TECHNICAL REPORT ARLCD-CR-84016

M577 FUZE PRODUCT IMPROVEMENT PROGRAM:
ALTERNATE MATERIALS FOR OGIVE WINDOW

A. LUCILLE MEISSNER
TERRY F. SLAGLE
HAMILTON TECHNOLOGY, INC.
P.O. BOX 4787
LANCASTER, PA 17604

THOMAS W. PERKINS, PROJECT ENGINEER
EDWINA CHESKY, PROJECT LEADER
AMCCOM

JUNE 1984

U.S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER
LARGE CALIBER WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

Approved for public release; distribution unlimited.
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed. Do not return to the originator.
M577 Fuze Product Improvement Program:

Alternate Materials for Ogive Window

Author(s):
- Terry F. Slagle
- A. Lucille Meissner

Performing Organization Name and Address:
Hamilton Technology, Inc.
P.O. Box 4787
Lancaster, PA

Controlling Office Name and Address:
ARDC, TSD
STINFO Div (DRSMC-TSS(D))
Dover, NJ 07801

Monitoring Agency Name & Address:
ARDC, LCNSL
Nuclear and Fuze Div (DRSMC-LCN-T(D))
Dover, NJ 07801

Report Date:
June 1984

Number of Pages:
14

Distribution Statement (of this Report):
Approved for public release; distribution unlimited

Supplementary Notes:
Thomas W. Perkins is the ARDC Project Engineer for this project.

Keywords:
- M577 fuze
- Transparent plastics
- Ogive window
- Polycarbonate
- Ultrasonic bonding

Abstract:
The objective of this project was to provide an alternate plastic material for the ogive window that would be lower in cost than the current polycarbonate window, resist crazing and discoloration, and be capable of being ultrasonically bonded. Sixteen materials were identified for evaluation and are discussed in this report.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Technical Discussion</td>
<td>2</td>
</tr>
<tr>
<td>Evaluations of Materials</td>
<td>2</td>
</tr>
<tr>
<td>Possible Replacements</td>
<td>4</td>
</tr>
<tr>
<td>Improvements to Present Window</td>
<td>6</td>
</tr>
<tr>
<td>Testing</td>
<td>7</td>
</tr>
<tr>
<td>Air Gun</td>
<td>7</td>
</tr>
<tr>
<td>Waterproofness Test</td>
<td>8</td>
</tr>
<tr>
<td>Conclusions and Recommendations</td>
<td>8</td>
</tr>
<tr>
<td>Distribution</td>
<td>9</td>
</tr>
</tbody>
</table>
INTRODUCTION

The objective of this project was to provide an alternate plastic material for the ogive window which would be lower in cost than the current polycarbonate window and which would also resist crazing and discoloration.

When work started on this task in early 1981, epoxy was being used on the Hamilton Technology, Inc. (HTI) production line to attach and seal the polycarbonate window to the ogive. Near the end of 1981, the production line began the implementation of VEP A9A8702 which called for the window to be ultrasonically bonded to the ogive. This change, from epoxy bonding to ultrasonic bonding, generated an additional requirement for this task that had not been considered originally. That is, any plastic selected as a replacement material for the window would have to be compatible with the ultrasonic bonding process.

In pursuit of this task, an extensive search was conducted to identify suitable transparent plastics. Sixteen materials were identified for evaluation.
TECHNICAL DISCUSSION

The original objective was to provide an alternate ogive window material which would reduce the cost of the window and resist crazing and discoloration. Later in the program, the objective was modified to include a change which required any window material to be ultrasonically bondable to the ogive.

In pursuit of the objective, an extensive literature search was conducted to identify suitable transparent plastics. Manufacturers, vendors, and plastic consultants were contacted for their assistance in this search. As a result of this effort, 12 transparent plastic materials were identified and selected for further evaluation.

A study, conducted by the Organic Branch of the Materials Laboratory of ARRADCOM in 1978, identified three transparent plastic materials for consideration as ogive window material. These three materials, ionomer, acrylic, and PVC, along with the 12 materials identified by the HTI search and the current polycarbonate window material, comprised the 16 transparent plastic materials evaluated and documented in this report. These 16 sixteen materials along with the manufacturer and the manufacturer's trade name are listed in table 1.

Evaluations of Materials

Each of these 16 plastic materials was evaluated for the following characteristics or factors:

(1) Cost
(2) Optical clarity
(3) Ultrasonic bondability
(4) Resistance to aging (crazing and discoloration)
(5) Temperature stability -65°F to +165°F
(6) Strength and hardness
(7) Resistance to hydrocarbon oils or solvents

The results of this evaluation are shown in table 2.

