_AD-A164 859 TOP-DONN PARSING SYNTAX ERROR RECOVERY(U) NAVAL 172 <
) POSTGRADURTE SCHOOL MONTEREY CA P E HALLOMELL DEC 85

UNCLASSIFIED F/G 9/2

A

i/ i

¢ "\“ACP,. -

e 3
N Ky

P oo e o PO) e Lt . R
REENDERIAIAL R SO B CREATRINOR T RAES e
-] A et

il o~ ol =
D@ 2==_ 2__;_] | S 27
== = __Il — =34

OB o

<N a 2B g
= == mm ~t z Z

R o 13 . .nHuﬂ

-8 20 3 —

hml_l_u_._..._..._._._._ 3¢

= S -
——1 (723

[V
o £
o

. - (¥e] T
— — N S 2

. 8¢

— I — S 1

] _— == (S

] _— = =

b e i L TR OO e A C e oo oo e e BRI AR

AD-A164 859

t)——
@ 55
-
2
14

i
J

=
2
=

Approved for public release; distribution is unlimited

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

DTIC
=LECTE
MAR O 5 1986

D

S e

THESIS

TOP-DOWN PARSING SYNTAX ERROR RECOVERY

by
Paul Evan Hallowell, Jr.

December 1985

Thesis Advisor:

R. W. Floyd

e

-

)
I

SECURITY CLASSIFICATION e PA 217 Lo

) - ey -

REPORT DOCUMENTATION PAGE TR

Ta, REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS ST
Unclassified Sl
Za SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT e
Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited i
'3 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Yaval Postgraduate School (if applicabie) Naval Postgraduate School
52 Lravs
6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) T
Monterey, California 93943-5100 Monterey, California 93943-5100 -
8a NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER o
ORGANIZATION (if applicable) S
8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS ;
PROGRAM PROJECT TASK WORK_UNIT
ELEMENT NO. | NO. NO ACCESSION NO.

11 TITLE (Include Security Classification)
TOP-DOWN PARSING SYNTAX ERROR RECOVERY

" P ONAL TH (S -
Ha i?oweff, Qlg(a{ll E., Jr.
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) [1S PAGE COUNT
Master's Thesis FROM TO 1985 December 179

e e ————n
‘6 SUPPLEMENTARY NOTATION

oroan
v

.
AL

.y
n‘z,-

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Top-down, syntactic error recovery, transition .
diagram parsing

T

*9. ABSTRACT (Continue on reverse if necessary and identify by block number) AR
Compiler writers continue to search for a reliable method of syntactic error SN
recovery. Spurious error reports and confusing diagnostics are common prob- g
lems confronting the programmer. Innumerable error possibilities have made A
recovery design a frustrating task. ‘
This thesis implements a method of syntactic error recovery using recursive
calls on the error recovery routine. Parsing is accomplished by traversing
transition diagrams which are created from syntax charts. Key language
symbols and dynamically generated recovery positions are used in restoring
the parse. High-quality error diagnostics give a clear, accurate, and
.thorough description of each error, providing an excellent instructional

o
‘
L,
PR

¢

| el NI
Vo4 -

< RS

software.toc_)l. Approach and implementation issues are discussed, and sample A

output listings are included. s a7) p PN e
- - '.""' AN * A L R N ; //I"// _’/\ i ’;, 3 , :,:-:-I:
-~ ¢ { A ; A ~‘,:-‘ -
- i]

20 O\STRIGUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

(FuncLassiFeDUNUMITED (O SAME As RPT. (] DTIC USERS UNCLASSIFIED

222 NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONGE finclude Area Code) | 22¢. OFFICE SYMBOL

Daniel Davis , (408) 646-3091 Code 52Vv

DO FORM 1‘73' 84 MAR 83 APR edition may be used until exhaysted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are fbsoleto.

MEARRE b

4

RO

Approved for public release, distribution unlimited :
Top—Down Parsing Syntax Error Recovery —
Ry

by o

Paul Evan Hallowell, Jr. _ j

..!‘-":-J

Lieutenant Commander, United States Navy P
B.S.M.E., United States Naval Academy, 1974 R

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL PP

December 1985

Author: // é %/(/C_—_—

Paul E. Hallowell

Approved by: W J/’M

Robert W. #loyd, Thesis Advisor

Dapiel Davis, Second Reader R
S - %/ s
L e~"e sl p S RS

Vincent ¥/ Lum, Chairman,
Departmept of Computer Science

T M. 4 XN

nea . all,
Dean of Information and PoNcy Sciences

U L TR Ae S b AP SRt i in ol < A At fin gt it o™ © e & As et st S St S g Sttt I Sl pat e St Bnss Sl e aus Bar ghss b 4 6 B8 K

ABSTRACT

Compiler writers continue to search for a reliable method of syniactic error
recovery. Spurious error reports and confusing diagnostics are common problems
confronting the programmer. Innumerable error possibilities have made recovery

design a frustrating task.

This thesis implements a method of syntactic error recovery using recursive

g calls on the error recovery routine. Parsing is accomplished by traversing

T_ transition diagrams which are created from syntax charts. Key language symbols
and dynamically generated recovery positions are used in restoring the parse. r_hé_
High-quality error diagnostics give a clear, accurate, and thorough description of g ‘
each error, providing an excellent instructional software tool. Approach and .

implementation issues are discussed, and sample output listings are included.

Accesion For \

NTIS CRA&! ﬁ
0
0

DTIC TAB ::._;. o
B Qe - ~~...‘.-"
U .annou‘ : ced S
Justification ... R R
SRS

\-1\':\"_;-

T DN
Dist ib :tion | . p

Av'a“abiaity Code
. Ve e s e————
Avai a.djor
Dist Special

A

| S i

v

.

’.

v N
N a
A AN
wm

[]

v

3 s

Tt) e tanatie
'-1'A'._'-i,\¢;‘_‘.\' LN P

IL.

III.

TABLE OF CONTENTS

INTRODUCTIONcccovvvirrreenennen

A. MOTIVATIONccccovviiimnnnnnns

m o o o

APPROACHoiiiiiiceee

A. SYNTACTIC ANALYSIS

BACKGROUNDccccocvriuninnnnne

SCOPE OF THE THESIS

THESIS ORGANIZATION

IMPLEMENTATION STANDARD ..o,

..

..

1. Diagram Structure and Compositioncccccceeirrruiiriiiniiniiinnnnn.

2. Diagram Traversal

3. Normal Execution

..

..

B. ERROR RECOVERY METHOD ...ooiiii e,

1. Recovery Symbols
2. The Recovery Mechanism
3. Error Messagesc...ccevevuerne
IMPLEMENTATIONccccovvvvunnnn.
A. LEXICAL ANALYSIS
1. Language Symbols
2. Lexical Analyzer Operation ..

B. SYNTACTIC ANALYSIS

1. Syntactic Analyzer Structure

4

..

..

..

..

..

...

..

..

12

12

13

14

14

14

15

20

20

21

24

27

30

30

30

32

33

33

4 80T ey s v

2. Diagram Modificationsccc.coeevriiiiiiiiiiee i creeeceanee e 34

3. Parsing ACLIONSccciiiuiiiiiirnieniniereneriereeneesneresasereenrrnserensenossaens 37

C. ERROR RECOVERYoovevrreumrmmmceamnesessssenssssssssssnecsssnsessenes 38

1. Recovery Data Structurescccccevivuiieerinnniccunienrmeniecrenaseasenenns 39

2. Recovery Mode Operationcccccvmeveeiiirereienneciiennernnsneeecsenns 41

3. Lexical Errors ..ooocoveeeiiiiiiieeiiiiiiiecerececeieeeriivenee e 42

D. ERROR MESSAGE PROCESSINGcccoveiiviiiiiiccnnnceceneen, 42

1. Error List CompoOSItionc.coeevvveniiieiuieeerircimeeniienaerraeemennaeeeeene 42

2. Error Collectionccccciiiiiiiiiiiiiiiieiiniiiiiciiniicireeeeerener e 43

3. Line FOormattingccoceiimmiiiiiiiiiiiiier e receseeeeeteennics e reeeesaeaes 43

IV. TESTING AND DISCUSSION ..coetiiiiiiiresee e seseesccenrenessesenes 44
A. TESTING et e e rae e e e nr s 44

B. REPRESENTATIVE CASEScoooovviueivvvriirrreeceieeetersesesssnes 45

C. DISCUSSION ..oiiiiiii ettt esate s s e e s e e s s 52

D. SUGGESTIONS FOR FUTURE EFFORTSccccceiiiieiinicciienns 54
APPENDIX A: SAMPLE OUTPUT LISTINGS ...coiiiiiciiiiiriicecnanens 55
APPENDIX B: TRANSITION DIAGRAMScccciiiiiiiiiccnncccncnneeen, 62
APPENDIX C: PROGRAM LISTINGS ...ooiiiiiiiiiciiiiiieiiettecceieteeeeescenens 81
LIST OF REFERENCES ...t e et sneceasnsaranees 175
BIBLIOGRAPHY ..ottt ccrincctttinntaer vttt e e e stne s s s sansenssesens 177
INITIAL DISTRIBUTION LISToireceeieeeiiercieneecsessscsnnenesessesanene 178

S
e feos e i e s e e e e e

. W e L.

-— Al

L o a2 0 0 it Pl s e) i e e B B b e e e e e e o e e e T e]
AU R A SN AL LA B R AR A R A AR At . B L A B A liniadht Pl R A N N

1. INTRODUCTION

Syntax error recovery presents a most difficult challenge for the compiler
writer. For a compiler to be a useful software tool, it must accurately recognize,
analyze, and recover from syntax errors. The primary objective of syntactic error
recovery is to permit the parsing mechanism to advance beyond the point of error
detection in order to find and report subsequent errors to the programmer. Many
strategies have been developed to recover from syntax errors, and while they may

differ substantially in approach, they generally are concerned with the following

: goals:
. (1) Detecting as many errors as possible
J (2) Recovering from each error to permit parsing of the remaining text
(3) Generating thorough diagnostic information so that the user may fully
understand the error
' All syntactic recovery methods can detect the presence of at least one error,

but none can guarantee a successful recovery from every error. Since it is
impossible to know the intent of the programmer, it is imperative that compilers
effectively communicate with the user by issuing accurate and informative error
messages and minimizing spurious error reports. One of the major goals of this

research is to improve the diagnostic aspect of syntax error recovery.

A. MOTIVATION

The parser detects a syntax error when the current input symbol prohibits
the construction of a legal sentence in the language, i.e., the parser has entered a
state from which it is unable to proceed. All detected errors fall into one of three
J categories: commission, omission, or substitution. An error of commission occurs
when the parser encounters an extraneous lexical token which, if deleted, would

result in a syntactically legal sentence. An error of omission means that inserting

a lexical token into the input stream would yield a legal sentence. An error of

AR AalV" T RV SR PV e

Aol sl Sk 2y

MACIA T A0n Jhu e e un A te L i /A S den et e a—— s st e

substitution means that the parser has found an incorrect token; replacement is
required to produce a valid sentence. Many strategies for recovery from syntax
errors assume one of the situations above. Some techniques effect a repair of the
error, via symbol insertions and deletions, while soxhe search for a
synchronization point from which the parser can regain control as if no error had
occured. But which of the three kinds of errors is present? In some cases,
determining the kind of error may not be difficult since the surrounding context
provides information with which to analyze the error properly. However,
consider the case where the real error occured much earlier in the source program
and the detected error actually represents a symptom of the problem. In Pascal,
for example, an extraneous "begin" in the middle of a program could remain
undetected through several lines of code before a missing "end" is discovered.
The same holds true for a deletion error where, for example, a missing "if x > y
then" is actually the cause of an error which is detected later at "else". In
situations such as these, the syntactic analyzer identifes the location of the error
symptom, initiates a recovery, and outputs a message which is likely to be an
erroneous or confusing description of the actual problem. More often than not,
the parser loses synchronization, causing further problems with spurious errors,
cascading error messages, and large portions of unparsed text.

Efforts to circumvent these problems take many forms. It is most difficult to
design an error recovery scheme that blends recovery accuracy, security, and
error message quality. The approach presented in this thesis seems promising in
that regard. To establish a proper foundation for understanding the design, the

following section reviews some of the previous efforts in syntactic error recovery.

B. BACKGROUND

Compiler error recovery methods are well documented in the literature.
Since error recovery is a critical aspect of compiler design, many methods have
been tried.

The most common form of syntax error recovery is a method referred to as

the panie mode. This language independent technique is conceptually simple and

easily applied to both top-down and bottom-up parsing algorithms. The scheme

is based upon recovering only on a major terminating symbol, such as ";"

or
"end". Thus, if an error occurs near the beginning of a statement construct, for
example, then text is discarded by the recovery routine until an end-of-statement
token is recognized in the input stream. Although this method offers safety, its
primary disadvantage is obvious: errors in the discarded text remain undetected.
Despite the relatively primitive nature of the panic mode, the concept of
svnchronizing on key symbols is found in a number of different approaches.

Some of the earlier work in syntax error recovery concerns minimum distance
corrections. This refers to the minimum number of symbol insertions, deletions,
or replacements required to render an erroneous string valid. Aho and Peterson
[Ref. 1] devised an algorithm that transformed strings in a time proportional to
the cube of the length of the string by adding error productions to the language
grammar. Lyon [Ref. 2| also investigated minimum distance error corrections
using dynamic programming to choose from among possible corrections; however.
these methods were mainly unfeasible. Levy [Ref. 3] simultaneously parsed
potential correction paths from the point of error, one for each recovery
possibility; however, the computations required often exte. 1 beyond a reasonable
implementation limit.

Graham and Rhodes introduced an error recovery method called phrase-level
recovery [Ref. 4]. This technique was initially configured for operator precedence
parsing and later modified by Penello [Ref. 5] for use in LR analysis. Phrase-level
recovery analyzes the error by examining its surrounding context. where the
objective is to replace the phrase containing the error with a phrase that is
syntactically valid. This is accomplished by a two-phase procedure consisting of
a condensation (analysis) phase followed by a correction phase. The
condensation phase involves bracketing the error context by means of a backward
move, which attempts to perform further reductions on the stack, and a forward
move, which endeavors to parse text beyond the location of the detected error to
select the optimal repair. Although an accurate recovery is often possible with

this approach, the primary disadvantage, as with all repair strategies, is that

8

Y

- -als

DI A SN A G g

MR A Sl A At A i - Sl A s S L s el Al Al A e Sl e

adequate repair becomes impossible if the parsing mechanism loses
synchronization with the input stream.

