragmatic RAssignments

;- R T PR
e T T e T S T e e

e N T ‘- n-
A e A AL\L A L.‘A-r A...ﬁ.‘thLinﬂn. A_\A_'\ PR AAL‘\“A.."\L‘\M{L‘

-~

3. Pragmatics Assignment

The internal pragmatic functions, TOPIC and FOCUS, are directly
related to the syntactic and semantic assignments. If a term is
assigned as RBENT as well as GSUBJECT or as just the AGENT with no
syntactic function, that term is most 1likely the TORPIC. Figure 3.3
shows other relationships which indicate a probable pragmatic function
assignment.

The external pragmatic functions, THEME and TRIL, are assigried
quite differently. Certainly, if a THEME clause or a TAIL clause was
passed into this section of the program, as discussed earlier, that
clause would automatically be assigned the THEME or TRIL accordingly.
In most cases, however, this will not be the case. Without the benefit
of intonation in written work, a word count approach is used. ARt the
end of each sentence, the nouns, verbs, and adjectives are counrted.
They are placed in a list which is maintained throughout the program.
As new words are used, they are added to the list. As words are used
subsequently, their count is increased. Additionally, concept words are
examined. Many words suggest a concept. For instance, the wcrds happy,
grin, playground, and giggle all suggest the concept of pleasure. After
each word is added to the list or updated, it is compared to the
concept lists. If it appears there, that concept is added toc the word
count list. At the end of each sentence, the word count list is saoried
and the first two words on the 1list become the THEME and TRIL,
respectively. This may seem rather arbitrary and it is, but it must be
understood that external pragmatic functions are just that, external.

An individual sentence may not provide an external furnction. The

4@

N external functions are normally found by examining a group of several
LA sentences to determine an overall subject. It is this subject for which

ot the program is searching.

B. CONSTRAINTS

iy The design of a natural language processor using Functional Grammar

B2
AEAS . L . A .

AR is an ambitious one. To maintain a scope that is large encugh to
R\

Ly . .

a X demonstrate the principles of Functional Grammar yet small enough to
a complete in a limited timeframe required the imposition of several
E{Z constraints. This program will process simple and compound sentences,
-ﬁ?: but only ones with simple grammatical expressions. Sentences using
+

AL verbs in the infinitive form or sentences using more than two verbs

;I : such as sentence (13) are not supported.

B >)
prr (13) The book is to be given to Mary by John.

I Prepositions were limited to the ones shown in Figure 3.2. Compound
ﬁff prepositions such as ‘'according to' or ‘’because of' and phrasal
o prepositions such as 'as far as' or 'in spite of' were not used.

;h‘ As was explained in Chapter 11, Functional Grammar utilizes four

D
ifj states of affairs. This program processes only those verbs in the
X action and state groups. Action was chosen because it is the state that

5 is discussed most often in Functional Grammar literature and it

]j:{ accounts for most of the sentences in the English language. State was a
-':jv"

:;nj logical second choice because it represents those verbs that are
f;g non-dynamic and uncontrolled, which 1is the opposite of action verbs.
Iy Reducing the states of affairs also reduced the semantic functions. Dik
{;;: ' discusses some 24 different functions, but this program is limited to
[®

s
A.._.

Ok 41

1
@

i

":d'
oy e e o A Aot A ae e e e e

) %-,-4.‘" YN , 'I"-"'/"‘ ~ ,.‘.r,'-‘ (opr 4] L (e -«'.v\ -}‘" } ‘\}".} "-“ " ‘ RN o N

]

W
e

LSRRI

£ 7

NN
1’}

ML

VA
.X "
25l

Ay Ay

4

l.{.,
}} 'J PP

" :I“'“l Iy
-

o

» i .\

S0l

=
WAy

I‘ .. 1}
s “:1;! r:,
A

«

- %a®
-

- -' ‘.\ o o --- '-' .
s A

the 10 functions shown in Figure 3.2. Many words can have more than one
syntactic meaning. A common example is the group of words ending in
'ing'’y which may be used as adjectives, verbs, or nouns. This program
only addresses single usage of these words. To limit the number of verbd
forms, only past tense verbs were used. The database for the program
was made only large enough to support the above constraints.

These constraints do not represent a failure of FG to process the
whole of natural language. The extensive backtracking and lock ahead
facilities to process the many compound terms, odd constructs, etc. are
available in Prolog. It 1is necessary only to write the many rules
required to cover all situations. However, the trade-off is program
size. The program would be a very large one, with an equally large
database, a situation typical of almost all nrnratural language

processors.

42

Ny

IV. PROGRAM RESULTS

To demonstrate the capability of this program the text used must
test the various sentence configurations and provide an overall theme
for a given paragraph. Three test runs are discussed which accomplish
this task. The computer output for these tests are found in Appendices

B, C, and D. The following paragraph was used for the first test.

The setting was a brisk, Autumn day. The park was near tne
river. Jack carried his gun in his pocket. As for his partner, Bill
watched the playground from the opposite side. Fallen leaves were
on the ground. The man in the playground raised his hand. Bill
placed his gloved hand into his pocket. Jack strained his eyes. He
noticed the ominous briefcase on the ground. He heard the ticking.
He waited for the explosiori. The waiting was unnerving.

Table 4.1 Pragmatic Assignments

Pragmatic Functions

Sentence Focus Topic Theme Tail
i setting rone day setting
2 park none suspense river
3 gun Jack pocket gun
4 playground Bill partner pleasure
] leaves none pleasure ground
6 hand man pleasure playground
7 hand Bill pleasure suspense
8 eyes Jack suspense pleasure
5 briefcase Jack suspense pleasure
10 ticking Jack suspense Jack
i1 explosion Jack suspense Jack
12 waiting none suspense Jack

Senterces of different types are used and the entire paracraph sets
mocod of suspense without ever actually stating it. The program

assigns the pragmatic functions at the end of each sentence. The

43

o Bat L Gmai 8¢ et da.ha watAAY . MaS S el aat dat Bud fal Bad Vad Sat_ 0.0 oV Enlidnlabe 'S o0A s 2 PSS Al A '

,:
e
W
r
o
f;
1?; results of the first test are found in Appendix B. A listing of the
i pragmatic assignments is provided in Table 4.1.
S
éﬁ:. The internal function assignments are, for the most part, obvious
fﬂf assignments. In some cases no assignment was made. This occurs in
) sentences whose semantic and syntactic assignments do not readily point
z. R
[to a particular pragmatic function. Sentences such as this are commonly
f; found in the ‘'state' state of affairs. Consider the last statement of
the paragraph.
:{: # The waiting was unnerving.
=§f The sentence is about waiting. ’'Unnerving’® modifies ‘waiting’.
o 'Waiting® is the most important imformation in the sentence, tnus
g fulfulling the requirement for FOCUS. If unnerving modifies waiting ana
ff: waiting is the FOCUS, which term is the TOPIC? Is there a term which
.
presents the entity about which the predicate predicates something per
nf: Dik’s definition of TOPIC? Waiting appears to be a candidate for both
e
- functions. Although there is no set rule which disallows a term from
‘ holding both internal pragmatic functions, it seems unnecessary, at
:ﬁ best. Functional Grammar literature includes few examples of pragmatic
;:i functions 1rn other +than the action state of affairs and thus leaves
s
open the method of assignment in the other states of affairs. It seems
-
ﬂi plausiole that there are situations, such as the one described above,
-fi where the opragmatic function FOCUS is sufficient to describe the
49
si1tuation.
{y There are other cases in ‘'state' predications that are unclear.
{1 Consider the second sentence. «
LR
¢ * The park was rear the river.
.)j
(e
s 44
\ ':.
]
.
>

.. K ot h IR
S\?JL"),_".L. .-..".P..UD' .r.!.r‘)%J'*JC'-P:’ n"'-l‘.'f.{.':(:' :‘ AN ‘n.iJ.L'I‘.JL‘JCA_‘ 'f..‘(.:.u.&u.a.{z‘ﬁ‘{‘md e

v rd (Shi] "
ety q o e
PN v

e e

U

b Ar
st

v ir 'y

3

L

| XN
L R SN

il
Saatw oAl

-

Y Y

r 3 5 N
RS

=

A e A . Lo al

ENE DL WA

1.!

The program assigned 'park' as FOCUS, using the same reasoning as
above. The clause '"near the river! certainly modifies 'the park'. With
no further information, the assignment is probably valid. However, add
an accent to '"near the river'! and the meaning changes. Is the FOCUS riow
"near the river'? Is the TOPIC now 'the park'? Both possible
assignments have merit. Without any extra information, the assignment
of FOCUS is sufficient to show the meaning of the predication.

