a

NPS52-86-008

NAVAL POSTGRADUATE SGHOOL

Monterey, Galifornia

DTIC
ZLECTE
¥ NUU?:R(JIQGG.

D

—

The Fractal Geometry of Nature:

Its Mathematical
Basis and Application to Computer Graphics

Michael E. Gaddis

Michael J. Zyda

January 1986

o FILE CORY

Approved for public release; distribution unlimited

Prepared for:

Chicl of ¥aval Research
Arlington, VA 22217

8g 3 19 063

!
{
A T
& ‘ °
LU
AN
1ot
Wiy
gﬁ:’;g% ’ NAVAL POSTGRADUATE SCHOOL
] Monterey, California

%& s Rear Admiral R. H. Shumaker D. A. Schrady

%& ; Superintendent Provost

e

B\ !'A \

)

wb : The work reported herein was supported in part by the Foundation Research
ghﬁ@ Program of the Naval Postgraduate School with funds provided by the Chief of
$$§; Naval Research. :
i

W Reproduction of all or part of this report is authorized.

By This repor: was prepared by:

i

163 : 2N g _
5 ~ 7

%'jﬁ Michael J. 2yd

Pl Assistant Professor

kf&' Computer Science

P

LA L)

Reviewed by: Released by:

Landh T M,

KNEALE T. MARSH
Chairman Dean of Information an
Department of Computer Science Policy Science

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enfersd)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION
NP$52-86-008 1/9 16S)%

d 3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subiitle)

The Fractal Geometry of Nature: Its
Mathematical Basis and Application to
Computer Graphics

S. TYPE OF REPORYT & PERIOD COVERED

§. PERFORMING ORG. REFOAT NUMBER

7. AUTHOR(a)

Michael E. Gaddis
Michael J. Zyda

8. CONTRACTY OR GRANT NUMBER(s)

[s PERFORMING CROANIZATION NAME AND ADDRESS
Naval Postgraduate School
Monterey, CA 93943-5100

e ——————————— s St wove—
10. PROGRAM ELEMENTY. PROJECT, TASK
AREA & WORK UNIT NUMBERS

61152N; RRO00-01-NP
N0001485WR41005

1. CONTROLLING OFFICE NAME AND ADORESS
Chief of Naval Research
Arlington, VA 22217

12. AEPORY DATE
January 1986

13, NUMBER OF PAGES
128

14. MONITORING AGENCY NAME & ADORESS(!H different lrom Contralling Oflice)

15. SECURITY CLASS. (of thie repost)

18, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

6. OISTRIBUTION STATEMENT (of thia Regert)

Approved for public release; distribution unlimited

17, DISTMIBUTION STATEMENT (of the sdetract satersd la Block 30, I dilierent tram Reper))

18 SUPPLEMENTANRY ROTES

General Terms: Algorithms, techniques;

fractals, fractal mountains, Koch curve

18 REY BORDS (Contimod an soveres +ide (T nocosaary and Ideatily by loch aumber)

‘umag

medium.
disciplines.

With its quick accepcance has come problems.
stoud id-a
SCTVes no purpose.

DD % W13

les essence is i ion us

EOITION OF 1 HOV 63 13 OBSCLETYE

10 ABSTRACY (Cantinus i rovares olde 1 neceteamy mnd [doniily by Seca sunber)
Fractal Geometry is a recent synthesis of old mathematical constructs. 1t
was first popularized by complex renderings of terrain on a computer graphics
Fractal geometry has since spawmed vesearch in many diverse scientif{c
1t rapid acceptance has been achieved due to {ts ability
phenomena that defy discrete computation due to roughness and discontinuitios.
Fractal geowmetry is a misunder-
that is quickly becoming buried under grand:oee terninology thnt

to madel

UNCLASSIFIED

$ N D102: LF-Cli- e80!

SECURITY CLATMIPICAYION OF Yib PAGE (Toen Dare Batersd)

UNCLASSIFIED

:t.;: SECURITY CLASSIFICATION OF THIS PAGE (Whan Date Bntored
ot .
i:‘\"l to transform initiating objects. The fractal objects that we create with this
1 process often resemble natural phenomenon. The purpose of this work is to
' g,;:s, present fractal geometry to the graphics programmer as a simple workable tech-
S nique. We hope to demystify the concepts of fractal geometry and make it
e available to all who are interested.
4 "'.
4
i
o
ok
v
?x !
e
H
5%&_ \

S R 0102- LA 014 6600
UNCLASSIFIED
SECURITY CLASMIFICATION OF Tuid PACEThien Date Eniesed)

The Fractal Geometry of Nature: Its Mathematical
Basis and Application to Computer Graphics }

Michael E. Gaddis and Michael J. Zyda

Naval Postgraduate School,
Code 52, Dept. of Computer Science,
Monterey, California 93943

ABSTRACT

Fractal Geometry is a recent synthesis of old mathematical
constructs. It was first popularized by complex renderings of terrain
on a computer graphics medium. Fractal geometry has since
spawned research in many diverse scientific disciplines. Its rapid
acceptance has been achieved due to its ability to model phenomena
that defy discrete computation due to roughness and discontinuities.
With its quick acceptance has come problems. Fractal geometry is
a misunderstood idea that is quickly becoming buried under grandi-
ose terminology that serves no purpose. Its essence is induction
using simple geometric constructs to transform initiating objects.
The fractal objects that we create with this process often resemble
naturaj phenomenon. The purpose of this work is to present fractal
geometry to the graphics programmer as a simple workable tech-
nique. We hope to demystify the concepts of fractal geometsry and
make it available to all who are interested.

Categories and Subject Descriptors: 1.3.3 [Picture/Image Gen-
eration|: surface visualization: 1.3.5 [Computational Geometry
and Object Modeling]: Bezier surfaces, fractals; 1.3.7 [Three-
Dimensional Graphics and Realism|: fractal surfaces;

General Terms: Algorithms, techniques;

Additional Key Words and Phrases: fractals, fractal mountains,

Roch cusve:
, ‘ e
[NTIS CrAm a)
0

. - OTIC TAB
“n 0\ Unannounced 0
5 \ Justification
By)]
Distridution/
3 Thw work has been scppevied by the NPS Foundation Nesrarch Progran. . - "
~ Availabiity Codes
Dist Avaitl andjor

o
-
A2

T

e R
-

& o™

TR

=

)

¥

B

)
X

!

1

guif = 4
<y Sy 3
Sl

A

- e

2

2

"

R, ¢
pLE

'
v

{ g* 4,

g
i’l"?!"
o

- T
X

A
by e

" D

gy AW

i
R

TABLE OF CONTENTS

I. AN INTRODUCTION TO FRACTAL GEOMETRYcroncrnrrerrene.
A. MATHEMATICS AS A MODEL FOR OUR UNIVERSE
B. FRACTAL GEOMETRYconrrrnreirnrenimecsnsissenssssnsmessesessans
C. GOALS OF THIS RESEARCHniirrenrrreernnnecsncesssnnnenss

II. THE MATHEMATICAL BASIS OF FRACTAL
GEOMETRYccuuueee. ceresetttenaesennsensnesssresnissessesserassssentensens

A. PRELIMINARIES ...oviimnicnnnsnnninens cassisrsssscssassensessenssasens

B. DIMENSIONccceeeaunn..e. rateresessasessieresssressies anasarines

C. FRACTAL CURVES AND SETScivrisriirnnncserasnsnsians -

1. THE IMPLEMENTATION OF FRACTALS IN COMPUTER
GRAPHICS ..ccccnrnreminessrmmmssssssmses s st

A. THE IMPLEMENTATION PROBLEMcccooon. yoessasesanesseses

B. MAPPING FRACTALS TO A BOUNDED SPACE ..cooeverenrerenn.

IV. FRACTAL COMPUTATION IN R? ...oooiiniireircrisnnneennssasnsnsessasss

A. THE GEOMETRY OF INITIATOR ~+ GENERATORcconrnne.

 B. THE MID-POINT DISPLACEMENT TECHNIQUE ..evvrevesreenenns

C. A KOCH-LIKE FRACTAL ALGORITHM ...cooenreeccrrencaseensrencen

D. IMPLEMENTATION < © A% ZGIES wovoooesesnscnsenneenesen

po e e Er SUMMARY e et AR AR

H
e e

© V. FRACTAL GEOMETRY FOR GRAPHICS TERRAIN w.occorvereron
- A" MODELING MOUNTAINOUS TERRAIN ...cccocerevrmnrsmrrcne

; s -

=T "B FRAGTAL TOOLS FOR TERRAIN MODELING ..o

e
N L R -

10

10
15

24

35

VI. SHORT CUTS TO MOUNTAIN SHAPESverinenrecnnnns 87

A. RECTANGULAR MIDPOINT TECHNIQUEccovvurmunenne. 87

B. PARAMETRIC CUBIC SURFACESccovvreneerenrinernsacsrieranee 92

. VII. CONCLUSIONSocrrvirrrrrnrrereeraernnsnsacssans R — 100
A. DIRECTIONS FOR FURTHER STUDYeenvensicrennicavnns 100

B. CONCLUSIONSccimintenicsmiessmsssssesssssses rosssessssess 102
APPENDIX A: FRACTAL COMPUTATION IN R?ocrccrrcvarracnnne 103
APPENDIX B: RANDOM NUMBER GENERATORSccceeeuvunnee. 112
APPENDIX C: THE TRIANGULAR MOUNTAINrinneernnaninns 116
APPENDIX D: THE RECTANGULAR MOUNTAIN ... 121
APPENDIX E: GEOMETRIC SUPPORTcvncccninnesrneneniaeeanas 126
LIST CF REFERENCESoiciiviiiinnninnnnnnnnnsntssestsnssnsnssssssssiens 128
INITIAL DISTRIBUTION LIST ... nscsacsinse s senntnans 129

I. AN INTRODUCTION TO FRACTAL GEOMETRY

A. MATHEMATICS AS A MODEL FOR OUR UNIVERSE

The various branches of mathematics have through time developed as a
response to the need for more detailed models to describe new developments,
both technological and philosophical. This was true when Newton developed
calculus and also true during the late 1800’s through the 1820’s when a schism
developed between the classical mathematicians and some brilliant innovative
thinkers.

1. The Mathematical Crises of the Early 19th Century

One of man's greatest strengths is his ability to question his surroundings

and beliefs and through this questioning develop new insight and innovation.
Most mathematical systems are developed for use in applications. Man's natural
inquisitiveness often leads him to develop his systems beyond the application and
into abstract theory. This theory drives him to investigate the applications and
often yields direction for new discoveries that were not previously foreseen or that
defy intuition.

Georg Cantor (1845-1018) was the most notable of a number of
mathematicians who questioned the basic precepts of mathematics and developed
the modern sel theory. Some of Cantor's discoveries seemed to invalidate many
of the long held beliefs of mathematics. Cantor and his peers became deeply
involved in controversy over their findings. Their discovery of functions which
seemed to violate the basic rules of geomelry and calculus were deemed as
monsiers and unworthy of consideration by reascnsble men because they lacked
usefulnéss to any application then known [Ref. L:pp. 9). These new concepts
would remain in the srena of pure theoretical mathematics uatil science
developed to a point where the old models could no longer adequately describe its

g processes and would lock to the new mathematics for & new perspective.

It was from these discoveries that Fractal Geomelry was born |Ref.

1:Chap. 2]. It will be seen in the following chaplers that fractai geometry

PREVIOUS PAGE
1S SLANK

is a synthesis of many of the concepts which developed from the mathematical
schism of the 19th century, most notably set theory and topology.
2. What is a Mathematical Model
Reference 2 defines s mathematical model in the following fashion |Ref.
2:pp 1-3]:

A mathematical model is a mathematical characterization of a phenomenon or
pr:;elc:& It hast l:hreet.u:len:l tputss: a lrocz'gs or phpnor{\'lenqn WhtRht.‘s to be
modeled, a mathematic. srucurecaiugeo expressing the important proper-
:.'ia of the object to be modeled, an exp!icxpt corrgspondenlc): bet.we%np!.ehe
wo.

Although the phenomenon of interest need not be taken from the rea! world,
they ussunlly u‘:e. The real world component is described quant.itativeiy by such
things as parameter values and at which time things occur.

The second component of a model is an abstract mathematical structure. In jt-
self, the structure is abatract and has no intrinsic relation to the real world.
However because of its abstractness it can be used to model many different
phtnomel;_a. Evelr’y trgathen:ﬁucal‘.str'uctuﬁ lhll_s an asso?u'tecghlanlgunge for ?‘kt;
Ing_assertions. e mathematical model ir successful, the language of i
mgthfmatical structure can be used to make assertions about the %bjgct being

eled.
The third component of a mode! is a specification of the way in which the real

world is represented by the mathematical structure, that is, a correspondence
between the elements of the first component and those of the second.

3. The Euclidean Model

When using mathematics to describe man-made objects, the Euclidean
model (standard Euclidean geometry) is usually satisfactory. Its structure is
simple and pure, which sppeals to an engineer's nature. But as technology
expands and we need to describe processes that are not well behaved, we need to
develop a geometry that can adequately model our process within a cartain
closeness of scale.

No model can completely describe a naturel object because nature does

aot follow the man-made rules that we impose on our model. But at a given
scale, the model (if it is accurate) can describe the object with enough precision
to be of help in constructing it. Engiueers use the geometry of a straight line to
describe a wall but this wall, when viewed closely enough, is not straight at ail.
This is of no matter to the enginecer because his model is accurate for his scale of

reference.

B. FRACTAL GEOMETRY

One man who saw a need for a new geometry was Benoit B. Mandlebrot. He
felt that Euclidean geometry was not satisfactory as a model for natural objects.
To anyone who has tried to draw a picture of a nonregular object (such as a tree)
on a computer graphics screen, using the Euclidean drawing primitives usually
provided, this is an obvious statement. The strength of Mas.dlebrot's finding was
his research into the findings of the earlier mathematicians and the development
of a practical application of their theory. Mandlebrot coined the term Fractal to
describe a class of functions first discovered by Cantor (Cantor’s dust), Koch (the
Koch curve) and Peano. He showed how these functions yield valuable insight
into the creation of models for natural objects such as coastlines and mountains.
Mardlebrot popularized the notion of a fractal geometry for these types of
objects. Although he did not invent the ideas he presents, Mandlebrot must be
considered important because of nis synthesis of the theory at a time when
science was reaching out for new more accurate models to describe its processes.

C. GOALS OF THIS RESEARCH
There are two approaches that can be taken in the iuvestigation of fractal

geomstry and computer graphics.

- To view the computer as a tool to enhance the investigation of fractal .
geometry.

o

- To view {ractal geometzy as a tool to enhance the realism of computer
graphics.

This rescarch will take the later approach!. It is designed to investigate the
mathematics of fractal geometry and o show its application to computer
graphics. | hope to be able to tame the subject of fractal geowmetry by making its
matheainatics and technigue accessible to the average computer scientisi.

' Where Maudelbrot ook the forsnay.

C

-

A1y
., % 2
Py

e Ao 5 TP

-

1I. THE MATHEMATICAL BASIS OF FRACTAL GEOMETRY

This chapter is a brief introduction to the mathematical foundations that
underlie the theory of fractals. Little technique currently exists for the practical
application to attain complete mathematical rigor when using fractal functions
(i.e. it is very difficult to prove that a set is fractal). This causes the non-
mathematician to accept much of what he does with fractals on fasth. It is
instead important to understand the theory intuitively. This can be gained by a
cursory look at the mathematical foundations for fractals.

A. PRELIMINARIES
A complete definition of fractals is given later in this chapter but before we
can understand that definition, we must establish a foundation in set theory.
Fractals were discovered in set theory and topology. They can be considered as
an outgrowth of investigations into these related fields.
1. What is a Set
A set is defined in [Ref. 3:pp. 11] in the following fashion:

A set is formed by the grouping together of single objects into a whole. A set is
a plurality thought of as a unit. We can consider these sta&emcnts a3 expository,
as references to a primitive ¢ meept, familiar to us ail, whose resolutian in 0

nore fundamental concepts would perhaps be neither cumpetent not necessaty.

¢ will content oum!ves with this construction and \ul usume & an axiom
that an zﬁb*’“‘ M mbcum ¥ dctwmmcs ccr&am o.her objects a, #, ¢, ... in some
undefin \uy and vice versa. We express this selation by the words: The set M
consists of the objects o, b, ¢, ..

This definition is intentionally vague to allow the set to become the basic
building block for all mathematical constructs.

2. Some Set Theoretic Concepts

This section preseuts some background definitions for coucepts used in

the body of this chapter. The reader is directed to the references for a detailed
explanation or proof [Ref. 2:Chap).

Definitions:

Cardinality

Two sets Sand T are said 1o have the xate number of eloments, or o have the
same cardinahiy, if there s a one-one functioa firom Sto T.

10

“‘

) a-'.

b -

- -

1 ", ‘
g Finite anéi Infinite Sets
M)
; A Set Sis eaid to be if S has the same cardinalit if th
:‘l 5 | :ﬁmesl?::&é 8 sbuecl:'{i!;‘ hu‘t'he same u‘;gn'a'l‘n; ’;suil,i’ g'r‘: 5, ...eunj. b ahpe?.
e - Countability

A set S'is szid to be countable if S has the wmin wdmamz as a subset of N, the

3 ' set of positive integers. Otherwise, Sis said
;. - H . -!‘ .
') a). Any subset of a finite set is finite.
': b). Any subset of any countable set § is countable.
{’%‘1 c). The set of natural numbers N is countable.
4 _
WY d). The set of rational numbers Q is countable.
' d). The set of irrational numbers is countable.
4 ¢). The union of a countable colléction of countable sets is cou stable.
S f). The set of real numbers R is uncountable.
"‘ 3. Some Topological Concepts
This section presents some topological background concepis used in the
.;) kg
i body of this chapter. The reader is directed to the references for a detailed
e . ‘
;:E’.;; explanation [Ref. 3].
e
& Concepls:
g% Metric Space
Y A metriz e iy a set hich we have & measure of the closeness t
‘*;‘53 : : of two elege‘:tslof‘ th; :&‘l‘:h:t u,twe h:v: a d.x:uncr efi uf«) o: vl (i‘rox&mu{
»’h ample, & metric on B would be the pythugorcan metric:
e Dlizunhtesrd) = Vs> inrowl
b Covering & Set
St Lot Yheat ical e and 3 & subset of X. A cower of the set Sis exacti
S what its nu&“iﬁﬁumm :fa:uml: of X wt:u:b cover gS, that zs.cwfas!é
Rl union contains S.
E

What is a Function

A function is defined in [Ref. 2:pp. 103-194] as

A function fr%t‘n;stdwaut B is a rule which specifies an element of B for

each element
:_‘3: Let A and B be A function {or mc;. or ftc [crnnhon} ffrom A w0 B,
¥ 3
A denoted £ : A LS are uua from 4 to B wch that for every e which s an
S ctemnle A enus.umqnebm B such that <e,b> is an element of [
’;}; We write f{s) =

m’

- &
3
By
13 0'1

A g

11

e

TR
PR A

g 4K,

el ¥

.

If fis function from A to B, then A is called the domain of the function fand B
is called the codomain of f.

To completely define a function we must specify the domain, the codomain, and
the value f(z}' for each possible argument z.

Functions can be viewed as a specification of a method to describe the
creation of a set from other sets using some agreed upon mathematical
symbolism. The functions can yield powerful results when the target set (co-
domain) is complex and not easily described by set theoretical constructs. This is
especially true in fractal functions when the domain is RN and the object created
(set, co-domain) is a nonregular shape. This is one reason why the computer
graphics system is useful in the investigation of fractal functions. The computer
can model the infinite function and display a finice approximation of the created
fractal set.

5. Useful Functional Concepts

It is often helpful to clearly understand the universe of discourse within
which a function exists. The function can be rigorously defined within the above
consiructs but lack intuitive appeal due to its complexity. Mathematicians have
defined many useful concepts to describe functions. The concepts applicable to
this study are described below.

a. Partial Functions

Most of the fractal functions in this study have as their domain some
undefined subset of RN, It is useful then to consider them &s partial functions
and not concern ourselves with a rigorous description of the domain of the
fractal. We take our definition from [Ref. 2:pp. 201-202].

. It is often convenient to congider a function from a subset A’of A to a set B
withuut exactl speclfymg the domain A’ of the function. Alternatively, we can
view such & situation as one where a functjon has a domain A and codomain B,
but the value of the function does not exist for some arguments of A. This is
called a partsel function.

Definition:
Let A and B be sets, A partial function [with domain A and codomain B 1s any

function from A’ to B, where A" is a subset of A. For any s which is an element
of A A the value of f (z) is said to be unde fined.

b. Bijectivity
It is often useful to know to what extent a function maps from the

uomain to the codomain. If a function is not a partial function and every point of

12

ANAMAMNKMAMOME WS RPN HAK PANS S ANATY CRCN RO NANAT NP IW I WL A Ll Ot K S TAN A AN I LS AT VAR 70 33 e eyt

the domain maps to a point in the codomain then we want to know if all points
of the domain A in the mapping /{A) mar tc distinct points in the codomain B.
We may also want to know to what extent the mapping f(A) covers the set B.
The definition of bijective, surjective and injective functions is from [Ref 2:pp.
204).

Definition:
Let f be a function f: A~B,
(8) § is surjective (onto) if f(A) = B,
(b) 1 is injective (one-to-one) if a # a* implies f(a} # f(a’),
(c) 1 is bisective (one-to-one and onto) if f is both surjective ard injective,

6. Functions From RN - RN
A point in RN space is specified by an n-tuple of the form

(21,222 302,). To completely specify a function from RN ~ RN each point in

tr: d-=:zin must map to & point in the codomain. An example is:

/ :R:R?
/(21 29)) = (2% 257)

This function is well defined. For each point in the domain of the function we
have specified a unique point in the codomain,

Most of the functions that are covered in this study are mappings within
R? or B3, Fractal sets exist in all finite dimensions but it is impractical at this
point to us= fractal functions beyond the fourth dimension in view of the graphics
display medium's limitation to two dimensions. The use of fractal functions
whose dimension is between 3 and 4 is currently being investigated by allowing
the function to roam the fourth dimension and then taking time slices which
yield three dimension approximations of the set [Ref. 4).

7. Inductive Definitions of Sets

Functional constructs do not always provide a convenient mesas of

charactering an infinite set. It is sometimes more vloquent and powerful to use

the inductive method to characterize a sex.

13

- - e e > me - . L R ey

f:’aﬁt" Our definition of inductive definitions of sets is from [Ref. 2:pp. 199-201).

.g‘gw, An inductive?® definition of a set always consists of three distinct components.

1. The basis, or lnmc clamc, of tll';e deﬁmtxon establishes that certain object.
i are in the set. The basic ¢ ause establishes that a set is not empty and charac-

ﬁ:f terizes the "bmldm blocks" (the seeds of the induction) which are used to con-
N struct the set from %he mductwe clause.

:':g:g: 2. The indyction, or inductive claxse, of an inductive definition establishes

§‘ 8 t}L e ways in whxch elements of the set can be combined to obtain new elements.

?&,ﬁ The m uctive clause always asserts thet if obj ects z,9,.,3 are elements of the

) hen they can be comb me in certajn specilied ways to create other elements
1o of lhe set {thus from the basic cl ausen(or seedeb of the induction we induce the

';g.;,:. remaining elements of the set).

At

ptﬁ’;::l, 3. The extremal clause asseris that unless an object can be shown to be a

e member of a set by applying the basis and inductive clauses a finite number of

‘:i"‘!: times, then the object is not a member of the set.

W

Ar ~vample cf sn inductively defined seq is:
(Basis)

0c A

(Induction)

Ifn e A then (n+2) ¢ A

(Eztremal)

No integer is an element of A unless it can be shown to be so in a finite number
of applications of clauces 1 and 2 above.

The set that we defined is the set of all even nonnegative integers.

8. The Path To Fractals
The path to fractals by the non-methematician is net through theory but

through the investigation of their functions and methods of construction. This
investigation (and experimentation) yields considerable insight into the nature of
fractals,

The choice of which set-descriptive methodology to use (functional or
inductive) in describing a set is often a matter of style but can be dictated by
necessity if one method is inordinately tedious.

E\{ Most of the frac.al functions that are introduced in this study use the
RO inductive method as the primary functional tool. In fact, these functions erc a
hybrid of the functional and inductive constructs described above.

? Often called a recurrence definition.

14

o 2 a4 ——— T T Tl e Y . —— 2 m i A Ay o

B. DIMENSION

The ciassification of fractal sets from non-fractal sets is based on the
dimensional qualities of the set. To understand fractals you must have an
appreciation for these differences.

The concept of dimension is one rife with difficulties. Many of the great
mathematicians have attempted to define dimension as a rigorous concept
consistent with the known mathematical systems. For each of their attempts
however, the concept becomes more prone to contradiction and paradoxes.