Many error recovery schemes aim primarily at correcting single token errors,
i.e., single errors of commission, omission, and substitution. However, one

scheme which is oriented toward resolving a cluster of errors is discussed in Tai

[Ref. 6]. This technique involves pattern matching forward of the error location,
and is called a k-correct lookahead corrector. This means that k correct symbols 'C-"v;l"'; "
must be found forward of the error to enable correction. Thus, each pattern
represents a different string containing the error, where the closest pattern "-":.-'I'.;
matching the input sequence is selected as the solution. Two major problems are
inherent in this approach: the possibility of additional errors in the text forward
of the detection point, and the fact that the choice of pattern used to effect the
correction may depend on the symbol which follows a nonterminal whose ?';'w'.."-,:'.l
expansion might involve a large number of tokens.
Ripley and Druseikis [Ref. 7| studied Pascal programming errors primarily to
ascertain the validity of assumptions made by compiler writers in developing
' syntax error recovery techniques. One of the major results of this effort, based
' upon data obtained from several hundred student programs, was that most
programming errors (almost 90%) are single token errors. Additionally, the
observed error density was notably sparse, indicating that a recovery approach
based upon repairing error clusters might not be the best choice. Thus, repairing
errors local to the point of detection on the assumption that the damaged string
represents a single error of commission, omission, or substitution appeared to be

. optimal in view of the study’s results.

Fischer, Milton and Quiring [Ref. 8] developed an LL(1)-based insertion only
algorithm, designed for implementation via a parser generator, where lexemes

have associated editing costs which provide the basis for selecting the appropriate

corrective action upon error detection. This notion of editing costs, or weighting
values, emerged from the work of Graham and Rhodes [Ref. 4], in which the cost
of symbol insertions, deletions or replacements corresponds to the number of

, changes required to the parsing stack to effect the repair. In the insertion-only

PR
KT
‘

e T2

¥

9

N -_._._..".‘;' .‘—- .‘;¢-:., .._..-'.‘-. ..‘..;_..-.‘.." ._:_.‘ = _._ -..;..) B .' .-._,‘:..._—_‘ .~ _'.;_. -...:_‘ :.__-._.,-‘_..'_' ORI

oy T At e

T S p——y A RS A A e e dncte St Sl Jaad Sl il AR Aed el Aol et A ad ol et

technique, only the costs of inserting symbols are computed since deletion or
replacement repair is not performed. Anderson and Backhouse [Ref. 9] improved
upon this approach by using a factorisation lemma introduced by Backhouse
[Ref. 10]. This lemma modified the recovery algorithm to compute the editing
costs required to effect the first repair action instead of the complete repair.
Thus, if the insertion of a three symbol string was required to restore the parse,
the repair routine would be called three times before completely recovering from
the error. This strategy reduces storage requirements and the size of the parsing
tables at the expense of repeated calls to the repair routine.

The concept of editing the input string at the point of error detection was
extended to include deletions and replacements in a locally least-cost error
recovery approach [Ref. 11|. Implementation was accomplished via a parser
generator which output a recursive descent analyzer based upon input BNF
descriptions and editing-cost data for each terminal symbol in the grammar.
This approach calls for string-edit operations based upon weighted values (cost)
computed at point of error, and is applicable to LL(1) and LR(1) parsing
algorithms. cr any which possess the valid prefix property, i.e.. report the
presence of an error immediately after reading a symbol which does not permit
continued parsing. One advantage of this method is that the costs may be
modified either to create a certain level of recovery sophistication or to allow
tailoring of recovery computations (editing costs) to take advantage of the most
prevalent errors or error patterns. The primary disadvantage, however, is that
since corrective action is strictly local to the point of detection, the wrong symbol
may be inserted or deleted due to the absence of context information. Thus. an
editing operation which is performed on an "error symptom" could be potentially
diastrous.

Pai and Kieburtz [Ref. 12] also used local optimal syntax error repair but in
conjunction with a global context recovery, thereby forming a two-level strategy.
In this method, local repair is performed on a detected error, however, if this is
insufficient, a global algorithm is invoked. Global context recovery discards

tokens in the input stream until a fiducfal, or trustworthy, symbol is encountered.

10

-

The stack is then adjusted to resume parsing beginning with this symbol.
Barnard and Holt [Ref. 13] also discuss the use of synchronization symbols to
perform hierarchic error repair. In this method, a separate synchronization stack
holds potential recovery symbols for each nonterminal as it is being expanded
during the parse. Should an error be detected. input is discarded until one of the
synchronizat’ »n symbols is found. at which point the parser is returned to a non-
error state consistent with the chosen symbol.

Although many error recovery strategies are repair oriented. Richter has
recently proposed a noncorrecting method of error recovery [Ref. 14]. In this
technique. the symbol following the point of error detection is selected as the
recovery point. The error is not corrected, but rather the remaining text is
examined to determine whether a valid language suffix follows the error. in a
process called "suffix analysis”. The primary objective of this approach is to
improve the accuracy and content of user error messages, and to prevent the
generation of any spurious errors during the syntactic analysis. One shortcoming
observed thus far, however, is that error detection of improperly nested contructs
may be masked by the presence of an error that is internal to the scope of the
construct.

In another non-repair strategy. Turba |[Ref. 15| discusses an error recovery
approach that parallels the exception handling mechanism in the Ada
programming language. This technique has been implemented for LL(k)
grammars in several programming languages, and is based upon user-defined
recovery positions consisting primarily of the terminating symbols for each
syntactic unit. Recovery sets are statically specified, and therefore do not
necessarily correspond to the dynamic state of the parse at time of error. Thus,
the potential exists to recover on the correct symbol in the wrong context. This
method. while relatively similar to the panic mode, nevertheless takes advantage
of more potential recovery points and avoids discarding large quantities of input

while performing the recovery.

11

PN P TR AT IS I
A W 3 PP I Ty Sy Py .

T T T P o O S TP ST oy 3y W = i g

RPRFY N AR

This thesis implements a top-down syntax error recovery method developed
by R. W. Floyd. Although Floyd’s approach is quite different from “those
i discussed above, a few of the concepts mentioned, particularly the notion of sl
fiducial symbols, have been embodied in the design. Syntactic analysis is
performed by traversing transition diagrams, and the parsing and recovery
mechanisms function recursively in response to detected errors. A complete

[
.
\
- discussion of the approach is presented in Chapter Two.

C. SCOPE OF THE THESIS

This thesis is an implementation of a Syntactic Analyzer that performs
parsing and error recovery operations on Pascal programs. The Analyzer’s
processing capabilities include all syntax-related functions present in a full
compiler implementation: lexical analysis, syntactic analysis (parsing), and
syntactic and lexical stage error handling. Semantic analysis and code generation s o
are not performed. The Analyzer accepts source program text, determines its
syntactic validity, analyzes and recovers from detected errors, and outputs
detailed diagnostics that identify and describe each error. =

The design of the recovery scheme in the context of transition diagram
parsing and the overall structure for the implementation were developed by
R. W. Floyd. Software implementation of the Syntactic Analyzer, coding

decisions, background research, and testing analysis are the accomplishments of N

the author.

D. IMPLEMENTATION STANDARD

The Syntactic Analyzer complies with the Pascal Language Standard
approved by the International Standards Organization (ISO) in 1982 as "ISO
7185 Pascal Standard" [Ref. 16]. It must be noted that the Standard contains a j‘fii
provision for two versions of the language, Level 0 and Level 1 Pascal, where
Level 1 incorporates the specification for conformant array parameters. The
American National Standard (ANSI/IEEE 770X3.97-1983) is identical to Level 0

Pascal. The implementation in this thesis supports Level 1 Pascal.

Although Pascal was used to test the approach, the method described is not
limited to Pascal. Parsing and error recovery algorithms are not dependent upon

the implementation language.

E. THESIS ORGANIZATION

Chapter Two presents the design approach for both the parsing and error
recovery mechanisms. Included are some examples of the actions performed
during recovery that illustrate the recursive relationship between the normal
execution and recovery modes of the syntax analysis. The basis for error message
generation is also presented here.

Chapter Three discusses implementation considerations. The emphasis is on
the components of the Syntactic Analyzer in terms of data structures, control
structures, and program design decisions.

Chapter Four discusses testing of the syntactic analyzer and the strengths
and weaknesses of the error recovery method when applied to Pascal programs.
The appendices contain sample output listings, the diagram parsing specification,

and the program listings with associated coding-level documentation.

13

At At A .'..'.'.'-'.'h--
eV PP I PR

N Y e P Sy e T E X T ET Tw .

N,
v

I. APPROACH | e

The design approach for the Syntactic Analyzer is governed by two major

objectives: to provide the user with accurate and thorough error diagnostic

information and to detect as many source errors as possible to avoid repeated
compilation. Error recovery design is based upon recursive calls to the error Z:'_-_.{-

recovery routine, using intermittent returns to the parsing mode prior to

recovering from the error. This method does not involve an insertion or repair
strategy, but rather is consumption-based, discarding lexical tokens until a
synchronizing symbol is encountered. Syntactic analysis is performed using the
graphic design of language syntax charts to generate implementation data
structures. Both parsing and error recovery operations are controlled by a stack,

permitting recovery symbol generation to depend on each active context. The

remainder of this chapter is devoted to the design and operation of both the

parsing and error recovery mechanisms.

A. SYNTACTIC ANALYSIS
Syntactic analysis is accomplished by using stored language syntax diagrams

to perform a top-down LL(1) parse of input text. Diagrams are traversed via an

iterative controlling routine, using a parsing stack to hold nonterminal activation
records during symbol expansion. Since the syntax diagrams are an integral part
of the approach and form the basis for both syntactic analysis and error recovery,
the concept of parsing from a diagram is discussed in detail below.

1. Diagram Structure and Composition

Syntax diagrams are nothing more than graphic depictions of the produc-

tions in the language grammar. They are composed of three entities: circular or

elliptical figures, rectangular figures, and a series of connecting lines. The circular E‘_f-;:::
figures represent language terminal symbols, the rectangular figures denote non- SN
LR

terminal symbols, and the lines are paths which join the various syntactic units.

e

s’
.
l.l.'.'.‘-'

,. '.,'
O 4
2

e
i' I.'

14

+
PN

[
“

f.

EAGE A AN ek Al At Sudh A bl At Al Sl AP el

All information required to parse an input string is actually contained within the
diagrams. The parsing and error recovery mechanism used here is guided by a
transition diagram derived from the syntax diagram. The transition diagram may
be thought of as a flow chart representation of its syntax diagram counterpart.
Transition diagrams are formed from the syntax charts by specifying the paths of
the charts as either true or false exits from each syntactic unit. Each nonterminal

symbol is represented by a separate diagram. A transition diagram suitable for

conducting parsing operations is created from a syntax diagram by ensuring that
a deterministic path is provided at each branch point. The term boz will be used
to refer to the terminal and nonterminal symbols in a transition diagram. .

2. Diagram Traversal

Parsing is accomplished by traversing the transition diagrams, following
true or false exit paths from each box encountered. To explain how exit paths e
are labeled as true or false, we need to define some terms and illustrate their use.
Syntactic analysis is performed by an LL(1) parse of the input string.

LL(1) means that the nezt symbol determines which production is followed where

a choice between alternatives exists. A lexeme is consistent with a terminal box .
if it is identical to the lexeme associated to the box. A lexeme is consistent with
a nonterminal box if it can occur as the first lexeme in a string derived from the
nonterminal. A true ezt from a box occurs when the box has consumed a string RN
of the corresponding type. In particular, if a box is a terminal box, then a true L:‘

exit occurs from this box after the single associated lexeme is consumed. A
false exit from a box occurs when the first lexeme examined is not consistent with
the box. In particular, if the box is a terminal box, then a false exit occurs if the
current lexeme is not the lexeme associated to the box. The important point
concerning a false exit is that no input is consumed. A third type of exit called

the error ezt is used to control error recovery. Error exit paths are not shown

explicitly in the diagrams but their occurence is implied. An error exit occurs s
from a box if after consuming non-empty input, the box is unable to find valid A

..
3,
&

v'r\ X

"o %-‘
P
N
-
Ry
.

input. A specific occurence of an error exit will be illustrated later in an example.

The last term to define is commitment. When a box is entered, the current

15

(')
. "
AR

,

.

Yy

PafCOIC IR SN AL AR AT A0 g R - A T N N R i A

lexeme is found to be consistent and input is consumed. Once this occurs, we say

that we are committed to a true exit from this box.

- A7 . true _.1 A1 .true
'false
A2 true A2 true
‘false
—w A3 true A3 | true

Figure 2.1 Syntax vs. Transition Diagram

Figure 2.1 illustrates the diagram convention. Notice the explicit representation
of the true and false exit paths, where true paths leave boxes to the right and
false paths emerge downward. Notice also how it is easier to visualize a false exit
path from a transition diagram than from a syntax diagram. Remember, though,
false exits do not indicate that the box was actually entered, but only that it was
ezamined for entry. In Figure 2.1, if an instance of Al is found, a true exit is
taken and input is consumed; otherwise a false exit to A2 is taken and no input is
consumed. If the first lexeme is consistent with Al, thereby eliminating A2 and
A3 as alternatives, but an instance of Al is not found, then an error exit is taken

which is not shown explicitly.

]
!
1
I S
I
1 SRR
! Simple e
: Expression TERM ¥
|
I
|
|
; {
I
I
|
!
| | ‘ l
R [! ‘
o e e e e oo e o e e e e e 22 .
L " Return
| false)
- .
'_'_; Figure 2.2 Transition Diagram for Simple Expression

Now let’s see how a diagram is traversed. Figure 2.2 shows the transition
diagram for Simple Expression. Notice the dotted box which encloses the
diagram. This outer box is shown in order to relate a box of type Al in Figure
2.1 to this illustration, i.e. we are effectively looking at the "inside" of a nonter-
minal box, where the nonterminal box stands for the corresponding diagram (to
avoid infinite regress). Thus, parsing is accomplished by a series of recursive
3 diagram calls. Notice in Figure 2.2 the larger arrowheads containing "+" and "-".
_-l These arrows correspond to the true and false exits shown above in Figure 2.1 for
Al, where "+" is used for true and "-" is used for false. The reason for the initial
downward extension on the false arrow from Box #5 will be discussed shortly.