External functions were arrived at by a word count. RAs can be seen
in Table 4.1, the THEME and TRIL changed as the program progressed
through the paragraph, finally settling on ’'suspense’ and 'Jack’,
respectively, near the end of the program. This was the correct
interpretation. R reader should come away from the paragraph with the
overall theme of a suspense situation with Jack as the most promirnent
character.

The second test run used the same test paragraph as the first test
run. However, the sixth, ninth, and the tenth sentences were changed to
the passive voice, As can be seen by comparing the output of this test,
fourd in Appendix C, to the results of the first test, the only changes
were in the syntactic assignmentse in the changed sentences. The
pragmatic assignments remained the same as those in the first run,

The third test run, Appendix D, also used the text from the first
run, Out changed the order of sentences. Rlthough the THEME and TAIL
assigrments were different from those in the fisrst run due to the
rearrangement, they were identical from the fifth sentence through the

final assigrnmert. The rearranged paragraph is as follows.

45

The man in playground raised his hand. Jack carried his gun in
his pocket. Rs for his partner, Bill watched the playground from
the opposite side. The setting was a brisk, Autumn day. The park
was near the river. Fallen leaves were on the ground. Bill placed
his gloved hand intoc his pocket. Jack strained his eyes. He noticed
the ominous briefcase on the ground. He heard the ticking. He
waited for the explosion. The waiting was unnerving.

Although the program arrived at the proper external pragmatic
assignments, the assignments early in the paragraph are inaccurate.
What is not shown in Table 4.1 is that until the ninth sentence no
THEME had a clear cut majority. In some cases, THEME and TAIL were
equal, with the determining factor being which word came first in the
word count list. A weighted count was considered, but rejected for lack
of a valid weight system. Terms that are assigned syntactic functions
as well as semantic functions should get greater consideration for
pragmatic assignment. This, however, does not adequately address verbs.
Verbs form a very important part of our language and need to be
considered. Looking at prose in general, it would appear that concept
words would very often be the type of word that would be found in the
final THEME assignment. Therefore any weighting system must consider
concept words. Many such issues must be addressed before an adequate
weighting system can be attained. In general, each word and group of
sentences must be lcocoked at individually with ro weighting system. in
this specific case, the method this program uses for assigning internal
pragmatic functions is adequate, providing a large number of sentences
are peing evaluated.

Expanding this program by adding an interactive question and answer

section would greatly enhance its capability. This would give the

program intonation of words which provide more clues to the assigrment

46

-

M* of the pragmatic functions. Additionally, this program is essentially a
' pattern—-matching mechanism designed to take advantage of some of the
:: more obvious grammar rules of the English language. In addition to
.:: these rules, a set of inference rules could be added whereby the
‘. " ccmbination of syntactic, semantic and internal pragmatic functions
::: over a 2-3 sentence range would suggest a possible theme. It must be
:,: noted that these improvements bring with them a large overhead. Asking
f‘ guestions means having to accept a larger number of words as input,
’ thereby increasing the size of the database. More importantly, the
:: design of the questions would involve an extremely large number of
".“: individual cases. Hnowing which question to ask is as important as

getting the right answer.

AR AN

v ors

) .
P

L o
LT T I
Pt}

e
ONS
el

Eli}
'

P
¥ a0l 0
BN AL

., "".' .

- ‘ 3
ey

[4

47

~

EART EARAEREN VoY

TR T TS T T T T T W W‘.‘Y‘I?’."I‘rﬁ""‘.‘j

V. CONCLUSIONS

What should be the purpose of producing a natural language
processor? Research in this area has produced processors that evaluate
many sentences, each sentence evoking a particlular response from the
computer, Even some micro-computer game programs provide limited
*natural language’ responses to computer generated questions. Given
Dik’s premise that a grammar should be a means of social interaction, a
processor should be able to read a generous amount of text and return
some insightful meaning that the user might otherwise not have noticed.

This paper presented a program which shows the feasibility of using
Functional Grammar in natural language processing. Reading a paragraph
and producing a THEME is a small achievement when compared to the types
of applications that are possible. O0One possible application of this
procedure is as a psychologist's assistant. Consider the task of dream
anyalysis. Dreams may suggest to a psychologist certain reasons for a
patient's problems. However, the theme of the patient’s dreams may be
abstract or obscure and present an enigma to the psychologist. This
program would require a large database combined with a program capable
of interaction between the user and database. The interaction is
necessary to provide the intonation missing in a straight text

analyzer. Knowing which word is emphasized in a sentence will help

b
determine the meaning of the sentence. Having such a tool may evoke
) concepts that were not obvious to the psychologist. These concepts
bl
L
- ::: 48
A
W

SO\

-

_
AR

o e am —/
AN | A

M e |

)

P LI i

- - - -,r -
v 09
s> 5 B 8 B A i

AL

s

might hold the key to the patient’s disorder or at least provide a new
avenue to explore. .

Functional Grammar is a suitable vehicle for pursuing such
projects. It 1is Functional Grammar's view of language as a means of
social interaction that makes it such an attractive method for natural

language processing.

49

eIy wey

w7y

TP TN O T W ORN . W TRC Y TP RN T oA W o w g Te w Ty N IWTRETETTRV T LT T TV T TR WL e LW 7‘,'2.'\‘_';‘.'-‘\"‘-"1""

APPENDIX A

/******************** CONTROL MODULE ***********************/

/* The CONTROL module first consults all applicable files. */
/* It then calls the INPT'T module which reads in the file, */)
/* the PREDICATION module which forms the predication,and */

*

/* the OUTPUT file which prints out the results.

/**/

go:- fileread,introduction(Text,Out),see(Text),sentreview(Sentlist),seen, !
predication(Sentlist,[],P,[], Wordcount, [}, Matrix),
output(Out,Matrix,P,Wordcount).
fileread:- consult(input),consult(predication),consult(utility), ‘
consult(database),consult(pragmatics),consult(output). |
sentreview(S):- get0(C),sent(C,S). |
sent(C,[]):- lastsent(C). 1
sent(C,[S|S1]):- read_in(C,S),sentreview(S1). ‘
\
|

predication([},P,P,We¢,Wc,Mat,Mat).
predication([F|R],P,P4,Wc,Wc2,0ldmat,Newmat):-
clause process(F,F.P,[],P1,T1,[],Prag,1),resolve(P1,T1,P2,T2),
funct_assign(P2,T2,P3),pragmatics(P3,Wc,Wcl,Prag,Oldmat,Intmat),

- predication(R,P3,P4,Wc1,Wc2,Intmat,Newmat).
L)
. introduction(Text,Out):- space(10),query(Text,Out),space(10).
. query(Text,Out):- printstring("This is a natural language processor"),
Sy printstring(" which uses Functional Grammar."),nl,nl,
“{::3 printstring("To use, enter the name of the file you wish to have evaluated"),
:::‘,': nl,printstring("followed by a period."),nl,read(Text),nl,nl,
3 printstring("Enter the name of the output file followed by a period."),

X, nl,read(Out).
™

4 -

“‘ﬁ:ﬁé

R
ES

. tSata s
Q.
Y

ChER -l't A "' “
KA, FRoghad

5, a4
e

TOioary) A

NS

*
L

/*************************** INPUT **********************************/

/* The INPUT module reads from a text file. It reads in a sentence */
/* at a time. Each sentence is placed in a list, with each word or */

/* punctuation mark being one element of the list.
/***/

read_in(C,|W| Ws]):- readword(C,W,C1),restsent(W,C1,Ws).

restsent(W, [}):- lastword(W),!.
restsent(W,C,[W1| Ws]):- readword(C,W1,C1), restsent(W1,C1,Ws).

readword(C,W,C1):- single_character(C),!,name(W,[C]}, getO(C1).

readword(C,W,C2):- in_word(C,NewC),!,get0(C1),restword(C1,Cs,C2),
name(W,[NewC| Cs]).

readword(C,W,C2):- get0(C1), readword(C1,W,C2).

restword (C,[NewC| Cs],C2):- in_word(C,NewC),!,get0(C1),restword(C1,Cs,C2).
restword(C,[],C).

single character(44). /*, */
single character(59). /*; */
single character(58). [*: */
single character(63). /* ? */
single character(33). /*!*/
single character(46). /*.*/

in_word(C,C):- C>96, C<123. [*ab ..z*/
in_word(C, L) C>64, C<91, L is C+32. [*A B ...Z*/
in_word(C,C):- C>47, C<58. /*12..9%/
in word(39 39). [* ¥/
in_word(45,45). [*-*/
lastword(’.”).

lastword(’!’).

lastword(’?’).

lastsent(26).

51

.......

R e r———— _-’.