There currently exist five definitions of disuension that date back to the late

1800's3. The classification of Fractal sets into a class of sets is the result of the
discovery of functions that created sets whick dic not fit comfortably into the
topological definition of dimension (which was the accepted definition at the
ti..e). Fractal sets are rigorously classified as those sets that demonstrate a
difference between the Hausdorff-Besicovitch dimension and the standard
topclogical dimension.

1. An In.ditive Apprcach to Dimension

Dimension is a concept that seems intuitive when it is first introduced in
Euclidean geometry as the standard three dimensions. Long after Euclid made
the first aitempts at deflining dimension and concurrent with the discovery of
atomic particle physizs the concept of dimension was rethought by the prominent
mathematicians of the vwme ‘This was necessary to realign the suathematical
model for the geomeiry of objucts with the new view of what those objects were
made of. Our increasing ability to focus on ine nature of matter inevitably -
causes the medels we use ‘o change.

The dilernma that arose from the new concepts of dimension quickly
developed into a theoreti il debate that left intuition behind. When human
‘ntuition fails, we rausi rely upon well founded models that are based on axiowms
of kasic mathematical truth. It is only through the rigorous investigation of our

mathematical models that allows us to gn beyond ir‘uition and investigate the

¥ 1). Cantor and Minkowski; 2). Bouligand anc Minkowski; 3). Pontrajgin, Schnirelmen end
Kolomogorov, Tihomirov; 4). Hausdor{l-Resicovitch and §). the topological dimension (there are
others). Most of these definilions sre concerned with the most efficient method of covering a set
(i.e. are topological conceras,.

15
i

£

3
N

i
3 - P - e 0] s
A T I S T I T Y T T I I T I N N I . O R L T R N LTS L L. P L TR P . TS . ..

..m.
. 2 7,
ol ¥

T R g

o8 X Wy
e P

J?m»‘ P
i

&
s

-

3,
¢y
[t
e Sl S

vi?

f

ot
yedy

X .
’..
"

=z

s
A

Tt

S
Wil P ¥ I

f T

I
P

»

i
s

true physical nature of the objects we model. The debate still rages today and
borders on the philosophical. Two examples should suffice to demonstrate the
complexity and possible paradoxes that can arise from dimension theory.

The first is frora [Ref. 5:pp. 323-344).

Consider the wa% in which we define the densit‘,of air at a %iven point and at a

iven moment. We picture a sphere of volume V centered al that point and in-
cluding the mass M. The quotient M/V is the mean density within the sphere,
and by the true density we denote some hmmni value of this quotient. This no-
tion, however, implies that at the given moment the mean density is g:actlcally
constant for spheres below a certain volume. This mean density may be notably
dxfferezx.t for spheres containing 1,000 cubic meters and 1 ‘cubic centimeter
respectively.

Suppese the volume becomes continually smaller. Instead of becoming less and
less important, these fluctuations come to increase. For scales at which the
brownian motion shows great activity, fluctuations may attain 1 part in 1,000
and they become of the order of 1 part in 5 when the radius of the hypothetu:ai
spherulée becomes of the order of a hundredth of a micron.

One step further and our spherule becomes of the order of a molecule radius. In
» gas it will generally lie in intermolecular space, where its mean density will
henczforth vanish. At our Bomt the true density will also vanish. But about
once_ in a_thousand times that point will lie within a molecule, and the mean
density will be a thousand times higher than the value we usually take to be
the true density of the gas.

Let our spherule %'gcw steadily smaller. Soon, except under exceptional cir-
cumstances, it will become empty and remain sc henceforth owing to the intra-

atomic space; the true density vanishes almost eve;zewhere, except at an infinite
number of isolated points, where it reaches an infinite value.

The second is from [Ref. 1:pp. 17-18].

Consider a ball of 10 cm diameter made of a thick thread of 1 mm diameter that
(in latent fashion) possesses severa! distinct effective dimensions.

To an observer placed far away, the bail appears as a zero-dimensional figure: a
point. As seen from a distance of 10 cm resolution, the ball of thread is a three-
dimensional figure. At 10 mm, it is a mess of one-dimensional threads. At 0.1
mm, each thread becomes a column and the whole becomes a three-dimensional
figure again. At 0.0] mm, each column dissolves into fibers, and the ball again
becomes one-dimensional, and so on, with the dimension cro&nm§ aver repeated-
ly from one value to another. When the bail is represented by a finite number of
atomlike pinpoints, it becomes zero-dimensional again.

It is interesting to note that cach of these examples demonstrate
dimension as a reflection of physical properties dependent on the observers point
of reference. Each ends with reference to the paradox of atomic particles. That
paradox is, for any collection of finite (or countably infinite) points, the
dimension is zero [Ref. 6:pp. 1-8]. Since the carth and sun each have a finite

collection of atoms then accordingly their dimension is zero. Dimension cxists

16

:

NG
.s.‘;

3

]

.

13

&
P
E%

z

only for a mathematical continuum and as such lacks application to the physical

universe as we currently know it?.

The two properties (continuity and dimension) cannot be separated.
Before the advent of atomic theory, matter was viewed as continuous and
composed of basic elements that were indivisible. While the debate raged over the
practical and philosophical aspects of the nature of matter it became apparent
that the mathematical models which represent matter would have to change. It is
not practical to represent objects by representing each atom and its position
relative to the entire set. The power of modeling would thus be lost; that is, the
ability to model complex objects and their interaction by relatively simple
constructs. Thus the fact is reinforced that models can only represent objects
through gross approximations and that the model is only effective for a restricted
frame of reference. Without this realization, dimension would have very little

application.

2. Topological Dimension

a. An Intuitive Approach

- The concept of dimension is very old. It is based on the algebraic
concepts of Euclidean n space and the notion that a set has dimension n if the
least number of real parameters needed to describe its points was n. This fuzzy
definition was accepted for a very long time until the advent of Cantor and set
theory. Cantor showed that dimension can be changed by a 1-1 transformation
from an intarval to & planar object. The fuzzy notion of dimension, as defined,
was challenged and required rethinking,

The mathematicians who did not accept many of the findings of set
theory at the time (but who could not disregard Cantors findings) began to
consider ways of explicitly defining dimension. The new definition would have to
be applicable to the dizarre functions of Cantor, Koch and Peano as well as the

¢ The set theoretical concepts of finileness, countably infinite and uncountably irdinite (con-
tinuous) sets carry with them very profound implications. It is premature to view matter as mere-
ly collections of finite atoms. Science may yet find true continuity (in the mathematical sense) in
atomic matter and the universe. For now, metter is what it is and our prosunciations upon it will
not change ils true texture.

17

!
,“_tz!*e‘

0
t

LR R

I T,
D Yoo
R,

o

e -

ko okd

%Um

oot
PRl i

Wi

&R
,;;*‘4
\

Rt
k%

relatively simple cbjects that had previously fit into the old definition without
contradiction.

There was one crucial problem that Cantor’s findings raised
[Ref. 6:pp. 4-6]:

An extremely important question was left %pen: Is it possible to establish a
correspondence between Euclidean n space and Euclidean m space combining the
features of both Cantor’s and Peano’s constructions, i.e. a correspondence which
is both 1:1 and continuous? The question_is crucial since the existence of a
transformation of the stated type between Euclidean n space and Euclidean m
space would mgmfﬁ that dimension (in the natural sense that Euclidean n space
has dimension n) has no topological meaning whatsoever.

This fundamental problem was answered in 1911 by Brouwer. He
proved that Euclidean n space and Euclidean m space were not homeomorphic
unless n equals m. To say that two spzces A and B are homeomorphic means
that a mapping f :4 -+ B exists, such that f is continuous over A and bijjective,
Additionally, the inverse of this mapping f ~V'B ~ A, is continuous over B and
bijective. If two spaces are homeomorphic then it is analogous to saying that they
are topologically eguivalent.

Further research was done and a precise definition of topological
dimension of a set was developed. This definition assigned an integer value as the
dimension of any set based on its topological properties.

b. Definition of Topological Dimension n

The rigorous investigation of dimension is beyond the scope of this

study but the following definition is included for completeness [Ref. 6:pp. 24):

Roughly speaking, we may say that a space has dimension < n if an arbitraril

sm -p?ece of shﬁ's ace st’;rwiﬁsding en’tl:fpoiot Jnay be delimited by subsets o%
dimension € n -). This method of definition is inductive, and an e ?ﬂﬂa start.
-1) dimen

ing point for the induction is given by prescribing the null set as the
sional space,

Definition:
The empty set and only the empty set has dimension -1.
A space X has dimension £ n ((n 3 Q) ot a point plif p has arbitrarily small

on <
neighborhoods whose boundaries have dimension € n- |,
X has dimension € n, dim X < n, if X has dimension < n at each of its points.

has dimension n at point p if it is true that X has dimension € nat panditis
‘:Jse that %’ has dimengion : n-1atp 4

X has dimenston nif dim X < nis true and dim X € a -] is {alse.
X has dimension oo if dimy X < n is false for each n.

18

The topological dimension is rigorous and consistent for all sets that
exist within a mefrie space. The problem that arises with fractal sets and its
topological dimension is not that the topological dimension is wrong. Fractal sets
like all sets in a metric space exhibit a topological dimension. The question is
then, is the topological dimension an accurate description of the dimension of the
set or can we find a better way to characterize the dimensional qualities of the
set? This question can be extended; is the topological definition of dimension
useful and consistent with the ::viten of dimension and space? Can we devise a
better concept which can further refine dimension and make it more useful®.

3. The Hausdorff-Besicovitch Dimension
This section is intentionally brief due to the subject’s complexity and to
the lack of practical technique that it yields. The Hausdorff measure of a set is a

complex characterization of a method for covering a set. Hausdorfl’s theorem is
proved using the ezistential qualities of infinite sets in a metric space 1. While
the theorem may be important to mathematical theory, it proves unfortunate
that there is no straightforward practical method for determining the Hausdorff
measure of a set.
a. An Intuitive Approach to the Hausdorff Dimension

The acceptance of the Hausdorffl method for covering a set as a
measure of dimension is not universal [Ref. 6:pp. 102] and [Ref. 1:pp. 363-3635].
The debate is between the disciplines of topology and metrics and is not wholly
germane to this study. It is beneficial to divorce ourselves from the debate and
consider both the topological dimension Dy and the Hausdorff-Besicovitch
dimension (HB) as merely measures of qualilies of a set’s structure. Certainly
sets exist that have a topological dimension equal to 1 but in no way resemble a
simple Euclidean curve If the Hausdorff dimension yields a better measure of a
set's structure that provides a mathematical and intuitive difference that is useful
to us, it would be bencficial for us to investigate it.

! Try not to exribe grandiose implications to & set's dimension (the fourth dimension as time
or some such) ss this is premature at best. Rather, view a set’s dimension &y merely descriptive
terminology much like the terminology of bijectivity describes a function’s characteristics. The
problem most people have with this mental abstraciion is the visual reinforcement that they re-
ceived from the notion of the standard three dimensions.

19

Lo ¢ ot

-~

A M
N

tl,,’
e

2

The Hausdorff measure of a set was developed during the same
period that the new topological dimension was invented to solve the paradoxes of |
Cantor. The topological dimension was based on the idea of a neighborhood of a
point within a Euclidean space of RN. The connection to metric spaces and the
idea of measure is obvious when you consider that the Hausdorfl measure of a set
is also based on this notion of a spherical neighborhood and what Hausdorff calls
the test function of a set. The test function of a set dennted h(p) is a function
that characterizes the ‘“‘best’ method of covering a point with the spherical ball
of radius p that covers points of the set, which in their union, cover the entire
set.

Consider for example the test function for a surface within R2 A
surface can be covered by dises (circles). The formula for the area of a circle
becomes the test function for the surface. The formula for the area of a circle
always contains the constant factor # multiplied by the square of the radius r.
This radius is the measure p as above. This leaves us with a test function for a
planar shape in R2of h(p) = np2.

You might expect that the test function for a spherical neighborhood
in a Euclidean space above R3 would be very difficult to imagine, and indeed it
is. Hausdorff further complicated the idea of test functions (even within the lower
dimensions) by allowing a test function to assume a non-integer parameter d so
that the test function h(p) = ¥(d)p? could have a real-valued parameter d.
This further refinement of the test function allowed Hausdorff to wmake assertions
about how this test function h(p) behaved when the parameters p and d were
allowed to vary.

Hausdorff imagined the paramcter p reducing in size until it
approached zero. The effect of this on our disc example is increasingly smaller
and smaller discs around points of the planar set. As the disc size is decreased,
fower points of the set are contained in cach disc neighborhood. This requires
mote discs to cover the set. As the paramcter p becomes infinitely small the
number of discs required to cover the planar set approaches oo. We allow the

parameter to grow arbitrarily sinall. It is interesting to study the test function

20

A v
-,

" S 4
ol i,

and see what happens to the tolal area when the areas of the collection of discs

XY
)

- N
Z
-

which cover the planar set are summed.
Let’s reflect upon the mathematical process that we are developing.

-~
o
L

-
uay
X

When we attempt to approximate the area of the planar =1t by the union of the

,_ ..
-
.2

discs which make up its cover, we are essentialiy observing small patehes of the

surface and approximating the area of the set by making assertions about the
intrinsic qualities of the patch. The notion that this messure is merely an
approximation is important. As the size of our patch grows increasingly small, we
can expect that we will get a better fit with cur patches and hence a better
approximation of the area. The notions of approximation and fit become
increasingly helpful when you consider functions which describe sets of infinitely
rough tezture as we find in fractal sets.

The importance of Hausdorff’s discovery lies in the fact that for a
test function of a set, the parameter d is special. As p—0 he discovered that

ek
€l Ao e 1

there existed a unique real number d such that for d‘«<d, the infinum® defined
by the test function using d° approaches oo (for any countably infinite set). And

L £

for & d°>d the corresponding infinuin approaches zero. This means that e~ —
set has a parameter which can be associated with it that is closely related :« :he
amount of space that it occupies. This number is the Hausdorff-Besiconiich
dimension (measure) of the set.

These results only tell us that a number and function exist. They do

g
o

N e

by
™

not tell us how to compute them in the general case. This gives us the gquandary
of dealing with the HB dimension as a known concept that we can make

!

,,
[

allusions to, but can rarely compute (at least at the present time).
b. Definition of the Hausdor{f Dimension |
The formal definition of the Heusdorif dimension requires that we
formalize the intuitive discussion above, We first define what a p-measure of a set
is (analogous to the disc above) [Ref. 6:pp. 102-103].

of Sl ol Wt A ;

- ?v"a_ o &
ok .4

ﬁ p-dimensiona! measure for each non-negmve real number p was defined b
ausdorff for ub:tury thelric :s menure is a_metrical concept, while
dimensi on is purely to{d 2 Nevert eless there :s a_ stropg connection
between the two concep u turns out that a sp?,ce (topological) dimen-
sion m must have positive n-ditnensiona! n.casure (measure),

¢ For our example tbi; would be the sum of the areas of the discs.

21

B e e S o R A l S S % S Sl 2y e B B L A G AL B MY e Al el T i S —

EARI A
-y
-

i _
v ;Hﬁr‘j‘;ﬂ <! @“';f

VA
-~

%,
< RN

o, ks s o £ @ tiah

s g,

O
¥, 25w

o
L,

P

o i_ W
S 3 o™
- g ..::‘:’j

Definition:
Let X be a space and p an arbitrary real number, 0 < p <0o0. Given ¢ >0 let

', = infF) [6(4,))

in}

where X = A'+ A+ A+ - - is any decomposition of X into a countable
nember of aubsets of diameter less thu’; €, ami the superscript p denotes ex-
ponentiation. Let

my (X) = sup m’, {X).

'm, (X) is cailed the p-measure or {p-dimensional) measure of X.

Proposition:

If p <q then m, (X) > m, (X); in fact p <q and in, (X) <00 imply m (X) = 0.

g’or(lit)erzegg,mpilfu m: 66 c,t,oh.en m, (X} $m,(X); and if p>¢ and

¢. Mandelbrot's Misgivings about the HB Measure
It is clear from the previous definition that for practical applications

the Hausdorff dimension is difficult to compute directly. In [Ref. 1:pp. 14-19] and
[Ref 7], Mandelbrot expressed a distaste for the focusing of attention on the HB
dimension. He states:

“] developad the deﬁmtton of fru:tals us) eﬁ the topologlcal and Hali, orff di-
mensions n response to colleagues who u ne to do so. They felt ¢ at it was
Rccemry to ngte)rously define the concept within firm mathematical criteria. |

ave coime to believe that an empzncal definition_would be more beneficial at
thls nme because the bﬂrrﬁent definition denies the inclusion of some shapes that,
could best be described as fractals.

Mandelbrot believes that the definition of the Hausdorfl dimension is
too difficult to deal with and is perhapa too restrictive. He prefers to focus on the
behaworal aspects of the recurrence relatiouship involved in fractals and the
empirical results from these equations.

A practical application of {ractal functions in computer graphis
does, by necessity, bend to this same paradigm. This realization should not blind
us to the fundamental nature of a fractal equation's unigueness, however. It is
important to vnderstand the dimensional aspect of the fractal discourse to
appreciate the potential importance of fractals.

It is not preordained that fractal eguations model nature with a
greater degree of accuracy then does the Euclidean model. The future may prove
the fractal mnodel the superior method, however. The dimensional qualities of
fractal functions may be the aspect that proves this to be so.

22

4. Why Cc-sider Dimension

For the purpose of this study, it is not important that a rigorous feel for
the mathematical properties of dimension theory be grasped. In fact one needs no
knowledge of dimensior: to use fractal tech-~iques in the generation ot computer
graphics terrain. The literature is rife with articles about fractal objects in
computer graphics and it seems de rigue.r to include an approximate fractal

dimension as pert of its description. ‘The techniques used to approximate

dimension as presented in {Ref. 1:pp. 56-57] are mathematically unproven’. More
importantly, the dimension yields littl2 intuitive insight; one is hard pressed to
describe the differen.ces between an object with an approximate dimension of 2.37
and another with a dimension of 2.45. The pictures are much more descriptive.

One use of approximste fractal dimension is to describe an object’s
relative roughness. It is beneficial to view a fractal dimension as degrees of
roughness between the standard three dimensions. If the dimension is between 1
and 2 then the object should be & vary irregular curve. If the dimension of that
curve approaches 1 then the curve is probably not very rough and would lack any
interesting diversion from an crdinary plane curve. If the dimension of the curve
approaches 2 then the curve becomes like - plane or filled polygon and again
iacks appeal. The most interat’mg.fuctal curves are those which demonstrate
dimensions nearer the center of the scale between the standrrd Euclidean
dimensions. A siwzilar argument canp be made for soiid objects with dimensions
between 2 and 3.

This is not to say that fractal geometry is not a powerful too! for the
graphics programmer. The evidsuce of the power of fractals to model objects of
considerable complexity is clearly demonstrated. To date, this power has not
been matched by other standard methods.

The graphics programmer should not concern himself grently with the
dimension that is demonstrated at dilferent levels of object construction. He must
concern himself with the techuiques of coustruction and the realism that is

schieved.

7 Mandelbrot's method for estimating the Huwcdorff Briicoviteh dimension for noa.rasdom
sets buill through sell similar chapes will be introduced in section C after the Koch curve is
destribed.

— WY S W T RIS WA NN WA AUM BN L AN N LT T TN

C. FRACTAL CURVES AND SETS
1. Definition of Fractal Sets
We take our definition of fractal sets from [Ref 1:Chap 3 and pp. 361).

Definition:

é&x fudd ut. is a set dﬁ?{: &:"‘l‘i’:‘h the Heusdorff Besicowitch dimension strictly

As we have established and is emphasized by Mandelbrot, this definition
is not very useful. The definitions of topological and Hausdorff dimensions are
very involved. It is a gargantuan effort to prove that a set has a topological or
Hausdo:ff dimension (if one desires complete rigor, typically the topological
dimension is derived by the least parameter approach (section 2j). When using
fractal functions then, it is practical to essume that because the functional
method you use is fractal-like that the dimension is fractal.

3\:‘5 “The functional techniques to be introduced have a certain methodology
“‘ that creates fractal sets with a behavior that is disciplined and predictable. The
.:'.}?e assumption is, since these methodologies are well behaved, that any set created
. . by these methods (with some careful restrictions) will itself be a fractal set.
’% We are left with a practical methodology whereby we discover fractal
) functional methods, prove that the set created is fractal, characterize the fracial
' part of the functional method (carefully) and then ecnshnine that method as a
: fractal method. If one’s purpose is & practical application of fracta! techniques®
' and ot a rigorous mathematical investigation then this is a reasonable and
! practical approach. This approach is taken in the remainder of this study.
' __‘ 2. Constructing Fractal Sets
;i;i In order to describe the construction of the Koch cusve, it is necessary to
% oresent terminology introduced by Mandelbrot [Ref. 1:pp. 33-35].
" We use a geometsical shape (at first a straight line) and call this shape
s an INITIATOR. We create snother shape that is constructed with shapes
’232 simiiar to the initiator and call this a GENERATOR. We define a sequence of
:::‘ % A working model or equation where you ase oaly concerned aboul the behavior and sot the
_ exact mathematical propestins.
K}

o)
h

¥
o et

.Y' "

"
FI
v
B

e
-

7

.
A

)
X

-
L5

< p

*,

sl e,

. ,,«.":}"" U

b

A g Ty
Ag: 4
"k b
; a:"&ﬂ.ﬂ

transformations upon all current initiators (suppose there are m such initiators)
in the construction by applying the generator to all initiators. This creates a new
construction thut consists of m x r (where r is the number of distinct parts of the
generator) sides where each side is 2 shape that is similar to the initiator. The
next step is to again apply the generator to all initiators.

This recursive definition has no terminating event but is continued od
infinitum. This functional process is well suited for recursion because the
application of the generator to the initiator is constant with respect to method
and varies only to scale. It is also well suited for parallel processing (in the
computer science sensc) because each application of a generator on all current
initiators is independent.

These concepts are probably confusing at this point and were especially
difficult to visualize when they were first envisioned because the authors had few
tools beyond mental imagery to convey their point. Thir is probably why they
were largely ignored for 70 years. It is much easier to visualize these functions
when they are shown on a computer graphics display.

3. The Koch curve.

The mmathematicians Koch and Cantor developed functions which
attempted to challenge the mathematical models of continuity and
differentiability. These equations were developed during the great debate on set
theary and were used by Cantor in arguing for his theory. These functions were
like none before, using comstructions which played upon natural geometric
coustrucis but when combined with the power of infinite recursion becanue sets
which defied intuition. It was not until much later that mathematicians were able
to reconcile these functions with slgebra and set theory. The function to be
ntroduced has beea proven to have a Hausdorff-Besicowdich dimension which
exceeds its topological dimension’.

The Koch curve is a very beautiful curve that at first gives the observer
the impression of a snowflake or a coasiline (Fig 2.1). Mandeibrot uses this type

of construction (with variation - i.e. randomness or iess behaved generators) to

draw coastlines that look very realistic. To understand this construction is to

® Thus fractals do exist aad il is possible Lo rigorously prove it 1 be 50.

25

understand one method of obtaining a fractal set from a weii defined non-fractal
set (R?) using non-random techniques. This method of construction (in the
general sense) is very powerful and is used throughout this thesis.

To construct the Koch curve, we use three initiators (line segments) of

equal length and join them to form an equilateral triangle!®. To construct the

generator we use four line segments that are each %— the length of the initiators

and apply these to each initiator (Fig 2.1). This yields a new geometsic figure

j’,"?“‘:‘“;? =

with 12 sides versus the original 3 and a total perimeter length of 4 units of

"l L
e,

length versus the original 3 units.

Figure 2.1 demonstrates the first and second recursive iterations of.

)
iy
)

building the Koch curve. Observe how the progression develops to yield the final

figurc in Figure 2.1. Imagine this progression occurring indefinitely.

- With each iteration of applying the generators the total perimeter length

. 1 . .
increases by 3 over the previous perimeter.

- The length of the curve begins to increase without bound even though the
length of the initiator decrcases to an infinitely small length. Hence the
curve's length is unbounded with no point intersecting but yet is contained
in a small bounded two dimensional area.

- The points of the curve are by construction only the end-points of each
initiator and each point is clearly distinct from the other (no two points are
connected).

- Although each point is distinct at any one level of the curve construction, it
can be proven that the curve when viewed in the limit is continuous at every
point.

- That due to the above qualities the curve is not differentiable at ANY point.

It is important to realize that the endpoints of the lines (initiators) are the only
points of the curve. The line only serves as a vehicle by which the points may be
easily determined. The exact same set could be built using 180° arcs as initiators.

An algorithm and computer graphics program for the construction of the

Koch curve is presented in Chapter 4 and Appendix A.

19 The choice of an equilateral triangle was arbitrary. We could have chusen any shape as
long as it was made up of Initiators aud avoided intersecting lines during recursion.

