AD-A164 996 THE IMPLEMENTATION OF A NETWORK CODASYL-DMWL INTERFACE 172
FOR MULTI-LINGUAL DATABASE SVSTEH(U) NAVAL
POSTGRADURTE SCHOOL MONTEREY CR B EMDI 19 DEC 85
UNCLASSIFIED

=08 B0 "I Whe WAL WA WA, B, 8ty

- Yarats ‘s Al

s tatr Y Al

ol s

LA I

N2t el ™ alean T

N &

) S

e 4

“FE]
SEEFE

d3da m_umu..:.m

=)

M 1.8

I

I

1.25

i

MICROCOPY RESOLUTION TEST CHART

Ay
; -,
S

RURTSI OF CTANDARNG-1963-A

SATIANAL

i

¥

TR

.

%

S

r ,v&

R

NSy
Joriey

-
-~

A

W

?c-:

- e
R
.

P
-
w

1)

A
WL e ok

RN
’ Of, [A

~

AD-A164 996

One FLE CORY

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THESIS

THE IMPLEMENTATION OF A NETWORK
CODASYL-DML INTERFACE FOR THE MULTI-LINGUAL
DATABASE SYSTEM

by
Bulent EMDI
December 1985

Thesis Advisor: David K. Hsiao

Approved for public release; distribution is unlimited

.
......

A DO A Rfalal tal Sl ol Ak kA e T e e S R N T T Ty = =N

AN

, . , P
DRITY CLA i i WA I =R A @“ZL
. REPORT DOCUMENTATION PAGE
. [Ta RePORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
——— T TR Y T T Y R W R Y T T T Y Y i T TP Y=
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

- T6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable)

- 52 Naval Postgraduate School
- 6 aDORESS (Gity, State, and ZIP Code) 7b. ADDRESS (City, State, and 2IP Code) :
Monterey, California 94943-5100 Monterey, CA 93943-5100
82 NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ;
JRGANIZATION (if applicable) & :..:
8¢ ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS Z_:*_;».
PROGRAM - [PROJECT TASK WORK_UNIT o
ELEMENT NO. [NO. NO. ACCESSION NO.

17T TITLE (Include Security Classification) -
*. { THE IMPLEMENTATION OF A NETWORK CODASYL-DML INTERFACE FOR THE MULTI-LINGUAL
- DATABASE SYSTEM (UNCLASSIFIED)

*2 PERSONAL AUTHOR(S)

)

.
e v s

.
M S

v
" f

R AERE RN o |
et ey
D"

EMDI, Emdi -
i3a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 'S PAGE COUNT 'L'_‘_
vMlaster's Thesis FROM TO 1985 December 19 127 B

‘6 SUPPLEMENTARY NOTATION

X
f
o,

PR A
Y
2
s

LN
L3
o

v

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Multi-lin;aal Database System (MLDS), Multi-backencﬁ
Database System (MBDS), Network Data Model, Data

Language CODASYL-DML, Attribute-'based Data (Cont) .

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)

- Traditionally, the design and implementation of a conventional database Py
system begins with the selection of a data model, followed by the specifica-
tion of a model-based data language. An alternative to this traditional

approach to database system development is the multi-lingual database Sys-
tem (MLDS). This alternative approach affords the user the ability to ac-

—~ -
. :]'i E*
a_ &

r 4

N
f’l’l

-

.' "' ..l
’

. -
PLIN

'
PR
Y

vt

B SPA
o’

= cess and manage a large collection of databases via several data models and
-, their corresponding data languages. i.f o
s | I this thesis we presentsthe specificayion and implementation of an inter- =
4 face which translates CODASYL-DML data language calls into attribute- o~
.| +based data language (ABDL) requests. describesthe software engineering = e
K- | aspects of implementation and an overview of the four modules which i
.| comprise our CODASYL-DML language interface. 'Z‘-".’:g
K o
20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION ‘
| Buncuassireomnumired O same as ReT. [Jorie users | UNCLASSIFIED o
;-] 222 NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22¢c. OFFICE SYMBOL oty
> | bavid K. Hsiao 408 646-2253 52Hq S5
- S e
<~ DDFORM 1‘73' 84 MAR 83 APR edition may be used until exhausted. ;ES! !Rrrv S! essm.sengu OF THIS PAGE .J‘:i':
e All other editions are obsolete. 3
1 e
> 'I:::
fl ~. ‘-xl

AN Chte e ...‘-". -~ ...‘.¢ ara® !'.. > w’.‘a -“ -* "o ...:"..'. s, .)‘.) .».;"..‘;... L .‘.‘ e ‘e -¢ . .:I.-f K ‘...:.n'v.”!;-'\--.‘f.-(\{ d"‘f f\'l’ -’

SECURITY CLASSIFICATION OF TiIS PAGE (When Dater Bnteved

Block # 18 (Continued)

Language (ABDL), Language Interface

l'cla"l_rl B B3]

¢«
-

ot \é]

s
v,

)

[

* ("'1
[
]
PP

-~

"
)
e
¥
e
5,

B

RAANRANIDO
""
s
N v

DI g
PR]

W7

i

SECUMITY CLASSIFICATION OF THIS PAGE(en Dase Bntered)

ORTR T SRR PT (N ¢ TP WOETK ACLE AN

.‘ '-‘;u'

e T L e e o

X TR R T

?

o u’.\:.\
: o
g E.";'\
Y Approved for Public Release, Distribution Unlimited. S0

RO
> _] Vo

N The Implementation of a Network AN

Py CODASYL-DML Interface for the E\\

Ny Multi-Lingual Database System "::E

3 &

V) : by ,

. : F

Bulent Emdi F-‘j\
F-.',.\-‘.

g Ltjg, Turkish Navy r?’.::.'

- A sion F el
g B.S., Turkish Naval Academy, 1978 it SR KA
; DTIC TR % br g
- Ui 24 | S
~ Submitted in partial fulfillment of the Juotisoo tion i ! e
. requirements for the degree of i - I | o
» ' r ~ “_T-' ‘-ﬁ ¢ — &

' MASTER OF SCIENCE IN COMPUTER SCIENCE =, ;—J by
: A
from the Dist | Spoe.o o
3 NAVAL POSTGRADUATE SCHOOL A_ / ‘
_jl : December 1985
Author: ' j/////":/’ é]

N V4

: Bulent Emdi

Approved by: /KD&Z«JZ’([« d'/é z [()

M Hsiao, Thesis Advisor
—_ i é& (' DY N//__

Stevyx. Demtx&iian, Secgnd Reader
:5 —— g ,4. -
Vincent X. Lum, Chairman,
1 Department of Computer Science
.: K 'T'
‘o Kneale T. Marsha¥] .
- Dean of Information and Policy Sciences
N
N
o Y
N 3
"

K AR OhS S SA Y OUL L TR AR Nt O G R O YR O 2 B S DA

LER% LN Al AN S i

PadNe A8 J6s Jhe A L ' ™ - i f AL AL Lot A AL A aA S S e o i Sk Acatii aicara i s i A i sy W)

ABSTRACT

Traditionally, the design and implementation of a conventional database
system begins with the selection of a data model, followed by the specification of
a model-based data language. An alternative to this traditional approach to
database system development is the multi-lingual database system (MLDS). This
alternative approach affords the user the ability to access and manage a large

collection of databases via several data models and their corresponding data

- languages.

5

by In this thesis we present the specification and implementation of a network
’ CODASYL-DML language interface for the MLDS. Specifically, we present the
)

{

specification and implementation of an interface which translates CODASYL-

DML data language calls into attribute-based data language (ABDL) requests.
We describe the software engineering aspects of our implementation and an

: overview of the four modules which comprise our CODASYL-DML language

interface.

DAD AR

1 o WENE R NN
»

'-.’-\. " - -*v ;_7};.)\)

SRR N
» -)

L 2 Ty ~ P I R TR ' Wi T MY
R L L e T YA T T T AT ST T AT T CTa e BT

SR AT ST ..

()

1 QA

AT DR W,

TABLE OF CONTENTS

I. INTRODUCTION ..ootiietreeieeesit et essreer s ee e 10
A. MOTIVATION L.t tee e teansntnee e e e sese e e e e s 10
B. THE MULTI-LINGUAL DATABASE SYSTEMcccueeeeee 11
C. THE KERNEL DATA MODEL AND LANGUAGE 13
D. THE MULTI-BACKEND DATABASE SYSTEM 14
E. THESIS OVERVIEW ..ot nreeeee 15
II. SOFTWARE ENGINEERING OF A LANGUAGE
INTERFACE ...ttt et stee et eenene e as e 17
A. DESIGN GOALS ...ttt crr e canes 17
B. AN APPROACH TO THE DESIGNc.cccociriiiiiiiiiiiiiiinne 17
1. The Implementation S-trategy .. 17
2. Techniques for Software Developmentccccccccrerveeeirernnnn 18
3. Characteristics of the Interface Softwareccoooueeeeeinnn 19
C. A CRITIQUE OF THE DESIGNcccccovvnmmiitiininicnnenninannns 21
D. THE DATA STRUCTUREcccocveviiiiiiiniiicncreenee e 22
1. Data Shared by All Userscccccieiiiirinieirineiiceeienrerenerennes 22
2. Data Specific to Each Usercccccovviiiiiiriimreiiciiiiinerriee e 26
E. THE ORGANIZATION OF THE NEXT FOUR
CHAPTERS ..ottt secsaase e ssseenes 28
III. THE LANGUAGE INTERFACE LAYER (LIL) ..ccooccervicnninneann. 29
A. THE LIL DATA STRUCTURESc..cccoemmmmiirniccinccenecieenn 29
B. FUNCTIONS AND PROCEDUREScccccovmueirinreinensnnenennes 31
1. Initializationccocoviiivivnvicniiiiniiirininre e 31
2. Creating the Transaction Listcccceeciiiiiiiiiiiiiiniicicniennes 31

RN AI I P S AN

BRI A ORI “)\,J':-‘

>

"»

~

PGV A AR NP,

Py
OO
?l’f’_ S’

.'l "' "' ',vv ‘ [)
f & Y 2 [] N . .
LI

»

r'n
s ‘r,'a
[

~

"f‘f
I
5

Y AAS

‘l#

g AN
-

-

i
N

R
o

TAZ rEPE
A0 I O

Py “".) .

.8
(B
i

P

) -
" 3. Accessing the Transaction Listccccceviiiiiiiiiiiiniiicninnnninn, 32 ‘\t
:E a. Sending schema definitions to KMS ... 33 \,:3
! b. Sending CODASYL-DML Requests to KMS - 33 ‘ ._ ;_._
4. Calling KCoooiiiiieeeceeei ettt et eve e cnaesaae e 33 ‘-C:J‘:if
{ et
i 5. WIADPPINE-UP .eriieeinieiniieeecueieereinteeeaesseeaensrnessennssassensseesees 34 " e
B, IV. THE KERNEL MAPPING SYSTEM (KMS)ccoovvmrrrnerrerunnen. 35 ;’;_iifi'f
A. AN OVERVIEW OF THE MAPPING PROCESS 35 ’
1. The KMS Parser / Translatorcccccooveeceiriereneciioncnnnenne 35
2. The KMS Data Structuresccccoceieiiriuniiiininieciiieecennn. 36
: B. FACILITIES PROVIDED __
i_ BY THE IMPLEMENTATION ..ooovocovooroeeerrrecessseeeesee 44 .
1. Database Definitionscccccoovmeeriuiiiiimeiiiniiiiiniiiiine 44 :‘_:
2. Database Manipulationscccoceeeieveeiniriiiicneenee e 46 .".
! a. The Mapping Processes: An Exan}ple 46 %E{
V. THE KERNEL CONTROLLER ...oocooecomeorressscesesssecessesse. 52 KJ;‘-*
i A. THE KC DATA STRUCTURES ...reeeereeeereeessesssnneoe 52
B. FUNCTIONS AND PROCEDURES ...covvrverrrenrreesrsnenrsene 56 13
h 1. The Kernel Controllerccceirreeeieeiimimimiiniiiiiieenereeceneeenes 56 L_:l:
gj 2. Creating a New Databaseccceceeveeiiiriimmeneciiiererennineerrnnns 56 '
“ 3. The FIND ReqUeSts w....ccccnvevsevrrnersssssmsrseossmsesssssesios 56 Y
ii 4. The Modify, Connect, and v
o Disconnect ReqUESESccovueueveevreveeveeimeiererieessesisinesesianes 58 _ §:":§§S
5. The Move Requestcceeveiiviiiieieiiiriinineieiiiienneeeresssanereenss 58 . ;:ff‘. tg’g

6. The Store Requestcccoiiiviiiiiiciiiiiiiiiieineeeenreeeeeeeersnsassenns 58

T AR S A S TR e S e

L
Y o)
- v’
- Sl

L/
)
"

132 R T T A e R L A T A O

7. The Erase ReqQUestccoieiimiiiiiiereiiiiricecreiinieerreeenennnsennns

8. The Get ReqQUESEccooueveiieiiiiiiiiieicceeceetenne e eeeeceereeeeene e aaes
| VL THE KERNEL FORMATTING SYSTEM (KFS) oo
f A. THE KFS DATA STRUCTURE ..ooooeooooooooeeooeoeooeo oo
i B. THE FILING OF CODASYL-DML RESULTSvoovooorro
! C. THE KFS PROCESS ...ooooveveeeoooooooeseeooeooeeoeseseeeooe oo
i VIL CONCLUSION woevevooeooeeeseeoeeeeeeeeesoeoeeseeseeoooe s
i APPENDIX A - THE LIL PROGRAM SPECIFICATIONS
' APPENDIX B - THE KMS PROGRAM SPECIFICATIONS
: APPENDIX C - THE KC PROGRAM SPECIFICATIONS
i APPENDIX D - THE CODASYL-DML USERS’ MANUAL
- LIST OF REFERENCES oooovoovvoooeoeoeoeooooooooeoooooooeoeeoeooeeeeeeeeeeoeeeeoeesronees
' INITIAL DISTRIBUTION LIST weooooooemorreoesooooos s
.
]

..... Mt AT AT BT " A u" e "R % a W e N RTRT N, -y - IS TR NS TN ¥ v i I ASE A TS 5 A
%'\-.' S \‘.-.' -."\'. \._-.;.'.‘-, *eyt *’ Lot -\ R LR RO R NN \'"" . L,)“" "'.\ ot ST A AAUA A LA Y T

'- VTSI . " " - . YT T ':f:.‘.f-.._
E S
b
E LIST OF FIGURES R
\ Figure 1. The Multi-Lingual Database System 12 S
! Figure 2. The Multi-Backend Database System 15
Figure 3. Data Structure Diagram of the Sample - ;:.
i Suppliers-and-Parts Databasec........ccovnnnennnen. 16 : :-:;::
Figure 4. The dbid_node Data Structureccoovene. 22 :“f
Figure 5. The net_dbid node Data Structure 23
I Figure 8. The nrec_node Data Structureccccceie 24 s
Figure 7. The nset noude Data Structurecccoeeninnnnnn. 24
Figure 8. The set_select node Data Structure 25
F Figure 9. The nattr node Data Structurecccccoeil 26 g:_.;‘.-_.
| Figure 10. The user_info Data Structure ... 27 1;
I Figure 11. The li_info Data Structurec.cn 27 :j:':::::
Figure 12. The dml_info Data Structure ... 28 Y -':
Figure 13. The tran_info Data Structurecccoeovvvivinannn. 30 :-‘.-
i Figure 14. The net_req_info Data Structurec........ 30 _’“
Figure 15. The net_kms _info Data Structurecccceccennes 37 "
: Figure 16. The ndup node Data Structurecccccucrueennee. 37 }t
' Figure 17. The Move_list Data Structures 38 ?-.._.-
Figure 18. The select_list Data Structureccccvvvinrinenn. 38 :;\
a Figure 19. The connect list Data Structurecccccuunen. -39 ;}:::(:
§ ~ -
Figure 20. The abdl req Data Structurecccceeviirinnn 39 RO 'ﬁ
f Figure 21. The member_erase Data Structureccccee.n..e. 40 ‘ r“éj‘:
.: Figure 22. The erase_abdl Data Structurecccceecervreerrennne. 40
.)
; Figure 23. The find_abdl Data Structurescccoeccrerrerneeee. 41 t:zg;
: 8 S
:'- i
N N B T D e R T O 3 B R TR O T Y e e I T T R R N St S STy,

B T T T T T O o T Y T T I U I O ™
SR B At A A0 Nl 8 A
LA

A, XU

Figure 24. The store_abdl Data Structuresccccceeceeene. 42 PN,

h .,,‘.:.::
Figure 25. The get_node Data Structurecocccevivnnnnnninn. 43 ‘:::E}-
PO
p Figure 26. The Network Database Schemacccoovveiviinnnnn. 46 i_r_-:_
’ h'-'.‘-
:.: Figure 27. The KMS dml statement Grammar 48 ,:25
f“ - Figure 28. The dml_info Data Structurec.ccccocerinninnin. 53 }::';‘.

b~ Figure 29. The cur_table Data Structurec..cccccceeeiiiinnnn. 54 “'l'-'

Figure 30. The net_file info Data Structurecccoeees 55 - 1,.'?:

Figure 31. The kfs_net_info Data Structure reeeeerenes 62

. .

S 3

-,

“u

) 2
:! . - \i\‘r'. g
o N -i\]
< Nyt
" ."’. \q:‘. g

AR

< et
< N
z ‘.
£z - "y

R ot
A ST

- Te N

. N -F\.'
Jn [+ et

- PR

y wWHe!

. v A\J

: b
[:u':‘:
-..'..r'..v o ..-..."\r‘-' A -" X v'¥ 19l \"- h n("y o .'- ., 4‘.".. -'(.‘.A.“ “,ﬁ“.‘“\’\. o \- . . » : _'-l‘ ~ ‘ . _}. ‘: ; % =) .'.p - _.'\I. A

I. INTRODUCTION L

A. MOTIVATION : R’\ﬁg
During the past twenty years database systems have been designed and ES::-'
implemented using what we refer to as the traditional approach. The first step in i‘_‘iﬁ
the traditional approach involves choosing a data model. Candidate data models '\
include the hierarchical data model, the relational data model, the network data
model, the entity-relationship data model, and the attribute-based data model to
name a few. The second step specifies a model-based data language, e.g., DL/I '“—‘
for the hierarchical data model, or Daplex for the entity-relationship data model. L
A number of database systems have been developed using this :f:‘_ <

methodology. For example, IBM introduced the Information Management

System (IMS) in the sixties, which supports the hierarchical data model and the

hierarchical-model-based data language, Data Language I (DL/I). Sperry Univac

introduced the DMS-1100 in the early seventies, which supports the network data
model and the network-model-based data language, CODASYL Data r'A]
Manipulation Language (CODASYL-DML). And more recently, there has been ’ \J_
IBM’s introduction of the SQL/Data System which supports the relational model ,:-
and the relational-model-based data language, Structured English Query ‘E

Language (SQL). This traditional approach to database system development has
resulted in homogeneous database systems that restrict the user to a single data
model and a specific model-based data language.

An uncoaventional approach to database system development, referred to
as the Multi-lingual Database System (MLDS) [Ref. 1], alleviates the

(| SRS
Sk

aforementioned restriction. This new system affords the user the ability to access
and manage a large collection of databases via several data models and their -'.:.::
corresponding data languages. The design goals of MLDS involve developing a |.4
system that is accessible via a hierarchical/DL/I interface, a relational/SQL - _,
interface, a network/CODASYL/DML interface, and an entity- : ‘::j.

b ¢

relationship/Daplex interface.

A
1’; it I

oty
(4

10

o e

:
'

Ad
’
[

.i-,r'

> %
r" ._"q_I-

RSN AL VOO SRS

DRI Wy WIS,

There are a number of advantages in developing such a system. Perhaps '::f'_
the most practical of these involves the reusability of database transactions e
developed on an existing database system. In MLDS, there is no need for the _;

user to convert a transaction from one data language to another. MLDS also
permits the running of database transactions written in different data languages.
Therefore, the user does not have to perform either manual or automated
translation of existing transactions in order to execute a transaction in the
MLDS. MLDS provides the same results even if the data language of the
transaction originates at a different database system.

A second advantage deals with the economy and effectiveness of hardware
upgrade. Frequently, the hardware supporting the database system is upgraded
because of technological advancements or systemm demand. With the traditional
approach, this type of hardware upgrade has to be provided for all of the |
different database systems in use, so that all of the users may experience system e
performance improvements. This is not the case in MLDS, where only the :
upgrade of a single system is necessary. In MLDS, the benefits of a hardware
upgrade are uniformly distributed across all users, despite their use of different
models and data languages.

Thirdly, a multi-lingual database system allows users to explore the
desirable features of the different data models and then use these to better

support their applications. This is possible because MLDS supports a variety of

O PO P LT P

et
..

databases structured in any of the well-known data models.

-y
L)
[
N

It is apparent that there exists ample motivation to develop a multi-

s “x "¢
AR
N

lingual database system with many data model/data language interfaces. In this oy

thesis. we are developing a network(CODASYL) language interface for the t

MLDS. We are extending the work of Banerjee [Ref. 2] and Wortherly [Ref. 3], ‘

who have shown the feasibility of this particular interface in a MLDS. *

B. THE MULTI-LINGUAL DATABASE SYSTEM E;

A detailed discussion of each of the components of the MLDS is provided - ':.L:

. in subsequent chapters. In this section we provide an overview of the ::.‘3
organization of MLDS. This assists the reader in understanding how the different E
components of MLDS are related. ':‘,:.

11

.
).'...".'_. ".'.'..- 4‘.‘*1‘.- L A TR IR S S SN ._~-'... ~

. . S
IR NI IRCIRL YR RS Yy Y

that a new database is to be created.

LIL

KMS

KC

7
N

KDS§

RN
e

UDM
-UDL
LIL
KMS
KC
KFS
KDM
KDL
KDS

: User Data Model

: User Data Language

: Language Interface Layver
: Kernel Mapping System
: Kernel Controller

: Kernel Formatting System

: Kernel Data Model
: Kernel Data Language
: Kernel Database System

Figure 1. The Multi-Lingual Database System.

Figure 1 shows the system structure of a multi-lingual database system.
The user interacts with the system through the language interface layer (LIL),
using a chosen user data model (UDM) to issue transactions written in a
corresponding model-based user data language (UDL). The LIL routes the user
transactions to the kernel mapping system (KMS). The KMS performs one of
two possible tasks. First, the KMS transforms a UDM-based database definition
to a database definition of the kernel data model (KDM), when the user specifies
When the user specifies that a UDL
transaction is to be executed, the KMS translates the UDL transaction to a
transaction in the kernel data language (KDL). In the first task, KMS forwards
the KDM data definition to the kernel controller (KC). KC, in turn, sends the

’, l:

’
l’

- L A N
ol A
, oot .
e e
Cat W e
ll LA
i ! » e e e e

..... SO T TR R TR TR TS TR LT R TR ST TN T« W

IO it R A A A S AP B P I B I e L A R e P o i e

KDM database definition to the kernel database system (KDS). When KDS is :-_-"::":
finished with processing the KDM database definition, it informs the KC. KC '

then notifies the user, via the LIL, that the database definition has been _‘_~.‘_
‘ processed and that loading of the database records may begin. In the second E: Tl
task, KMS sends the KDL transactions to the KC. When KC receives the KDL (’\)
transactions, it forwards them to KDS for execution. Upon completion, KDS &h

sends the results in KDM form back to the KC. KC routes the results to the

kernel formatting system (KFS). KFS reformats the results from KDM form to '
UDM form. KFS then displays the results in the correct UDM form via LIL.

The four modules, LIL, KMS, KC, and KFS, are collectively known as the _'____
language interface. Four similar modules are required for each of the other L--
language interface of MLDS. For example, there are four sets of these modules
where one set is for the hierarchical/DL/I language interface, one for the
relational/SQL language interface, one for the network/CODASYL/DML S
language interface, and one for the entity-relationship/Daplex language interface. i‘r:
However, if the user writes the transaction in the native mode (i.e., in KDL), }.
there is no need for an interface. F :E:::'.-":

In our implementation of the network(CODASYL) language interface, we Gy
develop the code for the four modules. However, we do not integrate these E:':‘.E'
modules with KDS as shown in Figure 1. The Laboratory of Database Systems E:.::q
Research at the Naval Postgraduate School is in the process of procuring new Ef
computer equipment for KDS. When the equipment is installed, KDS is to be t‘:;'-ig:
ported over to the new equipment. MLDS software is then to be integrated with 'k_',:
KDS. Although not a very difficult undertaking, it may be time-consuming. ‘.-_,;.;

C. THE KERNEL DATA MODEL AND LANGUAGE

The choice of a kernel data model and a kernel data language is the key

decision in the development of a multi-lingual database system. The overriding

question, when making such a choice, is whether the kernel data mode! and

kernel data language is capable of supporting the required data-model

transformations and data-language translations for the language interfaces.
The attribute-based data model proposed by Hsiao [Ref. 4], extended by
Wong [Ref. 5], and studied by Rothnie [Ref. 6], along with the attribute-based

5
j'-ﬁ data language (ABDL), defined by Banerjee [Ref. 7], have been shown to be
'; acceptable candidates for the kernel data model and kernel data language,
2: respectively.
l Why is the determination of a kernel data model and kernel data language
-:;' so important for a MLDS? No matter how multi-lingual MLDS may be, if the
‘{: underlying database system (i.e., KDS) is slow and inefficient, then the interfaces
™ may be rendered useless and untimely. Hence, it is important that the kernel
) data model and kernel language be supported by a high-performance and great-
' capacity database system. Currently, only the attribute-based data model and
- the attribute-based data language are supported by such a system. This system
is the multi-backend database system (MBDS) [Ref. 1].
D. THE MULTI-BACKEND DATABASE SYSTEM

The multi-backend database system (MBDS) has been designed to
2 overcome the performance problems and upgrade issues related to the traditional
approach of database system design. -This goal is realized through the utilization
, of multiple backends connected in a parallel fashion. These backends have
a identical hardware, replicated software, and their own disk systems. In a
::. multiple backend-configuration, there is a backend controller, which is responsible
for supervising the execution of database transactions and for interfacing with the
.:’.: hosts and users. The backends perform the database operations with the
database stored on the disk system of the backends. The controller and backends
\ are connected by a communication bus. Users access the system through either
the hosts or the controller directly (see Figure 2).