/****************** PREDICATION DEVELOPMENT *******************/

/* The PREDICATION DEVELOPMENT Module takes as input sentences */

/* from the INPUT module. The sentence is first checked to see if it is a */
/* question or a declaration. If it is a question, it is put into declaration */
/* form. The sentence is then passed to the CLAUSE PROCESS section */
/* where the program looks at each word until it finds a term. When a */
/* term is found, the clause upto and including the term is processed, */
/* which defines the term clause. After all of the term clauses have been */
/* defined, the predication is built in the FUNCTION ASSIGNMENT */
/* module, where the syntactic and semantic assignments are made. The */

/* predication is then sent to the PRAGMATICS ASSIGNMENT module, */
/* where the pragmatic functions are assigned and the complete predication */
/* is defined. It is then sent to the OUTPUT module where it is printed */

/* on the screen.
/***/

check quest([{W,Is,N|R],[N,Is|R]):~ question(|W,Is,N|R]),what(W).
check quest(|Is,N|R],[N,Is| R]):- question([Is,N|R]).

question([?| R]).
question([| R]):- fail,!.
question([!| R]):- fail,!.
question([F| R]):- question(R).

52

/************************* CLAUSE PROCESS *************************/
/* The CLAUSE PROCESS module takes a sentence and puts it into */
/* Functional Grammar notation. The output will consist of two lists, the */
/* TERMLIST and the PREDICATION. The TERMLIST is a list of the */
/* terms in the following format. */
/* [Term,[Code],[Ref],Term,|Code],|Ref],...,Term,[Code],[Ref]] ¥/
/* The Term is the term as found in the sentence. The Code is a list of ¥/
/* parameters in the following format. x/
/* [Syntax-Semantics-Number-(Definite/indefinite)-Preposition-Position] */
/* Ref is a list of referents (adjectives) which are listed in the same */
/* format as the termlist. */
/* The sentence is searched until a term is found. Then the clause up to */
/* and including the term is looked at word by word in the word-process */
o /* submodule. If a word is an adjective, it is placed after the term in */
o /* the Ref section. If it is a preposition, it is placed in the X/
[/* preposition section of the Code. If it is a number ,article, or a ¥/
s /* determinator, the appropriate sections of the Code are changed. The ¥/
A /* Code is initiated with "z" in each section. This will signify that the */
@, /* term does not have an item to fill a particular section. If a verb is ¥/
/* found, the open predication for that verb is placed in the PREDICATION */
/* list. In the case of apparent Theme or Tail, the module will store the */
- /* applicable term in the variable 'Prag’. This clause will then not be */
/* processed with the rest of the sentence. *
/***/
clause_process(Osent,[First| Sent|,Pred1,Terml,Pred1,Terml,Prag,Prag,P):-
end of sentence(First).
- clause_process(Osent,[First| Sent],P1,|W,C,A| T1],P2,T4,Prag,Prag2,Pos):-
() conj(First),no_more_verbs(Sent),
build_series(Osent,|First| Sent],P1,(W,C,A],T2,Pos,Pos1),Pos2 is Posl-1,
= align_preps(T2,PrepT3),red _clause(Osent,Pos2,Sent1),
i clause_process(Osent,Sent1,P1,[T3/T1],P2,T4,Prag,Prag2,Posl).
i.’ clause process(Osent,[First|Sent],P1,(W,C,A| T1],P2,T4,Prag,Prag2,Pos):-
N conj(First),no_prev_verbs(0,Pos,Osent),
o build_series(Osent,|First| Sent],P1,[W,C,A|,T2,Pos,Pos1),Pos2 is Posl-1,
- align_preps(T2,Prep,T3),red_clause(Osent,Pos2,Sent1),
::::‘ clause_process(Osent,Sent1,P1,[T3| T1},P2,T4,Prag,Prag2,Pos1).
]
= clause_process(Osent,[’,|R],P1,[W,C,A| T1],P2,T4,Prag,Prag2,Pos):- series_search(R)
B build_series(Osent,[’,'|R],P1,[W,C,A],T2,Pos,Posl),
align_preps(T2,Prep,T3),Pos2 is Posl-1,red _clause(Osent,Pos2,R1),
clause_process(Osent,R1,P1,[T3|T1],P2,T4,Prag,Prag2,Posl).
¢ clause process(Osent,[’,|R],P1,T1,P2,T2,Prag,Prag2,Pos):- length(T1,L),
A 53
%
| 2

wrEeoEIVE TROTE TR T ARITEEERIVTAST ARSI TR T T WL T TR TR TR TETTW TS | T TR AR Ty rw sy Wy

(L=3),make_theme(T1,Pragl),Posl is Pos+1,
clause_process{(Osent,R,P1,[],P2,T2,Pragl,Prag2,Posl).
clause_process(Osent,[’,|R],P1,T1,P2,T2 Prag,Pragl,Pos):- make tail(R,Pragl,Pos).
clause process(Osent,Sent,Predl,Terml,Predication,Termlist,Prag,Prag2,P):-
findterm(Sent,P,P1) select(Osent,P1,Term),
make_term(Terml,P1,Term,Termlist1),
word_proc(Sent,Pred1,Termlist1,V1,T1,P),
red_clause(Osent,P1,Sent1),P2 is P1+1,
clause_process(Osent,Sent1,V1,T1,Predication, Termlist,Prag,Prag2,P2).

series_search([’,’,or{R]).
series_search([’,’,and|R)).
series_search([F,S|R]):- series_search([S|R]).

build_series(Osent,[Conj| R],P1,T1,T3,Pos,Pos3):- conj(Conj),Posl is Pos+1,
findterm(R,Pos1,Pos2),select(Osent,Pos2,Term),make_term(T1,Pos2,Term,T2),
word_proc(R,P1,T2,P2,T3,Posl),
Pos3 is Pos2+1.

build_series(Osent,[’,’,Conj|R},P1,T1,T3,Pos,Pos3):- conj(Conj),Posl is Pos+2,
findterm(R,Pos1,Pos2),select(Osent,Pos2,Term),make term(T1,Pos2,Term,T2),
word_proc(R,P1,T2,P2,T3,Posl),
Pos3 is Pos2+1.

build_series(Osent,[’,]R],P1,T1,T4,Pos,Pos4):- Posl is Pos+1,
findterm(R,Pos1,Pos2) ,select(Osent Pos2,Term),make term(T1,Pos2,Term,T2),
word _proc(R P1,T2,P2,T3,Posl),red_clause(Osent,Pos2,Sentl1),
Pos3 is Pos2+1,build_series(Osent,Sent1,P2,T3,T4,Pos3,Pos4).

make __theme([Term,[Syn,Seml R] R1},[Term,[Syn,theme| R]|R1]).
make tail(R,Tail,Pos):- clause_process(R,[F|R1],[],[],P2,Tail,[],Pos).

align_preps([Trm,[Sy,Sm,D,N,Prp|R|,Ad|R1},Prp,[Trm,{Sy,Sm,D,N,Prp|R|,Ad|R1]):-
null(R1).

align_preps([Trm,[Sy,Sm,D,N,A|R],Ad|R1],Prp,[Trm,[Sy,Sm,D,N,Prp|R],Ad| R1]):-
align_preps(R1,Prp,R1).

findterm([First| Rest],Pos,Pos):- is_term(First).
findterm([F|S],P,P1):- P2 is P+1 findterm(S,P2,P1).

make term(Termlist,P,First,[First,[n,z,2,2,2,P],[|| Termlist]).

word_proc([F|S],V,T,V,T,P):- last term(F T).
word_proc([F|S],V [T Cod|R},V1,T1,P):- is_determiner(F,D),

change list(D,4,Cod,Cod1),P1 is P+1,word proc(S,V,[T,Cod1|R}],V1,T1,P1).
word_proc([F|S],V,[T,Cod R}],V1,T1,P):- is_number(F,N),change list(N,3,Cod,Cod1)

54

change list(d,4,Cod1,Cod2),P1 is P+1,
word_proc(S,V,[T,Cod2R),V1,T1,P1).
word_proc([F|S],V,[T,Cod,Adj|R],V1,T1,P):- is_adverb(F),P1 is P+1,
word_proc(S,V,[T,Cod,Adj,F, [ad,z,z z,ad,P),(]|R],V1,T1,P1).
word_proc([F|S],V,[Ta,Tb,AdjR],V1,T1,P):- is_adjective(F),
make adj(F,P,Adj,Adjl),add_adj(S,S1,P,P1,Adj1,Adj2),Pos is P1+1,
word_proc(S1,V,[Ta,Tb,Adj2 R],V1,T1,Pos).
word _proc([F| S],V,[T,Cod|R],V1,T1,P):- is_prep(F),change_list(F,5,Cod,Codl),
P1is P+1,word proc(S,V,[T,CodlR|,V1,T1,P1).
word_proc([F|S],V,T,V1,T2,P):- is_verb(F,Verb),make pred(Verb,P,Pred,T,T1),
P1is P+1,word_proc(S,[Pred| V],T1,V1,T2,P1).

fill_term(A,W):- attribute(A,L),member(W,L).
fill_term(A,W):- a_kind_of(A,B),fill_term(B,W).

