A MATHEMATICAL MODEL FOR CALCULATING NON-DETECTION PROBABILITY OF A RANDOM TOUR TARGET(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA S I ABD EL-FADEEL

END
A MATHEMATICAL MODEL FOR CALCULATING NON-DETECTION PROBABILITY OF A RANDOM TOUR TARGET

by

Salah Ibrahim Abd El-Fadeel

December 1985

Thesis Advisor: J. N. Eagle

Approved for public release; distribution is unlimited
A MATHEMATICAL MODEL FOR CALCULATING NON-DETECTION PROBABILITY OF A RANDOM TOUR TARGET

The primary objective of this study was to build a mathematical model to predict the probability of a target moving according to a two-dimensional random tour model avoiding detection (i.e., surviving) to some specified time, t.

This model assumes that there is a stationary searcher having a "cookie-cutter" sensor located in the center of the search area.

A Monte-Carlo simulation program was used to generate the non-detection probabilities. The output of this program was used to construct the required mathematical model.

(Continued)
19. (Continued)

The model predicts, and simulation supports that as the mean segment length of the random tour becomes small with respect to the square root of the area size, the probability of non-detection approaches that previously obtained for a diffusing target. In the opposite extreme, the probability of non-detection approaches the general form of Koopman's random search formula.
Approved for public release; distribution is unlimited

A Mathematical Model for Calculating Non-Detection Probability of a Random Tour Target

by

Salah Ibrahim Abd El-Fadeel
Colonel Engineer, Egyptian Army
B.S.C., Faculty of Engineering, Cairo University, 1968

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN APPLIED SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1985

Author:

Salah Ibrahim Abd El-Fadeel

Approved by:

J. N. Eagle, Thesis Advisor
Edward B. Rockower, Second Reader
Alan Washburn, Chairman, Department of Operations Research
Kneale T. Marshall, Dean of Information and Policy Sciences
ABSTRACT

The primary objective of this study was to build a mathematical model to predict the probability of a target moving according to a two-dimensional random tour model avoiding detection (i.e., surviving) to some specified time, t.

This model assumes that there is a stationary searcher having a "cookie-cutter" sensor located in the center of the search area.

A Monte-Carlo simulation program was used to generate the non-detection probabilities. The output of this program was used to construct the required mathematical model.

The model predicts, and simulation supports, that as the mean segment length of the random tour becomes small with respect to the square root of the area size, the probability of non-detection approaches that previously obtained for a diffusing target. In the opposite extreme, the probability of non-detection approaches the general form of Koopman's random search formula.
TABLE OF CONTENTS

I. RANDOM TOUR MODEL .. 9
 A. INTRODUCTION ... 9
 B. DESCRIPTION OF RANDOM TOUR MODEL 9
 1. The Searcher Location ... 9
 2. The Target Starting Position 9
 3. Motion of the Target ... 9
 4. Detection ... 11
 C. NECESSITY OF SIMULATION 11
 D. SIMULATION MODEL OF RANDOM TOUR 12
 1. Inputs .. 13
 2. Functioning of the Program 13
 3. Design of the Experiment 14
 4. Boundary Effects .. 16
 5. Output .. 17

II. RELATIONSHIP BETWEEN THE RANDOM TOUR AND DIFFUSION MODELS 19
 A. DESCRIPTION OF DIFFUSION MODEL 19
 B. RELATIONSHIP WITH RANDOM TOUR MODEL 19
 C. MATHEMATICAL MODEL OF DIFFUSION 22

III. THE ANALYTICAL MODEL FOR THE PROBABILITY OF NON-DETECTION 25
 A. MODEL ASSUMPTIONS .. 25
 B. CLASSIFICATION OF VARIABLES 25
 1. The Independent Variables 25
LIST OF FIGURES

1.1 Random-Tour Model ... 10
1.2 PND\(t\) for Various Time Increments \(4t\) 15
1.3 Reflection Process .. 18
2.1 Asymptotic Approach of Random Tour to Diffusion 21
3.1 Probability of Non-Detection by Time \(t\) vs. \(t\) on a Log-Scale for Y-Axis 27
3.2 Exponential Fitting to Simulation Curve (PND\(t\) vs. \(t\)) 28
3.3 Exponential Fitting to Simulation Curve (PND\(t\) vs. \(t\)) 29
3.4 Exponential Fitting to Simulation Curve (PND\(t\) vs. \(t\)) 30
3.5 Exponential Fitting to Simulation Curve (PND\(t\) vs. \(t\)) 31
3.6 Variation of \(\psi\) with Area Size \(A\) 36
3.7 Variation of \(\psi\) with Speed \(V\) 37
3.8 Variation of \(\psi\) with Rate of Course Change \(\lambda\) 39
3.9 Variation of \(\psi\) with Radius \(R\) 40
3.10 Distribution of Proportionality Constant \(K\) 43
4.1 Variation of \(\gamma\) with \(1/\lambda\) 46
4.2 Sensitivity Analysis .. 49
4.3 Verification Results .. 54
4.4 Verification Results .. 55
5.1 Variation of CDF and Density Function with Time 57
5.2 Variation of $E[T]$ with A, V, λ and R 60

5.3 Comparison Between CDF ($F(t)$) and Conditional CDF ($F_0(t)$) 63
I. RANDOM TOUR MODEL

A. INTRODUCTION

The main objective of this thesis was to construct and test an experimental mathematical model to predict the probability that a target moving according to a two-dimensional random tour will avoid detection to time t by a fixed sensor.

B. DESCRIPTION OF RANDOM TOUR MODEL

1. The Searcher Location

The searcher is assumed to be located in the center of a square search region of area A. This location is held fixed during the search period. The searcher has a detection capability over a disk of radius R. (See Figure 1.1).

The detection probability for a target inside this disk is 1 and it is 0 outside. The searcher thus has a "cookie-cutter" sensor with detection range R. [Ref. 1]

2. The Target Starting Position

The target's starting position is uniformly distributed over the square search region A.

3. Motion of the Target

The target moves randomly over the area A according to a random tour which reflects off the area boundaries. [Ref. 1]
Figure 1.1 Random-Tour Model
The target track is a connected sequence of line segments. The direction, or target course θ, for each straight segment is selected from an independent uniform distribution between 0 and 2π radians.

The length of time, T, the target spends on each leg (assuming no reflection off the area boundaries) is selected from an independent exponential distribution with mean $1/\lambda$. The term λ is the rate of course change (again ignoring reflections).

4. Detection

Detection occurs the first time the target enters the searcher's detection disk; that is, when the distance between the target and the center of A is less than or equal to R.

