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Abstract

- " A program to investigate the coupling problems of high birefringence fibers was

initiated«in 1983 for Naval Research Laboratory under Contract N00014-83-K-2029.

v

The tccluﬁcal monitor was Dr. W. K. Burns of Naval Research Laboratory. The work

o
’

¢ My

’ performed under this contract is summarized in this report.
. K fiber is birefringent if it has a non-circular core and/or cladding, or is subjected
'i to anisotropic stress. Currently, the loss of fibers with embedded anisotropic stress is
£ much lower than that with non-circular core or cladding and therefore these fibers are
Ij;; of interest. Central to any coupling problem is the distribution of fields in the fibers.
Eé To date, very little is known relative to the fields of polarization modes in biaxial
fibers. This is the main thrust of our study. We have used a perturbation method to
&:' study the fields and dispersion of polarization modes in biaxial fibers. In our approach,
: the inclusion or exclusion of a term is determined by the differential equation, the
: . boundary conditions and the symmetry of the problem, and does not rely on the prior
-.“ knowledge of the fields in the fibers. The dependence of the fiber birefringence on the
j: index differential and index anisotropy has been studied. Now that the fields in high
- birefringent fiber are known, the excitation of high birefringent fibers can be analyzed.
::t} Methods for studying these excitation problems are indicated and some of the results
::’3 are presented.
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1. Introduction

Since low-loss fibers were realized some two decades ago, interest on fibers has
been evolved from multimode fibers to single mode fibers. In reality, all conventional
single mode fibers support two orthogonal polarization modes. As these polarization
modes are nearly degencrate, fields in these fibers are easily converted from one polari-
zation mode to the another if there is slightly disturbance or perturbation. For sophis-
ticated systems like coherent communicatlion systems, sensory systems based on inter-
ferometric principles, or systems utilizing polarization-dependent components, these
changes in the state of polarization would lead to signal fading and noise. The polari-
zation mode conversion, being the result of mode coupling, can be greatly reduced if
the polarization mode degeneracy is removed [1,2]. With polarization mode degeneracy
removed, fibers become highly birefringent since their propagation velocities are quite
different. If the birefringence is sufficiently large, and the fiber core is sufficiently
small, only one polarization mode can be guided by the fiber. Then we have single-

mode single-polarization fibers.

That the polarization modes in the conventional single-mode fibers are nearly
degenerate can be traced to the fact that these fibers have : (i) nominally circular cross
sections, (ii) isotropic index and (iii) azimuthally independent index profile. When one
or more of these conditions is removed, the polarization mode becomes non-degenerate.
The simplest and most obvious examples are fibers with noncircular cross sections (and
isotropic and ¢-independent index profiles). Fibers with cither an elliptical core, clad-
ding or both are of these category and have been studied extensively by many authors
(3-6].

Fibers can also be made nondegenerate by making the core, cladding or both
anisotropic. If either region is biaxial, a filLzr becomes nondegenerate even if it has a

perfectly circular cross section. Through mechanical stress, isotropic materials can be
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made anisotropic. The stress can be built into the fibers by the fabrication processes or
applied after fabrication. Of particular interest is index anisotropy induced by lateral
stress.  Although fibers with uniaxial index of refraction have been the subject of
several studies [7-9], fibers with biaxial material have not been examined until recently
[10-21]. Despite of these studies, fibers under lateral stress are not very well under-
stood. This is the subject of this work. Recently, a scries of papers on high
birefringence fibers have been published by Snyder and his associates [16-21]. However,
there is a basic difference between their work and the work reported here. In their
work, they have assumed from the outset that LPJy mode is coupled with LPJ; mode,
and LP), mode with LPJ; mode. llere, no assumption has been made relative to the
coupling between any polarization modes. All modes are included in the consideration.
The inclusion or exclusion of a particular mode is determined by the differential equa-
tion, the boundary conditions and the symmetry of the problem, and does not rely on

our prior knowledge of the field distribution in the fiber.

In the following, we begin by reviewing the effects of the stress on the refractive
index. Under lateral stress,an isotropic medium becomes biaxial [22,23]. Therefore
waves guided by biaxial media are also reviewed. Complication associated with biaxial
media are noted and ways to solve the problem are described. This is done in Sections
2 and 3. We then proceed to study the ficlds and dispersion of fibers with biaxial core
and cladding (Section 4). The numerical results are presented in Section 5. Also dis-
cussed are the similarities and differences between elliptical fibers and biaxial fibers.

The coupling of biaxial fibers is discussed in the last section. The differences between

low- and high- birefringent fibers, so far as coupling is concerned, is also noted there.

2. Waves Guided by Uniaxial and Biaxial Media

rlt
iy A

«
.

b

B .

)
£,
.

Y

When a solid is stressed, its refractive index changes and this is known as the

.

photoelastic effect. Consider an isotropic material with an index n under stress-free
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condition. When stressed, its indices along principal stress directions become:
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Ny >N + (Cl Txx + CZ(Tyy + Tzz)]
ny >N + [Cl Tyy + CyT,, + Txx)]

n, =n + [Cl Tzz + C2(Txx + Tyy)]

where T,,, T,,, and T,, are the stress components in Cartesian coordinates and C,

vy
and C, are the stress-optic constants. These stress-optic constants are negative and
arc of the order of 107'2 m?/N in MKS system. More importantly, |C._,, is a few times

larger than | C,| [22,23].

Since the fiber core and cladding regions are made of different material, the ther-
mal expansion coefficients for two regions are likely different. After fibers are drawn
from the preforms and allowed to cool down, lateral stress is frozen in the fibers. This
is the basis of built-in lateral stress in many polarization-holding fibers [24,25 and 26).
If in addition, the fiber cross section is not circular and we have T,, # T,y. In the

absence of any build-in axial stress (T,, = 0), the above equations become:

ne >~n + [Cl Txx + C2Tyy ] >n, - (C2~Cl)Txx
ny ~ 0N +[Cl Tyy + C2Txx] ~Nn, = (C2_Cl)Tyy

n, = n +[CyT,, + Ty,
Clearly, the core and cladding regions are biaxial with n, # n, # ny.

To study the waves guided by fibers with biaxial core and/or cladding, it would be
necessary to examine the waves guided by biaxial media [27,28]. For this purpose, we

begin with the time-harinonic Maxwell’s equations for biaxial media ;

V x E(x.y,2) = jop, H(x.y.2) (1)

V x Hix.y,z) = —jw ¢, T Elx,y,2) (2)
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A0 V- H(xyz) =0 (3)
_::E\ V¢, e E(x.y,z) = 0. (4)
A
* A time-harmonic variation of the form e is understood. In a matrix form therelative
lj diclectric tensor @€ may be written as
- nf 0 0

- ¢=10 n? 0 (5)

0 0 n?