last_term(First,[First| Rest}).

make_pred(Verb,1,Pred,T1,T2):- make_term(T1,1,you,T2),find_pred(Verb,2,Pred).
make_pred(Verb,P,Pred,T1,T1):- find_pred(Verb,P,Pred).

add_adj([’,’,A,B|R],Sent,P,P1,Adj1,Adj2):- Pos is P+2,make adj(A,Pos,Adj1,Adj2),

add_adj([B|R],Sent,Pos,P1,Adj2,Adj3).
add_adj(R,R,P,P,A,A).

make_adj(Term,P,[},[Term,|a,z,z,2,2,P},[]]).
make adj(Term,P,[A1,C,Adj],[A1,C,Newadj]):- make adj(Term,P,Adj,Newad;).

find_pred(Verb,P,[Verb,|v,State,0,z,z,P],Semantics]):-
pred(Verb,State,Semantics).

no_more_verbs([]).
no_more_verbs([F|R]):- is_verb(F,Any),! fail.
no_more_verbs([F{R]):- no_more_verbs(R).

no_prev_verbs(N,N,Sent).
no_prev_verbs(N,N1,[F|R]):- is_verb(F,Any),! fail.
no_prev verbs(N,N1,[F|R]):- N2 is N+1,no_prev_verbs(N2,N1,R).

end_of sentence(.).

55

/****************** PREDICATION RESOLUTION *****************/

/* The PREDICATION RESOLUTION module takes as input the */
/* PREDICATION list and the TERMLIST. It searches the TERMLIST */
/* for pronouns. If a pronoun is found, it is changed to the proper term */
/* that it refers to, according to the pronoun rules. Then the */
/* PREDICATION list is scanned to see if there is more than one verb. */
/* If so, then one of the verbs must be an auxiliary verb and is deleted. */
/* The output is the new TERMLIST and the new PREDICATION. */

/***/

resolve(P,T,P1,T1):- mult_pred(P,P1),pronouns(P1,T,T1).

mult_pred([[V,{A,B,0|R] R1]|R2],[[V,[A,B,1| R] R1]| R2]):- aux(V),last_pred(R2).

mult_pred([[V,[A,B,0|R]|R1],(V1,[D,E,0| R3}| R4]|R2],[[V,[A,B,1| R]| R1]| R2}):-
aux(V1).

mult_pred([[V,[A,B,0|R]|R1]|R2],[[V,[A,B,1|R]|R1]R2]).

last_pred([]).

last_pred([[V,[A,B,1| R]| R1]|R2]).
more_pred([[V,[A,B,0R]| R1]| R2]).
add_one([[V,{A,B,0 R] R1]|R2],[[V,[A,B,1|R]|R1]|R2]).

pronouns(V,[],[]).

pronouns(V,[[T1,C,Adj| R]|R1],[[Term,C,Adj R2]| R3]):- casel(T1),
find_last_sem(V,ag,Term),pronouns(V,R,R2),pronouns(V,R1,R3).

pronouns(V,[[T1,C,Adj| R||R1],[[Term,C,Adj R2]| R3]):- case2(T1),
find_last_sem(V,rec,Term),pronouns(V,R,R2),pronouns(V,R1,R3).

pronouns(V,[[T1,C,Adj R]| R1],[[Term,C,Adj R2]|R3]):- case2(T1),
find_last_sem(V,ben,Term),pronouns(V,R,R2),pronouns(V,R1,R3).

pronouns(V,[it,C,Adj R],[Term,C,Adj R1]):- find_last sem(V,go,Term),
pronouns(V,R,R1).

pronouns(V,|T1,C,Adj|R],|[Term,C,Adj| R1]):- casel(T1),
find last_sem(V,subjag,Term),pronouns(V,R,R1).

pronouns(V,[T1,C,Adj R],[Term,C,Adj R1]):- casel(T1),find_last_sem(V,ag,Term),
pronouns(V,R,R1).

pronouns(V,[T1,C,Adj R],[Term,C,Adj R1]):- case2(T1),find last_sem(V,rec,Term),
pronouns(V,R,R1).

pronouns(V,[T1,C,Adj|R},[Term,C,Adj| R1]):- case2(T1),
find_last_sem(V,objrec,Term),pronouns(V,R,R1).

pronouns(V,[T1,C,Adj|R],[Term,C,Adj R1}):- case2(T1),
find_last_sem(V ,subjrec,Term),pronouns(V,R,R1).

56

St S a Nt ALl A AR A e AE AN AR AR AT S QR AR AN S 4T N b B e 0 B B A e e 3B B BB AN - e e 8 e B e i e 4

pronouns(V,[T1,C,Adj| R],[Term,C,AdjR1]):- case2(T1),find last sem(V,ben,Term),
pronouns(V,R,R1).

pronouns(V,[T1,C,Adj}|R],[Term,C,AdjR1)):- case2(T1),
find_last_sem(V,objben,Term),pronouns(V,R,R1).

pronouns(V,[T1,C,Adj| R],[Term,C,AdjR1]):- case2(T1),
find_last_sem(V ,subjben,Term),pronouns(V,R,R1).

&

: - RORSLRE: R A

pronouns(V,[[T,C,Adj R||R1],[[T,C,Adj R2]|R3]):- pronouns(V,R,R2),

X pronouns(V,R1,R3).
- pronouns(V,[T,C,Adj| R],[T,C,Adj R1]):- pronouns(V,R,R1).
s
) find_last sem([Verbl|Rest],Type,Term):- last_sent(Rest,Type,Term).
. last_sent([[Verb,Code,Sem| R]|R1],Type,Term):- search_sem(Sem,Type,Term).
- search_sem(|[T,C,A],S|R},S,T).
X search_sem([A,S|R],Type,Term):- search_sem(R,Type,Term).
@
/******************** FUNCTION ASSIGNMENT ********************/
. /* The FUNCTION ASSIGNMENT module takes as input the TERMLIST */
/* and the PREDICATION. Using the preposition rules, the attribute */
-') /* matching rules, and the semantic function hierarchy rules, the semantics */
0y /* and syntax are assigned. The TERMLIST is looked at term by term. */
/* Each term is compared to each term in the PREDICATION until a */
/* match is found. The term is first compared to the attribute of each term */
/* open predication. When a match is found, then the preposition is */
N /* checked for appropriateness. If it is ok, then the syntax rules are */
5 /* applied, and the resultant semantic and syntactic assignment is *
o /* applied. If at any point in the above procedure there is no match, */
/* that term is abandoned and the next one is checked. Any extra */
, ,‘ /* clauses after the predication is filled are defined as satellites */
o /* and are placed in the extended predication. ¥/
:::: /***/
" ’.-
; funct_assign([[Verb,Code,Semantics]| R],T,[[Verb,Code,Newsem Ext]| R|):-
‘.:'j select(Code,8,Verbpos),rev_term(T,[],T1),
o assign(T1,Semantics,Verbpos,l,Newsem,[],Ext).
d assign([],S,V,C,S,E,E).

57

-1_—1.\.’('7“‘77!?“'-?“"‘IH'WN‘IWKYW‘J‘ J‘(\"‘JT‘J“IT‘;""I""'JTJ"""JV‘LI‘U"J?‘.TU'" ’ o F Fadd’ i’ 20" allt all 2 Rat eV as But ol s hat Aot £o8 Sob Sul iR v ’
.
-

assign(|[[Term,Code,Adj| R]| R1],Semantics,Verbpos,Ctr,Newsem,Ext1,Ext3):-
assign([Term,Code,Adj| R1],Semantics,Verbpos,Ctr,Sem1,Ext1,Ext2),
add_back_series([Term,Code,Adj R],Sem1,Newsem,Ext2,Ext3).

assign([Term,Cod,Adj| R],Semantics,Verbpos,Ctr,Newsem Ext1,Ext3):-
select(Cod,5,ad),extend([Term,Cod,Adj],Ext1,Ext2),Ctrl is Ctr+1,
assign(R,Semantics,Verbpos,Ctrl,Newsem,Ext2,Ext3).

assign([Term,Code,Adj| R],Semantics,Verbpos,1,Newsem,Ext1,Ext2):-
select(Code,6,Pos),Pos<Verbpos,select(Code,5,Prep),
attri_match(Term,Code,Adj,Semantics,Prep,Sem1),Ctrl is 1+1,
assign(R,Sem1,Verbpos,Ctrl,Newsem, Ext1,Ext2).

assign([Term,Code,Adj| R],Semantics,Verbpos,Ctr,Newsem,Ext1,Ext2):-
select(Code,6,Pos),Pos<Verbpos,referent([Term,Code,Adj],Semantics,Seml),
Ctrl is Ctr+1,assign(R,Sem1,Verbpos,Ctrl,Newsem,Ext1,Ext2).