C. NECESSITY OF SIMULATION

An analytic expression for the probability density of the target's position after a random tour of time length t was derived in [Ref. 2]. Given the target's initial position at the origin of a two dimensional coordinate system, this expression is:

$$g(x, y, t) = \left[e^{-\lambda t / 2\pi (Vt)^2} \right] \left[\delta(r-1) + \left[\lambda t / \sqrt{1-r^2} \right] \exp(\lambda t \sqrt{1-r^2}) \right].$$

(1.1)

where

V = Target speed (nautical miles per hour)
\[\lambda = \text{Rate of course change (1/hour)} \]
\[t = \text{Time (hours)} \]
\[r^2 = \frac{x^2 + y^2}{(Vt)^2} \]
\[\delta = \text{Dirac } \delta\text{-function} \]
\[x, y = \text{Components of the target's new position.} \]

Expression (1.1) does not account for boundary effects and it considers the initial position of the target to be the origin. Adding the effects of boundary reflection and assuming the initial starting position to be uniformly distributed over A significantly complicates the calculation of \(g(x,y,t) \).

In addition, it was the purpose of this work to find the probability of non-detection to time \(t \) (PND\(t \)), not the probability density function for the target. Thus, it was necessary to use simulation to attack this problem.

D. SIMULATION MODEL OF RANDOM TOUR

A Monte-Carlo simulation computer model (called Random Tour Simulation or RATSIM) was used to estimate PND\(t \) for the random tour model. This program was written in FORTRAN and designed to run on the IBM 3033 at the Naval Postgraduate School. It uses the International Mathematical and Statistical Library (IMSL) packages GGUBS to generate
uniform random variables and GGEXN to generate exponential random variables.

1. Inputs

- Radius of detection disk R, in nautical miles (nm).
- Area size A, in square nautical miles (nm^2).
- Target speed V, in nautical miles per hour (nm/hr).
- Rate of course change λ, in 1/hour (hr^{-1})
- Number of replications (REP).
- Detection period (TMAX), in hours (hr).
- Time increment ΔT, in minutes.

2. Functioning of the Program

(i) At the start of each replication, the initial starting position of the target is drawn from a uniform distribution over the area A. The course θ is drawn from a uniform distribution on $(0, 2\pi)$.

(ii) The course is changed after a random time leg T drawn from an exponential distribution with mean $1/\lambda$.

(iii) After each time increment Δt, the new position of the target is calculated from:

$$X_{\text{new}} = X_{\text{old}} + V \cdot \Delta t \cdot \sin \theta$$
$$Y_{\text{new}} = Y_{\text{old}} + V \cdot \Delta t \cdot \cos \theta$$

where

$X_{\text{new}}, Y_{\text{new}}$ = coordinates of the new position at the end of Δt.

$X_{\text{old}}, Y_{\text{old}}$ = coordinates of the old position at the beginning of Δt.

13
Also, the distance D between the new position of the target and the center of the searcher disk is calculated from:

$$D^2 = (X_{\text{new}} - X_{\text{ser}})^2 + (Y_{\text{new}} - Y_{\text{ser}})^2.$$

where

$X_{\text{ser}}, Y_{\text{ser}}$ = coordinates of the center of the searcher's disk.

(iv) The replication terminates if: $D < R$ or if the detection period (TMAX) is over. Then a new replication begins. The process continues until the specified number of replications is reached.

(v) Two counters are used, one to determine the current time t, and the other to count the number of replications in which detection occurs.

3. Design of the Experiment

Different time increments At, varying from 1 minute up to 10 minutes, were tested with RATSIM and 3 minutes was accepted as a reasonable compromise. For smaller At, the execution time of the program increased unacceptably. For larger values, it was possible for the simulated path to jump across a significant portion of the detection disk without achieving detection, even though the line segment connecting two successive discrete positions of the target was partly on the disk [Ref. 3]. This will reduce the detection rate, especially for large V. However, as illustrated in Figure 1.2, $PND(t)$ can be relatively insensitive to At less than 10 minutes when the problem
Figure 1.2 PND(t) for Various Time Increments Δt

For a, b, c, d and e
A = 10000 \text{ nm}^2
V = 10 \text{ nm/hr}
R = 10 \text{ nm}
\lambda = 1 \text{ hr}^{-1}

<table>
<thead>
<tr>
<th>Curve</th>
<th>Δt (minutes)</th>
<th>PND (60 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0.3971</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>0.3974</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td>0.398</td>
</tr>
<tr>
<td>d</td>
<td>6</td>
<td>0.412</td>
</tr>
<tr>
<td>e</td>
<td>10</td>
<td>0.418</td>
</tr>
</tbody>
</table>
parameters are appropriate for antisubmarine warfare (ASW) search.

It was decided to conduct 2400 replications for each RATSIM experiment. This resulted in the standard deviation of the simulated PND(t) being no greater than

\[
\sqrt{\frac{0.25}{2400}} = 0.0102.
\]

Also the maximum time allowed for detection (TMAX) was set at 100 hours. This was selected to allow PND(TMAX) to be near 0 for all tested values of problem parameters.

4. Boundary Effects

When the target encounters a boundary, a reflection is made to keep the target inside the search area \(A \). The target position after reflection is determined as follows:

In Y-Direction:

- If \(Y < 0 \) then \(Y \) becomes \((-Y)\).
- If \(Y > L \) then \(Y \) becomes \((2L - Y)\).

where

\[
L = \text{length of a side of the square search area } A; \\
\text{i.e., } L = \sqrt{A}.
\]

In X-Direction:

The target reflects in the X-direction in a similar manner.

The target course \(\theta \) changes after reflection as follows:
At $Y = 0$ or $Y = L$: θ becomes $(2\pi - \theta)$,

At $X = 0$ or $X = L$: θ becomes $(\pi - \theta)$.

Thus, "the angle of incidence equals the angle of reflection." The reflection process is illustrated in Figure 1.3.

5. **Output**

At each time t, the primary simulation output is the ratio $\frac{N_T - N_0}{N_T}$ where

$N_0 = \text{number of replications giving a detection by time } t,$

and

$N_T = \text{total number of replications used in Monte-Carlo simulation}.$

This ratio is the simulated probability of non-detection by time t, $PND(t)$.

Figure 1.3 Reflection Process
II. RELATIONSHIP BETWEEN THE RANDOM TOUR AND DIFFUSION MODELS

A. DESCRIPTION OF DIFFUSION MODEL

In the diffusion model considered here, the target moves randomly over a square search area A according to Brownian motion with a diffusion constant D (units: area/time). Perfect reflection occurs at the area boundaries.