(3
) 20
w‘
M ¢
’ \ -, - : - L PO Y LI IR PR Tl L““
. NPT 2440 R L G At L R R S A R L S A U A i SNSRI S >
B L A A A N R e R e o T I A S e A A e AT N SR N S A N }-H\

eINITIATOR

- o i i
APP.‘ I

~
E)
P

GENERATOR

~
o

2=

Initiating

-
)

a'éﬁ;-i“
-

-
<
)
"
e

A
A

o

Structure

23

=

g

&
x
]
o v
=i
Ko e o

P, oDt
s

o
AY

2nd Recursive

1st Recursive

Iteration Iteration

THE KOCH CURVE

Recursive term- Output medium:
ination distance Laser printer
is .05 inch. Resolution:

Op= 1,BB= 1'28J 300 dots/inch

0

Figure 2.1 The Kcch Curve.

s
- ¥
3

a7

S
0k o, dm

e e L e O R T T o T L N T T N D S S N SN T T T T S S Y
LR A L6 R gL w D S AP SO SR RNTE SRR gk D P Sl it B ST ATE T AT AT TR PRI R S S L R R
ARG R R LA T LR R R T R G SR l."'\3. RANAALSA Y A t_\:‘._,m"&‘.‘ AT A e ST R e

i

0 -
. ?}:5:5 4. Mandelbrot’s Dimension Approximation Function

gé}ig'ﬁ In the above section, one functional construction technique for building a
' fractal set has been introduced. It is possible to approximate the dimension of a
;igg fractal curve that is built using these constructs. In [Ref. 1:pp 56-57], Mandelbrot
:ig{:: introduces a function that is based on the similarity properties of the above
33:;3’: technique. This function has a real exponent D that is t»~ approximate
g\.':?é dimension of the fractal set!!,
) Consider a method of paving (covering?) a Euclidean shape. Divide a line

segment into N segments with each segment a part of the original segment such
that the sum of the lengths of the N segments equals the length of the original

segment. It follows then, that the sum of the ratios of the divided segments

Divided segment s

lengths to the original segment length |e.g. r, = — t
8 & & g g T Original segment us
equal 1.
N
Yor,=1
s=]

We know that the dimension of a line is equal to 1. If we raise each of the above
ratios to the power D (where D = 1) the equivalence still holds.

Let's allow the Koch function to assume a similar dimensional relationship but
treat I as a real valued unknown. Refer once again to Figure 2.1. Notice that

the length of the four line segments that make up the generator have a length

ratio of -;- to the initiator. Call this ratio v,,. Notice that the generator is made

up of four initiator shapes. Call this number N.

)15 (rm)n = 1

W&

" CAUTION: This technique does not mecessendy apply to other fractal functioual
methode.

28

,;5 0 3
bl

i
I N R R Y Y R T T, T T

......... .

O W T T A Al A A N AN LS S e e e i TR

Substituting and Solving for D:

D
Nx(rm) =1
lD
4xj—| =1
- 3

D= -:-:-E;; ~ 1.2618

Which is equal to the Hausdor{f-Besicovitch dimension of the Koch curve!2.

This is not a proof of a general equation for the fractal (Hausdorff)
dimension of a self similar fractal set but implies that a general dimension
generating function is possible:

G(D) =)15 (rm)n =1

m=1
Where N = number of aides of the generator.

Where Ry, = vatio of side m to the initiator.

Mandelbrot claims that experimental evidence suggests that this equation holds

whenever this functional method is used.
When each segment of the generator is a fixed ratio to the initiator (as is

the case with the Koch curve) then the solution to this equation is trivial:

D = !cs!N!

nos(;%_;-)

5. Functional Charecterization of the Koch Method
A complete and rigorous inductive definition of most fractal functions

can stretch the notational capabilities of the symbolic aspects of the inductive
and functional methods. It is thus generally impractical to use these methods

The Koch curve was proven to have a Hausdorff-Besicovitch dimension equal

-L:'; & 12618 and a topological dimension equal to 1, [Hausdorfl: Dintension und susseres Mass].

29

Ve AV SRR R SN AL A TS TN AV SR N TV T8, U 50 UL AL TRk Eal Bl Bob., ket e s SRR LT MBI L. Bo¥ T3 8. T3 Vs bate 1 RoRuort LN b Bt s TP S N 0 S A

e.cept in a verbose and non-rigorous manner. It can be insightful however, to
dissect the beast (once!) and hopefully gain further intuitive insight.

To simplify the process, we define a Koch half-line as in the above fractal
but with a single line segment as the Initiator (versus the equilaterai ::ianglel,
We consider the line interval of [(0,0),(1,0)] within the set R, This restricts the
fractal shaﬁe that is drawn to a partial functicn on: [0,1] X [0,1] - [0,1] X [0,1].

SHer - e e

Using the inductive process to define the essence of the fractal
a'%i\ sequencing, we have the following definition:
M (1
§§ (Basis)
Step 0
2, = {(0.0,0.0),(1.0,0.0)}
(Induction)
Step k

Label the ordered set of 2-tuple points from Step k-1 as:
M, = {Pk-l‘.Ph-—lz'Pk—la’m‘Pk—l‘ }

where
n =41 4

Determine the new set of ordered points for Step k as:
M = (PP PY,LPEL Y

where
m =4t +1

where

P
Pks - Pkulz
P g = P 3

Pkm = Pt“i.

.
o 2N I M RN - R PP R N S L I I R R et I e N SO S 4 T Bl I Tl il R T L L L AT W LR N LT L
CALA KT A RIE PR AT OIS AT E AT A CE Rl G LA R L IR S LA OPE) AL YR PR R P R e R S R A AL L X et

s ~ where
{gcgg
()]
. B (P*,,P* 4Pt) = P+, [1R'z pk-1,
it
. dlly - -
éﬁ‘i (P*g,P* 1Pty = PFY, [zRa]Pk '3
gag: "
e
. daild
) (P* 1o P* 1 P*) = PHY4 [3R4]P" '
,'1;,'5
~:0§g:! ’
A
i ~
Totly - -
Tfa"" (Pkm~3.P*m—2.Pkm—l) = Pt ln-—l [n—lRa]Pk la
: *ﬁ’ﬁ
1“ L1)
;;%}g:' and where the relation [,-_ ,R,-] is the geometrical relationship between the two
)
Ig:::@ end points of the initiator line segment from step k-1 and the five points of the
generator that compose the ordered subset for step k as above. For purposes of
I 3 brevity, the full functional definition for this geometrical relationship is explained

in detail in Chapter 4.

(Eztremal)
No point is an element of 1 unless it can be shown to be so in a finite

number of applications of clauses 1 and 2 above.

It is thus possible (but tedious) to rigorously characterize the Koch
fractal set within the well defined constructs of induction and the functional
technique.

6. Ancther Fractal Set, Cantor ‘s Dust

Cantor developed a function'® which used the same functional technique
as the Koch curve but with a reverse twist. Cantor’s function takes an initiator
(the unit interval [0,1]) and diseolues it into a discontinuous set which is as rich
in points as the interval (0,1] but contsins no interval itself [Ref. 6:pp. 22-23].
The points of the set ave all distinct but the set has the same cardinality as the
unit interval. The best description for this set is that it resembles a dust.

18 Also referred to as Cantor's discontinuum or Cantor’s triadic set.

31

X . . X i n .
R N R N A M RN N N R S AN R E AR T NS NI TR N T N AT IR I S £ Oy e e 45 AR AT RN R AP

~ Cantor’s Dust is difficult to demonstrate on a graphics display because it
quickly dissolves below the resolution of the display. Refer to Figure 2.2 to
visualize the initiator and the generator. The initiator is a line interval [a,b]

where 0 € @ < b €1 and the generator is ‘wo intesvals eacl % the léngth of

the initiator such that interval 1 is [a,a +{(b-a) x %]] and interval 2 is

[6- ((& -a) x %], b]. After the initial application of the generator to the unit

interval there will be two intervals in the current construction [0,%-] and [-;—,1].

The second iteration of the recursive routine will yield four intervals

2 l 2 7 8
_— -,1].
Every initiator that is created by the generator has an infinite sequence
that is begun at the next application of the generator. This csuses a series of

convergent sequences to each end point of each initiator. Thus each initiator

CANTOR’S DUST

JINITIATOR

» »)
GENERATU r 0 e ——
oSENERATOR, o Initiating Structure: | p. _ o
The Iaterval [0,1)
) = .6309
1st Iteration —_ —we—w Initiator Length :1;
s 2nd Iteration . w = Initiator Length %
g)
L 3rd Iteration -- -- Initiator Length 5
el
4th Iteration we w. Initiator Length Bll

Figure 2.2 Cantor’'s Dust.

WISy

32

s \\-* 5 ;y...’ - ’,;_ }‘-\i‘:.‘&_« wvﬁ. ‘V\,f\ ,!,B.‘ :(A ﬂx‘\ .‘_‘ ‘: .,h;ﬂ‘:" ,:th'z } \, }\ ,.i R ‘u,ﬁ;)(“h p- 3 .‘\“'v-‘.;\.’: "(r 3 “‘Q‘h p..’_.ﬂv

. | 3.

spawns a convergent sequence toward its endpoints. But for each initiator there
are also two spawned sequences toward the center. It is possible to imagine this
as an infinitely dividing organism which leaves behind four points (eggs) each
time it divides and then each egg itself replicates : - - ad infinitum.

This functional method of dissolving a line is very powerful as a tool in
computer graphics because it can be used to cause many special effects from
ordinary objects. Mandelbrot has used variations of this method to create images
of star systems for example.

The topological dimension of Cantor’s dust is 0 and by Mandelbrot’s
dimension generating function we have the fractal (Hausdorff) dimension equal
to:

N D
G(D)= ¥ r,,) -1
m=1
Where N = 2
1
Where R, = 3
Substituting and solving :
D
11
2 x (—3-] =1

log 2
log3

Cantor's dust was proven to have a Hausdorf-Besicovitch dimension of

lo8 2 ~ 6300 [Ref. 1:pp. 77-78].
log 3

7. A Note on the Concept of Similarity and Fractals Sets

The use of the mathematical concept of similarity continually shows up
in the investigation of fractal functions. This can be expected because of the type
of functional building tools that are used for most of these sets. The relationship
of the generator to the initiator has similarity built in. Thus Mandelbrot is able

i to use similarity properties in formulating a dimension generating function and in
making claims about the set's inherent structure.

S3

- u s e o e .~ ael g .- O T M S NG T R PN S T PR IR N | R T o
B R T A A R T T T L S T A Y D S S VTN DAL k. V6 7 ket GREA T E P IE W E VL RV N AL . &

The functional method invented by Koch and Cantor is but one method
of determining z fractal set. Similarity fractals may eventually be grouped into a
class of fractals (important but restricted). This type of functional method
provides a vehicle for the creation of disciplined fractal sets but makes you
wonder about the rest of the space that fills the gaps between the standard

Euclidean shapes!!, the self-similar fractals and the infinitude of RN,

¥ Much like the transcendental numbers (x and ¢ for example) in all their uncountably rich
expanse fill the gaps between the familiar (and well behaved) sets in R.

34

‘el oy " R Rt LT
2 ol o

.
Fatke Wy g

‘-’

3
o4

-
. ¥ o

.
ot

e
o

SN
AR

III. THE IMPLEMENTATION OF FRACTALS IN COMPUTER GRAPHICS

This chapter introduces the reader to the practical aspects of implementing
Fractals on a two dimensional computer graphics display. We are forced to
confront the issues of economy of scale between the infinite fractal function and
the finite computational environment of the computer. Understanding these
compromises is a necessary bridge to successful fractal programming.

A. THE IMPLEMENTATION PROBLEM

1. Infinite Recursion, Stacks and Data sets

It is naive to view the computer as a truly infinite abstract machine
which is capable of any binary computation of any length. Infinity is a concept
that when applied to physical objects quickly breaks down as soon as that object
is bounded in any way.

It is possible to model infinite behavior in computers though mathematics
(automata theory) and gain useful insight into possible capabilities of the
computer (the use of push down automata in compilers for instance). But in
order for automata theory to make assertions it is often necessary to make the
assumption that the automata (computer or an abstract machine) is in fact
infinite. When the assumption of infinity is made, there are many powerful
mathematical tools which can be brought to bear upon non-intuitive abstract
problems that would otherwise be functionally!® intractable if the automata was
considered to have an arbitrarily large but bounded space. The question arises,
can we consider the implementation of these constructs (insights) as valid? The
answer is yes, but only in the context of some bounded space (for instance, the
maximum stack spece for a push down compiler).

The question of how many valid programs can be recognized by such &
compiler is usually too difficult to determine. The compiler's solution to the
problem is to use a passive sensor to detect stack overflow and notify the user

® Fuactionally in the sense that the problem msy be decidable but the solution space is so
large and undefined that it could not be determined in & 7easonable amount of time.

35

e e

e
o g

2ok

N
B e e e
.. ¢ S e ek |

«

]
-

A\ ROZEE

Av-_,'
ey

5

.‘ o :.'.. - K 2
g R a s

that his problem is to large for the current stack space. Although the compiler is
theoretically a recognizer for an infinite set of programs, the finiteness of the
computer is the grounding factor.

A similar paradigm exists for implementing infinite functions like fractals
in computers. Fractal functions use recursion, randomness, massive floating point
computations and large amounts of primary memory. In order to use the fractal
function productively, we must manage the methods we use and produce a finite
approximation of the fractal set we create. This can be done by a passive or
active means.

2. The Bounded Stack Limits Recursion
The Koch-like fractal functional method is by definition a recurrence

equation. All fractal methods :=i;oduced in this thesis have a similar recurrence

definition. Thus it is impossible to avoid the use of recursion in the production of
fractal graphics’®.

Recursion on most Von Neuman type computers is implemented on the
system stack (which may be hardware (fixed) or software (in primary memory
and therefore expandable)). Such a stack is always bounded by a fixed upper
limit of allocatable memory space. The formal definition of the Koch-like fractal
method has no recursive terminating event. In order to use these methods, we
must determine the precision that we require and develop a termination event io
sigual the beginning of the recursive ascent when this precision is met.

Failure to manage the recursive descent inevitably causes the exhaustion

of the system stack which stores the program staie on each recursive call'’. The
programmer should be careful to keep his local varisbles at a minimum in the
recursive subroutine. By doing so, the total data stored during each recursive
call is reduced.

W Why should you try 7 The recursive part of fractals functions is the mathematically besu-
tiful aspect which makes them 3o eloquent and powerful.
" This could be the recursive termination event if you are not careful. It might be a good

idea to try this experimentally ca your computer to determine this maximum recursive descent
distance.

36

st
fap":
ST e

2%
T
===

-y
1o 1
4
A

-
2
o

4 o

= G I

I
po a2 iy
S AT

3. The Computer Graphics Szt Paradigm

The paradigm that is used for displaying cbjects on the raster graphics
screen is inherently discrete and two-dimensional. A typical system consisis of
primitives that allow the user a view of his modeling world as a largely
unrestricted three dimensional space. These primitives are limited in their power
and are usually bused on the Euclidean geometry (lines, points, polygons etc.).
The user is required to supply wewing parameters that define a limited three
dimensional viewing space. These commands are processed by the graphics
system which projuciz the objects contained in the viewing space onto a two-
dimensional space th:i is the display screen. The display screen can be divided
into discrete entities called pizels, each of which represents one point on the
screen. The number of pixels defines the resolution of the screen.

Given the graphics paradigm, it is natural to model objects that are
defined on the display as a collection of discrete points. When viewed on the
screen, these pictures can accurately model objects of considerable complexity
[Ref. 1). This view is a departure from the normal view of the graphics
application programmer. The application programmer views the objects he
creates through a collection of Euclidean geometric primitives (lines polygons
etc.) that are abstracted from the actual display'®. Both views are useful models
in describing objects but for the fractal graphics programmer the former is the
more powerful because it neatly maps to the fractal wmethod of object
construction.

For this study, we view the world and the objects it contains as
collections (sets) of discrete three dimensional points. When an object is built
through fractal techniques, the length of the pixel i# a natural termination point
for the fractal recursive process. This yields an attractive bijective mapping rom
our object to the display screen.

' All computer graphics i xo abalraction; reatism is achieved through deception of the eye
by a very small collection of colored points. Our goal then, is to find the most efficient meibod of
defining those points.

)

4. Summary
From our previous discussion, it should be obvious that fractal sets do

not exist in our computer. The sets that we create are finite approximations of
the actual set. The same is true of the fractal pictures that we create and to
which we ascribe fractal dimensions. It is an illusion of the eye that we create by
taking the fractal computations below the resolution of the screen.

B. MAPPING FRACTALS TO A BOUNDED SPACE

In view of the graphics set paradigm, it behooves us to develop a completely
bounded set space which has a one to one correspondence between the points
computed by the fractal equations and th= entities of the screen. This abstraction
is appropriate because these entities called pixels (which are nothing more than
colored points) are the only components of the picture!®. The only reason for not
using_this methodology before is that it was functionally difficult to compute
(without some simplifying abstractions) the large number of pixels in the display
sct,

1. Fracta] Recursive Termination Event

Most graphics software packeges provide & means by which the user can
define the space on the display screen onto which he wishes to map. This is done
by providing to the graphics system, viewing paramcters, which define a bounded
three dimensional space which is then projeeted onto the two ditmensional screen.

Many mappings are _poSsible within the above constructs but for he
fractal programmer it is convenient to establish a mapping that provides for a
one fo one (or bijective) relationship between the 3P pixel set and the real-valued
coordinate space in which we compute a fractal object. We develop this bijective
relationship by defining a fractal part 0 be determined when the distance
between generating points {in real coordinates) is less than the distance of one
pixel in the mapping of real to screen coordinates {SCR), Figure 3.1. This
mapping ts cxplicit when the window, viewpori and 2-clipping are defined. This
mapping limits the number of pixels that can be associated with a given fractal
iniliator to a onc to onc inapping of fractal parts to the pixel set. The size of the

'® Ia fact, this is the way the Euclidean graphics abairacts such a3 & lize are mapped to the
screen. Al some poiat ia the duplay process this mapping must take place.

38

L VY PR .2 S -
LA SR R PR B LW WY R YWY LW LS e e LR TS TS SN TS AL T TS AT I Tt Nt ST L M
x i i 3 o [t

. Bl Iy

pixel is a cubic space which clumps together the infinite fractal space into a
discrete number of cubic spaces equal to the number of pixels in the pixel set.
The fractai programmer should choose his viewport and window carefully
. so as to elici* the most attractive mapping possible between his object and the
screen. The viewport (SCR) rectangle should be defined such that the ratio of
the X distance (horizontal) to the Y distance (vertical) is equal to the ratio of the
X-Y distances of his (real-valued) window. The Z-distance (front and back
clipping plane distance) should be equal to the distance in the window
coordinates that defines the length of the pixel multiplied by the desired Z-depth,
Figure 3.2. Formally:

Xser Xuwp

Ysca Yuin

i Ab
The POINT PLOT Routine

Becursive Iteration i Becursive Iteration

>

%

The Joitiamtor Lengts Is Less The Piseie ¥ere Mepped To
Taea The PIXAL SIZE, 5o #dap

The Poiote To The Pixei Set.

Téeir Correspondiag Fowition

i
i
f
i
i
i
!
)
¢
!
{
|
|
|
t
1
!
i
) ia The Pixei Set.
3

Figure 3.1. The Fractal Recursive Tersination Event.

s

u
S

8
%3

39

6

i o

§

| 4
B

FANE* AT PN L RET RS QTS TSR e - YO O A S R R R B R R Rl R Rk J0N
e T T GRS AER *?"~-"‘-.‘\’;""‘~.‘]‘“-’;'vf’sz’.2f‘ YT PRI A

Graphics Display
Terminal

Y Dist.

IThe Pixel Setl
(Uacr Defined Viewport

SCR

Graphics Display Space

u,

‘\
“..~.

A

.,
N‘.‘

~§

User Detfined Window ‘\

as

In World Coord. System "\‘

The Cubic Pixel Space

Tho Pixel Sise Is Dafined By The Z Depth In Pixels Is Detioed By
Xwp Z-Depthw,p
PIXEL_SIZE = Z-Depthyp,, =
- X sca PIXEL SIZR
————— aalilhanne

Figure 3.2. Normalizing the Pixel Space.

‘-I

40

W i ey Wi F e W
Nepe \:"\s “‘“'» oY "-",‘u AN
Leld R

T} Ry

”

If the above relationship holds then the size of the pixel in world coordinates is
equal to the X (or Y) world distance divided by the number of pixels, Figure 3.2.

Xwip
SCR

PIX SIZE =

The front and back Z-clipping planes should be established such that the distance
from front to back is equal to the desired Z depth (expressed in pixels) multiplied
by the pixel size (in world coordinates), Figure 3.2.

If the above viewing relationships hold, then the inclusion of a simple
check:

IF (Initiator_Distance < PIX_SIZE) THEN
return;

ELSE
continue;

terminates the current recursive descent and begins backtracking.

2. Memory Requirements

The amount of main memory required by the fractal programmer is
directly proportional to the size of the pixel space that is being used to display a
fractal figure and the sophisiication of the desired display.

a. Data Locality During Recursive Descent |

If the fractal in question is a 1-2 dimensional display that is
displayed as a collection of points on a two dimensional plane then the
requirement to store the 3-tuple points is eliminated {{z v ,2) coordinates which
represent a point in R3). The points can be computed by the function and
displayed on the screen in the immediate mode and then destroyed. The only
requirement for memory is the data that is germane to the program (“globals"
and thus fixed at run time) and the amount of data pushed onto the run-time
stack for the recursive calls up to the poiut of the deepcst recursive level. This
requirement is minimal and does not present any significant limitations.

An example cf such a fractal is the Koch curve The algorithm
presented in chapter 4 uses the Jata that is local to the subroutine that is
computing the current generator with the input coordinates of the initiator. The

41

e L

AR R A
PR
R X

Blsss

inductive nature of the fractal method provides data independence so that the

e

o)

o2

X,

programmer does not have to have available to his subroutine all points

e

¥

computed thus far.
b. Memory Requirements for the Fractal Set Paradigm

If the programmer requires a more sophisticated display that includes
a requirement for hidden surface removal and (or) lighting enhancement then the
fractal method becomes just & part of the overall display process. The
programmer has the fractal process compute the points of the picture and these
points are stored in a memory structure. This structure is processed by a hidden
surface algorithm and a lighting algorithm and is then projected onto the screen.

The ideal Fractal computer would have an exhaustive memory and
unlimited ~omputing power to be able to allow us to store the entire pixel set in
memory. This however, can stretch the capabilities of most present day
computers. For example; if the pixel set is defined such that its dimensions are

1000x 1000x1000 (which is certainly reasonable), the amount of storage required
would be an array of 10° x 24 bits?® or 24 billion bits.

Current techniques exist where this storage can be minimized. A 2Z-
buffer array can be used to store the current Z coordinate of the forward most
displayed pixel. By using this method the fractal computation can be made and
then a hidden surface computation can be immediately invoked to check the
visshility of the point by checking it against any other point in the same position
on the X-Y plane. This technique reduces the above space requirements to
10% x 24 bits + (Z-buffer = 10% x 32 bits)?! or 56 million bits.

A fractal programmer must manage his memory resources carefully
in order to maximize the computational resources available to him. This usually
requires a tradeoff between efficiency, realism and the memory space utilized.
The algorithms for hidden surface and lighting are well covered in the literature
and although they are integral aspects of the fractal realism issue they are not

germune to this study. Throughout the remainder of this study, we are not

% 24 bits for & machine assuming the RGB color system with 24 bit planes. Each color; red,
greea and blue would then have & bits of precuion.

¥ Assuming the Z cocrdinate is stored as a 32 bit floatina point number; this number can be
further reduced if we restrict the Z precision.

T RO R L T R e L T et AT ST T AT AR Bl E R e Ty A A P L P O LI LH LRI
NI A S T G o (i B N N A A U A)

L% Py B RN 2N

concerned with the methods of minimizing the the pixel set. We assume that we

have the fuil three dimensional zet.

3. Concurrency
A question arises, is it possible to generate fractals in Real Time 22?7 We
have enough knowledge at this juncture to discuss the possibility for concurrent
operations during the fractal recursive descent. There are two basic strategies
that can used if concurrent operations are available on the computer. We could
assign a process to each of the initial Initiators and process each to its desired
precision. We could also allow the imagined processor to have a means by which

at any level of the recursive descent, we could spawn a process to apply the

generator to the local initiator?”,

The local data independence of the fractal recursive function allows such
a spawning because the application cf the generator to an initiator is local to the
initiator. This application is a result of the inductive process of the K-1 steps
that led up to the K'® step. The mathematical process of applying the generator
at the K*? level needs only the initiator data from the K-1% step and requires no
knowledge of the entire fractal set. The power of induction is then
computationally realized. The number of calculations before the entire pixel set is
determined is not greater than the number of computations required to apply a
generator times the maximum recursive descent distance from any initiator to the
recursive termination event. A short algorithm describing the processing aspects

of the second method is shown in Figure 3.3.