assign([Term,Code,Adj| R],Semantics,Verbpos,Ctr,Newsem,Ext1,Ext3):-
is_the_subjag(Semantics),is_obj assgn(Semantics),is_sem_filled(Semantics),
extend([Term,Code,Adj},Ext1,Ext2),Ctrl is Ctr+1,
assign(R,Semantics,Verbpos,Ctrl,Newsem,Ext2,Ext3).

assign([Term,Code,Adj| R],Semantics,Verbpos,Ctr,Newsem,Ext1,Ext2):-
is_the subjag(Semantics),is_obj assgn(Semantics),select(Code,5,Prep),
att_place([Term,Code,Adj},Prep,Semantics,Sem1),Ctrl is Ctr+1,
assign(R,Sem1,Verbpos,Ctr,Newsem,Ext1,Ext2).

assign([Term,Code,Adj| R|,Semantics,Verbpos,Ctr,Newsem,Ext1,Ext2):-
is_the_subjag(Semantics),
select(Code,5,Prep),obj_assign([Term,Code,Adj],Prep,Semantics,Sem1),
Ctrl is Ctr+1,assign(R,Sem1,Verbpos,Ctrl Newsem,Ext1,Ext2).

assign([Term,Code,Adj| R|,Semantics,Verbpos,Ctr,Newsem,Ext1,Ext3):-
is_sem_filled(Semantics),
extend([Term,Code,Adj],Ext1,Ext2),Ctrl is Ctr+1,
assign(R,Semantics,Verbpos,Ctrl,Newsem,Ext2,Ext3).

assign([Term,Code,Adj| R|,Semantics,Verbpos,Ctr,Newsem,Ext1,Ext2):-
select(Code,5,Prep),
att_place([Term,Code,Adj|,Prep,Semantics,Sem1),Ctrl is Ctr+1, 1
assign(R,Sem1,Verbpos,Ctr,Newsem,Ext1,Ext2).

assign([Term,Code,Adj| R],Semantics,Verbpos,Ctr,Newsem ,Ext1,Ext3):-
extend([Term,Code,Adj],Ext1,Ext2),Ctrl is Ctr+1,

58

T -hk;- S e ~:"~ ‘;- L .\. -\ .\. -"‘n R ‘.i
ek 2 A e W L K)‘.J.i‘. -l'-f: ..;Ad-nn\.f-l

=
.
N assign(R,Semantics,Verbpos,Ctrl,Newsem,Ext2,Ext3).
s
attri_match(Term,Code,Adj,[Att,Sem| R],Prep,|[[Term,Code,Adj], Newseml R]):-
o is_attribute(Term,Att),prep(Prep,Sem),subj(Sem,Newsem).
attri_match(Term,Code,Adj,[Att,Sem|R],Prep,[Att,Sem| R1]):-
3 attri_match(Term,Code,Adj,R,Prep,R1).
]
s
att_place([Term,Code,Adj],Prep,[Att,Sem| R],[[Term,Code,Adj],Newsem| R]):-
. is_attribute(Term,Att),prep(Prep,Newsem).
J. att_place(Term,Prep,[Att,Sem|R},[Att,Sem|R1]):-att_place(Term,Prep,R,R1).
4
2 subj(ag,subjag).
subj(rec,subjrec).
subj(ben,subjben).
a9 subj(go,subjgo).
¥ subj(0,subj0).
- obj(go,objgo).
obj(rec,objrec).
obj(ben,objben).
referent(Term,[Word,Sem| R],|Word1,Sem|R]):- subj(Any,Sem),
add_ref(Word,Term,Wordl).
referent(Term,|Word,Sem| R],[Word,Sem|R1]):- referent(Term,R,R1).
add_ref([Term,Code,[]],Ref,[Term,Code,Ref}).
add_ref([Term,Code,Adj|,Ref,[Term,Code,Adj1]):- add_ref(Adj,Ref,Adj1).
is_the_subjag([Att,subjag R}).
is_the subjag([Att,Sem|R]):- is_the subjag(R).
is_obj_assgn([Att,Sem|R]):- obj(Any,Sem).
is_obj_assgn([Att,Sem|R]):- is obj assgn(R).
is_sem filled({}).
is_sem filled([Att,Sem|R]):- is_list(Att),is_sem filled(R).
extend([Term,Code,Adj],[],[[Term,Code,Adj|,adverb]):- select(Code,5,ad).
extend([Term,Code,Adj],[],[[Term,Code,Adj|,Sem]):- select(Code,5,Prep),
prep(Prep,Sem),sem_attribute(Sem,Att),is_attribute(Term,Att).
extend(Term,[Sat1,Sem| R|,[Satl,Sem|R1]):- extend(Term,R,R1).
obj_assign([Term,Code,Adj|,Prep,[Att,Sem| R},[[Term,Code,Adj],Newsem| R}):-
is_attribute(Term,Att),prep(Prep,Sem),obj(Sem,Newsem).
obj_assign(Term,Prep,[Att,Sem| R],[Att,Sem|R1]):- obj assign(Term,Prep,R,R1).
59
v
q
e e e e e i L e T e I e A S o Lty 2 e

R
"
e
'?‘,,.
P
S renew(P,P).
add_back series([Term,Code,Adj| R],[[Term,Code,Adj],Sem| Rl] ,[[[Term,Code,Adj| R]}
T Sem| R1},Ext1,Ext1).
g add_back_series([Term,Code,Adj| R},[},[},[[Term,Code,Adj),Sem|R1], 4
N [[Term,Code,Adj R]],Sem| R1]).
i add back_series([Term,Code,Adj R],[],R2,([A,B,C],Sem|R1],[[A,B,C],Sem| R3]):- :
0 add_back_series(|Term,Code,Adj| R],[],R2,R1,R3). {
Y add_back_series([Term,Code,Adj| R],[[A,B,C],Sem| R1],[[A,B,C],Sem| R2],Ext1,Ext2):- '
e add_back_series([Term,Code,Adj R],R1,R2,Ext1,Ext2). |
o
bl
&
o
o
)
'.'.t
b
b
{

f i A e eh AAM N me By Se® mih il 4 B B i NI bhat A il @ BN) ‘pul- el -y

o
:‘:::: /****************** PRAGMATICS ASSIGNMENT ******************/
.':~.
ok /* The PRAGMATICS ASSIGNMENT module recieves the predication */
/* for the sentence plus the running wordcount. It first does an update */
o /* of the wordcount. Next it assigns the pragmatic functions. This */
o /* is done by first determining the internal functions and then the */
o /* external functions. Topic and Focus are determined by looking */
) /* at which words have both a syntactic as well as semantic */
. /* function. Theme and Tail are determined by searching the word */
- /* count list to see which concepts are most utilized. When the */
g A': /* pragmatics have been assigned, they are stored in a running */
. /* matrix which maintains by sentence the following information. */
' /* Sent #/Focus/Topic/Theme/Tail */
',' /***/
E:
5
e pragmatics(Predication,We¢,Wec2,Prags,Oldmatrix,Newmatrix):-
word_count(Predication,Prags,Wc,Wcl),
: prag_assign(Predication,Wc1,Wc2,Prags,Focus,Topic,Theme,Tail),
. save_prags(Oldmatrix,Focus,Topic,Theme,Tail, Newmatrix).
-1
= /*********************** WORD COUNT ************************/
! \:}_ word_count([[Verb,Code,Semantics|R||R1],Prags,Wec,Wc6):-
' _‘.,S:: check and_add(Verb,Wc,Wel),
8 concept_add(Verb,Wc1,Wc2),term_count(Semantics,We2,Wc3),
o term_count(R,Wc3,Wec4),adj_count(Prags,Wc4,Wc5),
) remove(Wc5,Wc6).
;::f term_count([[]],We,We).
'_\ term_count([],We,Wc).
e term_count([[[Term,Cod,Adj],Sem|R]],Wc,We3):- check_and_add(Term,Wc,Wcl),
;’ concept_add(Term,Wc1,Wc2),term_count(R,Wc2,Wc3).

term_count({[[Term,Cod,Adj R]],Sem|R1],W¢,Wc5):-check_and add(Term,Wc,Wel),
concept_add(Term,Wc1,Wc2),adj_count(Adj,Wc2,We3),
term_count(R,Wc3,Wc4),term_count(R1,Wc4,Wc5).

term_count([[Term,Code,Adj],Sem| R],Wc,Wc4):- check and_add(Term,We¢,Wcl),
concept add(Term,Wc1,Wc2),adj count(Adj,Wc2,We3),
term_count(R,Wc3,Wc4).

T @
s B - A A
. .‘!y.-_‘-.‘v..":-’r

check_and_add([],Wc,Wc).
check_and add(Word,[Word,Count|R},[Word,Ct1|R]):- Ctl is Count + 1.
& check_and_add(Word,[],[Word,1]).