The target starting position is uniformly distributed over A. For any time interval of length At which does not contain a boundary reflection, the components of the target's position along the X and Y axes suffer increments which are each distributed independently and normally with mean 0 and variance DAt.

A searcher having a "cookie-cutter" sensor with detection range R is located at the center of the search region.

Detection occurs whenever the range between the searcher and the target becomes R or less.

B. RELATIONSHIP WITH RANDOM TOUR MODEL

In [Ref. 4] it is shown that as the rate of course change λ for an unconstrained random tour gets larger such that $V^2/\lambda = \text{constant}$, then the random tour can be approximated by a diffusion model with a diffusion constant
\[D = \frac{V^2}{\lambda}. \] In this case, the two models are said to be "equivalent".

Also, it is argued in [Ref. 5] that the detection probability predicted by a constrained (by reflecting boundaries) diffusion model represents an upper bound to that predicted by the equivalent constrained random tour model. In other words, the non-detection probability predicted by a constrained diffusion model is a lower bound to that predicted by the equivalent constrained random tour model. This is reasonable since it is known [Ref. 4] that the target in an unconstrained diffusion model will "on average" move a greater distance from the origin than a target conducting the equivalent random tour. Consequently, the diffusing target would be expected to encounter a stationary searcher more quickly.

These observations, as regarding the relationship between random tour and its equivalent diffusion, were supported by plotting the results of two simulation programs: RATSIM and DIFSIM.

DIFSIM (diffusion simulation) is a Monte-Carlo search simulation for a diffusing particle developed by Sislioglu [Ref. 5].

To generate the results displayed in Figure 2.1, the parameters \(A \) and \(R \) were held fixed at 1000 nm\(^2\) and 28.2 nm respectively for both programs. The diffusion constant \(D \)
Figure 2.1 Asymptotic Approach of Random Tour to Diffusion
used with DIFSIM was 100 nm\(^2\)/hr. In RATSIM five different
(\(\lambda, V\)) pairs were selected such that \(V^2/\lambda = 100 \text{ nm}^2/\text{hr}\) for each pair. The values of (\(\lambda \text{ hr}^{-1}, V \text{ nm/hr}\)) were (0.25, 5),
(1, 10), (4, 20), (9, 30), and (16, 40).

It is clear from Figure 2.1 that, in this case as the ratio of the characteristic length of the search area to the mean segment length of the random tour (\(W/V(1/\lambda)\)) gets larger the non-detection probability curves for a random tour model asymptotically approach that of the equivalent diffusion model.

C. MATHEMATICAL MODEL OF DIFFUSION

Sislioglu [Ref. 5] established a mathematical model to predict the probability of detection of a target moving according to the diffusion model (described in section A). This mathematical model is given by:

\[
 PD(t) = 1 - \left(1 - \frac{\pi R^2}{A}\right) \exp \left(-\frac{24.7 \text{ R}t}{A^{1.5}}\right)
\]

It was later modified by Eagle [Ref. 3] to the following form:

\[
 PD(t) = 1 - \left(1 - \frac{\pi R^2}{A}\right) \exp \left[\frac{-24.7 \text{ R}t}{(A - \pi R^2)^{1.5}}\right]
\]

where:
PD(t) = probability of detection at time t in hr.

D = diffusion constant, nm²/hr

R = radius of searcher disk, nm

A = area of search region, nm²

So PND(t) can be given by:

PND(t) = 1 - PD(t)

\[PND(t) = \left(1 - \frac{\pi R^2}{A}\right) \exp \left[\frac{-24.7 RDt}{(A - \pi R^2)1.5} \right]. \quad (2.1) \]

As stated before, PND(t) as given by (2.1) should represent a lower bound on PND(t) as predicted by the equivalent random tour model, and will be used later in the next chapter as a basis to derive the mathematical model of random tour.

For simplicity, equation (2.1) will be written in the form:

\[PND(t) = \alpha \cdot e^{-bt}. \quad (2.2) \]

where

\[\alpha = 1 - \frac{\pi R^2}{A}. \quad (2.3) \]

and
\[\beta = \frac{24.7 \text{ RD}}{(A - \pi R^2)^{1.5}} \quad (2.4) \]

As indicated in [Ref. 5], the diffusion constant \(D \) can be approximated by \(V^2/\lambda \) to get a diffusion model equivalent to the random tour with \(V \) and \(\lambda \). So, if we replace \(D \) by \(V^2/\lambda \) in (2.4) we get the approximate rate of detection for the equivalent diffusion model in the form

\[\beta = \frac{24.7 \text{ RV}^2}{(A - \pi R^2)^{1.5}} \quad (2.5) \]
III. THE ANALYTICAL MODEL FOR THE PROBABILITY OF NON-DETECTION

In this chapter an experimental analytical model is constructed to predict the probability of non-detection by time t of a target moving according to the random tour model described in Chapter I.

Simulation results from RAISIM will be used as well as the relationship between the random tour model and the asymptotically equivalent diffusion.

A. MODEL ASSUMPTIONS

The following assumptions are made:

1) The target starting position is uniformly distributed over the square search area A.

2) The target reflects perfectly off the area boundaries.

3) The target moves over the area A according to a random tour with constant speed V and rate of course change λ.

4) The searcher is fixed at the center of A.

5) The searcher detects with probability 1 all targets with a range of R or less. The searcher never detects targets at ranges greater than R. (That is, the searcher has a "cookie-cutter" sensor with detection range R [Ref. 2].)

6) The problem ends when the target is detected.

B. CLASSIFICATION OF VARIABLES

1. The Independent Variables

- Search area A in square nautical miles (nm^2).
* Target speed V in nautical miles per hour (nm/hr).
* Rate of course change λ in 1/hour (hr$^{-1}$).
* Searcher detection disk radius R in nautical miles (nm).

2. The Dependent Variables

* Probability of non-detection by time t, $PND(t)$, i.e., $PND(t) = f(A, V, R, \lambda)$.

C. CONSTRUCTION OF THE MODEL

By plotting $PND(t)$ versus t, as estimated by RATSIM and with a logarithmic scale for the Y-axis, it was observed that the resulting curves were very nearly linear with negative slopes (see Figure 3.1).

This linear relationship on a logarithmic scale graph suggests the following functional form for $PND(t)$:

\[PND(t) = a \cdot e^{-\gamma t} \]

(3.1)

In the course of this research approximately 300 simulation experiments with RATSIM were conducted. All showed $PND(t)$ to be approximately given by (3.1). Figures 3.2 through 3.5 are representative.

This thesis attempts to fit the simulation data and establish values of a and γ as functions of the problem independent variables A, V, R and λ.