These exit paths, while true and false exits, have a special significance because

17

they indicate points where diagram traversal will conclude. These will be

referred to as return true and return false. The following definitions apply:

return {rue -- the transition diagram has consumed a phrase of the specified
type.

return false -- the diagram, by inspection of the next lexeme, found without
consuming input that no phrase of the type was present.

Now let’s walk through the diagram in Figure 2.2 and see what can occur
at each box. The key to understanding the diagram parse is to realize that each
box must uniquely specify where to go for both true and false exits. A traversal

table of true and false exit paths will assist the reader in following the diagram.

Traversal Table
Box True False
1 (adding operator) 2 4
2 (Term) 3 Error
3 (adding operator) 2 5
4 (Term) 3 Return
false
5 (or) 2 Return
true

Box #1 (adding operator) contains a true exit path to Box #2 (Term) and a false
exit path to Box #4 (Term). Box #2 (Term) contains a true exit to Box #3
(adding operator) and an error exit if Box #2 finds no "Term" and takes a false
exit. The only way an error exit can occur in Simple Expression is to consume
input at at least one of the boxes, and then subsequently look for a Term when
the current lexeme is not consistent with an instance of Term. It should be clear
that terminal boxes have no error exits, although they may lead to error exits of
enclosing nonterminal boxes. Boxes #4 and #5 contain the exits for Simple
Expression. If an instance of Box #4 (Term) is not found, then traversal has

completed in this diagram and control returns to the calling nonterminal box.

BAGE A B Al Al S Ak bl Ak Ral Sa Aas redPalmie sl CRi - She S S San At e libe S fun o' 0 B d

IR
2" o ~y . - -
._" Df"

f.;%

s

.:'- S

"x' ‘.I'"l s
-

&s

CA NS,
Sy
fua

8 F i d IR BN

i B 4
O SR ¢

JRRaal MO

Box #5 is the only box in the diagram from which an instance of Simple Expres-
sion is reported as true to its calling nonterminal. This box is particularly
interesting because a false erit from Box #5 ("or") results in a return true ent
from the diagram. Earlier, we alluded to the arrow first extending downward
and then to the right. This is because of the false exit from Box #5 followed by a
return true exit from the diagram. Finally, the purpose of the two Term boxes
deserves special mention. Note that an initial "adding operator"” is optional since
Term is the first box in the diagram from which a true exit must be taken in

order to recognize an instance of Simple Expression. Now look at Figure 2.3.

Simple ‘ —
Expression TERM 1 TERM Vo

Figure 2.3 Syntax Diagram for Simple Expression

This is a syntax diagram for Simple Expression contained in Grogono [ref. 17].
Notice the optional path around "adding operator" and observe that if a false
exit is taken from the leftmost Term box, there is no way to determine whether
input has been consumed. Conversely, Box #4 in Figure 2.2 can only be reached
if input has not been consumed (during the current traversal). Thus, Box #4
enables a return false on Term if input has not been consumed and Box #2 con-

tains a false exit from Term if input has been consumed. This is typical of

19

o
DA RN
Latatlatua sl

-

T 1 & ¥V 5. ¥ ",

changes required to transform the syntax diagrams into deterministic transition
diagrams. Diagram implementation changes are discussed in Chapter Three.

3. Normal Execution

To summarize diagram traversal and control, parsing is performed by a
sequence of recursive calls on the transition diagrams which represent the nonter-
minal box expansions. A stack is used to hold nonterminal activations during
diagram traversal, and transitions occur according to the exit criteria described
above. When a nonterminal box is encountered, the header for the corresponding
diagram is located and transitions through this new diagram continue until either
a return true or return false condition is reached. Control then returns to the
nonterminal box in the calling diagram from which the true or false path is fol-
lowed based upon the exit condition. If an error exit is taken from a box, then

the error recovery routine is invoked.

B. ERROR RECOVERY METHOD

As mentioned above, the error recovery strategy involves recursive calls to
the error recovery routine. Error detection causes a recovery activation record to
be placed on the parsing stack, invoking the error recovery routine. While
recovery is active, input lexemes are discarded until a either a resynchronization
or restart symbol is found (the set of recovery symbols is described below). If the
symbol is a resynchronization symbol, the recovery activation record is popped,
parsing mode is entered, and the recovery process is complete. If the symbol is a
restart symbol, the recovery activation record is not popped, and the parsing
mode is recursively entered, suspending the recovery process. Error recovery
mode resumes when the recovery activation record becomes the top record on the
parsing stack, continuing processing of the error which caused the initial entry

into recovery mode from normal execution.

20

“ e e v a e - »
B et e e L

This method of error recovery offers several advantages. One is that more

text will be parsed instead of discarded., permitting more errors to be detected.
Another advantage is that cascading errors are avoided because potentially good
text is not discarded while waiting for the "correct" symbol to appear (which
may be several lexemes beyond a good restart point). A third advantage to this
method is that the shared parsing/recovery stack, in conjunction with the
recursiveness of the error recovery process, enables the syntactic analyzer to parse
a large, heavily nested, error-laden language construct without risk of losing
synchronization. The sections which follow describe the composition of the
recovery symbol set, operation' of the recovery mechanism, and generation of
error diagnostic information.

1. Recovery Symbols

The contents of the recovery set is a key factor in determining the
success of the error recovery. Two types of symbols comprise the recovery set:
resynchronization symbols and restart symbols, which cause recursive entry into
the parsing mode. All terminal boxes are potential recovery points in the
transition diagrams.

a. Resynchronization Symbols

The set of resynchronization symbols is created from the stack of
activation records upon entry into recovery mode following error detection. For
each activation record on the stack, the corresponding diagram is examined for
terminal symbols which are reachable by the paths from the box where the last

true exit was taken. For example, in the erroneous segment:
var next,last: integer,

where the error is "comma instead of semicolon detected after integer", the
lexemes "," ":" and ";" would be resynchronization symbols, since they are
the only terminal symbols reachable from the true exit of Type Denoter (see

Figure 2.4); "var" is not a resynchronization symbol in this case.

21

ST e TeTe e

NI T S G ROy
PP SPREAN QR S PURE S SE wP p S S

Var
Declaration

‘ -7 " true
TYPE L7 exit
identifier PENOTER -; —
: error
T T Texit

Figure 2.4 Transition Diagram for Var Declaration

Thus, searching the diagrams for recovery symbols is a matter of following true
and false exit box paths to the end of the diagram. Since each diagram with an
activation record on the stack is searched, the resynchronization component of
the recovery set is the union of all resynchronization symbols which are reachable
from the last true exit at any level of recursion. Should more than one recovery
activation (and therefore, more than one recovery set) be present on the stack
simultaneously, then the resynchronization set becomes a union of sets. Figure
2.5 depicts an erroneous Pascal code segment, the stack at time of error, and the

symbols generated at each level.

22

......
™ T e e
.-

program test;

begin
x:= 1;
if x >y > zthen k. -
writeln(x) R
else
writeln(y) L
end. o
RN
.. -\'
Stack:
If Statement -—---> "then", "else" i -
Statement '
Compound Statement ----> "end", ";" R
Block T
Program —---> " ' AR

Figure 2.5 Stack During Error Recovery

The error in Figure 2.5 is an illegal "If Statement"”, detected by the parser at ">"

following the Boolean expression "x > y". Notice that no symbols are generated
for Block since only nonterminal boxes (Const Declaration, Var Declaration, and
so forth) are contained in the diagram for Block, and also none are generated for
Statement, which (in this case) only calls If Statement. Recovery occurs as soon
as a lexeme in the input matches a symbol in the recovery set. Here, the recovery
occurs at the Statement level on then. If the set were to contain any duplicates,
such as two else symbols, then the symbol which is associated to the most recent

stack activation would be selected for recovery.

23

.......
.....

| mea Andina o o aue o g oo - MR S ok a s

Al ok ook

b. Restart Symbols

Restart symbols cause a suspension in the recovery process and
reentry into the parsing mode of syntactic analysis. These symbols are responsible SO
for the recursiveness of the recovery process and for parsing rather than :
discarding text while performing a recovery. This set consists of symbols whose
position in the transition diagrams is unambiguous -- specifically. any lexeme
which occurs only once as a first symbol in a transition diagram. For example,
begin occurs only once in the diagrams, as the first symbol in Compound
Statement. However. var could signify either the beginning of Var Declaration or
of the sequence "var x: integer..." in Formal Parameter List, and therefore is not
a restart symbol. The recovery procedures associated with both the restart and
resynchronization symbols are discussed later in this chapter.

2. The Recovery Mechanism

BIR sk 4

Entry into the recovery mode occurs either upon an error exit from the
transition diagrams or when the top activation record on the parsing stack is a
recovery activation from a previous error. In the latter case, resynchronization
symbols have already been generated and the recovery simply "picks up where it 0
left off". Otherwise, a new error has been detected, a recovery activation record is
pushed onto the stack, and recovery set generation begins.

The operation of the recovery mechanism is illustrated by two erroneous
Pascal programs. Consider the following code segment, which contains an error
that demonstrates the two types of recovery mode operations: A

program test;
begin

if x>y than
while x < z do

x=x+1
else S
begin...end; { .
writeln S

end.

-~ RO A At R U S Mt et Tt A A O At Dot I A Tt A 8 S Al Bt B i St A -0 B B Bt e S s S

Recovery mode is initially entered upon detection of the identifier "than", where
the reserved word then was the required lexeme. The recovery set generated as a
result of this error includes, among other symbols, the lexeme else, since it is a
resynchronization symbol and it is reachable from the last true exit in the
transition diagram for If Statement. Since "than" is an identifier (which is not a
member of the recovery set), it is discarded by the recovery routine. The next
lexeme delivered from the lexical analyzer is while, which is a member of the
recovery set as a restart symbol. At this point, the recovery mode is suspended,
an activation record for While Statement is pushed onto the stack, the transition
diagram location pointer set to point at the while box, and normal execution
(parsing) mode is re-entered. The stack upon resumption of the parse is shown

below.

While Statement

-~ If Statement{RECOVERY)
If Statement
Statement
Compound Statement
Block
Program

Notice that the recovery activation for If Statement is still on the stack,
indicating that recovery for this nonterminal has not yet occured. After parsing
While Statement, the old recovery record is now visible, causing a recursive call
to the error recovery routine. Since the next lexeme is now else, and the
previously generated recovery set for If Statement included else. recovery will
occur immediately. The recovery record is then popped (since an error is not

pending for this activation) and normal execution is reestablished.

25

Now let’s examine a more complicated error sequence. The Pascal
program shown above has been modified to create multiple errors, which will

result in three pending recovery environments on the stack simultaneously:

1 program test;

2

3 begin

4 ifx >y than

5 while x < z doo
6 begin

7 x=x+1

8 if x > 0 then
9 =1z-1
10 end

11 else

12 begin...end

13 end.

The errors contained in the program above are as follows:

"than" instead of "then" in line 4

"doo" instead of "do" in line 5

a missing ";" in line 7

When the recovery routine encounters if in line 8, the stack is in the following

configuration:

Top ---->

If Statement

Compound Statement(RECOVERY)
Compound Statement

While Statement(RECOVERY)
While Statement

If Statement(RECOVERY)

If Statement

Statement

Compound Statement

Block

Program

..........

- .-
........ . .
. . WS e
LA SO A EN AN

v’
g e e e T
P AP

T e
AN

"-

""'Y:r RYIA

..
v
[
.

e g
LA R
.

’
s’

“,
” .
o
.

T

27,
»

A/
[

7
-
[,

i CaDwsDeie A

Syntactic analysis of this program results a sequence of transitions between the

parsing and error recovery modes as listed below:

Recovery mode entered on "than" in line 4

Recovery mode suspended and parsing mode re-entered on while in line 5

Recovery mode entered on "doo" in line 5

Recovery mode suspended and parsing mode re-entered on begin in line 6
Recovery mode resumed on if in line 8

Parsing mode re-entered on if in line 8

Recovery mode resumed on else in line 11

Parsing mode re-entered and recovery mode complete on else in line 11

Upon recovering on the else in line 11, the recovery routine configures the stack
to permit parsing to resume in the context of the if in line 4. This also pops the
While Statement recovery activation, since the "while" construct is nested inside
the "if" construct.

The two examples above typify the operation of the recovery mechanism.
Chapter Four discusses several erroneous program segments to illustrate the
effectiveness and accuracy of the error recovery method.

3. Error Messages

The primary objective of this approach was to implement a syntactic
analyzer which could provide accurate and informative error diagnostics. By
developing the syntactic analyzer using stored transition diagrams, the data
required to generate high-quality error messages are readily available and
obtainable from the boxes themselves. Because error messages are based solely
upon information contained in the boxes, replacing or modifying transition
diagrams has little or no effect upon the error handling routines. The following
sections elaborate on the various components and procedures involved in the

error computation and generation process. Implementation issues concerning error

messages and error handler functions are addressed in Chapter Three.