:::_:ji When the geometry of the guiding structure and the relative dielectric tensor are
h* independent of z and waves propagating along z direction are of interest, a term e*i
can be factored out explicitly. Here 3 is the propagation constant of the guided mode.
It is also convenient to separate the ficld components and the V operator into

transverse and longitudinal parts:

. E(x,ya) = [(xy) + &, e(x,y) [} (6a)
H(x.y.z) = [h(x,y) + &, h(x,y) |&™ (6b)

)+ s, @)

_ aa _ga O .
V—V,'+Jﬁaz—[axg+ay-0—-

b where &, is a unit vector in +z direction and the subscript t signifies the components

. transverse to the z direction. In terms of these variables and V,, (1) and (2) become

o V, x € = jwph,a, (8)

o
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a, x (j3€, = V,e,) = jup,h, (9)

.
Y
il

V. x h, = - jue, 0,8, (10)
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& x (jfh, - V,h,) = -jwe, @, - ©, (11)
where
n? 0
?t - 0 n;,..’ (12)

By eliminating Kc or €, from (9) and (11), we obtain

€, = jiK-Vie, - jup K-a, x Vh, (13)
h,=juea, xK- ¢ Ve, -jfa,xK-a x Y, h, (14)
where
K,2 0
K=15 K, (15)

‘2 — 12,2 _ 2
K=king—p
2~ 12,2 a2
Ky =kyny—p

and k2 = w? i, ¢,. Differential equations for e, and h, can be obtained by substituting

(13) - (14) into (3) and (4):

e d%e 2
21022 2 202 =7 202 020 = 2_ 2 2
n Ky et +n/K; o2 + KKy ny e, = wp f(ng - ny) axdy (16)
L 0h, 9%h, ey o g O,
K; YD +Ky 2 + KKy b, = we f(ng — ny) 6x—0y— (17)

Once e, and h, are known, (13) and (14) can be used to cvaluate the transverse field

componcents.

For isotropic as well as uniaxial media (n, = n,), clearly K, =K, and e, and h,

are uncoupled and (16) and (17) become the usual wave cquations for e, and h,. In this




fashion , the dispersion relation for uniaxial fibers can be and has been derived [7,8,9].
However, the differences between isotropic and uniaxial fibers are noteworthy. For iso-
tropic fibers, the transverse electric fields of LPg; mode is mainly along one direction, x
ory, and |€|/| T{t| is approximately a constant. In uniaxial fibers, on the other hand,
both e, and e, arc present. Each components of &, and R, have to be expressed as the
sum of two parts, one involves the ordinary index of refraction, n, = ny, = n, and the
other the extraordinary index of refraction n, = n,. As a result, | €| /IE' is not a

constant.

. . . 2 .
For biaxial media, n? 7 ny #n2, e, and h, are coupled in general. Two-
dimensional waveguide structures, integrated planar waveguides for example, are excep-

tions. For the infinitely large, two dimensional structures we can further assume

(?i =0 or 562- =0, and (16) and (17) again can be reduced to the usual uncoupled
X y

wave cqtiations for e, and h,. This is precisely the approach adapted by Burns and
Warner in their study of uniaxial planar waveguide structures [24]. No such
simplification is possible for the fibers with biaxial media and herein lies the crux of the
problem. In addition, K2 and Kf can be positive or negative depending on the values
of B, ko n, and k, n,. Thus (16) and (17) can change from differential equations of
elliptical type to that of parabolic type as @ changes. Thus for biaxial media, (16) and

(17) are inherently difficult to solve, and no exact solution is known.

Alternatively, e,, h, and ﬁ,, can be expressed in terms of €. From (4) and (6a) we

have
e, = —L- V,(¢,- &) (18)
By performing vector product of ¥V, on both sides of (R), we solve for &, x V h,. Simi-

larly, (9) is used to solve for &, x h,. Upon substituting the expressions so obtained

into (11) a differential equation for €, is obtained:

.r.',.';.z.ur-:'.n x)“'"“




— 2 2 — — l
vzz € t(kge -0 e = vt[(vt'em) - 't,"'vz - (@, - et)] (19a)

Similarly, an differential cquation for h, is also obtained:
VER, + (k2 + B¢, 4, x ¢ ' - &, x ),
= VVex B)-jBe b, xE " & x Vb, (19b)

In component form (19a) can be written as:

d%e n? %, n2 n2-n? 9%

— + — +kE L (2= NP e, = L X (20a)
ox? n? oy? n? n? Oxdy

2 52 52 2 2_.2 A2
n,° J% 0-e n ,, » _ n;-ng J%,
— — 5 Tk 5 (- N)e, = — (20b)
ny Ox oy ny ny Oxdy

where N = 3/k, is the effective index of refraction of the guided mode.

Although e, and e, are still coupled in (20a) and (20b), the differential equations
are simplified. In particular, for the fibers of interest, |n,(2 - nf |/n,(2 < <1, the terms
in the right hand side of (20a) and (20b) are small and can be treated as perturbation
terms. Then approximate solutions can be obtained from (20a) and (20b). This will be
done in Scction 4. However, some features of the solution can be deduced from (20a)
and (20b) without actually solving the differential equations. Clearly if e, is an even [or

odd] function of x or y, then e, must be odd [or even] function of x or y. When

y
expressed in terms of cylindrical coordinates r,¢, e, and e, can be written as Fourier
sine and cosine series. Thus for the core region (r < a),

e, (r.¢) = eR(r) + \‘[o “(r) cos ip + eR<(r) sin ig) (21a)
i=1

e (rd) = oy'f](r) + mi[e ‘(r) cos ip + eyl *(r) sin i¢) (21b)
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and for the cladding region (r > a):
e (r,) = ed(r) + SE["RC(T) cos i¢ + el5(r) sin ig) (22a)
i=1
e (ro) = e%(r) + ‘:Oj[eﬁc(r) cos 19 + e})is(r) sin i¢) (22h)
i=1

The subscripts R and D are used to signify that these terms are associated with the
core and cladding regions respectively. From (20a) and (20b) it is clear that the sine
and cosine series of e, are coupled respectively with the cosine and sine series of e,. In
addition, the even harmonics are coupled only with even harmonics, and odd harmonics

with odd harmonics only.

3. Fields and Boundary Conditions for Weakly-guiding Fibers

An isotropic fiber, with core and cladding indices n, and ny respectively, is viewed
as "weakly guiding” if n, — ng << n,. Under the condition of weakly guiding, the,|
and | V,h,|, are negligibly small in comparison with | €| and |ﬂﬁt| , and therefore

can be neglected. Then from (9) and (11) we have:

we

A

h, ~ —>n? a,xe, (23)

which is accurate to the order of |(nr - nd)/n,l. Thus for weakly-guiding fibers, ¥,
and f\“, are related in the same manner as that of uniform plane waves in isotropic
media [29]. This is a basic feature of fields of weakly guiding isotropic fiber.

Now consider weakly guiding anisotropic fibers. In the core region, the indices
along three principal directions are ny, n,, and n,,. Correspondingly, the indices in the

cladding region are ngy,, ng, and ny,. The core radius is a. By weakly guiding, it is

meant that | (n,, —ng)/n, | cte. are small and are of the order of O(¢). Under these

conditions, following the same argument presented by Gloge for isotropic fibers [29], we
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> &, x? € (24)

With €, known, exact expressions for h, and e, and approximate expression for f;t
can be obtained from (9), (18) and (21).