: Performance gains are realized by increasing the number of backends. If
B the size of the database and the size of the responses to the transactions remain
'_.;:i. constant, then MBDS produces a reciprocal decrease in the response times for the
’5 user transactions when the number of backends is increased. On the other hand,
o if the number of backends is increased proportionally with the increase in
databases and responses, then MBDS produces invariant response times for the
ﬁ same transactions. A more detailed discussion of MBDS is found in [Ref. 8.
< .

R 14
\4
‘:";r.'--;‘.'-".-‘.-'".-?'.-";-'*;-'-:-‘-;-'-'_') RO NS AR A AL YA WA S N S AT o

T D N s

. ,. ,
'-"' I'l
L 4“ .
. . L 4
LA S e
el et e -

el

)
0

’A- B, e '--'

,_.
Pt

L)
o

R o g S otalel
* '.'..'\‘ SRR T |
fat B ety e D

l"l.l.a
h B
l" »
* ot .
LA LE AT

AaCh Sl AN A G A A A NC et A liia e A A Y A AN Y PR A Ui ia A et e A NS e + vy W) FTETEETEY

I Backend Store 1

(LAY
PN

! LR PN
» .‘: .l
E’. SARA

<
o l’ .
NAD

. &

Backend

Processor 2

To a Backend
Controller

o]
-\
(8
e
n
o3
(=9
wn
~
2]
-
4}
'/
—

.
e T Y v v g Q> < v ¢ .
. PR TR
.'-'-"' LN '-,' M ':'n
3 ' - RN
[) e
‘ . .

Backend
Processor M

Communications

Bus -
; cs
:' Figure 2. The Multi-Backend Database System. Ejé
o E. THESIS OVERVIEW i:j
' The organization of our thesis is as follows: In Chapter II, we discuss the X
softw are engineering aspects of our implementation. This includes a discussion of
our design approach, as well as a review of the global data structures used for the
: implementation. In Chapter III, we outline the functionality of the language
~: interface layer. In Chapter IV, we articulate the processes constituting the kernel
::‘ mapping system. In Chapter V, we provide an overview of the kernel controller.
y In Chapter VI, we describe the kernel formatting system. In Chapter VII, we
+- conclude the thesis.
E The detailed specifications of the interface modules (i.e., LIL, KMS, and
- KC) are given in Appendices A, B, and C, respectively. Appendix D is a users’

manual for the system. The specifications of the source data language,

15

-,
-
.
<

e e R L N T e Lt L e e Mt L e e e R A% o AL ey Ly : ~ N
LRI RN & N NN I M N I T e A TR I L SN o AT A ST AR TN FNLNF T, YR A s Y e b AR Y

CODASYL-DML, and the éarget data language, ABDL, is found in E:Ef‘z

[Ref. 9: pp. 389-446] and [Ref. 7], respectively. .‘-
Throughout this thesis, we provide examples of CODASYL-DML requests .E_:k

and their translated ABDL equivalents. All examples involving database S,

operations presented in this thesis are based on the Suppliers_and Parts sample ' ?‘:::

database used by Date [Ref. 9: pp. 389-446]. The data structure diagram for this] N “':;:

network is shown in Figure 3. There are supplier records (S), parts records (P), ;.)

~

and shipments (SP) records. The sets of the database are suppliers-shipments (S-
SP) and parts-shipments (P-SP).

2 L$
"»'.'v’-.v'l_
K .‘.‘..-‘-.'.‘-
.
vy e rr Ly,

1.'
- 4
' L)
-~
-
S
.

-+
(]
5
|
H
+
+
!
|
:
i
+
SN
4

f P
L)
e

+
|
i
+
1
!
i
+

» L v
AN

2

'
v 'r
LA S R

4]
a°)
%
1

0
2.
E
4]
=]
[d
71

e

e e

+—+
+

o ."'_:"('r
- g

+

i SN _r'r
%

I

b v,

2
PLIRINS

/]
Ay 4

Figure 3. Data Structure Diagram of the Sample
Suppliers-and-Parts Database.

hy %
s :.t‘.i’ :o

N
Vate e

-

16

AL e Ca et A i A e e i et Ayt Rl et et Jage S/t Bt it Sari B i S At et Al S Sk A A N & W Ak ek S e ate o ben 8 b O A Siie Ml el ke N R N

II. w ENGINE NG A LANGUAGE INTERFACE

In this chapter, we discuss the various software engineering aspects of
developing a language interface. First, we describe our design goals. Second, we
outline the design approach that we took to implement the interface. Included in
this section are discussions of our implementation strategy, our software
development techniques, and salient characteristics of the language interface
software. Then, we provide a critique of our implementation. Fourth, we
describe the data structures used in the interface. And finally, we provide an

organizational description of the next four chapters.

A. DESIGN GOALS

We are motivated to implement a CODASYL-DML interface for a MLDS
using MBDS as the kernel database system, the attribute-based data model as
the kernel data model, and ABDL as the kernel data language. It is important

to note that we do not propose changes to the kernel database system or

language. Instead, our implementation resides entirely in the host computer.
All user transactions in CODASYL-DML are processed in the CODASYL-
DML interface. MBDS continues to receive and process requests in the syntax S

and semantics of ABDL.

.
g

<.

-~

-
,oL
-L .-

L
-‘u'

P .
» 9, P
» o":)
u
A 2 ta

In addition, we intend to make our interface transparent to the user. For ‘.:\\
example, an employee in a corporate environment with previous experience ‘x‘-.
with CODASYL-DML could log onto our system, issue a CODASYL-DML 1::':
request and receive result data in a network format, i.e., a record. The o
employee requires no training in ABDL or MBDS procedures prior to utilizing \'"
the system. ._:-

13

LY et el

B. AN APPROACH TO THE DESIGN

1. j ate

-
et
v

",
'4
L g

[
T

v

v .

Py

There are & number of different strategies we might have employed in

the implementation of the CODASYL-DML language interface. For example,

17

- L 4

o« -

NG

54 .'ﬂ *r [¢

~9n Y

A IO J NS AN
ISR Y, SO 2o Sl o Py

Pt 2)

P

e la T fat s

there are the build-it-twice full-prototype approach, the level-by-level top-down
approach, the incremental development approach, and the advancemanship
approach [Ref. 10: pp. 41-46]. We have predicated our choice on minimizing
the "software-crisis" as explained by Boehm [Ref. 10: pp. 14-31).

The strategy we have decided upon is the level-by-level top-down
approach. Our choice is based on, first, a time constraint. The interface has
to be developed within a specified time, specifically, by the time we
graduate. And second, this approach lends itself to the natural evolution of
the interface. The system is initially thought of as a "black box" (see Figure 1)
that accepts CODASYL-DML transactions and then returns the appropriate
results. The "black box" is then decomposed into its four modules (i.e.,
LIL, KMS, KC, and KFS). These modules, in turn, are further decomposed
into the necessary functions and procedures to accomplish the appropriate
tasks.

2. Techniques for Software Development

In order to achieve our design goals, it is important to employ
effective software engineering techniques during all phases of the software
development life-cycle. These phases, as defined by Ledthrum [Ref. 11: p. 27],
are as follows:

(1) Requirements Specification - This phase involves stating the purpose of
the software: what is to be done, not how it is to be done.

(2) Design - During this (thse an algorithm is devised to carry out the
specification. produced in the previous phase. That is, how to
implement the system which is specified during this phase.

(3) Coding - During this phase the design is translated into a programming
language.

(4) Validation - During this phase it is ensured that the developed system
functions as originally intended. That is, it is validated that the system
actually performs what it is supposed to do.

The first phase of the life-cycle has already been performed. The
research done by Demurjian and Hsiao [Ref. 1] has described the motivation,
goals, and structure of the MLDS. The research conducted by Wortherly
[Ref. 3] has extended this work to describe in detail the purpose of the
CODASYL-DML interface. Hence, the requirements specification is derived

from the above research.

18

(XGRS R R R R B It O A M A Wi L ¥ 3 UMADCEN . o, . - ot f. - A Wl
S A L T Bl N BN T 0 A P IR S R A A F IR S IR ARN N E L T e Yy) ‘:‘i):‘.e'l hY,

AN g
. e
.t “a e e

. e
S e e S
. IR

o)
'~
3

"I‘:‘. P
XY XX

P §
L YA
":'l:'
Y
."";". S % %

__.,
'y,

“u Yy P 3
& :'." ‘;;
XAAN

s

by Y
g

AR
H}l
~

[l

44"'
p I'd
Y

T_r
¥ v
” 0

L

44
o
Blwerd

ey,
A

,.
Lon i
-

S AL
et

-

-~
-’

»

7 >
2474 B
i

,A
5

-

=5

.'i" '{»‘;' -

¢
oV
St ™
W o 9y
et

L)

5

e
S

=

) e
": We have developed the design of the system using the above \::"“
‘. specification. =~ A Systems Specification Language (SSL) [Ref. 12] is used \'\‘:.
,- extensively during this phase. The SSL has permitted us to approach the design r ":’:.;':‘
! from a very high-level, abstract perspective by : ' ! A
i (1) enhancing communications among the program team members, EE;_‘%
s (2) reducing dependence on any one individual, and Wy :
i (3) producing complete and accurate documentation of the design.
. Furthermore, the SSL has allowed us to make an easy transition from the ;
- design phase to the coding phase. -
We have used the C programming language [Ref. 13| to translate the ‘:'-Z-':':'
. design into executable code. Initially, we were not conversant in the language. ..
However, our background in Pascal and the simple syntax of C have made it R
- easy for us to learn. The greatest advantage of using C is the programming
i environment that it resides (i.e., the UNIX operating system). This
by environment has permitted us to partition the CODASYL-DML interface and :?.::‘;:::
-. then manage these parts in an effective and efficient manner. Perhaps, the :\\
. only disadvantage with using C is the poor error diagnostics, having made ;"
. debugging difficult. There is an on-line debugger available for use with C in
. UNIX for debugging. We have avoided this option and instead used
conditional compilation and diagnostic print statements to aid in the
. debugging process. To validate our system we have used a traditional
testing technique, i.e., path testing [Ref. 14]. We have tested those cases o
considered "normal". It is noteworthy to mention that testing, as we have T
done it, does not prove the system correct, but can only indicate the absence :
E of problems with the cases that have been tested.
: . Chmateinics ofthe e Sftce
In order for the CODASYL-DML interface to be successful, we have .-\:.::‘5:
realized that it must be well designed and well structured. Hence, we are .
cognizant of certain characteristics that the interface must possess. Specifically, NG
it must be simple. In other words, it must be easy to read and comprehend. :I::'.:“A
The C code we have written has this characteristic. For instance, we often ?31
write the code with extra lines to avoid shorthand notations available in C. -

N
e

4|

)

R
4
2™

19 e
g
T
:\lﬁ\d‘
3 gl
, Y
7 e A b B B R TR SN T AR R
ti»i\ﬁi‘riﬁ"" R R I L S SRRt 4 O S GRS, SR R 2, LR AC RTINSO ™ ST ERT S

b 'S T TSR AR R At YA g i d

These extra lines have made the difference between comprehensible code and

cryptic notations.

The interface software also must be understandable. This must be

l true to the extent that a maintenance programmer, for example, can easiiy grasp
the functionality of the interface and the relation between it and the other
pieces of the system. Our software possesses this characteristic and does not
l’ have any hidden side-effects that could pose problems months or years from now.
As a matter of fact, we have intentionally minimized the interaction between

procedures to alleviate this problem.

The interface must also be maintainable. This is important in light of

l the fact that almost 70% of all of the software life-cycle costs are incurred after -
: the software becomes operational, i.e., in the maintenance phase. There are -;::
software engineering techniques we employed that have given the CODASYL- ::::j:l:j:
DML interface this characteristic. For example, we require programmers to :::“t‘::\

document changes to the interface ‘code when the changes are made. Hence,
maintenance programmers have current documentation at all times. The

problem or trying to figure out the functionality of a program with dated

o« 0t e R

I documentation is alleviated. We also required the programmers to update their
SSL specification as the code is being changed. Thus, the SSL specification
consistently corresponds to the actual code. In addition, the data structures are

designed to be general. Thus, it is an easy task to modify or rectify these

R LT

structures to meet the demands of an evolving system.

The research conducted by Demurjian and Hsiao [Ref. 1] provides a
high-level specification of the MLDS. The thesis written by Wortherly [Ref. 3]
extends the above work and provides a more detailed specification of a
CODASYL-DML language interface. This thesis outlines the actual
implementation of a CODASYL-DML interface. The appendices provide the

[T IO T AL IR

SSL design for this implementation.
A final characteristic that a CODASYL-DML interface should have is

extensibility. A software product must be designed in a manner that permits

" TP e

the easy modification and addition of code. In this light, we have placed "stubs" .

in the correct locations of the KFS to permit the easy insertion of the code

Seta e aTERPE &0

20

S~ S .

-

5

ISSISERIATD 53030 SORIOIIT 200/ I S0 PRIN NS A s)t IREUILS RN IR R T L Y

Cq ’v’,.'f f~ ." ',; P a V C

]

. % e W ¥ W © . s 0 T R0

T Ay 4 8

v 1 F ¥ i
.

needed to handle multiple horizontal screens of output. In addition, we have
designed our data structures in such a manner that will permit subsequent
programmers to easily extend them to handle not only multiple users, but also

other language interfaces.

C. A CRITIQUE OF THE DESIGN

Our implementation of the CODASYL-DML interface possesses all of the
elements of a successful software product. As noted previously, it is simple,
understandable, maintainable, and extensible. Our constant employment of
modern software engineering techniques have ensured its success.

Howe. _r, there are two techniques that are especially worthy of critique.
The first of these is the wuse of SSL. Initially, we have felt that the
implementation language may also serve as the language to specify program
algorithms. However, in doing so, we have stifled our creativity. This is because
we are concentrating not only on what the algorithm does, but also on what the
constructs (data structures) of the algorithm are. The use of SSL has permitted
us to concentrate on the functionality of the algorithm without a heavy
concentration on its particular constructs. This has allowed us to view the
algorithm in a detached manner so that the most efficient implementation
for the constructs can be wused. Although we initially felt that the
development of the program with SSL may be too time-consuming, our opinions
changed when we realized the advantages of SSL, and the overall complexity of
the CODASYL-DML language interface itself.

The way in which the data structures are designed is the other
noteworthy software engineering technique. We have made extensive use of
structures which are bound at compile time. We soon realize that in doing so,
the computing resources (e.g., disk space) of the system are being depleted
quite rapidly. Therefore, it is necessary for us to design the data structures in
such a way that they can be managed in a dynamic fashion. Therefore, most of
the data structures of the CODASYL-DML interface are linked lists. This
design affords us the most convenient way to efficiently utilize the resources of
the system. It is an easy task to use the C language’s malloc (memory

allocate) function to dynamically create the elements of a list as we need them.

a1

e
.
i
£
g
[
’
)
’
- 1]
3
.
A
’
(A
'l
r.‘.
s,
»
7]
 “a
N
»
4,
.l
’A
e L]
¢]
P
(]
s
1,
T
N
»
X
f.‘
4
=
=
”»

S
s

AN

._':{n‘

[4

SN
AN
l. l,

. *’u"c
)
AL

v
CYN

¥]

‘'
%

L'
(o N L

:..;"'.."A '.O‘.

s 0 AR e v v e e . e

1.

DA e T T B T N B B 4 Al PR A B RO RF S B A N

» W W at &, - P - N OIRNIRE IR g " o W S PR RN N S oo g 5 1 % § 1
I T YA L 35 S G R , Wy 4 G G TR LA RCR QYL CURREH L, (S HENEI I G0 18, O GRS CE SRR Ry,

In addition, the free command is useful in releasing these same elements for

subsequent use.

D. THE DATA STRUCTURE
The CODASYL-DML language interface has been developed as a single user
system that at some point will be updated to a multi-user system. Two different
concepts of the data are used in the language interface : (1) Data shared by all
users, and (2) Data specific to each user. The reader must realize that the
data structures used in our interface and described below have been
deliberately made generic. Hence, these same structures support not only our
CODASYL-DML interface, but the other language interfaces as well i.e., DL/I,
SQL, and Daplex.
1. Dhta Shared by All Users
The data structures that are shared by all users are the database
schemas defined by the users thus far. In our case, these are network
schemas, consisting of sets and attributes. These are not only shared by all
users, but also shared by the four modules of the MLDS, i.e., LIL, KMS, KC,
and KFS. Figure 4 depicts the first data structure used to maintain data. It is
important to note that this structure is represented as a union. Hence, it is
generic in the sense that a user can utilize this structure to support SQL, DL/I,
CODASYL-DML, or Daplex needs. However, we concentrate only on the
network(CODASYL) model. In this regard, the third field of this structure
points to a record that contains information about a network(CODASYL)

database. Figure 5 illustrates this record. The first field is just a character array

union dbid node
struct rel dbid node *rel;
struct hie dbid node *hie;

struct net dbid node *net;
struct ent dbid node *ent;

Figure 4. The dbid node Data Structure.

Lante gats Au b A M 0P it B e e o o RN Avn s B ke S b anAncl e St SR S b it anie i) RS Rt i At et a4 T Ty

A AR N A Ch e S N A O S Sl Sl Sl

struct net dbid node

' char name[DBNLength + 1};
int num set;
int num rec;
int dbkey;
) struct nset node *first set;
‘l struct nset node *curr set;
struct nrec node *first rec;
struct nrec node *curr rec;
struct net dbid node *next db;

Figure 5. The net dbid node Data Structure.

containing the name of the network database. The second and third fields

(a1 7 RSN

contain an integer value representing the number of sets and the number of

record types in the database. The fourth field also contains an integer value to :

give a different dbkey value to each record in the database. The fifth, sixth,

seventh and ninth fields are pointers to other records containing information P
. about each set and each record type in the database. Specifically, the fourth and
: sixth fields points to the first set and the first record type in the database while

the fifth and seventh fields point to the current set and the current record type
i being accessed. The final field is just a pointer to the next network database.
2 The data structure nrec node contains information about each record j:";‘:;::;
:-- : . : : Lo Ll
- type in the database (see Figure 6). This structure is organized in much the NS
.. same fashion that the net dbid node is organized. The first field of the data .v"{f{ ‘
,'._ structure holds the name of the record type. The next field contains the number b
- “"l.~"..
. of attributes in this particular record type. The third and fourth fields point to AN
3 . . i) . .::\“ y
other record types which contain data on the first and current attribute of R
) ‘-.;_'u At
. this record type. And finally, the last field is a pointer to the next record type x
; in this database. TN
- A
‘ The data structure nset node contains information about each set in the St
- RERO
E ’ database (see Figure 7). The first field of the structure holds the name of the set. AT
! The second field contains the owner name of this set. The third field contains the -{
: AR
3 T
! A
y ARV
] | A
- KA
- KON
a e et ot e e e s w3k
AR N A Yy L) . L '-f‘.':--_'.;..".'.. d - \". ALY ‘.’ W '-.."\ S Ty P el . g [N) u»" o oy .'r‘— ;o ' '_. \ J_', PR R O 4 d

- Sl Bat Saffar e e AL oAl giuoate arug gty AP e Rl Pl N N e Sl Al i - .Wf‘“{‘.—-.ij v aat MR A A e IR Al Ml Tl oA T
g G
"

o
A
I}\
struct nrec node
:i
; char name[RNLength + 1];

- int num attr;
- struct nattr node *first attr;
x struct nattr node *curr attr;
o struct nrec node *next rec; .
Figure 6. The nrec node Data Structure.
struct nset node

char name[SNLength + 1];

char owner name(ONLength + 1];

char member name[MNLength + 1};

char ~ insert mode[INLength + 1];

char - retent mode|RLength + 1];

struct set select node select mode;

struct nrec node *owner;

struct nrec node *member;

struct ‘ nset node *next set;
‘-fij Figure 7. The nset node Data Structure.

member name of this set. The fourth and fifth fields serve as a flag to indicate
: the insertion and the retention mode. For instance, an insertion mode for a
Eﬁ:' member record of a set can either be automatic or manual. Therefore,the
characters "a", and "m" are used, respectively. The retention mode for a member

:.' record of a set can either be fixed, mandatory, or optional. Thus, the characters
"I'_ " "m", and "o" are used, respectivély. The sixth field of this structure is a
2 pointer to a data structure containing information about the set selection mode.
- The seventh field is a pointer to the owner record type of this set type. The ‘
- eighth field is a pointer to the member record type of this set type. The final) ;
:_‘ field is just a pointer to the next set type in the database. '
-
- 24
..

>

o

.
A]) AL
AR AT T) \(\.-"_-‘)\ Pt “-;‘ avah

Fo-. Catata _‘.:.'..-_'___.:"._..._.-“.,..;“_‘_;.- Ay ..;_.-\‘.-_:._'..:\.\:.j‘:.f\'.- AT \:_. I C IO NI AL NS AL TN

DA A A A C A A LA A S A S A S Ak EAEA A e A S AR AL A A S A s ol St S b A S by

g . : R
- The data structure set select node contains information about the set oK
selection mode for each set in the database(See Figure 8). The first field serves ZC:Z:ZE

- as a flag to indicate the set selection mode. For instance, a set selection mode of ::‘:::’;
- a set type can either be by VALUE, by STRUCTURAL, by APPLICATION, or e
E not specified. The characters "V", "S", "A", and "O" are used, respectively. If :':--::’

the set selection mode is by VALUE or by STRUCTURAL, the second field ,-.'_-..:
holds the itemn name of the specified record and the third field holds the name of
the record. If the set selection mode is by STRUCTURAL, the fourth field holds
the name of the second record , which is specified in the case of a by
STRUCTURAL set selection criterion.

Figure 9 shows the organization of the final data structure used to s

s
e]
o)., ..' . ., o’
RREAANE VAR

support the definition of the network database schema. This structure contains

information about the attributes of each CODASYL record type. The first field is

an array, holding, the name of the attribute. The second field holds the level :"""
. . . v 4. o]
number of this attribute, and the third field serves as a flag to indicate the e

attribute type. For instance, an attribute can either be an integer, a floating

point number, or a string. The characters "i", "f", and "s" are used,

_‘ respectively to represent these types. The fourth field indicates the maximum e

.~ ...\.:.

: length that a value of this attribute type may possibly have. For example, if ;}:I-;

this field is set to ten, and the type of this attribute is a string, then the '-'_:::‘f:

S

maximum number of characters that a value of this attribute type may have is :”""

ten. The fifth field indicates the maximum length of the decimal portion of this

attribute, if the type of this attribute is floating point. The sixth field is also a

E =

struct set select node —

. N

char select mode[SLength + 1]; v

3 char item name[ANLength + 1]; i

- char record] name[RNLength + 1]; yia
a char record2 name[RNLength + 1J;

: R

’. '~_|.:

- Figure 8. The set select node Data Structure. ;:{.

Q.. AN

o

. 25 =~

P

LR LA Y

R R
NSV NNE

o el

S A e R e ol e o ke " T T T T S T T W P

struct nattr node

char name|ANLength + 1J;
char level num[ALLength + 1];
char type;

int lengthl;

int length2;

int dup flag;

struct nattr node *next attr;

struct nattr node *child;

struct nattr node *parent;

Figure 9. The nattr node Data Structure.

flag used to indicate whether or not this particular attribute can have
duplicates. The seventh field is a pointer to the next attribute in this record. If
the level number of an attribute is bigger than the previous level number, then
the eighth field is used to reference a data structure that contains information on
the child of the current attribute. If the level number of an attribute is less than
the previous level number, then the ninth field is used to reference a data
structure that contains information on the parent of the attribute. The reader
may refer to Appendices A through C to examine how these data structures are

used in SSL.
2. Data Specific to Each User

This category of data represents information needed to support each
user’s particular interface needs. The data structures used to accomplish
this can be thought of as forming a hierarchy. At the root of this hierarchy is
the data structure, user info, that maintains information on all of the current
users of a particular language interface (see figure 10). The user info data
structure holds the ID of the user, a union that describes a particular interface,
and a pointer to the next user. The union field is of particular interest to us.
As noted ezrlier, a union serves as a generic data structure. In this case, the
union can hold the data for a user accessing either a CODASYL-DML language
interface layer(LIL), a DL/I LIL, an SQL LIL, or a Daplex LIL. The li info

unjon is shown in Figure 11.