T S A A AP P
ks W, W, VRSP VRIS PRV Wy R Y

a. History List
The history list is a collection of box names that represents the
history of the parse within the current diagram at the time of error detection.
This list corresponds to those box names (terminal or nonterminal) from which
true exits were taken prior to entering the recovery mode. Thus, the following

segment

begin
x:= 1;
if x > y then
write(x);
else...

would generate the following history list upon detecting the error "statement

cannot start with "else":
begin <statement> ; <statement> ;

This information is available by accessing the top activation record on the stack
(the current diagram being parsed). Each time a true exit occurs, the history list
increases by one. Thus, the user is provided a narrative summary that is
particularly useful in locating non-trivial errors or in finding errors that were
actually made earlier in the code, such as in a large, heavily-nested compound
statement.
b. Legal List

While the history list provides the user with a summary of correctly
parsed constructs prior to error detection, the legal list is concerned with "what
could have been". This list contains only terminal box names and consists of the
Select set, or all of the permissible terminal boxes in the syntax which could
immediately follow the box which represents the parser’s last true exit prior to

the error. Thus, in the Type Declaration segment

type length = ..60;

28

'

fety bt ™ SIC I
: .'.'.'»‘.' N "’ ’ ‘e
e, L AN I v
I AN e

4,
a_ s -
NN

T

LIt
.

il A ok Snd Ans suk sad ol

the following items below could immediately follow "=

"identifier”, "adding operator”, "unsigned integer”,

nouamn
. ki

"unsigned real”, "character string", "(

"packed", "array", "record"”, "set", "file"

- If a procedure block contained a "declaration out of order” error, such as

var i: integer;
type length = 40..60;

(where "type" must come before "var"), then the error would be detected at b.o-
"type" and the legal list would consist of "procedure", "function", and "begin". S
The legal list is set empty whenever a true exit is taken and augmented by every
- terminal for which a false exit is taken.
c. Composite Message
The third component of user diagnostic information is the name of
the diagram in which the error was detected, which is simply the name of the
diagram for the activated recovery. So, combining the information components,

the erroneous segment

X procedure compute(x,y: integer): integer;

would yield the following error message: ‘_f‘_-‘:'.-j

Bad "proc/func declaration" :
Recognized: procedure identifier <formal parameter list> “

g Legal would have been: ";" ROk

In addition to the narrative diagnostic aid, a pointer to the source

text marks the error location, and text discarded during the recovery process is E

underlined so that the user will readily see which portions of the program were :.f_::f

affected. Additional discussion concerning these features and other error :

__ implementation issues are presented in the next chapter. ‘-’-f
. -
i

29 G

r
D

’
st %
s,

-,
'

e

7

N e Vet .t TR M - BT e e e e Y T T . . o . AT T e

1. IMPLEMENTATION

The purpose of this chapter is to describe the primary modules of the
Syntactic Analyzer in terms of major implementation decisions, data structure
employment, and the function of key subroutines. Discussion is divided into four
sections: lexical analysis, syntactic analysis, error recovery, and error message
processing. Although this chapter is concerned with certain implementation
details, specific coding-level and algorithmic comments are included with the

program listings in Appendix C.

A. LEXICAL ANALYSIS

The first phase of compilation is lexical analysis, which provides the interface
between the input and syntactic analysis phases, and concerns combining
characters into single language units. The Syntactic Analyzer is configured for
one-pass analysis; however, since co-routines are used to implement lexical and
syntactic functions, lexical processing is discussed as a distinct phase. The input
to the lexical anlayzer is a source program which is scanned as one continuous
character stream, and the output is a sequence of lexical units called lezemes.
This section defines the Pascal language symbols and constructs which comprise
the lexeme set, and discusses the manner in which the input source text is
processed in order to produce the lexemes.

1. Language Symbols

This implementation recognizes all word symbols, special symbols, and
characters as defined by the Pascal Standard. The following describes the various
units of the language which are forwarded to the syntactic analyzer as lexemes.

a. Word Symbols

All Pascal reserved words become lexemes. In addition to the thirty-
four reserved words, the required procedures "write" and "writeln", as well as the

directive "forward", are also included among the word symbols.

Adal et Ak B ESA DA D A

- -

DA A" Al L WL Al A M S Al Sl AR i S h SR B s S e & Al Al Sl

b. Special Symbols
All special symbols become lexemes. This category includes both
single character symbols, such as '+’ and -’, as well as multi-character symbols
such as =" and '<>’'. While all word symbols are given a unique lexical
representation, not all special symbols are regarded as different lexemes, i.e., '<=’
and '>’ both generate the same lexeme since they are syntactically equivalent as
a "relational operator".
c. Alternate Symbols
The Pascal Standard permits an alternate representation for selected

.~

symbols, i.e., '@’ may be substituted for to denote a pointer, and each
alternate symbol is recognized by the Analyzer and processed as a lexeme.
d. Identifiers
Although some implementations may recognize an identifier at the
syntactic level, it is formed here in the lexical stage. An identifier is a letter
followed by zero or more letters or numbers in any combination.
e. Numbers
This category includes unsigned integers and unsigned reals. As with
identifiers. real constants are not formed at the syntactic level. For example,
56.5 is not recognized as
<unsigned integer> <period><unsigned integer>

but rather is recognized as

<unsigned real>

In order to permit lexical handling of errors which occur in specifying constants,

an unsigned real number is recognized according to the following:

any sequence built from digits, ".", "E", "E+", "E-", and not starting with
"E" is treated as a (possibly illegal) number.

Thus, 1.23E-4+ will be recognized by the lexical analyzer as
<unsigned real><adding operator>

Processing of lexical stage errors will be addressed later in this chapter.

31

PR RS
'.’*‘~:‘:-
. .
- !‘\
A

AV Y
DO
A
aZlm¥yay
H {
- ey
e Wla
N
Al

e e T e A e - T P .y — L nd s aud st s en el e e LAt snih gl adh Sediaid Anth Bad Snd A And Andh ied ans |

LA

LA

f. Character Strings and Illegal Characters
.':f Any Pascal string constant becomes a lexeme. Any character scanned
E by the lexical analyzer (except those contained within comments and string
F constants) which is not a member of the Pascal Standard character set is
recognized as an illegal character and will result in the generation of an illegal
character lexeme. If successive illegal characters appear in the source text, then

only one error lexeme will be produced, as in:
type word = pack$#%ed array|[1..20] of char;
but the following will result in three illegal character lexemes:
type word = pac#k%ed# array[1..20] of char;
where the illegal characters in the preceding examples are: #, $, and % .

2. Lexical Analyzer Operation

The lexical analyzer. also known as the scanner, is divided into two
major subroutines for processing source text. One routine is responsible for word
recognition (anything beginning with a letter, which includes the reserved words
and identifiers), and the second routine generates lexemes for all other symbols.
The lexical analyzer communicates with the syntactic analyzer via a lexeme
buffer. The lexical analyzer performs a character-by-character scan of input text,
removing white space and line feeds until the packed group of character(s) forms
a lexeme. Control then returns to the syntactic co-routine (parser). The

following paragraphs briefly describe the structure and operation of the scanner’s

two lexical processing components.

a. Word Identification

A word buffer holds scanned input until the current input character

is neither a letter nor a digit. Buffer contents are then compared against a stored £ .

AR
]

array of reserved words. If a reserved word is found, the array index is returned

'l
e

. as the lexeme; if it is not found, then an "identifier" lexeme is returned to the

s s

-

s
.

f’ ’.

calling routine.

. "w:
v %

o,
y e

32

.

-y

o 8,
s "2 'y 7
. LR R}
R It

ARt e et s ke e A o DAY LTS A g e A C e L e Aot SR S AR cT

b. Symbol (non-word) Identification

The symbol identification section of the lexical analyzer is table- ‘

I driven and simulates the operation of a finite state automaton. A two-
dimensional array, indexed by current state and input symbol, is initialized with

- the required transitions for each input symbol/state combination. Transitions

. through the table continue until an accept state is reached, at which point the

lexeme for that state is returned. The table generates lexemes for all symbols
except identifiers and reserved words, and also filters any source text which is

enclosed within comment symbols.

l B. SYNTACTIC ANALYSIS
V Syntactic analysis is accomplished by means of a top-down. deterministic
traversal of transition diagrams derived from the syntax charts. Unlike recursive

descent parsing, where separate routines are developed to process each

-,

nonterminal, this method is implemented with a stored transition diagram for
each nonterminal and an iterative controlling routine. It is important to note
that having the transition diagrams as data is essential to diagnostics and error
recovery. As in predictive parsing, activation records are explicitly stacked;
however. the records used here contain pointers into the transition diagrams. The
following sections describe the structure and implementation of the diagrams and
. parsing mechanism.

1. Syntactic Analyzer Structure

The syntactic analyzer consists of two components: the transition

diagrams and a parsing stack. The diagrams are represented by a set of records

@S

and the stack is implemented as a linked list.
As discussed in Chapter Two, diagrams contain boxes which represent
language terminals and nonterminals. Each box corresponds to one record in the
. set and includes fields which specify box type, box name, lexeme code, true exit

pointer, false exit pointer, and for nonterminal boxes, a pointer to the
corresponding diagram. The parsing stack is implemented as a linked list of

records, where each element of the list is an activation record for one nonterminal

33

WALSDS NG

[N P I enl . N AP U S Wy L I AU WAy Sy 1

Tyvrvr T T vTTervwy

being parsed. Two kinds of records may be stack elements: one for normal
execution and one for recovery operations. The following describes the

I information contained in each type:

Normal Execution:

a. return address -- the location of the parse (position within the

! transition diagram) when the activation record is created . . __’
b. diagram head -- a pointer to the header box of the active diagram
¢. location pointer -- current box postion in the diagram set

ol
' d. last true exit -- the last box within the active diagram which was . #

successfully recognized

e. history pointer -- a pointer to a linked list of all true exits taken in

i the diagram while the activation record is on the stack

Recovery:

a. diagram head -- used to identify the affected diagram for the error

' message
b. last true exit -~ provides a starting point for recovery set generation
c. recovery set pointer -- a pointer to the set of recovery symbols

i d. parent record pointer -- used to point at the level of stack that
represents the diagram to which a recovery symbol belongs

2. Diagram Modifications

This section describes the changes required to the syntax diagrams to

’ create transition diagrams that permit accurate error position identification and
,_: deterministic parsing. As we alluded to in Chapter Two, it is insufficient merely
to extract published syntax drawings, create a box for each symbol, and create
. pointers for each line. A complete set of transition diagrams for Pascal is
contained in Appendix B, and those boxes which pertain to the changes discussed
here are clearly marked. Diagram modifications may be placed in the four
N categories described below.

»

b

IR TR I R R R I A w et L,
PRIV IR TS T T I P NI WA, AL WS

‘!- L3

a. Alternate Path Modifications

Changes in this category involve those diagrams which contain a box
that can be reached in two ways, one of which consumes input while the other
does not. Figure 3.1 depicts the difference between a syntax and transition

diagram in representing alternatives.

—_l - A B t—m——= ‘J—}
B

—7

(a) v (b)

—» A |=——e{ B1 ! -
I
f

Figure 3.1 Alternate Path Modifications

Notice that at box B in the syntax diagram (3.1a), it is not possible to determine
whether input has been consumed. Since parsing requires each box to have
unique true and false pointers, a modification is required. By adding a box Bl in
forming the transition diagram (3.1b), an error exit is taken from B1 if input was
consumed, and a return false exit is taken from B if input was not consumed.
b. Looping Modifications

Changes in this category apply to those diagrams which permit
multiple occurences, such as the Var and Type declaration parts in Pascal. This
modification concerns those boxes which require at least one true exit, followed
by zero or more true exits, prior to returning from the diagram. Figure 3.2

illustrates the modification required.

Figure 3.2 Looping Modifications

The syntax diagram (3.2a) provides no indication that at least one true exit was
taken at box B. Conversely, the transition diagram (3.2b) shows that the first i _M -
box B is required and that additional "loops" are optional. Thus, by adding
another box, an error exit is taken if B is not found and a return true exit is
taken if one or more occurences of box B are found. -
c. Syntactic Modifications L

The Analyzer, unlike a working compiler, does not retain the
declared type of identifiers, and can’t tell what symbols should follow an identif-
ier. Since LL(1) requires that the next lexeme allow an unambiguous choice

between alternatives, identifier boxes must be left-factored as shown below in

Figure 3.3.

TS
.

.....................

................
. PR

N ati-ane ol SR Nl bt aut aeid i afid aeed deeh o' ot o)

Y

A —] ident —’1 A’

becomes

es]

Figure 3.3 Factoring Modifications

d. Empty Statement Modifications

The existence of an empty statement in Pascal requires a special N
adjustment to the transition diagrams. If the empty statement is included as an
alternate form of Statement, this violates the convention that a true exit implies

input has been consumed. Normally an empty statement would be recognized by

g ".."."‘."r et

default if none of the Statement start symbols were found. But by specifying a
return false from Statement and recognizing the presence of an empty statement
in the calling diagram, the correct parsing structure is maintained and confusing
error messages, which report successful recognition of an empty statement at a i,\
point where a statement start symbol is expected, are avoided.

3. Parsing Actions

Parsing begins when an activation record for the first diagram (Program)
is pushed onto the stack. The location pointer is initialized to the first box in the b [
diagram, and the lexical analyzer deposits the first lexeme into the lexeme buffer. \
Parsing from this point is simply a traversal through the transition diagrams, "

which advances based upon the following:

(1) If the location pointer points to a header box, then set the location

pointer to the next box (first syntactic entity) in the diagram.

37

ERL VAT VLIPS
[S BB T ol L SR

et g 02 it e o E e e g a s atl Sam e Ve AN SR SREC N N S SIS AR e i i RS deeu s o - Paliatt b St R St e it S S A S AR Rt B

(2) If the location pointer points to a nonterminal box, then push an
activation record onto the stack and set the location pointer to the

header box of the appropriate diagram.

(3) If the location pointer points to a terminal box, then compare the
contents of the lexeme buffer with the lexeme associated to the box.
If they are identical, set the location pointer to the box specified by
the true pointer and consume the lexeme; otherwise, set the location

pointer to the box specified by the false pointer.

I Parsing continues in this manner except when the location pointer is one of the

following:

Return true -- the current diagram has been successfully completed. Pop the
stack and set the location pointer to the true pointer contained in the return
address box.

Return false -- no true exits were taken in the current diagram. Pop the
stack and set the location pointer to the false pointer contained in the return
address box.

i Exit error -- the buffer contains a lexeme which does not allow parsing to
continue. Push a recovery record onto the stack and enter error recovery
mode (discussed in the next section of this chapter).

Syntactic analysis concludes when the next lexeme is the end-of-file lexeme and

the Program activation record is popped off the stack.

C. ERROR RECOVERY

Error recovery mode is entered for the purpose of resynchronizing the parse.

As discussed in Chapter Two, there are two conditions which dictate a transition
from normal execution: 1) recognition of a new error, and 2) the presence of a
previous error recovery activation record at the top of the parsing stack.
\ signifying completion of a restart phase. This section discusses the
implementation of error recovery operations. Specific subroutine comments are

included with the program listings in Appendix C.