61

R TS SO R

e ‘.1.:.‘ ,‘-"-"f‘-"-"l’-.' e

. . R AT AT NS ;
PRI SN TSN S G T SN RSP 3 00 A5 38t SRS

ol

b

e

b \\ check_and add(Word,[Other,Count| R],[Other,Count|R1}):-
-\ check_and_add(Word,R,R1).

: adj_count([],Wc,We).
AU adj_count([Term,Cod,Adj],Wc,Wc3):- check_and_add(Term,Wc,Wcl),
concept_add(Term,Wcl,Wc2),adj count(AdJ,WCZ We3).

"
e
.. concept_add(Term,Wc,Wcl):- is_like(Term,Concept),
V) check_and add(Concept,We,Wel).
wa concept __gdd(Term We,We).
1
: '_i"_i: remove([],[])-
ool remove(|Word,Count|R],R1):- case3(Word),remove(R,R1).
i remove([Word,Count|R],R1):- aux(Word),remove(R,R1).
wo remove(|Word,Count| R],[Word,Count|R1]):- remove(R,R1).
i
S
o
:' :Q /**************** PRAGMATICS ASSIGNMENT ******************/
W
‘_ prag_assign([[Verb,Code,Semantics| R]|R1],We,Wel,Prags,Focus, Topic,Theme, Tail):-
: 4.:_:’: internal(Semantics,Focus,Topic),word_sort(We,[],Wel),
o external(Wc1,Prags,Theme,Tail).
YA
S5
O internal(Sem,Focus,Topic):- foc_find(Sem,Focus),top_find(Sem,Topic).
:\Tj‘t: foc_find([],none).
T foc_find([[Term,Code,Adj],Sem| R|,Term):- foc_match(Sem).
1 i foc_find([Term,Sem|R],Focus):- foc_find(R,Focus).
Q foc_match(objgo).
(<2 foc_match(objrec).
oo foc_match(objben).
S foc_match(subjgo).
oy foc_match(subjrec).
foc_match(subjben).
o foc_match(subjo).
f top_find([],none).
o top_find([[Term,Code,Adj],Sem| R}, Term):- top_match(Sem).
o top_find([Term,Sem| R],Topic):- top_find(R,Topic).
j top_match(subjag).
i}:;:.: top_match(ag).
‘ol
€
_,~;‘: 62
wy
-:
o
N

F RIS a ’. .r*-‘_\ o -‘.\..’ } ‘, R I .-.‘_; _'. “-'4‘" T T TILI I _', 2 _‘.__'.._'._:." "-:“.‘\"\' Y
R A S NS g < e BT Ny

A . r -

B M A LA R a T T M e M A e B L M WM WS A TR Atk B B A o oy D e Wi Ty
v

external([Theme,N1,Tail,N2| R],[],Theme,Tail).

external([Tail,N1| R],[Theme,[S,theme| R1)| R2],Fheme,Tail):- not(Tail=Theme).
external([W1,N1,Tail,N2{ R],[Theme,[S,theme| R1]| R2],Theme,Tail).
external([Theme,N1|R],[Tail R1],Theme,Tail):- not(Theme=Tail).
external((W1,N1,Theme,N2| R],[Tail R1],Theme,Tail).

/*************** SAVE PRAGMATICS IN MATRm ****************/

save_prags([],Focus,Topic,Theme,Tail,[[1,Focus,Topic,Theme,Tail})).

save _pra.gs(Matnx Focus,Topic,Theme,Tail,Final):- first_of first(Matrix,Num),
Numl is Num+1,append([[Num1,Focus,Topic,Theme,Tail|] Matrix,Final).

first of first([First| Rest],Number):- select(First,1,Number).

63

e S I AT

S S
ST P -..' Ty owt b '\ (\‘!
< 4“.\';1 NP J Pl u‘:‘ Pty \})_ Al\}.i‘.nul‘:: L\)’\AJ_- Oy -\.[.JxAA\J.J_‘.A}

-

/************************** OUTPUT **********#***************/

/* The OUTPUT module takes the Pragmatics matrix, the Word
/* count list, and the Predication from the PRAGMATICS

*/

/* ASSIGNMENT module The information is formatted so that the */

/* pragmatic functions are printed for each sentence, the
/* predication verb and semantic functions are printed, and
/* the final word count is printed.

/**/

output(Out,Matrix,Pred,Wc):- tell(Out),nl,nl,nl,title,heading,matrix(Matrix),

nl,nl,pred_label,nl,pred print(Pred),nl,nl told.

title:- tab(15),first(Title),printstring(Title),nl,tab(15),
underline(Line),bord(Line,8),nl,nl.

heading:- second(Heading),printstring(Heading),secadd(Head1),
printstring(Head1),nl,third(More),printstring(More),

thiradd(Morl),printstring(Mor1),nl,nl,nl label(Label),rhh(Label),nl.

matrix([]).
matrix([First| Rest]):- matrix(Rest),rhh(First).

first("Pragmatic Assessment of Paragraph").
underline(’----").

second("The paragraph submitted has been transormed").
secadd("into Functional Grammar notation.").
third("The pragmatic functions were then determined").
thiradd("and are provided below").
label([’Sentence’,’Focus’,’Topic’,"Theme’, Tail’]).

rhh([]):-nl.
thh([H| T}):- col_print(H),rhh(T).

phh([]):- nl.
phh([H| T]):- write(H),tab(1),phh(T).

bord(Word,0):-nl.
bord(Word,Count):- write(Word),Ct1 is Count-1,bord(Word,Ct1).

space(0):- nl.
space(S1):- nl,S2 is S1-1,space(S2).

64

........
.......

aa Abe b hia 4oa han SCA jarae g .gdiol pte eub dinad i e At et iadh el Sk il gt f halk s o

pred_print([]).

pred_print([[Verb,Code,Semantics,Ext]| R]):- nl,underline(Line),
write(Line),nl,write(Verb),
nuc_print(Semantics),ext_print(Ext),pred_print(R).

nuc_print([]):- nl.
nuc_print([{[Term,Code,Adj{R]],Sem| R1]):- nl,tab(12),col_print(Sem),
col_print(Term),adj_print(Adj),more_nuc(R),nuc_print(R1).
nuc_print({[Term,Code,Adj],Sem|R}):- nl,tab(12),col_print(Sem),
col print(Term),adj_print(Adj),nuc_print(R).

adj_print({]).
adj_print([Term,Code,Adj]):-col_print(Term),adj _print(Adj).

ext_print((]).

ext_print([[Term,Code,Adj],Sem| R]):- tab(12),col_print(Sem),
col_print(Term),adj_print(Adj),ext_print(R).

pad(0).
pad(N):- tab(1),N1 is N-1,pad(N1).

col_print(Word):- write(Word),name(Word,List),length(List,Len),N is 12-Len,
pad(N).

printstring([]).
printstring([H| T]):- put(H),printstring(T).

more_nuc(][]).

more_nuc([Term,Code,Adj R]):- nl,tab(12),col_print(Term),
adj print(Adj),more_nuc(R).

pred_label:- lab(Label),rhh(Label),nl.

lab(['VERB’,SEM/SYN’, TERM’,REFERENTS’]).

65

N Bk Saf k-

/************************* UTILITY ****************************/

/* The UTILITY module contains several list processing rules */

/* which are used throughout the other modules. *
/***/

member(X,[]):- fail,!.
member(X,[X|L]).
member(X,[Y]L]):- not(X=Y),member(X,L).

sem_member(F,[]):- fail.

sem_member(F,[[[F|R]]|R1]).

sem_member(F,[[F|R||R1]).

sem_member(F,[[T1|R|,Sem| R1]):- not(F=T1),sem member(F,R1).

insert_item([],(],L,L).
insert_item(X,Y,[X]L],[Y]L]).
insert_item(X,Y,[Z|L],[Z|L1)):- not{X=Z),insert_item(X,Y,L,L1).

change list(X,1,[Y|L],(X]L]).
change list(X,Z,[Y|L],[Y]L1]):- Z1 is Z-1,change_list(X,Z1,L,L1).

append([},L,L).
append(|X|L1),L2,[X]|L3]):- append(L1,L2,L3).

select([X|L},1,X).
select([X|L],I,Y):- 11 is I-1,select(L,I1,Y).

red_clause(Sent,0,Sent).
red_clause([F|Sent],P,Sent1):- P1 is P-1,red clause(Sent,P1,Sentl).

is_List([])-

is_list([|]).

rev_term([],M,M).
rev_term([T,C,A|R],M,L):- rev_term(R,[T,C,A|M],L).

word_sort({],N,N).
word_sort({W,C|R],0ld,New):- sort(W,C,0ld,Int),word_sort(R,Int,New).

sort(W1,C1,[],[W1,C1}).
sort(W1,C1,[W2,C2|R1},[W1,C1,W2,C2 R1]):- C1>=C2.
sort(W1,C1,[W2,C2/R1],[W2,C2|R2]):- sort(W1,C1,R1,R2).