26

......
N ",

-

v,
D)
. .
f‘v
.

7

A
Y ;AJ
‘-‘ “

o) s, + 4

NN

)
IR AR AL AL |

.,'.“

« v a2t

ol
"
-
.
-
e
"'

struct user info

char uid[UIDLength + 1j;
union li info li type;
struct user info *next user;

Figure 10. The user info Data Structure.

union li info

struct sql info sql;
struct dli info dli;
struct dml info dml;
struct dap info dap;

Figure 11. The li info Data Structure.

We are only interested in the data structures containing user
information which relates to the CODASYL-DML language interface in this
section. The structure used is referred to as dml info and is depicted in Figure
12. The first field of this structure, curr db info, is itself a data structure and
contains currency information on the database being accessed by a user. The
second field, file, is also a data structure. The file data structure contains the file
descriptor and file identifier of a file of CODASYL-DML transactions, i.e., either
queries or creates. The next field, dml tran, is also a data structure, and
holds information that describes the CODASYL-DML transactions to be
processed. This includes the number of requests to be processed, the first request
to be processed, and the current request being processed. The fourth field of the
dml info data structure, ddl files, is a pointer to a data structure which describes
the descriptor and template files. These files contain information about the
ABDL schema corresponding to the current network database being processed,
i.e., the ABDL schema information for a newly defined network database.

The next field of the structure, operation is a ﬂag. that indicates the

operation to be performed. This can be either the loading of a new database

27

;'.r'.i

LA
(N0
)

L4
4

.
N

e

(4

S
bR

Y
I'. [

A, 2

L

f.c"l
'
| '-";'_p "2

o,
I

LA

DRt oA

struct dml info

struct curr db info curr db;
struct file info file;

struct tran info dml tran;
struct ddl info *ddl files;
int operation;
int ‘answer;
int error;
union kms info kms data;
union kfs info kfs data;
union ke info ke data;
struct cur table *cur table;
int buff count;

Figure 12. The dml info Data Structure.

or the execution of a request against an existing database. The sixth field,
answer, is used by the LIL to record the answer received through its interaction
with the user of the interface. The remaining fields, kms data, kfs data, and
ke data are unions that contain information required by the KMS, KFS, and KC.
These are described in more detail in the next four chapters.The eleventh field
points to records that implement the currency information table (CIT), as
discussed by Meyer and MacDougal[Ref. 18]. The last field, buff count, is a

counter variable used in KC to keep track of the result buffers.

E. THE ORGANIZATION OF THE NEXT FOUR CHAPTERS

The following four chapters are meant to provide the user with a more
detailed analysis of the modules constituting the MLDS. Each chapter begins
with an overview of what each particular module does and how it relates to the
other modules. The actual processes performed by each module are then
discussed. This includes a description of the actual data structures used by the

modules. Each chapter concludes with a discussion of module shortcomings.

28

A R At B Tk T RTw MY

XN ETO T I
- ¥ ."' tﬁw B WY lf

A

)

3
s

v e,

i"‘

- _'b_.' .n‘ .:' -.. ‘n. K{ 39500 ‘u. - _.. 8|

Lt

O

III. THE LANGUAGE INTERFACE LAYER (LIL)

LIL is the first module in the CODASYL-DML mapping process, and is
used to control the order in which the other modules are called. The LIL allows
the user to input transactions from either a file or the terminal. A transaction
may take the form of either a database description of a new database, or a
CODASYL-DML request against an existing database. A transaction may
contain multiple requests. This allows a group of requests that perform a single
task, such as a looping construct in CODASYL-DML, to be executed together as
a single transaction. The mapping process takes place when LIL sends a single
transaction to KMS. After the transaction has been received by KMS, KC is
called to process the transaction. Control always returns to LIL. where the user
may close the session by exiting to the operating system.

LIL is menu-driven. When the transactions are read from either a file or
the terminal, they are stored in a data structure called net_req_info. If the
transactions are schema definitions, they are sent to the KMS in sequential order.
If the transactions are CODASYL-DML requests, the user is prompted by
another menu to selectively choose an individual request to be processed. The
menus provide an easy and efficient way for the user to view and select the
methods of request processing desired. Each menu is tied to its predecessor, so
that by exiting one menu the user is moved up the "menu tree". This allows the

user to perform multiple tasks in one session.

Al THE LIL DATA STRUCTURES

LIL uses two data structures to store the user’s transactions and control
which transaction is to be sent to the KMS. It is important to note that these
data structures are shared by both LIL and KMS.

The first data structure is named tran_info and is shown in Figure 13. The
first field of this record, first_req, contains the address of the first transaction
that has been read from a file or the terminal. The second field, curr_req,

contains the address of the transaction currently being processed. LIL sets this

29

RN P d N .;"lﬁ*l‘-'\L‘..

DR, R)

.._"
'.\.'
)
) "A:"

E-r_-. N
2_4

5 5
AP

’

——
LT NCREAEA

1
L

G
“

"t ot v
v’-‘,."."; o
NI
2L

¥

.
.

I' s
e

e
h

J‘;r'l;‘.'r‘"l g
’ v'_,t‘ 'f; 3’_.1

-

1,

{1

-
L
&
»
F;

e

t
"

’
4
a7y

&

R
e n

struct tran_info

{

struct net_req_info *first_req;
struct net_req info *curr_req;
int no_req;

}

Figure 13. The tran_info Data Structure.

pointer to the transaction that the KMS is to process next, and then calls the
KMS. The third field, no _req, contains the number of transactions currently in
the transaction list. This number is used for loop control when printing the
transaction list to the screen, or when searching the list for a transaction to be
executed.

The second data structure used by LIL is named net_req_info. Each copy
of this data structure represents a user transaction, and thus, is an element of the

transaction list. The net_req_info data structure is shown in Figure 14.

The first field of this record, req, is a character string that contains the actual
CODASYL-DML transaction. The second field, in req, is a pointer to a list of
character arrays that each contain a single line of one transaction. After all lines
of a transaction have been read, the line list is concatenated to form the actual
transaction, req. The third field of this record, req_len, contains the length of the

transaction. It is used to allocate the correct and minimal amount of memory

struct net_req_info

{

char *req;
struct temp_str_info *in_req;

. int req_len;

: struct net_req_info *sub_req;
struct net_req_info *next_req;

Figure 14. The net_req_info Data Structure.

30

R B s R T e T R T I TS g iy

space for the transaction. If a transaction contains multiple requests, the fourth
field, sub_req, points to the list of requests that make up the transaction. In this
case, the field in_req is the first request of the transaction. The last field,

next_req, is a pointer to the next transaction in the list of transactions.

B. FUNCTIONS AND PROCEDURES

LIL makes use of a number of functions and procedures in order to create
the transaction list, pass elements of the list to the KMS, and maintain the
database schemas. We do not describe each of these functions and procedures in
detail. Rather, we provide a general description of the LIL processes.

1. Initialization

MLDS is designed to be able to accommodate multiple users, but is

implemented to support only a single user. To facilitate the transition from a
single-user system to a multiple-user system, each user possesses his own copy of
a user data structure when entering _the system. This user data structure stores
all of the relevant data that the user may need during their session. All four
modules of the language interface make use of this structure. The modules use
many temporary storage variables, both to perform their individual tasks, and to
maintain common data between modules. The transactions, in user data
language form, and mapped kernel data language form, are also stored in each
user data structure. It is easy to see that the user structure provides
consolidated, centralized control for each user of the system. When a user logs
onto the system, a user data structure is allocated and initialized. The user ID
becomes the distinguishing feature to locate and identify different users. The
user data structures for all users are stored in a linked-list. When new users
enter the system, their user data structures are appended to the end of the list.
In our current environment there is only a single element on the user list. In a
future environment, when there are multiple users, we simply expand the user list
as described above.

2. Creating the Transaction List

There are two operations the user may perform. A user may define
a new database or process CODASYL-DML requests against an existing
database. The first menu that is displayed prompts the user to select the

31

RaINIE oA P it i AT i g i i i ™ e gt o ,.-_'-_7_ D A AN L S A NS S o P e gie oht oF S S ar il R S A & HNS Mt et |
N
e

-

d
R

c T
LA
T
f
P

Pk}
.
"l

A AN R St e DAL B4) ta A Gl . it Al ey A

Pl et N nede o e st aech shs e

operation desired. Each operation represents a separate procedure to handle

o specific circumstances. The menu looks like the following:
\ Enter type of operation desired
- (1) - load a new database
) (p) - process old database
n (x) - return to the operating system
ACTION ---->

For either choice (i.e., | or p), another menu is displayed to the user
requesting the mode of input. This input may always come from a data file. If
the operation selected from the previous menu had been "p", then the user may

also input transactions interactively from the terminal. The generic menu looks

like the following:

Enter mode of input desired
(f) - read in a group of transactions from a file
(t) - read in transactions from the terminal

(x) - return to the previous menu
ACTION > _

Note that the "t" choice would be omitted if the operation selected from the

T
KR RO
R A

previous menu had been to load a new database. Again, each mode af input

selected corresponds to a different procedure to be performed. The transaction
list is created by reading from the file or terminal, looking for an end-of-
transaction marker or an end-of-file marker. These flags tell the system when one
transaction has ended, and when the next transaction begins. When the list is
being created, the pointers to access the list are initialized. These pointers,
first req and curr_req, have been described earlier in the data structure
subsection. Both pointers are set to the first transaction read, in other words, the

head of the transaction list.

3. Accessing the Transaction List

2, % '|"t"",\ N

Since the transaction list stores both schema definitions and
CODASYL-DML requests, two different access methods have to be employed to
send the two types of transactions to KMS. We discuss the two methods

hE~ R

".. 3 2
:.-

:
e e meaca s e B
R S A TS T S LS T RS S OO

LY "."' Cu T Ol . ”, ¢ .—‘.. b Sl v Cali Pl it i i Dl B A A% A% S Bie Machis e ghe A" ie bale Sl Audl Scladh ind s tad dad S AT A% Ard ath sl AL SRR ol TN

separately. In both cases, KMS accesses a single transaction from the transaction

list. It does this by reading the transaction pointed to by the request pointer,

curr_req, of the tran_info data structure (see Figure 13). Therefore, it is the job
i of the LIL to set this pointer to the appropriate transaction before calling KMS.
a. Sending schema definitions to KMS

When the user specifies the filename of a schema, (input

| from a file only) further user intervention is not required. To produce a new

[Y

database, the transaction list of data definition statements is sent to KMS via a
program loop. This loop traverses the transaction list, calling KMS for each data
definition statement in the list.

l b. Sending CODASYL-DML Requests to KMS

- In this case, after the user has specified the mode of input,
the user conducts an interactive session with the system. First, all CODASYL-

DML requests are listed to the screen. As the requests are listed from the

MEORRY T

: transaction list, a number is assigned to each transaction in ascending order,
Ny starting with the number one. The number appears on the screen to the left of
- the first line of each transaction. Note that each transaction may contain
I multiple requests. Next, an access menu is displayed which looks like the

following:

Pick the number or letter of the action desired

P i % e R

(num) - execute one of the preceding transactions

: (d) - redisplay the list of transactions

N (x) - return to the previous menu

- ACTION ---->

! Since CODASYL-DML requests are independent items, the order in which they =
i:: are processed does not matter. The user has the option of executing any number ;:15'_1:;:;:
, of CODASYL-DML requests. A loop causes the menu to be redisplayed after -;:t:
ti each CODASYL-DML request has been executed so that further choices may be cat
& made. ¢ *
- N
,C 4. Calling KC ~ ,:.'-_.‘
s When KMS has completed its mapping process, the each «_,r
E transformed CODASTL-DML request have to be sent to KC to interface with the ;
-

4 33

.

4

A e e e e e S e i S e N

YR T T

g

Rt AROEUE- S e M- i st A dl s et Sl el st SR R AR AN] Pl LA A A Ak aubind Geiand sed i el Al it il e e APl e S e A

S sEw T

kernel database system. Then, KC must update the currency information table
(CIT) depending on the CODASYL-DML request. If, there are other
CODASYL-DML requests on the same transaction, KMS continues its mapping
process. Therefore, KC is immediately called, when its mapping process are
completed for each CODASYL-DML request.

5. Wrapping-up
Before exiting the system, the user data structure described in

AR SO Y Y T e

Chapter II has to be deallocated. The memory occupied by the user data
structure is freed and returned to the operating system. Since all of the user

structures reside in a list, the exiting user’s node has to be removed from the list.

T

.l‘-'l

.

. oo e
e

k s

!

Py

~
-+
24

-
v
xS

4|>

. @ N a
N
s

» l' I- -
YR,
WXy
r 4 ~

34

24

Y
AN

B} TE

-

AN
ANEE

* .g}"é

<

.
2

3
/
*
.‘

¢
A
I’
(7,
t A

'
ul
ul

MR ot I N

BRSO A A e It e bt S M el e A A e S e Gnl A e Al ekt s s R Y N T T W T T I ¥ T T~ T

N0V

S

IV. THE KERNEL MAPPING SYSTEM (KMS)

KMS is the second module in the CODASYL-DML mapping interface and is ;:.::::

called from the language interface layer (LIL) when LIL receives CODASYL- ::':'.‘\

DML requests from the user. The function of KMS is to: (1) parse the request to SS

validate the users CODASYL-DML syntax, and (2) translate, or map, the oS

request to equivalent ABDL request(s). Once an appropriate ABDL request, or
set of requests, has been formed, it is made available to the kernel controller
(KC) which then prepares the request for execution by MBDS. KC is discussed

in Chapter V.

A. AN OVERVIEW OF THE MAPPING PROCESS
From the description of KMS functions above we immediately see the
requirement for a parser as a pzirt of KMS. This parser validates the

CODASYL-DML syntax of the input request. The parser grammar is the driving

force behind the entire mapping system.

1. The KMS Parser / Translator é:::-__f:"
KMS parser has been constructed by utilizing Yet-Another-Compiler __
Compiler (YACC) [Ref. 15]. YACC is a program generator designed for r:‘.::,:
syntactic processing of token input streams. Given a specification of the input ,_<
language structure (a set of grammar rules), the user’s code to be invoked when
such structures are recognized, and a low-level input routine, YACC generates a T
program that syntactically recognizes the input language and allows invocation of "':

the user’s code throughout the recognition process. The class of specifications
accepted is a very general one: LALR(1) grammars. It is important to note that
the user’s code mentioned above is our mapping code that is going to perform the
CODASYL/DML-to-ABDL translation. As the low-level input routine, we
utilize a Lexical Analyzer Generator (LEX) |[Ref. 16]. LEX is a program -

generator designed for lexical processing of character input streams. Given a

regular-expression description of the input strings, LEX generates a program that

35

R - _'_._'...‘_.' .".. .‘. e e - - _..(.. ‘_.‘_ R ...-_....._ -~ ‘..’._.'_ RN .-_'.._)A';\x‘;..‘- ._‘:\\;..‘ ._‘...-“‘.. WLt -\.;’\,‘ LRy ,,}-.' Ly ~.A h'.-j&"

LA
PRI A I IR FRT RGN G AR ORI AT T, 0L

v T ——

I .

GO N S e N A I, -

LIS
AT

o« €7 TVR

LT VAR A NS S T S S

N NI

.........

partitions the input stream into tokens and communicates these tokens to the
parser.

The parser produced by YACC consists of a finite-state automaton with
a stack. It performs a top-down parse, with left-to-right scan and one token look-
ahead. Control of the parser begins initially with the highest-level grammar rule.
Control descends through the grammar hierarchy, calling lower and lower-level
grammar rules which search for appropriate tokens in the input. As the
appropriate tokens are recognized, some portions of the mapping code may be
invoked directly. In other cases, these tokens are propagated back up the
grammar hierarchy until a higher-level rule has been satisfied, at which time
further translation is accomplished. When all of the necessary lower-level
grammar rules have been satisfied and control has ascended to the highest-level
rule, the parsing and translation processes are complete. In Section B, we give an
illustrative example of these processes.

2. The KMS Data Structures

KMS utilizes, different kinds of structures for different kinds of requests.
It, naturally, requires access to the CODASYL-DML input request structure
discussed in Chapter II, the dml_tran structure.

CIT has been described in Chapter 2. This structure carries all of the
currency information for a particular run unit, and is vital to the proper
translation and execution of CODASYL statements. LIL of the interface should
initialize CIT. The KMS should have read access to CIT at all times, while any
updates of the CIT should be done by KC only.

The following data structures will be needed in KMS, and each is directly
associated with a particular CODASYL statement. The first field of the
net_kms info structure, shown in Figure 15, is a pointer to the data structure
that contains duplication information accumulated by the KMS during the
grammar-driven parse. This data structure contains the name of an attribute that
has DUPLICATES NOT ALLOWED specified in the schema definition, and a
pointer to the next attribute with the same specification (see Figure 16). We use

this list when setting the non_duplicate flags in the attribute nodes.

36

T R O B N I R N AR A ee

'- ‘g‘-‘ LA

N T P r————

b e

.
».
(L

o
P I
I
e

ettt 2
s
Ly

'a.'..
l‘ e

I.l;‘
[
A

W

|
2
<A

- -
ER
Bl
e
=

-

MR
J'.‘{ o
Sarnl e

Cs
(M

e

*
i
)

Aaciie Al

At At N Sl Sl Sal Al ted Bty B T P o S W LW WO OW Y W LW TV

¢ - Eeme

A B S ST

BRA L A T TR L L R

struct net_kms_info

{

struct ndup_node *ndup _list;
struct move_list *move_list;
struct select_list *select _list;
struct connect_list *connect_list;
struct abdl req *abdl;

struct erase_abd]l *erase;
struct find_abdl *find;

struct store_abd] *store;
struct get _node *get;

struct find abdl *cur_find;

Figure 15. The net kms_info Data Structure.

struct ndup_node

{

char - name[ANLength + 1}
struct ndup_node *next;

}

Figure 16. The ndup node Data Structure.

The second field of the net_kms_info structure is a pointer to the head of
the move list structure (see Figure 17). The move list simulates the MOVE
statements used as assignment statements by the host language COBOL in other
CODASYL implementations. In our implementation, we create the move_list
structure to keep track of these assignment statements, and to validate the
execution of other CODASYL-DML statements. The first field and second field
of the structure point to the record template structure (see Figure 17). This
structure keeps track of the name of the record type in the move statements. The
third field of the move list points to the data item structure (see Figure 17).
Each data item contains the attribute name, attribute type, and value
information corresponding to the item that is the object of the MOVE statement.
It should be noted that the value field in the data item record is a pointer to a
variable-length character string. Although attribute names have a constant

maximum-length constraint, the length of attribute values in the database is

37

TR L B S R P} .“)‘\‘\“.r:‘:;.'.‘.:. ‘._"..\.‘.‘._\ S

- - - . o o -s ._‘-'-‘ e T e T e
ARASS S A W AR S ~ -."-.." AW S S S TS LSS LSRN

SO e A B e A e Diuraantithecadecibhe- atey R Asc e Jihe Yol 7t 30k Miechan <k -) Y e — e N T Y W T W R X v v - v—qy

limited only by the constraint placed on them by the user in the original
database definition, and as such, they may be of varying lengths.

The third field of the net kms_info structure is a pointer to the
select list data structure (see Figure 18). This data structure contains attribute
names to be used to retrieve records from the database. The fourth field of the
net_kms_info structure is a pointer to the connect list data structure (see Figure

19). This data structure contains set type names to be connected or disconnested.

struct move list

{

struct record_template *first_rec;
struct record template *cur rec;
struct data_item *cur_item;

}

struct record template

{

char ' name[RNLength + 1];
struct record_template *next record;
struct data_item *item_list;

}

struct data item

{

char name[ANLength + 1];
char *value;

char type;

struct data_item *next_item;

}

Figure 17. The Move list Data Structures.

struct select list

{

char *item_name;
struct select list *next_item;

}

Figure 18. The select_list Data Structure.

38

. ,-';‘.',':- . .'--_*._,-_-.._-.‘:..; R ‘." -

struct connect list

{
char set_type[SNLength + 1];
struct connect list *next_set type;

}

Figure 19. The connect_list Data Structure.

The fifth field of the net_kms info structure is a pointer to the abdl req
data structure (see Figure 20). The first field of this structure is a pointer to the
actual ABDL request generated by the KMS, for DISCONNECT, CONNECT
and MODIFY CODASYL-DML requests. The second field, operation, defines the
type of request to be executed. The last field is a pointer to other records of the
same type.

The sixth field of the net kms_info structure is a pointer to the
erase_abdl data structure (see Figure 22). This structure contains information
about the ERASE CODASYL-DML request. The fist field of this data structure
defines the type of request to be executed (i.e., ERASE ALL or ERASE specific
record type). The second and third fields are pointers to the actual ABDL
request generated by the KMS. The fourth field is a pointer to the
member erase data structure. We use this field when the CODASYL-DML
request is ERASE ALL. If the given record_type is an owner of a non_empty set,

then we delete all of the members of the set owned by this record_type (see

struct abdl req

{

char *abdl;
int operation;
struct abdl req *next_abdl;

}

Figure 20. The abdl req Data Structure.

I

s .
[SE AR
LT LN

1)
I

s

’

DR 1/. z' ,-. ," e
P el

.
]

.

L
I}

. s

| SR

. !
» ,'-.,1

T r s K
o % % e
el DAL
LI N Al
v 2 " Bty %
PR

R AP
LR

v
o
LA

FL LIRS

i
.
fr':'_l

5.2
’

ri

r
o

&

x'e NN

AT et e GLAN A te S Bla e AALA S AL e A A At e A e e e AR AR ORI AT ANA DA S A S A A A AR A A Ak B Ak e A A S R A et 0 A A8 2 A R e R

)

Figure 21). The last field, result file, is used in KC to accumulate results

; obtained from MBDS when executing the ABDL requests. : .’ﬂ
- The seventh field of the net kms info structure is a pointer to the .._.4-_\
. find_abdl data structure (see Figure 23). The first field of this data structure, f',. ;_!
set_type, contains the set name of the translated request. The second field, \ :
rec_type, contains the record name of the translated request. The third field, -:

abdl, is a pointer to the actual ABDL request generated by KMS. The fourth
field, num_attr, contains the number of attributes in this particular record type
of the translated request. The fifth field, operation, defines the type of FIND
X request to be executed (i.e., FIND ANY, etc.). The sixth field, dont update,

indicates that there is no need to update the CIT table for the request being

- struct member_erase

char . set_name[SNlength + 1]; -
char *abdl; AN
char *delete; -
char *template; S
struct net_file info *result_file;
struct member_erase *eraseall,) .-rv'"!q
*next; :-f::-ji:-:::
} v
L
e
Figure 21. The member_erase Data Structure.

A
: e
struct erase_abdl ;..-::i::
{ Y

int operation; T
char *abdl; RN
char *retrieve; k;:\%

struct member_erase *member; v

struct net_file_info *result _file; W

}

Figure 22. The erase_abdl Data Structure.