It has been noted in the last section that the cosine series [and sine series] of e,
and sine series [and cosine series] of e, are coupled through the differential equations
(20a) and (20b). We like to show that the same conclusion can also be reached by con-
sidering the boundary conditions. To enforce the boundary conditions, it is expedient
to express €, and f;t in terms as e, ey, h, and hy. In terms of the coefficients intro-

duced in (21a) and (21b) the field components in the core region are:

— Re Rs
2e¢ - ((‘yl — ey
+ (efe — 208 + o o) sing + (e + 2ey - eR) cosd
+ 3 + o Rs 4 oRs, 1 ginj
; [ x} | (xﬁ-l eyj—l eyj-H] Sm]¢
=2
+ N R —eRs 4 + | cosjé 25
o 181 T 8+ ey,l ey]"’l Cos) (0)
i=2
o
n“
~jode, = —feli + ot + Dxens + b oy
4 n2 r
rz fZ
n2 2
+ [ (2(‘RI +(‘Rcl +-—0 ) + ( Rsl +__ )]c0§¢
nTZ nrz
2 n2
Ry + ___'21(“(, 0<pR'—oR"——c 5 )]sing

rz rz

A
4
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2
I'X Rs ¢ l R l R
+V[ 2 (ex;l +9x1+ xjs— +l)
i=2 rz
nr2y Re 1 _,Re .l oRe ,] 1 Re leing
+ (eyj 1 —"y,+1 " S n oyj“)lsquﬁ
rz
LY 1__ 1_
- rx R R R - R
+E[ (oxjcll +O c ' + c xjcl)
j=2 nrz
ng il Rs 4 itL R
ry _ Rs ! R .
+ (eyl+l e)’j 1 + r y]sl+ ”H)]cosm
rz
2apgrh, = rlefi? = o) + (oft - o)
+1 r(eR = 208 + ef) + 2(ef}

 + eR’) sing

+ r(oRc' + 29“' —eR¥) + 2(eR eyy = eR) fcosg
\- r R R
Y —_ s 1
+L r[ ex;l +e1+l +eyj—l + ey
i=2

yj+l']
+ [(j-l)exk)f_ J+1)ex F+1 T (G- l)ev, , + (J+1)eyj+l] sinj¢

~
A Rs
+ L I‘[Ox j-1

i=2

R'-: [] Re ¢ Re 1
Cxj+1 +°yj—1 +°yj+|]

+ [ = (=1)efts

_(J+l)9x,+1"(j‘1)0;zj°_1 (j +1)ey J.H]]cosyj)

(27)

(26)
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- 23 2 Re 2 .Rs
1) . h¢ = [nrxcxl + nrye'yI]
: { we,
e
O 2 Rq 2 o Rep o
:‘:;'_‘ +lnrxex2 + 2nrxe'xo + n ] (‘OS¢ + [nrxex2 + 2“ "yo‘ nryey2] Sm¢
>:1:4:"
\
\': 2 RC — 2
:&.:-:_: + Z[n x )-1 + n Ox 1+1 nryeyj 1 + nry()y ]+l ]C0§j¢
20 i=2
b
(2 oRs 2 Rs oRe  _ n2oRe g
. +V [Il Cx -1 + Nex€xj+1 +n ry €y -1 nryey;+l ]Sm]¢ (28)

j= 2

In these expressions a prime indicates 0/dr. Corresponding expressions can be written

for the field components in the cladding region, with the superscript R replaced by D

and n_ cte. by ny, ete.

At the core-cladding interface (r = a), ey, e,, d,, hy, h; and b, should be con-
i tinous. It is known that when the continuity for the tangential components of E and
H are satisfied, the continuity for the normal components for D and B are automati-
cally satisfied [30] Since sin j¢ and cos j¢ are orthogonal functions in the range (0, 27).

the continuation of the tangential components of E and H amounts to the continuation

O of the individual Fourier components. More specifically,
"\:"; oRe _ oRs = (Do _ . Ds
‘-‘.\_ - yl Cx1 ~ eyl ex1 (293)
g R
W ,
2
n
\ _rx [(‘RH + l ] + T.V [(‘Rq + N (‘ ]
n,, a nrz
. 02 ?
& = Mpme b Loy s M 4 Lopy (2m)
\‘“' . ng, a ndz a
- 2 R< — De
e nl'x -+ n - n(lx x| + ndy yI (290)
8.
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; Sy — D
a,(eyR,” —efs) + (e;zlc —eRs) = afe,” — eD) + (e;)lc -

elte — 2¢R + eﬁf

f
©f

_ aRs = D D _ ,Ds
c + 20)’ ex2s - e : + 20)’0 €9

“2 Rer 4 2 _!.
Y te, "+-—e ) + (e +—e )
l’Z rz
2 0
Ndx (2 +(,Dcr +__e ) + ( Dsr 2 Ds)
d7 ndz
2 2
n 2
rx ( RQI Rc) + (2eR! ;E,CI ___ey2 )
nl’7 I’Z
3 p) ng
— _gx D=I Dc _4ay Dr_ Dcl__
. (e, + ) + (2e ey2 eyo)
Ny dz
2o Rs = .
nrx(‘x -+ OnrxoxO + Ney€y2 ndx‘w" + 2ndx x0 "dy
— n2,Re — - Dc
ngx x’ + 2"ry *yo T NeyCy2 = "dx x’ + 2ndy y0 ndy y2
a(ORcl - 2(,R: + (‘R") + 2((‘ + e
= afely —2eN + ') + 2e D)

afefy" + 2R —eRr) + 2(cfy - off)

D D1 Ds
= aleyy”’ + 200 — ) + 2(e yz*oq)

And for j>2,

(29d)

(30a)

(30b)

(30c)

(30d)

(30e)

(30f)

(30g)

(30h)
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J —oD¢ D¢ Ds Ds
__le-*_ex]+l+e jl+eyj+|— exj—l-lbexj+l-*-eyj—l-‘-eyﬁ'l (313)

. Ds Ds De D¢
S e;{js—l - x1+l + e vt T ey1+l S e+ ey toey (31b)
112 er+ Re l+J+l Re l 1 Rc

v l 2 x; 1 exyl-l j+l xj l)
< LT

-~

N 2
‘: + n"y - R=l+J_._ Rs +.L__ Rs ]
> (Py,+1 Cyj-1 Cyj-1 yi+1)
k) rz a
_-.