66

T T T T e T T e e S A LW T T W L e T T e e T e T T YT RN T W T TR T T W T AT VMY TU WU

/************************** DATABASE *************************/

/* The DATABASE module contains the words and their relationships */

/* necessary to adequately process a section of text. This database ¥/
/* is limited to the words found in the test text. It is also limited */
/* to past tense and to words in the action and process states of */
/* affairs. A limited number of semantic cases are used. These cases */
/* are the most common cases found in the states of affairs used. */

/**/

a_kind_of(animate,human).
a kmd _of(animate,animal).
a_kind_of(sor,loc).

a_type_of(human,[mary,john,jack,bill,man,woman,child,boy,girl,partner]).

a_type of(animal,[dog,cat,horse,cow]).

a_type_of(tim,[hour,day,minute,year,while,hours,days,minutes,years|).

a_type of(dir,[north,south,east,west,way, park]).

a_type of(loc,[library,street,house,building,park,river,bridge,playground,
side,ground,pocket}).

a_type_of(thing,[book,leaves,hand,eyes,briefcase,gun]).

a_type of(event,[setting,ticking,explosion,waiting,unnerving]).

_0
0

is_term(F):- a_type of(A,L),member(F,L).
is_term(F):- pro_list(L),member(F,L).
is_adjective(F):- adj_list(L),member(F,L).
is_adjective(F):- possessive(L),member(F,L).
is_prep(F):- prep_list(L),member(F,L).
is_pron(F):- pro_list(L),member(F,L).
is_attribute(adverb,adverb).

is_attribute(A,any).

is_attribute(A,B):- a_type of(B,L),member(A,L).
is_attribute(A, B) a_kind_of(B,C),is_attribute(A,C).
is_adverb(F):- adverb_list(L),member(F,L).

is_determiner(the,d).
is_determiner(this,d).
is_determiner(that,d).
is_determiner(a,d).
is_determiner(an,d).
is_determiner(some,i).
is_determiner(these,d).
is_determiner(those,d).

67

T

is_number(one,1).
is_number(two,2).
is_number(three,3).
is_number(four,4).
is_number(five,5).
is_number(six,8).
is_number(seven,7).
is_number(eight,8).
is_number(nine,9).
is_number(ten,10).

conj(and).
conj(or).
conj(but).

adj_list([brisk,autumn,opposite fallen,gloved,ominous,mine,yours,his,hers,ours,
theirs]).

prep_list([by,to,from,in,near,across,towards,as,for,on,into]).

pro_list({i,you,he,she,we,they,it,me,him,her,us,them,myself,yourself,
himself herself,ourselves,themselves,itself]).

adverb_list([quietly,softly,unnerving}).

pred(give,action,[human,ag,any,go,animate,rec]).
pred(drive,action,[human,ag]).
pred(walk,action,[animate,ag]).
pred(approach,action,[animate,ag,loc,loc]).
pred(raise,action,[animate,ag,any,go]).
pred(place,action,[animate,ag,any,go,loc,loc]).
pred(strain,action,[animate,ag,any,go)).
pred(see,action,[animate,ag,any,go]).
pred(notice,action,[animate,ag,any,gol).
pred(hear,action,|animate,ag,any,gol).
pred(wait,action,[animate,ag,any,go|).
pred(is,state,[any,0]).
pred{(watch,action,[animate,ag,any,go]).
pred(carry,action,human ag,any,go}).

aux(is).
aux(have).

68

A AR Bl i A A AL A LEL A0S AL U LA LA AR Akt MR b abh L aRE bl il oultl ik ol ald Al ol oRATadNR - ol

is_verb(gave,give).
is_verb(was,is).
is_verb(were,is).
is_verb(drove,drive).
is_verb(walked,walk).
is_verb(approached,approach).
is_verb(raised,raise).
is_verb(placed,place).
is_verb(strained,strain).
is_verb(saw,see).
is_verb(heard,hear).
is_verb(waited,wait).
is_verb(watched,watch).
is_verb(carried,carry).

s is verb(noticed,notice).

7 —_

A)
N N i is_like(Term,Concept):- subject(Concept,List),member(Term,List).
w;, subject(generosity,[give,deliver,loan,lend]).
> subject(suspense,[river,briefcase,ticking,explosion,wait,brisk,gloved,
";1 ominous,raise,strain,wait,quietly ,softly unnerving]).

LS

subject(movement,[drive,walk,approach,raise,place]).
subject(pleasure,[park,river,leaves,playground]).
subject(calmness,[river,leaves,fallen,quietly softly]).

what(what).
what(who).
what(why).
what(where).
what(when).
v what(how).
P
oy casel(i).
"::::~ casel(you).
?': casel(he).
E’f casel(she).
KTs casel(we).
E',: casel(they).
!~ »
;& case2(me).
L’Z‘ case2(you).
;ﬂ-’f case2(him).
:,-:', case2(her).
b5 case2(us).
E case2(them).
&8
s 69
" -
IO
o
ol
:::Qd‘ R ,,-.',.:-‘;- ‘_;. JARAN x_“_..w_'«‘ S IO RTINS PR VA Ry A A R M o N A - P
el A R T N S A R At SR DA ol t.e'l.n .u‘}l‘. 0.0\0‘0.0 At R :' .:'l’n ‘o e .0. X

AT

case3(mine).
case3(yours).
case3(his).
case3(hers).
case3(ours).
case3(theirs).

prep(about,tim).
prep(after,tim).
prep(before,tim).
prep(during,tim).
prep(through,tim).
prep(until,tim).
prep(above,loc).
prep(against,loc).
prep(behind,loc).
prep(below,loc).
prep(beneath,loc).
prep(beside,loc).
prep(in,loc).
prep(inside,loc).
prep(near,loc).
prep(under,loc).
prep(under,loc).
prep(within,loc).
prep(toward,dir).
prep(with,ins).
prep(without,ins).
prep(into,loc).
prep(at,tim).
prep(at,loc).
prep(in,tim).
prep(in,loc).
prep(over,tim).
prep(over,loc).
prep(past,tim).
prep(past,loc).
prep(for,go).
prep(for,ben).
prep(for,ben).
prep(for,tim).
prep(fromsor).
prep(from,tim).
prep(by,ag).

.....

e
S
3::_:1
n Y
%) prep(by,tim).
s prep(by,loc).
: prep(by,pro).
RO prep(to,rec).
4 ;::4: prep(to,dir).
" prep(to,tim).
¥ prep(on,ben).
) prep(on,loc).
L prep(ad,adverb).
Il
- prep(z,z).
o prep(z,A).
o
1908

sem_attribute(adverb,adverb).
- sem_attribute(z,any).
sem_attribute(tim,tim).
sem_attribute(dir,dir).
sem_attribute(loc,loc).
sem_attribute(sor,sor).
add_object(rec,objrec).
) add_object(ben,objben).
5% add_object(go,objgo).
. add_object([],[]).

71

‘!?» e

LT S AU PR SRRy Y OIS YA) | e ¥ 1%5 ¥ o Y
N 40 .J .“.; ' " AT INhY ‘0 hlk‘l'v\':\\&'.. ‘! \

Ao : APPENDIX B

Pragmatic Assessment of Paragraph

The gra.ragraph submitted has been transormed into Functional Grammar notation.
he pragmatic functions were then determined and are provided below. 1

Sentence Focus Topic Theme Tail
1 setting none day setting
2 park none suspense river
3 gun ac pocket gun
4 layground ill partner pleasure
5 eaves none pleasure ground
6 hand man pleasure playground
7 hand bill pleasure suspense
8 eyes jack suspense pleasure
- 9 briefcase Jack suspense pleasure
: 10 ticking jack suspense jack
Sty 11 explosion Jjack suspense Jack
N 12 waiting none suspense jack
<
e PREDICATIONS
VERB SYN/SEM TERM REFERENTS
' is)
- subjo waiting
z unnerving !
o wait . .
2 subjag Jack
S objgo explosion
4 » hear b ok
o subjag jac
'(objgo ticking
- notice) _
A subjag ack
= objgo riefcase ominous
!J loc ground
:;‘:f::: strain . .
AIRS subjag jack)
oy objgo eyes his
e place .
" subjag bill
e objgo hand his gloved {
el loc pocket his

o R
- \ N 1% " o . . ",
o AN AL A A AL L }. A A K

.
*ry

?'