N
gl [/

A
40 S
e
Sy
. A%
8 \

i

P A A A e T T e e L A T 0 T L F N L O i e s),

Y b

41

Cl
o struct symbolic_info
| {
- char name[ANLength + 1J;
Ay struct symbolic_info *next;
::: }
h:
struct suppres_list
{
char set_type[SNLength + 1J;
struct suppres_list *next;
}
2 struct set list
o {
- char set_name[SNLength + 1J;
char owner_name[RNLength + 1J;
< 1
= char *dbkey;
- struct set_list_ *next;
. }
. struct find_abdl
{
char set_type[SNLength + 1J;
char rec_type[RNLength + 1j;
char *abdl;
; int num_attr;
int operation;
int dont_update;
2 struct set_list *set _list;
.:f struct suppres_list *suppres;
- struct symbolic_info *tgt list;
X struct find_abdl *next;
- struct net_file_info *result_file;
' }
Figure 23. The find_abdl Data Structures.
processed. The seventh field, set_list, is a pointer to the set_list data structure.
-;', This structure is a list of set names. We use this field, when we update CIT
"f table. The eighth field, suppres, is used by the KC to update the CIT table. The
X ninth field, tgt_list is a pointer to the symbolic_info data structure. This

-,
g
~
o

R

> -
'y A,]
R A

. -
20l

structure is a list of attribute names (the target list). The last field, result file is -_:"-j
used in KC to accumulate results obtained from MBDS when executing the
3 ABDL requests. ;:‘
The eighth field of the net kms_info structure is a pointer to the L

E store_abdl data structure (see Figure 24). This structure contains information ' ";
- about the STORE CODASYL-DML request. The first field, rec name, contains \.::.,-
the record name of the translated request. The second field, ret abdl is a pointer - :&
3 to a RETRIEVE request. This request is generated by the KMS in order to '}"'
determine the existence of duplicate values for data items declared to have »{

DUPLICATES NOT ALLOWED in the database schema. The third field,
ins_abdl, is a pointer to the INSERT request which will actually cause the record

to be placed into the database. The fourth field, templatel, is used as working

struct ret2 node

- {

e
..,
Caa
l} o
L.
I .t
.
¢ Tar
Wi
o Va
W%
“ev .
FEERY
A~ .
et
e
DR
et
e e
.
S -
. s

char) set_name[SNLength + 1};

char owner{RNLength + 1J;

char select_mode[SLength + 1J;

char insert_mode[INLength + 1J;

char *abdl; 4
. int flag; S
X struct net file_info *result _file; i
. struct ret2_node *next; :'.f:::
: } v

o 4

=

struct store_abdl

2 {

- char rec_name[RNLength + 1J;
N char *ret_abdl;
; char *ins_abdl;
- char *templatel;
. int dont_update;
5 struct ret2_node *ret2_abdl;
: struct suppres list *suppres;
struct net_file_info *result file;
}
. Figure 24. The store_abdl Data Structures.
~.
43
s

-i‘q-"-r,*).-.--m.- N I T B I ot L o e A G LR SO AL 24 R CT Tty

(A B

space by the KC. The fifth field, dont update, indicates that there is no need to

update the CIT table for the request being processed. The sixth field, ret2 abdl,

is a pointer to a RETRIEVE request which returns the owner database key value :-‘;?-
of the proper set occurrence for the new record (see Figure 24). The first field of ST

the ret2 node structure, set name, contains the set name of the record to be

inserted. The second field, owner, contains the name of the set type of the record

to be inserted. The third field, select mode defines the set selection criteria for
the record being stored. The fourth field, insert_mode defines the set insertion
mode for the record being stored. The fifth field, abdl, is a pointer to a
RETRIEVE request which returns the owner database key value of all the set

occurrences to which this new record belongs. The sixth field, flag, is used in KC Ll

..-‘: to build the INSERT request. If we do not insert the new record into a set type.
Then, we set this flag. The seventh field, result file, is used in the KC to

accurnulate results obtained from MBDS when executing the ABDL requests. i—::

g The seventh field of the store_abdl"data structure, suppres, is used by KC to :"'-;::"-
: update the CIT table. The last field, result file, is used in KC to accumulate y .
results obtained from MBDS when executing the ABDL requests. '_J.___
The ninth field of the net_kms_info structure is a pointer to the get_node ko

data structure (see Figure 25). This structure contains information about the :
GET CODASYL-DML request. The first field, type, contains the record name in e
question. The second field, operation, identifies the type of GET format being

v . ..
ﬂ-. 3
e
v .
»
. .
_ 9, .L . .

used (i.e., GET record_type or GET item list IN record type). The third field, *:
oo
S
> struct get_node -
: { e
char type[RNLength + 1]; o
int operation; oo

struct select_list *tgt_list;

struct get node *next;

}

- Figure 25. The get_node Data Structure.

g 43 »
- T
i
RSN
.. . A A e AT T T S SO R I R,

Il I

)
(P

R ‘ﬁ:‘ { ,.’I'L“L“ L"&{\ s 1508

.
.- s

tgt_list, is a pointer to the select list data structure. It includes a list of items to
be returned. If the format is GET record type, this field would be NULL, and
KC would return all attributes of the record. The same is true for the simple
GET format. The last field is a pointer to other records of the same type. Thus,
these records are connected in a linearly_linked list.

The tenth field of the net_kms info structure is a pointer to the last
FIND request. We use this field to display correct result buffer when the user
issue GET request.

B. FACILITIES PROVIDED BY THE IMPLEMENTATION

In this section, we discuss those CODASYL-DML facilities that are provided
in our implementation of the network (CODASYL) interface. We do not discuss
the CODASYL/DML-to-ABDL translation in detail. This subject is discussed by
Wortherly [Ref. 3]. Rather, we provide an overview of the salient features of
KMS, accompanied by one illustrative example of the parsing and translation
process. User-issued requests may take two forms, schema definition statements,
or CODASYL-DML database manipulations. Appendix B contains the design of
our implementation, written in a system specification language (SSL).

1. Database Definitions

When the user informs the LIL that the user wishes to create a new
database, the job of KMS is to build a schema that corresponds to the schema
definition statements input by the user. The LIL initially allocates a new
database identification node (net_dbid node shown in Figure 5) with the name of
the new database, as input by the user. The LIL then sends the KMS a complete

schema definition, which has the form :

SCHEMA NAME IS database_name ;
RECORD NAME IS record_type ;
DUPLICATES ARE NOT ALLOWED FOR attr_name ;
01 attr 1 ; CHARACTER length .
attr_2 ; FIXED length .

RECORD NAME IS record_type ;
DUPLICATES ARE NOT ALLOWED FOR attr_name, attr_name ;

44

.

g v ¢ v = - e,
P A
LRI N

B ORI o

e
e et
. Ll e o el

PR
COTIRE
]
PR
“

)
P

et
e
N et
AR M

L R

<o
:.I?I:.J
S,

t
' %
™

P
h

v/l

S
"':,J‘n"
':é'

- s I‘.I v
S

L3

-
Y
.

PR
P
LR AR
. .
- eate"e
o e .'.I
MR N

o,
’
S

&

0

“»

]
»
Ca*2’a

‘r

'y
«
Y-

]

»
"l

' |
[ﬁ:
i .
b

—— RS A AT AN A A0 Sw L0l B A A0 S bt fenitan)

attr 1 ; CHARACTER length .

SET NAME IS set_type ;
OWNER IS record_type ;
MEMBER IS record_type ;
INSERTION IS insertion_mode
RETENTION IS retention_mode ;
set_selection_mode ;
SET NAME IS set_type ;

» The sequence of statements in the schema definition is significant. First,
i all record declarations have to appear, followed by all declarations for each record
; statement, an additional record node (nrec_node shown in Figure 6) is added to

3 the database schema wunder construction. For each subsequent attribute
o statement, an additional attribute node (nattr_node shown in Figure 9) is added
. to the schema for the current record under construction. Then, for each set
statement, an additional set node (nset_node shown in Figure 7) is added to the
database schema - under construction. The database identification node
(net_dbid_node shown in Figure 5) holds the number of records and the number
of sets in the schema, the database name, and the initial value of dbkey. Each
record node holds the number of attributes in that record, and the record name.
Each attribute node holds the attribute name, level number, length, type, and
. non_duplicate flag value. Each set node holds the set name, the owner’s name,
and the member’s name, the insertion mode, the set selection mode, and the
retention mode.

When KMS has parsed all of the statements included in the schema
definition, the result is a completed database schema, as shown in Figure 26. Not
shown in Figure 26 is the list of attribute nodes that is connected to each record
node. The network (CODASYL) database schema, when completed, serves two

purposes. First, when creating a new database, it facilitates the construction of

o -
o the MBDS template and descriptor files. Secondly, when processing requests
f against an existing database, it allows validitiy checks of the records, sets, and
- , attribute names used. It also serves as a source of information for type_checking.
-
2 45
<
O Ay BTy ST e e a G NSAAGY RN PR D IS NN TR M TN YRR

- - e - W, W

b
‘\‘
X ommmmemenne -+ e +
» | record type | | record type |
. Fommmmeee -+ o +
.
\:_
.
R N I -+
‘ | set_type | | set type |
“:_. + """"""" + + """"" "+
oo +
| record_type |
R SN——— +
Figure 26. The Network Database Schema.
e 2. Database Manipulations
When the user wishes the LIL to process requests against an existing
g database, the task of KMS is to map the user’s CODASYL-DML request to
equivalent ABDL requests.
a. The Mapping Processes: An Example
In this subsection we present an illustrative example of the KMS
o mapping process (i.e., parsing and translation) for a simple CODASYL-DML
} FIND ANY call. We begin by showing the grammar for the dml portion of
KMS. We then step through the grammar and demonstrate appropriate portions
- of our design in the system specification language (SSL). We only show those
_ portions of the design that are relevant to the example, i.e., those that would
y actually be executed. The entire KMS design is shown in Appendix C.
The relevant grammar is shown in Figure 27. The source CODASYL-DML call
.-j:ﬁ to be utilized for our example is the following:
iy
2 MOVE Cleveland TO CITY IN SA
.,"_ FIND ANY SA USING CITY IN SA
7
.:;-.
,'.J
N
P e PRI T LT T T, TG TR L 4 L Tt T S G ! (o ST

- oty
% RS 5 O M ST

(Note: The MOVE statement is an assignment statement found in the host

i
)
.
[}
.
.

COBOL language.) The ABDL request generated in response to such a
CODASYL-DML call is as follows:

. [RETRIEVE ((TEMPLATE = SA) and (CITY = Cleveland))

.:' (SNO, SNAME, STATUS, CITY, DBKEY) BY DBKEY]
To begin our discussion, let us first synchronize the reader. At the

beginning of the mapping process, the parse descends the grammar hierarchy

searching for appropriate tokens in the input that may satisfy one of the
l grammar rules. Therefore, the parser descends through the ddl statement rules

(schema definition statements). After finding no matching tokens for these rules,

the parser eventually descends to the dml rule (data manipulation language).

When the dml rule is first called, it immediately calls the

.i dml_statement rule, then starts to search for appropriate tokens in the input that
: satisfy one of its sub_rules. In our example, the move rule is called. For the sake
: of brevity in the example, we will not go through the mapping process for the
i MOVE statement. We need only be aware that the new value for the attribute o
- CITY in the record template for record type SA, has been set to the value 4-:;;::‘_'.?:
Cleveland, by the previous parse/translation. Now, we may proceed with the r:E:*,f\
- mapping of the FIND ANY statement. €]
! When the find rule is called, the FIND token is recognized satisfying ..
the fir<t portion of the rule. Control now goes to the record_selection_expr rule. ‘
? This rule then searches for tokens in the input that satisfy one of its sub_rules. In t.._‘f
E’ our example, the ANY record type portion of this rule is satisfied. The ‘
- record- type rule recognizes the token, SA, via the terminal, IDENTIFIER. At ":-::
E;: this point, we need to perform some translation. The following SSL is invoked &* %
s RN
L. before the remaining portion of the rule is satisfied. s‘\ -
. | o
-89
N P
5 X

47

S SO ALY
".'.‘ v 7 v
5 ol
b ”
'1 AR

i
.
s
k 3
3
1
.
L]
)
]
2
"
-
*x
/
ol

Y m Lt e aTe e L%p LV ."a g L PR A T S IR - SR LR LN :) . B ata . W I v %
e T e e e T e P T N N N e PN T S S o VL AALIEIERNRNERI BN RS RS

T T T rTRTy——

statement: ddl_statement
| dml

dml: dml statement
| dml dml statement

dml statement: set_flag
| move
| get
| find
| store
| connect
| disconnect
| erase
| modify
| perform_loop
| if then

find: FIND record_selection_expr curr_suppression SN

record_selection_expr: ANY record_type USING item_list . \
IN record_type

curr_suppression: LSQUARE supp_expr RSQUARE . :_v',‘.}
| empty '

item_list: item_name
| item_list COMMA item_name

\t .‘\

Yo
record_type: IDENTIFIER ;::‘:?_:'I.
item_name: IDENTIFIER RN

Figure 27. The KMS dml _statement Grammar.

record_selection_expr: ANY record_type

if ('record_type’ record template node is
not on move_list)
perform error(1)
return
else

alloc and init new ’find’ node

48

A L I A O RV NIt YNV LI L AP N AT %

UG AT T 3
Ll X3 e M [A: Za facJEX NG

IR ".'s"-;"-'.-. K .'

find_type = ANY in find node RN
copy record_type to find node B
alloc and init new abdl str RO

alloc and init new tgt list
/* begin forming a RETRIEVE request */

copy "[RETRIEVE ((TEMPLATE = ’record_type’)" ::l:': ‘:
to abdl str ::j-&:'.::::
end if ‘-_:“:

select_list = NULL ’
USING item _list IN record type el
| CURRENT record_type WITHIN set_type

We first check to see if the record type is on the move list. If it is not. the

system gives an error message and exits the parser. If it is on the move list, we

allocate and initialize a new find node. At the same time, we initialize an abdl [r
string to be used for forming the ABDL request. The target list is also allocated :-'
and initialized at this point. Next, we copy "[RETRIEVE ((TEMPLATE = _'f,
'record_type’)" to the abdl str. Then, we free the select list. The select list ,
holds the attribute names from the item _list rule. :‘.::f.ff;
The next token encountered is the U NG token. It matches USING C-:::S
in the FIND ANY rule. So, the item list r . below is called. This rule ;i.g-.g-\.
recognizes the token, CITY, in the CODASYL-DML call and creates the .
select_list. ::‘E‘:-.‘
RN
item_list: item_name ::.:f:\

{

put the first item _name on select_list

} AL

| item_list COMMA item_name ::‘.:"‘i:_i

{ t‘ ...‘l
i

put successive item names on select_list

}

The IN token is recognized next and satisfied. Control is then passed

5 b

Y.,

Ll TS

Cr- e)

to the record type rule. This rule recognizes the token, SA, and the parsing

P AL
process is complete. We must now perform more translation in order to complete "
the record_selection_expr rule as indicated below. :.4.?_

49 :‘i: ' .

| A

‘&

N L LTS A TN 203) a2 T PR R XN R 30 Wy NN

Chi S A A it S S A el i A At Sk A A Sa A Al Pab PR Al et Sa et S

USRS B R L

. LT

e AT A PTNDRNBY TR, L N

A N

R e e s R B BT A S 5 I G 6 e X f T R L

record_selection_expr: ANY record_type RN
{ :'.:;:::;')
}

USING item list IN record_type

ST
{ oS
if ('record _type’ is same as previous Lo
'record type’)) nj‘_.~2:$
if (any data item on select_list is not Sy
defined for 'record _type’) s
perform error(2)
return
end_if
else

create tgt_list item for all attributes
of ’record type’ record
for (each data item on select_list)
if ("data_item’ not on move list)
perform error(1)
return
end_if
else
get ’item_value’ from move_list
concat "and ('data_item’ = ’item_value’)"

to abdl_str
end:_else
end_for S
concat ")('tgt_list’)" to abdl_str) _'\\;"
checkmember()
concat "DBKEY) BY DBKEY]" to abdl str _
connect abdl str to find node el
end_else :.::::_-..
end _if v
else XN
perform error(6) bt
return ‘\.:'
end else e
y A
| CURRENT record_type WITHIN set_type '
T
-7
First, we check to see if the last record type is the same as the -‘
- .“‘}!‘
previous record_type. If it is not, the system gives an error message and exits the -
parser. If it is correct, we must check the select_list for any attribute names that “niny

‘
N
50 R

R AN A A RRC AN A et a2 S A St - . Ta VW TR Sl - Adi it ~ DSt NI LR

S b

b are not defined for the record_type. If undefined names are on the select_list, the ::_{._ ot

system gives an error message and exits the parser. If there are no undefined :

.. names we must create a tgt_list for all of the attributes of the record type. Then.

l we must check each attribute name on the select list for inclusion on the ';._.,__..

' move list, because we need the value of the attribute in order to issue the ‘_'

: RETRIEVE request. If the attribute is not on the move list, the system gives an \‘_.:

i error message and exit the parser. If the attribute is on the move_list, we must . R%

o concatenate each attribute name on the select list, and it’s value from the '_jff'j';',:_
move_list to the abdl str. Next, we concatenate ")(’tgt_list’) " to the abdl str. -
(Note: We created the tgt_list earlier, thus, we simply concatenate that list to g

_I the abdl str.) Next, we check to determine if the record in question is a member

of any set. If the record does belong to one or more sets, we concatenate the
MEMset_type attribute for those sets to the target list of the abdl str being
processed. We use the MEMset_type values to update the CIT table properly.
Next, we concatenate "DBKEY) BY DBKEY]" to the abdl str.

Now, the record selection_expr rule is completed, and control returns

to the curr_suppression rule. The empty portion of the curr_suppression rule is

matched, satisfying the curr_suppression rule. Now, the dml statement and dml b
rules are fully satisfied, and control returns to the start statement. The parsing {_ o
L
and translation process for our example is now completed and the find_node is ;i"_:’.-::l,
assed to the KC for execution. £
P b
RNOSRN
TN A

61 !

o T ST AT D s O s e L O S L R o LNl T 2y oo A

V. THE KERNEL CONTROLLER

The Kernel Controller (KC) is the third module in the MLDS CODASYL
language interface. It is called by the language interface layer (LIL) when a new
database is being loaded, and is called by the kernel mapping system (KMS)
when an existing database is being manipulated. KC is the module which
performs the task of controlling the submission of ABDL transactions to the
multi-backend database system (MBDS) for processing.

KC must perform the following functions: (1) submit transactions to the
MBDS, (2) receive and store results of transactions, (3) update the currency
information table, and (4) cause the proper data to be returned to the user.

The procedures that make up the interface to the KDS (i.e., MBDS) are
contained in the test interface (TI) of MBDS. To fully integrate the KC with the
KDS, the KC calls procedures which are defined in the TI. Due to upcoming
hardware changes in MBDS, we decided not to test the KC on-line with the TI.
Our solution to this problem has been to design the system exactly as if it were
interfacing with the TI. However, for each call to a TI procedure, we have
created a software stub that performs the same functions as the actual TI
procedure. The reader should realize that all interactions with the TI procedures
described in the KC are actually made with these software stubs, rather than
with the on-line TI procedures.

In this chapter we discuss the processes performed by the KC. This
discussion is in two parts. First, we e.xamine the data structures relevant to the
KC, followed by an examination of the functions and procedures found in the
KC. Appendix C contains the design of our KC implementation, written in a

system specification language (SSL).

A. THE KC DATA STRUCTURES
In this section, we review some of the data structures discussed in Chapter II,
focusing on those structures that are accessed and used by KC. One data

structure used by KC is the dml_info record shown in Figure 28. KC makes use

52

NN AL e

te
o
o
e
~
A
b
.

T T BT Ty —
DL A . EAA TR R .

of only four fields in this record. The first field, operation, defines what action is
going to be taken by KC.

The second field, buff_count, is an integer used to maintain control of the file
buffers associated with the results of each RETRIEVE request.

The third field, kms data, is a pointer to the kms_info union data structure.
This structure points to the net kms info data structure, which allows us to
execute proper ABDL request(s).

The fourth field, cur_table, is a pointer to the cur_table data structure (see
Figure 29), which contains currency information for the database in use. The
first field of the cur_table data structure points to the run_unit data structure.
This data structure contains information about the current of run_unit. The term
"run_unit" means the most recently accessed record of any type whatsoever. The
first field of the run_unit data structure, holds the name of the current record of
the run unit. The second field, dbkey, holds the database key value of the
current record of the run_unit. We do not use any information relating to the

current record of the record type in our KMS implementation. Thus, we do not

struct dml_info

{

struct curr_db_info curr_db;
struct file_info file;

struct tran_info dml_tran;
struct ddl info *ddl_files;
int operation;
int answer;
int error;

int buff _count;
union kms_info kms_data;
union , kfs_info kfs_data;
union kc_info kc_data;
struct cur_table *cur_table;

}

Figure 28. The dml info Data Structure.

T Ny N e T T TP T

I A A A A e A e Al bt e 24 A I Abu e ptesl, 3

...................

4,‘ "
LA

>
-
N
N struct run_unit
’ {
2 char rec_type[RNLength + 1J;
- int dbkey;
3 }
) struct cur_set
{
char set name[SNLength + 1J;
: char type[RNLength + 1];
int dbkey;
char member[RNLength + 1];
char owner[RNLength + 1];
int owner_dbkey;
struct cur_set *next_set;
}
struct cur_table
{
" struct run_unit *run;
- struct cur_set *set_type;
' struct cur set *cur_set;
- }
s
K}
-3 Figure 29. The cur_table Data Structure.
Pl
include the current of record type in our implementation of the currency
information table. The second and third fields of the cur_table data structure,
- point to the cur_set data structure. This data structure contains information
about the current of set type. The first field of this data structure contains the
5 name of the set type. Note that sometimes the current of set type is going to be
an owner, and sometimes it is going to be a member. The second field of the
" cur_set data structure contains this information. The third field, dbkey, holds the
database key value of the current of set type. The fourth and fifth fields hold the
X name of the member and owner record types of the set type. The sixth field, -
N owner_dbkey, holds the database key value of the owner record of the set type.
- We create the cur_set data structures dynamically. If the set type being
- processed is not on the currency table, then we create a new cur set data
P 54

NI I e R B IR B A

2 structure to hold information about this set type. The last field of the cur set
; data structure is a pointer to other data structures of the same type that connect
. the data structures in a linearly linked list.

Y The net_file_info is used by KC to store information about the file buffers
containing the results obtained for each RETRIEVE request (see Figure 30).
E ‘ The first field, buff, contains the file name and file id. This information is

required so that the appropriate files may be written to and read from, as
necessary. The second field, count, is simply an integer representing the number
of results in the file buffer. The next field, buff loc, indicates the KC’s location in
the file buffer. For instance, after the first value is pulled from a file buffer, this
field indicates that the KC’s position is now at the beginning of the second result.
The fourth field, status, serves as a flag so that a file buffer is opened under the
correct status. The fifth field, max chars, defines the maximum length of
response in the result buffer. The sixth field is a pointer to a character string
that holds the last result value pulled from the file buffer. This value may be

used in the building of subsequent requests, or it may be used to update the CIT

struct file info
; {
char fname[FNLength + 1];
FILE *fid;

}

" struct net_file info

» ' {

™~ struct file_info buff;

y int count;
int buff _loc;
int status;
int max_chars;
char *curr_buff val;
char *tem_str;

3 }

\.

.

Figure 30. The net_file_info Data Structure.

r-"-‘—- b AR T Nl A S, St N L AN I A A A ‘S~ e DS S A LA ol MR Sl oiat it SRA R i Y T A vE 4 N e e MAw & un B Bhe BNe <Al ol

.

Lot
AN
Sl el

3

&~

“ac s W & T
ﬁﬁiﬂﬁh
.." :". "-"‘L"'L).

N
v,
E}

N
Sy
L

s
i
14
r
v

4

o ¢

e

MO LIRS
el O. v’ t‘_'

e
’l! "n."l",‘_ "—
. '.'4'-:“-'

e T,
bR}
. ‘a

Iy
Yy

4,7,
iy e,
]

&

............... Ak el et o oot e v
----- - P adga s

.......

table. The last field is a pointer to a character string that holds the response L\”‘iﬂ
\-I'

record. This field is used by KFS to display the result to the user. - :"(:

ﬂ.

B. FUNCTIONS AND PROCEDURES
The KC makes use of a number of different functions and procedures to

manage the transmission of the translated CODASYL-DML requests (i.e., ABDL . Ay

oA B 2]

requests) to the KDS. Not all of these functions and procedures are discussed in :":'_:-" .
detail. Instead, we provide the reader with an overview of how the KC controls :
the submission of the ABDL requests to MBDS.

1. The Kernel Controller

The kernel_controller procedure is called by LIL when a new database is
being loaded, and is called by KMS when an existing database is being 5
manipulated. This procedure provides the master control over all other
procedures used in KC. This procedure is a case statement that calls different
procedures based upon the type of ABDL transactions being processed. If a new
database is being created, the load __t-ables procedure is called. If the transaction
is of any other type, then the appropriate procedure for processing that
transaction is called. If the transaction is none of the above, there is an error, and
an error message is generated with control returned to LIL.

2. Creating a New Database

» The creation of a new database is the least difficult transaction that the
. KC handles. The load_tables procedure is called, which performs two functions.
First, the test interface (TI) dbl_template procedure is called. This procedure is
used to load the database-template file created by the KMS. Next, the TI
. dbl_dir tbls procedure is called. This procedure loads the database-descriptor
file. These two files represent the attribute-based metadata that is loaded into

the KDS, i.e., MBDS. After execution of these two procedures, control returns to
the LIL.

3. The FIND Requests
. The find_requests_handler procedure is called by the Kernel Controller S

procedure to handle FIND requests. The find_requests_handler procedure is a

large case statement. The find_requests__ handler procedure takes action

depending on the FIND request being processed. If the FIND request is either

b
DO - - o m e e e s e e e e e e G

PRIV ST NI NENE ST TSN IR DET STAT $T S T8 ST TR

TBAE S b S AR

AAIMCA AT I B I v SR A A S A Rl A S -l e a4

Dl R i e S i e i A N ST e dy Al il el Sali b A e - g)l PRl 2 T

2 the FIND ANY, FIND FIRST, FIND LAST, FIND WITHIN or FIND OWNER , :"":
. find_requests_handler takes the same action. It executes the RETRIEVE request .—'\
associated with the statement, and calls the Find_update procedure. If the FIND _;_i
request is either a FIND NEXT, FIND PRIOR or FIND DUPLICATE, the f.;_._:\.\
find_requests_handler procedure must first find the correct find abdl data “‘-':
structure and determine the correct buffer location in the result file of this data -::;-: .
structure. The procedure then calls the Find update procedure. If the FIND '-s :
A request is a FIND CURRENT, then find_requests_handler simply calls the ;L::'. -
: Find_update procedure. ‘
The Find_update procedure is called by the find_requests_handler, if the \

user does not use SUPPRESS UPDATE mode. The main goal of this procedure is
to set up currency information depending on the type of find request.
The following examples illustrate the logic used in this procedure.