N

- — ndy n D ! .L_ De

. - [ (ex)cl’ +eg% +L—— €xj i Cxj- 1)

- dz

4 n2
v dYD\:D'.l D«J
- + 2 (e}'j:'l ng + ) l+ yj+l)] (31C)
.. n
i n2 Rs 1 ):l_ Rs +J'_tl Rs
4 [ 2( xj—1 +ex1+ - a €xj+1 a exj'H)
b r2
_2'__ Re r_ J_ Re _it1 Re
( + =y (et ey R 7 N eyi1)]
> rz

> n2

. - dx . Ds .L__ Ds J_
-~ = [ (g +ely - 1t eo 1)

-~ dz

L
. 2
d¥ « De 1, De .l Dc __,l Dc
< + ol (eyity —eyj%1' S i vi+1)] (31d)
.._

. R n2ekRs 2. .R
- np; ijc I + "rx x ]+l npyey js~l + Neyey js+l
- D De. _ 2 .Ds Ds
- ndx xfl +ndx xj+1 nd)y] 1 *-ndy y )+l (3]9)
LW
e

‘.

.

7,

’

-
-
.
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K
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2 .Rs Re Rc
nex]l+nex)+l+nrvy;l ryy1+l
Dc 2 D¢
ndx xj 1 + ndx xj+l + ndy y -1 ndyeyj"‘l (3If)

— ' ' Rs 1 Rs
af Ole +9x1+1 tei o]

+ [l l)exj r t (J+l)ex1+| - (- 1)9}’1 1+ (j+l)e’l'{js+l]
=af-elf) +eliar’ + el + ]

[(J l)pr 1 + (J+l)ox1+l_(1 l)eyj 1 + (J+1)ey,+l] (3lg)

Rs 1 Rsl+Rcl

afee -1 T & 341 €y -1 y,+1]

+ [~ (~Def - (j+Defsyy = (=Dl +(J'+1)0ijc+|]
—3[0,”1 P;'H' +ey]1 j+1]
+ - (- l)e“ - (J-l—l)exjﬂ - (- l)ey, ) +(j+l)e;)j°+,] (31h)

Examination of these boundary condition equations reveals that the cosine series of

e, are coupled with the sine series of e,, and the sine series of e, with the cosine series

X

of e,. Furthermore, the even harmonics are coupled only with the even harmonics, and
odd harmonics with odd harmonics. For example, in (30a)-(30d), e,ﬁ, and eD are cou-
pled with of, y; els and oyf and through these terms to the higher order even har-
monics.

In the case of isotropic fibers, el and el [or ey'}, and eﬂ,] are needed to determine
the ficlds and dispersion of LPy, mode, No higher order terms is required. It would be
interesting to see if the same is also true for biaxial fibers. Suppose that only one term
from each scries is kept, (i.e., el for the core region and e[ for the cladding region).

Then, the boundary conditions (30a), (30¢),(30e) and (30g) become

"-t_v q\v < NL‘ ,‘w‘-. -, =T -
\\'). hY \ \, ‘ ‘-\‘ -_.. S
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eR = el (30a1)
2 2
n , Ny ’
2 ®0 = 5 &0 (30ct)
N N4
n,2x e,ﬁ, = ngx e,'(% (30el)
tR — D (3051)

For isotropic fibers, n,, = n,, = n, and ng, = ng, = ng, (30cl) is identical to (30gl).
Recall the expression for ey is exact while that for hy is approximate and accurate to
O(c). When terms of the order of O(¢) or smaller are ignored, (30el) also reduces to
(30a1). Therefore in the case of weakly guided isotropic fibers, the boundary conditions

are simply the continuation of e,y and € 4o

For biaxial fibers, n,, #n,, # n,, (30cl) and (30gl) are not identical. The pres-
ence of n2/n? etc. makes it impossible to satisfy all boundary conditions if el and

eD are the only terms kept. There have to be the higher harmonic terms.

Suppose only the leading harmonic term of cosine series of e, (el and eR,) and the
sine series of e, ( ;{‘ and ey ) are kept. There are two unknown Fourier coefficients for
the ficlds in the core region and two in the cladding region. In addition the propaga-
tion constant A is also an unknown. Four equations [(30a), (30c), (30e) and (30g)]
are used to eliminate four unknowns. The result is a dispersion relation determining 8
or the effective index N. If desired, we can use the first two or first three harmonic
terms of the sine and cosine series, then we have, respectively 8 or 12 unknown
coefficients. Thus 8 or 12 boundary condition equations respectively are needed to set
up the dispersion relation for 8. By solving the dispersion relation, we can determine B
as a function of various fiber parameters. In addition all but one unknown Fourier

coeflicients can be expressed in terms of one Fourier coefficient. The undetermined

Fourier cocfficient can be determined from the ficld strength of the mode or the power

‘-- - . - . ~.,. __‘ . ‘.‘ . _u‘ P <t ', - ‘__ ...‘ ~ k“.\".-"; :n'\q“_:'-

2 N
N M\Aﬂ;\_g’l‘_ a._{‘s.h* n__.Lix.\-_\A" 1\.!"_}(:\\
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carried by the ficlds.

4. Approximate Expressions of e, and e, and Dispersion Relation

To derive the approximate expressions for the transverse electric field components,
we treat the right-hand terms of (20a2) and (20b), as perturbation terms. Thus, by
ignoring the terms on right-hand side of (20a) and (20b), we obtain the zeroth-order
solutions, e(® and ey(o). With the zero-th order solutions substituted in the right-hand
side terms of (20a) and (20b) and treated as known quantities, then (20a) and (20b)
become inhomogeneous differential equations. The particular solutions for these
differential equations are then combined with the homogeneous solutions which are

exactly e{® and e}o). Thus we have e{") and e{") which are accurate to O(e).

Two lowest order polarization modes are mutually orthogonal to each other. In
one polarization mode, its e, is described by a cosine series and e, by a sine series. For
the other polarization mode, e, and e, are given by sine and cosine series respec vely.
In this section, our attention is focused on one of the polarization modes, namely the
mode with a cosine series for e, and a sine series for e,. Since no restriction is placed

on the value of n,, relative to n,y, or ny, relative to ng,. The other polarization mode,

ry!

can be obtained simply by interchanging n,, and ny, with n,, and ny,.

Fields in the core region:

To calculate the ficlds in the core region, we introduce two new variables,

x'' = (n,/n,)x, and y' = (n,/n.)y. Thus (20a) and (20b) become:

N 2 2 2 2_n2 2
%‘ 6eX+6e, +n”k2 2 _ N2 _ PNy aey
N, 9 12 2 o (nrx )ex - ax oy (323)
*q ox Oy ) NexNypy xoy
oM
-
>,
WL
o
e
SR

. 'x' "t
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0%, 9%, DS e e n2-n2 o,

+ = + ks (n;y — N°)e, = = (32b)
ox''? dy? n? n,n, Ox''dy

When the right-hand side terms in (32a) and (32b) are ignored, we have immediately

the zero-order solutions:

n ! 00 n ’
elO) = AO IO(_r?_ Urx I_) + EAm Jm(-—rl Urx L) cos m¢' (33)
Ney a 1 Ny a
(0) — \o_o‘B | Drs U _"_'__) in m¢'’ (34)
ey - LlJ m * m( nry ry a sin m

where

U, =k, /02— N? (35a)
U, =k, Vn2 - N? (35b)

nZ 1 Moy
o= [X2 + ,V' 2]—1/2 = [X2 + ; y2]-l/2’ ¢I = tan'( ) (350)
rz rlx
2 nf2)' ..y
M= x4 yY = [_n_z_ x2 + y2]-'l/2’ o' = tan—l(____x_) (35d)
rz ry