D R e e et
PR S S el P A S TP ") £

Lo ana s g T S S A e et e Javlan S Sh VA IR i B i il A AR MM SR A e A4 ol ok SBD 0eh 2AS ah ade aae Sassier o SRS SRR

1. Recovery Data Structures

Since the parsing stack is a dynamic structure, it follows that error

recovery procedures should also function dynamically in restoring the state of the ‘

parse. The error recovery mode creates or accesses four dynamic list structures.

One list is an error recovery tree, which is constructed and traversed in

I R

generating the set of recovery symbols. Two are linked lists which hold the
' resynchronization and restart symbols, and one is a list containing error records

as nodes. where each node represents a separate error occurence and includes the

various pointers which provide access to the message data. For clarification
I concerning the recovery sets described below, the term recovery symbol list refers
to the set of resynchronization symbols which are dynamically generated
following error detection. A recovery set consists of both resynchronization and

restart symbols. _. Sz

Pl and
.
¥

a. Recovery Tree

The recovery tree is a series of nodes which are created and traversed

for the purpose of dynamically creating a set of potential recovery positions
within the transition diagrams. Each node in the tree represents a diagram box
which is reachable from the box that yielded the last true exit prior to error
detection. A "depth first" search of the tree is performed to generate the

recovery symbols.

£ SRR SR

b. Recovery Symbol List

v oz

4

The recovery symbols collected during the tree traversal are
contained in the recovery symbol list which "extends" from the recovery record

on the stack. The following information is stored in each node:
(1) symbol name
(2) lexeme code

(3) a pointer to the location of the symbol’s box in the transition

K—T-T'V-.Wv"."' 1 vvvr. | e S O
L . Tt B

diagrams.

(4) a pointer to the activation record on the stack that represents the

transition diagram which contains the box for this symbol.

39

T T T P U oo T T WY VYW T T v

When the buffer lexeme matches one of the lexemes in the list, parsing resumes
at the box which is pointed to by the true exit pointer of the chosen symbol’s box
(#3 above). Since more than one recovery activation may be present on the
stack simultaneously, a union of existing sets is formed by joining the list
pointers, with the most recent list first. Figure 3.4 illustrates the parsing stack
and a recovery symbol list which represents a union of symbols from pending

recovery activations.

Top --—-- >
RECOVERY e to —-ﬂ do ——’! downto
p r——f—— ::j‘_:.
For Statement ./ — K
| Statement it - 1
"%l end .] T
RECOVERY ot €O L —ﬁ . i

Block

i Compound Statement
|
|
|

Program '+—

Figure 3.4 Recovery Symbol List

c. Restart Symbol List
This list is created during initialization of the transition diagrams. If
a box has been designated as a restart lexeme, then a node containing this sym-
bol is added to the list, along with the address of the diagram whose activation
record belongs on the stack if the symbol is selected as a recovery point.
d. Error Record List ’
Once a recovery activation record has been pushed onto the stack,
and prior to beginning the recovery process, a record of error information is

created. This record contains the history list pointer, legal list pointer, source

40

v v
s

s
SR ANAa

position pointer, and affected diagram name. This record then becomes a node in
a linked list which contains all of the data for each error on the current source
line.

2. Recovery Mode Operation

Three primary actions are required of the recovery module: generate the
recovery set, search for a recovery symbol, and restore a normal parsing
environment. If the recovery mode has been resumed, then only the latter two
apply, since the previously generated set still remains as part of the old recovery
activation record. The following briefly describes the implementation of these
operations.

a. Generating the Recovery Set

Recovery set generation is implemented by means of a recursive
controlling routine which builds and traverses the recovery tree in preorder
(root-left-right). The recursion halts when either all diagram boxes (reachable
from the last true exit) have been examined. This process is performed for each
level of stack, i.e., the routine "walks down" the parsing stack, adding any
symbol to the recovery list which has not yet been generated for the current
activation.

b. Searching For a Recovery Symbol

Following recovery set generation, input is consumed until a recovery
symbol is the next lexeme. Duplicate symbols may be present in the recovery set
only if the set represents the union of two or more recovery lists (where the most
recent, or nested, symbol would be selected). An error display handling routine is
been discarded during search) for later use in underlining the affected segments.

c¢. Restoring the Parse

If the recovery symbol is a restart symbol, then a new activation
record is pushed onto the stack and parsing resumes within that diagram at the
box pointed to by the true exit pointer of the restart symbol’s box. Otherwise,
activation records are popped off the stack (if required) until the correct record

for the selected symbol is on top.

41

LIS Sl et S atiedl e Aol

R

- £, Pt g
gty 2y 5y e Ty
v Ij'"'.’"/
LR IO
PRSI R

4,0
=
A

>

3. Lexical Errors

While the primary purpose of the Analyzer is to process syntactic errors.
a brief mention is made here concerning lexical errors. Many lexical errors are
corrected in the lexical analysis stage. If the scanner generates an invalid reai
constant error, for example, a lexeme adjustment routine is called to record the
error (for later display with any syntactic messages) and modify the lexeme so
that a valid real constant is returned. If an illegal character is detected. however.
the error lexeme is passed onto the parser to permit the initiation of appropriate

recovery action.

D. ERROR MESSAGE PROCESSING

As discussed in Chapter Two, the information needed to generate error
messages is easily obtained by collecting the data during diagram traversal. The
history list is updated each time a box true exit or a diagram return true exit is
taken, adding a new entry for the lexeme or nonterminal box, respectively. The
legal list is updated each time the buffer lexeme fails to match the lexeme
associated to the box, i.e., upon every false exit from a lexeme box. Thus, the
major portion of the message production process concerns those operations which
are required for display formatting. As with the recovery routines, message
display processing is performed almost exclusively using linked structures.

1. Error List Composition

There are three components or sources of error information: lexical stage
errors, syntactic errors, and discarded text. Each error component is implemented
as a linked list. In the syntactic error list, the nodes represent error records, one
record for each syntactic error on the line, and contain the various error pointers
such as the history list pointer. The lexical list contains the error position and a
buffer with the text of the message. The discarded text list is a sequence of

nodes, where each node contains start and stop source positions that bracket the

corresponding text positions which require underlining.

vvvvvv

e b 2N B
AN
v ¢ 8t
b T e
ARRI AR

it

"
Y
I

=

..
N4
.
LA
f

v .
e,
Lt

Ly .

TN g

., '- '- ‘. "l

[3
ot

]
e

-
-

2. Error Collection

The error handler is called by the end-of-line routine to output any
messages for the line just completed. The lexical and syntactic error lists are
merged to create an error sequence list for the line. Once the sequencing list has
been created, it acts as a master controller, simultaneously traversing the
syntactic and lexical lists and calling the output routine with the appropriate
error record for display.

3. Line Formatting

All source text which is discarded by the error recovery process is
underlined to provide the user with a clear indication of the Analyzer’s recovery
actions. Using the position information provided via the discarded text pointer,
underlining is performed by creating a line buffer (array of characters) and
assigning an underline character to each buffer position which coincides with a
start-stop range in the discarded text list. Vertical dotted line formatting is also
performed using the position information contained in the error sequence list.
After each message has been output, the sequence list pointer is advanced one
node, indicating that vertical line display also begins with the next position, thus
creating the proper overlap required when multiple messages are displayed for a
single line of text. Appendix A contains sample output listings which include
examples of the various display effects when multiple error diagnostics are

generated for a single line.

43

O
o
-
LIS
LR

&

A
oy,
A

)

AV

-'l 'l.l
»'e
DA

a.‘ .
Je

-
I,
)

r. ¥

IV. TESTING AND DISCUSSION

- The purpose of this chapter is to demonstrate the capabilities of the Analyzer

through testing examples and to discuss recovery actions on representative errors.

Since determining the effectiveness of an error recovery scheme is mainly

subjective, we feel it best for the reader to draw his own conclusions.

A. TESTING

The Syntactic Analyzer was tested using several Pascal programs. Many of

these include representative erroneous text segments from the Ripley data base
[Ref. 7], referred to in chapter one, while others were written by first quarter
graduate students in an introductory programming course. Hand-constructed
programs were designed to test Analyzer performance on code segments which
contained numerous structural errors, and some Fortran programs were also run
to further stress the recovery mechanism.

It is difficult to statistically measure error recovery effectiveness. Many
researchers in the literature have used the Ripley program segments to test their
recovery schemes and to serve as a basis for empirical analysis. While the
segments were also used here, we feel that a more realistic assessment of Analyzer
performance would be obtained by combining them into larger programs which
contained the errors within several Pascal procedures. The programs used here
each contain approximately 30 representative errors. Rather than attempt to
categorize the recovery diagnosis in terms of excellent, good, etc., programs were
examined only with respect to the ratio of error messages generated vs. minimum
lexeme corrections, where minimum lexeme corrections is defined as the minimum
number of lexemes required to transform the incorrect programs into
syntactically valid ones. The sampling contained approximately 165 single
lexeme errors which resulted in producing only 175 error messages. Although

6% of the messages were spurious, the induced messages were plausible and

"y PR .
L RN _" -' .'.
. St

o omre—
“ .

informative. For example, the illegal ";" in "if <Boolean expression> ; then..."
resulted in one message for the If Statement as well as one subsequent message at
then for the illegal beginning of a Compound statemnt. With an ideal ratio of
one-to-one, the results are certainly encouraging. The next section will examine
some of the output listings from these and other sample runs, and additional test

listings are included in Appendix A.

B. REPRESENTATIVE CASES

Figure 4.1 contains the example program discussed in chapter two involving
simultaneous recovery activations. Parsing initially halts on the identifier
"than". The contents of the history list at the time of error detection are shown
after "Recognized", followed next by those lexemes which would have been
syntactically legal. Notice that the legal list contains many possibilities, as the
identifier "y" could be part of a variable, the beginning of a larger arithmetic
expression, or the beginning of a function call. Since "than" is not a
resynchronization symbol, the text is underlined to show the user that it was
discarded during recovery. The next lexeme, while, suspends the recovery
process and parsing resumes with the pending If Statement recovery record on
the stack. The next error is correctly caught at "doo" and, once again, no
recovery occurs for the current activation since begin causes yet another restart
by suspending recovery mode. By the time if is recognized in line 8, three
recovery records have accumulated on the stack. At the end in line 10, parsing
of the If Statement is completed and recovery mode is reentered to attempt
resolution of the Compound Statement activation. Recovery occurs immediately
on end, followed by a recursive recovery call at else. Although the While
Statement recovery record is the top record at this stage, else is a member of the
recovery set generated for the If Statement error. So, the recovery resolves the
outermost error, and normal execution continues for the remainder of the
program. Notice how little input was processed in the recovery mode. Although

this example is relatively simple, it should be clear that the Analyzer frequently

suspends and resumes the recovery process. With both the restart symbols

ety YTy

LI R |
D)

Mg g g

ole 30
"obUB,L ' 5UT, ", 30303080 TPUOT30T],
0d0, ! 430393060 DUTOPS, ‘' yPUB,
‘ebOBg’aAlh,’ s30303000"bUTATATITNE,
1USSQ SARY PTNOA TEDO
CIUPEPINIS> UILIG 1PBITTUDODNY

‘pus ¢t

22UBEOINIS"P des3, peg

aOPs 30 *,30,%,30301840%DUTPPE, ', 0ul,
AP’ sl02BIPQ0"DUTATOTIITN
alu’ads JUBRG BABPY PIDO (RO
<CUOTERRIBAI™URITOOR> BTTUA 2pIZTUDOOBY

23VUBNIINAIS=ITTIUA, DOg

oUBUI, 20 ?,30,7,30303000"0UTDpR, ' pus,
oATPe’ 030303800 DUTATIATITN
sle’ale JUBBG BABY DINOR TEOIY
830X07UNAT00E> 3T 1PIZTUDODGY

a3UGERIINITTIT, PG

(X)utaazas vl
toue €t
utesa 4]
[13¢) 13
pud ot
1 =2 =i '
L} 10333nses
[}
UMl ¢ < x 3§]
I ¢ X 83X I3
uiseq 9
] 30332es0e
[}
(14]
0P T > X SITua s
[} 30313sess
|
(111}

ueul A < x 3T 1 4
uyvee ¢
T
1

{3sa) weeidboad

Figure 4.1 Sample Output Listing

46

and resynchronization symbols, less time is spent looking for a recovery point,
more time is spent looking for additional errors, and fewer runs are required to
obtain a syntactically correct program.

Figure 4.2 contains some sample program segments which demonstrate the

Analyzer’s recovery actions on common errors. Notice the error on line 8, where

it appears that the user intended ":=" instead of "=". In this case, the error has

caused the Analyzer to pop the activation for If Statement (as "fact” could be a -'.'j--'.',-j.
& legal procedure call). thereby eliminating else from becoming a resynchronization
& symbol. Nevertheless, the user is given an accurate description of what was
h recognized, since the last "<statement>" represents the If Statement and the
= discarded else is underlined. Detection of begin on line 9 initiates a return to the

parsing mode, pushing a new Compound Statement activation record on top of

the existing Compound Statement recovery record. When end is recognized,
parsing of Compound Statement is complete and the "exposed" recovery
activation record causes recursive entry into recovery mode, where the parse is
immediately resynchronized on ";". This figure also shows examples of errors

which were caused by misspelling of reserved words. Recovery after the identifier

v

h- "progeam" occurs on "(", however, the recovery from "constant" (where const

was expected) occurs on the ":" in line 5. This symbol was generated because of

[RENE I AN

an existing Procedure/Function Declaration activation record on the stack, and it
represents the symbol whose diagram box is part of a function heading sequence.
Despite recovering on a symbol which did not belong to the Const Declaration
diagram, the parse is back in step without any pending recovery activations.