Suppose the following CODASYL-DML request is issued by the user:

MOVE SS5 TO SNO IN SP
FIND ANY SP USING SNO IN SP

KMS translates this request into the following ABDL RETRIEVE request:

[RETRIEVE ((TEMPLATE = SP) and (SNO = SS5))
(SNO, PNO, QTY, MEMSSP, MEMPSP, DBKEY) BY DBKEY |

‘ The Kernel_Controller procedure is then called by KMS to execute this request
and update the CIT table. The Kernel Controller procedure thhen calls the
'. find_requests_handler procedure. This procedure provides the master control over
all FIND requests. In our example, case AnyFin statement is satisfiyied. Since
the RETRIEVE request is complete, it may be immediately forwarded to KDS
for execution. This is accomplished by calling dml_execute. This procedure uses
two TI procedures and the dml _check requests left procedure. In general,

dml_execute sends the ABDL request to KDS and waits for the last response to

l\.kk\

be returned. Results for a given request are placed in a unique file buffer
associated with each request data structure. The file_results procedure controls

this process.

- e e

.
(R N

57

........... Y ; Eh e i ; AL A RS A A A A o Ste Blan M ahe b i DA i A Sk d et Al Al Al Ah LK a8

o

R

: After the last response is returned, the Find update procedure takes :.E:
control. The action taken is dependent upon the particular case satisfied in the ,‘:
N procedure. In our example, case AnyFin statement is satisfied. The SP __':;_*
-',_ record type is a member of both SSP and PSP set types. If the user does not %
specify any currency suppression, we update the currency of all set types to :'.:
.\ which this record type belongs', and the currency of the run_unit. If the set types ié
‘ are not on the CIT table, we create new cur set data structures to hold the .
necessary information, if the user specifies set types for currency suppression, we L**
only update the currency of these particular set types and the currency of the
run_unit. If the user specifies SUPPRESS UPDATE, then' we do not update the _._:._
R CIT table. A
:».f: Finally, control returns to KMS via the Kernel_Controller procedure and s
\ the find requests handler procedure. If there is another request in the same
X transaction, KMS continues the mapping process. If not, control returns to LIL, Y
\: and we can pick another transaction, or return to any of the other MENUs in ‘
< LIL. | ;
. 4. The Modify, Connect, and Disconnect Requests .
If the request is Modify, Connect, or Disconnect, the request _handler
:E_I: procedure is called by the Kernel Controller procedure. The first thing done by

the request_handler procedure is to execute all ABDL UPDATE requests created

by KMS. If the request is Connect or Disconnect, the request_handler procedure
- takes appropriate action to update the CIT table. We use the connect list data
structure (see Figure 19) to update set type(s) correctly.

5. The Move Request

There is no action taken by the Kernel Controller procedure for the
Move Request. We mentioned before in KMS, the Move request is just an
assignment statement. R,

6. The Store Request

o ol

If the request is the Store Request, the store_requests_handler procedure T C:.:‘"
" is called by the Kernel _Controller. The following examples illustrate the logic b X
\J, used in this procedure to control the processing of this type of request. Suppose
o the following CODASYL-DML requests are issued by the user:
S
o
3 58
o
t!

yasnd

R R N R N N A

LI O ..'-'.\' oA L N

' < N AN L TR LT L TR LY et tuie N e e A B N de Sa e taArsaii it el SO A b e bt inC Al R At A At At a Wb A i, die She Al Sen S0 A0 Aht 4t s\ g]

&L,
(]

: LR
K A
: MOVE 854 TO PNO IN PA e
: MOVE PP2 TO SNO IN SA o

MOVE PP1 TO SNO IN SP el
. MOVE $S3 TO PNO IN SP e
% MOVE 100 TO QTY IN SP N
& STORE SP A Kfag

KMS translates these CODASYL-DML requests into the following three ABDL A

At

j RETRIEVE requests and one ABDL INSERT request: “*":::

= By
‘:- ..".-‘.' :.;1
) [RETRIEVE (((TEMPLATE = SP) and (SNO = PP1})) or —
((TEMPLATE = SP) and (PNO = SS3))) o d

(DBKEY) BY DBKEY |

[RETRIEVE {(TEMPLATE = SA) and (SNO = PP2))(DBKEY) |
[RETRIEVE ((TEMPLATE = PA) and (PNO = $5S4))(DBKEY) |

> [INSERT (<K TEMPLATE,SP>,<DBKEY ***>,
> <SNO,PP1>,<PNO,SS3>,<QTY,100>,
<MEMSSP ***> <MEMPSP,***>) |

The first task performed by the store_requests handler procedure is to execute
- the first RETRIEVE request attached to the store_abdl data structure. This
request determines if there are records in the database which have attribute
" values that are not to be duplicate. The execution of this RETRIEVE is
accomplished by calling dml _exécute. If the request buffer created for this
RETRIEVE is non_empty at the end of execution, there is an error. If the

request buffer is empty, then we continue the execution in the following manner.
To insert the new record into the correct set occurrences, we need to
know the database keys of the owners of the set occurrences. For this reason, we

issue the next two RETRIEVE request(s) above. These requests are created by

: KMS depending on the set selection criteria and the set insertion mode of the
\ new record. These RETRIEVE requests are executed by the dml_execute
& ‘ procedure, and the results are placed in a unique file buffer associated with each

request data structure. Then, the build_request is called to complete the INSERT

LI N R SR R IR TR r— SRR S 21A0cin B ‘S Sein ‘B She A an - A DA A o —ndebtnie i M i S N

N At

s &

requeét. The database keys of the owners of the set occurrences are pulled from

the appropriate result buffer(s) and substituted for the place_holding asteriks to

.-
.o
L‘
.,
L
g
e

complete the INSERT request. In our implementation, the order of the .f';'--jl:'-
RETRIEVE requests, and the order of the attributes, MEMset type are the T
. -“.:\’.'_-‘.

same. Thus, we can easily complete the INSERT request. After this operation, RRAKAS
.\'.b-.

the INSERT request is issued by calling dml execute. Now, if no currency
suppression list is attached to the store abdl data structure, the CIT table is
updated to reflect a change in the SSP and PSP currency, as well as, the current

of run unit. Finally, control returns to KMS via the Kernel Controller

procedure.

7. The Erase Request ey
The ERASE request is handled by the erase requests_handler. This
procedure first checks the type of the erase request (i.e., ERASE ALL

record_type or ERASE record_type). If the type of the erase request is ERASE "'4 >
. record type, then this procedure -proceeds in the following manner. The N 2 ’
L RETRIEVE request attached to the erase_abdl data structure is executed by .
» calling dml execute. This request determines, whether or not the record being -
_h deleted is an owner of a non_empty set. If the request buffer is empty, then all faes;
: that remains is to issue the DELETE request attached to the erase abdl data ' -.ﬁ(:
Lf: structure. This request deletes the current record of the run_unit. After the ‘3',:;.,
ﬁ deletion, erase requests_handler update the CIT table by setting the current of il
2 run_unit indicator to NULL. If the result buffer of the first RETRIEVE request V
E is not empty, the system gives an error message and the erase request fails. .
X If the type of the erase request is ERASE ALL record_type. We have a .
different sequence of events. ERASE ALL deletes the current of run_unit whether
or not it is the owner in a non_empty set. Indeed, if it is the owner in a \ .
non_empty set, this option really comes into its own. All the members connected r;-
to the set are also erased. If any of these members happens to be connnected to r
some other set of another type, this does not matter. Furthermore, if any of these a :::N 3
members happens to be themselves an owner in a non_empty set, then their ., &:‘E
members in turn are erased. To deal with this problem, the : ‘g‘::;'
erase_requests_handler procedure calls the erase member procedure recursively. S

* X

...................................
.......

AP AR ENEEF

ASF AP SRR B A P

et MR e R e

s h i TR, L

LY

oo B L

We first issue the RETRIEVE request to get the database key values of the
members of the set. Then, we complete the DELETE request attached to the
ret2 node data structure, and issue each DELETE request to KDS via the
dml_execute procedure. After this process, the erase requests_handler executes
the DELETE request attached to the erase abdl data structure to delete the
current of the run_unit. Once again, the CIT table is updated to reflect any
changes in currency i.e., current of set types become NULL as appropriate, as
well as, the current of run unit.
8. The Get Request
The GET request is handled by the dml kfs procedure. This procedure

uses the result buffer of the last FIND request issued. It simply looks at the
operation field of the get node data structure, and retrieves either the entire
record or specific fields of the record from the result buffer, and displays these
results to the user. We will examine this process more closely in the next chapter

(The Kernel Formatting System).

61

‘hv-*-.‘- -..: TRy --'c a -,.’.n} 'J’ h')""u:“ , .] |.~‘ ' A% “» ‘ x “u \ ~, " -..\._\‘n",l |

'y IR

LA)

RIAdA
‘y & Ny 4
" .’ l' l'

.'
AN
®_r

5558

Q:’o.
o

okt s N RN RN

RILRTE - Jiilith

(38)

IJ‘.J -

T LA AU
'D v PO 4' l.‘l'-’l‘ ,., ‘1); LR

SR MR

TR T
Ve

Yt

EAAEA

LA
%

DA

2

i

]

a4

o

VI. THE KERNEL FORMATTING SYSTEM (KFS)

KFS is the fourth module in the CODASYL-DML language interface, and
is called by the Kernel Controller (KC) when it is necessary to display results to
the user. The transformation of data into the appropriate format is a very simple
task for the CODASYL-DML language interface. Unlike most other language
interfaces, no change in format is required. The form that the data is in when it
is retrieved from MBDS is the same form in which it is to be displayed to the
user. The task of KFS is reduced to simply printing out the results obtained
from the ABDL equivalents of the CODASYL-DML requests. But, there is one
exception, we do not display the database key values to the user in the result
buffer. In this chapter, we discuss how KC stores the data that the KFS
eventually displays, and how the KFS outputs this data.

A. THE KFS DATA STRUCTURE

KFS utilizes just one of the data structures defined in the language
interface. The kfs_net_info record, shown in Figure 31, contains information
needed by KFS to process the results. The first field in this record, response,
contains the result from MBDS which is loaded by KC just prior to calling the
KFS. The second field, curr pos, lets KFS know where it is in the response
buffer. This assists KFS in maintaining the correct orientation in the response
buffer. The last field, res len, indicates the length of the response buffer. This

value is used as a halting condition.

struct kfs net_info

{

char *response;
int curr_pos;
int res_len;

}

Figure 31. The kfs_net_info Data Structure.

62

______________ - et et e e et S N U I I T SRR I NS U U PRI SOp I GO UNP SP 3
D R e e T EN PPC SNCEAN RO AL .'_-n‘ R R o.‘o“}. " -‘I" SN Pl .-‘ A ALY

r
/

-
<&

R AR
Gy Mg B,
’Y,AQ"J

A7

B. THE FILING OF CODASYL-DML RESULTS
N KC stores the results obtained from a CODASYL-DML request by calling

.
.
N
)
-
»
.
“

the file_results procedure. This procedure first opens the result file for writing in

-
h]

only called by KC when the results of a request are to be displayed to the user.

! the response. The procedure reads in the name of the first attribute and stores it AN 3
‘ in a variable, in addition to storing it in the results file. The attribute value is ::*:V':
E then stored in the results file. A while loop then handles the storing of the ::H
' remaining attribute-value pairs into the results file. Before an attribute name is L r

N stored into the results file, a check is made to determine if this attribute matches If_;:‘_}::
\ the attribute name of the first attribute in the result. If the attribute names ‘\'.:
: match, we have completed storage of one result and are ready to store the next '~Z:'~Z:::'
l result. An end-of-line marker is inserted in the results file at this point before the ;‘;_:»; o
next attribute-value pair is stored. Otherwise, the attribute-value pair is stored $'
: without the end-of-line marker. This check is one of the reasons that the KFS "\
i task of formatting output is so easy for the CODASYL-DML language interface. L
. C. THE KFS PROCESS o
The KFS module is contained in the small procedure, dml_kfs. KFS is '"it:'
l : The get request causes this action to be taken. The only task that the KFS ;:\
S performs is to display to the screen the attribute-value pair found on the current {t}?
: line in the result buffer of the last FIND request. A loop prints out this line, a) :I:CSZ:E:

character at a time, depending of the type of the get request (i.e., GET or GET
item _list IN record_type). This means KFS retrieves either the entire record or

specific fields of the record from the result buffer.

e Dl DT

\:.

s

N

;“ " ﬁ.

9!

N - §:

. Y4
X AL

> 4

. QN

g Duds

V) .

] -

3 s

: N

Fu NGV

. U ".::“

. 63 ! ‘::l v

a ,|,‘_,n."-‘.1

: s

-, t

- Y

3 .. I R EA NIRRT S R L R T ~y v, P RS 3 » "W, WY W WA W joe L N g1 al & -l it

A S A SR T 2 AR L T T o A e A AT T I T

L,

WTitas 3] W [

A A A, &L

To T THMERR AT

pe vt tER YL

R T T e L S S A e e T e L

VII. CONCLUSION

In this thesis, we have presented the implementation of a CODASYL-
DML language interface. This is one of four language interfaces that the multi-
lingual database system supports. In other words, the multi-lingual database
system is able to execute transactions written in four well-known and important
data languages, namely, DL/I, SQL, CODASYL-DML, and Daplex. In our case,
CODASYL-DML transactions are executed by way of LIL, KMS, KC and KFS.
The work accomplished in this thesis is part of an ongoing research effort being
conducted at the Laboratory for Database Systems Research, Naval Postgraduate
School, Monterey, California.

The need to provide an alternative to the development of separate stand-
alone database systems for specific -data models and languages has been the
motivation for this research. In this regard, we have shown how a software
CODASYL-DML language interface may be constructed without the need of a
stand-alone CODASYL database management system. We have extended the
work of Wortherly [Ref. 3] by implementing the algorithms he presents for the
CODASYL-DML language interface. Additionally, we have provided a general
organizational description of the MLDS.

A major design goal has been to design a CODASYL-DML language
interface to MBDS without requiring changes to be made to MBDS or ABDL.
We have achieved this goal. All CODASYL-DML transactions are performed in
the CODASYL-DML interface. MBDS continues to receive and process
transactions written in the unaltered syntax of ABDL. Additionally, our
implementation does not require any changes to the syntax of CODASYL-DML.

Two facilities suggested by Wortherly [Ref. 3] that are not included in our
implementation are the looping facility, PERFORM-LOOP, and the IF-THEN
statement. These are not included, due to the lack of time to implement them.
Therefore, we chose to concentrate our implementation on the native

CODASYL-DML statements first. If more time will become available, we can

64

1 ‘yf.v.- ‘l' v\
»

......

T T —_— ARt AR s S\ 2O AT i i O o N g e el L L RRE SN S A St Rl T A

! implement the these facilities, since there is not logical difficulty in implementing :5-3':"{.':
them. Our level-by-level top_down approach to designing the interface has been _,:E
: a fine choice as well. This approach permits follow-on programmers to easily :,::::
i maintain and modify the code. iq
_ Once all four interfaces have been completely implemented, MLDS should -..-
t be tested as a complete system for the projected efficiency, effectiveness, and ;“
i . responsiveness to user needs. It is anticipated that this research and i- -:

development effort will ultimately result in a new era for database management

that will allow for increased productivity in database management.

e

SELSTE IS T T

APPENDIX A - THE LIL PROGRAM EPECIFICATIONS

module CODASYL/DML-INTERFACE

db-list : list; /* list of existing relational schemas *
head-db-list-ptr: ptr; /* ptr to head of the relational schema list */
current-ptr: ptr; /* ptr to the current db schema in the list */
follow-ptr: ptr; /* ptr to the previous db schema in the list */
db-id : string; /* string that identifies current db in use */

proc LANGUAGE-INTERFACE-LAYER();
/* This proc allows the user to interface with the system. */
/* Input and output: user CODASYL-DML requests */

stop : int; /* boolean flag */
answer: char; /* user answers to terminal prompts */

perform DML-INITY();

stop = ’false’;

while (not stop) do

/* allow user choice of several processing operations */
print ("Enter type of operation desired");

print (" (I) - load new database"};

print (" (p) - process existing database");

print (" (x) - return to the to operating system");
read (answer);

" case (answer) of
'P’: /* user desires to load a new database */
perform LOAD-NEW();

p’: /* user desires to process an existing database */
perform INITIALIZE_ CUR_TABLE();
perform PROCESS-OLD();

x’: [* user desires to exit to the operating system */
/* database list must be saved back to a file */
store-free-db-list (head-db-list, db-list);
stop = ’true’;
exit();
default: /* user did not select a valid choice from the menu */

print ("Error - invalid operation selected");
print ("Please pick again")’
end-case;
/* return to main menu */
end-while;
end-proc;

it

¢
N
X
A
|
R
c A
-

proc DML-INIT();

end-proc;

proc LOAD-NEW();

/* This proc accomplishes the following: */)

/* (1) determines if the new database name already exists, *
/* (2) adds a new header node to the list of schemas, */ e
/* (3) determines the user input mode (file/terminal), */ e

)
/* (4) reads the user input and forwards it to the parser, and */
/* (5) calls the routine that builds the template/descriptor files */

answer: int; /* user answer to terminal prompts */ —_—
more-input: int; /* boolean flag */ Qe
proceed: int; /* boolean flag */ R
stop : int; /* boolean flag */
db-list-ptr: ptr; /* pointer to the current database */ R
reg-str: str; /* single create in DML form */ o
ptr-abdl-list: ptr; /* ptr to a list of ABDL queries (nil for this proc)*/ _k._,\;
tfid, dfid: ptr; /* pointers to the template and descriptor files */ o
/* prompt user for name of new database */ R
print ("Enter name of database"); b
readstr (db-id); R
db-list-ptr = head-db-list-ptr; :'\'::}_:
stop = ’false’;) e
while (not stop) do Gl
/* determine if new database name already exists */ b

/* by traversing list of network db schemas */
if (db-list-ptr.db-id = existing db) then
print ("Error - db name already exists");
print ("Please reenter db name");
readstr (db-id);
db-list-ptr = head-db-list-ptr;
end-if; :
else
if (db-list-ptr + 1 = ’nil’) then
stop = 'true’;
else
/* increment to next database */
db-list-ptr = db-list-ptr + 1;
end-else;
end-while;

D)

/* continue - user input a valid 'new’ database name */

/* add new header node to the list of schemas and fill-in db name */
/* append new header node to db-list */

create-new-db(db-id);

/* the KMS takes the DML defines and builds a new list of relations */
/* for the new database. After all of the defines have been processed */
/* the template and descriptor files are constructed by traversing */
/* the new database definition (schema). */

more-input = ’true’;
while (more-input) do
/* determine user’s mode of input */
print ("Enter mode of input desired");
print (" (f) - read in a group of defines from a file");
print (" (x) - return to the main menu");
read (answer};

case (answer) of
'f: [* user input is from a file */
perform READ-TRANSACTION-FILE();
perform DBD-TO-KMS();
perform FREE-REQUESTS();
perform BUILD-DDL-FILES();
perform KERNEL-CONTROLLER();

'x”: [* exit back to LIL */

more-input = ’false’;

default: /* user did not select a valid choice from the menu */
print ("Error - invalid input mode selected");
print ("Please pick again");
end-case;
end-while;

end proc;

N e e S i N g 3 AR T i P2 N Mg o W A B Skt A i et s bl A e L oeris et o

proc PROCESS-OLD();
/* This proc accomplishes the following:
/* (1) determines if the database name already exists, */
/* (2) determines the user input mode (file/terminal), */
[* (3) reads the user input and forwards it to the parser */

*

answer: int; /* user answer to terminal prompts */

found: int; /* boolean flag to determine if db name is found */
more-input: int; /* boolean flag to return user to LIL */

proceed: int; /* boolean flag to return user to mode menu */

db-list-ptr: ptr; /* pointer to the current database */

reg-str: str; [* single query in DML form */

ptr-abdl-list: ptr; /* pointer to a list of queries in ABDL form */
tfid, dfid: ptr; /* pointers to the template and descriptor files */

/* prompt user for name of existing database */
print ("Enter name of database");

readstr (db-id);

db-list-ptr = head-db-list-ptr;

found = ’false’;
while (not found) do
/* determine if database name does exist */
/* by traversing list of network schemas */
if (db-id = existing db) then
found = ’true’;
end-if;
else
db-list-ptr = db-list-ptr + 1;
/* error condition causes end of list(’nil’) to be reached */
if (db-list-ptr = ’'nil’) then
print ("Error - db name does not exist");
print ("Please reenter valid db name");
readstr (db-id);
db-list-ptr = head-db-list-ptr;
end-if;

end-else;

end-while;

LA AT R
A LA
s e

)

"" "'l’.l‘,‘ din. LRI
(B ")

oy ey "
Ya'2"r"a)L PN

3

.
L)
[g

2
'l'f <

b a0,
AR s,

\‘_‘"l
R ST
- B

..
J
.

A

-
y
.
L

0

s v .
»

' e ¥

A AN
s "

)
.

'._.,'. o

5

......

- B
..\'l.'
- /* continue - user input a valid existing database name */ R
N /* determine user’s mode of input */ {::::f:-
= more-input = ’true’; .-i‘-_‘
_ while (more-input) do e
- print ("Enter mode of input desired"); l-'-f.:l'f
= print (" (f) - read in a group of DML requests from a file"); RN
o print (" (t) - read in a single DML request from the terminal"); RO
print (" (x) - return to the previous menu"); RS
read (answer); -y
case (answer) of
f: [* user input is from a file */ e
perform READ-TRANSACTION-FILE(); —
perform DMLREQS-TO-KMS(); Hoeas
“ perform FREE-REQUESTS(); <
- 't’: /* user input is from the terminal */ .,
o perform READ-TERMINAL(); A
perform DMLREQS-TO-KMS(); byt
y perform FREE-REQUESTS(); RN
- A AL
: 'x’: [* user wishes to return to LIL menu */
- more-input = ’false’;
default: /* user did not select a valid choice from the menu */
- print ("Error - invalid input mode selected");
- print ("Please pick again");
- end-case;
:;' end-while;
end-proc;
. proc READ-TRANSACTION-FILE();
- /* This routine opens a dbd/request file and reads the transactions */
o /* into the transaction list. If open file fails, loop until valid */
‘) /* file entered */
N while (not open file) do -
print ("Filename does not exist");
print ("Please reenter a valid filename"); .
g readstr (file);
=~ end-while;
2
.
. 70
-:.' 'J“-f- '*..'_."_\?..“.“ :3:4.‘-.'.\',’, _'.\’-’-.'..:.\-.._\ .“. -\ Lo ~r-‘ l". . . _,-":' ‘.‘- -1-' s ‘.f:{ 3’ f Y _“ ‘((:" L:‘ :;‘7\"*‘-"'1“‘: -’\‘.

' e
1]
‘.}". ~
proc READ-FILE(); NS y
/* This routine reads transactions from either a file or the */ N
/* terminal into the user’s request list structure so that * j;'{j:.'-::}
/* each request may be sent to the KERNEL-MAPPING-SYSTEM. */ 'AA-A-
. e
: end-proc; ,':::‘;'{:;-
. EAGATA
] ".\" -1’:
proc READ-TERMINAL();
/* This routine substitutes the STDIN filename for the read */
/* command so that input may be intercepted from the terminal */
end-proc;
N proc INITIALIZE-CUR-TABLE();
2 /* This proc initialize the CIT table before starting */
; /* to execute CODASYL-DML request(s). */
a end-proc; '
- proc DBD-TO-KMS(); -
i /* This routine sends the request list of database descriptions */ Pt
/* one by one to the KERNAL-MAPPING-SYSTEM */ ,-F[_i
)]
i
while (more-dbds) do iii:‘:
KERNAL-MAPPING-SYSTEM(); peae0e
end-while; -4
end-proc; ."::.-
T
‘.-_‘:‘::
.:Ei;.:,:
1 ~
71 5
Uf

..... *

V&
e, et LIRS A P AL AR R RS LA LTS U T T S LS ARSI S AL B S U5 LS 1Y R - I AN LT, A1 -i %
b YIRS) ' .‘-.'o.~'- 'p “-"n \‘.'-' ' ""n < r _" - 1‘\' LA ‘\ 1% \ ‘!. R LE :"t X LR S ._‘ :!fv [} ':?.;q .‘:_ VA """‘_*.’ il

,
¢
<
d
;

proc DMLREQS-TO-KMS();

/* This routine causes the DML requests to be listed to the screen. */
/* The selection menu is then displayed allowing any of the */
/* DML requests to be executed. */

perform LIST-DMLREQS();
proceed = ’true’;
while (proceed) do
print ("Pick the number or letter of the action desired");
print (" (num) - execute one of the preceding DML requests");
print (" (d) - redisplay the file of DML requests");
print (" (x) - return to the previous menu");
read (answer);

case (answer) of
‘num’ : [* execute one of the requests */
traverse query list to correct query;

perform KERNAL-MAPPING-SYSTEM();

'd’ : /* redisplay requests */
perform LIST-DMLREQS();

x’ : [* exit to mode menu */
proceed = ’false’;

default : /* user did not select a valid choice from the menu */
print (" Error - invalid option selected");
print (" Please pick again");
end-case;

end-while;

end-proc;

72

L L L TR Chi A LR R R A T N N W UV U v XV T Ty U YV vy

2 APPENDIX B - THE KMS PROGRAM SPECIFICATIONS

x [* Currency Indicator Table
/* References made in the following specification to CIT refer
/* to the Currency Indicator Table. This table consists of struc-
o /* tures that hold information identifying the current record of
N /* record_type, set_type, and run_unit (run_unit is the applica-
tion program being run). The following is the proposed struc-
/* ture for this table [Ref. 13].