A small subroutine was added to the main program of RATSIM to compute a least-squares estimate of a and γ. The formulas used [Ref. 6] were:
Figure 3.1 Probability of Non-detection by time t vs. t on a Log-scale for Y Axis
Figure 3.2 Exponential Fitting to Simulation Curve (PND(t) vs. t)
(a) Lin-Scale (b) Log-Scale
Figure 3.3 Exponential Fitting to Simulation Curve (PND(t) vs. t)
 a) Lin-Scale b) Log-Scale

- $A = 10000 \text{ mm}^2$
- $V = 10 \text{ mm/hr}$
- $R = 10 \text{ mm}$
- $\lambda = 1 \text{ 1/hr}$
Figure 3.4 Exponential Fitting to Simulation Curve (PND(t) vs. t)
 a) Lin-Scale b) Log-Scale

\[A = 14000 \text{ nm}^2 \]
\[V = 15 \text{ nm/hr} \]
\[R = 12 \text{ nm} \]
\[\lambda = 3 \text{ 1/hr} \]
Figure 3.5 Exponential Fitting to Simulation Curve (PMD(t) vs. t)

a) Lin-Scale
b) Log-Scale

\[A = 20000 \text{ m}^2 \]
\[V = 20 \text{ m/hr} \]
\[R = 15 \text{ m} \]
\[\lambda = 2 \text{ /hr} \]
\[
\ln \alpha = \frac{\sum_{i=1}^{n} t_i \sum_{i=1}^{n} \ln \text{PND}(t_i) - \sum_{i=1}^{n} t_i \sum_{i=1}^{n} (t_i \ln \text{PND}(t_i))}{n \sum_{i=1}^{n} t_i^2 - \left(\sum_{i=1}^{n} t_i \right)^2}
\]

and

\[
\gamma = \frac{n \sum_{i=1}^{n} (t_i \ln \text{PND}(t_i)) - \sum_{i=1}^{n} t_i \sum_{i=1}^{n} \ln \text{PND}(t_i)}{n \sum_{i=1}^{n} t_i^2 - \left(\sum_{i=1}^{n} t_i \right)^2}
\]

where

\[n = \text{number of data points used in the evaluation.}\]

1. **Submodel for \(a \)**

 Since the target starting position is uniformly distributed over the search area \(A \), and the searcher has a perfect detection capability over a disk with area \(\pi R^2 \), we expect that immediately after the search begins the probability of detection will be \(\pi R^2 / A \).

 If we substitute \(t = 0 \) in equation (3.1) we get

 \[\text{PND}(0) = \alpha\]

 So,
\[a = 1 - \pi R^2 / A \] \hspace{1cm} (3.2)

As would be expected, all simulations conducted showed

\[\text{PND}(0^+) = 1 - \pi R^2 / A \]

2. **Submodel for \(\gamma \)**

As stated before, \(\text{PND}(t) \) predicted by a diffusion model appears to be a lower bound to those values predicted by the equivalent random tour model.

A study of the simulation data suggests that \(\gamma \) in equation (3.1) can be estimated by:

\[\gamma = \beta (1 - e^{-\psi}) \] \hspace{1cm} (3.3)

where

- \(\beta \) is the detection rate of the equivalent diffusion model given by equation (2.5).
- \(\psi \) is a function of the independent problem variables \(A, V, R \) and \(\lambda \).

In this thesis an attempt is made to find the functional relationship between \(\psi \) and the independent variables. It should be noted that there may be other functional forms for \(\gamma \) that fit the simulation data as well or better than equation (3.3).
3. **Submodel for ψ**

This submodel includes the A, R, V and λ. So it can be expected to be more complex than the submodel for α. To simplify the problem, the relationship between ψ and each one of these variables was investigated separately at first. Then a combination of these separate relationships was used to construct the required submodel for ψ.

a. **Relationship Between ψ and Area Size A**

To obtain this relationship, the variables V, R and λ were held fixed at 10 nm/hr, 10 nm and 1 hr⁻¹ respectively. The area size A was varied between 900 nm² and 20000 nm².

Each simulation run required the independent variables A, R, V and λ to be specified, and gave a best fit for ψ as an output. Then from equation (3.3) we have

\[
ψ = - \ln \left(1 - \frac{1}{β} \right) \cdot \tag{3.4}
\]

Substituting (2.5) into (3.4) yields

\[
ψ = -\ln \left\{ 1 - \frac{γ\lambda(A - xR^2)^{1.5}}{24.7 RV^2} \right\} \cdot \tag{3.5}
\]

By plotting the values of ψ, calculated by equation (3.5), versus the corresponding values of A, it was found that a power function fit the data very well (see
Figure 3.6). The least-squares best-fit \(\psi \) was found to be given by

\[
\psi = 0.0080678 (A)^{0.5028} .
\]

This implies that

\[
\psi = \sqrt{A}
\]

(3.6)

where

"\(\propto \)" means "is proportional to".

b. Relationship Between \(\psi \) and Target Speed \(V \)

Here the variables \(A \), \(R \) and \(\lambda \) were held fixed at 10000 nm\(^2\), 10 nm, and 1 hr\(^{-1}\) respectively. \(V \) was then varied between 2.5 nm/hr and 25 nm/hr. The simulation output \(\gamma \) and equation (3.5) were used to generate the corresponding values of \(\psi \).

By plotting \(\psi \) versus \(V \) and fitting a power function to the data, it was observed that

\[
\psi = 8.3357 (V)^{-1.001} .
\]

(See Figure 3.7). This implies that
\[\psi = 0.008678 (\text{Area})^{0.5028} \]

\[V = 10 \text{ nm/hr} \]
\[R = 10 \text{ nm} \]
\[\lambda = 1 \text{ hr}^{-1} \]

Figure 3.6 Variation of ψ with Area Size A
Figure 3.7 Variation of ψ with V

\[\psi = 8.3357(V)^{-1.001} \]

\[A = 10000 \text{ nm}^2 \]
\[R = 10 \text{ nm} \]
\[\lambda = 1 \text{ hr}^{-1} \]
\[\psi = \frac{1}{V} \quad (3.7) \]

c. Relationship Between \(\psi \) and the Rate of Course Change \(\lambda \)

Now \(A, V \) and \(R \) were held fixed at 10000 \(\text{nm}^2 \), 10 \(\text{nm/hr} \) and 10 \(\text{nm} \) respectively. Then \(\lambda \) assumed the following values: 0.01, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2, 2.5, 3, and 4 \(\text{hr}^{-1} \). The resulting best fit power function (see Figure 3.8) was found to be

\[\psi = 0.83419(\lambda)^{1.0003} \]