DG/DE#2/L3.1
<table>
<thead>
<tr>
<th>Trade name</th>
<th>Type of plastic</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexan 141</td>
<td>Polycarbonate</td>
<td>General Electric</td>
</tr>
<tr>
<td>Cellulose Butyrate</td>
<td>Cellulosics</td>
<td>Eastman</td>
</tr>
<tr>
<td>Plexiglas V811-100</td>
<td>Acrylic</td>
<td>Rohm & Haas</td>
</tr>
<tr>
<td>Plexiglas DR-100</td>
<td>Acrylic</td>
<td>Rohm & Haas</td>
</tr>
<tr>
<td>Lucite 147</td>
<td>Acrylic</td>
<td>Dupont</td>
</tr>
<tr>
<td>Udel</td>
<td>Polysulfone</td>
<td>Union Carbide</td>
</tr>
<tr>
<td>Styron 685D</td>
<td>Polystyrene</td>
<td>Dow</td>
</tr>
<tr>
<td>Tyril</td>
<td>Strene-Acrylonitrile</td>
<td>Dow</td>
</tr>
<tr>
<td>K-Resin</td>
<td>Butadine Styrene</td>
<td>Phillips Chemical</td>
</tr>
<tr>
<td>CR-39</td>
<td>Allyl Diglycol Carbonate</td>
<td>PPG</td>
</tr>
<tr>
<td>Trogamid T</td>
<td>Polyamide</td>
<td>Dynamite Noble</td>
</tr>
<tr>
<td>Kel-F</td>
<td>Teflon</td>
<td>3M</td>
</tr>
<tr>
<td>Ultem</td>
<td>Nylon</td>
<td>Dupont</td>
</tr>
<tr>
<td>Surlyn 1706</td>
<td>Ionomer</td>
<td>Dupont</td>
</tr>
<tr>
<td>Surlyn 1707</td>
<td>Ionomer</td>
<td>Dupont</td>
</tr>
<tr>
<td>Ethyl 7053, 7051</td>
<td>Polyvinyl Chloride</td>
<td>Ethyl</td>
</tr>
</tbody>
</table>
Five of the 16 materials being evaluated were too costly for implementation as a replacement material. These materials were polysulfone, allyl diglycol carbonate, polyamide, teflon, and nylon. Windows made from these materials would be from two to four times as costly as the present polycarbonate window. The other 11 materials would be cost competitive at about $0.055 each.

All of the 16 materials are optically clear under ambient conditions except Udel polysulfone and Ultem nylon. Both of these materials have a slight amber tint, the nylon being somewhat darker than the polysulfone. Because of this amber tint condition, the use of either of these plastics in a window would be questionable.

The remaining evaluations of the various materials, as shown in table 2, are primarily based on information received from the manufacturers of the materials. From the information in this table, it was determined that Surlyn 1706, cellulose butyrate, and plexiglas V811-100 were three possible replacement materials which would satisfy the functional requirements and be cost effective. After further review, these materials were chosen before the requirement to ultrasonically bond the window to the ogive was added. The Surlyn 1706 was eliminated because the functional temperature range was not acceptable.

Possible Replacements

Plexiglas V811-100, a colorless acrylic, was chosen because of its optical qualities and resistance to lubricants. This acrylic plastic resists discoloration or loss of light transmission under long-term exposure to severe environments including sunlight. The acrylic exhibited a higher resistance to astro oil than the present polycarbonate material. The acrylic material was subjected to a film of astro oil for several days at room temperature without hazing. The present polycarbonate material hazed after a 24-hour exposure.

Ogive windows made of this acrylic plastic were injected molded using the present production ogive window mold. Fuzes with acrylic windows epoxied in the ogive were subjected to various environment tests plus air gun testing with satisfactory results. However, when the ultrasonic bonding requirement was added to this task, it was found the material could not be bonded satisfactorily with the current ultrasonic bonding equipment. The development of an ultrasonic bonding process for acrylic plastic was not considered, since acrylic offers no significant cost savings over the present polycarbonate material.