»L
~
*

- g e e

/* struct CIT
/[{

. /* struct RUN_UNIT *run;
- /* struct rec_type node *next rec_type;
/* struct set_type node *next set type;
/* }
/*
/* struct RUN_UNIT
/*
. /* char rec_type[|;
- /* int dbkey;
B /* }
/*
/* For each record type in schema:
. /* struct rec_type node
rq
: /* char type| J;
. [* int dbkey;
/* struct rec_type node *next_rec_type;
! I
- /*
\: /
3 [* For each set type in schema:

~
*

struct set_type node

/* {

: /* boolean OWNER;
- /* char TYPE[|;
- /* int dbkey;

/* char member| |;

/* char owner| J; oS
% * int owner_dbkey; — iy
- /* struct set_type node *next_set_type; ;
= %{
G boolean: first_move = TRUE /* flag for MOVE operation */

boolean: first time /* general purpose flag */

5 boolean: sys flag value /* boolean value of system flags */
3 78
R
oot L R P N I I B I R L Ot G L GO L A R G Ly 12 (G O TR OTCL N LT S Rt L Y, ey '..o'

T S TR T— y
. St Y e e T AT e T R AT AT AT AT TATA TR TN TR TR AN N TS A EENTATA TAT NS TR TN R TS T

At

2
Chs

ptr: curr_temp rec /* ptr to last record added to move list */

ptr: curr_temp item /* ptr to next item node to be added to
record_template node of movelist */

list: suppression_list /* list of record types and/or set types */

RN

e e
()

e for which currency updates are suppressed */
ol list: select_list /* list of data items used for record section */
~ list: connect_list /* list of sets to which current of run
'~ unit is to be connected or disconnected */ ’
' list: tgt_list /* list of attribute names to be accessed */ L
o list: move_list /* list of record templates used with
R MOVE statement */
R list: curr_non_dup_list /* list of data items for which duplicates
are not allowed in current record_type */
int: level_number /* level of data item in record types */ .
R char: member_type /* string variable to hold a name */ T
N %}
: start statement
statement: dd] statement N
= | dml -
- dml: dml_statement _ =
| dml dml_statement _
; SN 23
re
. C A
- ddl_statement: schema_defn record list set_list r::ﬁf
-:‘i i ::\'.w.
L.

v o
.
. ol

schema defn: SCHEMA NAME IS schema_name SEMI_COLON
{
" locate db_id schema header node
a0 if (db names do not match)
print ("Error-given db_name doesn’t
match name in file")
perform yyerror()
return
end_if
initialize db_key /* starting value is 1 */

-1 } :

24)

..-
N
3
.

B
I'l

-

s record_list: record_desc

- set db_id node ndn_first_rec ptr

}

. 74

....... ., T VLML,
SRR TR

A T S R N R N O R AN R LAY
(R ¥ % < A8 o W RY YWTLT RN

| record list record desc
connect successive record nodes AT

}

’

RIS LrArOrt! ORI
'
'
.
.

record_desc: record data_item_list

{

curr_non_dup list = NULL

}

record: RECORD NAME IS

allocate and init a new
record node (NREC_NODE)

allocate curr_non_dup_list

db_id node ndn_num _rec++

= }
~ record_spec
)

record_spec: record_type

I if (record_type not defined yet)

. copy record_type to current .

- record node (NREC_NODE) o

N make this the current record node Pk
end _if

5 else

print ("Error-"record_type’ record
doubly defined")
perform yyerror()
return
end_else

SEMI_COLON duplicates_list

§ set_list: empty -1
o | set_desc \
L] iy

= set db_id node ndn_first_set ptr

o

v | set_list set_desc

~-
.,
.

DiadC i i aNE RN AR ath Al gt 4 Mol A A A S A e AR A M O R R A O S

{

connect successive set node(s)

: . }

——

N SIS
il

ﬁi‘d Ay

oy .
[

set_desc: set_desig owner_spec member_spec

4 '4‘,"45'
TR

it

set_desig: SET NAME IS

allocate and init a new set node (NSET_NODE)
: db_id node ndn_num _set++
|) |
N set_type
{
if (set_type not yet defined)
| copy set_type to current set node (nsn_name)
i establish curr_set_ptr
' end_if
else
print ("Error-’set_type’ set doubly defined in db")
perform yyerror()

' end else
; } AR
’ SEMI COLON ~{3ir)
- - el
’) RIS
” RNey
. owner_spec: OWNER IS aa SEMI COLON . -_—
2 ; .‘::'. R
", AN
t. g W
Y aa: record_type }\ L
, N
; if (record_type not defined) 4
o print ("Error-"record_type’ record does not exist") PN
E’_ﬁ perform yyerror() ’ ":\-:;,_
S return é::::éf;
- . a L]
% end if . A
i else ‘
g copy record_type to current set node (nsn_owner_name) - R "3‘::,.._
locate record type node - Ry
| nsn_owner(ptr) = record_type node ’«‘r ‘:‘
; end_else . A
. } ' [&
.’ | SYSTEM RN
- ‘\
t': ; \E h
. ‘,?:"?:”‘;‘
3 76 b

WAL
X
e

gt Bk

G ICAL P ,(J,:f .','.'é.'.'l. L GCECR TR A X -

t};::b;ﬁ:'::ﬁ::‘:hp:{”‘ / ':' " (L) l , s B, N0 , - " \ - h L O N '.l'{.l'u

member spec: MEMBER IS record_type

{

if (record_type not defined)
print ("Error-record_type’ record does not exist")
perform yyerror()
return

end_if

else
copy record_type to current set node (nsn_member_name)
locate record_type node
nsn_member(ptr) = record_type node

end_else

}

SEMI _COLON insert_clause retention_clause

2 T " ST A L B SRR VR e W W e e -

RS e

alloc set_select node

}
. set_select_clause SEMI COLON
.i 1
duplicates_list: empty
- | dupl SEMI_COLON
l dupl: duplicate_spec
| dupl duplicate_spec

duplicate_spec: DUPLICATES ARE NOT ALLOWED FOR item_spec

L)

R AL AR AR RN

g item_spec: item_name

{

» alloc new non_dup node

oo copy item_name to non_dup node

: add non_dup node to curr_non_dup list

- | item_spec COMMA item_name

[

. . RO

. alloc successive non_dup nodes —]

. copy successive item_names to non_dup nodes :j::i
add successive non_dup nodes to curr_non_dup list NavaY

} SRR

Lt
r

T
Ny

(&4

il Al | L PN
"f‘}
gq v‘n
;i_??f

RN R 9 320323 TR A T L 0 5 0 83 5 a0 A RS S MR A R S LS A TR AT AR R A L TR SRR L O TN CRY

A

(It el TN et o g g ML AL e nabiran v Siee ot e St S e sk sal Sed g Ag St bt v D D 0 R EPL ovh arh aie gl AR oAl Al s gv 2wl and g aedt ard g sng g

AW b

data_item_list: item_desc

{

connect new attr-node to record_node

e
.

| data_item_list item_desc

{

"~
4

i connect successive attr_node(s) to record node
~ }
S .
1
P.'..
" item_desc: level num
.
L allocate and init a new attr_node (NATTR_NODE)
F NATTR NODE nan level num = level number
rj?_f record_node nrn_num_attr++
x }
- data_item desc :'-'_.} g
{
k if (nan_level num = level number of current attribute node) L,; !
Fs connect new attr node to current attr node AL
. if (nan_level number > 1) il
2 connect nan_parent ptr of new node SRR
X end if AN
end if by
- else if (nan_level number > level number of current attr node) T
{ connect nan_child ptr of current attr node to new attr node
* connect nan_parent ptr of new attr node to current attr node
= end_else_if
else
o, locate last attr node with same level number
* set that node’s nan_next_attr ptr to the new attr node
N update current attr pointer
end_else

data_item_desc: item_name

5 {

copy item_name to attr_node (NATTR_NODE)

if (item_name not on curr_non_dup _list) "
- attr_node nan_dup flag =1 o
- end if

}
SEMI_COLON data_type PERIOD

’

level num: empty

{

level number =1 [* default value */

}
| INTEGER

{
level number = INTEGER

}

data_type: CHARACTER INTEGER
{
attr node nan lengthl = INTEGER
attr_node nan length2 = 0
attr_node nan_type = ’c’

}
| FIXED INTEGER

{
attr node nan lengthl = INTEGER

attr_node nan_length2 = 0
attr_node nan type =V’

}
| FIXED INTEGER

{
attr_node nan lengthl = INTEGER

}
INTEGER

{
attr_node nan length2 = INTEGER

attr_node nan_type = 'f’

}

insert_clause: INSERTION IS AUTOMATIC
{

set_node nsn_insert = ’'a’

}

[
e

PR A4
’l"

!
'

T, v

20
>]

3 Taging
(3 -
B

2‘"
A

»
T

79

. R R T B e P T T T A T P AT o La 4% a o T R T I AP TR T LR L LR e
s ‘[;LA'L—AA:H'AJ..»'.»,-:‘.,""(‘ e "" ."'.‘ 2y % g S et “" m ".'.' b PN R M\ 1 > ﬂ'“"' ;w ?'“'- " TN

| INSERTION IS MANUAL
{

set_node nsn_insert = 'm

}

’

retention_clause: RETENTION IS FIXED
{

set_node nsn_retent = ’f’

}
| RETENTION IS MANDATORY
{

set node nsn_retent = 'm’

}
| RETENTION IS OPTIONAL
{

set_node nsn_retent

}

9.9

o]

]

set_select clause: empty

{

set_node nsn_select = o

}
| SEMI_COLON SET SELECTION IS BY set_select_spec

]

set_select_spec: VALUE OF item_name IN record_type

if(valid_attr(item_name,record_type))
copy 'v’ to set_select node select_mode
copy item_name to set_select node item _name
copy record_type to set_select node recordl
copy BLANK to set_select node record2

end if

else
print("Error-’item_name’ not valid for 'record type™)
perform yyerror()
return

end_else

}
| STRUCTURAL item_name IN record_type

{

if(valid_attr(item name,record_type))

| g seath set Aok -seu e oo aneurn ot

-

v
>

Vo be

RIS SR Ny T At AN N i A A b Y M A A i W"l-*'-.'.'V'h"'i"-"""_"“ L Nl Yaf
. s . L N A . R AR AL, S S AT e - RO I, R

copy ’s’ to set_select node select_mode

copy item_name to set_select node item_name

copy record_type to set select node recordl
end if
else

print("Error-’item_name’ not valid for ’record_type’™)

perform yyerror()
return

}

EQ item_name IN record type

{

if(previous item name equals this item_name)

if(valid_attr(item_name,record type))

copy record type to set select node record2

end_if
else

print("Error-'item_name’ is not valid for 'record_type'™)

perform yyerror()
return

end if

else

print("Error-’item_name’ items do not match")

perform yyerror()
return
end_else

}
| APPLICATION
{
copy 'a’ to set_select node select mode
copy BLANK to recordl, record?, item name

}

k)

dml statement: set flag
| move
| get
| find
| store
| connect
| disconnect
| erase
| modify
| perform_loop
| if_then

b

81

LAY

T I D I R e S ST D TR G

>

) L's's"."

RN

| TSN

.'. .J
e

3

ll I' -f

.-.‘,
w .

&
A

] Y

'.‘,:/".r ™ TR

I R AR
o
2 rlels

A 7“ T{rj'

£ PL
4%

LOdLe

~ ¥
v
A

(e
#

AAL p T

'y

s e R o i v e v ow oem— -

..

RS AN

<1 e

i)

acimm S

o

«

et IERE S LS

i

.-', . (RIS

R AR A A M A S g o b S v A Al B e St S 2 o e 4

set_flag: MOVE f_value TO f name

b

f value: YES
{
sys_flag value = TRUE
}
| NO
{
sys_flag_value = FALSE

}

f name: EOF
{
eof = sys flag value

}
| NOTFOUND

{)
notfound = sys flag_value
} -
/* The MOVE statement is a COBOL assignment statement that assigns a */

/* value to a particular data field in a record template. We use a */
/* list structure for this purpose. */

move: MOVE item_value
{
if (first_move = TRUE)
alloc and init move_list
first_move-= FALSE
end_if
create new data_item_node
copy ’item_value’ to value field in data_item node
establish curr_temp_item pointer

}

TO item_name

{

copy ’item_name’ to name field in data_item_node

82

TR Pt
.

BNy o Sihite Rt g

S A L

IN record type
{
if (item_name not in record_type for current schema)
perform error(2)
return
end if
else if (’record type’ node on move_list)
connect curr_temp_item to record_template node
end _else if
else
create new record template node
copy ’record_type’ to name field of record_template node
connect curr_temp_item to record_template node
add record template node to move_list
update curr_temp rec pointer
end else

)

/* The GET statement takes the entire current record of the run unit */
/* or specified data fields of the current record of the run unit */
/* and returns the values to the user. */

get: GET
{
alloc and init new ’'get’ node
select_list = NULL /* reset select_list */

}

mm

)

mm: item_list IN record_type
{
if (’record_type’ is not equal to CIT.RUN_UNIT.type)
perform error(3)
return
end _if
else
get_type = ITEMS in get node
copy record_type to get node
for (each data_item on item_list)
if (*data_item’ is not defined for record_type)
perform error(2)
return
end_if
else /* create pseudo tgt_list */

83

. o . J. “} - :'\'J"“ ‘..\ >N c-:- Y ”‘...‘- . '...-,‘-""- 3 '}-').,‘ -.'-._-.,p}'p* .\.}'\ .'.L" \'.‘ AR Y ‘c\ Y A

copy data_item to get node
end else
N end for
X end _else

}

| record type)

if ('record_type’ is not equal to CIT.RUN_UNIT .type)
perform error(3)
return
end _if
else
get type = RETURN_ALL in get node
copy 'record_type’ to get node
end_else

}

| empty

P el e A

; get_type = RETURN_ALL in get node
' copy CIT.RUN_UNIT.type to get node
A }

/* The FIND statements establish the current of run unit, record type, */
/* and set type. ¥/

find: FIND record_selection_expr curr_suppression

/* The FIND ANY means: find any record of type record type whose */
/* values for iteml through itemn match those in that record’s */

/* template in the user work area. */
: record_selection_expr: ANY record_type ‘.1:.'_13.1'-
; { o b
g if ('record_type’ record_template node is not Eﬁ
- . on move_list) N
’ perform error(1) h}a\
s return t“:
. else N
' alloc and init new ’find’ node Ty
i find_type = ANY in find node . —g.ﬁ??
' copy record_type to find node -.1.2-‘

alloc and init new abdl str

alloc and init new tgt_list

2 /* begin forming a RETRIEVE request */

copy "[RETRIEVE ((TEMPLATE = ’'record_type’)"

o
Yol

84

b popet
to abdl str o
end if - ' 3
select_list = NULL i
[

USING item list IN record_type _.-_f_-_-.j!
.‘_x":-
if (’record_type’ is same as previous record _type’) :::\:"';:f
if (any data item on select list is not ﬁjﬂl
defined for record _type) L
perform error(2) b
return =
end_if
else BN
create tgt_list item for all attributes RO

~r-
ll

of ’record_type’ record
for (each data item on select_list)
if ("data_item’ not on move_list)
perform error(1)

e,

rL
.

LARSEH y te s

., .
s

Y v @ ,"'
RS
AR

3 "l\'l _

return -

end if E\:‘ﬁ_‘-ﬂ
else st

get 'item_value’ from move_list :-::.';::I—:

concat "and ('data_item’ = ’item_value’)" '.E:::::::::

to abdl str LY
end else L.\J
end_for s
concat ")(’tgt_list’) by DBKEY]" to abdl str SO
connect abdl_str to find node G
end_else L
end_if AR
else ::;'\-L:}_f»:
perform error(6) -‘;‘\‘:::::“
return BN
end_else e

}
/* The FIND CURRENT means: Make the current of set _type the current */
/* record of the run unit.

| CURRENT record_type WITHIN set_type
{ g,
if (CIT.set_type.TYPE is not equal to 'record_type’) -
perform error(7)
return
end _if
else
/* current of run_unit becomes current of ’set_type’ */

»

4

*y 2ty %y
PPN .

’
-

P

) o, .
BEEEE

LIy

, '. * '.. '.. ’. ’-

y g

[l)
A

alloc and init new ’find’ node

find_type = CURRENT in find node

copy record_type to find node

copy set_type to find node

copy CIT.set_type.dbkey to find node
end_else

}

/* The FIND DUPLICATE means: Find the first record in the current set*/
/* type occurrence whose value for iteml through itemn matches those */

/* for the same items in the current set_type occurrence, not the TWA */

/* record template. This implementation assumes the records being re- */

/* quested are already in a buffer. */

| DUPLICATE WITHIN set_type
{
alloc and init new ’find’ node
find_type = DUPLICATE in find node
copy set_type to find node
select_list = NULL /* reset select_list */

USING item list IN record_type
{
if ((record_type is not CIT.set_type.TYPE) or
(record_type is not CIT.set_type.member))
perform error(8)
return
end _if
else
copy record_type to find node
for (each data_item on select_list)
if (any data_item on select_list is not
defined for record_type)
perform error(2)
return
end if
else /* create a pseudo tgt_list */
copy data_item to find node
end_else
end for - .
end_else -

/* This statement means: Find the FIRST, LAST, NEXT, or PRIOR record_*/
/* type record within the current set_type occurrence. The Il token */
/* takes the value FIRST, LAST, NEXT, or PRIOR. */

| 1l record_type WITHIN set_type

A%y
S
\:‘V‘
f“:l'

T L L A L AN 10 % L% PRTAT L el el w -~ LY

W AT S Nt P e N IS M DAL T AR WG i A 3T Myt ‘h??’“

GO AS

Ay 4.' P * LAV

> .D

el

{

if ('record_type’ is not a valid member type
for set_type’)
perform error(5)
return
end_if
else
copy record_type to find node
copy set_type to find node

/* RETRIEVE all member records of set occurrence */

alloc and init new abdl str

alloc and init new tgt_list

copy "[RETRIEVE (
(TEMPLATE = CIT.set_type.member) and
(MEMBER.set_type = CIT.set_type.owner dbkey))"
to abdl str

create tgt list for all attributes of member record

concat "('tgt_list’) by DBKEY]" to abdl_str

connect abdl str to find node

end_else

}

/* The FIND OWNER means: Find the owner of the current set_type occurrence */

| OWNER WITHIN set_type
{
alloc and init ’find’ node
find_type = OWNER in find node
copy set_type to find node
alloc and init new abdl_str
alloc and init new tgt_list

/* form RETRIEVE request */

copy "[RETRIEVE ((TEMPLATE = CIT.set_type.owner)
and (DBKEY = CIT.set_type.owner_dbkey))"

to abdl _str
create tgt_list for all attributes of owner record q

concat "(’tgt_list’)]" to abdl str -

4‘\-‘
connect abdl_str to find node .Q:-‘: ‘
(S

"

3

/* This statement means: Find the first record_type record within the */ A
/* current set_type occurrence whose values for iteml through itemn */ -
/* match the values found in the record_type template in the UWA, not */ ﬁ,g
]
87 f‘»'“":

Faii

_Hvi*

D R R R W]

;~‘~f

/* the values in the current of set_type as in the FIND DUPLICATE. */

GO ICIAS AR LEIARES

| record type WITHIN set_type CURRENT

if ('record_type’ not a member type of ’set_type’)
perform error(5)
return

end_if

else
alloc and init new ’find’ node
find type = WITHIN in find _node
copy record_type to find node
copy set_type to find node
alloc and init new abdl_str
alloc and init new tgt_list

/* begin forming RETRIEVE request */

copy "[RETRIEVE ((TEMPLATE = ’record_type’) and
(MEMBER.set_type = CIT.set_type.owner_dbkey)"

to abdl_str
create tgt_list for all attributes of 'record_type’
record
select_list = NULL /* reset select_list */
end_else

USING item_list IN record_type

if (any data_item on select_list is not defined
for 'record_type’)
perform error(2)
return
end if
else if (any data_item on select_list
not on move_list)
perform error(1)
return
end_else_if
else
for (each data_item on select_list)
get 'item_value’ from move_list
concat "and (’data_item’ = ’item_value’)
to abdl str
- end_for
concat ")(’tgt_list’) by DBKEY]" to abdl str
connect abdl_str to find node

88

e PR AR T . AT R TR TR TS TR TR VF Yo "R PV L .
R ¥} DPW S TN LR I W I -
AR LRAALEUARSY e S e T TCN RO o LR NN O

s Ot B Ry P R A e

Aadite R Ancntt. e e vy it Sy by e Wi, el Sl il ol Sl S U A T A e el Al Mg A Sudh segt) SR AR T

‘¥
!O
- G
g

RTI
'y 'r,'i

._.,..
i

of
s
v »
b

v %

»
o
+ “f'

.
»
N B
. .
-
-
e
N -
X .
) .
v o
4 PN

|
X2

oy 2
A

ol

B ARSI RN TR AN N

R L. T v e
S e]

L BRSNS AOICNACMAND S

RN

TR

Ty — -
. s 8 « s ®
DANOAANA 1AM

P

b) A

o o | o -_3.:-.-_'. "'\""\"'."\"";'.' 0 'u’v‘ I .P Ay

end_else

}

Il: FIRST
{

alloc and init new ’find’ node
find_type = FIRST in find node

}
LAST

alloc and init new ’find’ node
find type = LAST in find node

}
NEXT

alloc and init new ’find’ node
find type = NEXT in find node

}
PRIOR

alloc and init new ’find’ node
find type = PRIOR in find node

}

curr_suppression: LSQUARE supp_expr RSQUARE
| empty

]

supp_expr: SUPPRESS UPDATE
| UPDATE type_spec

type_spec: set_type
add set_type to suppression_list
| type_spec COMMA set_type

add successive set_types to suppression_list

}

89

oy

L8

3
»

xS

sy o

@ T e TR M te Al g Sl dinb cul ALl o

/* This statement means: Delete the current record of the run unit, */
/* and all of its descendents regardless of whether they are owners of */
/* other sets. */

E erase: ERASE ALL record type

{

5 if ('record_type’ is not CIT.RUN_UNIT.type)

perform error(3)

return
end if
R else
alloc and init new ’erase’ node
erase_type = ALL in erase node
for (each set_type in schema)

if (CIT.set_type.owner_dbkey = CIT.RUN_UNIT.dbkey)

s member_type = CIT.set_type.member :
R /* form RETRIEVE to get member records */ RO
2 alloc and init new abdl str
copy"[RETRIEVE(MEMBER.set_type = CIT.RUN_UNIT.dbkey) R
N (DBKEY) by DBKEY]" to abdl_str R
s connect abdl str to erase node Tl
AN
. /* erase member records */
alloc and init new abdl str -
copy"[DELETE((TEMPLATE = 'member type’) and : Eﬁ*
\ (DBKEY = ***))]" to abdl_str PN
L connect abdl str to erase node N
o A
e /* delete all descendants of member records */ ,
5 perform erase_all(member_type,erase node) ;'.',- -
- end_if ‘__..:
" end for P
/* delete current of RUN_UNIT */
alloc and init new abdl_str ;:'-" &
copy "[DELETE((TEMPLATE = ’record_type’) and 'tf‘? Rl
(DBKEY = CIT.RUN_UNIT.dbkey))[" to abdl_str A
[v

connect abdl_str to erase node Ykl
end_else a
RN

} _

AR

y iy
-‘ 90 [y
L)

P L L PEX T A Ted LI S B - “; - AR RN I -, r wr . ‘ - 4 - i - - g e R e . v
Llnlndetnialafalelade g s lodan o ia i s T4 Tu TAD Lo T ta nf el Ty ST A T T e P L L

hVE N I

/* This statement means: Delete the current record of the run unit if */
/* and only if, it is not the owner of a non-empty set. */

| ERASE record_type

{
if ("record_type’ is not CIT.RUN_UNIT .type)

perform error(3)
return

end if

else

AR - AAANARAS B U,

/* erase one record - current of RUN_UNIT */
alloc and init new ’erase’ node
erase_type = NULL in erase node

/* form RETRIEVE to see if 'record type is */
/* owner of non_empty set
alloc and init new abd! str
copy "[RETREIVE(" to abdl str
first_time = TRUE
for (each set_type in schema)
if (’record_type’ is owner type of set_type)
if (first_time)
concat "(MEMBER.set_type = CIT.RUN_UNIT .dbkey)"
to abdl_str
first_time = FALSE
end if
else
concat "or (MEMBER.set_type = CIT.RUN_UNIT.dbkey)"
to abdl str
end_else
end_if
end for
concat ")(DBKEY) by DBKEY]" to abdl str
connect abdl_str to erase node

/* for DELETE request */
alloc and init new abdl str
copy "[DELETE ((TEMPLATE = CIT.RUN_UNIT.type) and
(DBKEY = CIT.RUN_UNIT.dbkey))|" to abdl _str
connect abdl_str to erase node
end_else

|}

.....