This means that

\[\psi = \lambda \quad (.38) \]

d. Relationship Between \(\psi \) and Detection Radius \(R \)

The following values were assigned to \(R \): 2.5, 5, 7.5, 10, 12.5, 15, 20, 25, 30, and 35 \(\text{nm} \). The other variables \(A, V \) and \(\lambda \) were held fixed at 10000 \(\text{nm}^2 \), 10 \(\text{nm/hr} \) and 1 \(\text{hr}^{-1} \) respectively. The best fit power function was

\[\psi = 0.8423(R)^{-0.009} \]

This indicates that \(\psi \) is nearly independent of \(R \) over this range of \(R \) values (see Figure 3.9).
Figure 3.8 Variation of ψ with λ

$A = 10000 \text{ mm}^2$

$V = 10 \text{ mm/hr}$

$R = 10 \text{ mm}$

$\psi = 0.83419(\lambda)^{1.0003}$
Figure 3.9 Variation of ψ with Radius R
e. Summary and Conclusions

Now, we can summarize the previous relationships as follows:

\[\psi = \sqrt{A}, \]
\[\psi = 1/V, \]
\[\psi = \lambda. \]

This leads to the following conclusion:

\[\psi = \frac{\sqrt{A} \lambda}{V}. \]

Or equivalently,

\[\psi = K \cdot \frac{\sqrt{A} \lambda}{V}. \quad (3.9) \]

where \(K \) is a proportionality constant to be estimated from the simulation data.

f. Estimation of the Coefficient \(K \)

The outputs \(\gamma \) of 156 simulation experiments with RATSIM were used to produce 146 sample \(K \) values. The value of \(K \) was calculated from equation (3.9) as follows:

\[K = \frac{\psi V}{\sqrt{A} \lambda}. \quad (3.10) \]

where the value of \(\psi \) was determined by equation (3.5).
The 156 RATSIM experiments used to estimate K resulted in a sample mean of 0.084 and a sample standard deviation of 0.0016. These data suggest that with probability 0.9, K lies in the interval [0.082, 0.087]. The bounds of this confidence interval were the observed 5 and 95 percentile points.

The histogram and the statistical summary table for this data are displayed in Figure 3.10.

g. Final Submodel for \(\psi \)

By estimating the value of K and applying equation (3.9) we can construct the final submodel for \(\psi \) as follows:

\[
\psi = 0.084 \left(\frac{A^\lambda}{V} \right). \tag{3.11}
\]

h. Final Submodel for \(\gamma \)

Substituting equations (3.11) and (2.5) into equation (3.3) we get

\[
\gamma = \frac{24.7 \text{RV}^2}{(A - \pi R^2)^2} \left[1 - \exp(-0.084 \left(\frac{A^\lambda}{V} \right)) \right]. \tag{3.12}
\]

4. The Final Form of the Random Tour Analytical Model

Combining the final submodels for \(\alpha \) and \(\gamma \) allows us to complete the random tour analytical model.
Substituting equations (3.2) and (3.12) into (3.1)

we get

\[P_N(t) = (1 - \frac{xR^2}{A}) \exp\left(\frac{-24.7 RV^2 t}{(A - xR^2)^{1.5} \lambda} \right) \left[1 - \exp(-0.084 \sqrt{\frac{A \lambda}{V}}) \right] \]
IV. VERIFICATION OF THE RANDOM TOUR MODEL

A. DIMENSIONAL ANALYSIS

From equation (3.3) it is clear that ψ must be dimensionless. Now writing ψ as $K \sqrt{A/\lambda/V}$, we see that K also is a dimensionless coefficient.

B. LIMIT OF γ AS $\lambda \to 0$

From equation (3.12) we have

$$\lim_{\lambda \to 0} \gamma = \lim_{\lambda \to 0} \left\{ \frac{24.7 RV^2}{(A - \pi R^2)^{1.5}} \left[1 - \exp(-0.084 \sqrt{\frac{A}{V}}) \right] \right\}$$

$$= \frac{24.7 RV^2}{(A - \pi R^2)^{1.5}} (0.084 \sqrt{\frac{A}{V}})$$

$$= \frac{2.0748 RV \sqrt{A}}{(A - \pi R^2)^{1.5}}.$$ \hspace{1cm} (4.1)

So if equation (3.12) is a reasonable estimate for γ, then as $\lambda \to 0$ RATSIM should give a best fit γ given by equation (4.1). To test this, four groups of simulation experiments were conducted. In each group, values of A, R and V were held constant and λ was varied from 0.01 to 0.01. Figure 4.1 shows the best fit γ plotted against $1/\lambda$ for each of the simulation groups. Also plotted is a horizontal
Figure 4.1: Variation of γ with $1/\lambda$
line intersecting the Y-axis at the value given by equation (4.1).

For these simulations, it appears that equation (3.12) holds as \(\lambda \to 0 \).

It is noted that \(\lambda = 0 \) means that the target never changes course except when reflecting off the area boundaries.

C. LIMIT OF \(\gamma \) AS \(\pi R^2 + A \)

From equation (3.12) we see that \(\gamma \to \infty \) as \(\pi R^2 + A \), which implies that \(\text{PND}(t) \to 0 \) for \(t > 0 \). This is as would be expected.

D. ASYMPTOTIC APPROACH TO DIFFUSION MODEL

As stated before, when the ratio of the characteristic length of the search area to the mean segment length of the random tour (\(\sqrt{A/V(1/\lambda)} \)) becomes large, we find that the random tour model approaches the asymptotically equivalent diffusion model with a diffusion constant \(V^2/\lambda \). This is consistent with equation (3.12). Since by taking the limits of both sides of (3.12) as \(\sqrt{A/V(1/\lambda)} \to 0 \), we get

\[
\lim_{\sqrt{A/V(1/\lambda)} \to 0} \frac{24.7 RV^2}{(A - \pi R^2) 1.5} = \gamma \, .
\]

This is the value of \(\gamma \) given by equation (2.5) for a diffusion model when the diffusion constant is \(V^2/\lambda \).
E. ASYMPTOTIC APPROACH TO RANDOM SEARCH MODEL

The random tour model of Koopman [Ref. 7] predicts that the detection rate of a randomly moving target is $2RV/A$. As $\sqrt{A} \lambda/V \rightarrow 0$, the model presented here results in a detection rate of

$$2.0748 \frac{RV \sqrt{A}}{(A - \pi R^2)^{3/2}},$$

For small $\pi R^2/A$ these two expressions are nearly equal.