SYN/SEM

subjag
objgo

subj0
loc

subjag

objgo
sor

subjag

objgo
loc

subj0
loc

subj0
z

ki&ﬁtﬂl&ﬁﬁ:}z ahi:)-:ﬂ."é gﬁ‘ -r"k '.r}.r_'iﬁ‘ﬁ;'_‘:

TERM

man
hand

leaves
ground

bill
playground
side

jack
gun
pocket

park
river

setting
day

73

-_’q o~

}_x

.g\

REFERENTS

layground
is

fallen

opposite

his
his

brisk

LR

T LA L s o w

APPENDIX C

Pragmatic Assessment of Paragraph

The paragraph submitted has been transormed into Functional Grammar notation.
he pragmatic functions were then determined and are provided below.

Sentence Focus Topic Theme Tail

1 setting none day setting
park none suspense river
3 gun ack pocket gun
4 layground ill partner pleasure
5 eaves none pleasure ground
6 hand man pleasure playground
7 hand bill pleasure suspense
8 eyes jack suspense pleasure
9 briefcase Jack suspense pleasure
10 ticking Jack suspense Jack
11 explosion Jack suspense jack
12 waiting none suspense Jjack
PREDICATIONS

VERB SEM/SYN TERM REFERENTS

subj0 waiting
z unnerving
wait .
subjag jack
objgo explosion :
hear .
ag . Jack
subjgo ticking
notice
ag jack
subjgo riefcase ominous
loc ground
strain . .
subjag jack)
objgo eyes his
place . .
subjag bill)
objgo hand his gloved
loc pocket hi
74

-) P, -’-"‘-"_'n '.'-'.'-{'-“"r“" « .’.-.‘ ..:‘q F‘q . -'.'.._. . -“ ! R K s AR ‘.\. F’.I LGP
e T G s o A NV A DR et e s |

;,.1 PR iy
L)
P
H RSk

Aty 4y

}./s.‘.‘fl?'

£

-
.“.
¥ L.

.:‘.-: ; 5 P J

LSl §

- -
e

20

T

gl
SRS

-
LN

-
-

FTIT

X! |

ryre

¢t 4

- e

WO Y ey

s wr A i

VERB

raise

watch

carry

is

is

%Y s 2 o ., \’ Yy :\h\‘cvt\k- f;}'» - '[;":

P R T L]

SYN/SEM

a -
subjgo
loc

subjo
loc

subjag

objgo
sor

subjag

objgo
loc

subj0
loc

subj0
z

-' & WY IR R o d
N AN A N T NN SN S NI -.‘* \‘i-\.'iw.‘:-s-'.*.‘h‘ Nt .{\ ..m‘{\‘.‘h{

TERM
man

hand
playground

leaves
ground

bill
playground
side

jack
gun
pocket

park
river

settin
day g

75

R R T yyeresrey

REFERENTS

fallen

opposite ;

his
his

brisk autumn

M an 0l Eazad am ook o aan ol |

APPENDIX D

Pragmatic Assessment of Paragraph

The praragraph submitted has been transormed into Functional Grammar notation.
he pragmatic functions were then determined and are provided below.

Sentence Focus Topic Theme Tail
1 hand man hand pleasure
2 gun ,La_.ck pocket gun
3 playground ill partner pleasure
4 setting none playground pleasure
5 f)a.rk none pleasure suspense
6 eaves none pleasure playground
7 hand bill pleasure suspense
8 eyes jack suspense pleasure
9 briefcase Jack suspense pleasure
10 ticking Jack suspense Jack :
11 explosion Jack suspense Jack
12 waiting none suspense Jack
PREDICATIONS
VERB SEM/SYN TERM REFERENTS \
is
subj0 waiting
z unnerving ;
wait
subjag jack
objgo explosion
hear
subjag jack
objgo ticking
notice
subjag jack
objgo riefcase ominous
loc ground
strain
subjag jack .
objgo eyes his
place
subjag bill .
objgo hand his gloved .
loc pocket his
f
76
""""""" A e A A T S N S I R

VERB SYN/SEM TERM REFERENTS

. is
subj0 leaves fallen
loc ground

N is .
subj0 park
loc river

- subjo setting
s ; z day brisk autumn
," g watch)
5N subjag bill
W objgo playground
sor side opposite

’ carry

1' o subjag jack .
-~ objgo gun his
- loc pocket his

raise .
subjag

man layground
objgo hand ﬁis Ve

Xy

hy Y v A
.A’.JY:"L":S‘.J

AL

Sty '\“,'Y

e,
LA

2

e

vv;?

- 0 o on
Sa

7

E X] £ T X
S AL 5

"

>
W

P;_l".-r 2N TR R - ,,.',:‘(' : w * - e
! P X5 ¥

SR A R R h N RN I R g R R PP O C E R PR U TR
s R e g e e e e e g e

a"a &

aﬁf > &

_.v?

1.

e.

3.

5.

6I

LIST OF REFERENCES

Winograd, Terry, Understanding Natural Language, RAcademic
Press, 1972.

Dik, Simon C., Functional Grammar, ARcademic Press, 1981.
Chomsky, Noam, Syntactic Structures, Mouton & Co., 1957.

Chomsky, Noam, Aspects of the Theory of Syntax, The MIT Press,
1965.

Hayes, Curtis W., Jacob Ornstein, and William W. Gage,

ABC's of Language and Linguistics, Institute of Modern
Languages, Inc., 1977.

Fillmore, Charles, "A Case For Case," Universals in
Linguistic Theory ed. Bach, Emmon and Robert T. Harms,
Holt, Rinehart, and Winston, 1968.

'Schank, Roger C., "Identifications of Conceptualizations

Underlying Natural Language," Computer Mcdels of Thought and
Lanquage, ed. Schank, Roger and Kenneth Mark Colby,
W.H. Freeman and Company, 1973.

Clocksin, W.F. and C.S. Mellish,Programming in Prolog,
Springer-Verlay, 1981.

78

- “a” - -
.",\)'.\'\J"'

BIBL IOGRAPHY
Bolinger, Dwight, Aspects of Language, Harcourt Brace Jovanovich,
Inc, 197S5.

Chomsky, Noam, The Leogical Structure of Linguistic Theory, Plenum
Press, 1977.

Dik, Simon C. ed.,Advances in Functional Grammar, Foris
Publications, 1983.

Dik, Simon C., Studies in Functional Grammar, RAcademic Press, 1980.

Dineen, Francis P., An Introduction to General Lingquistics, Holt,
Rinehart, and Winston, Inc., 1367.

Gleason, H,RA.Jr, Linguistics and English Grammar, Holt, Rinehart,
and Winston, Inc., 19635.

Hoekstra, Teun, Harry van der Hulst, and Michael Moortgat eds.,
Perspectives in Functional Grammar, Foris Publications, 1981.

Lyons, John, Introduction to Theoretical Lirnguistics, Cambridge
University Press, 19648.

Schank, Roger, "The Conceptual PAnalysis of Natural Language,”
Natural Language Processing, ed. Rustin, Randall, Algorithmics
Press, Inc, 1973.

Wardhaugh, Ronald, Introduction to Linguistics, Institute of Modern
Languages, McGraw Hill, 1977.

Winston, Patrick Henry, Artificial Intelligence, Addison-Wesley
Publishing Company, 1984,

79

BIIAATT & = P ol <o R R A 4 P N N B BN R S AL
RO ™ i‘ Hal 5 o ')' WAL '-" o ALY N }“h 3

g
Lig
N
jx
q_-s
o INITIAL DISTRIBUTION LIST
3
- No. Copies
o 1. Defense Technical Information Center 2
- Cameron Station .
b - Alexandria, Virginia 22304-6145
{
oy 2. Library, Code 0142 2
ﬁ{ Naval Postgraduate School
:Q Monterey, California 93943-5100
-:_‘
™ 3. Department Chairman, Code S2 2
Department of Computer Science
2 Naval Postgraduate School
o Monterey, California 93943-5100
N 4, Curricular Officer, Code 37 1
. Computer Technology
Naval Postgraduate School
Monterey, California 93943-5100
S. Roger G. Marshall 5
ij Department of Computer Science {
A U.5. Naval Academy
Annapolis, Maryland 214@z2-5@@2
% 4. Lcdr Fred G. Qrchard 12
USS Joseph Strauss (DDG-16)
g Fleet Post Office,
" San Francisco, California 96678-1246
a
:Cj
AN
N
{f
N
~
1%
A 8o
)
L
N
[}
Wl
q
.
'-
3
T A L e N A N LN N N L L T e T PRI _.__- ~
. : N WA 3 s rinx;;;: Y LA '\ YA, ’J?‘J‘I.i":'?:":; R

TR T G SapacAR AL o e pi - P SaR tull Sa Lall el tud tak (ay Ial Al solh Soh eyl tal el SRR S L ELC R Sl S0 00 JLE 4

1 1C
FILMED

-

7

RN N

<

-
o

Sl

. Y
o N

_‘_4-

=

S o
e

‘V

S ol 4
x T &y Ao Ba