Cellulose butyrate was selected for further testing because of its chemical resistance and weatherability. When exposed to astro oil for 24 hours, the cellulose material was not affected as much as the present polycarbonate material.
<table>
<thead>
<tr>
<th>Trade Name</th>
<th>Type of Plastic</th>
<th>Manufacturer</th>
<th>Est. Cost Each Window (Dollars)</th>
<th>Resistance to Oil & Solvents When in Direct Contact</th>
<th>Clarity with Age</th>
<th>Ability to Function from -60°F to 165°F</th>
<th>Anti-crazing Characters</th>
<th>Strength & Hardness</th>
<th>Compatible with Ultrasonic Bonding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lexan 141</td>
<td>Polycarbonate</td>
<td>General Electric</td>
<td>.055</td>
<td>A</td>
<td>G</td>
<td>E</td>
<td>A</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>2. Cellulose Butyrate</td>
<td>Cellulosics</td>
<td>Eastman</td>
<td>.055-.060</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>P</td>
</tr>
<tr>
<td>3. Plexiglas VB11-100</td>
<td>Acrylic</td>
<td>Rohm & Haas</td>
<td>.050-.055</td>
<td>G</td>
<td>E</td>
<td>A</td>
<td>G</td>
<td>E</td>
<td>P</td>
</tr>
<tr>
<td>4. Plexiglas CR-100</td>
<td>Acrylic</td>
<td>Rohm & Haas</td>
<td>.050-.055</td>
<td>G</td>
<td>E</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>5. Lucite 147</td>
<td>Acrylic</td>
<td>DuPont</td>
<td>.055</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>P</td>
</tr>
<tr>
<td>6. Udel</td>
<td>Polysulfone</td>
<td>Union Carbide</td>
<td>$1.10</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>E</td>
<td>P</td>
</tr>
<tr>
<td>7. Styron 685D</td>
<td>Polystrene</td>
<td>Dow</td>
<td>.050-.055</td>
<td>P</td>
<td>A</td>
<td>P</td>
<td>P</td>
<td>G</td>
<td>P</td>
</tr>
<tr>
<td>8. Tyrit</td>
<td>Strene-Acrylonitrile</td>
<td>Dow</td>
<td>.050-.055</td>
<td>P</td>
<td>A</td>
<td>P</td>
<td>P</td>
<td>E</td>
<td>P</td>
</tr>
<tr>
<td>10. CR-39</td>
<td>Allyl Diglycol Carbonate</td>
<td>PPG</td>
<td>.15</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>A</td>
</tr>
<tr>
<td>11. Trogamid T</td>
<td>Polyamide</td>
<td>Dynamite Noble</td>
<td>$1.10</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>12. Kel-F</td>
<td>Teflon</td>
<td>3M</td>
<td>$2.00</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>A</td>
</tr>
<tr>
<td>13. Ultem</td>
<td>Nylon</td>
<td>DuPont</td>
<td>$1.10</td>
<td>E</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>14. Surlyn 1706</td>
<td>Ionomer</td>
<td>DuPont</td>
<td>.050-.055</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>G</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>15. Surlyn 1707</td>
<td>Ionomer</td>
<td>DuPont</td>
<td>.050-.055</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>G</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>16. Ethyl 7053, 7051</td>
<td>Polyvinyl Chloride</td>
<td>Ethyl</td>
<td>.050-.055</td>
<td>A</td>
<td>P</td>
<td>P</td>
<td>A</td>
<td>A</td>
<td>P</td>
</tr>
</tbody>
</table>

KEY: E - Excellent
G - Good
A - Average
P - Poor
Sample ogive windows were injected with cellulose material using the present production mold. Fuze windows with cellulose windows epoxied in the ogive were subjected to various environmental tests plus air gun testing with successful results. Cellulose windows were ultrasonically bonded to the ogive with unsatisfactory results. The cellulose was too soft and consequently would melt around the seal even with the lowest available horn pressure. In addition, the estimated cost of a cellulose ogive window is slightly higher than windows made from the present polycarbonate material.

Improvements to Present Window

Since it is not cost effective to replace the polycarbonate window with another material, improvements to the present window were investigated. The improvements considered were coating the window with a chemical resistant film and improving the injection molding process.

Several coatings for the window were tried. Samples of coated polycarbonate windows received from Air Locke Corporation were tested for chemical resistance with excellent results. These coated windows showed no hazing after subjection to a film of fuze lubricants after 24 hours even at high temperatures. The uncoated polycarbonate material withstood this test for only 4 hours. The lowest quote received for this coating process was $0.28 per window. Although this coating did improve the chemical resistance of the polycarbonate window, it was not considered feasible because of its high cost of application.

Another coating known as Rhoplex AC-868 was applied in-house. The optical properties of the window decreased after application of the coating; therefore, no further testing of this coating was done.

Improvements to the present polycarbonate window by modifying the design were discussed with the present vendor. Several steps could be taken to improve the optical performance and reduce the cost of the window.