33 To beat the human eye and achieve the ultimate graphics illusion, typically by completing
oll computations and screen 1/O prior to the -a-lb-aec. refresh rate (for a 30HZ display) of most
raster graphica displays.

3 This of course would require an enormous computational power that does not currently ex-
ist, 8o in reality the spawning would have to be bounded in some way.

43

%, - .
g

D TR AT

main()
LOAD INITIATOR AND GENERATOR DATA

concurrent,
generate(INITIATOR 1);
generate(INITIATOR 2);
generate(INITIATOR 3);

generate(INITIATOR n);
end concurrent;
end main;

generate(INITIATOR I)
BUILD GENERATOR FROM INITIATOR

if (Distance < PIX size) then
PLOT POINT

return;
endif

concurrent;
generate(INITIATOR 1);
generate(INITIATOR 2);
generate(INITIATOR 3);

generate(INITIATOR m);
end concurrent;
end geuerate;

P
L
-

Bl

-t

et ! uni™ g 2 ‘e
oA

ddaS T S ity

Figure 3.3. An Algorithm Which Utilizes Concurrent (perations.

44

B T R A LA LT A AT 4 e T et T

. IV. FRACTAL COMPUTATION IN R?

The algorithm introduced in the following section is capable of computing a
very broad class of Koch-like fractal curves within RZ It provides the fractal
graphics programmer with the basic tools for fractal computation and an
algorithmic template that can be used for many applications. The graphics
programmer needs to fully understand fractal programming within R? before he

attempts the more complicated concepts of fractal terrain modeling in R3,

A. THE GEOMETRY OF INITIATOR —» GENERATOR

The geometric relationship between the Koch curve initiator and generator
can be described through a very simple set of data that captures the essence of
the Koch curve. The method intreduced also allows us to vary the data which

defines the generator and compute many different fractal shapes®*.

The general strategy for computing generator points from a set of initiator
points is to determine two lines that intersect at an unknown generator point,
Figure 4.1.a. The unknown generator point is defined by constant relationships
between the initiator and generator. The first line is the perpendicular from the
generator point to the initiator line. The second line is forined between the first
point of the initiator and the unknown generator point. All data to compute the
line equations are derivable from the two endpoints of the initiator or from
constant initiator/generator ratios. For simplicity’s sake, we ignore the divide-by-
zero problems that are encountered when any of the lines are parallel to the X or
Y axis. These situations only simplify the computations and their solution is
demonstrated in Appendix A. |

If we label the endpoints of the initiator as P,=(X,,Y,) and P,=(X,,Y,)
(Figure 4.1.a) then the slope of the initiator line is:

Y~ Y,
X2- X,

Slope.init =

3 We must be careful in our terminology because the relationship described can draw shapes
that do not evoid sell intersection and thus must be considered quasi-fractal.

45
B A B A O 0 0 S e 0 00 WA

The slope of the perpendicular intercept line is the negative inverse of the

slope of the initiator, hence the slope of this lin= is:

sl S
ope-perp = S'ope.init

The intercept point on the initiator can be determined by using a constant

distance ratio as shown by the following equations:

X, + (Generator.ratis.constant x X,)

X.perp = -
perp 1 4+ Geanerator.ratto.constant

Y, + (Generator.ratio.constant x Y,)

Y.perp = -
perp 1 + Generator.ratso.constant

The value of * Generator.ratio.cons:ant” is a fixed constant (although it might be

interesting to randomize it) where you determine at what point the generator

-
2

intercept point intersects the initiator and express it as demonstrated in Figure

2

4.1.b. This ratio can be determined graphically, through hand calculation or via

S

- vy,

an interactive automated means.
With the slope and a point of the line (X.perp,Y.perp) we can determine the

line equation for the perpendicular line by determining the Y intercept:

Y.intercept.perp = Y.perp - (Slope.perp x X.perp)

i

o - PR
.-@Egag:
” -

O

L

This yields the line equation for the perpendicular line:

o
ey
— -

Y = (Slope.perp x X) + Y.intercept.perp

R

L8 To dete:. .inse the generator line equation for the line segment which connects
o

% , the first point of the initiator and the unknown generator point, we need
,; coastant information about the angle between the initiator and this line. This
"

- -
"

angle is always constant with respect to the initistor and like the ratio

1

information above, it is recorded as a constant at run time (see Figure 4.1.),

note that the angle may be positive or negative.

o
A

™
o

PR

s
5,

7]
3 f"a

;,ﬁ
,ﬂ
L%
]

SR e N Gty

]
i .
} -

-
|

» Y " Unknown
(Xgan » 539) Generator Point
Generator Line—~@n--

(X, :’}:,).L ; ‘ *X.,Y)
Pl | Initiator
Lo |
g X Y |
o (”"”' pars) i‘-—l’erpendicula.r Intercept

Fig 4.1.a Intersecting Lines Determine a Generator Point.

? Gunk
l
[}
i
}

Generator Intercept Point

Initigtor ,
\ —/
.- : e

F Gi Py
|1' dist. a | (dist. b |
_
Bati tant PIG‘, 2
o-consvan = = —
G; Py b

Fig 4.1.b. The Generator Ratio Constant

Point with positive angle Point with negative angle

’

Figure 4.1 Building the Generator with Intersecting Lines.

47

A A R E Ay €4 X T e A TN

§ “wd
T

P P
2y

o e

We record the data about the angle 6 as the tangent of the angle. With this
information, the slope of the generator line can be determined with the following
equation:

M ‘-_p“;'-d"nt"—-_
s ggs.eﬁm

o Tan@ + Slope.init
X \" Slope.gen =
(1 - Tan6) x Slope.init

R The Y intercept for the generator line can now be determined:

Y.intercept.gen = Y, — (Slope.gen x X;)

o This yields the line equation for the generator line:

| Z’r.':;{-; Y = (Slope.gen x X) + Y.intercept.gen

_ ;“sg The Cartesian points of the unknown generator point can now be determined
3 by intersecting the two line equations and solving for X, (Figure 4.1.a) then

\-i‘." substituting X,,, into one of the line equations and solving for Y,,,. The
equations follow:

Y.intercept.gen
Slope.gen — Slope.perp

Xgen = Y.intercept.perp —

R
J
_ a-‘., Y;en = (Slope.gen x X,;) + Y.intercept.gen
1
;%:% The constant data for the Koch curve that corresponds to this geometric
.m‘ method is illustrated in Figure 4.2.
RO
;‘ There are many different ways to build a generator given an initiator using
"' standard geometric constructs but the method introduced allows experimentation
e
- i‘z"g with the Koch function to discover new shapes. By varying the tangent of and
' the fixed ratio of Figure 4.1 we can describe new generator constructions. These
‘3::: new constructions can be used in the same algorithms that compute the Koch
E‘.\‘-Q : curve. We injtiate the recursion on a generating structure built of line segment
initiators and allow the recursion to progress until a terminating event?®, creating
:: many diverse shapes. Figures 4.6 through 4.9 demonstrate some of these shapes.
1l
~ X
‘:X‘
Ny

% The length of a pixel or an arbitrary line length.

48

R A N T T L TN T A I T 5 N2 T P 8P TS AN RN T P " r v S S e s e s sy AR
SIRLIGRY ORE S B o L e A A R s

The Koch A Generator

Point 1 Point 2 Point 8 .

i e 4 i

| PR | [l

t . :]

1 \’ ! i
o“? - - i -9 o —*— -
S r, r 1Gg r, P 8 P,
Ratio = 0.8 Ratio = 1,0 Ratio = 3.0
6= 0.0 6a 0.4718 reds. 0= 0.0

Figure 4.2 Ratio Constants for the Koch Curve Generator.

B. THE MID-POINT DISPLACEMENT TECHNIQUE

Mandelbrot [Ref. 1:pp. 43 and pp. 233-234] uses an alternate technique to
draw the Koch-like curves that is equally valid. He calls his technique mid-point
displacement because he determines the generator via fixed relationships that
displace a point from the mid-point of the initiator. This method uses many of
the same geometric relationships that are used above but provides a different
progression to the method of building the generator. This new view allows us to
look at the relationship between the initiator and generator in a slightly different
light. By so doing we are provided new insight as to how we might alter the
relationship to create new images and sets.

The mid-point displacement technique can be useful for two other reasons. It
is the best known method for fractal set building and because of this, it facilitates

communication between fractal programmers. Most of the terrain models that

L

P

'3y
R D

%
e

have been developed use the mid-point technique. It also provides an easier

method to avoid line intersection.

40

a\,&. AT F UMY R P L B L.

N T U TR o A A AT Do Do L e K A I T AT e e
h SO Dty A B e i L AR N s s e s e b g

The Midpoint Displacement

Technique |
7N
/’ é \\ :
q/ Lo \)0 e e e e e e

Figure 4.3.a First Midpoint Displacement .

5/4\ ' </

Figure 4.3.b Second Midpoint Displacement.

THE KOCH GENERATOR
y
A : \\\

Figure 4.3.c Third Midpoint Displacement.

Figure 4.3. The Koch Generator Using Midpoint Displacement.

The mid-point displacement method is demonstrated in Figure 4.3. The
method progresses by taking the initial initiator and applying the first midpoint
‘displacement. This yields the figure demonstrated in Figure 4.3.a. The next step
performs a mid-point displacement on the left initiator created by step 1. This
yields the figure demonstrated in Figure 4.3.b. The third and final step is to

replace the right initiator created by step 1 as demonstrated in Figure 4.3.c.
a0

E—

Ao R M N AN RN LR P * R R Lt O L BT A gt DO Rt LT E N R o et SA R E WP L TR CRA Kt N R AT Syt BCIL Sl At ht By
B o I T L R N e s A i A S L s s

A h

The inversion of the direction of the mid-point application (in Figure 4.3.a
the displacement is above the initial initiator where in Figure 4.3.b it is below)
can be accomplished with a single computational procedure. We only need to
invert the position of point 1 and point 2 in the parameters of that procedure.
The parameter inversion changes the orientation of the initiator in space with
respect to the computation cf the midpoint displacement. The procedure blindly
computes the :rid-point displacement relative to a fixed relationship to the
initistor input points. This operation implicitly defiaes the orientation of the
generator in space.

The geometry for computing the midpoint given two initiator points can be
computed in precisely the same manner as the intersecting line algorithm (The
Koch midpoint ratios are 1.0 and the angle 6 is .437 radians). An alternative
method is to use the equations of a line (or 2 plane) normal. The second method
(utilizing the normal) provides a geometric relationship which is intuitively
appealing. Its appeal comes from the desire to modify the length of the
displacement relative to the initiator with a random scaling factor.

The mid-point displacement technique has some advantages over-the line
intersection algorithm. Random modification of the leagth of the displacement
along the normal (from the computed generator point to the initiator using the
line intersection algorithm) is not intuitively appealing. It requires a translation
of the desired displacement into an angle (the angle § (Figure d.1.c) between the
initiator line and the unknown generator intercept line). The control of that
angle is less intuitive than the control of a displacement length. The geometry
for mid-point displacement using the initiator normal is introduced in Chapter 5.

C. A KOCH-LIKE FRACTAL ALGORITHM

Implepsenting the above fuaction is a relatively casy process that i
demonstrated in this section and Appendix A via a gradual unwrapging of the
layers of complexity that are required to successfully implement the algorithm.
The algorithm roughly follows the template used in Chapter 3 to demonstrate
concurrent processing. A C-like language is used for the algorithms.

The first algorithm (Figure 4.4) is a template that delineates the basic
processing steps. This recursive process is typical of fractal functions and can be

OO LT AN LA LT N AW R e o\"b.-’._\“\'g’-;v*o§-;q }‘ o q -~ \ ,.U ‘\~-\.'b o\\\\“u‘ ‘!‘&“'\"
o ‘k";;k,}rl"\‘f\-‘%i) NG »_gﬂ-} ..';\“!s‘wl' "~“ﬁ‘\—f‘,—, i SRR ER L Oy \"‘ «’; ’i\"c" AT OIR L GRS S‘} ey 2 Sln

used as a template for many fractal programs. The second algorithm (Figure 4.5)
is an expansion of the first and demonstrates the replacement of a given initiator
using the line intersection method.

Appendix A is a complete Fractal program. This program was used to
produce the data for Figure 2.1 and Figures 4.6 through 4.9. This program
demonstrates the precautions that must be taken to avoid divide-by-zero when
lines are parallel to the X or Y axis.

main()

t

Load Initiator Coordinates;
Load Generator Relationship Values;

for 1=1; I<= Number of Initiators; I=1+1;
{ generate(X(1);,Y(I);.X(1)2.Y (1))
}
gznerate(X..Y‘,Xz.Y,)

Datermine Distance Between the Endpoints of the Initiator
if (DIST < Pixellength) return;

Replace Initiator with the Computed Generator;
Load the New Initiator Data into Local Generator Array

for J=1; J<= Number of Generator Segments; J=J+1;
generate(Xgen(d),, Ygea(J),, Xgen(3),, Ygen(d),):

}
}

Figure 4.4. High-level View of the Koch Algorithm.

main()

{

Load Initiator Coordinates;
Load Generator Relationship Values;

for I=1; I<= Number of Initiators; I=1+1;
{)
generate(X(I),,Y(1),,X (1), ¥ (1))
}

gﬁnerate(x,,Y,,X;.Yz)
1

|* Determine Distance Between the Endpoints of the Initiator *f
DIST = sqrt((X;-X,)**2 + (Y,-Y,)**2);

|* If Distance is less than Pizedd Length; Plot and Returm *f
if (DIST < Pixel.length)

By

Wty

"‘%

plot.point(); /' Your Grophicse Point Ploiting Routine */
return; It Point 1 and 2 plog the same pizsl *f

e

}

[* Load The Endpeints of the Imitiator into the Generalor Array */
Generator . X[0} = X,:
Generator.Y{0] = Yy;
Geunerator.X|[Number.of generator.points + 1] = Xy;
Generator. Y|Number.of generator.points + 1} = ¥y

%

(3
!

BT

2+

o

[* Determine Slope of the Initiator *f
S!Op@.iﬂi‘ = (‘,2"“\’1) / (xz—*x‘);

-conlinued-

Figure 4.5. Detailed View of the Koch Algorithm.

SS

e At MY, A - R
TR AR ,‘}!"-- % “‘oJ‘i ,%ﬁ“‘.;;fg .ﬂ-_"‘ov,‘}.‘f STt AT

R R N ot N N N e S A

> - 2 ! o By - r R ey - > . B N

-*

B
byon
TR X -
~ ;
P

", :
o
olte

s
o " e

.
s it sob BT e o
5]

.
5 .

x4
e

-
LA

ar’i

- O
Y

/* Calculate the Unknown Generator Point via Intersecting Lines */
for J=1; J<= Number.of.generator.points; J=J+1;

{

[* Determine the Generator Point Intercept on the Initiator */
X.perp = (X;+(Generator.ratio.constant [J] * X,)) /
(1+ Generator.ratio.constant [1]);
Y.perp = (Y,;+(Generator.ratic.constant (I} * Y,)) /
(14 Genzrator.ratio.constant [J]);

[* Determine the Slope of the Perpendicular Line */
Slope.perp = (-1 / Slope.init);

/* Determine the Y -intercspt of the Perpendicular Line */
Y.intercept.perp = Y.perp - (Slope.perp * X.perp);

/* Determine the Slope of the Generator Line */
Slope.gen = Gencrator.tan.theda |J] + Slope.init) /
(1-Generator.tan.theda [J] * Slope.init);

/* Determine the Y —intercept of the Generator Line */
Y.intercept.gen = Y, - (Slope.gen * X,j;

[* Determine the Unknown Gencrator Point */
Generator.X[J] = (Y.intercept.perp - Y.intercept.gen) /

(Slope.gen - Slope.perp);
Generator.Y[J] = Slope.gen * Generator X[J] + Y.intercept.gen;

}

for K=0; K<= Number.of.generator,points + 1; K=K+1;

generate(Generator. X[K],Generator. Y(K],
Generator. X[K+1],Generator. Y[K+1]);

}
} /¥ End Generate */

Figure 4.5. Detailed View of the Koch Algorithm (continued).

IR ANECEERTR R W Rv

~

54

- W \‘ » -, a‘ I W ;"\- ‘w ‘-_‘ \“s.' .‘;.-..h ..;, ‘\’-‘ ’-‘,._'\ - e - .‘a SR - K ...~ » c*
(] CRAER L Yl BRI TN K BN ERA AR AR A -
“&m& Y AN SRR T S R

P ‘tu
s !5'.'
?

K\
43
Patd

D. IMPLEMENTATION STRATEGIES

There are numerous ways to display the fractal shapes that the above
algorithm is capable of computing. The graphics primitives required are limited
to the standard initiation and termination commands coupled with the ability to
plot a point (or alternatively a line). Any raster graphics system, plotter or
similar technology suffices.

The algorithm can be extended to include:

- Online generator drawing to compose a generator relationship visually.
- Rotation in 3 dimensions (if your system has this capability).

- Variation of the inductive application of the generator by the inclusion of
randomness with respect to the generator constants.

Figures 4.6 through 4.9 represent a few of the shapes that this algorithm can
compute. Each figure has the generator data used to compute the shape and a

progression that shows the first two recursive iterations.

E. SUMMARY

The line intersection algorithm as it stands is not very useful for the
production of graphics images of realistically textured terrain. Its importance
results from its encapsulation of the essence of the non-random inductive fractal
methed. This algorithm demonstrates the idea and intent of fractal functions and
their implementation within computer graphics. ‘The potential fractal
programmer must throughly understand the salient parts of this chapter before
successfully altempting fractal images in three diraensions (i.e. before climbing the
mountain Chapter 5).

o,

8 g Y AR Y
ot

A Cloud-like Shape

Initiating Structure:

1st Iteration

GENERATOR DATA
Number of pointe

Pointl:
Angle = 0.4852 rads.

Ratio = 1.4232 Zad Iteration

S Recurasive

Terzination
At 0.01 jnch

Figure 4.6. A Cloud-like Shape.

508

5

»

AL R TRLE RN TR LS . A T L T A A AL AL S S PR R A LRSI
NP RAE N O R N N O NI N A e

N N

i Gmwn

N

[ra——

GENERATOR DATA
Number of points = 3

Pointl:
Angle = 0.0000 rads
Ratio = 1.0000
Point2d:
Angle = 0.7854 rads
Ratio = 1.0000
Point3:
Angle = 0.4636 rads
Ratio =

Boxes Ad Infinitum

Iaitf.tin‘ Structure:
Equilateral Triangle

lst Iteration

......

Figure 4.7. Boxes Ad Infinitum.

AP
.y
e

An Exaggerated Koch Curve

Initiating Structure:
Equilnthl Triangle

GENERATOR

1ot Iteration

GENERATOR DATA

Number of points = 3

Pointl:
Apgle = 0.0000 rads
Ratio = 0.68067
Pointd:
Angle = 0.7854 rade 2nd Iteratioa
Ratio 1.0000
Point3:

0.0000 rads
1.8000

Recuraive

Termainatioa

Figure 4.8. An Exaggerated Koch Curve.

s
p

E hl
1.'

) t
s

!

.

%

.

j RPN c’,_‘i“(;:\s*'g"o't\"d‘u‘!\m‘ﬁ-'.\~t_._‘..\‘x-.;*~“.\1oi:x1w\-«;~$>
G AR R I R TP NIS IV 1y 2N
s 3}9 Wi ?_‘_.h‘;i‘ag,-\{q,t‘.% O RE > 1‘13?‘:*.-75*5-,? e

W WL e . e omy

N =,) ‘»‘ ‘. .‘b #.).'

L O
".f ' &

T R
" g RNy

A Plane Filling Curve

This plane filling curve requires
a slight modification to the dir-
ection of the generator applica-
tion., This reversal is explained
on the next page.

4
INIT. GENERATOR

GENERATOR DATA

Number of points = 6

Pointl:

Angle = 1.0535 rads
Ratio = 0.3000
Pointd:

Apgle = 1.0535 rads
Ratio = 0.5000

Pointd:

Angle

Ratio = 2.0000
Pointd:

Angle = 0.33280 rads

Ratio 4.0060C
Points:

Angle = 0.0000 rads

Ratio 0.8000

Point:
Angle = 0.0000 rads

Ratio = 2.0000

~aontinuved-

Figure 4.3. A Plane Filling Curve.

69

R e TR
A '1‘ K

5 s‘k \Fq“- N N -...t.. ‘v.\h‘%.w_n -
S A I s e N e

s

“N’%'(' -\‘).8:‘»*. PRy *n,»

#'

l

o

sy

’-"_‘
T

B

A
X

L.

Orientation
of poiats After Second Iteration
P18 p3
Angles = neg
Orientation Orientation
of points of points
P18 py p1 = p3
Angles = pos Angles = neg

Recursive Termination
At 0.08 inch.

Figure 4.9. A Plane Filling Curve (continued).

60

coE % e - o
Sl O T GRS
3 “ﬂ. “i Y '\‘\\"w K

V. FRACTAL GEOMETRY FOR GRAPHICS TERRAIN

One of the most widely recognized fractal images found in the literature is of
the mountain scene. This type of terrain modeling is perfectly attuned to the
fractal technique. The reason for this is that mountains are highly irregular
shapes, with a rough but consistent texture when viewed from a distant vantage
point. It is appropriate then, to introduce graphics terrain simulation techniques
through this model.

This chapter describes the theory and techniques of simulating mountainous
terrain with computer graphics. It provides the blueprint for fractal graphics
programming within R3 by providing general tools and a methodology that is

easily adapted to many other modeling needs.

A. MODELING MOUNTAINOUS TERRAIN

For the programmer who fully understands the essence of the methed of
fractal programming introduced in Chapter 4, the movement into programming
in R® is not difficult. The primary differences lie in the quantum jump in
computing resources that are required and the requirement to perform the
generaior geometry in R3 versus R%. The theory and technique of fractals does
not change substantially.

Chapter 3 provided a rough framework to begin the coalescence of fractal
programming into a workable technique. We need to develop a number of tools
from: that chapter and use standard computer graphics techniques to manage
those tools. To this framework, we add new fractal functions which provide the
texture of realism for our simulated mountain.

1. The Artist's Model

One way for an artist to build a physical relief model of a mountain is to

use a framework to provide structure to the inodel and a texturizing elay to
provide realism. The artist might use chicken wire on top of small boxes as the
frame with modeling clay as the texturizing element. His choice of clay is

predicated by the type of look that he wants to achieve. The chicken wire

61

o N RN

SRan R n e R R T T T L

T R ey
et TR L Rt

G P

o Attt
. ,h‘.?-_‘ > e

ity

TN e

-
L]

SRR,

T

T
R

25

5

e

o s

o
LR
."‘"-’ h

Yk
g
e 2%

.
I.'!,

3
(

provides an inexpensive and disguised method to quickly build the mountainous
shape and structure. This method minimizes the cost and time to build up the
clay.

The artist continues the modeling process after the development of the
basic mountain shape to achieve hues and contrast in the coloration. He might
achieve this by the use of natural lighting to cast shadows or by a careful
painting of prominent features.

2. The Fractal Programmer’s Model

There is very little in science that is truly new or innovative. We borrow
the essence of the above idea to guide us in developing a model for the discrete
computation of our two dimensional picture of the mountain. This section
describes the process intuitively and leaves the implementation details to later
sections.

a. The Lattice Control Structure

The pixel space that we developed in previous chapters can be
divided into discrete cubic units by use of a concept from mathematics called a
lattiee (in our case we can view it as three dimensional graph paper). This lattice
serves as our controlling structure, the equivalent of the chicken wire structure
above. It is beneficial to build the lattice as a structure with well-formed
relationships, where the number of lines evenly divides the boundaries of the pixel
space and each line is a constant distance from its neighbors. By this method, we
do not have to store the lattice but can express it as a mathematical function of
the pixel space.

The lattice can be very useful in developing a rough approximation
of the mountain that we wish to model. This can be done in many different ways
but should resuit in a stiek frame model of the mountain (a connected polygon
mesh like that of Figure 5.1).

The frame can be developed through an online graphics interface
that allows the programmer to select a ground level plane of the lattice and
provide a means to visually select points for the rough outline (essentially draw

the framework). This approach is useful when a particular shape is desired.