N

o

) /* The STORE means: Create a new record in the database using values */
N /* supplied by the user via MOVE statements, for the data items of */
E> [* the specified record_type. The is connected to all sets in which */

/* INSERTION IS AUTOMATIC. The appropriate occurrence of the sets */

/* must be selected before the new record can be connected. This is *

" /* done based on the SET SELECTION clause specified in the database */

/* schema definition for the sets in question. ¥/

store: STORE record_type
{
if ("record_ype’ record template node is not on move list)
perform error(1)
return
end_if
alloc and init new ’store’ node
alloc and init new abdl str
= copy "[RETRIEVE (" to abdl_str
= first time = TRUE
= for (each data_item in schema for 'record type’)
' if (nan_dup flag is set) i
if (data_item in move_list 'record_type’ record template)

” get data_item value from move list
o if (first_time = TRUE)
concat"((TEMPLATE = ’record_type’) and
. ('data_item’ = 'item value’))" to abdl str
’ first_time = FALSE
cend if
o else

concat "or ((TEMPLATE = ’record_type’) and
(’data_item’ = 'item_value’))" to abdl str

:., end _else

:Z: end_if

- end if
end_for

concat")(DBKEY) by DBKEY]" to abdl str
connect retrieve request to store node
alloc and init new abdl_str

s /* Form an INSERT request */
copy"[INSERT (< TEMPLATE, record_type’>,<DBKEY,***>" to abdl str
for (each 'data_item’ in schema for 'record_type’)

AL

E; if ('data_item’ not on move_list for 'record_type’)
perform error(4)

> return

end _if

. else
2 92
3

'J

AT A SO TR AR N VAL STV LT e IR QRN R AL R O C TN VL REN AN SRS

'\ o..a "

a3
)

DA I A N i i e A T R A DO A A CRAt Ra e A Ae gl At S0 S $ R . S P i de A AR o

get data_item value from move_list : Z?"ff'_:.\.:

concat",<’item_name’,’'item_value’>" to abdl str A
. end_else DR
. end for AR
E-:"-f‘"-:
: e
2 /* Now determine which set occurrences the new record belongs to */ Ir‘:;:-_»,'f'
1 /* and add proper attribute-value pairs to the INSERT abdl str to */ i.-f&!
: /* indicate set membership. The following FOR loop and CASE state-*/ E e
, /* ment fill the INSERT abdl_str with the proper pairs. */ s
y for (each set_type in schema in which ’record type’ is a member) SR
{ case (set selection mode) of

/* set selection is by applicaton */
a: perform by _application(INSERT abdl_str)

/* set selection is by value */
v: perform by _value(INSERT abdl_str)

/* set selection is by structural */
s: perform by_structural(INSERT abdl_str)

/* no set selection criteria was given */
o: perform by_default(INSERT abdl_str)

end case

end for
concat "|" to INSERT abdl_str
connect INSERT abdl_str to store node
alloc and init suppression_list

. }

5 curr_suppression

- {

connect suppression_list to store node

}

*

: /* The MODIFY means: Modify the entire current record of the run unit */
/* or the specified data items in that record. The new values are */
/* supplied by the user via the UWA. */

- . modify: MODIFY

{ :
select_list = NULL /* reset select_list */

g }

tLd

o8

Y QLM

(i) el
b7

AR A AN R A0 e A e B A B A e A S D en i-ahe i M 2t hah e B hie -3 e 5 A Sinsben -l Mbiady

item_list IN record _type

if ('record_type’ is not current of run unit)
perform error(3)
return ’
end if
if (’record_type’ record_template node is not on move _list)
perform error(1)
return
end if
if (any data item on select_list not defined for 'record_type’)
perform error(2)
return
end_if
else
alloc and init new ’modify’ node
locate record_template node on move_list for ’record type’
for (each data_item on select_list)
alloc and init new abdl str
/* form UPDATE request */
copy "[UPDATE ((TEMPLATE = ’record_type’) and
(DBKEY = CIT.RUN_UNIT.dbkey))" to abdl str
get ’item_value’ from move_list
concat "(’data_item’ = ’item_value’)]" to abdl str
connect abdl str to 'modify’ node
end for
end_else

}
| MODIFY record_type
{
select_list = NULL /* reset select list */
if (’record_type’ not current of run unit)
perform error(3)
return
end_if
if ("record_type’ record_template node is not on move_list)
perform error(1)
return
end_if
else
alloc and init new ’modify’ node
for (each data_item in record_type)
if (data_item not on move_list for 'record_type’)
perform yyerror(4)
return
end_if

T T Y T T S v e

T B e 2 B
1 T

BT R I
. RO
> ". * x
'
. > a_ v_'l‘,v _'1_

]
”a

L

wiaial

v e e
’lt"

else
alloc and init new abdl str

/* form an UPDATE request */
copy "| UCPDATE ((TEMPLATE = ’record_type’) and
(DBKEY = CIT.RUN_UNIT.dbkey)) to abdl_str
get new ’item_value’ from move_list
concat "(’data_item’ = ’item_value’)]" to abdl str
connect abdl str to 'modify’ node
end_else
end for
end else

}

)

/* The CONNECT means: Connect the current record of the run unit to the */
/* current occurrence of the specified set type. There may be several */
/* sets listed in the statement. */

connect: CONNECT record_type TO

if ('record_type’ is not current of run unit)
perform error(3)
return

end if

else
alloc and init connect_list

end_else '

}

set_type list

alloc and init ’connect’ node
for (each ’set_type’ on connect_list)
if (’record_type’ is not a member type record for ’set_type’)
or (INSERTION is not manual)
perform error(5)
return
end if
else
alloc and init new abdl_str
copy "[UPDATE ((TEMPLATE = ’record_type’) and
(DBKEY = CIT.RUN_UNIT .dbkey))
(MEMBER.set_type = CIT.set_type.owner_dbkey)]"
to abdl_str
connect new abdl_str to ’connect’ node
end_else

95

S5 ol R

AR o S AP PUMEAILE G AR

TN

R

B L

FOR_THE MULTI-LINGUAL DATABASE SVSTEH(U

-MD-A164 996 THE INPLEHENTRTION OF A NETHORK CODRSVL-DHL INTERFRCE 2/2
4 POSTGRADUATE SCHOOL MONTEREY CR B EMDI 19 DEC 85

UNCLASSIFIED

‘ N

Chat It)
DA A AN

P PR

V'i“«"k"c"l,\ IS e e e Suie A S et Al Sl e RAACASIA A A i g R
3 St B e - . LIRE DRI W s

Nt Loy a e At e

Hﬂls
EEEE
EEEE
FE

rreEr

|

F

S
B
5

MICROCOPY RESOLUTION TEST CHART
FATIONAI RURTSH OF CTANDARNG-1063-A

-
2
' §

il SRS

.
. .
.
Y
s .
. e
.
i X
'

>
Y
£

S

[t
!
- .-
"]
o v -

A

P
.
% e Y % e

v

PR, B
%, -.;'.:’l.

A
o
: end_for e
> connect_list = NULL /* reset connect_list */ NS
: } S
. . Y ='

’]
’~'q"‘.i"

set_type_list: set_type

add ’set_type’ to connect_list

. }
| set_type list COMMA set_type

- add successive ’set_type’(s) to connect_list
}
/* The DISCONNECT means: Disconnect the current record of the run unit */
: /* from the set type occurrence that contains the record. */
- disconnect: DISCONNECT record_type FROM
if ('record_type’ record is not current record of run unit)
- perform error(3) R
return r’—‘-;
- end _if ' -
: else 5__;_%
+ alloc and init new connect_list ;::"
- end else ::'-,'tﬁﬁ
- } _— ~.-(
set_type_list .d,-. S
'.‘r}:;
. . sy
alloc and init ’disconnect’ node ;";""
for (each set_type on connect_list) :ff:ﬁ
L]

if ("record_type’ is not a member type record for ’set_type’) .

o perform error(5)
. return
- end if
:f else .
* alloc and init new abdl str

copy "[UPDATE ((TEMPLATE = 'record_type’) and
(DBKEY = CIT.RUN_UNIT.dbkey)) -

LTS

- (MEMBER.set_type = NULL)]" ,
" to abdl_str .
2 connect abdl_str to 'disconnect’ node

end_else

end_for N el

.....
> -t

‘l.l.%._l_'_

O NN
NSNS

A,

Ly

!:l_ :.:JJ.D.!

-SSR

B o e N Y P N L A A G AN A T T LA (o L L

connect list = NULL /* reset connect_list */

}

perform_loop: PERFORM UNTIL bb EQ cc
| END_PERFORM

3

bb: EOF
| NOTFOUND

)

ce: YES
| NO

1

item list: item name

{

put item_name on select_lis-t

}

| item_list COMMA item_name

{

put successive itern names on select_list

}

schema name: IDENTIFIER

)

record_type: IDENTIFIER

‘

set_type: IDENTIFIER

Y

item_name: IDENTIFIER

'

o7

A O PO AAE A S AAT L ot b o ol A skt o

P et v
N R A
PR e , et
PR ’ RIS
2 Y I . - A
PPN [ARCNII LI

s
PCMND
» "..’_"

1|

]
.AD' l. l.
A A

-I
v’

rr,

L4

R
SIS

N
X s

F i
e
[3

"
s,

(R f
—’_t"
O] 4

Ay

N
[
sl

" A

A O
)
KA -'A'.'-"

g N
R

0
)
P

P R

RS A N T g 2l K e PR AT SR S ST S =R

item_value: IDENTIFIER
| INTEGER

proc error(err_code)
/* This procedure prints error messages, causes data structures to */
/* be de-allocated, and causes proc yyerror to be executed. ¥/

case err_code of
1: print("Error - must initialize 'record type’ record_template")

2: print("Error - 'data_item’ not defined in ’record type’")

3: print("Error - 'record type’ is not current record of run unit")
4: print("Error - attempting to modify or store record without
giving value of 'data-item’")
5: print("Error - 'record_type’ record does not belong to 'set_type'")
6: print("Error - record_types specified are not the same")
7: print("Error - 'record_type’ is not current of 'set_type™)
8: print("Error - ’record type’ must be a member record of 'set_type’")
end_case
perform cleanup() /* free data structures */
perform yyerror()
return
end_error;

proc by _application(abdl str)

if (set_node nsn_insert =’a’) /* insertion mode is automatic */
concat",<MEMBER.set_type,CIT.set_type.owner_dbkey>" to abdl str
end_if
else /* insertion mode is manual */
concat",<MEMBER.set_type, NULL>" to INSERT abdl_str
end_else

end_by_application;

all s L&

..........

FE AL AW P

,.
o d

a"
o

asar e
o' e
B
»

NN
XN

RAS 75
3 ..'. - M

Ny

hl
N e
¥ 'a

LY

-

'-
.
‘o

3

Sad i e ME D AR AAEL R dt RS SRSt S I A St J"'"‘.'_ Ll S i oA AR dB - et S sl D M AL A SN e oAl SR e b et e gen amh g T -

L
AT
proc by value(abdl_str) E".\.:ﬁ.‘:
. : ;-,i«."s’
. locate data_item node in schema for set_select node item_name ;;'-«"S"
Y in set_select node recordl tata
if (nan_dup flag set) L.
:f get owner record type of set_type from schema o "‘_:'.:‘{1
: if (owner record type node not on move_list) or b, ._:?:xﬁ
. (data_item not on move _list) ' .\f*q“
perform error(4) Eﬁﬁ
return b - &
end_if :jf:?;:'_.
else tj'::'}fj
: if (set node nsn_insert = 'a’) /* automatic insertion */ l::I:f:::'_:j
N get data_item value from move_list RICHY
i copy"[RETRIEVE((TEMPLATE = owner_record_type) and L.. LA
o (item_name = ’item_value’)) (DBKEY)|" to abdl str el
- connect new retrieve request to store node RS
. concat",<MEMBER.set_type,***>" to INSERT abd! str RN
end_if R
else /* manual insertion */
. concat",<MEMBER.set_type,NULL>" to INSERT abdl str
. end else
2 end else

end_'l?_/ * nan_dup flag */

end by value;

proc by _structural(abdi_str)

locate data_item nose in schema for set_select node item_name
in set_select node recordl record_type
if (nan_dup flag set)
get recordl name from set_select node for set_type
if ('recordl’ record template node not on move_list) or
(data_item not on move_list)
perform error(4)
return
end_if
A else
if (set_node nsn_insert = 'a’) /* automatic insertion */
get data_item value from move_list
get record2 name from set_select node for set_type
copy"[RETRIEVE ((TEMPLATE = record2 name) and
(item_name = item_value)) (DBKEY)" to abdl_str

7

\ 99

I 57 SRS SRS G SO, ARG SN TR SRS P U R QAN VRGN S K HEREI SRS L TN GRS (B G S IRTA A 35

- W

connect new retrieve request to store node
concat",< MEMBER.set_type,***>" to INSERT abdl_str
end _if
else /* manual insertion */
concat",<MEMBER.set_type,NULL>" to INSERT abdl_str

end_else - .“;é:ﬁ

end_else v :f..‘i
end if /* nan_dup flag */ ' ' @5

end by structural; LA

proc by _default(abdl str)

print("Warning - Attempting to store a record with no
particular set selection given. Will assume 'BY
APPLICATION’")
if (set_node nsn_insert = ’a’) /* automatic insertion */
concat",<MEMBER.set_type,CIT.set_type.owner_dbkey>"
to INSERT abdl str -
end if
else /* manual insertion */
concat",<MEMBER.set_type,NULL>" to INSERT abdl str
end_else

end_by default;

proc erase_all(record type,erase node)
string member _type;

for (each set_type in schema)
if ('record_type’ is owner type of set_type)
member_type = member type of set_type
- /* for RETRIEVE to get members of ’set_type’ */
alloc and init new abdl _str
copy "|[RETRIEVE(MEMBER set_type = ***)(DBKEY) by DBKEY]"
to abdl str .
connect abdl_str to erase node
/* delete member records */
alloc and init new abdl_str
copy "|[DELETE((TEMPLATE = 'member_type’) and (DBKEY = ***))|"
to abdl_str

100

e X -) . . . Y RSN J S d : q B2, A > o B Pl

\..-.\-.A..-..r- X . . by u.*..,JJﬂr i h%mw» MM! 4P 5 \
;. .-..J.s.. A -... RChR ...A,.. C . . o)\ 0 ...,-$ - : <= &Lﬁ\-ﬁ N -
AN N ; e PSS T . oEUNLY : B LAt N Koo KL~ - faky 5 %y Sl LEALH

".p‘-' I.' AT A

*»

-
A

A

101

——

/* erase descendants of member records */

erase_all(member_type,erase node)

end if

e

connect abdl str to erase node

return(erase node)

end for
end erase all

ER IR ARA AR ST N e RIS) W, L e e Bttt el e P e ..-...‘5

3

Y Onory LR

ER CERMNOERY SR Pnay

DLy EERREY

L
.
'
.

anny

»

R

T "

[

L

F D

P CONCEL PO N

APPENDIX C - THE KC PROGRAM SPECIFICATIONS

module KERNEL_CONTROLLER()

/* This procedure accomplishes the following: */
/* Depending on the dmi_operation the corresponding */
/* procedure is called. */

{
case (dmi_operation)
CreateDB:
perform LOAD _TABLES();
Disconnect:
Connect
Modfltem :
ModfRec :
perform REQUEST _HANDLER();
FindReq:
perform FIND REQUESTS HANDLER();
StorReq:)
perform STORE REQUESTS HANDLER();
EraReq:
perform ERASE REQUESTS HANDLER();
GetReq:
perform DML_KFS§();
MoveReq:

default:
/* This handles any errors */
end case

end_module
LOAD_TABLES()

/* This procedure accomplishes the following:
/* (1) Calls dbl_template which is already
/* defined in the Test Interface. It loads the
/* template file.

*

/* (2) Calls dbl_dir_tbls() also defined in
/* the Test Interface. It loads the descriptor
/* files.

perform DBL_TEMPLATE();

102

R AR R O TSl e LR P TR QA CORRATY /6 AT AT, 355 o L 0 G AT A AT B, AT AT A R RGN Y

<~ 4% :'.: . 5,
'v"'- "", '.' :_..
L A A

. %
‘
.
P *

NATNIAD
N
R A A
f‘;.“;."-.“
D

A

tp:ty e

4 . .
[i

,l.};{ﬁ. :

v"‘.‘
Rt 5

Untsafl et SAACA AN S S B S A AR ' A4 S haCh AL S S LA A S M ancaicaag. B I Sl e i e ~a i i e g oy

P Sl "R T Sl e b i ML e b g o bl) Lt e Y4
PR

perform DBL_DIR_TBLS();

}
end proc

REQUEST HANDLER()

T T T emmm— e ¥

/* This procedure accomplishes the following:
/* (1) Calls dml_execute untill all CODASYL-DML
i /* queries associated with abdl req data

/* structures are processed.
*

.’

/* (2) If query is Connect or Disconnect, then
/* appropriate action is taken to update the CIT
/* table.
{
while (! end of request)

perform DML_EXECUTE(abdl_str.file ptr);
if (operation == Connect)

o v .. s v s

i while (connect_list != NULL)
.: {

current_set_type = run_unit_record_name
current_set_dbkey = run_unit_dbkey

.‘ }
}
y if (operation == Disconnect)

while (connect_list != NULL)

{

,. current_set type ="’

- current_set_dbkey = 0

- }

: }

3 }

4 end proc

FIND_REQUESTS_HANDLER()

- /* This procedure accomplishes the following:
! /* Depending on the find_operation takes

/* appropriate action, then set correct
/* location in the result buffer.
{
case (find_operation)
AnyFin:
perform DML_EXECUTE(abdl_str file_ptr)

A TAERAA s

ot

103

TaTa T nYEERY.

'_..'4'. Ao 28 A R b A bva b J AN ST e i K LR BN v A O Aol el A A S At el S A A it ~pta iy i A ialh S Sl

R
PRI

if (dont update != TRUE)
perform Find_update()
FirstFin:
perform DML _EXECUTE(abdl _str,file_ptr)
locate first record in the result buffer
create temporary string to hold this record
current_buff val = dbkey value of this record
increment buffer location
if (dont update = TRUE)
perform Find_update()
LastFin:
perform DML EXECUTE(abdl str file_ptr)
, locate the last record in the result buffer
I create temporary string to hold this record
: current_buff val = dbkey value of this record
if (dont update != TRUE)
perform Find update()
NextFin:
| first find correct find_node corresponding
NextFin request
locate correct result file
free temporary string
g reload temporary string with the next record value
. current_buff val = dbkey value of this record
R increment buffer location
if (dont update != TRUE)
perform Find_update()

e R A] N W G W/

DR S g% 0L LY

.. PriorFin:

i first find correct find_node corresponding
-. PriorFin request

- locate correct result file

open this file to read again
locate prior record of the current record

ST e e

free temporary string

reload temporary string with this record value
current_buff val = dbkey value of this record
. decrement buffer location
. if (dont update '= TRUE)
’ perform Find_update()
" OwnerF'in: - X
- perform DML_EXECUTE(abdl_str,file ptr) -
< create temporary string to hold the result .
X if (dont update != TRUE) T Ko
E perform Find_update() n
N WithinFin: hm
> perform DML_EXECUTE(abdl_str,file_ptr) _?::;
X B
- 104 S8
a -
e e e A AR SR IS U S G T N A 1, TG Y0 (0, X O O TR G v (T M ST D R R 3 A A AR 3 20 il,‘.'.' ¥

create temporary string to hold the first record
current_buff val = dbkey value of this record
increment buffer location
if (dont update != TRUE)
‘perform Find_update()
CurFin:
if (dont update != TRUE)
perform Find_update()
DupFin:
first find correct find node corresponding
DupFin request
locate correct result file
while (current buffer location <=
: number of result in the result buffer)
l free temporary string
reload temporary string with this record value

S PRI PLINT Wy Py

current_buff val = dbkey value of this record 1
= make comparesion to find duplicate record]
i' end while
if (dont_update != TRUE) k...
= perform Find_update() O
- end_case
g }

"- end_proc

a FIND_UPDATE() Rt
:. ¥ ;‘:
3 /* This procedure update the CIT table ?4:23
i /* depending on request i
{

initialize currency table pointer
case (find_operation)
AnyFin:

i 4 ['." Ty -.'_n,

locate first record in tie result buffer
create temporary string to hold this record
_:: if (set_list == NULL)
N {
- set set ptr
- /* determine this record belongs to which set */
¥ while (set_ptr != NULL)
8 .
N if (‘on_suppres_list(set_name))
kY
% if (set_owner_name == record_name)
if (set_name on the CIT table)
- 105
i
z
:;--}'-'".r"}‘-;-"}*}* I e R T e o S S T C e LN G SRS O S, L S TR L LA T N L YOG O T N |

AR P A Rl e At o i g

L g AV s RS 4

»

L0 Wl A S AN Y

{

current_buff val = dbkey value of this record
current_set_owner_dbkey = current_buff _val
current_set_dbkey = current_buff_val

}

else

{

allocate new cur_set node

current_buff v val = dbkey value of this record
current set _owner_dbkey = current_buff val
current _s_et _gbkey current_buff val

}
}
}
get next set ptr
}
}
else
{
set fset ptr to set list of AnyFin node
while (fset_ptr != NULL)
store dbkey value(s) of owner set(s) to
correct field of set_list structure
end while
current _buff val = dbkey value of this record
while (set_list '= NULL)

if (‘on_suppres_list(set_name))

if (set_ns—< on the CIT table)

{

current_set_owner_dbkey = set_list_dbkey
current_set dbkey = current buﬂ' val

}

else

allocate new cur_set node
current_set_owner_dbkey = set_list_dbkey
current_set dbkey current_t buff " val

}
}
get next set_list
}
} _
/* update current_run_unit */
run_unit_record_name = rec_name of find_ptr

106

o) FA et f U - S - S 1 A RA
5 B
’ f:}:*t‘{
- o)
run_unit_dbkey = current_buff val RO
: < orFi i
.. PriorFin: DA
) FirstFin: s
o WithinFin: A
(o . At
- LastFin: e
- NextFin: R
. run_unit_record_name = rec_name of find_ptr :-_:
; run_unit_dbkey = current_buff val Ay

. current_set type = rec_name of find_ptr S
5 current_set_dbkey = current_buff val e
N OwnerFin: :::: ,._::,
: run_unit_record_name =current_set_owner _name i

run_unit_dbkey = current_set_owner_dbkey

current_set type = current_set owner_name

current_set _dbkey = current_set_owner_dbkey
CurFin:

run_unit _record _name = current_set_type

run_unit_dbkey = current_set_dbkey

L LT IRII —
PR PR [.

end case
}
end proc
STORE_REQUESTS_HANDLER() .
;,' /* This procedure executes correct request(s) ‘\.\
) /* and update the CIT table ‘_:‘:;‘
T i
perform(DML EXECUTE(abdl str file ptr) e
o if (‘results_are not_returned) i
. print(Error non_duplicate attribute(s) have ':-

values in the database)

: }

. else R
Y {

set member ptr

. e, .
B et
'. \i'\

’ b o

. while (member ptr != NULL)

{ .
N if (selection_mode is by VALUE or by STRUCTURAL) - :::"
: if (member ptr->rn_flag == TRUE)
X get next member ptr

else if (insertion_mode is AUTOMATIC)
N {

2 : 107

‘t' I
WA RN ‘?é‘

s e T e e e T g R T N ST e e e g e e e e N e T T

perform DML _EXECUTE(abdl str,file_ptr)
if (results_are not_returned)

{

print (Error the owner of the set type does
e not have dbkey value)
e }
else
<
»

* perform BUILD REQUEST(store_ptr,member_ptr)
get next member ptr
}

}

else

J

else
}
if (stored record is a owner record)
perform BUILD_REQUEST(store_ptr)
perform DML _EXECUTE(store_abd! str,file ptr)
} /* end else */
" /* update CIT table */
' if (dont update != TRUE)
{
:Z; run_unit_record name = rec_name of store ptr
run umt dbkey = last dbkey -1
o if (stored record is not a owner record)

- while (member_ptr != NULL)
: {

if (‘on_suppres_list(set_name))

if (selection_mode is by VALUE or by STRUCTURAL)
- {
if (insertion_mode is AUTOMATIC)

2
’ -
Ll A

- {
> if (set_name on the CIT table)
{
= current_set_type = run_unit_record name
= current set _dbkey = run umt dbkey
> if (member_ptr->rn_flag == TRUE)
e current_set_owner_dbkey = 0

els>
urrent_set_owner_dbkey = current_buff val

i)

108

ARARA LA AN N A ekt A a it ks Te Ay - GBS S A G I I R e S gl arar bt S o aiyed aat oINS sna aag st sl he ol

else

{

allocate new cur_set node

current_set_dbkey = run_unit_dbkey
current_set_owner_dbkey = current_buff_val

}

L °, 1) “ "
I. .

(i .
' 0
Y T YR

J R
else :\ N{
} b
else RN

{ :
if (insertion_mode is AUTOMATIC) =
{ LN .
current_set type = run_unit_record_name L -.‘
current_set_dbkey = run_unit_dbkey '

}

else
}
}
get next member ptr
}
}
}

}
end proc

x

?