As stated previously, only cosine and sine scries are kept in (33) and (34) respec-
tively. In dcfining the new variables y' or x'’, the coordinates are scaled by constant
factors but there is no translation in the origin. Thus the symmetry properties of e,
and e, with respect to x'’, y', ¢' or ¢'' remain the same as those with respect to x

and y, and ¢, as discussed in Section 3.
With e’(.o) and e/” known and substituted into (32a) and (32b) respectively, (32a)

and (32b) become a set of inhomogenccus differential equations. Their solutions are

comprised of two parts: a homogencous solution and a particular solution. The homo-

geneous solutions are of the same form as the zeroth-order solution. In view of the
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i
i functional form of e(%) and e[%), we can expect that the particular solutions can also be
expressed as series of J_(— U L) cosm ¢ or J_( S U L) sin m ¢. By substitut-
e press m oy Vo, m o %o, .
":f;: ing these scries into the left-hand side of (32a) and (32b), performing the necessary
" differentiation, and comparing the resulting terms with those on the right-side, the par-
-:{:: ticular solutions are found. In the lengthy manipulation, the recurrence relations for
e
ol
f"j Bessel functions [31] are used repeatly and we also note in particular that U, # U,,.
1")'1'
' Then e{!) and e}'), accurate to Ofe), are obtained by combining the the particular solu-
‘Ejf: tions with the zero-th order terms:
w
; :{-'_, l"
- eil) AO J ( 2 rx _) + ZA Jm( 2 rx —) cosm ¢'
. rx nrx a
o + 1 ny(ning) nry~N?
"1- 4 nrz(“rxmnrzy) N2
3‘4‘2 & n r n r
'j:::‘. E B, [ Jm—2(_l Ury —) cos (m=2)¢ - Jm+2(i Ury —) cos (m+2)¢ ]
o " n,, a D, a
o (36)
; : (1) = {‘A N, ! . Iy
L e = uBm Im(n— Ury T) sin m¢
o 1 ry
1
n 2.2\ 2 N2
- n,(n%-n%) n5—-N n
S + l O D [ 9Ag Jy(— Uy, T sin 26
s nu(nyong) N P 8
-
o
S + %‘% Ney U r, . + N, r, .
e .'_JAm [Jm +2(_ rx —) sin (m 2)46 - Jn.—2(— Urx —) sin (m—2)¢]}
-t 1 Dy a Diex a

= -

R
- J' -4 - . A . e . e, A e wg e .- . “ . -
SRR . . AP RS S -, . L N R
a. 4."(.\' .". - .' .. v, ‘. “ DA A o, L% "-_‘-'_-.,-_' R P T RN A A
UV, LT . W . PRI R o .
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0 Note that |n.(nZ-nZ%)/[n,(n2-n2)]| and |0, (n3~n2)/[n,(n}-n2)]| are of the
order of O(1), while | (nZ-N2)/N?| and | (n2-N?)/N?| are of the order of Ofe).

o

‘:;‘[;:: Fields in the cladding region:

1

‘ Again, new variables may be introduced to simplify the differential equation. In
;;i‘_: particular ', @', r'' and ¢'' are defined in the same fashion as given in (35¢) and (35d)
AS

a0 with n,, etc. substituted by ny, ete. For isotropic fibers, N of a guided mode is always
“ad larger than ny. For biaxial fibers, complication arises particularly for modes near cutoff
- since ng, # ny,. Near cutoff, it is possible to have ng, < N < ngy or nge > N > ny,
’i\:‘

= depending on the relative values of ny, and ngy. Thus three cases have to be treated
oy separately. For convenience, we define:
Rl —

3 Wi = koa VN° —ng, (38a)
%

o Wy = koa VN? - ngy (38b)
i

T

5 Uy, = koa /n3 — N2 (38¢)
L.

{®

g,

Uy = koa /0, — N? (38d)

For N > ng4, and ng,, W§, and W2,

]
¥

i 2
s

. . .
.‘A'l.ll..l' ’ DA
2T . Te sy v
.. 2, e T I
R o LN HE

NS

are positive. Following the same procedure

Y

described in previous section, we obtain:

n ! 0 n !
N = ¢ (=% r 3 QO i r '
el = Cy Ky Wy, —) + YC, K Wy, —) cos m¢
2 Nyx a 1 Ndx a
a_y
vy 2_.2 2 N2
Sl 1 ndy(ndz n(ly) N4y N
0N 2 _ 2 2
‘ 1 ndz(ndx ndy) N
S
~"‘.n.
€
&
e
o

N R L T AT T
R A S O R e L AR e
- » » - - . »!
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&3
N
X 3-_:2
A }.:, & Ny, r Ny, r +
" Y Dy [ Kppo(— Wyy —) cos (m=2)¢ = Ky 4o(— Wy, —) cos (m+2)¢ ]
n gy a ng, a

O
AR .
N
;i\j (39)
<
ij 00 n 1 .
e}l) = YD, Km(—ég- Wiy |'—-) sin m¢'’
"_:_: 1 ndy a
.:'.: 2 2
N:.' _ _l_ ndx(ngz—ngx) ndzx._N { 20, K (_rﬁii W _L) sin 24

. 4 ng(n}-nd) N2 0™y P oa
gty da\dy™ Ndx x
L
":‘-“:3 ?; - N4 W LR + K EZ_ W Iy -
Ny + L_JCm [[\m*’?(r 'V dx a) sin (m 2)¢ - m—2( n dx a) sin (m 2)¢]}
- ” 1 dx dx
9.
K. -
5 (40)
.
. If ngy, > ngyy, there exists situations where ng, > N > ng,. With WZ > 0 and
:~{j Ufy > 0, the fields in the cladding are described by a mixture of the Hankel function
g
3 : and the modified Bessel function. The presence of the Hankel function signifies the

L
L3

existence of the leaky waves in the cladding region.