02

P TP U U T I SR SR S N R T I S G WP N I RS PR P DL TN
ol "-';r‘-' & . “‘:\"»‘o e \\“g LA “‘} *-'*;-'v"<‘4,-'*’a‘_"‘ & ’L,‘_-'."- t*', !,"., Ly ('{' -“(‘:,1 S J"f'.““::i’ ‘\ S ,)\"
P . 3 3 TS S e 5 g &3 e S X s s e, AR LT INT % N,

& \J
23
,g: A frame can also be developed using fractal functions to pervert the
!
‘E‘s: lattice into a controlled random shape from a given plane of the lattice. This is a

powerful method that can be controlled via bounds on the random tools,

q;n‘: . heuristics or discrete functional bounding of the fractal function. This approach is
‘gf most useful when a class of mountain shapes are required but no particular
i’s,.é: " mountain needs to be modeled, i.e. when random landscapes suffice.
;z',; Alternatively, the stick frame of the mountain can be determined via manual
3{2:2 (hand computation) means. This approach is tedious and limited in its flexibility,
:;;,5 and is not recommended.

b. Surface Texture via Fractal Functions
:.i‘,;‘ The next step in the creation of a mountain is to provide the
::ﬁt, graphics elay to cover our stick frame model. This clay is a fractal function which
closes the polygons of the frame model with an inductive process that provides a

continuous pixel surface for the entire structure of the mountain.

: 'i' The initiator /generator paradigm is used. The initial set of initiators
‘ is the frame described above and the generator is a similar geometrical shape that
“i reduces in size continually until it becomes the size of a pixel and is mapped.

_,n,\, After the stick frame of the mountain is developed, this texturizing of
§l‘:"‘ the surface becomes an automatic process that terminates when each geometrical

23::: shape that makes up the framework is reduced to a continuous set of pixels in the
). pixel set. At this point, the mountain exists in the pixel set (snemory) but must
i'. be provided color and light to dring it to life.
’)\\E ¢. Hidden Surface Elirination
“T? The pixel set has the entire structure of the mountain in memory,
, but we can project only a two dimensional image of one plane onto the screen.
>, The fractal function which texturizes the surface does not concern itself with
’$j local computations so many overlapping pixels sre mapped to the pixel set.
2 There are two reasons then, why we need hidden surface removal (in this case
better referred to as hidden pixel elimmination). First we have to eliminate the
back or hidden sides of the mountain by projecting only those pixels which are
} visible along the axis of sight to the perpendicular planar surface of the display
o screen. The second kind of hidden pixel removal is caused by mapped pixels
e
N
i »

N
h\ N eV, S LIRSS Lt Pt - e Tt T R T3 Re” N LK ST SR R I Lt NS SaE il Tt NP W A oA R TN K Sy Tai T
. _7-, &‘M’Fﬂ:’ ; m“";"\."g‘?h{{ﬁf‘s:ﬁ" ...‘. \ {., qis; ‘ Y ‘f’”g-’:?i“"\-' 3‘.’1-'1'.\.'«2“’(}‘ CRLALSY Tk AT e Wl

Yy OV a3

which were covered up by other recursive fractal descents either before or after
the pixel was mapped.

The removal of hidden pixels is greatly facilitated by the use of the
concept of the pixel set. In standard computer graphics hidden surface
elimination, the programmer is confronted with graphics primitives which are
Junctionally continuous Euclidean shapes. To effectively remove the hidden parts
of these shapes is in general very tedious and mathematically complicated. Since

the graphics programmer is shielded from the primitive —» pixel mapping, he is

functionally denied access past the simplifying abstraction?® of graphics Euclidean
primitives. The fractal programmer must have access to this level of the graphics
mapping and thus can use simple techniques to determine if a pixel is hiddea or
visible.

The simplest and most economical means available to provide hidden
pixel elimination is through the use of Z-buffer algorithms. With this method, the
determination of whether a pixel is hidden can be appended to the pixel set
mapping process. The Z coordinate of a pixel that is to be mapped is checked
against the Z coordinate of the pixel currently in the pixel set at the same row
and column of the three dimensional array used to store the pixel set. If the pixel
is closer to the planar surface of the display screen, then the Z coordinate is
changed to reflect the position of the newly mapped pixel.

The Z-buffer approach, while powerful, does limit the fractal
programmer's flexibility. The axis of sight toward the wountain must be
determined prior to the fractal recursive process so that the determinstion of the
line through the (now two dimensional) pixel set is known. The Z-buffer becomes
an adjacency matrix to the pixel set and can retain inforination about forwardly
displayed pixels only. All information is lost about other pixels that were
computed in the fractal process. If another view of the tnountain is required then
the entire pixel set has to be recomputed with a new axis of sight. If the fractal
function uses (non-tabular) random techniques then the mountain varies with

cach view.

3 The abstraction provided by Euclidean primitives is o powerful one when the alternative of
pixel sapping is considéred. Without some powerful mapping ool {such as fractal functicas), the
pisel level modeling process is in general very difficult.

64

Most fractal pictures consume such vast computing resources that
only one view is computed for a given picture. As more requirements for graphics
terrain are determined, a more powerful method has to be used to retain all of
the computed pixels in the three dimensional pixel set. This method requires
that all pixels be stored in the three dimensional array previously described. The
hidden surface calculation can then be performed during the pixel mapping
operation or as a separate calculation that is performed after all fractal recursion
has terminated.

As specified in Chapter 3, the full array approach requires large
amounts of memory. This method, however, allows the computed fractal
mountain to become an entity that can be manipulated versus an instance of the

fractal mountain as above.

O

"t BV I T 2w

,
Py

K
n’ o e

Both methods are viable but the latter approach provides more

flexibility for the programmer whereas the first approach is a response to the

o

o

i

economies of scale of data processing. As new architectures are developed?’ with

> e =

g~
-y

capacities geared toward fractal image computatic~ the first method can be

-

-

o

eliminated.
d. Illuminating the Mountain

If you stood on the dark side of the moon without illumination, the
mountains and craters of the moon would not be visible. They still exist however,
just as our imaginary mouniain exists in memory. In order to visualize them, we
must illuminate them. ‘

Illumination in computer graphics is achieved by varying the light
intensities of pixels displayed on the screen. The color mixture of these discrete
points determines the lighting effect that a viewer perceives. This perception is
not reality but another deception caused by scale and composition. A lighting
model then, is one which is able to abstract the esseuce of color from a real world

M An Ideal architeeture is one with a large main memory and parailel processing capabilities
with K processing clements (where K is greater than the maximum recursive descent distance).

65

IS ™ T e Ay il St i T T N WL RO W o Yoo Se ¥y

IRy AR R L L N, R R LA L A SR TR T AR AT A LR ST

NS e AT ?_.ﬂk’}.\;t‘t ~ L._‘g-_t_o..‘ S I A N ek A
- Y TPy Py

-
R N Pt SR

object and transform that essence into a set of color values (intensities) that
accurately deceive the human eye via the graphics medium.
The literature on computer graphics contains many lighting models

with diverse approaches to the same problem. Many of these models (like those of

"
-

hidden surface) concern themselves with illumination of continuous Euclidean

surfaces and as such, are not directly germane to our study?®,

-
P
o
'-?"h“

’”‘g.n"'ng“"“n
e
X 2 d

-

An object ii1 space is a composition of basic elements. These elements

e
o
]
v-.lv’

o o o

J‘-::?', 3

interact with the physics of light reflection to create the spectrum of light that

our eyes decode. In a graphics image, this process has to be simulated with

R

el
i

discrete lighting intensity values for each pixel. Thus, the illumination of the
mountain is a two step process; the fractal entities that are mapped to the pixel
set must be provided with a basic color, and these colors have to be highlighted
and dimmed by the lighting algorithm.

The basic color can be determined during the pixel mapping event of |
the fractal recursion process or as a separate process prior to or in conjunction
with the lighting algerithm. This color can add realism to the picture through
heuristics which the programiner defines. Most mountains are composed of
different types of rocks and flora and these elements change at different altitudes.
This type of heuristic combined with some random control structure (i.e. to vary
the snow peak) can provide for improved realism (versus making the whole
mountéin brown). The process of determining the ‘basic color must be
accomplished prior to applying the lighting algorithm since the lighting algorithm
can only vary the inteusities of an existing color®®. Developing the process of
basic color determination is best accomplished through trial and error. It is the
artistic aspect of developing fractal wountains.

The general process of computer graphics illumination concerns itself
with casting shedous from one object to another given a direction from an
imaginary light source and with highlighting surfsces which are directly expased

to the source. A surface is highlighted relative to the angle at which the Light

3 The Gowraud model (intenssty interpolation shading) for instence

® Since 30 many diverse color models exist, the details of color representalion are aot
coversd here.

LN
~, J
).A
&
N
.".:. 3
N

S5
2
)
1\‘8 'f
L

o
»
Ok

- -
P
e T E

66

ke (PR
» g
.4"?_:‘:;".
)

(o
s:

-k

AR P Nt
Nt

AL Wt
AL

o - ome_zgut e g o
by i s

o
o

Tt

Sy "
-

L7

)
-

*’-, _‘; i

N ST |)

Fatd

o Ao,

oV

A

v
¥

" w

(e 0
. ’_’;‘\ i

vlf‘?a

Ky Q
1t B

4

- #
S

L NN ‘fa‘&? .,.‘

source’s rays strike the surface. This poses special problems for fractal surfaces
due to their discontinuity at every point.

The process of illuminating a fractal surface is best aided by
divorcing the lighting process from the fractal computation process (except as
noted above). It is beneficial to view the pixel set as a collection of pebbles which
have size and position. This abstraction allows us to view the pixel as a
continuous space that can block light {cast shadows) and for which an angle of
illumination can be determined (usually in conjunction with neighboring pixels).

A well formed fractal mountain surface is completely connected (no
space between adjacent pixels in the pixel set). Thus the surface can also be
viewed as a continuous (while very rough) surface where reflected light can be
cast from or to adjacent pixels.

One lighting model which fits the fractal process is the Torrance-
Sparrow model [Ref. 8:pp. 578-579).

This model views an abject as a collection of facets which is each a perfect reflec-
tor (i.e. does not absorb lieht). The orientation of each facet is given by the
Gaussian probability distribution funetior (i.e. the smooih sucfave of iLe Bu-
clidean abject is roughed by the Gaussian relationship). The geometry of the
facets and the direction of light (assumed to be fron; an infinitely distant source,
so all rays are para!lel}l determines the intensity and direction of specuiar reflec-
tion as a function of the light source mttgsc‘itva the normal to the average sur~
face, the direction to the light source and irection to the viewpaoint.

This model has to be wodified to adapt to the fractal <ot method. In the fractsl
method, there is ne need to rough the surface to provide reflection because the
surface is by design roughly textured. A method of assigning planar fronts to
cach pixel space has to be determined snd the geomietry of connecting these
fronts identified. With these modifications to the lighting model, each iadividua)
pixel’s color intensity can be modified for the increase ia intensity associated with
the light which fails upon it.

The wmodel also allows diffuse reflection (light reflected frosu one
. object w another) which is critical to bring out elanty of the fractal irmage. For

further wformation on the model the reader is referred to the referesce.

67

. ok, N8 T

- T 1 e L e 1 L - e, N T S N Ay R SO M
RE R i:' *Sq"»?} DA 'W“Q"«'T i "-"u ":{ s ".“,,: O A A A A M AT S I N A IS A I
*’h;_ b 350N RN TR A AR A PR SO e

-
: ~ 37T S g e
P WY O

e. Summary of the Fractal Mountain Paradigm
To summarize the methodology we can view the process as a five

step process:

- Buiid the instiator framework or stick frame model of the mountain.
- Give the frame’s surface texture with fractel functions.

- Remove hidden surfaces (pixels) from the display.

- Nluminate the surface with lighting algorithms.

- Project the surface to the screen,

B. FRACTAL TOOLS FOR TERRAIN MODELING

The tools presented in this section can be used in the creation of fractal
images within RS, The list provides a basic set of programming tools to guide the
creation process.

1. Equations of the Lattice

The lattice (or controlling structure) can be very useful to the graphics
programmer to implement heuristics or bounding functions on the essentially
random progression of the fractal figure. The graphics programmer may wish to
limit the growth of the mountain by implementing a ground level plane of the
lattice and a maximum height that the mountain can obtain. He accomplishes
this by arbitrarily assigning another plane of the lattice as the upper bournding
plane. The height of the mountain can then be checked during any level of the
fractal recursive descent against this fixed plane. The programmer can then clip
the height by adjusting the random equation that controls the upward trend to
tend towards the ground again. This is an example of a heuristic applied to the
fractal recursion that controls the external qualities of the function.

A fractal programmer can use the lattice to assign the initial colors to
the mountain via a user designed sei of rules. The lattice aids the user in the
implementation of the rules by giving reference points for inclusion of branching
conditions (tree line to snow line etc.) and can be used in conjunction with
decision weights to add a varied transition between textures, The determination

of the initial color of a mapped pixel is usually a controlled randoin process, one

of the primary m..hods of control being the lattice or some derivative thereof. As

-

Judt i)

$

,*‘c.' o5 o ,:bn

¥
i

L
4 1
OO

,..
oSy ¥t ln

iy

D ”

¥
L
By Ve ¥,

7

S T
¥ ‘,'.:'v.'-
LA st

‘-
et

.

R P
'L
R

&
Y
Ky

~
i
I 28 O

.

3

0
-~

P

- -
A
Chl

By

]
L's

.9
4
-
.‘
R

€

PEENE" °,
-
Vo

- *
A Y
',“‘_,-.‘(

o,
2y

4.5 v

the height of the mountain increases (lattice level), it becomes incressingly more
likely that it will transition to another texture. This can be controlled by adding
the lattice level as a factor to the rule that decides color.

An example of a potential lattice equation and how it might relate to the
pixel space is demonstrated in Figure 5.1. The actual lattice has been extended
from the pixel space in order to visually demonstrate how it relates to the pixe:
set. In actuality, this is not the case. The lattice coincides with the boundaries of
the pixel space. Although the lattice can have a one-to-one reletionship with the
pixel space, this defeats the purpose of the lattice (macro control). By grouping
cubic sets of pixels into a well-formed relationship, we can better implement
heuristics and bounding functions.

As a lattice example, consider a pixel space that is created by abstracting
the real worid coordinate space for our :nountain as described below. We desire a
real woild space to be a cubic area established by the box 20,000 ft.
(z eoordinate) by 15,000 ft. (y) by 20,000 ft. (z) This can be sectioned into a
lattice by establishing the increment of distance between adiacent lattice points
to be 1000 ft. and establishing the eorner lattice point as (0,0,0)%.

The mapping function between the lattice and pixel space is then

straightforward. The size of the pixel (recall equation from Chapter 3) is
20,000 ft.
1,000 ft.

equivalently 75,000 cubic pixels.

=20ft. and the lattice cubic sections contain 10°® cubic feet or

The ground level can then be identified as the 2000 foot level and the
bounding height can be assigned a level of 10500 feet. If we wish, we can make
the bounding heuristic more realistic by sectioning the lattice into mountainous

areas, each having different bounding levels.

. o mm g m . - e A
S Tl R e TR AN S A
R o R e N Yot gk O
. -) Rl A,

W A completely arbitrary set of dimensions, increments and points.

690

A T T BTG SV S R S (G St VA S S S R L ey e S S N S N U SN

The Lattice Control Structure

r——n"
l.' I
A
\ v
\l__-\’_.__.v

18
\
=

N

I

fl
g

P
q

'—‘—"'—""_"'—
,, i
i
i
—_—— ke e = Ak

1

- T v I ol]

AN

i A

e ’ L - :
-— -.L,“ -
A
i I Al S

/

/
LATTICE

a4

Rawin

| T
s

1 Y44 f

1
N

FRACTAL MOUNTAIN STRUCTURE
PIXEL SET

Fig 5.1. The Lattice Control Structure.

70

L

. ~ Syt * o S S PN o .
c ‘&}‘.{ “ “*"i.j’v ‘\’ "~ *:3 ‘!‘:&:‘“}“a n.!}":\\- ~'- ‘; .",i:\’f

oy @
\';"! a‘o.’\
1

2 b3 ‘» o)
M A i SOOI

N S
" :\% 2. A Fractal Function for Contouring Mountains
‘Eggf‘; The usual method for contouring mountains uses a randomized variation
& of the mid-point displacement method introduced in Chapter 4. The planar
’33"%;) structure is typically the triangle?! imbedded in R3. The basic methodology is
.psgd demonstrated in Figure 5.2. Figure 5.2.a shows a triangle with its first iteration of '
§ i mid-point displacement. This process continues until all triangles have reached
. 1: " the desir=d level of precision. One completed structure is demonstrated in Figure
:s‘ii: 5.2.b. The precision is typically lower (pixel level) than that demonstrated in
f2§3| Figure 5.2.b but it was terminated at a higher level to better demonstrate the
i idea. Random techniques (described below) are used to produce the relatively
’;§:| accurate picture of a mountain frame as depicted in Figure 5.2.c.
: In pructice, the random techniques are implemented with the mid-point
E:# displacement function during the fractal recursive descent. The random
_‘ techniques provide local disorder to the fractal function which provides the
m"‘. computational structure. Results have shown that very iittle randomness needs to
F: be applied to the regular structure of Figure 5.2.b to achieve satisfactory results.
AN The mountains created for the film Star Trek: The Seareh For Spock used a
_‘ limited random number look-up table consisting of fewer than 300 entries [Ref.
.*. 7l o
~; 3. The Geom try for Mid-Point Displacernent
.}}3&‘ The general approach to building a fractal shape as illustrated in Figure
n ~ 5.2.c is to use the algorithmn of midpoint triangle displacement combined with a
T randomized displacement along the normal to the X-Z plane of a cartesian three
: 3}’; space coordinate system. A recursive procedure which computes this relationship
x requires as inputs the points of the triangle. It computes the midpoints of each
‘f.h': line of the triangle and inscribes a triangle inside of the initiating triangle by
:;:5" connecting cach midpoint, Figure 53.a. This process yields four triangles
?ﬁ; coincident with the plane of the initiating trisngle. When we fix the X-Z normal
}% . at any of the midpoints, we can displace the midpoint by a discrete distance
Ay
ot
: 3‘:.‘ ' 3 Any regular siructure suffices; the triangle is easy to use and yields very satisfactory
@ results.
g
:% 71

% RN VR Y ‘3 . . bR 3 - "l\ - -
IR A N NS n‘?.“"* ;o ’\F atky

The Triangular Midpoint
Displacement Technique

JANON > NN

Determine Connect Connect Connect
Midpoints M1 to M2 M3 to M3 M3 to M1

Fig 5.2.a The 1st Iteration of Midpoint Displacement.

The Randoa Structure was rotated
~-30 degrees around the X axis to
acceatuate its texture.

_ TIAY. Ry,
SOOOHRRSGIROE
ATy aTaA
Alchnwtgj!#“"

AYAVAVAVAVAVAVAVAVAVAVAVAV AV AV,

Fig 5.2.b Completed Structure Fig 5.2.c Randomized Version.

Figure 5.2. The Triangular Midpoint Displacement Technique.

72

LA S LB A L A S A A AT A L &
A N R A L R e D E M M

- » 8

along the normal and determine a point, Figure 5.3.b. Since the normal is to the

X-Z plane, it is sufficient to simply modify the Y coordinate according to a

‘positive or negative value. This is equivalent to displacing the midpoint along the

X-Z normal up or down. We perform this displacement to each midpoint normal

. and replace the midpoint with these new points. This yields a new structure that

still consists of four triangles but with each coincident with a different plane,
Figure 5.3.c.

a. Midpoint of a Line in R’
The determination of the midpoints of the lines of the initiating
triangle is a simple process that uses the equation of Chapter 4, and fixes the

generator ratio constant at 1. This simplifies the general equation of:
X, + (Generator ratio.constant x X,)

xmld =
1 + Generator.ratio.constant
to the well-known midpoint relationships of:

X, t)(2

X = 9
Y, + Y2

led = 2
Z, +12,

zmid - 2

The above equations completely determine the midpoints of the lines formed by
each endpeoint of the initiating triangle.
b. Displacement along the X--Z Normal

The process of displacing the midpoint along the X-Z normal is a
simple one. We need a facior such that the displacement can obtain a varied
wagnitude. This is best aided by the inclusion of a random variable as a multiple
of some scaling factor that is added to the Y coordinate of each computed
midpoint. This process is demnonstrated in the following code seginent:

Randvar = getrand(Seed);
Pointl|y] = Pointiy| + (Scale * Randvar),

73

. . . . s g - e . - R TR R A T M T
T T B T PN T et SMATL Ti Y w e M s PR AT TN AT R T AT T e T ES AT RPN R N TR ok T Ty e L if"\\‘i [
; ""\.':g*;_ LR AL A "'.-*3’ AR e PR A N -.v""i-':j e Y e -“"fﬁ"-"‘.:‘ L .“:"ﬁ"}x}ﬂ",- otk o DY

Four Triangles are
created for each

triangle initiator

After 1at displaceseat

X-Z plane

Positive Y displaceaent

Figure 5.3.¢c Completed Random Fractal Triangle.

Figure 5.3. The Random Midpoint Displacement Technique.

PO L TN PTG, N . ST
L2 S RN

i T e T it AT e v
it Sk Yt R N
. A P
‘\‘-"(q

A

e
R
ﬁ:f_“

T

L
S

A valid question is, why the normal to the X-Z plane? There are

L
oA

three good answers to this question. Using the normal to a fixed plane simplifies

-or

?,
&

the computation (eliminates the need to perform planar computations at each
recursive division). It also is generally the direction that we want the mountain
to grow. The most important reason however, is related to the gapping problem
(described below). With a fixed direction for displacement, there is no need to
communicate the direction of displacement along the normal between adjacent
side computations. The recursive levels that compute adjacent sides are
functionally discordant. It is demonstrated below that the solution to the gapping
problem (inconsistent random numbers) which creates the need to communicate
along discordant recursive levels is algorithmically difficult to solve and thus
should be aveoided.
¢. The Gapping Problem

One problem exists for the midpoint displacement procedure which
utilizes a random displacement along the X-Z normal line. It is indirectly caused
by the data locality aspect of the inductive process of the recursive fractal
descent. The problem exists when two adjacent sides of two adjacent triangles are
not displaced with the same value. Each side is computed during independent
levels of the recursive descent so there is no practical mnethod to communicate the
random numbers for the displacement.

The gapping problem is illustrated in Figure 5.4. For the two
triangles that are extrapolated from the structure, there is an unknown
relationship that is the random variable used to displace the common midpaint.
If triangle A uses Rand = 0.3 and triangle B uses Rand = -1.07, then the
displacement for each adjacent midpoint (which are at the start coincident) is
skewed in the opposite direction. This creates a gap in the fractal landscape that
will (in all likelvhood) not be filled by other fractal shapes from neighboring
triangles. We need an algorithm which can insure that each midpoint {which is
always shared by two triangles) has the same displacement along the normal to

the plane.

e A h g s
:\-‘,'a_gr,e.%w.t.

A RN LA AR AL WAL AL T

d. Solving the Gapping Problem via Random Tables

The solution to the gapping problem is straightforward if the
programmer adopts the random number table as his random function
implementation. The goal is to match adjacent triangles with a seed or
displacement within the random table so that the random number returned is
equivalent for each coincident midpoint.

There exists a symmetry within the triangle of Figure 5.5.a that
allows such an approach. Ideally we want the point M, to be displaced by the
same magnitude when triangles T, and T, (highlighted by textures) compute
their random numbers for M,. This can be facilitated by the inclusion of a table
seed for each recursive call to the midpoint displacement routine and by rotating
the orientation of the midpoint triangle (the triangle created by the three
computed midpoints) labeled T, in Figure 5.5.a. This rotation is performed in
relation to the random table and not in relation to the Cartesian space. Itis
accomplished by adjusting the order of the points in the recussive call.

The order of the points for triangles T, T, and T; are as described
in Figure 5.5.b and for T, as described in Figure 5.5.c. All four triangles generate
a recursive sequence and use the same seed to the random number table. The
random numbers retrieved from the table must observe the order of assignment
that is demonstrated in Figure 5.5.d. For example, the line segment formed by
the first two points (P, and P,) inpuﬁ to the midpoint displacement routine
determine the midpoint R,. This midpoint is assigned the random displacement
{frum the table corresponding to the entry seed. The next midpoint retrieves the
table entry corresponding to seed + 1 and s0 on. ‘

If this technique is foliowed the sequence of random nusabers will

mafeh-up as demonstrated in Figure 5.5.e. The recursive calls correspond to the

code segient in Figure 5.6.

R e e TV e L
“‘m.‘;"‘?ﬂ‘?-,"" Lo

5 LRGN O N Y
ﬁf"’{y"*&*\»ﬁ %]

The Gapping Problem

Generatud random structure

Initintia%\’lngjc

.................................

ADJACENT TRIANGLES SHARING
A COMMON MIDPOINT

coamon midpoiat

AFTER MIDPOINT DISPLACEMENT

Gap created by discoatiauvous
raondos dizplacesents aloag
the ¥ axis.

Figure 5.4 The Gapping Problen.