F. LIMIT OF γ AS $V \rightarrow 0$

By taking the limits of both sides of equation (3.12) as $V \rightarrow 0$ we get

$$\lim_{V \rightarrow 0} \gamma = 0$$

This means that for $V = 0$,

$$PND(t) = 1 - \pi R^2/A, \ t > 0,$$

which is as would be expected.

G. SENSITIVITY ANALYSIS

Figure 4.2 illustrates how equation (3.13) behaves as the independent variables A, V, R and λ are varied one at a time. The base case considered was:
Figure 4.2 Sensitivity Analysis

- A varies
- \(V \) varies
- \(\lambda \) varies
- \(R \) varies

For Curves a, b, c, and d:

- \(A = 1000 \text{ mm}^2 \)
- \(V = 10 \text{ mm/hr} \)
- \(\lambda = 1 \text{ hr}^{-1} \)
- \(R = 10 \text{ mm} \)
- \(t = 20 \text{ hr} \)
\[A = 10,000 \text{ nm}^2, \]
\[V = 10 \text{ nm/hr}, \]
\[\lambda = 1 \text{ hr}^{-1}, \]
\[R = 10 \text{ nm}, \]
\[t = 20 \text{ hr}. \]

Equation (3.13) is seen to be an increasing function of \(A \) and \(\lambda \), and a decreasing function of \(V \) and \(R \). This agrees with intuition.

As \(A \) increases, the target has more area in which to hide. So PND will increase.

As \(V \) or \(R \) increases, the target will be more likely to encounter the detection disk. So PND decreases.

And as \(\lambda \) increases, the target tends to remain closer to its starting position. So PND will increase.

H. FINAL VERIFICATION

There exist no actual data available from real life observations. Therefore, the output of RATSIM was used for final verification of the model.

To achieve this purpose 47 combinations of different values of the independent variables \(A, V, R \) and \(\lambda \) were used as input to both simulation program RATSIM and the proposed analytical model given by equation (3.13).

These 47 experiments were classified into four groups, where in each group only one parameter was varied while the
others were kept at the base case value \((A = 10000 \text{ nm}^2, V = 10 \text{ nm/hr}, R = 10 \text{ nm} \text{ and } \lambda = 1 \text{ hr}^{-1})\). The outputs of these different experiments are displayed in Table 4.1.

By looking carefully into the values displayed in Table 4.1, we observe that there is a little difference between the values obtained from simulation and the corresponding values estimated by the proposed analytical model, except for large values of \(\lambda (\lambda > 20)\), and for large values of \((\pi R^2/A)(\pi R^2/A > 0.3)\).

So, we can say that the proposed analytical model is reasonable for the realistic values of the problem independent variables \((A, V, R \text{ and } \lambda)\) used in antisubmarine warfare (ASW).

Figures 4.3 and 4.4 show a comparison of PND(t) generated by RATSIM and the analytical model for representative values of the independent variables. For many cases the fit is so close that the curves are nearly indistinguishable.

51
TABLE 4.1

VARIATION OF γ AND $|\text{Max } \Delta|$ WITH VARIATION IN THE INDEPENDENT VARIABLES

| (1) Vary A | (2) Model γ | (3) Simulated γ | (4) $|\text{Max } \Delta|$ |
|------------|-------------------|----------------------|-----------------------|
| $A = 400 \text{ nm}^2$ | 4.8 | 2.587 | 0.08 |
| 900 | 0.388 | 0.418 | 0.0305 |
| 2000 | 0.112 | 0.117 | 0.0301 |
| 4000 | 0.0455 | 0.0461 | 0.0225 |
| 6000 | 0.0276 | 0.0278 | 0.0165 |
| 8000 | 0.0194 | 0.0193 | 0.011 |
| 10000 | 0.0147 | 0.0145 | 0.012 |
| 12000 | 0.0118 | 0.0117 | 0.01 |
| 14000 | 0.00972 | 0.00975 | 0.015 |
| 16000 | 0.00823 | 0.00825 | 0.013 |
| 18000 | 0.0071 | 0.00721 | 0.0123 |
| 20000 | 0.00622 | 0.00625 | 0.015 |
| 25000 | 0.00468 | 0.00466 | 0.016 |

Vary R

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R = 2.5 \text{ nm}$</td>
<td>0.00352</td>
<td>0.00398</td>
<td>0.047</td>
</tr>
<tr>
<td>5</td>
<td>0.0072</td>
<td>0.00738</td>
<td>0.0345</td>
</tr>
<tr>
<td>10</td>
<td>0.0147</td>
<td>0.0145</td>
<td>0.012</td>
</tr>
<tr>
<td>15</td>
<td>0.0235</td>
<td>0.0229</td>
<td>0.013</td>
</tr>
<tr>
<td>20</td>
<td>0.0343</td>
<td>0.0338</td>
<td>0.011</td>
</tr>
<tr>
<td>25</td>
<td>0.0487</td>
<td>0.048</td>
<td>0.017</td>
</tr>
<tr>
<td>30</td>
<td>0.0693</td>
<td>0.0683</td>
<td>0.0216</td>
</tr>
<tr>
<td>35</td>
<td>0.1</td>
<td>0.0986</td>
<td>0.032</td>
</tr>
<tr>
<td>40</td>
<td>0.16</td>
<td>0.15</td>
<td>0.041</td>
</tr>
<tr>
<td>50</td>
<td>0.706</td>
<td>0.308</td>
<td>0.07</td>
</tr>
</tbody>
</table>

$|\text{Max } \Delta|$: The maximum absolute difference between $PND(t)$ estimated by simulation and $PND(t)$ estimated by the analytical model at the same t, over the whole experiment period (T_{MAX}).
<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vary V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V = 2.4$ nm/hr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00156</td>
<td>0.00177</td>
<td>0.0323</td>
</tr>
<tr>
<td>10</td>
<td>0.00527</td>
<td>0.00526</td>
<td>0.0244</td>
</tr>
<tr>
<td>15</td>
<td>0.0147</td>
<td>0.0145</td>
<td>0.012</td>
</tr>
<tr>
<td>20</td>
<td>0.025</td>
<td>0.0251</td>
<td>0.014</td>
</tr>
<tr>
<td>25</td>
<td>0.0355</td>
<td>0.0356</td>
<td>0.012</td>
</tr>
<tr>
<td>30</td>
<td>0.0462</td>
<td>0.0472</td>
<td>0.013</td>
</tr>
<tr>
<td>35</td>
<td>0.057</td>
<td>0.0582</td>
<td>0.021</td>
</tr>
<tr>
<td>40</td>
<td>0.06773</td>
<td>0.0689</td>
<td>0.014</td>
</tr>
<tr>
<td>50</td>
<td>0.0785</td>
<td>0.0801</td>
<td>0.019</td>
</tr>
<tr>
<td>100</td>
<td>0.2088</td>
<td>0.2205</td>
<td>0.0329</td>
</tr>
<tr>
<td>200</td>
<td>0.4268</td>
<td>0.446</td>
<td>0.017</td>
</tr>
</tbody>
</table>