: (g

,'l‘) s

R (X P 2 S LT PR &
el!) = C, l\o(n—di Wi T) + 3YCn }\m(n_di W :) cos m¢'
X b 1 x

-
o a
R

SRR

[
N A

L2 n L] 9
nay(ng,—ng,) n;,‘y—N

1
o n n
4 ndz(ndx-ndy) N

+

Paf MOy,

by Ay
LA

s
.

y

3
AR

a

2,

D [ HEL UL D) cos (m=2)6 = THEL (=2 U, ) cos (m+2)é |
s 'm m 2 n dy a B m+2 n dy a <

1 dy dy

s

Ay (41)
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n !
ef) = 3D, HE(=2 Uy, T) sin mg"’
1

!
l]dy a

1 Pu(ndng) ndN? ng r

- = S T {9C, Ky(— Wy, —) sin 2¢
4 2 2 2 0 2 dx a

ndz(ndy_ndx) N Dgx

) . Ny, r, . Dy, r, . .
+ Cn (Ko Wy, ) sin (m+2)¢ = Kpp( = Wy, =) sin (m-2)g]}
n a N4y a

1 dx
(42)

On the other hand, if ng, < ng,, there may be situations where U2 > 0 and

ny > 0. Then the fields are given by:

Dy,
Dy

[ld
Ny

! 0 )
ef!l = Co HI(— Uy, ) + Y Cp HP(— Uy, ) cos mg!
1

X X

2_ 2\ 2 _Nn2
_ 1 Dbgingng) ng~N

2 _.2 2
4 ndz(ndx ndy) N

o0 i Ny, r . 0y, r
Y Dy [ Kol — Wy —) cos (n=2)¢ — Ky 42— Wy, —) cos (m+2)¢ |
1 ndy a ndy a

(43)

i

Q0 n
el) = YD, Kn(—> W, ’T) sin m¢'’
1

p’: Ny ’

: ng(nf-n3) nj—N? o, I

.E + L Ralod ,’,) S {2y M= Uy, L) sin 29

i"- 4 ndz(“d2y—n5x) N Dy a

-

-

- o0 . o ny r . 2 ny r .

3 + 2Cn Mk o(—= Uy, =) sin (m+2)¢ — Hy(—= Uy, ) sin (m-2)g]}

ei 1 dx Nyy
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Further approximations:
Before imposing the boundary conditions, it is necessary to revert ', r'! ¢' and
¢'" back tor and ¢. For points in the core region,

2 2

n 2 nl’ .
o= )=y o p - (-2 )(1-cos2¢) (45a)
n2 4" p?2
rz2 T2
2 2
10 =Dy o o2 ro,_DBoy oy .
r'’ = y Xty AT Z(l— 5 )(1+cos29) (45b)
nrz nrz

|

¢ ~¢ - ——; (1- ~ ) sin2¢ (45¢)
and,
l nrz .
N S I L PELL
'~ ” (1 oy ) sin2¢ (45d)

Thus, to the order of O(e),

DI’X

cos m¢' =~ cos m¢ + %‘— (1-—=) [ cos (m—2)¢ — cos (m +2)¢ | (45¢€)
sin m¢'' ~ sin m¢ — %L (1- n”) [sin (m+2)¢ = sin (m—2)¢) (45f)
ry

Making use of these approximations in conjunction with Neumann's addition theorem

for the Bessel functions [31) and keeping only terms of the order of 1 and ¢, we have

2
n / n I n r [P 0, r
J(=2u, H)~0 (—2u, L= B u, ~a- 1-cos2¢)[J' (== U, T~
m( n,, x ) m( N rx a) 4 n, rx a( n,?z )( 0s ¢)[ m( n,, rx a)]




N 2
Ny n 1 N, n; n r
. ___”_U -———z.] Ly —"—‘—“U V1 4 cos Jo(—E L
| Jnlgft Uy £ = 0ol Uy 0= 21 Uy L1200 cosd )0 (525 Uy )

where J'  indicates the derivative of the Bessel functions with respect to its argument.

Use these approximations and sorting out the terms with different harmonics, we

have

n r 1 D o n r
el = Ag [ Jo =2 U, 1) + = 2 U, Wil U )]

rx rx ., rx

| LTS r n., r nrx
A (g T U A~ Uy $) + 20— )0y

Bry n> s rx rz rx

2

1 n n n r
= 1- r2x Wi(—= U, ;) cos2¢

_AO— Urx —(
1 X a n;, X
+ A {J(Urz U l') 1 nrz 2 ( rzU r)]CO")¢
2 — )= — 52
2 2 n, g 4 o rx [l” n, X
2
1 Dy r Ny n,, r 4 Dy D, r ,
+A = 22U, T2 v, D)+ -2 U, B ) cos?
4 [ 8 n,, rx a( nf, ) 4( 0, rx a) 4( R ) 4( n,, rx a) ] coss@
+A, [+ 22y LA Ty o 2-200 20y B ) cosde
2 8 N rx llr:'; 2 N ‘rx a 4 n,, 2 0, rx a

+ N, ] r 1 0 ] r nr‘i ’ nrz r
A4 [ J-l(_ ln( -aT) - : ln( ;(l— 2 )‘I 4(_;— Urx Z) ] cosdg

rx Nx ng; rx
g 2
.~ AT 2y, a2y, - A U, L)1 cost
t‘ ‘4[8 N rx a( D;‘i) 4(11“ x a) 4( N o rx a)] s6¢
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+ 1 nf)‘(nfi—n"zy) n;“;—Nz B, JO(E’_’_U L)
4 n,ni-n?) N? n, " a
Dy, r
D,y a
Npy r .
(B — By) JQ(T Ury ;) cos4¢
ry
Ny, r
- B4 Js(n_' Ul‘y ;) 0036¢ + vee (46)
ry
el ~ B [J(.EEU L)_l.n;‘U L(l_n?}'”: (n” U —r—)]sin2¢
y_z?'n,y Y oa 4 n, Y oa n;-:‘z,y Y a
2
I D r Dy N, r 4 Dy, ng, r .
-By [~ U, —(1- J(— U, —)— —(1-——),(— U, —)] sin2
4 [ 8 nry ry a( n,'“;) 4(nry ry a) 4( nry) 4(nry ry a)lb ¢
2
: I Dy r n, N, r 2 D, D, r .
(L Dy g layp Ty By g 2ty it g L) g
¢l g n, 7 a p?2 n, ’a 4 y Dy T oa

Ny I
84 [ ‘14( l'ry
Iy

1 Iy,
_BB [g—LUr
n,y

1
_B _—
e

nl’Z
+ By | Js(n—— U
ry

nrz
Ul’

2

n n n

I- 1 T U, T-—L)r (= U, _"-)] sind¢
4 n, "a p? D,y a

o
r ur} Ny r 6 N, Dy, r .
—(1-—=)J (— U,, =)= —(1-——)g(— U,, —) | sin4
y a( nrzz) 6( Ny ry a) 4( ry) B(Bry ry a)] ¢
—r—(l—ELZL)J’ Ly By A2y 22 v D sin6e
Ya o nl “o, "V a 4 wo by 7a
LU LT JT. PRI TR SRR
Y oa 4 n, " a n? 6nry Y a
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2
1 Iy, r n, Ney r 6 Nes Dry r .
- = By —(1-SLyy (= =) 4+ =(1-"* LLE -
Bﬁ [ 8 n l'r‘y a(l 9 )‘l 6( n Ury a) 4(1 n )JG( Ury a) l sin8¢

ry ng ry v Py
n,(n:-n%) n2-N?2 n
4 2 20— A B2 U, ) sin2g
nrz(nry_nr}) N n., a
+ Ay [ U, i) sindg |

rx

+ n, r .
Ay [ gl " U, ;—) sinbg | | + ... (47)

By rearranging the terms in (46) and (47) in the forms of (21a) and (21b), we have the

Fourier cocflicients for the core region,

exo(r) = Aofoolr) + Agfoslr) + Bygeylr) (48a)
eis(r) = Aqfaolr) + Aufaolr) + Ayfay(r) + Biygy(r) (48b)
(1) = Agfyplr) + Afyy(r) + Bygolr) + Bygyg(r) (48c)
ey5(r) = Bypa(r) + Bypuy(r) + Agaao(r) + Agqpy(r) (48d)
e3(r) = Bopgp(r) + Bypy(r) + Bgpag(r) + Ayqua(r) (48¢)

Explicit expressions of fyy(r) ete. are given in Appendix A.