77

AR AU Folk el Jar’ St S ekt Tt SaR A S T T Tk Sl
LA SR W R RIS R T) ACIRUR Y S ha i)
at “ . 'u« -." \u' . -.*‘ a? .‘0“*’}*“&"%}‘%‘ ‘V&" “:’ “x’ ‘r? "x‘

»)
3 it

IRESTACRER T AR R 3} bR Sk MR R LTS
"o | . Mo AN LY N Y . " T
R0 A AR RN ‘*"“v..‘&i Al

1 NS
< ®w e

Solving the Gapping Problem

Shured cg

on midpoint

Giveo that the ioput to the rendom table is seed=i

Figure 5.5.d

RJ R;
FTigure 5.5.¢

Figure 5.5. A Solution to the Gapping Problec.

bt
V-
5

=3
o

oy

S

ohd' %

DAl ol

" Tk ot

Main()
{

‘b
r)
!

LOAD THE INITIATING TRIANGLE
Seed = 1;

e ol e oo o

o
| -

b) ihe%r

i -

frac_triangle(P,P,,P;,Seed)

25 }
i ‘ frac_triangle(P, P, P;Seed)
WY
NN
4 ‘i DETERMINE DISTANCE BETWEEN ENDPOINTS OF AN INITIATOR
R0 .
%&. If (DIST < Pixel.length)
) Plot_pixel();
N2 return;
COMPUTE THE MIDPOINTS (M, M..M;)
ADJUST THE Y COORDINATE FOR M, Using Randtable(Seed)
ADJUST THE Y COORDINATE FOR M, Using Randtable(Seed +1)
ADJUST THE Y COORDINATE FOR M; Using Raudtable(Seed+2)
Seed = Seed + 3,
/* Triangle T, */
frac_triangle(M,,P..M,.S¢ed)
/* Triangle T, */
frac_triangle(My.M,.P.50ed)
[* Triangle Ty */
 frac_triangle(P, .M, M, Seced)
[* Triangle T, */
frac_triangle{M, M;,M, Se¢ed)
L }
:a Figure 5.6. An Algorithm for the Midpoint Displacement Technique.
At

peA

79

S as .y - PR N P
3 ‘*»'#._ T RO ¥ "“&‘."-ﬁs&‘? IR
AT U R R M SREARE A L e

N

4. Random (Stocastic) Fractals

One common complaint about computer graphics images and animations
is the artificial perfection of the displayed shapes. Our mind subconsciously rebels
against the order that is displayed, our expectations about the rough reality of
nature are not satisfied. The use of randomness in generating fractal images is
necessary to approximate the observed disorder of nature. An example is the
Koch curve. Although it resembles a snowflake, it lacks the realistic look that
experience trains our eyes to see. In a mathematical sense, the Koch curve is
beautiful; as an approximate to nature it lacks appeal.

To approximate the rough texture of nature, we are forced to modify the
well- behaved mathematical relationship of the initiator—generater in a controlled
manner to add variety to our computed image. This modification is usually by
the inclusion of a random variable into the control structure within the fractal
equation. The random variable must exhibit restraint. Jt cannot be allowed to
vary wildly without structure.

One of the most appealing random functions which provides very
satisfactory results in fractal images is the normal distribution™. The normal
distribution (as opposed to a uniform disiribution) approximates the uxpected
local disorder in nature {(at least experimentally). '

a. The Normal (Gaussian) Distribution

The normal distribution is used throughout the natural scisnces for
many applications. It was fiest derived 25 an empirical result of the observed
errar aboat a true value that normally oceurs when measureiients are taken «f a
natural event. The symmetry that was chserved from error measurement and
sampling suggested that there was a natural order to such observations. These
cwpivical resulls spurred natursl scientists and mathematicians to try to fit a
curve to the cbserved graph that behaves as probability requires {i.c. the sum of

the area under the curve eguals unity}. Many of the early scientists

33 Often referred o as the Gaussian dutesbotion, the aormal ditribution s the standand bell
curve (o which every student ts accusiomed

......

-
R

5: teferred to the normal distribution as the law of error in deference to its roote in
:;2 experimental natural science.

": Many functional characteri - <*~ns of the normal distribution were
s - developed®, but credit is usually attrivuted t» Carl Frederic Gauss [Ref. 9:pp. 1-
i 11} who forinulated a least squares approach, published in 1809 in Theoria Motus
‘5’3 : Corporum Coelestium. The form: of the normal distribution was not finalized
t until the carly 20 century.

-; We take our definition of the normal distribution from [Ref. 9:pp 18|,
. 3 refer to Figure 5.7.

«

Definition:
The probability density function of a normal randem variable X is given by:

15 the mean, o is the standard deviation
and o is the variance.

- (!—n}’]

-

“w o
S e 2w

PR .
fix:.p.0°%) oy exp 297

where ~co< x<oq -0< p < oq and 0>0

L

7

ar
6

The NormalkDistribution.

il)

;.«
pdiy:

> , SCALB:
xhorz g sver-b

e

b
4=

P A ot e
IO LR

B0 s P

Figure 5.7. The Normal Distribution.

= \any mathematiciene can ley elaim to foundiag the acitial distnbution, most actably. P
erte Sumce de Laplace aad Abreham de Mowre Ref 9pp i

Gl It P B e e e
10 0en G oo 'r”-a LA

81

Py
e "“«t

Vg AP
SO 0

S B

3.
)

. “ ey ey .- . . R I
MR T . © L N R R R S e R R L 1S 0
AT T sy L et T e BOACAD [P -"#jyf.y‘«_

] This definition is the general case of the normal distribution. We are

" interested in the behavior of the function and need a practical way to determine
a random number that we car use in the parameter of the normal to the plane in
the geometrical relationship described above. To facilitate this, we simplify the
gencral normal distribution to the well known standard normal distribution,
illustrated in Figure 5.8. The standard normal distribution function is the special

case where g4 = 0 and & = 1. This reduces the general equation to the simplified

equaticn:
2

X f(x) = —exp -

;;%‘g"é:
I::g:::g The above functions describe the behavior of a normal random
A

heh
%:s: variable. We need a function that returns values from that function which will
ke o , :

,‘ observe the period of the normal distribution. This means we need a s*ring of
;-" real numbers ¢ an assigned range about a mean that will observe the
' Qi frequency of the normal distributios.

Aﬁ 1‘:.‘- .
,"\\.:

a-,‘:, 5 (&

g . The Standard

'\v.(-

L e iy iy Mo

Normal (Gau~sian)

s
MDE I B e W

ks
o>

SCALE: Distribution

{®

R lhorz @ Bvert

p= 0.0

A = 1, 2
(o= 1,0 X
J2 x

-8 -2 -1 o 1 P 3
p——s9.275—
} —05 . 45% {
i |
b 90.37% {

Figure 5.8. The Standard Normal Distribution.

82

b. Standard Computer Random Functions

Some computer systems provide a random number generating
function which observes the normal distribution, If this is provided, then it can
be used directly (after scaling) as a parameter to displace the Y coordinate in the
geometry of the normal to the midpoint displacement as described above.

Many computer systems only provide a random number generating
function which is uniformly distribuied over an interval of integers. This is a
pseudo-random number. Such a func.ion, when given a seed, will produce a
sequence of numbers distributed over the fixed interval defined by that system.
The interval is typically proportional to the maximum integer defined in the
compilers of the system. A normal distribution routine must then be defined that
transforms the uniform random numbers into random numbers which behave
according to the standard ncrmal distribution function.

There exist transformation functions that take a uniform random

variable distributed over the interval [0,1] into an approximate normal random

variable over —o0 < x < 00°*. This requires the uniform random variable to be
mapped into the interval! [0,1] and then transformed by the normal
approximating function.

To transform a uniform random variable distributed over an interval

[0,maz_int] while maintaining the dictribution density, requires the following step:

UNF[O.mainnt]

UNFp,) = maz_int

One commonly used function that transforms uniform random
variables into normal random variables is found in [Ref. 9:pp 49]. This function
uses two uniform variables from [0,1], denoted UNF, and UNF,, and computes
two normal random variables, denoted NORM, and NORM,.

i

NORM, = /(-2log, UNF, cos(2r UNF,)

NORM, = /(-2log UNF, sin(2x UNF,)

3 This is how most standard system provided computer subroutines perform the operation.

83

i

S INPL G EU SR

[NPIE UYE HVIL UO0 7 LT EL G S S W)

‘,‘C:

PR
r

- -
=

iy

x X xD

°.

T

A

-~

o

*

-
-

Py
Tl

-

'-- a

’Q

e Xy
Pl

3
3

>

TR T LT R P DL FC L LA P AL I L T IV P T L LT AT &5 WL AV ettt

Appendix B contains a C UNIX routine that implements an algorithm to
compute the uniform|0,1] —» normal [~ 00,400 transformation.

A programmer must be very careful when dealing with random
number genereztors from standard system subroutines. These routines vary widely
and can provide good to barely adequate results. When the normal
transformation routine is written, the programmer must verify experimentally
that his function adequately models the normal distribution. This process is
illustrated by Figure 5.9. Appendix B also contains experimental results which
verify the transformation.

The purist may not accept the results displayed in Figure 5.9 as an
accurate transformation (there appears to be a skew to the negative direction).
We must remind ourselves that we are trying to approximate the roughness of
nature and minor random skewness will not deter us. If the programmer demands
a better approximation, ii is a simple process to expand the sample space of the
test and build a table with exact proportions by selective deletion of skew
density.

c. Random Functions versus Table Driven Methods
The application of a random modifier in the midpoint displacement

technique can be achieved via two methods.

- By invoking the above function iteratively as a variable.

- Or by a variable returned from a table lookup operation from a random
table.
The choice of which method to use depends on the programmer’s application but
each has its ramificatiors.

In general, the table lookup operation is considerably faster than the
functional method but must by its definition limit the amount of randomness it
contains. The major issue however is the need to reproduce a figure under some
requirement for fized terrain. This issue was the driving force for Loren Carpenter
from Lucas Film in detertnining that he needed to use a table driven method to
produce the planet images for the film Star Trek: The Search for Spock [Ref. 7).

He had to be able to fix a space where the images of the actors could be imposed

84

PR T A T S, I T A

M W LAY

g Experimental Results for the
o Computer Generated Normal
Distribution

Z!:EJ'U-" I".Hﬂﬂ.'
2 - ﬁb“'b':l:‘.-'

‘\.4[Lo

Sample Space:

500 Random Events ?}§

=X o e
S

=,
<

Bxperimental Reesults
With a Normalised
Uniform Dietribution
Over {0.0,1.0)

Transformation Equations
From Uniform Distribution
Over [0,1] to the Normal
Distribution Over -w{x{w

N1= / (-310[11) » cos(QIUz)

> v
| ax e ap

i
B
PN -

L
=X

AT
5 ‘,(g T,

-
i > 20

Ng=/ (-2Iay) » sin(2TU,)

‘

o] 1.0
Sample Space:

58}

800 Random Events

T

-3.0 Q.0 3.0

Figure 5.9. Experimental Results for a Computer
generated normal distribution over [0,1].

86

T T e O P e P S L e s e e s e e e

& S
- . "

-.-
i P
- et 3

onto the fractal images and conld noi aliow the fixed space to change with each
frame computed. This is the major advantage of the table method. By retaining
a seed to & table of random numbers, you can reproduce the sequence of
displacements along the normal during the fractal recursive descent.

When you consider the existential qualiiies of randomness you are
confronted with basic questions about determinisrp and order in the universe, It
is not at all clear which rules chance. Iii #iy case, we can deccive perception
with a relatively small table of rendoin numuers.

The question of how much randuinness is enough to provide for a
visually appealing texture is not completely clear. In [Ref. 7] Smith deiionstrates
a veriety of shapes computed with the same algorithm of Figpre 5.6 using
random npmber tables of different sizes. He demonstrated that as few as five
pumbers can suffice to provide enough locai diserder to give the viewer the
accepiable texture of a mountain. If the mountain segments are viewed at the
correct perspective nd scele, this perception is clearly felt. A trained
inatheinatician would find the five element mountain siatistically unappealing
however. A true stocliastic consiryction reguives a continuous random function
rather thau u Jdiscrete table method. As long as the goal of our coniputations is
merely to deceive ilie graphics viewer, it sutlicés to use the random number table.
The table must be large enough to provide for an appeahng textural perception.
A coniplete C program that computes a triangular mountain segment usipg the

random displafement midpoint technique is contained in appendix C.

86

V1. SHORT CUTS TO MOUNTAIN SHAPES

Since the fractal mountain computation (the full approach with hidden
surfaces etc.) is so costly in terms of resources, it is important for us to consider
shortcuts that can lessen this burden. This is best realized by utilizing the hidden
surface and curve fitting capabilities that are provided on some advanced
graphics systems.

Our goal is to match the well known bicubic surface procedures with the
structure computed by the simple fractal algorithms. This is best accomplished
by modifying the triangular midpoint displacement technique and using a
rectangle’® as the basic geometric building block. Most of the cubic surface
algorithms use the rectangular structure as their basis, so it is easier to adapt
them to our fractal structure.

When the fractal algorithm of Figure 6.2 has its computations terminated
before reaching the level of pixel size, it yields a connected rectangle structure
like the one shown in Uigure 6.3. This structure is a connected Euclidean
structure that can be used as a pbase on which other algorithms can be applied.
Cubic equations can fill the polygons to an arbitrary precision and standard
hidden surfaze algorithms caa eliminate the hidden sides of the computed
surfaces Simple lighting algofitlims can be applied to the computed surface to
achieve a realistic lighting effect®®. This is how Voss and Carpenter created their

fractal surfaces in {Ref. 7).

A. RECTANGULAR MIDPOINT TECHNIQU

Modifying the triangular midpoint algerithm of chapter 5 is a straighiforward
process that introduces no new mathematics or difficulties. It comsists of a
procedure to split the midpoints of each side of the rectangle nnd a procedure to

find the ceater of the rectangle. Frown these five points, we construct four scaled

3 We actually use a non-planar four sided polygon. We refer to the basic structure as a rec-
tangle to sitnplify the terminalogy.

% Gouraud shading for example.

87

rectangles, as demonstrated in Figure 6.1. The five shared midpoints of the
generated rectangles are then displaced along the normal to the X-Z plane
according to a random Gaussian value. This process is exactly the same as for the
triangular algorithm of chapter 5. The gapping problem still exists and this
requires an algorithm to rotate the rectangle relative to the random number table
and the starting seed to insure that adjacent midpoints are displaced relative to
the same random number. The basic methodology is displayed in Figure 6.1, the

algorithm is contained in Figure 6.2 with sample results in Figure 6.3.

88

e -u".
5
£

il

o

B
o N

i .

)

.%g

vt
v

o

Computed
Four Rectangles Midpoints
are created for
each rectangu- @

lar initiator.

Computed djisplacemeant

Negative Y
displacexzent

Wseusevsssnaces

‘ .‘.“.-.K

Positive Y displaceneut Original genersting rectangle
COMPLETED FRACTAL RECTANGLE

Figure 6.1. The Rectangular Midpoint Displacewment.

80

Main()

{
LOAD THE INITIATING RECTANGLE
Seed = 1;

frac_rectangle(P,,P,,P3,PSeed)
}

fPQC_reCtﬂngle(P],Pz,Pa,P4.seed)
{

DETERMINE DISTANCE BETWEEN ENDPOINTS OF AN INITIATOR

If (DIST < Pixel.length)

{
Plot_point();
return;

}
COMPUTE THE MIDPOINTS (M,.M,.M; M, M)

ADJUST THE Y COORDINATE FOR M, Using Randtable(Seed)

ADJUST THE Y COORDINATE FOR M, Using Randtable(Seed+1)
ADJUST THE Y COORDINATE FOR M; Using Randtable(Seed+2)
ADJUST THE Y COORDINATE FOR M, Using Randtable(Seed+3)
ADJUST THE Y COORDINATE FOR M Using Randtable(Seed+4j

Seed = Seed + 5;

/* Rectangle R, */
frac_rectangle(P,,M, M¢,M,.Seced)
/* Rectangle R, */
frac_rectangle(M,.Mq.M, P, Seed)
/® Rectangle Ry */
frac_rectangle(M, Mc.M;,P;,Seed)
/* Rectangle R, ¢/
frac_rectangle(P M;M¢, M, Secd)
}

Figure 6.2. An Algorithm for the (Rect.) Midpoint Displacement Technique.

Rectangular Mountain Fractal

GCenorati rectangle

T FZETR T T

Ll J LT TIII LT P

W v 7 /‘ LN

ST R
IS DAL I LIS

The recursive tersivatica eveot was 1/3 ioch.

Figure 6.3. An Example of the Rectangular Moii <.~ *-actal.

- ey R S

o1

w B

v B. PARAMETRIC CUBIC SURFACES

‘_ A complete description of parametric cubic surfaces is too involved to be
;.’: described in *2is study. The theoretical basis of cubic curves is not directly
¥y

applicable to i:actal geometry. For a complete description refer to [Ref. 8:pp.
514-536). If the reader is already familiar with cubic curves and their derivations,
he can skip by the section on cubic curves to the section that details the
application of cibic surfaces. For any reader who has not been exposed to the
derivations of »arametric equations which yields cubic curve computational

engines, it is recommended that he read the following section so that he may gain

insight into the mathematics of cubic surfaces. Detailed knowledge of cubic

o curves is not a prerequisite to the successful use of cubic surface fitting engines
i with respect to fractal surfaces. It is helpful, however, to understand the
o : , :

\,'; underlying mathematics whenever eanned equations are used.

%: 1. Cubic Curves

The general method of cubic curves has as its basis that any continuous
z, curve in R3 can be expressed in parametric form. This form relates the points
O z,y,2 with a parameter ¢ such that as t varies within some range of values®? the
)) ‘;

equations solve for unique points on the curve. Specifying two endpoints and two
, control points of a segment of the curve allows us to define certain constraints to
5
}é be applied to the pararmetric equations. These constraints allow us to manipuiate
:‘; the parametric form of the equations te yield & simple vector praduct definition
3 . . . R .

=) of that segment. Once this vector product is established, we can soive for points
k on the curve by picking discrete values of ¢ and solving for z,p,2 in turn. This
P {:" . . . < R

:‘: yields a discrete approximation of the curve that can be as precise as needed.

:.a. a. Parametric Cubic Equations of a Curve

S

€ A paranietric cubic curve is one for which the points in R? (2 ,9.2)
’.‘;q are each represented as a third-order (cubic) polynomial of some parameter i
) "‘ei . . S

g Because we deal with a finite segment of a curve, we limit the range of the
."‘

s

10

N

.1!“\

A

}‘ 37

) q*. t may vary between 0 and | for example.

s 02

4

S

.“'

o

o:‘

N

perameter ¢ to the range, 0 < ¢t < 1. This yields the equations:
x(t) = a,t? + byt? + et + d,
yit) = ayt® + byt? + et +d,
2(t) = a,t® + bt? + c,t + d,
Each equation can be expressed as a vector product as x{t} is below:

1

x(t) = [t*t?e 1]

This vector product separates the distinct parameters of the parametric equation
into the unknown coefficients of x(t); [a,b.c,d,] sud the parameter i that we
wish to manipulate. Through this separation, we are able to manipulate them as
algebraic entities. If you multiply the vector product out, you find thkat the
vector product js equivalent to the parametric equation that precedes it. Denote

this product as x(t) = TC, where

T = {2 ¢ i)
and

«
4, ('

The vector T is the same for x(t), y(t) and 2(t).

We now establish constraints (as 2 set of control points) for the
equation x{t) evaluated at the bounds of the range of the parameter {, {i.e. t=0
and t=1). We consider four equations of x{t) and its first denivative x°(t) where

these boundary conditions yield four known points.

x(t)= T, when evaluated at=0, - x(0) = {000 }C,
x(t)=TC,; when evaluated at=1, - x(1) = {1 1 1 1jC,

23

and since the first derivative of x(t) is:
x‘(t) = (3?2t 10]C, = T'C,

x’(t)=T’C,; when cvaluated at=0, -+ x°(0) = [00 1 0]C,
x°(t)= T’ C,; when evaluated at=1, » x°(1} = [32 1 0]C,

We now have four equations that can be grouped into a vector product:

x(0)

x(1) 1111

<« (0)| = C,
x*(1) 3210

We recognize that x(0) and x(1) are the endpoints of the cusve
seginent and x°(0) and x°(1) are | companents of the tangent vector at the
cndpoints (y ‘(t) and 2°(t) are the other components). With this knowledge we
are able to solve the left hand side of the equation above. These points (that we
call P, through P,) are the control points that we establish for curve fitting™.
For a given curve segient the control points are fixed. We rewrite the equations

above with respect to these known countrol points:

P, D09)
P, 11
P, “loo 0%
P, 32104
. :

Denote this equation as:
G, = MC,
The watrix (5, is often referred to as the geometry of the cubic curve and M as
the basis.
This equation has the § by 1 row vector C, as the only unkaown.

The elements of the €, vector are the paraineters (s .b,.c,.d,) from the

I we estabiish ourselves & servers then thest four poiats are the user's wapul to our rou-
[83. T8

G4

parametric equations. We can solve this equation for these parameters and
establish the parametric equations with the only unknown being the parameter ¢.
The parameter t can be discretely varied over its range of 0 £ ¢ € 1, providing a
set of points on the curve. It is through these constraints that the control points
conirol the parametric equations and produce an equation that can produce a
discretely sampleable curve segment in three space. Solving the equation for C, is

siraightforward:
C, = M!G,
‘Substituting C, into the equation for x(t) yields3%:

x(t) = TM™!G,

N~

Pl D g) o SRR
AT IS por T

14

G

94 g P
EPEPE N M

2%

Siadilar arguinents yield the equations for y(t) and z(t):

y(t) = T™ G,
T g(t) = TM'G,

The meatvix M ™! is constant for all three equations and is usually
denoted by the typz of surface that it relates to Bezier - M,,, Hermite - My,
ete. It is thsough the contral points and their interaction with the constraints
that the maodels Bezier, B-splive,” €ardinal Sphine, Ferguson {Hermite ar Coon's)
susface ete. wmodify the paranetric equations and provide different ‘curve fitting
engines. » S B - |

For each model. the matrix My 90 B c?ns::sn(throughout sl
computations. To use the model requires the determination of the control points
{in conjunction with how they relate to the curve) and a vcctor_multiplé:ation
engine. Since vector pipeline computations are ideally suited to ee}n‘;u(ers. this
wwihoid becomes a fast tochnology for curve fitting with an emtuitive appeal for 2

~

progransnes.

¥ We bave just deicrmined 1he Hermute model squation far s(e).

05

.,J'..‘- ol

¥
«Tue¥a

2y
A

[

wF et

S

e

3
£3

. Pt o YT (s i "
fRo Bl S e LR T, §

3¢

b. An Example: Bezier Cubic Curves

We consider the model called Bezier [Ref. 8:pp. 514-536]. The Bezier
model defines the position of the curve’s endpoints and uses two other points (not

on the curve) which define tangents at the curve’s endpoints (by the line segment
joining the tangent points to the endpoints).

The matrix M is derived by setting the following constraints (see
Figure 6.4). One endpoint of the segment is located at P:

x(0)= P,
The other endpoint is located at P:
x(1)=P,

The line segment from P, to P, defines a tangent at P, such ihet x°(0) relates
to the points |,P; as below:

x’(0) = 3(P,-Py)
And similarly for the tangent at P, defined by P;,P:
x'(1) = 3(P~Py)

Solviny for C, 1n terms of My, yields the cubic Bazier matrix as:

-1 3 -3 1
3 -6 3 0
Ca=l.3 3 0 0%
1 6 0 OJ
Hence the equation for x(t) is:

. k
-1 3 -3 1 P,
3 -6 3 oliP
x{t) = [t e ¢] -3 3 o ollp,
1 0 0 oflp,

P Bezier Curve

;"Gg & -
.,l“: T.ggone defined by P
PJP 211’.1:0 segment. i 2

] : \‘/

<.P a line megment

c‘\
/ \Tmeui defined by
P
P3

Figure 6.4. An Example of a Bezier Curve.

The process of creating a Bezier curve given the above parametric

5 cubic engine is a simnple process of cotapating discrete points on the curve by
} substituting values along the range of ¢ and fitting the curve by connecting euch
g point with a line segineni. This provides an approximation to the curve that can
Z-: be processed at an arbivrary precision by incrementing 6t with smaller and
2;: smaller lengths.

,‘- The process of shaping a curve is accomplished by increasing or
,}i*% decreasing the two endpoint tangents formed by the four control points. It can be
f,‘% viewed intuitively by thinking about each tangent as a force which pulls the
_ ::': curve in the direction of the tangent until the force from the other endpoint
z% overcoities the original at the midpoint. The two endpoint tangents work against
_. one another proportional to the distance of &t from cach erdpoint.