| Vary λ |
| $\lambda = 0.1$ hr$^{-1}$ |
0.2	0.0209	0.0224	0.0217
0.4	0.02004	0.0217	0.0162
0.6	0.0184	0.0196	0.0154
0.8	0.0158	0.01579	0.0092
1	0.0147	0.0145	0.012
1.5	0.0137	0.0125	0.016
2	0.0105	0.0102	0.0242
5	0.0051	0.00512	0.037
10	0.00259	0.00294	0.0521
15	0.00173	0.00224	0.054
20	0.0013	0.00687	0.065
Figure 4.3 Verification Results
Figure 4.4 Verification Results
V. PROBABILISTIC ANALYSIS OF THE MODEL

A. CUMULATIVE DISTRIBUTION FUNCTION (CDF)

Let T be the random variable for time of detection. And let $F(t)$ be the cumulative distribution function (CDF) for T. That is,

$$P(T \leq t) = F(t).$$

The model presented here implies that $F(t)$ can be closely approximated by

$$F(t) = u(t) [1 - ae^{-\gamma t}]. \quad (5.1)$$

where

$u(t)$ is 0 for $t < 0$ and 1 for $t > 0$

It is noted that equation (5.1) satisfies the following properties of a CDF:

1) $\lim_{{t \to \infty}} F(t) = 1,$

2) $F(0) = 0,$

3) $F(t) \geq 0,$

4) $F(t)$ is a non-decreasing function (see Figure 5.1).
Figure 5.1 Variation of CDF and Density Function with Time
B. DENSITY FUNCTION

By taking the first derivative of $F(t)$ with respect to time, we can derive the density function ($f(t)$) for T as follows:

$$f(t) = \frac{dF(t)}{dt}$$

$$= u(t) (\alpha e^{-\gamma t}) + \delta(t)(1 - \alpha) .$$ \hspace{1cm} (5.2)

where

$\delta(t)$ is the Dirac δ-function.

C. EXPECTED VALUE OF DETECTION TIME

The expected detection time $E[T]$ can be derived as follows:

$$E[T] = \int_0^\infty [1 - F(t)] dt$$

$$= \int_0^\infty [1 - u(t) (1 - \alpha e^{-\gamma t})] dt$$

$$= \int_0^\infty \alpha e^{-\gamma t} dt$$

$$= \frac{\alpha}{\gamma} .$$ \hspace{1cm} (5.3)
Replacing \(a, \gamma \) by their expressions given by equations (3.2), (3.12) respectively we get:

\[
E[T] = (1 - \frac{zR^2}{A})(A - zR^2)^{1.5}\lambda
24.7 RV^2[\exp(-0.084 \frac{A \lambda}{V})] - 1
\]

(5.4)

This equation shows how \(E[T] \) varies with the problem independent variables \(A, R, V \) and \(\lambda \). The variation of \(E[T] \) with each of these variables is indicated in Figure 5.2.

D. CONDITIONAL CDF

If we assume that there will be no detection at the beginning of the search period, we may derive the following conditional CDF \((F_0(t)) \):

\[
F_0(t) = P \{ \text{Detection by time } t \mid \text{no det. at } t = 0^+ \}
= P \{ T < t \mid T > 0 \}
= \frac{P(T > 0, T < t)}{P(T > 0)} = \frac{P(0 < T < t)}{P(T > 0)}
\]

(5.5)

If we substitute \(t = 0^+ \) in (5.1) we get

\[
F(0^+) = 1 - a
\]

(5.6)

So,
Figure 5.2 Variation of $E[T]$ with A, V, λ and R
\[P(0 < T \leq t) = F(t) - F(0^+) \]

\[= (1 - ae^{-\gamma t}) - (1 - a) \]

\[= a(1 - e^{-\gamma t}) \quad (5.7) \]

Also,

\[P(T > 0) = \overline{F}(0^+) \]

\[= 1 - F(0^+) \]

\[= a \quad (5.8) \]

Substituting (5.7) and (5.8) into (5.5), we get

\[F_0(t) = (1 - e^{-\gamma t}) \quad (5.9) \]

This function (5.9) is a CDF for an exponential distribution with parameter \(\gamma \) (an expression for \(\gamma \) is given by (3.12)).

E. CONDITIONAL EXPECTED VALUE OF DETECTION TIME

The conditional expected first detection time \(E[T_0] \) can be defined as follows:

\[E[T_0] = E[T \mid \text{no detection at } t = 0] \]

61
Finally, the conditional density function \(f_0(t) \) can be derived as follows:

\[
\begin{align*}
\frac{dF_0(t)}{dt} &= f_0(t) \\
&= \gamma e^{-\gamma t}.
\end{align*}
\]

(5.11)

If we compare (5.3) and (5.10), we will observe that

\[
\frac{a}{\gamma} < \frac{1}{\gamma}, \text{ since } a < 1 \text{ for } R > 0.
\]

This implies that the conditional expected first detection time is greater than the unconditional one. This is reasonable, since in the unconditional case we have an opportunity to detect the target at time 0. This conclusion is demonstrated clearly by comparing \(F(t) \) and \(F_0(t) \) as illustrated in Figure 5.3, where we always find that \(F_0(t) \) is less than \(F(t) \) at any value of \(t \), except at \(t = 0 \) where \(F(t) = F_0(t) = 1. \)
Figure 5.3 Comparison Between CDF ($F(t)$) and Conditional CDF ($F_0(t)$)
APPENDIX
RATSIM COMPUTER PROGRAM

In order to give access to the logic used in building the simulation model RATSIM, a complete program listing is included in this appendix following the list of variables used in the simulation model.