Similarly, from (41) - (41), we have for the cladding region:

edlr) = Co hoolr) + Cy hoy(r) + Dy koo(r) (49a)
e (r) = Co hyg(r) + Cy hyo(r) + Cy hygy(r) + Dy koy(r) (49b) ,
Di(r) = Cy hyolr) + Ca hyy(r) + Do kyy(r) + Dg kys(r) (49c)

k A N
nf-(L\Lx-xL\--L\A\L




" Laa . . - g - g R T T o=y e S e © e ” o e o -rur.v‘l’"'!

\:‘,‘:\ -
r
3
quzs(f) = Dy ragfr) + Dy ryylr) + Cosyolr) + Cysu4(r) (49d)
! ‘c
o e;)f’(r) = Dy rygr) + Dyrgylr) + Dg ryglr) + Cy s4(r) (49e)
-
- “-? . . .
NN Expressions for hy, etc. are also listed in Appendix A.
Cn
\
:A:;:.: Dispersion relation:
‘i Three leading harmonic terms of the even cosine series of e, and the even sine
- series of e, are kept in (41), 42), (50) and (51). The coeflicients Ay, Ay, A,, By, B, and
“’ﬁ Bg are pertaining to the core region and Cy, C,, C4, Dy, Dy and Dy to the cladding
b . . :
-} region. Substituting these equations into the boundary condition equations (32a), (32¢),
.y

(32¢), (32g) and (33a), (33c), (33e) and (33g) with j = 3 and 5. we have 12 linear equa-

tions which can be cast in matrix form:

L Q Qiz -+ - Qu Qi Qv Quc| Ao
! an Q22 T Q29 Q?a sz Q2c A
Qs Qz2 -+ - Qg Qza Qap Qse 34

B

‘..-‘:‘“.;..":1‘ ® r_.},r’.f
LT T -

Qi Quz - - - Qu Qua Qi Quc

o Qs Qsz - - - Qsg Qs Qb Qsc| By
v Qo1 Q2 -+ - Qs Qsa Qob Qsc| [Bs =0 (50)
O Q71 Q2 - - Qn Qr. Qn, Qr] |Co
e Qg1 Qg2 -+ - Qge Qga Qs Qsc| [Co
:::'jl Qgr Qo2 - - - Qg Qo Quv Quc| |C4
.‘_f, Q) Qa2 -+ - Qa9 Qua Qb Quc| D2
: ij Qb1 Quz - Qg Qva Qub Q| P4

ch ch IR Qcﬂ (eca ch Qccj DSJ
Expressions for Q;; withiorj = 1,2,3,..., 9, 10,a, b, c. are given in Appendix B.

A dispersion relation is obtained by setting the 12 x 12 determinant to zero.

- Il =0 &

< Obviously, (51) will be solved numerically.
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5. Discusssio and Numerical Examples

Before numerical results are presented, it would be helpful to enumerate the simi-
larities and differences between elliptical fibers and biaxial fibers purely from a
mathematical view point. As discussed in Section 4, (20a) and (20b) can be reduced to
the wusual wave -equations by a simple substitution: x'' = (0 /n,) x  or
y' = (n,/n,,) ¥y for the core region, and corresponding substitution for the cladding
region. Thus a biaxial fiber with a circular cross section can be viewed as an isotropic
fiber with an elliptical cross section so far as the differential equations for the zero-order
solution are concerned. However the scaling factors for the core and the cladding
regions are not necessarily the same, so the ellipticity of the core may differ from that
of the cladding. The main differecnce between two types of fibers is the way e, and éy
are coupled. For elliptical fibers, the coupling occurs only at the core-cladding boun-

dary. For biaxial fibers, coupling originates not only from the boundary, but also from
9? 9?

= and —2 in (20
Bxdy an oxdy in (20a)

and (20b). Even for the coupling at the boundary, there is a difference. In matching

the entire biaxial region or regions. This is due to the terins

d, at the core/cladding boundary, it is necessary to account for the difference between
n,, and Nyp, Nyg and Ny,

Since the characteristics of optical waveguides depend more on the index
differential and/or index anisotropy than the index itself, the results can best be
described in terms of index differential and anisotropy. As stated previously, the
indices of the core and cladding regions are (n,, , n,y , n;,) and (n4, , ngy , ny,) respec-
tively (Figure 1). The index difference between the core and the cladding regions is

defined as

drd = ("rm - "dm)/nrm (52)

where




" 3
R
......

n

= max of (n,,n,,)

rm
Dy = max of (ng,ng,)

Similarly the index anisotropy of the core and the cladding regions are:

dyyr = (0 = nyy)/mpy (53a)
dyar = (0 = 0p)/nyy (53b)
dyyg = (ngy = Dgy)/ng, (53c)
dyza = (ngy = ng,)/ngy (53d)

In all numerical calculations, n , is set to 1.5000 while other indices are varied by
changing d,,,, d,,4 and d 4 etc. To make the numerical results more meaningful, they

are cast in terms of generalized parameters V and b,

V =ka/n2 -1}, (54a)
b = (N2 = nd,) / (n2, = ndy) (54b)

which are the same as those used for isotropic fibers.

The transverse electric fields for two lowest polarization modes have been
obtained, using the method developed in the previous sections. The fields for the
lowest polarization modes are depicted in Figures 2a and 2b, and those for the second
lowest polarization mode are given in Figures 3a and 3b. In these plots, Iexl and Iey|
are plotted as functions of x/a and y/a. To reveal the details of each field components
clearly, it is necessary to use diflerent scale factors for different plots. To show the
relative amplitude of |e,| and |e/|, the ratio of |e| eak/| €y peak OF

|e peak/' exl peak 15 also indicated in the plots. For the lowest order polarization mode

)|

(Figures 2a and 2b), the peak of IeXI is approximately 128 times stronger than that of
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|ey|. On the other hand, for the second lowest order polarization mode of the same
fiber and with the same V value (Figures 3a and 3b), |ey| is much stronger than that
of lexl. Comparison of these plots also reveal that that the Iexl and leyl of the
lowest polarization mode are very similar to that of | e,| and |e,| of the second lowest
order polarization mode. Similar results have also been obtained for the same fiber
with different V value or for different fibers. In summary, we note for each polarization
mode, both field components are present, one field component is much stronger than
the other. In addition, the dominant field component (|e,| of Figure 2a and |e,| of
Figure 3b) has a peak at the center of the fiber, just like those of the LP,, modes for
the conventional isotropic fibers. The accompanying and much weaker field com-

ponent (i.e.|e,| of Figure 2b and |e,| of Figure 3a respectively) has an entirely

y|
different look: a null at the fiber center, surrounded by four peaks, one in each qua-
drant. Our calculations also show that fields extend much more into the cladding
region when the V value is small, i.e., the fibers are operating near cutoff. Of course
this is expected.