2 Bezier Surfaces

}E':: Extending \he above method to cubic surface sections is accoraplished by
% adding a new parameter s that we vary from 0 € s €1 as we did with the

o7

parameter ¢ in cubic curves. The connection between cubic curves and surfaces
can be made by fixing one parameter and varying the other over its range. This

yields a cubic curve. The equation is of the form x(s,t) and is written as:

3¢2 3

x(s,t) = a,,8%3 + a;,8%> + a,38% + a5

+ a,,8%3 + a,,8%% + ay35%t + a,,8°
+ ﬂalﬁta + Qazstz + ﬂ338t + 8348
+ a“t3 + 842t2 + 843(« + ﬂ«

Written in the algebraic form:
x(s,t) = SC,T*

where S = [sa,sz.s,l], T = [t%t%¢,1] and T* is the transpose of the matrix T.

The complete algebraic manipulation of the equation to arrive at the
equation below is similar to the curve process as described in the previous
section. Its details are covered in [Ref. 8:pp. 524-536]. The equation for a Bezier

surface patch is:
x(8,t) = SM,Q.M,'T*

where M, is the same matrix as in the curve equation, My} is its transpose and
Q, is the x component of sixteen control points of a surface patch. Bezier
surfaces are intuitive in their appeal and serve the fractal rectangular mountain
well. To apply the technique to the mountain of Figure 6.3 requires the
application of a routine that takes the non-planer four sided shape of a computed
initiator and develops a connected sixteen point figure as illustrated in Figure 6.5.
The inclusion of a Bezier subroutine at the recursive termination event sfter this
figure is developed matches the sixteen point figure with a smooth curve. To
achieve «Age continuity requires that adjacent sides have the same four points in
proper juxtaposition in the sixteen point matnx. This is also demonstrated in

Figure 6.5. Bezier surfaces guarantee such continuity.

el Bezier Surface Patches
TN ZTNHE T SR TN 4
a. \ ik S . “. &.‘(AA ‘

57 - S A o .w'{.

t):u
L3

-’, B‘; Bg
4‘1‘ Qﬁ for R-‘: = B'g B9

"
S
s

P, By

Ry]
A AR

Figure 6.5. Matching Bezier Surface Patches to the Fractal
Rectangular Hountain Structure.

i

£
4’7*0‘
-’

“ el 1ot ok i, e
§ SN

3

90

R f¥ VII. CONCLUSIONS

A. DIRECTIONS FOR FURTHER STUDY

Fractal geometry as an area of research is very new. Because of this, there is
a great need for refinement and exploration. What is known needs to be refined
into a set of workable techniques with reasonable, simple terminology as its root.
The areas that are unknown need to be explored intrepidly. With this goal in
mind, the following paragraphs quickly review some areas of prospective research.
The reader is invited to explore their potential.

1. Development of New Fractal Functional Methods

The current tools of fractal functions are tentative and limited in their
ability to yield insight. New applications of the recursive initiator-generator
paradigm are waiting to be discovered. This area of research is especially good for
the graphics programmer since the graphics medium is currently the best method
for fractal experimentation. As these new functions are developed, they can be
shared, yielding a glossary of modeling functions that can be molded into a
cohesive theory*®. Related to this is the need to develop a functional language
(within the language of mathematics) of fractal geometry to aid in the
comsmunicatior of ideas and in the eventual coalescence of the theory.

2. Fractal Lighting Model

The current state of Lhe art in computer graphics lighting models lacks a

complete model for the pixel set paradigin that was intioduced in Chapter 5.

There ave a great inany practical applications!! which demonstrate successful
lighting techniques but no published model exists. This ndicates a piecemeal
undisciplined adaptation of the Euclidean based lighting models. Ray tracing
techniques look promising, as does an adaptation of the Torrance-Sparrow

lighting model that was discussed in chapter 5. A good pixel set lighting model

would open the avenue of complex =rrain modeling to a much wider audience.

s “ Nature's fractel map?
}}g@; * As evidenced by the fractal pictures thet have been published.

100

o/
¥

) N

P

g
Eyty
r)

40,
¥
Mz

¥ | 2
N Lt
LY *Eoti it}

*

PRI T

et

o A g Mg R Wy Al
AT RN)

l": “ﬁ*ﬁrﬁn",ﬂ"&?‘:a !1
(AR Bl Rt Yo, oo} -

A%

v 3
‘ig‘ﬁ;

3
*
Yy b
oot

o
Pod

s
-

* If’il

O
m‘fu} N

8

“
i

L)
? b}

¥

3. Fractal Music

In [Ref. 7] Voss demonstrates the application of fractal recussive

techniques to —}- noise and has produced interesting if not pleasing tonal results.

It is safe to surmise that sound is a roughly textured physical phenomenon and
that it may be possible to create or decipher sound using a fractal model. Such a
discovery would aid science in the area of (rapid) speech recognition.

4. Fractal Computer Graphics Architectures

It is clear from our discussion that new computer architectures need to
be developed to support the pixel set paradigm and the computational aspects of
fractal functions. Such special architectures require parallel processing capabilities
coupled with vast memory resources. A real-time fractal terrain image generator
is one such architectural possibility.

5. A Better Fractal Definition

Fractal geometry is currently attaining a wide audience. Because of that,

it is time that trained mathematicians tackle the problems associated with the

imprecise and unworkable current definition of fractal sets*2. That definition uses
competing definitions of dimension, each of which is somewhat difficult. A new
definition could be based on a fractal set’s functional or statistical qualities. Such

a definition scheme must provide tools to further its workability.

 Sadly, there has been little attention from the mathematizal community, although that is
chenging. 1t is with great timidity that ones accepls fractal geometry without such scrutiay.

101

o

1

¥ B. CONCLUSIONS

:E:: Fracta! geometry is an old idea that has found a new application with the
t.jf advent of computer imaging techniques. Its acceptance, has spawned a great deal
:‘i of research and has provided a new tool to observe nature through a different
i : perspective. We must be careful to insure that our findings are in fact valid. We
:ié also must begin the coalescence of the many techniques that have been developed
'!" in order to control the growth of this concept and to attain true scientific
:' acceptance. Without this acceptance the theory will be criticized (validly) as an
’ imprecise and unproven idea*3. This would be an unfortunate occurrence because
! of the potential that fractal geometry possesses. |
- It is the hope of the author that this work has illuminated the subject of
_‘ fractal geometry and that it will aid others in their research. The purpose and
;-:gl essence of fractal geometry is based on simple concepts. The reader must not be
E%: overawed by the current literature and should retain his perspective with a mild

dose of skepticism. He must not be blinded by skepticism though as the potential
of fractal geometry has not yet been realized. In the final analysis, we expect
that even the skeptical reader will discover the mathematical beauty and

applicative power that fractal geometry possesses.

o © This of course i the current state of affairs with fractal geometry.

& 102

%

::5; APPENDIX A: FRACTAL COMPUTATION IN R?

:

":“- The first routine is the main routine which initializes the data for the Koch curve
‘E . generator and initiates the recursive process on each side of the initiator triangle.
¢ The second routine is the recursive subroutine which performs the generator
3 . replacement until the recursive termination event is reached. The termination
‘," event is defined by the precision of the desired output medium.

e

) KOCH.C

/‘
This is the main program which controls the initialization of
: the koch generator parameters and initiates recursive operations
Ry on each side of the initiator triangle.
&) '
» /* Global generator and initiator data */
* int Generator_points;
<3 /* The number of points in the GENERATOR ¢/
= double Gen_angle[1u);
} f* The angle formed between init_pointl
8} and gen_point */
) double Gen_ratio[10};
" /* The between init_pointl to gen_point and
3 gen_point to init_point2 */
% double Tan_theda|10};
/* The tangent of the angle formed between
5y init_pointl and gen_point */
1‘: double Cur J}O!N!!ZO"Z}
2 [* Vertices of initiator structure */
’ int Object_points nmb;
> /* The number of vertices of the initiating structuse */
5 Al
;é: $include <math.h> /* Standard UNIX iacluce file for math library */
3
i #define x 0
n:. g¢definey
;*.r“
N
-
!_i
Y5
A 103
.%‘
N
L]

4
P -

/* BEGIN MAIN PROGRAM */
main()

/* Local variables */
int I;

/* Initialize global variables */

y
. *:,
i

Skl

Ea

/* Initial points of the INITIATORS for demo */

o
i

.

-
‘e
-

Cur_point[0}[x] = 4.0;
Cur_point[0]ly] = 3.0 + sqrt(3.0);

"
L
oy

-
ok
2

Cur_point[1}[x] = 5.0;
Cur_point{l]ly] = 3.0,

Cuz_point[2]|x] = 3.0;
Cur_point[2]ly] = 3.0;

/* Remember to close the side of the triangle */

=5

r::.: Cur _point|3|[x] = 4.0;
b Cur_point(3jly} = 3.0 + sqrt(3.0});

- ;

it Object_pnts_nmb = 3;
L Generator_points = 3;

e b4 /* Angle (in radians formed between init_pointl and gen_poiut
A for demo) */

. ;’..;

‘_ 4 ' Gen_angle(t] = G.0;

.‘ﬁ;: Gen_angle{2] = 0.4712388;

S Gen_angle]3] = 0.0;

2‘2‘;7 /* Ratio of distance between init_pointl and gen_poiat{i) and
e distance between gea_point(i) and init_point2 ‘f

L5

D) .

T4 Gen_ratio[l] = 0.5;

2’3 ' Gen_ratiof2] = 1.0,

2 Gen_raticl3] = 2.0,

104

f\:“?: /* Tangent of angle between init_pointl and gen_point(i) */

zg' for (I=1; 1 <= Generator_points; I++)

O {

'f’{f!" Tan_theda(l] = tan{Gen_angle{]);

o | |

e _
’;i / BEGIN RECURSIVE BUILD OF ALL INITIATORS INTO KOCH CURVES
ol o ~
:‘ /* The Koch curve is defined in the infinite bat our recursion

s will terminate after the distance between points becomes less

;‘:“, then the length of the precision. */

eI

j‘\':é: for (I=0; I < Object_pnts_nmb; I+ +)

Y {

e generate(Cur_point{lj{x|,Cur_point{ljy|,

zé::: Cur_point{i+1}ix],Cur_point{l+1i}ly});

jf{w [* END MAIN */

O }

o

oy

-

L9

{133

LY _
i) .~ GENERATE.C
- ‘ : S
) .
‘ ') T 2] W . - .
: _ - This subroutine computes the generator from a given set
u,;g of points in R? that define a line segment which is the
{'c' _ initiator. The rcutine is recursive and terniinates at a predefined
By : ' precision that is input to the subroutine.
R, */
st o /* Externel global generator data; defined in main subroutine */
S extern int ‘Generator_points;
' {* The number of points in the GENERATOR */
=) 2 extem double Gen_angle{10];
' [* The angle formed between init Jmmtl _
" and gen point _ */
R . extern double Gen_ratio[10];
i _ A [* The between init_pointl to gen_point and
B _ gen_point to init_point2 -
R extern double Tau_theda|10};
£ / * The tangent of the angle formed between
‘_‘_ init_pointl and gen point - */
3] ' :
. #include <math.h> /¢ Standard math include file for UNIX lib ¢/
23 [* BEGIN RECURSIVE PROCESS */
f‘: generaw{‘(! Y 1X2,Y7 pracision)
oy F* Parameter variables *f
© double X1.V1.X2,Y2 precision;
= , . { :
& s /' Local variables *F
v;} o B leng N; »_
koo . ; ' double Paerayiiji2):
R SRR double G_poiat{10!42].DIST;
' ~ double Slope_init Slope_perp. Siope_gen;
- ~ double X perp. ¥ _perpb_perp.b_gen TEMP;
£ , o double ten_thousaud onezerosuinus_one;
nj;; -l it LY,
3 7 assign coastants ¥/
' ten_thousand = 1003).0; ore = 1.0; zero = 0.0, minus_one = -1.0;

168

/* The Koch curve is defined in the infinite but our reeursion
will terminate after the distance betweer points becomes less
then the length of a pixel. */

/* Determine distance between point 1 and point 2 */

TEMP = (X2 - Xi)*(X2-X1) + (Y2- Y1)*(Y2-YV:y);
DIST = sqrt(TEMP);

/* IF DIST less than the precision then terminate this
recursion and begin backtracking */

if (DIST < precision)
{
/* Put your Foint plotting routine here /
printf{"polyline 2%);
printf{"%{ % 0.000000",X1,Y1};
printf("%§ %f 0.000000",X2,Y2};
return;

}

[* Put INITIATOR points one and two into the first and last
points of the GENERATOR points array as they are always
part of the generated structure */

G_point|l)i} = Xy;
G_peinthlf2] = Yy,
G_point{Generator_points + 2J{1; = X2;
G_point|Generator_points + 2J{2} = Y2,

107

/* Determine the slope of the line formed by the init_point1
and init_point2. This is the slope of the INITIATOR */

if (X2 1= X1)

%,%e;‘; if {(Y2 '= Y1)

~f; Slope_init = (Y2 - Y1)/(X2 - X1);
! %{ }

e else

S {

N%g Slope_init = 0.0;

kY, WY }

else

: /* We can’t have infinity in a register
so settle with 10k */
o Slope_init = ten_thousand;

B }

SN /* For each GENERATOR point (except end points as they are equal
;?:::; to the INITIATOR end points) find the X,Y values. This is
‘;2:;} accomplished by using the data from the global external variables.
f The constant data about the ratios and angles between the

. INITIATOR and GENERATOR remair: the same regardless of the
;:i 4 INITIATORS length or position in EUCLIDIAN space */

50:;. for (I=1; I <= Generator_points; I++)

{

1,2‘% /* Using the ratios of the generator perpendicular intercept
R points on the INITIATOR determine the X,Y values of the
ie:l.;t point of intersection cf the perpendicular from the
¥ i GENERATOR point to the INITIATOR line. */

€

X _perp = (X1 + Gen_ratio[l] * X2)/(1.0 + Gen_ratioll});
* Y perp = (Y1 + Gen_ratio[l] * Y2)/(1.0 + Gen_ratioll]);

I l'8‘|. 1 08

W)

5 e

<
s

]

i

g0
o
-

o, .
gtz AT

A
By
8

gy
.M
T ©f
‘,.-

i : .

et ot ool -
R A e R

=

i,, e
AP DS

KQ

/* If the sz zie of the INITIATOR point 1 and the GENERATOR
point in question is zero the: the GENERATOR point is

coincident with the INITIATOR line and no further
calculatiors are necessary */

~if { Gen_angle[l] == zero)
G_point{I-+1}{1; = X_perp;
G_point{I+1]}[2] = Y_perp;

else

{

/* There are three STATES possible at this time. STATE 1
where the slope of the initiator line is parallel
to the X or Y axis (which causes havoc with the line
equations). STATE 2 where the slope of the line formed
by the initiator point 1 and the unknown geierator point
is parallel to the X or Y axis. Or STATE 3 where no lines
are parallel to any axis. */

/* Determine the slope of the line through the INITIATOR
point 1 and the unknown GENERATOR point using the
tangent of the Gen_angle in Init.h *f

Slope_gen = (Tan_theda[l] + Slope_init)/
: ~ (one - Tan_thedal[l] * Slope_init);

if ((Slope_gen != zerc) &&
(Slope_gen < ten_thousand))

| [* Condition one of STATE 3 */
| /* Determine Y-intercept for the generator line */
. b_gen = Y1 - (Slope_gen * X1);

if ({Slope_init == zero) ||
(Slope init == ten_thousand))

/* STATE 1 ¢/

1090

if (Slope_init == ten_thousand)

{
/* STATE 1 condition 1; INITIATOR is parallel
to the Y axis */

G_point{I+1][2] = Y_perp;

G_point{I+1][1] = (G_point{I+1](2] - b_gen})/
Slope_gen;

}

else

[* STATE 1 condition 2; INITIATOR is parallel
to the X axis */

G_point[I+1}{1] = X_perp;
G_point[I+1][2] = Slope_ger *
G_point[I+1]{1} + b_gen;

}
} /* END STATE 1 */

Ly else
Bl /* STATE 3 */
-‘f; \ /* Determine slope of perpendicular line through the
INITIATOR perpendicular intercept. ¥/
: ‘Slope_perp = (minus_one)/Slope_init;
'«§ ©|* Determine Y-intercept for perpendicular line */
! _ !
J ' ,
j b perp =Y _perp- (Slope_perp * X _perp);
e '
_‘ 3 /® Determine the XY values of the unknown GENERATOR
R point. /
Lol
i; G_poiat{l+1j[1] = (b_perp -b_gen)/

~ (Slope_gen - Slope_perp);
G_point[i+1](2] = Slope gen *
G_point[I+1]]}} + b_gen;

AL BN

§.\
o

Py ;‘
Ay
;r'f"-(‘*‘»r-

i

\
!

g\
[

} /* END STATE 3 cond. 1if ¢/

U™ A Ny
A W Kt 35 &

i gV
> e o

aREaas

110

(¥

S
A

g s

else
{
[* STATE 2 */

Slope_perp = (minus_one)/Slope_init;
b perp = Y _verp - (Slope_perp * X_perp);

if (Slope_gen == one)

{
G_point({I+1][1] = X1;
G_point|I+1][2] = Slope_perp * G_point{I+1]{1]
+ b_perp;
}

else

G_point|[I+1jj2] = Y1;
G_point[I+1][1] = (G_point{I+1}[2] - b_perp)/
Slope_perp;

}
} /* ENDIF ¥/
} /* END FOR */
/* Start recursion on each line formed by the generator from
right to left */

for (J=1; J <= Generator_points + }; J++)

generate(G_point{J] [1],G_point(J] (2],
G_point[J+1]}|1],G_point[J+1](2],precision);

/* END gene-ate */

}

111

T R=a ARL ASH SiL s

APPENDIX B: RANDOM NUMBER GENERATORS

The routine below is a C UNIX UCB implementation of the
uniform distribution [0,1) - standard normal [— 00,00} transformation. It
generates a 500 entry table of random numbers that observes the period of the
standard normal distribution. Following this routine are statistics that verify the

transformation.

RANDOM. TABLE.GENERATOR.C

/ *
This subroutine will build a table in memory that contains 500 random
numbers that observe the period of a standard normal variable

*/
#include <math.h> /* Standard UNIX include file for math library */

/* External global variables */

extern double RAND|500};

/* BEGIN MAIN PROGRAM */

rand_table_gen()

/* Local Variables */
int LJ;
double UNFI1, UNF2;

double range,pi;
int factor;

pi = 3.1415926535;

112

/* Determine the range for the random numbers of UNIX UCB */

range = 2;
for (J=1; J<=30; J++)
{

range = range * 2;
range = range - 1;
/* Set the random number generator seed */
srandom(475836);
/* Create a Table for 500 entries */
for{(l-—-O; 1< 500; 1 =1+2)

/* Get a uniform random number through the Unix C subroutine */

UNF1 = random();
UNF2 = random();

e ?y
)
-

e

[* Normalize the uniform random number to the interval [0,1] */

7 2y

H

K,

I
-~

UNF1 = UNF1 / range;
UNF2 = UNF2 / range;

/* Mold the uniform random variable into the approximate normal
distribution */

> o -
oo
x3

A

- o
]
o

" D e

=

factor = 1.0;

if (log(UNF1) < 0.0) factor = -1.0;

RAND({l] = sqrt(factor * (2.0 * log(UNF1))) *
cos ((2*pi*UNF2));

RAND(I] = RANDI]] * factor;

factor = 1.0,

if (log(UNF2) < 0.0) factor = -1.0;

RAND{I+1] = sqrt{factor * (2.0 * log(UNF1))) *
sin ({2°pi*UNF2));

RAND[I+1] = RAND[I+1] * factor;

g S

X

}

return,

113

Y
o) a ¥
A\;;

: ‘ik ‘"55 h e T Uh R B T T D - SRR R RS U R AL UL . TR A O . 4 e R TR et R %A e g A N R R owm e oA

'i

VERIFYING STATISTICS

The UNIX UCB operating system's uniform distribution random number

generating function spans the interval defined by its integer range. For a VAX
11/780 implementation this is equivalent to 2%! ~ 1 or 0,2147483647).

The random number seed was assigned the value of 475836. The UNIX UCB
random number generator with a fixed seed yields a fixed sequence of numbers
returned from the function, uniformly distributed over the range. This yields a
valuable function if the table needs to be reproduced with the same sequence
after transformation.

The table below shows the results of the uniform distribution sequence after
it was squeezed into the interval [0,1). These results show that the uniform
distribution has an acceptable distribution over its range. The transformation

into [0,1] preserves the distribution from the original range ([0,23 - 1)).

Analysis of the normalized uniform random numbers

0.0 - 0.1 =52
0.1-02=47
02-03=44
03 -+04=49
04 - 05=49
0.5 - 0.6 = 47
06 - 0.7 = 5]
0.7 ~ 0.8 = 57
08 - 09 =48
09 - 1.0=56

Oy - o)

= Py Ty
2

oo

g 2 A

#

SSET

3,
b

The table below shows the distribution after the
uniform distridution [0,1] ~ standard nrormal [-o00,00 transformation given the
numbers as described in the above table. This is the data which was used to
build Figure 5.9. The transformation is acceptable for the purpose intended, that

15, to simulate nature’s perceived disorder in a fractal function.

A% ‘{ B 44«
;i £y
o

Tyl
Lol aladnds

|
T
o,

- i

i

114

@Re et 2

Vo)
[l ot

IAESRRAL LA GEARS Gl k. folf Bl T Pt LA M L LR TR t o W A P . P PR T a4

. Analysis of the normal (Gaussian) random numbers

X<=-27=5
o 2.75<X<=-225=8
f -2.25< X <=-1.75= 16
;§i(. 175 < X <= -1.25 = 29
A :' -1.25 < X <= -0.75 = 56
ga;g . -0.75 < X <= -0.25 = 88
ol -0.25 < X <= 0.25 = 115
O 025 < X <= 0.75 = 87
?.;:% 0.75< X <= 1.25 =59
! ’,! 125<¢<X<= 175=21
Y 1.75< X <= 225=12
A 225< X <= 275=4
275< X =0

W pn m e e
u‘" L ¥ *
e S L
==

o
o

s
Vo

-y
[

V24

o s 9, VoK
oot i

BN Froh
Y Sy
3,

L iR

(3
:"f‘.f-it.
e ot woi” &

¥

d]
L

>

o
e
.ﬂ-)’:-’

115

143
St

»

i
i

APPENDIX C: THE TRIANGULAR MOUNTAIN

The first routine is the main routine which initializes the generator data for
the initiating triangle and initiates the recursive process. The second routine is
the recursive subroutine which performs the generator replacement until the
recursive termination event is reached, which is defined by the precision

parameter.

MOUNTAIN.C

/ *
This is the main program that controls the initialization of the triangle
initiating structure and initiates the recursion on that triangle. The
recursion will proceed until the recursive termination event (defined
by the precision global parameter)

)

#include <math.h> /* Standard UNIX include file for math library */

/* Global Defines */

K #define x 0

3}3‘5 $define y 1

fv‘.{,, #define z 2
=

4-‘

/* Global Tables */
double RAND{500];

double Precision;
double Scale;

116

/* BEGIN MAIN PROGRAM */

main()

/* Local Variables */

int LJK;
double P1(3],P2|3},P3(3};
int Seed;

/* Create the initiating triangle strucinre ¥/

Pllx} = 4.5;

P1fy) = 3.25;

Pifz] = 0.5

P2[x] = 7.0;

P2y} = 3.25;

P2[z] = 0.0

P3[x] = 5.75;

P3[y] = 3.25 + sqrt(((2.5 * 2.5) - (1.25 * 1.25)));
P3[z} = 0.0;

/* Build the random number table (appendix B) */
rand_table_genl);
/* Fractalize until desived precision */
Seed = 0; [* Entry sced to the random number table * /
Precision = 0.3; /* Recursive termination distance */
Scale = 0.2, /* Scaling factor for vertical Y displacement
in the mountain_generate subroutine */

mountain_generate(P1,P2,P3,Seed);

/* END MAIN ¢/

117

- e N W N WD W kWD P R W A T WP gl AR RS R T

| GENERATE.MOUNTAIN.C

vl

1:}9‘

:?;‘
_ }‘,:" /*
‘.iff. ' This is the subroutine that computes the four generated triangles from
R an initiating triangle. The routine is recursive and terminates at a
fgﬁ' ' predefined precision defined in the global parameter Precision
"
‘?Q‘
s 4 #include <math.h> /* Standard math include file for UNIX lib */
X :{; #definex 0

'i:’ fdefiney 1

‘ $define z 2

A

' /* Global Structures */
. i‘

i) extern double RANDI|500};

N ‘ le RAND

) extern doubie Precision;

"q‘, extern double Scale;

A

* /* BEGIN RECURSIVE PROCESS */

i mountain_generate(P1,P2,P3,Seed)

/* Parameter variables */

double P1(3),P2(3},P3|4};

int Seed;

X
N /* Local variables */

X
mt L
£ double Pgen1(3],Pgen2|3],Pgen3(3);
W double Pmid1[3],Pmid2{3),Pmid3{s);
* double TEMP DIST, TWO,

o TWO = 2.6;

X

2

[3

T o N e ¥ v it
LRI AT LIS 2 B A S

118

Y
L e ¥i ™

v.Y.