The test segments contained in Eigure 4.3 demonstrate recovery actions on
an error of commission, omission, and substitution, as well as the integration of
lexical errors in the error inessage output. Notice on line 5 that the illegal
character messages from the lexical stage appear together with the syntactic error
"bad write parameter list". The comment error at the end of the line, caused by
the omission of a preceding "(", accurately informs the user that a "bad

- compound statement" was found. Each syntactically legal statement start symbol

is provided in the message narrative, along with the two legal delimeters ";"
X 47 L

, -
~ :&-“

A R
. wroW
- . e T e T e T T e T T R Lt LT e T BT LT e . ST TR SR A N TR L W T T S R .x.,
T DL TIE A A ST S S A S ST N I T SR ST o R T A T R W R Y)

Ty

«%3ueop, 36
‘9030 ' 43U, 4 30328d0"TRUOTINTES
‘eme’930,’,303010d0"DUTPPE, ‘ PuUN,
Y ePON, yATH,’ s 3030IRACDUTATATITON,
TU20Q SARY PTINOCa Twban
LTI TETTEYY
= I3TITIUGDT 03 tepsziubodey

T T YT Py |

22USNS2035~303, PRg

dNBU. 30 4420,,30393040°DUTPPE, PUN,
‘eATPe 02001000 BUTATOTITON,
als‘sde FUSEQ BABY DThOA TROIY
24X0"URITO08> IT 1pazZIUBOIAY

1PUd fmix [

| 30213ases
t
FEELBRLBLAIVLELILABLARING

Op 1 = ¥2ISISTT TTaun | G918 { =8 | 303 [A]

Utbea I8 ainpsd0id ot

[

! pus imsx [2]

eIUBMDINIE"IT, POY

]

f
(1131
usyl , ,C3383381 BUR ,°,¢>38330T 3T 11 ¢I
ttasa381)PRedl 2§
utbea 43 aanpadoad g

tous ot
(113}
1PV ImIX UIbeq KT s
els 20 ‘,pul,’ 3818,%,83,
sle’ale 3UBRQ SARY PINOA TEBRY
<IUDEBININ>
t ClueEEleasy Ulhbaq 1peTTUDOSeN
o3 Ty 3. Pog . 1 30333ssse
)
[11]
1 » 3303 usul ¢ w x 3%]
fimtx 3
ugseq ¢
eUIBoq. 30 ‘,u0333un3,’,030p8303d,
03BAg’ g00A%, ' 38003, 1000,
‘eP3valo}, 1uUBea Sasy Pinos teden
§ 38T333V0P7 BINPESOId °°°
§ 38T3TIUNPT #2NPECIO 1DSTTIUBOIGY
«VOTININTOSP™SuUN3 /3030, Deg] 30223sess

«We3I003Q, IUSEQ SABU DPINOCA TEDIN
A0 ID03Ig UT 3ISA DUTUIOU IBIZTUBCINY

\
LTI LARLANNANNS
ITO8IL6STHT ERTd JuRIBUOD ¢
it sanpedoic

€
{ Pud tsIX utdec 1@ sanpadodd

«094P0I¢, POYQ

]
11111133111
J{andINc’INOUT)ZON] eRPDOIO

i Jd0333sene

Figure 4.2 Sample Output Listing

48

*puUs utbeq 4 puUe Isix ulbeqa g
e®%e tuSIQ SAWY PINOCA TEDITY

<IVRIBUCI) 1PITIULOINY
«2043"10Upa0, PuY

. - " [} 10333008
|
(11
: 394D 30 (01=1) ARIIV PANING 8 EITE BdAL 3
) 43 8anpsd0ie gt
(44
UTbeQ, 30 ‘,u0t35un3,
,91nP33030, 1USSE BARY PINOA (9ben
CUOTIRINTISP™IUNS/203d> 1uaTTUBOIBY
223019, POy

“ 302220000
L iil)
tpus ¢t
tove 14
1tL3lasyy’, %3, LIUTIITaA 13
ujcesa ¢t
6 sinpedoze ¢
[]
t pus ¢
t=ix 1 pus 9

‘outbaq,’
90300,’03013T3U0P},°,39001UT"poubIsUN,
1US3Q saBU DThOA TR
§ CIVouIINISY
§ CIusEsINiIN> UTHEQ ipaziuboddy
sJVEBEJIGAS - POQ

302320

49

Ted0U, 30 ‘g)e’ale’e3BTITIVIRT, L TTY,

LBUT2ITTI030930UD, ’ TRAI"DOUDTSUN,

¢ e38032UT"POUBTIUN, ! ,20301340"DUTPPE,
1USSQ daRy ptnoa tede

.

CUGINOIERE> ¢ **° ¢ jun[) tpezTUBOIR
«303T°2030u0200"81T2a, POq

30333enee
(8)2910830y2 TEBIITT

303370000
230Uy 30 ‘9)a’ala’e30T3TIUNPT,L TTU,
‘o DUTIITTINIONINUD, * L, TRAI=DIUDTRUL,
?o38bsIUT“pRUDISUN, ‘' J303020d0DULPPR,

1US9Q SARU pIROA TEDN

)} tpeztubodaN

238TT 38300000 0113a, POg

Figure 4.3 Sample Output Listing

20333sase
(833930030y3 tedatty

1
1
] 3032Assss

]
(111111 SRt
e82UQee (T 010D ((°T'U’IIUDL3300 101331)VTNITI
UTbea udyl tedu 3T
utbeq
{0 »anp3doila
$(3Inc300*INGUT) 3803 Wvivoda

L LR 4)

and end. The second error for Write Parameter List in line 5 contains the term o
"junk". This corresponds to the previously discarded text and was inserted into L
the history list in order to accurately reflect the cumulative status of the parse
for this construct. In line 13, the Analyzer detects an error of commission where . S
an end with no matching begin is found. The end is discarded and the message
indicates that a complete procedure block has been recognized where either the
beginning of a Compound Statement or another Procedure/Function Declaration
was expected. Finally, the error on line 16 shows a substitution error, where the
user is informed of the only symbol which would have been syntactically legal
following a preceding <constant> in Ordinal Type.
Not all recoveries were performed as easily as those discussed above. Figure
4.4 contains two examples which show errors that generated more than one
message. The sequence in line 2 results in three recoveries within the Formal ¥ ‘g
Parameter List activation. Parsing terminates at "," where ";" was expected, and N
recovery occurs on the same lexeme. The ensuing error at var is due to the j-;.'- :'-,:.
previous recovery which restored the parse in the middle of an "identifier list". 'PC':-';I.:'
I and the second erroneous "," also leads to recovery on the same lexeme. All four e
recoveries on this line are performed correctly in terms of resuming at the proper
transition diagram box, but only three incorrect ‘2xemes are present. Although

I an extra message was generated, no text was discarded and the messages provide

a clear indication of exactly what was expected and what action was taken. In

line 6, the error is correctly diagnosed, but recovery occurs on the ";" which .
: represents the box that terminates a procedure or function heading. The ,_
identifier "boolean" is then regarded as either the lexeme forward or a Block N
nonterminal, where the parse resynchronizes at the ":;" corresponding to the end S

of a Procedure/Function Declaration. Thus, the subsequent message states that
. a "Bad block" has been found, and the Analyzer returns to normal execution at ;;:.:f‘_
begin. Nevertheless, as in the Formal Parameter List example above, the user is T

: provided with a clear display of recovery actions.

e e L T e e
RN I A SR P, L AP i, T &, D0, Wy

e

‘Hud 13X UTLIG

tUud ImIx uIDRQ

faspajutsn Jea
« JUSDG BARUY pINOa TROMT
d813T3U8PT 0aA) tPITTUbODNg
«VOTININIINP=BdLy, PUg

|
) |
SREARAALTALTLAATALELLILALARAASALVLRING

1JAR33E 28p30 dody
¢ sanpado0ad

]

1PUS IssX Ulbeq

sUTDOQ, 30 ‘,u0T3dun3,
‘s830P8d03d, tUBRQ oU pIhoa tTedbeq :
CUOTININTIIP=IUNJ/D03d> IPBZTTUDODIY
«2201Q, Deg N - "

30BN,

i3e083ussD 3Jea
oUTh8Gs 30 ‘,u0T3dUn3,’.810p8d01d,

0dWA, "’ o0dA3, ! 38000, elT0QRT,
‘aPI®nO3, 1USSQ SARU PTNOa TEBE]
1 cisiT=ae)y 29d=Teu303> J8l3Tauap}
<ITIT 181000300 TONI03)>
J0TITIVPT UOTIDUN) IPaTIUbGIeY
2VOTININTIONP=IUN3 /3018, PUg

e 2UNEQ sARU DTDOa TEDOY
CITTT"I8300030C"T00I03> I0TITIUNPT
VOTIDUNY °°° (ISTT™383100030C0"TOni0}3)>

3833T3UepT UOTIOUNT IPBZTTULOINY

«VOTININTINPTOUNZ /D014, Peg

Al - -

08T00Q § (I9683UT & X JBa)IUNNETEIND wOT3IDuUR]

{3308¢03) (bus
Uidaq
ele 3UGNQ 3ABU PINOCa TEBR
CISTI=393000300"T0NI03)>
30TITIUSPT UOTIOUNG thexTubodey
«U0TIVINIDNP=IURS /D018, Py

els 30 ‘,(, 3USNA SAWY PlInhoa 19D
20TFTIVGPT t 28TIT3VePT

*0° 38TFTIUNPT 284) tREZIubODNY

2307138300380 100103, DOY

]
[}

[}

[}

1

]

[}

»3013T2uP3, JUBEQ SADY PThOa TEBT '
¢ 2873T3U8pY]

1 30T3T3VePT 29a) EPazIUDOIRY }
»381T"3030 "

|

'

[}

1

[}

]

a*1enio3, peg

ole 30 ",(y 1USHG 240U PINOA TVDEN
J8T3T3U007
) tbezrunodey

!
|
]
1
]
208°1vs303, beg

1=
[} 1
P8210% 1 L 2ma ‘38030 0§ X JPA)IIOP00) veriaduny
{(andIno’Inout)e whitoald

(3802307 X

30133ses

Tt
os
[}

303330988

30313sene

403320sses

9
[
1 4
€

302330000

20333ense

303320000

3031200ss

4
t

Figure 4.4 Sample Output Listing
51

Mgt oA oo S e g id ittt dheth Jendl ool AR e Ieenie el s iant 4

C. DISCUSSION

Based upon testing performed thus far, it appears that the use of restart

. symbols to control recursive calls to an error recovery routine is practical. bh}
. reliable, and effective. Rather than pursue a recovery mode solution for each
detected error, it seems advantageous to suspend the recovery process upon
. recognizing a trustworthy symbol, traverse the diagram which begins with this
symbol, and then return to resume the recovery. Thus, in a program which
contains several errors, parsing is actually accomplished incrementally. moving
from one segment which begins with a restart symbol to another. Each time the
E recovery process is suspended, the parser is able to detect any errors which may)
be present in the new segment. ultimately analyzing most of the text and
possibly detecting all of the errors. Although several pending recovery records

may remain "unresolved" on the stack. the end result is that synchronization is

maintained and propagating error side effects, which cause confusing and o
unnecessary messages, are eliminated. .
One reason for the success of this method is that the restart symbols appear
i both frequently and conveniently separated in a typical program. In Pascal, all o

of the declaration start symbols, with the exception of var, are members of the
restart set. Recall that var may appear in either a declaration part or a formal
parameter list and, therefore, provides an ambiguous resumption point. So, there

exists a kind of "protection" against losing step no matter how serious the error

'

e e
. y "r e
L .

or combination of errors may be (assuming that the resynchronization set hasn’t
already provided a symbol upon which to resume). Similarly in the compound
® statement portion of a program, where almost all of the statement start symbols

are members of the restart set, protection is provided against a prolonged search

for a recovery point. Thus, the restart symbols are not only trustworthy from the \
standpoint of providing an unambiguous position within the transition diagrams, ’t'
. but they always seem to be in "just the right places”. Combining these symbols . "-jb-fff,
- with resynchronization recovery points from the active contexts, the end result is o
;i’. that more errors have been detected.
;

e e e e GRS AP A SRS S

- - . - " ... RN l. - .. . ‘.
(A AT VAP AP RSP SP 2 2P S

While the restart symbols are the key to the recovery scheme, the
resynchronization symbols provide not only additional recovery points, but also
an element of safety as well. Since only positions reachable from the last true
exit in the active diagrams are chosen, some potentially good recovery points may
be excluded. Line 11 in Figure 4.4 shows an invalid declaration where the error is

correctly identified as "missing =".

Although array would appear to be a good
recovery point in this context, recovery does not occur until the delimiting
semicolon is recognized, as shown by the underlined text. This is because the
error occured in the Type Declaration context and an activation for Type
Denoter has yet to be pushed onto the stack. Thus, symbols such as packed,
array, etc. are not members of the recovery set since the resynchronization
symbols are derived only from the stack configuration at time of error detection.
During the initial phases of implementing this recovery method, some
experimentation was performed in attempting to effect a recovery in fewer
lexemes by building on the stack after pushing a recovery record. In other words,
the nonterminals from the active diagram that are reachable from the last true
exit would be expanded to provide additional recovery possibilities. But the
larger size of the recovery set and the risk of recovering in the wrong activation
ultimately resulted in inducing extra errors.

The most significant characteristic of this recovery scheme is the quality of
the error messages and its value as an instructional software tool. If the primary
goal of a compiler is to effectively communicate with the user, then this approach
seems to have lived up to standards. Cascading error messages have been
eliminated and each message provides only the facts about what "was" and
"what could have been". The novice programmer is undoubtedly a primary
beneficiary. Between the history list, the syntactically legal list, source position
pointer, and the underlining of discarded text, the user is certainly provided with
enough information to fully understand the error and the actions performed by
the Analyzer during the recovery. In the erroneous Pascal sequence, "if...then

begin...end ; else...", many compilers would issue a message similar to " ; can

never come before else". While this accurately describes the problem, a

53

BN i i o Aar A SR SN ML AL IR e 0" A A At ir i s i el B At Sa A Ae s A 4

e A A s L . e B p— e P P T e ey e et Py Y eer Py ¥y~ ¥ 4 =¥ 4= ¥t

diagnostic which explains that else cannot occur after the sequence
"<statement> ;" in a compound statement is much clearer. It specifically states.
B in the context of the language syntax, that a statement (If Statement) has been
: recognized and that a new statement cannot begin with else. The combination
' of the three diagnostic aids (error message, source pointer, underlining) leaves
i little room for any misunderstanding of reported errors. If the complete
diagnostic package is undesirable for a more advanced user, incorporation of a
"help" selection feature could provide the means for tailoring the output to the

requested level of assistance.