The thickness of the window could be decreased by removing material on the inside surface of the window (figs. 1 and 2). The distortion from having a curved window would be decreased. In addition, the cost would be decreased because of using less material and a decrease in molding cycle time. Changing the mold to accommodate this design change would cost approximately $8,000, the projected cost savings per window is less than $0.01.

Another improvement to the window could be obtained by changing the gate in the mold. Moving the gate to the lower end of the window from its current location at the side would provide better material flow and quicker separation of the part from the runner. The gate of the mold could also be made thicker to allow a greater flow of material. This would reduce the internal stresses in the window; thus, the window would not craze as quickly or easily. The cost of modifying the mold to change the gate location and size would cost from $10,000 to $12,000.

Improvements to the present ogive window can be made but the cost of the mold changes outweighs the benefit.
TESTING

Air Gun Test

Five cellulose and five acrylic windows in fuzes were air gun tested from 26,600 g to 34,000 g setback. Both materials were epoxied into the ogive. Some windows of each material exhibited slight damage, but no more damage than observed on the present polycarbonate material after air gun tests. Unit by unit data is given in table 3.

Table 3. Air Gun Test

<table>
<thead>
<tr>
<th>Unit</th>
<th>Window material</th>
<th>g level</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cellulose</td>
<td>33,899</td>
<td>No visual effect</td>
</tr>
<tr>
<td>2</td>
<td>Cellulose</td>
<td>31,102</td>
<td>No visual effect</td>
</tr>
<tr>
<td>3</td>
<td>Cellulose</td>
<td>33,759</td>
<td>Indentation of window</td>
</tr>
<tr>
<td>4</td>
<td>Cellulose</td>
<td>26,627</td>
<td>Indentation of window</td>
</tr>
<tr>
<td>5</td>
<td>Cellulose</td>
<td>31,522</td>
<td>No visual effect</td>
</tr>
<tr>
<td>6</td>
<td>Acrylic</td>
<td>31,102</td>
<td>Seal of window broken</td>
</tr>
<tr>
<td>7</td>
<td>Acrylic</td>
<td>31,522</td>
<td>Seal of window broken</td>
</tr>
<tr>
<td>8</td>
<td>Acrylic</td>
<td>30,962</td>
<td>Seal of window broken</td>
</tr>
<tr>
<td>9</td>
<td>Acrylic</td>
<td>32,501</td>
<td>No visual effect</td>
</tr>
<tr>
<td>10</td>
<td>Acrylic</td>
<td>30,683</td>
<td>No visual effect</td>
</tr>
</tbody>
</table>
Waterproofness Test

Twenty units, ten each with cellulose and acrylic ogive windows, were tested per MIL-F-50983, Paragraph 3.8. The windows were assembled to the ogive using the ultrasonic bonding process. One unit that contained a cellulose window leaked around the window surface. The cellulose material showed signs of melting where the ultrasonic bonding took place. This melting did not allow the window and ogive to seal properly.

CONCLUSIONS AND RECOMMENDATIONS

After carefully reviewing the data, Hamilton Technology, Inc. concluded that the present polycarbonate material meets the overall objectives of this task better than any of the materials evaluated, even though some of the other materials have a superior rating in some of the categories. All materials except for cellulosics and the acrylics were rejected because of cost or unacceptable functioning temperature range. The acrylics and cellulosics materials were rejected due to poor ultrasonic bonding capability.

Hamilton Technology, Inc. recommends there be no change to the ogive window material.
Commander
Armament Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
Attn: DRSMC-TSS(D) (5)
DRSMC-LCN-T (D) (5)
Dover, NJ 07801

Administrator
Defense Technical Information Center
Attn: Accessions Division (12)
Cameron Station
Alexandria, VA 22314

Director
U.S. Army Materiel Systems Analysis Activity
Attn: DRXSY-MP
Aberdeen Proving Ground, MD 21005

Commander
Chemical Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
Attn: DRSMC-CLJ-L(A)
DRSMC-CLB-PA(A)
APG, Edgewood Area, MD 21010

Director
Ballistics Research Laboratory
Armament Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
Attn: DRSMC-BLA-S(A)
Aberdeen Proving Ground, MD 21005

Chief
Benet Weapons Laboratory, LCWSL
Armament Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
Attn: DRSMC-LCB-TL
Watervliet, NY 12189

Commander
U.S. Army Armament, Munitions and Chemical Command
Attn: DRSMC-LEP-L(R)
Rock Island, IL 61299

Director
U.S. Army TRADOC Systems
Analysis Activity
Attn: ATAA-SL
White Sands Missile Range, NM 88002