/* Determine distance between point ! and point 2 */
TEMP = (P2[x| - P1[x])*(P2[x] - P1{x]) +
. (P2ly] - P1fy])*(P2iy] - P1[y]) +
: (P2fz] - P1[])* (P2 - P1(2]);
DIST = sqrt(TEMP);

/* IF DIST less than one tnen terminate this recursion and
begin backtracking */

if (DIST < Precision)
/* Put your polygen plotting routine here */
printf("polygond"};
printf{"%f %f %f*,P1|x],Pily},P1[z]);
printf("%f %f %", P2|x|,P2ly],P2[z]};
printf("%f %f %, P3(x|,P3[y].P3[z]);
return;

}

/* Manage the Seed number for a 500 entsy table */
if (Seed > 496) Seed = 0;

/* Find the midpoints of each triangle leg */
for (I=0; I<=2; I4++) /* Othru 2 => xy,.2 */

Paida[1] = (P3[I] + P2[l)) / TWO;
\ |

for (1=0; i<=2;1+4) [*Othru 2 => xy,:2*/

Pmid2(l] = (P2{l] + P3[1)) / TWO;
)

for (1=0; I<=2; I++) /* 0thru 2 => xy.z */

{
Pmid3[l] = (P31} + P1fl}) / TWO;

1190

- V"F .
.‘S\Q
!;g.,

gl ek
A

Ll et

i)
g

."-.t,,,t. { Fe o .
POl 26" 1

5L

*:
'S
L3

Yil
:

&
pLd

5
e

RO
! 3 ." .
e

¥
A

»
"-

3

/* Adjust the Y coordinate => normal from 2-X plane */

Pmidl]y] = (Scale * RAND|Seed]) + Pmidlly);
Pmid2ly] = (Scale * RAND|Seed+1]) + Pmid2[y];
Pmid3ly] = (Scale * RAND[Seed+2]) + Pmid3ly};
Seed = Seed + 1;
/* Recurse on the triangles according to the reverse order rule
for the interior triangle to preserve seed order */

0 u #

mountain_generate(Pmidi,P2, Pmid2,Seed);

mountain_generate(Pmid3,Pmid2,P3, Seed);

mountain_generate(P1, Pmidl,Pmid3,Seed);

mountain_generate(Pmid2,Pmid3,Pmid1,Seed);
/* END gerierate */

}

130

APPENDIX D: THE RECTANGULAR MOUNTAIN

The first routine is the main routine which initializes the generator data for
the initiating rectangular shape and initiates the recursive process. The second
routine is the recursive subroutine which performs the generator replacement
until the recursive termination event is reached, which is defined by the precision

parameter.

RECTANGULAR.MOUNTAIN.C

/.
This is the main program that controls the initialization of the rectangular
initiating structure and initiates the recursion on that rectangle. The
recursion will proceed until the recursive termination event (defined
by the precision global parameter)

*/

finclude <math.h> /* Standard UNIX include file for math library */

/* Global Defines */

gdefine x 0

$define y 1

$definez 2

/* Global Tables ¢/

double RAND{500};

double Precision;
double Scale;

121

- -y k. i my PRI PRI VP T AMAINE L DN A TN SR AT WA

/* BEGIN MAIN PROGRAM */
maijn(}

/* Local Variables */
int LJK;
double P1]3],P2[3],P3[3],F4[3];
int Seed;

/* Create the four sided polygon initiating structure */
Pi[x] = 2.0;
Plly] = 5.0;
Pl[z] = 1.0;

P2[x] = 6.0;
P2[y] = 5.0
P2[z] = 1.0

P3[x] = 7.5;
P3ly] = 6.5;
P3[z] = 3.0;

]
b

[

a}‘:f - .

P4[x] = 3.5;

1
8
.

2
A
% -'
B

P4ly] = 6.5;
B P4[z] = 3.0;
/* Build the random number table (appendix B) */
. ‘ rand_table gen();

/¥ Fractalize until desired precision */
Seed = 100;
Precision = 0.5;
Scale = 0.07;

v‘-v-
s

1

. .0.‘_, .

e e AR

£

mountain_generate(P1,P2,P3,P4,Seed);

IR T

- rd

/* END MAIN */
}

L i
3%

>

i

ok

LSV

L}
A
Pic

13
o s

PR el 4

e P R
P 1

e .
sl Pl

122

B DO N PR G PR VO L T R SRR

RECTANGULAR.GENERATE.MOUNTAIN.C

/*
This is the subroutine that computes the four generated rectangles from

an initiating rectangle. The routine is recursive and terminates at a
predefined precision defined in the global parameter Precision

/*
#include <math.h> /* Standard math include file for UNIX lib */

#define x 0
#definey 1
#define z 2

/* Global Structures */

extern double RAND{500];
extern double Precision;
extern double Scale;

/* BEGIN RECURSIVE PROCESS */
mountain_generate(P1,P2,P3,P4,Seed)

/* Parameter variables */
double P1{3],P2[3]'P3[3]'p4[3];
int Seed;

/* Local variables */
int LJ;
double Pmid1[3],Pmid2(3],Pmid3{3),Pmid4(3],Center(3);
double TEMP ,DIST, TWO,FOUR,

TWO = 2.0; FOUR = 4.0;

/* Determine distance between point 1 and point 2 */
TEMP = (P2lx] - P1[x)}*(P2[x] - P1[x]) +
(P2{y] - P1ly])*(P2[y] - P1ly]) +
(P2[e] - P1{z])* (P2[2] - Pi{e))
DIST = sqrt(TEMP);

123

w5

") LT3 JRE Y M IS
A - 5

T A T A R R N MR Tt R, T et P L P T LS R N
RN E N RN M T T N T e T e e e N B A T O P N M

3
S NN TN B8 At S A N Nk - th™ Al T Nl 2
8 R R T R N i A A P N A PR I O T A R, .

/* If DIST less than one then terminate this recursion and
begin backtracking J
if (DIST < Precision)

/* Put your Polygon output routine here */

printf("polygon4");

printf("%f %f %" ,P1|x],P1[y],P1]z]);

printf("%f % %, P2|x],P2[y],P2[z]);

printf("%f %f %f",P3[x|,P3ly],P3[z]);

printf("%f %f %" ,P4[x],P4[y],P4[z]);
return,

}

/* Manage the Seed number for a 500 entry table */
if (Seed > 496) Seed = 0;
N

/* Find the midpoints of each rectangle leg */
for (I=0; I<=2; I++) /* 0thru2 => x,y,2 */

Pmid1[I] = (P1{I} + P2[]) / TWO;

for (I=0; I<=2; I++) /* 0 thre 2 => xy.z */

{
Pmid2(]] = (P2[I] + P3[1])) / TWO,;

i - for (I=0; I<=2; I+4) /*0 thru 2 => xyz */
B8 pmias = (s + Pall) / TWO,
o | © for (I=0; Ic=2; I++) /* 0 thru 2 => xy2 */
{

{ Pmidafl] = (P + P4fl)) / TWO;
- Y B) a

)

I
ot 5
b
e

- ~“.f) vl ’

KA i g R
N f:
e 2

x 5
J»—

ey
02 o)

{'

124

Aprhydy -t
ol o

AR e

hia®.

o

L
%
L

. .
h T e N
‘ “W"
. st]
P ve s e,

P
5 —’ LY WA,

P e

/* The four sided polygon is non-planar so average the xyz-displacement
for a best fit approach */
for (I=0; I<=2; I++) /* 0 thru 2 => x,y,z */

Center(I) = (P3(I) + P1[I} + P4[I] + P2[1]) / FOUR;V

/* Adjust the Y coordinate => normal from Z-X plane */
Pmidl[y] = (Scale * RAND[Seed]) + Pmidl[y];

Pmid2[y] = (Scale * RAND[Seed+1]) + Pmid2[y];
Pmid3[y] = (Scale * RAND[Seed+2}) + Pmid3[y];
Pmid4[y] = (Scale * RAND|Seed+3]) + Pmid4[y];
Center[y] = (Scale * RAND[Seed+4]) + Centerly];
Seed = Seed + 4;

/* Recurse on the rectangles according to the reverse order rule
for the interior rectangles tc preserve seed order */

mountain_generate(P1, Pmidl, Center,Pmid4,Seed);
mountain_generate(Pmid2,Center,Pmidl, P2, Seed);
mountain_generate(Pmid2,Center,Pmid3, P3, Seed);
mountain_generate(P4, Pmid3, Center,Pmid4,Seed);

/* END generate */

2L

e 5

e ..ﬂ.rtn o
LA LA :

sAPART]

o

- e o
N A

[3

APPENDIX E: GEOMETRIC SUPPORT

Many fractal applications and computer graphics models use the normal to a
plane as a computational reference point. For this reason, this appendix is
devoted to two tools for determining the plane equation of 2 polygon and the

equation of the normal to the computed plane.

Determinant Approach to the Planar Equation

One of the most common forms of a planar equation is the general form. This

form uniquely describes a plane through four coefficients A,B,C and D:
Az +By +Cz =D

With three points on a plane, you can determine the planar equation by
computing the coefficients. This approach utilizes the determinant form of the
planar equation. Given the points P, = (z,,4,,2,), P; = (z2.02.2,) and
P; = (23,03.23) such that P, # P, # P, these points determine a unique plane

in space through the determinant equation:

X—X; Y-y, £—¢g
X=X Y2a-Y1 -] =0

X=X Y2— N L2 %y
To simplify the equation, we replace the constant differences by the expressions:

Clxz X2 — X

C2, = x3 - x,
Cl, = x; -y,
C2 = %3 -y,

Cl.: XZ“ z,

Cz, = x35 - 2,

120

Evaluating the determinant using the diagonal approach yields:

[(x - x,)C1,C2, — (x - x,)C1,C2,] +
[y - v1)C1,C2 - (v - v1)CLC2] +
[(z ~ 2,)C1,C2y — (2 — 2,)C1,C2] = 0

. Solving the equations for x,y and z in terms of the constant expressions:

A = C1,C2, - CL,C2,

B= C1,C2, - C1,C2,

C= C1,C2, - C1,C2,
= —|Ax; + By, + Cz,]

The Normal to the Plane

Once the parameters A,B and C have been determined, the solution of the
linear equation for any normal to the plane is straightforward. Using the plane
parameters in the parametric equation for the normal line to the plane and using
any known point on the plane (Xpwn:Yiwn:Zkwn) (the midpoint of the fractal

triangle for example) determines a normal line as:

X=ka+cA
Y=yk“+cB
Z=th+ec

where ¢ is a parameter such that ¢ is an element of R. By varying the parameter

¢ we can solve for unique points on the normal line to the plane.

127

At

LIST OF REFERENCES

1. Benoit B. Mandelbrot, The Fracial Geometry of Nature, W. H.
Freeman and Company, 1983.

2. Donald F. Stanet and David F. McAllister Diseretc Matheraatics
in Computer Science, Prentice-Hall, Inc., 1977,

3. Felix Hausdorff, Set Theory, Chelsea Publishing Company, 1957.

4. Alan Norton, Generation and Display of Geometric Fractals in 3.1,
Computer Graphics, vol 18, no. 13, July 1984.

5. J. Perrin, La Discontinuite ‘s de la Matiere, Revue du Mois, vol 1, 1906;
quoted by Mandelbrot in Ref. 1:pp 7-9.

6. Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton
University Press, 1941.

7. Special Interest Group on Computer Graphics of the Association for
Computing Machinery (SIGGRAPH), Fractals: Basic Concepts,
Computation and Rendering, Course on Fractals July 23, 1985,

8. James D. Foley and Andries Van Dam, Fundamentals of Interactive
Computer Graphics, Addison-Wesley, 1982.

9, Jagdish K. Patel and Campbell B. Read, Handbook of the Normal
Distribution, Marcel Dekker, Inc, 1082.

128

;" Wy Distribution List for Papers Written by Michael J. Zyda

Defense Technical Information Center,
Cameron Station,

Alexandria, VA 22314 2 copies
. Library, Code 0142

Naval Postgraduate School,

Monterey, CA 93943 2 copies

Center for Naval Analyses,
2000 N. Beauregard Street,
Alexandria, VA 22311

Director of Research Administration,

:‘;.:.: Code 012,

::, A Naval Postgraduate School.
al::l Monterey. CA 93943

A

'ig\‘:‘ Dr. Henry Fuchs.

208 New West Hall (035A).
University of North Carolina.
Chapel Hill. NC 27514

Dr. Kent R. Wilson. -

University of California, San Diego
B-014.

Dept. of Chemistry,

La Jolla. CA 92093

Dr. Guy L. Tribble, 11l
900 Waverly St
Palo Alto. California 9430}

Bill Atkinson.

Apple Computer,
20525 Mariani Ave.
Cupertino. CA 95014

Dr. Victor Lesser.

University of Massachusetts. Amherst

Dept. of Computer and Information Science.
Amherst. MA 01003

Dr. Gunther Schrack.

Dept. of Electrical Engineering.
University of British Columbia.
Vancouver. B.C., Canada V6T 1W5

Dr. R. Daniel Bergeron.
Dept. of Computer Science.
University of New Hampshire,
Durham. NH 03824

ST Auvoas eiroycpny o e o w e s =
acgny e e P FEL W ETLN VIT VR .S IS W T WPt T T TW T T Ty

moowow. MW Bh A LRt e v " TRl TR AR % ek o W A -

i 2.
K
' ;:: Dr. Ed Wegman,
B Division Head,
-::gg Mathematical Sciences Division,
. Office of Naval Research,
. 800 N. Quincy Street.
,:’g,‘.' Arlington, VA 22217-5000
0
Yg?; Dr. Gregory B. Smith,
B ATT Information Systems,
o 190 River Road.
;;.; Summit. NJ 07901
iy
1:3 Dr. Lynn Conway.
2{:' University of Michigan,
f.:.t_ 263 Chrysler Center.
e Ann Arbor, MI 48109
o Dr. John Lowrance.
' lt',!' SRI International.
:1 333 Ravenswood Ave,
o Menlo Park. CA 94025
ALY
e Dr. David Mizell.
‘tj Office of Naval Research,
i 1030 E. Green %t.
- ' Pasadena, CA 91106
;)
" Dr. Richard Lau,
i Office of Naval Research.
; Code 411,
: .:\! 800 N. Quincy St.
_ l:\ Arlington. VA 22217-5000
3
Bt Dr. Y.§. Wy,
. Naval Research Laboratory.
' t Code 7007,
by Washingron. D.C. 20375

Dr. Joel Trimble,
Office of Naval Research.
Code 251,

Arlington. \'A 22217-5000

Robert A. Ellis,

Calma Company.

R & D Engineering.

925 Syeamore Dr.. M/$ C510

Yy PN

Milpitas. CA 93035-7489)
%
N Dr. James H. Clark.
. Silicon Graphies. Ine.
R 2011 stierlin Road.
1—. Mountain View. CA 94043
3
.
i o
i8]
B

el g ¥,

gy

B
o -3
i
o
::::s Edward R. McCracken,

] Silicon Graphics, Inc.
S 2011 Stierlin Road.
n Mountain View, CA 94043
el
R Shinji Tomita,
f*.".; . Dept. of Information Science,
§$NI Kyoto University,
A _ Sakyo-ku. Kyoto, 606, Japan
@é Hiroshi Hagiwara,

; Dept. of Information Science,
Y Kyoto University,
X Sakyc-ku, Kyoto, 606, Japan

e Dr. Alain Fournier,

o Dept. of Computer Science.
’,x:l} University of Toronto.

s Toronto. Ontario. Canada
KN M5S 144

A\

vt Dr. Andries Van Dam.

_' Dept. of Computer Science.
=T Brown University.

% Providence. R1 02912

hL!

Fit Dr. Brian A. Barsky,

- Berkeley Computer Graphics Laboratory,
K2 Computer Sciences Division.
1 Dept. of Electrical Engineering and Computer Sciences,
"i University of California.
el Berkeley. CA 94720
‘;_)‘ Dr. Ivan E. Sutherland.

;:!l‘ Carncgie Mellon University.

i; Pittsburg. PA 13213
Q\}% Dr. Turner Whitted.
ht, New West Hall (035A).

5! University of North Carolina.

;} Chapel Hill. NC 27514
N
R Dr. Robert B. Grafton,

}* Office of Naval Research,

. LY (‘:ﬂd!‘ 433.

Lowsi Arlington. Virginia 22217.5000
{% Professor Eihachiro Nakamae.
& Electric Machinery Laboratory.
AT Hiroshima University.

é Higashihiroshima 724, Japan

R . o N, e w LR PR PR - PR, PVl e I T W 3 -

P

o

an o
. ”

e

)

-
”
e

o
53
A

v
>

.
Jey
ey

»

-
i
o

po™, #’."’A ¥t

g

S
A 55
ot

v ﬂ'ﬂ“}‘ Pt
W&
.y A,

'—
r_ At Y

"
s
2
=

g
»,

Carl Machover,

Machover Associates,

199 Main Street,

White Plains. New York 10601

Dr. Buddy Dean,

Naval Postgraduate School,

Code 52, Dept. of Computer Science,
Monterey, California 93943

Earl Billingsley.
43 Fort Hill Terrace,
Northhampton, MA 01060

Dr. Jan Cuny,

University of Massachusetts, Ambherst

Dept. of Computer and Information Science,
Ambherst. MA 01003

Robert Luni.

Silicon Graphics. Inc.
2011 Stierlin Road.
Mountain View. CA 94043

Jeff Hausch.

Silicon Graphics. Inc.
2011 Stierlin Road.
Mountain View, CA 94043

Robert A. Walker.
7657 Northern Oaks Court,
Springfield. VA 22153

Dr. Barry L. Kalman.
Washington University,
Department of Computer Science,
Bax 1045,

St. Louis, Missouri 63130

De. Wm. Randolph Frankhn,

Electrical. Computer. and Systems Engineering Department.
Rensselaer Polytechnic Institute,

Troxy. New York 12180-3590

Dr. Gershon Redem.

Microelectranics Center of Norih Carolina.
PO Box 12889,

3021 Cornwallis Road.

Research Triangle Park.

North Carclina 27709

o o M P T T P T I U S N S S S

gt e
i a5, ™
R iR SN sl ~

lv"f:a«:,;,
A

3

i P P RER I

el

P M s
Ane ¢

i
o

o
7
LI I

iR

2

e

M
o,

£r 107

kit
J-.l

et

Dr. Brankc J. Gerovac,

Digital Equipment Corporation,

150 Locke Drive LMO4/H4, Box 1015
Marlboro, Massachusetts 01752-9115

Robert A. Schumacker,
Evans and Sutherland,

PO Bex 38700,

580 Arapeen Drive,

Salt Lake City, Utah 84108

R. A. Dammkoei!sr,

Washington Univezsity,
Department of Computer Science.
Box 1045.

St. Louis, Missouri £3130

Dr. Lynn Ten Eyck.

Interface Noftware.

79521 Highway 99N,

Cottage Grove. Oregon 97424

Toshiaki Yoshinaga.,
Hitachi Works. Hitachi Ltd.
1-1. Saiwaicho 3 Chome.
Hitachi-shi. [baraki-ken.
317 Japan

Takatoshi Rodaira.

Omika Works. Hitachi Ltd.
2-1. Omika-cheo 3-cheme.
Hitachi-shi. Ibaraki-ken.
319-12 Japan

Atsushi Suzuki.

Hitachi Engineering. Co. Ltd.
2.1, sawat-cho 3-Chome.
Hitachi-shi. Ibaraki-ken.

317 Japar

Toshiro Nishimura.,

Hitachi Engineering. Co. Ltd.
2.1, sawair-cho 3-Chome.
Hitacki-shi. Ibaraki-ken.

317 Japan

Dr. John Staudhammer.

Dept. of Llectrical Engineering.
Uiniversity of Flortda.
Gataesville. Florida 32611

Dr. Lewis E. Hitchner.

Computer and Information Science Dept.
237 Applied Science Building.

University of California at Santa Cruz,
Santa Cruz. California 95004

Dr. Pat Mantey,

Computer Engineering Department.
University of California at Santa Cruz,
Santa Cruz, California 95064

Dr. Walter A. Burkhardt.
University of California. San Diego
Dept. of Computer Science,

La Jolla. California 92093

-
oy

o~

s

e
Ha2

P. K. Rustagi.

Silicon Graphics. Inc.

2011 Stierlin Road.
Mountain View. CA 94043

Peter Broadweli.

Silicon Graphics, Inc.

2011 Stierlin Road,
Mountain View, CA 94043

Norm Miller.

Silicon Graphics. Inc.
2011 Stierlin Road.
Mountain View. CA 94043

%‘i Dr. Tosivasu L. Kunii.
}.fq Departinent of Information Science.

A Faculty of Seience. '

‘ The University of Tokvo.

- 7-3-1 Hongo. Bunkyo-ku. Tokyo 113,

;"2 Japan

s.’_—*:*_f Dr. Kaznhiro Fuchi.

f;{.; Institute for New Generation Computer Technology.
Rl Mita-Kokusai Building 21FL.

_. }-4-28 Mita. Minato-ku, Tokyo 108, Japan
o |

S Tony Loeh,

N Silicon Graphies, Ine.
ff;q: 1901 Avenue of the Stars.

e Suite 1774,

ety Los Angeles. CA 90067

o

:‘f'é:: Revin Hammons. . o
{j\.} NAsA :\M_E.\-Dn‘dvn Flight Research Facility.
e PO Box 273.

i) Mail Stop OFL

A Edwards. California 93523

o

';2%

N

it

it

PR T VI U S Ty Sy T T Ny PRSP - o

AN NN

-,
A AN i

WS O]

fLobais

AR

O Al 4
i S IR AT |

¥
Ry
X
%3
;sf
o
x."
¥

Sherman Gee,

Code 221,

Office of Naval Technology,
800 N. Quincy St.
Arlington, VA 22217

Dr. J.A. Adams.

Departnient of Mechanical Engineering,
US Naval Academy,

Annapolis, MD 21402

Dr. David F. Rogers.

Dept. of Aerospace Enginzering.
'S Naval Academy.

Annapolis, MD 21402

Dr. Robert F. Franklin.

Environmental Research Iastitute of Michigan.
PO Box 8618.

Ann Arbor. M 48107

LT Mark W. Hartorng.
900 Cambridge Dr 17,
Benicia, CA 94510

Capt. Mike Gaddis.
DCA/IDSSC/C720.
1860 Wiehle Ave
Reston. VA 22090

Lt. Cdr. Patrick G. Hogan. USN
102 Borden Avenue,
Wilmington. North Carolina 28403

Dr. Edwin Catmaull,

- LucasFilm.

PO Box 2000.
wan Rafael. CA 94912

Dr. Johs Beatty,

Computer Seience Departiaent.
University of Waterloo,
Waterlon, Ontanu,

Canada N2L 3G1

D James Faley.

George Washungion University,

Dept. of Blectrical Engineening and Computer Science.
Washwgton. D.C. 20032

Dr. Donald Greenberg,

Cornell Universaty.

Programn of Computer Graphies.
Ithaca. NY 14833

Dr. Leo J. Guibas,

Systems Research Center.
Digital Equipment Corporation,
130 Lytton Avenue,

Palo Alto, CA 94301

Dr. S. Ganapathy,

Ultrasonic Imaging Laboratory,

Dept. of Electricral and Computer Engineering.
University of Michigan.

2nan Arbor, MI 48109

Dr. Hank Christiansen.
Brigham Young University,
Dept. of Civil Engineering,
368 Clyde Bldg.

Provo. Utah 84602

Dr. Thomas A. DeFanti.

Dept. of Electrical Engineering & Computer Science.
University of Illinois at Chicago.

Box 4348.

Chicago. IL 60680

o ik Dr. Lansing Hatfield,

. Lawrence Livermore National Laboratory,
. 7000 East Avenue,

‘ ::_‘33' PO Box 5504. L-1586,

A Livermore. CA 94530

g) ?

o g e

L i

e

e

P

SaiS

.
oo

m
. .,'.4
. .}

"s ey ! \ L X)\ A A S AR e A e ‘-',".s'*a":*.n‘\h’-‘..-";u';,".i'“lf'}""i.‘?“";’ :
L QAT MM& W 'm . *‘."&m : AR R LR CAT S LRI A ¢
":::'ﬂ‘.‘.'!. :!‘:i:\l!'a'! t:'u L ’ : -ﬂdﬂ.g&d; / {Qt 1 AT AN LY Py B