D. SUGGESTIONS FOR FUTURE EFFORTS

This thesis is a step toward determining the effectiveness and usefulness of

this method of error recovery. Testing results appear to confirm its feasibility:

however, further testing needs to be performed and should include

experimentation with various recovery set combinations to ascertain an improved

configuration. While efforts thus far have been directed at the syntactic level, a

longer term objective should be to incorporate the Syntactic Analyzer into a full

compiler implementation, where a first pass would generate syntactic error

messages and a second pass would add the semantic errors. Thus, the error

messages could be integrated in the output as was done here with the lexical and

syntactic messages. Although this implementation was performed for Pascal,

future efforts might explore the feasibility of this approach for other higher level

languages. The syntax diagram traversal concept seems easy to extend, and

many languages contain a number of symbols which could be designated as

"fiducial" for recovery purposes. Certainly, programmers of all languages would

benefit from reliable error recovery and informative diagnostics.

.................................

...

........
ot

SAMPLE OUTPUT LISTINGS

APPENDIX A

»20883UT DRUBTIUN, I1USSQ BARU PINOA TESaq
¢ aual ‘ aung ‘ teQRT 1peZTUBGIRY

t pus
Iasx
ugbeq

sUOT3ICINTIOP~TaqET, Pey

-a20B83UTTPAVDTIEUN, UGS BASY PINOA Tede

-

¢ aung ¢ 1 teszfudoday
sUOTIRIRTINP=TRQR], DUy

#10023UT"PUDTIUN, 1UBSQ 3ABY PIDOA [wOE
’ ’ ‘ tsawt 1paziusBoley
2UOTININTINP=T0Q0], POy

»J808JUTPIUDTIUR, IUSEQ SABY PINOA TEDIq
. 88t 1PaZTTUBODIY
2U0TININTINP TR, POg

eJOTITIUNDT, 1UNEQ BARY pINOA TEDOq
3ea 1p8TTUGOIRY

sUOTININTINP"INA, POE”

N8BT 48NN AN)
130033UT 13XT82 ‘xapul ‘30t ‘tsqet

dua (4 sinpsd03e

ulbeqa Id ainpsdoad

f pus
tulx
oUBUY, 30 ,30,',30301040"BUTDPN, ‘ DUR,
e ‘eATha’ 3303182000"0UTATATITRE,
1s'e) 1USSq BABY DINOa tvlen
cuotesslax 81009> 31 IpaZTud~Iay
«3UINBINISTT, BVY]
’ |
(11117
uByl , L,<>301IBT PUP ,°,<>38339T 3T &%
) 1(383307)P982
{ pus
(9) 39350y TEORTIT 1
1
030Us 30 ‘a)e’ala’e3WTITIVSRTL TSN, [}
! oBUTIITI3003IWUD, ‘ ,TUSIPOUL TN, [
! 933DBIUTPOUDTIUN, ¢ ,10383940"DUTPPE, |
1USSq SABY PYNO TEDM [
‘s) J9TIBIVSPT tpaITUBOIGY]
s3USES2838, POg) 1
1]
(5)39320304yd TeOOTTT ! |
\ [
MALLNNNANY
[s 81 TRV (0 =3 @

utbeq Ix ainpsdola

uibaq

1{3nA3IN0‘INAUT) TR Tdens weidold

30313s8ss

203338000

202238098

3023208

30333008

1t

ot

¢

L
30323eane

30323089

30222esse

LT A A R J

55

«UBU3, 30 ‘,UT,',303032d0"TRUCTIVTSI,

. 4 d0g’ 303033040 0UTDPR, ‘' PUB,

LT eATPe’ wd0301000"DUTATCTITOG,
wen's ele’u)s 1UIRQ FARY PINOA TEDHI
CUOTSSPIAXI=URSITOOE> 3T IPIZTULODISY

»2UBNINIT"IT, Dug

30, 1UBBQ 3ABU PINOA TEbaN
{ <9EAITTRUIPIO>] AwlI® IPIZTTULOIIY

»1930UP=3dA)3, Pug

»39T3T3UAPT, 2UBIQ JABY PINOA TEDI
¢ 29T3TIVIDT JWA 1PIZTUDODNY

{ pus
13X
uybeq

#UOTININTISP=1WA, PR

sde 30 ‘LPUB, tUIBE SABY PpTINOa TEDI

¢ CAUIWIIWIEH> UTDAQA 1PIZTULOSIY

|

|

111111]
sspjAwlie 1 PI0331*Aan JwA

CuPUB G UITARL Y303, ITTUA, ' eIWIARI,
L0882, 3T’ tUTHOA, qUTIBATIA,wd2T3A,
040308, w38T3TIUIPT L' (33DAIUT PIVOTRUN,

{ pus
insX
CIuIWaINISY
«IUIEBIVISTPUNOGNOD, Deg]
\
13111
e =3(3)387T
1(e1°3nd)n30d
utbeq
1 pus
wia 30
1UBeq ARy pPlNOa TR0
1 uibsaq 1PaZIUDHOOIN
«3UIEN3RIS"puUNCANLS, PUY "
(111115119
t=2iXx UIY

SUBUY, IO ?,30,7,3030330407BUTPRU,’ PuUR,

¢ POUL yATD ! 010301300 DUTATAETITNU,
‘eon’s’e’uls 3UIIQ 3ABY PINOA TEDIN
CuOotTsseldxa™unatoog> 31 tDIZTULOIY

sJUdEIINILTIT, POE

. - .ot L
O \n‘l(\.~‘-w.~\ - .

[20T1)3ISTT > [XIPUT)ISTIT 37 VIbaQ

‘pus utopaq

f1a axnpsdoad

td sanpado3d

4d Janpadoid

f(andino’Inaut)zetaues e«wiIdOID

144
13
(1
6%
| 2

10233dssss

40213sess

10333e2es

10112

Tl
131
[
6
L]

310233%sss

30333sess

mfNMmeNnO©

56

ale 20 ‘4PUS, 1UIQ BARY pPINOA TEDI
<IUBEIINIS) UTDIC IPIZTULOOIY

‘pus utbaq

{ pus
IntXx

»3UdNB3RIL"PUNOEEOD, Pug

WUBUI, 30 ‘GUT,’.l02038d0"TRUOTINTII,

,

fal, g0, ,303038d0"DULDPPR, ! ,PUR.
‘aPO, ' 0ATP.’ 020302300 DUTATATITON,
sen’s’s‘als’ela HUBIQ BABY DPINOA TUBIY

<UOTSS3IAXI"URITONE> 3T SPATTUBOIRY

|
|
tanl3 st A3des aste
pue
tstx Ulbaq
urdaq
uayy tax 3t
usbea §d 3inped0ad

{ pus
Isix

«JUSNIIRIR"F], DO

«I9TITIVGDPT, tUNEQ BARY PINOA WD
¢ 2813TIVRPT) tpeITubOIIY

!
[}
(1311111
uayl (T)ushd uou 33
. utbeq fd sanpedoad

fpus Iatx VIBDQ
(29033UTId Jwa

«3fIT"383000lvd" 100103, Dug

tUSSQ ARy PINOCA (when
I0As> utbea 1P3IZTUBOINY

[}
|
£¢a8083UT ¢ X WA ‘X)22TAUTIUT B1npadoad

{ pud
jstx

»IUSESIITPUNOANGD, DRy

{

|
op $TeIou ©3 IsIxXpul 203
| pus

fo=2 (XPUT)IVUNOD {Qmi (XPUT)CO3
uybeq

u§osq 16 sinpedozd

$(3NdIN0‘INdUT)IEITOwES wwidOId

30333ssss

(%4
9T
sl
1 21 .
€T
Tz
1z
oz
63

1033Jasss

[)]
Ly
97
§3
143

10213xsss

€1
14
13
ot

20233%ess

TNMeTNOr-®Bo

67

A S
: .I. -’ LL.AC.-QQ*\)_

1
W e s Y Saln i VSV R
1
3
=
>
o
b
¢]
J
w ‘puUdI uIdbIQ ¢
< [14
3 { pus Imix uibeq tT
& (3131
A 123b33uUTIb Jwa 114
- SUTT 30 pus 3w saonb BuTIIs pasotdun 1 20123sess
3 |
. wia 30 “‘4)y 1UBIQ IAWY PTINOA €6]
23TITIUGPT 83NPIDUIA <xd0TqQ> * |
3 { J8T3TIUaDT #INDII0IS 1peZTubOIRY '
1 «uot3I83WTOIPTIUNG /D024, Deg]] 303132s88s
! !
1 ($)383dv3eyd teballT | i 30132ae8s
4 1 '
b «la 1UBSQ IABY PINOA TEDEY | |
b <x301Q> § 38T3tauapy °°° !)
] { 33T3TIUSDT 23INPA20IC IPITTULOSIY | |
3 «UOTIRINTIIP=DUNJ/D03a, P¥G 1] 30333sess
| !]
3 SRSALLIBAERRANL |
m 1.,300100°3InduT\183Uny ainpaacid ot
(13
. pus (1 =ix ! pus "1
. ((ansSI3EPISTY = 3 UTDAQ UNJI It
“. s’a 30 ‘gle‘ulla?3103030d0"TRUOTIOTIL,
- ¢ eBe’sd0,7,101033d0"DUTPPE, "’ ,PUR,
3 PONL AT L ! 43030 30Q0"BUTATETITON,
<4 ?iee'su’u)e IUBIQ BAGY plDON (OB
< CUOIS8334Xe>) tpszITubODRY
. «888200-31qR3INA, DOQ 1 20137sses
t
1131
0 m3 (QNY¥)EIEPISTTIIUNGD 3T 11 [-]
ulbaq (4 IINPed0Id ¢t w
[4]
t pua [3]
e 30 ?3UT,¢,20301000"1PUCTINTII,
‘ ¢30, ! ,30303300°BUDPE, ‘ JPUR,
oAlPa’ 30283300 DUTATATIT NG
X t1USQ 3ABY pLINoa (®Da
CUCTEEPIAXE>) 1pITTULLIY
«d03383, bog i 3033sens
) [}
. x=3y Udyl (41
(X)doaaubri)pue(os(T)auTT)3IT 134
ugbeq (A a3nped03d o1t
6
t pus [}
a's 30 ‘4(s’eVl,’,20301080"TRU0TIRTII,
‘ema? p30,¢ 30303940 DUIPPE, "’ JPUR,
t L PON, ' wATP.’ 430301200 DUTATOTITNN,
tawe’nu’ale 3UBNG AWY pINOA (WD
CUOTINIAXE)>) PIZTUDOIIY
238711830003 0d" AN, Deg == 2031132800

1
1(,°A0T333A0C BNND ,)UTIITIa UMY
[G)e3wpISTTIUSNAIZAT 0V 3T
Utbaa 14 sanpsdoid

t{andano‘Inaut e Tanes wwibold

_-NMmeNO ™

N

el

.

Pl

BRP e

e30Ue 20 ‘wle’ale’ed¥TFTIVNPTL‘uTTU,
' L,OUTIITTIIONIGYD, ¢ TRII"pOULTRUNL,

¢ ,33b83UTpAUDTIUN, * ,103013d0~bUIRPE
1Us3q 3ARY pIhoa 18D

®) I9TITIUAPT IPSZTUBODWY

‘pus ugbeq 22

»3UNIINIS, DUYG

230U, 30 ‘)u’ela’e28T3TIUNRTL W TN,

' DUTIIS=IBIDNINND, ! S TURI=PRUSTSUN,

4 ,10033uT"PRUBTRUN, ' ,1020]3d0TDUTPRY,
tU23Q 3a%Yy pPINOa (ebdd

. 203833d0"TRUOTINTIS
Aco«--unnnnuao-unvnuauacoouux

V0TS0 IAXI UV TOOEG, PRg

a8, 1UBBG BABY PINOA TEOSN
J9T3TIUIDT 2ASU0D IPIZTTUDOINY

+UOTININIDIP™ISUGD, Pug

#30Us 30 ‘ulu’ale’e2TFTIUIOT,. LT3N,
f,5UT2I8TIRI20INUD, /L TEII"CIUDTIIUN,
4 ,20083UTTDIUDTSUN,’ ,J020I2d0OTDUTDPE,
1USIQ BABY PINOA TERDA
/ ¢UOT8831dxd>
¢ QUOTSTNIAXS>) IPIZTUDOINY

2381 T*3330W0300°313a, Phg

«3873TIUNPT, fuseq SAwy PINOA (9B
* 1pazTUBOdNY

«S58500"81a0T3IVA, PVg

ou1, 1U30Q 3ASY plhoa (EdIq
281353UspPT 303 tPAZTUDODAY

23USEIINIETIO], Pug

111
fpus uideq 0oz
tous [}
t 1031dssss
i
1
|
'
[}
]
1
| 1 3033388
| |
(jem’W)lanccdsu =t J3a0d 3873 = 2I3a0d UBYI ®OU FT [}
utodq ¢t
$29693UT 1(39PIIVUT SU'w)Iem0d UOTIUNG ['1}
td sanpsdaid g%
1 2]
tpua utbaq €t
[} 20133008
|
(111121111}
16STYTI*E =2 1A 3I9UC3d (¢ 1npRD0Id %
t pus tmiz 1 39
| 10332eess
]
[
1
!] 10332s00s
|]
(113313 LA AITITS T I AR L]
f(qunu’y 87 ¢°(Tle’eueul 2sat $3a 30 ‘OuUUTEIT. '
ugbea (d sanpadeid ¢
L}
Ipue L
stz 9
t 20223sees
'
]
op 9 03 1 I 303 VIbIQ (0 3INPID0ID §
1
t1(3andino’Indur)coTdues wwibold ¢
T
]

59

Lo,

T

Pl ases grelk

P ol

« v
L .

vy,

-

D

8

L A

v wow

Al ats

Muliiie tadh and ad. Sa i Sud et

Al

Ty YT
. .