Pk
)
-~

IR (T
AL
)ﬁ ' ;
. ! .
o

1 P
L
[

I s

" %

}
.

rg

vy

BUILD_REQUEST((store_ptr,member_ptr)

: /* This procedure accomplishes the following:
= /* Builds an abdl INSERT request in the store
/* template

- {

™ allocate enough space for store_template

: if (StorFlag != TRUE)

\ fill store_template with contents of store_abdl_req

'til an "*" is hit
, fill store_template with the last dbkey of schema
-. increment dbkey value of schema

skip over the asteriks we just filled with a value
StorFlag = TRUE

}
- if ((mem _flag != TRUE) ||
. selection_mode is by APPLICATION ||

109

LN W

vy A G N ARG, O, U T G L N R Oh DGR T UG G % R PR VAL N A o £ U AR o W W P, o

.....

B A A Sl Sl At Aaes N W ¥ k PRI A ST b A A S A S S AR LA

: 8
selection_mode is by OPTIONAL)

~ {
fill store_template with the rest of store_abdl req
'til an ’ ' is hit

}

LS -
2
AN

~
.

3 else e
- { i
0 fill store_template with contents of store_abdl req Z:]
. ’til an **’ is hit SR
fetch a value from the result file b r:
put this value into store_template R
. fill store template with the rest of store_abdl req A
2 'til an ’ ’ is hit o
copy store_template to store_abdl req b oo
} R

end proc o

ERASE REQUESTS HANDLER()

: /* This procedure accomplishes the following:
o /* Depending on the erase_operation takes
V /* appropriate action

if (erase_operation == RecEra)
; {
: perform DML _EXECUTE(erase _ret_str.file ptr)
N if (results_are_not_returned)
perform DML_EXECUTE(erase_abdl_strfile ptr)
/* update current run unit */
b run_unit_record_name =’
% run_unit_dbkey = 0
X
N }
else
y {
. print (Error the record being deleted is an

owner of a non_empty set)

}
}

’ else

¥ {

Y /* Erase ALL operation */

2 while (member_ptr != NULL)

7 perform ERASE_MEMBER (member_ptr)
110

-.
--
. .- '}.:"-",n".-.')".)-_h.'.\".\-.',\-.‘- -‘;. . .

ey s, M e, et 80 -
\.5 Y :'.9 '."-‘ "i

N SRy

.. ‘h)‘. -' A

get next member ptr

}

perform DML_EXECUTE(erase_abdl_str file_ptr)
/* update current run unit */

run_unit_record name ="’

run_unit_dbkey = 0

}

}
end_proc

ERASE MEMBER(member ptr)

/* This procedure accomplishes the following:
/* If the record being deleted is an owner of
/* other set, we must delete its member record(s)

perform DML _EXECUTE(member_abdl.file _ptr)

open correct buffer file to get a value

/* This is our stopping condition */

while (all elements in the result buffer have been used)

{ .

pass over attribute name (DBKEY)

current_buff val = value of this attribute

fill member template with contents of member_delete_req
til an "*’ is hit

fetch a value from the result file

put this value into member_template

fill member_template with the rest of member_delete_req
’til an ’ ’ is hit] 5N
If (this member record being deleted is an '

s
‘l
bl

2 x

owner of other set) -)
{ -
complete retrieve request using current_buff val
perform ERASE MEMBER (member_ptr)
g perform DML _EXECUTE(member_template,file_ptr)
increment buffer location
- perform free_cur_set(set_name)
}
E end_proc T
- FREE_CUR_SET(set_name)

- /* This procedure accomplishes the following:
. /* Frees given set type on the CIT table

S A A A 0 A S5 8 i PRI i Nl Sl Nl Nl A Al A ek A st i T ST TT—m Y

St
L]

»
vy

{

initialize currency set_ptr
current_flag = FALSE
while ((set_ptr != NULL) && (current_flag == FALSE)) 1

if (set_ptr->name == set_name) NN

’ free(set_ptr) RN
current_flag = TRUE .
} S
if (current_flag != TRUE) ‘
get next set ptr
}
} :

:l end proc
" DML_EXECUTE (stringfile_ptr) ni
] /* This procedure accomplishes the following: (. _1
/* (1) Sends the request to MBDS using b
/* T1 S$TrafUnit() which is defined in the Test N
/* Interface v
* s-‘:.::‘_.

/* (2) Calls dm]_check_requests left() to ensure |
/* that all requests have been received {.::F-]
:':_‘:::
perform TI_S$TrafUnit(string) L:::::::
o perform dml_check_requests_left(file_ptr) :\::{::
) -
end proc e
'.,{.j-_i:
DML _CHECK REQUESTS_LEFT(file_ptr) N
L:“ €
/* This procedure accomplishes the following: E
o /* (1) Receives the message from MBDS by calling R
& /* TI_R8Message() which is definéd in the Test Ll
3 /* Interface A

X /*

, /* (2) Gets the message type by calling
- /* TI_R8Type .o
*

. D
y L)
o -
% /* (3) If not all the responses to the request :E: !
- /* have been returned, a loop is entered. Within Yo

/* this loop a case statement separates the

. /* responses received by message type X
* / *
: po
=

112 \

o

L, \ A\l
o, ~
. A
T A U S O S Ol B L G LS T T R G T T TRTRTN T L A, PG T O (0 R, ST, O P2 P o N

AR R R B S A TR Y AR AN A o pte Bin ai i i Al Sl Al ot we e

o Yy .
:‘ Lo
!- "v‘ A
! /* (4) If the response contained no errors, e
. /* then procedure TI R$Req_res() is called to NN
/* receive the response from MBDS -
* RS
/* (3) If no results are returned, then '!_.‘:ﬁ_:_ ‘
¢ /* the boolean results_are not returned is set N
: /* to TRUE RN
* ‘!.:f. -
R
/* (8) If the message contained an error, RAN

/* then procedure TI_R$ErrorMessage is called

o
2

’
P,

)
D)
oy
Lot =u I

/* to get the error message and then procedure I.:._ .
/* TI_ErrRes_output is called to output the ;-C::-I';:'.
/* error message ;:;-j'. N
results are _not_returned = FALSE S
N done = FALSE j:'.-'-}ﬁt'.;
' while ('done) R
TI_R$Message|() Nl
msg_type = TI_R$Type() [. d
case (msg_type) '
CH_ReqRes:

done = TI_R$Req_res(&rid,response)
if (string length of (response) == 0) —

results_are not_returned = TRUE [el
. else .".::.‘;:.'.".L-.'
{ L
t = file_results(file_ptr) ’\i
if (t > max length of previous results)) R

- max length =t
. } - :.f:::;‘
: ReqsWithErr: ;:::‘..a":j
. /* handle error conditions */ e:.’}:f'Ef‘

}
}

end proc SR
+ R
FILE RESULTS(file_ptr) 3:;3-}’
/* This procedure accomplishes the following: i
/* (1) Opens a file to place the results in e
* h ks
. 3 '
/* (2) Keep track of how many results have *&*‘3,2
/* been received S
/* -
/* (3) Puts the results in their own line S
o

118 e

-

Ll B C i e aSat ity i aiME i G i LEN SRR SOl it ik i S A B ol Juh e ool ol L N AR Aen el ek S i e e T T TN

*

/* (4) Returns the length of the response

/* Next two statements are initialization */
initialize buff loc

initialize num_values

N /* If this i (he first time then we open

o file for write status */

. if (file_ptr->nfi_status == FIRSTTIME)

perform init_buffer()

open file for write mode

set nfi_status to RESTTIME
buff loc = buff loc + 1

}

else

open file for append status

res_len = string length of (response) =
curr_pos =1 el
/* Read first attribute from response */ ST
read_dml response(first_attr,curr_pos) AR
. K
X /* Put this attribute in buffer */ N x
put_in_buff(first_attr) T
XY ‘-:.
: /* Read the value corresponding to this attribute */ el
. read_dml response(temp_str,curr_pos) RGN
‘: . :":.\-"-\.-
/* Put this value in the buffer */ -
_ put_in_buff(temp_str)
. save_mnax = Curr_pos S
N /* Increment the count of values */ :;\.‘ ;
num_values = num values + 1 Pz
. - - o
5 /* While we are not at the end of the response */ FA):
X while (curr_pos < (res_len - 2)) \::-;_-:
. G
. 3%
. read_dml _response(temp_str,curr_pos) g)
; /* If the attribute name just read in is not the same
- as the first attribute name proviously read in, - §~. X y
. then we put it and its value on the same line in RNH
. the buffer as the first attribute */ \ -
if (first_attr != temp_str) S
— —
put_in_buff(temp_str) HataA
v,
3)
114 e

L RS, ST L G O, T T8, 7L T 0L G B GRS, CO AL, K 2 Yy L iyt i R

L AL

P SN & ORI ISR ORI AN

IOASIMAAA A (OIS A S i A A S e e O A e A s Sl Ao A A e i e et i it el g

]

.;j read_dml_response(temp str,curr_pos)

x put_in_buff(temp_str)

-~ max_char = curr_pos

N max_char2 = max_char - cur_length

. if (max_char2 > save_max)

/ save_max = max_char2

o

‘.

s /* If they are the same, then we need to start a new

line in the buffer */

else

{

cur_length = curr_pos - val len
put_in_buff("0)
put_in_buff(temp_str)
read_dml _response(temp_str,curr_pos)
put_in_buff(temp_str)
num_values = num _values + 1
}

}

T
5, oy

ST

close file =
N open file i
e return(save_max)
end proc
DML_KFS() Zxind
TR
/* This procedure accomplishes the following: ' ";-'_:l:;;:
/* Pulls all attributes or some specific ‘ Ja
/* attribute(s) of a record and displays
/* it to the user ,':)\.
{ N
first find correct get node t:‘_:":' A
if (get operation == Getltem) .) HhY
S
: while (i <= number of attributes of this record) :f::::::l_
: { U
: pull specific attributes and its values from]
- temp_str of net_file_info structure RS
display them to the user ‘
S J g
:C: else ~ g‘
" AN
while (i <= number Of attributes of this record) e
= display temp_str to the user :'_-.‘:
:; v H

118 7% h}

R AARAPRNST] e

L \PATATALRL RN

" s % 0 3 b @
R R
R

hd
IR B 1
« 0 .

SN gt I e B

SRRl AARRANAN A AR AR A L NN

Sie S b S ARE AN e S e i gt

.....

}
end_proc

PUT _IN_BUFF(string)

/* This procedure accomplishes the following:
/* Puts the incoming string form file_results
/* into the correct file buffer

end_proc
INIT BUFFER()

/* This procedure accomplishes the following:
/* (1) Copies the user’s ID name into a temp
/* string

*

/* (2) Converts the current dmi_buff count to

/* astring
*

/* (3) Increments the above count to reflect
/* the fact that the next time this procedure
/* is called it initialize a new buffer

/*

/ : (4) strcat above count to temp

/: (5) strcat BUFF_FILE SUFFIX to temp
/* (6) strcpy temp over to nfi_buff.fi_fname
end_proc

READ_DML _RESPONSE(outstr,pos)

/* This procedure accomplishes the following:
/* Reads the next value of the response buffer

{

load outstr with the contents of response until
an End Marker is detected
put a ’ ’ in outstr

}
end_proc

116

e ST A A

» %
LR LY AN AN ey

N I

x'a L WLl

L

1

e

W

EARCINTAR LR FTRKS

A I o A it S el A A R N "B A A T A% e) AR I A A P

RS

B £

LA AR 0 T T D R,

eI A TR ¢ S Y _ .V v ISl TER S

ON_SUPPRES_LIST(set_name)

/* This procedure accomplishes the following:
/* Checks the given set on the suppres_list or not
{
/* set correct supp ptr */
if (dmi_operation == FindReq)
set supp_ptr
else

set supp_ptr
while (supp_ptr != NULL)

if (supp_ptr->set_name == set_name)
return(TRUE)
get next supp ptr
return(FALSE)
end proc
117
13530 3T ENTIAS AN MISS @I W O T A AR G IS B N Y

E e R
DM
B

P -~ a
s 3 O P ™ h o s A

P T B T

SN NS

rh' LR T

N L e
D I
] -.'.'.'- T

I B

S

TR AP L < B UL AL LN S he N R

2%

IO TR IS T Bl A s it M M Sshe dvns e o S anc &40 A 4 i Aen Sl nte B Seniie B ahis -4 Bin BAn A AR 2Amaen Ban- e The Ste 8 rabe Rre Totm 2 Bin '.“‘»“‘.‘V’,‘?J

APPENDIX D - THE CODASYL-DML USERS’ MANUAL

A. OVERVIEW

The CODASYL-DML language interface allows the user to input
transactions from either a file or the terminal. A transaction may take the form
of either database descriptions of a new database, or CODASYL-DML requests
against an existing database. Database descriptions may only be input from a
file, while CODASYL-DML requests may be input from either a file or the
terminal. The CODASYL-DML language interface is menu-driven. When the
transactions are read from either a file or the terminal, they are stored in the
interface. If the transactions are database descriptions, they are executed
automatically by the system. If the transactions are CODASYL-DML requests,
the user is prompted by another menu to selectively choose an individual
CODASYL-DML request to be processed. The menus provide an easy and
efficient way to allow the user to view and select the methods in which to process
CODASYL-DML transactions. Each menu is tied to its predecessor, so that by
exiting each menu the user is moved up the "menu tree". This allows the user to

perform multiple tasks in a single session.
B. USING THE SYSTEM

There are two operations the user may perform. The user may either define
a new database or process requests against an existing database. The first menu
displayed prompts the user for an operation to perform. This menu, hereafter
referred to as MENU]1, looks like the following:

Enter type of operation desired
(1) - load a new database
(p) - process old database
(x) - return to the operating system

ACTION —-> _

118

[

AR B R P

AW Py TR S

IR AR AL LSRR

vy

T,
B, > .m0

- Y

Upon selecting the desired operation, the user is prompted to enter the name
of the database to be used. When loading a new database, the database name
provided may not presently exist in the database schema. Likewise, when
processing requests against an existing database, the database name provided has
to exist in the present database schema. In either case, if an error occurs, the
user is told to rekey a different name. The session continues once a valid name is
entered.

If the "p" operation is selected from MENUI1, a second menu is displayed
that asks for the mode of input. This input may come from a data file or
interactively from the terminal. This generic menu, MENU2, looks like the

following:

Enter mode of input desired
(f) - read in a group of transactions from a file
(t) - read in transactions from the terminal
(x) - return to the previous menu

ACTION > _

If users wish to read transactions from a file, they are prompted to provide the
name of the file that contains those transactions. If users wish to enter
transactions directly from the terminal, a message is displayed reminding them of
the correct format and special characters that are to be used.

If the "1" operation is selected from MENU1, a second menu is displayed that
is identical to MENU2 except that the "t" option is omitted. Since the
transaction list stores both database descriptions and CODASYL-DML requests,
two different access methods have to be employed to send the two types of
transactions to the KMS. Therefore, our discussion branches to handle the two
processes the user may encounter.

1. Processing Database Descriptions

When the user has specified the filename of the schema, further user
intervention is not required. It does not make sense to process only a single
schema definition statement out of a set of schema definition statements that
produce a new database, since they all have to be processed at once and in a

specific order. Therefore, the mode of input is limited to files, and the

119

fon _. v:,- ‘-),.v '.);-‘y.)-. ‘-",."'-')")-".L")\'h“,v' _. IR RO RS e W -..;..} '-' .\.\",,:. .. ‘."t_ LGS ', *“V 4 ~

transaction list of schema definition statements is automatically executed by the

system. Since all the schema definition statements have to be sent at once to

form a new database, control should not return to MENU2 where further

" transactions may be input. Instead, control returns to MENU1 where the user

may select a new operation or a new database to process against.

2. Processing CODASYL-DML Requests '

In this case, after users have specified the mode of input, they conduct an

interactive session with the system. First, all CODASYL-DML requests are
listed to the screen. As the CODASYL-DML requests are listed from the

transaction list, a number is assigned to each CODASYL-DML request in

ascending order starting with the number one. The number is printed on the
screen beside the first line of each CODASYL-DML request. Next, an access
menu, called MENU3, is displayed which looks like the following:

Pick the number or letter of the action desired
(num) - execute one of the preceding CODASYL-DML requests
(d) - redisplay the list of CODASYL-DML requests
(x) - return to the previous menu

ACTION ——> _

] Since the displayed CODASYL-DML requests may exceed the vertical
:'jl height of the screen, only a full screen of CODASYL-DML requests are displayed
at one time. If the desired CODASYL-DML request is not displayed on the

current page, the user may depress the RETURN key to display the next page of

CODASYL-DML requests. If the user only desires to display a certain number of

lines, after the first page is displayed the user may enter a number, and only that

many lines of CODASYL-DML requests are displayed. If users are only looking
for certain CODASYL-DML requests, once they have found them, they do not

have to page through the entire transaction list. By depressing the "q" key,
control is broken from listing CODASYL-DML requests, and MENU3 is

displayed. Under normal conditions, when the end of the transaction list has

been viewed, MENUS3 appears.

-
-
.
-«

N e et . T S S SR T
\}‘*ﬂ."t.’t:ﬂ:l:j" .t AR A SO TR

A A A AL L S LR AR s i A2 S gt A Rt a L (L B (L e er e Al i e N e A M SN - S U e sl o Eali - adnr iy |

Since CODASYL-DML requests are independent items, the order in
which they are processed does not matter. The users have the choice of
executing however many CODASYL-DML requests they desire. A loop causes
the transaction list and MENU3 to be redisplayed after each CODASYL-DML
request has been executed so that further choices may be made. Unlike

processing the schema definition, control returns to MENTU2 since the user may

have more than one file of CODASYL-DML requests against a particular

R
database, or the user may wish to input some extra CODASYL-DML requests BRSNS
directly from the terminal. Once the user is finished processing on this particular
database, the user may exit back to MENUI to either change operations or exit S

to the operating system.

C. DATA FORMAT

When reading transactions from a file or the terminal, there has to be some

way of distinguishing when one transaction ends and the next begins.

LA A 4

Transactions are allowed to span multiple lines, as evidenced by a typical multi-
level MOVE statements followed by a STORE' statement. This example also
shows that our definition of transaction incorporates one or more requests. This
allows a group of logically related requests to be executed as a group. Since the

system is reading the input line by line, an end-of-transaction flag is required. In

our system this flag is the "@" character. Likewise, the system needs to know

when the end of the input stream has been reached. In our system the end-of-file
flag is represented by the "$" character. The following is an example of an input R

stream with the necessary flags that are required when multiple transactions are

entered:

A

P e

"
s Y

-
s

RN R

D. RESULTS

When the results of the executed transactions are sent back to the user’s

. 3 F
GO

......

oy i T AN TNt Il Sl 2 44

S YT S) Yy

TRANSACTION #1
@

TRANSACTION #2
REQUEST #1
REQUEST #2

REQUEST #n

@

TRANSACTION #3
@

Q@
TRANSACTION #n
$

screen, they are displayed exactly the same way individual CODASYL-DML

requests are displayed. The following consolidates the user’s options:

FUNCTION

:.i..';?'?}' S

1
WA
"
)

i

0
()
r

',
v e
RAPARd
2
‘l"/.

v': .‘- ,; ..v -", .‘ .'. ." '.-' » o
» s » . o',

. ~n .,.'.."}{ ':l. ‘-‘ '. .
RPN SR

Displays next screenful of output
Displays only (number) lines of output
Stops output, MENUL1 is then redisplayed

122

SILALMN AN,

A
5, 4,
P

vetete?
’

St

PN

DA
. s
' &
L]

Lty

-~

10.
11.

12.

13.

.......................

LIST OF REFERENCES

Demurjian, S. A. and Hsiao, D. K., "New Directions in Database-Systems
Research and Development," in the Proceedings of the New Directions in
Computing Conference, Trondheim, Norway, August, 1985; also in Technical
Report, NPS-52-85-001, Naval Postgraduate School, Monterey, California,
February 1985.

Banerjee, J. and Hsiao, D.K., "A Methodology for Supporting Existing
CODASYL Databases with New Database Machines", Proceedings of
National ACM Conference, 1978.

Wortherly, C. R. The Design and Analysis of a Network Interface for the
Multi- Lingual Database System , M.S. Thesis, Naval Postgraduate School,
Monterey, California, Dec 1985.

Hsiao, D. K., and Harary, F., "A Formal System for Information Retrieval
from Files,” Communications of the ACM, Vol. 13, No. 2, February 1970,
also in Corrigenda, Vol 13., No. 4, April 1970.

Wong, E., and Chiang, T. C., "Canonical Structure in Attribute Based File
Organization," Communications of the ACM, September 1971.

Rothnie, J. B. Jr., "Attribute Based File Organization in a Paged Memory
Environment," Communications of the ACM, Vol. 17, No. 2, February 1974.

The Ohio State University, Columbus, Ohio, Technical Report No. OSU-
CISRC-TR-77-4, DBC Software Requirements for Supporting Network
Databases, by J. Banerjee, D. K. Hsiao,and Douglas S. Kerr November 1977.

Naval Postgraduate School, Monterey, California, Technical Report,
NPS52-85-002, A Multi-Backend Database System for Performance Gains,
Capacity Growth and Hardware Gains, by S. A. Demurjian, D. K. Hsiao and
J. Menon, February 1985.

Date, C. J., An Introduction to Database Systems , 3d ed., pp. 389-446,
Addison Wesley, 1982. '

Boehm, B. W., Software Engineering Economics, Prentice-Hall, 1981.
Naval Postgraduate School, Monterey, California, Technical Report,
NPS52-84-012, Software Engineering Techniques for Large-Scale Database

Systems as Applied to the Implementation of a Multi-Backend Database
System, by Ali Orooji, Douglas Kerr and Daivid K. Hsiao, August 1984.

The Ohio State University, Columbus, Ohio, Technical Report No. OSU-
CISRC-TR-82-1, The Implementation of a Multi Backend Database System
(MDBS): Part I- Software Engineering Strategies and Efforts Towards a
Prototype MDBS, by D. S. Kerr et al, January 1982,

Kernighan, B. W., and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.

123

b
LAl
Ny
Y
)

-
|
L)

"
2”70 i

PP R
“y '.r':n

e

l'
v

R R R I A
. e e e,
-, Y Y e N]

N YR YA
e B% % et iu— % _"

-“ ~ Ve N A St fate 20 piutad, A S tal Bl Sl joal Sl Sl Sull Nt iug Gl ARG A St A0l At audt s LA AN S il v B S e h o4 s aeul gt sl et aAL oo
2 ' 7
o, 14. Howden, W. E., "Reliability of the Path Analysis and Testing Strategy," K
- IEEE Transactions on Software Engineering, Vol. SE-2, September 1976.
f; 15. Johnson, S. C., Yace: Yet Another Compiler-Compiler, Bell Laboratories,
Murray Hill, New Jersey, July 1978. o
,_:- 16. Lesk, M. E. and Schmidt, E., Lez - A Lezical Analyzer Generator, Bell . ::::*-::
3 Laboratories, Murray Hill, New Jersey, July 1978. .
Oy 17. Benson, T. P. and Wentz, G. L., The Design and Implementation of a N
Hierarchial Interface for the Multi-Lingual Database System M. S. Thesis, Bﬂ
Naval Postgraduate School, Monterey, California, June 1985. e
& 18. Meyer, G. and MacDougal, P., An Attribute_value Translation of ‘ij'_‘.j-,
. CODASYL’s Data Manipulation Language, Ohio State University, 1982. e
" - 7.
L
b
S
- P
. Yol
- o
- e
- _'.:_:.
3
e
- S
: X
-C L *
N
: £
2 s
! By
S E:S
Y
3 3
o 124 N
"",

n' ,l...:

NS

e e

A ad A Ad id Tk AaA A0 A ath SR

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5100

3. Department Chairman, Code 52 2
- Department of Computer Science

Naval Postgraduate School
Monterey, California 93943-5100

t" 4. Curricular Officer, Code 37 1
g Computer Technology

Naval Postgraduate School

Monterey, California 93943-5100

5. Professor David K. Hsiao, Code 52 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

\ 6. Steven A. Demurjian, Code 52 2
X Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5100

7. Turk Deniz Kuvvetleri 5
Egitim Daire Baskanligi
Bakanliklar Ankara TURKEY

8. Bogazici Universitesi 1
Bilgisayar Muhendisligi
Bebek Istanbul TURKEY

9. Ahmet Emdi 1
Gazi Kemal Mabh.
r Firin Sok. No. 19
Babaeski/Kirklareli - TURKEY

125

AT i o NN e e D N S A S o AT R T S T AT R A T

LT TRTETRTR

T wT

—

Y

LAt AN L At

REARAAC AN A AN SRR nd g g ol

£

Lo ad

4
.
e

10. Bulent Emdi

Babaeski/Kirklareli - TURKEY

Gazi Kemal Mah.
Firin Sok. No. 19

-

s

s s

’

3 A
D t
. ..,.‘.wn. R A}

+

PR NEAR AR I A

126

AN -_-‘

A SRR LS e v o
¢ 1] - - \
4 m

mmmmmmm@mm PR

b SR

ﬁgﬁﬁ%ﬁ

g(ﬁ" KJ'PJ; ?l;v’i' 1‘(4

b d.)