For the fiber discussed, n,, > n,, and ng, > ny,. and the dominant electric field
of the lowest polarization mode is e,. On the other hand, for the second lowest order

polarization mode, the dominant electric field is e,. In general, for a given fiber, the

v
lowest order polarization mode is the mode with the dominant electric fields along the
direction with the large index of refraction. Since this polarization mode has the larg-
est propagation constant, it will be ident'fied as mode s. The second lowest order
polarization mode, labeled as mode f, has its dominant electric field along a direction
perpendicular to that of mode s. The normalized b parameters, as defined in (54a) and
(54b), of these two polarization modes are labeled as b, and b;. Curves of b, vs V for
and d,,4 etc. are indistinguishable, as shown in Figure 4. How-

various values of d,,,

ever, curves for by do vary with d,,, and d, 4. Of particular interest is the by — by. In
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Figures 5, 6 and 7, b, — by is plotted as a function of V with d,, and d, 4 as parame-

Xyr
ters. In Figure 5, d,,, is kept to a constant while d, 4 varies. We note that near
cutofl, by ~ by is appreciable if d,,q is large. This is understandable. When a fiber is
operating near cutoff, fields spread out to the cladding region, and therefore, the clad-
ding anisotropy d,,4 should and do have an strong influence on the fiber characteristics.
On the other hand, for fibers operating far from cutoff, fields are concentrated in the
core region and therefore d,,, has a large impact on the b, — by. This is shown in Fig-

ure 6 where d,,4 are kept constant while d, , varies. In Figure 7, d,,, = d, 4 and they

vary simultaneously. For these cases b, — b, is practically independent of V.

6. Coupling with Biaxial Fibers

Although the excitation of low-birefringent fibers by plane waves or gaussian
beams, or the coupling between these fibers with planar or channel waveguides have
been studied extensively, the corresponding problems involving high-birefringence fibers
have not been treated previously. The main stumbling block is the lack of an accurate
description of fields in high birefringence fibers. With the theory developed in this
report, such a difficuity no longer exists and one shall be able to proceed to study these
coupling problems. In the following, we shall outline the basic procedure for treating

the coupling problems and present some of the results.

Let the transverse field components of the polarization mode v be €, and h,,.

Then the transverse electric fields in the fiber can be expressed as
Et. = ECU6LU' (55)

For a given incident field By, ¢, is given by

¢, = f(Ei" x h.)a, ds (56)

where &, is the unit vector in the z direction. Thus the dependence of ¢, as a function
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of the state of polarization (SOP) of the incident field and under various excitation
conditions can be determined. We assume that @,, and k,, are normalized so that the

power coupled to the polarization mode v is proportional to | c,,l 2

This approach has been employed to study the excitation of low birefringent as
well as high birefringent fibers. The contrast between these two types of fibers is quite
interesting. Take the case of plane wave excitation as an example. As the input SOP
of changes, the SOP of the fields in the low-birefringent fibers changes with the input
SOP, but the total power coupled into the fibers remains unchanged. On the other
hand, for high-birefringence fibers, both the SOP and the total power vary as the input
SOP varies.
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?
o In this Appendix, the expressions of fog(r) ete. are listed.
b
e I. Core region:
V) B
..::\'
-
: ‘:: f ] Ny, U r + 1 Dy U r 1 nl%( )J ( Npy U l')
o = — — — —(1- — —_
‘:, OO(r) 0( B rx a) n,, rx a( 0,23 1 D, rx a
2
’ 1 Dy r Dy 0., r 2 Dy Ny, r
L foolT) = o Uy (1= o — U =) + (1= y(— U,y —)
“: E o2 8 n, ™ a nr?'z Ny " a 4 1z rx * a
o 1 Ny r Ny Ny, r
folr) = =+ =2 Uy, L=y = v, L
. 20 4 Npy rx a Il,g, X ™ a
; fyo(r) = }(nrz U r) 1 N, U r“ nl?x)J, (nrz U l‘)
- 22} = Jol — =) — U, —{1- 2 -
.::_J:‘-, N LI 4 n, ™y nrgz - ~
C 9
e 1 Ny, r Ny n., r 4 Dy Dy r
- ) = £ 22U, L=t 2t v, 5 + A2yt g, 4
! 8 rx " a n,2, Ny * a 4 rz rx ™ a
N 0
e 1 N, r Ny N, r 2 Dy Ny, r
fat) = + 22 v, La-Tmypy iy, - 2y oy, 1
:‘; 42 N X o n,"; . LI 4 o n,, rx a
'::: [ (T) =] ( n,, U r ) 1 nrx U r (l nlﬁ( )J' (nrz U r)
LEILE S LR LA Tex VT AT N
._: n., ™ a 1 rx ™ a “rzz P = a
.
2 2 2 2
;_'.E goolr) = 1 nry(nrz-nry) “ry._N 3 N, U L)
NN o2tf) — 7 2 2 2 ot Uy
Oy 4 nrz(nrx—nry) N Dry a
3
] \g n.(n2-n2) n2-N2 n
‘! gr“(r) - _!_ ry''rz ry) ry . Jz( r3 Ury _l‘_)
T 4 n”(n,z,‘—nrz_v N« Ny a
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pale) = o2 U, Ly L B r Ry ey
ny Va4, Va2 n, 7 a
1 D, __x_ , Dz N, Ny,
Pas(r) = = U, —(1 S Y “) - “(1*—‘)1 (— Uy
8 my "a o pl Ny 7 Ty My
[ Ny 2 ' Ny, r 2 n, D,y r
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2
0, r 1 Ny T nry n,, r
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Appendix B

The expressions for the matrix elements of Q matrix are given in this Appendix.
Functions fyy(r) ete. are listed in Appendix A. A’ signifies differentiation with respect

tor.

Quy = faolr) = 2 fop(r) + agofr)
Quz = foalr) = 2 foo(r)

Qis = faglr) + agqlr)

Qe = ~ 2 8o2lr) + paolr)

go4(r) + Pay(r)

i

Q15
Qs =0
Q17 = ~— [hgolr) = 2 hog(r) + sgo(r)]

Qi = = [haofr) = 2 hgy(r)]

I

Qi = [haafr) + spu(r)]

Qua = 2 goo(r) = rao(r)

Qi = = [roglr) + goylr)]
Q'.c =0
2 n2
Qzy = —5 [2Foolr) + [Moolr) + 2 foo(r)] + ny (0" 90(r) + 2 qu(r)]
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Figure 2. Electric fields of the lowest order polarization mode in a biaxial fiber.
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