LIST OF VARIABLES

The variables used in the simulation model are listed below according to their first appearance in the program:

\[R \quad = \quad \text{Radius of searcher detection disk in nautical miles} \]
\[V \quad = \quad \text{Speed of target in nautical miles per hour} \]
\[\text{Inc} \quad = \quad \text{Time increment for each discrete step in minutes} \]
\[\text{REP} \quad = \quad \text{Number of replications} \]
\[\text{TMAX} \quad = \quad \text{Detection period in minutes} \]
\[\text{SUM}(I) \quad = \quad \text{Number of detections at time increment } I \]
\[\text{HIST}(I) \quad = \quad \text{Accumulative number of detections up to increment } I \]
\[\text{POSX} \quad = \quad \text{X component of target's position} \]
\[\text{POSY} \quad = \quad \text{Y component of target's position} \]
\[\text{XS} \quad = \quad \text{X component of target's starting position} \]
\[\text{YS} \quad = \quad \text{Y component of target's starting position} \]
\[\text{ANG} \quad = \quad \text{Course } \theta \text{ in radians} \]
TLEG = Time leg for each segment
D = Distance between the target location and the center of the detection disk
XN = X component of the target's new position
YN = Y component of the target's new position
PROBD = Probability of detection
PROBS = Probability of non-detection
A = 1 - πR²/A (α)
B = Detection rate (γ)
PROGRAM NAME: RATSIM

THIS PROGRAM SIMULATES 2-DIMENSIONAL RANDOM-TOUR MODEL

REAL INC,L,L2,LAMBDAD
INTEGER REP,CTR,TIME,SUM(8000), HIST(8000)
DIMENSION XS(2500),YS(2500),TEXP(3000),TH(3000)
DIMENSION TI(8000),PROBD(8000),PROBS(8000)
DIMENSION Y(8000),Z(8000)
DOUBLE PRECISION DSEED
DSEED=89456.DO
NR=2400
CALL GGUBS (DSEED,NR, XS)
DSEED=73452.DO
NR=2400
CALL GGUBS (DSEED,NR, YS)
R=10.
AREA=10000.
V=10.
LAMBDAD=1.
INC=3.
REP= 2400
TMAX=100*60
L=AREA**.5
L2=L*2
SER=L/2.
MAXCTR=INT(TMAX/INC)+1
DO 10 I=1,MAXCTR
SUM(I)=0
HIST(I)=0
CONTINUE
DO 50 I=1,REP
DSEED=6095.DO*DBLE(FLOAT(I))
NR=3000
CALL GGUBS (DSEED,NR, TH)
DSEED=2211.ODO*DBLE(FLOAT(I))
XM=1/LAMBDAD
NR=3000
CALL GGEXN(DSEED,XM,NR,TEXP)
POSX=XS(I)*L
POSY=YS(I)*L
TIME=0
CTR=1
DO 40 J=1,3000
ANG=6.2832 *TH(J)
TLEG= TEXP(J)*60
N=INT(TLEG/INC)
DO 35 M=1,N
D=(((POSX-SER)**2)+((POSY-SER)**2))**.5
CHECK FOR DETECTION
IF(D.LE.R) GO TO 45
IF (CTR.GT.MAXCTR) GO TO 48
CURRENT POSITION OF THE TARGET
XN=POSX+V*(INC/60)*SIN(ANG)
YN=POSY+V*(INC/60)*COS(ANG)
C CHECK FOR REFLECTION
15 IF(XN) 16,16,17
16 XN=-XN
17 ANG=6.2832-ANG
18 IF(XN-L) 19,18,18
19 XN=L2-XN
20 ANG=6.2832-ANG
21 IF(YN) 20,20,21
22 YN=-YN
23 ANG=3.1416-ANG
24 IF(YN-L) 30,22,22
25 YN=L2-YN
26 ANG=3.1416-ANG
27 POSX=XN
28 POSY=YN
29 CTR=CTR+1
30 TIME=TIME+INC
31 CONTINUE
32 INDEX=INT(TIME/INC)+1
33 SUM(INDEX)=SUM(INDEX)+1
34 CONTINUE
35 HIST(1)=SUM(1)
36 PROBD(1)=FLOAT(HIST(1))/FLOAT(REP)
37 PROBS(1)=1-PROBD(1)
38 TI(1)=0.0
39 DO 300 I=2,MAXCTR
40 HIST(I)=SUM(I)+HIST(I-1)
41 PROBD(I)=FLOAT(HIST(I))/FLOAT(REP)
42 PROBS(I)=1-PROBD(I)
43 TI(I)=FLOAT(I-1)*(INC/60)
44 WRITE(6,250) TI(I),PROBS(I)
45 FORMAT(2X,F6.2,2X,F16.11)
46 300 CONTINUE
C***
C THE FOLLOWING SUBROUTINE IS TO ESTIMATE THE DETECTION RATE"B" AND THE COEFFICIENT "A" BY USING A NUMERICAL METHOD.
C DO 350 I=1,MAXCTR
350 Y(I)=0
360 Z(I)=0
370 CONTINUE
380 DO 380 I=1,MAXCTR
390 IF(PROBS(I).LE.0) GO TO 390
400 Y(I)=PROBS(I)
410 Z(I)=TI(I)
420 CONTINUE
430 K=I
440 S=0
450 S2=0
460 SLY=0
470 SLYZ=0
480 SLY2=0
490 DO 400 J=1,K
500 C
SZ = SZ + Z(J)
SZ2 = SZ2 + Z(J)**2
IF(Y(J),LE,0) GO TO 500
SLY = SLY + ALOG(Y(J))
SLYZ = SLYZ + Z(J)*ALOG(Y(J))
SLY2 = SLY2 + ALOG(Y(J))**2
CONTINUE
400 CNIU
500 Ul = (SZ2*SLY) - (SZ*SLYZ)
G = (K*SZ2) - (SZ**2)
U2 = (K*SLYZ) - (SZ*SLY)
F = Ul/G
B = U2/G
A = EXP(F)
WRITE(6,*) A, B
STOP
END
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Initial Distribution Details</th>
</tr>
</thead>
</table>
| 1. | 2 | Defense Technical Information Center
| | | Cameron Station
| | | Alexandria, Virginia 22304-6145 |
| 2. | 2 | Library, Code 0142
| | | Naval Postgraduate School
| | | Monterey, California 93943-5100 |
| 3. | 1 | Professor James N. Eagle, Code 55Er
| | | Naval Postgraduate School
| | | Monterey, California 93943-5100 |
| 4. | 1 | Professor A. R. Washburn, Code 55
| | | Naval Postgraduate School
| | | Monterey, California 93943-5100 |
| 5. | 1 | Professor Edward B. Rockower, Code 55Rf
| | | Naval Postgraduate School
| | | Monterey, California 93943-5100 |
| 6. | 1 | Abdel-Aziz Al-Bassiouni
| | | SMC Box 1689
| | | Naval Postgraduate School
| | | Monterey, California 93943-5100 |
| 7. | 1 | COL Aref, Salama
| | | Operations Research Center
| | | Ministry of Defense
| | | Cairo, Egypt |
| 8. | 2 | Salah Ibrahim Abd El-Fadeel
| | | 16, Samaan St - Guizirat Badran St., Shoubra
| | | Cairo, Egypt |