a)es 1UIIQ 2AWY PINOA 18D
AB3le 3paTTULODIY

*pud utobda 2T
{pus utbaq 114

«3330UaPp=edil, DUY

+utbeq, 30 ‘,u0t3duni,.
‘,8INPBO03Y, 1UIIG IABU pINOa 18691
CUOTININTIAIP™OUNF /034> SPIZTUDODIY

| 30333asne
]
p1111111
fasus 30 (01°°1) Ava3s = pJoa adA} (13
fd 3anpsdoid 61
[)
9
toue (=tx utdveq 3

«XJ07q, POQ

ele 20
Y aPUB G GUITAGY 33034 o 3TTUA, ‘' yI00dRI,
10883, ,33.,UD8A, L UTIITIA, ‘L2374,
¢ ,0308,°33T3T3UAPT 4/ 4 IBDIIUT POUDTIBUN,
1uUaeq 2aBy prhOA WD
¢ <IUBWE3IN3IE> UILQ IPITTUBCOIY

! 30313
!
ARHARAREILILALISLLIVNNES

s 3USERINILTPUNOANODD, POG”

L]
aDUB ! GUITARG Y 4303, 5 0TTUA ‘200001,
P L3834 aFtesUTINIQ, GUTEITIA, ! ,233T3A,
?,0300,'030T3TUNPT ./ ¢ IODBIUTPIVUBTSUN,
tuUdsq aAed pinhoa tTEbIN
Jutbaaq 1PITIULOINY

23UESINISTRUNOAEOD, PUY

o’s 30 “4te $USEQ AWV DTNOa [®DIT
39T3T3INEPT ¢ J8TITIVIPY
se¢ ¢ J9733IUIPT IWA FPETTUOODNY

«UOTININTIIIP™INA, POF

e 30 ‘41, IUIBG BABU PINOA 1907
JOTFTIUOUT 4 20T3TIVeDT
’ 2et3T3UIRPT 1wa 1P8ZTUDOIEY

«UOTININTIONPTIDA, PPQ

§ Twel 3123003 ‘31093 3ewaA ”n
1 30333889
' [
¢ pus tslx uUTDeqQ (i1d ¥InpadOId §3
144
t3unco3d st JUNGO3C I €3
ugbasq {4 sanpadoad I3
LI11T11]
tpud tmtx (X)peal 13
[} 30332eses
|
$3 teQwy uideq o3
t1d a1nped0ad ¢
]
tpus gsix uldeq L
1 10133sese
[}
I
[}
]
1 ! 30333e00e
[} \
(111] (11131 1]

f1e9d XT‘REX3 (39DAIUT T'w’X JPA
14 sinpadoaid

t{3n3ano’3InduT)9sTuues weabold

MmN e

60

w'e IUIIQ FAVYU pTNOA TEDIN

«dota> 1 (
S°%) JATFTIUIPT weiIBOIC 1pAZTULOIIY
2uBlIB0I4, PUE

wle 3UGST JaWY PINOA TEDI
<x501Q>
¢ I0T3TIUNPT 8InPEI0JIE IPIZTUBASAIY

‘pue uiLaaQ pf
1 10113sess
|
L L11]
1PUS UIDIQ fpuUs ¢

«VOTINIBTIONIP=IURI /D014, Pug

sla 20 ‘,pUd, ' at,

s°s’s)a’s)s 3UBNQ BAWU PINOA TWBIY
’ <IUINEILIN)>

¢ <lusmdIvIN> uUThbeq I1PAZTUDOIIN

.-‘.h

s3UISBINIS=P d » PUg

wle 20
CaPUB, QUITAL 3303, 0T TUA, ' JI00d31,
fuBBU0, ' a3 T4 ' W UTBIG, L UTEITIA, L22T3,
40308, ‘s I8TFTIVIPT. ‘L 30033UT"paVOISUN,
UG dAcy PInOA Tedan
CIUBNIINIT> { CIUIWIINIES ¢
FUNL CIUBNRINIS> UTDIQ 3DIZTUBODIY

«IVINIINILTPUNOANVOD, DRG

2V, 30 ‘,UT,.’,303032d0"TRUOTIOTII,

‘e8e'0d0,’,30103000BULPPR, ‘', PUN,

aPON,L’ gATPu’ cI03WIA0=BUTATUTITNE,
‘svn’u’s’sle’cle 1USQ BAGY PINOA 18631
<UCTBI3ITRITUNITOON> 3T 3PIZTTULODAY

*3USNIINILTIT, PeY

a8ly 20
‘aen’e®a’a)e 3UIGQ BABY pINOa TEDEN
<$3332¥"31qeTiNA>
30T3TIUSDPT $pPITTULOIIY

edUBEII01S, puUg

ale 30 ‘,PUIL’enl,
‘eve’e’a’ele’s)s 3UINQ BAGY pPTInNOA TR0
CIUBNBINISH UTLIQ Ipeaziubolay

»3UINAINISTPUNOANOI, POg

e'e 30 ‘41, 3VUI3Q BAWU pINOA TEDAN
38T3TIUNPT Jw 1pazZTUbODVY

| 3033248290
t
LR 1]
PUS PUS PUB b mIIXBU° 2 "
I 10323s8es
t
L1111 1311)
13X8U*L,I 8 3 OP TIU <> 3IXWU’,3 BTTua L
N . | 301238888
|
(111} L
td 832 uiBssq TS BT v -]
} 101212esse
t
LI1111}
b ®3d USYI TTU =3d 3T ITIV ei3XsuUs b 3
] 202338088
[}
|
[}
1
! t 20322¢0ss
|

|
L31113111] (1]
1s0d »1ENUXOQ b (D AU ylbaq

2¥OTIRINTIIP=104A, PUg

] 30113sess
|
]
123079087 11 b Jwa (TEBITIIISUT 330PI0Id ¢
({IndIno‘INAuT) (ITdwes wwibold 2

T

APPENDIX B: TRANSITION DIAGRAMS

i The following are the transition diagrams which are traversed by the parser

" .,

e 4

tnitial direction of the line from a box. Notice that while true exits are normally

shown to the right, left is also used here due to space and readability

I considerations.

during syntactic analysis.

As discussed in Chapters Two and Three, these
diagrams are derived from the syntax charts, but have been modified to provide
unique true and false exits for each syntactic unit. The table below illustrates the

notation used in the transition diagrams. Exit arrow convention concerns the

Diagram Symbology

3 Symbol Meaning Symbol Meaning

,:j —_— true exit a Note

E false exit header box

L N/

i ——[> return true nonterminal box

return false

O

lexeme boxes

Note:

This symbol appears next to those boxes which have been added as a result

of the modifications discussed in Chapter Three.

T —————,

G
| '

INGRALYLS 103g 103a ”
<&}~ “annodwos ONOd 00ud 17} i 3n09

3dLl 1SNOD -
G} o) ?))

Anw. ININIIVIS | ¥ | 1030 1 103a 103q A 1030 1034Q w
INNOdHOD ONOd D0Yd VA a1 [0 1SNOD 13av1 e

[}

l
63

X0018

'd

PR

RN
.

JIeTFTIUSPT

Pl W

N

-
~

‘~I\ .l‘..
atat b

..

LIRS
- .
a4l

£

-

N2 a%e

-

A

9

T8I TIUSPT

INVISNOD

I9TITITSPT 15u02 uoTlBIBTIO(Q
qu®4EU0)

=)
o/

Jedequy
peudisun

uotisIeIOe(
Teq®]

64

-r -_.,;1. [

e

quenaqelg
punodmoy

All

I9 T3 TUSPT !D ,
0 T/ %

xmwmmwa I9TITIUeDT uorjeIEBTOO(
LR R -244-TY »
©

JI8TIT3uepl
YILON3aQ
TdLL I8 7 TIUePT noaummmaooa
8dA]
—_ — -u - ¢t s . e R . . L' .m . . . ' 4 M . R ORI NI TSN S !

. 1 i T,

‘ . g
ICTIRT B R x RV

o ; g 2 4 5 N

g ' g) AR PN
y ' . . AF , ALK

18 1 I . A ‘Y ~I~§ .\ir.
»

S

e s
CS
o)

c e

XS ‘..\‘

»

axnpeosoad

: A ;
. ‘. .

G
_

1511

10T T3U9pPT | HELIWVYV |

I3 T3us
TYHE0d Trauepy

ucyouny

©
©
K
PIBMIO] :W
7384 .,
waLgHvava e g
P4 ue aanpasoad uotyoung .
TVRE04 °HTuert P oo 2
eInpsdolg ‘. .n

PR AR

L '
Lo A1,\-.'.. TR -.. 2

"

. <J-- INVISNOD fwe éll INVISNOD

67

10T T3u8pT

®T13

ht
wILONIA
TdXL Jo
241l
TYNIQHO
1S11
pue Q1314
4
| ¥Elonza 3411
Fd1L TYNC QHO

paooal

JeTITIUspy

plIodad

341l
TVHIQYO

Jejoue(q
edly

®
©

L B M
‘mr.k......x..;‘ﬁ...ﬁ..‘.rL.:.

<

<3} ~--

Al - ‘ luvd
INVINYA

oy

JoTFTuapl

iyvd
INVIUVA

()
o/

¥IrIoNIa
3411

I8 TFTIuepT

—

I8 TIT3uUepT

Chdaacalin~aiel

-
3
1.
F
4
b
p
d
3
<
3
f

1811
q1d1g

INVISNOD

I8 TFTIUSpT

18TIT3uUepT

70

1813 T3ul8pT

uoyjouny

1813 Tquapy

eanpevoxd

-

1SI1
I8TFTqU8pT mmwwuww<m
1S4

mmhmxﬁzu

TVYRY0L _
VWIHOS @

Ivyyy
INVHHOINOD

I8 T3T3UepT

° I81JT3uUepT

1813 Tquept

I51]
Jejemeleyd
Teulog

71

NOISSIULXT

INOISSTUIXT

INOISSTHAXT

NOISSTUIIT

35717
J9jouBIBg

83 TIM

1871
Jeqemsavgd

Ten30y

1 v S i B

>

[1

Ve a2

A

2,

ey

18 1JTIuept

()
AN

£§5000Y

G NOISSIUdIXI

e1qetIep

73

f;n’ 'y

RO 3

et B _-. & - _..‘
A AN I IO

iL

Statement

unsigned
integer

@

‘ identifier

ACTUAL

! PARAMETER
LIST

[]

:
identifier
C__/

VARIABLE |

ACCESS
@

EXPRESSION

WRITE
PARAMETER

writeln

LIST

»{ unsigned
integer

-

WRITE

COMPOUND

PARAMETER
LIST

o

STATEMENT

| I

IF

STATEMENT

CASE

STATEMENT

REPEAT

STATEMENT

WHILE
STATEMENT

FOR

STATEMENT

WITH

STATEMENT

RO

L

o

‘~ - L
e e

-

COMPOUND
STATEMENT

IF

STATEMENT

CASE

STATEMENT

REPEAT
STATEMENT

WHILE

STATEMENT

FOR

STATEMENT

WITH

STATEMENT

unsigned

integer

unsigned

real

character

string

identifier

VARIABLE
- ACCESS

C EXPRESSION

|

o9

FXPRESSION

(e

N

EXPRESSION

FACTOR

DACES IS AN AT AN St W vt wa S (v JEAL J0a i it i T
K 4 KA RSO Ao i it

w

~y &
rd

'.
.
tals

r
.
v

e
Ta . .
. »]
WYL,

SIMPLE SIMPLE
Expression |EXPRESSTON EXPRESSION [— — —{£>

G
PR

relational

|
|
I
v operator

in

- >

Lt
L5 .
B

Simple
Expression

@ TERM

®

FACTOR

é div

FACTOR

S

R T S oS L NPT ANE LS o SR A L ! g f
e i G O T e S e G D N Y N S S S N G SN L

Sutags

I9308IBYD

801

peudtsun

J989quT

peud tsun

1o

peud tsun

ze8equy

poultsun

uspT

I8ITY

{ 2°T3T3U0DY
(g

auB}EUO0Y

W W E W v W

o

el Ak et A

TETwTYY,

vy

Tw.wvY

e pTrUrTTTYYvvywwe

T 3

Lann

YH4HOS
IVHyy
INVHY0JINOD

297JT3uepT

I8 TITIUSPT

o 10 TITAUADT

I8 TITIUePT

AI ——{ 1e17T3uepT

vWOYDG
Keaay
I9TFTIUEDPT ° 181FT3USPT 4UBTIOIUOCD

e 50

EACAS

C e e . o e e m ey e, g
[NERVPY EAR ..r‘.._I... R ... W etate e @ o L e

78

P o)

e

D
)

=
]
..
»
.,

my e am
~ N “-"\‘.-!

FEIPE N
PR St S

B A

L

o

-

T

'

By

!. -(”.,'{-‘ .’

R
3

AR

A

-
-
'»

-
Sy
e

e’

AT — —{ NOISSHIIXI

RVI100€

TTaun
/-

-
- nangivis

.

INVISNOO

=

INIRILVIS

A!-

INIHILVIS

INYISNOD

esTe

INIHILVLS

ueqs

quswe3e3 g
1eedey

NOISSTULXT

NOISS3UdII

NVIT008

qUs WO BYS
95%9)

JusWe1¥1S
31

79

INIRILVLS

<

INIHIALIVLS e NOISSTULIT

o)

o

ﬁ Byt |

TJIgvVIYvA

op

<7

INIWILVIS

J2T3TIU8PT
2

NOISSIUIIT

NOISSIUIXT
NVII004

quem9eLS
U3 T

18 TITyUePT

1US WO 383 S
304

juUe WO 3®IG
eTTHM

B N T Y Py T =y "y —w>y

APPENDIX C: PROGRAM LISTINGS

This program was coded using separate compilation on the UNIX T
operating system. Comments are provided for each procedure and function in the

program to assis: in understanding the purpose and design of each module. The

program is divided into eight logical sections which appear in the following order:

v
(1) Main Routine and Declarations
(2) Lexical Routines s
(3) Syntactic Routines o
(4) Recovery Routines
(5) Error Processing Routines __,-4_
(6) Output Routines E
(7) Initializations

(8) Diagram Input File

x
.

[
.o

“v‘. Trﬂ;‘ I
)
[

PR
Pl
.

f
v
1;7,
s

’

¥
s
'."
AN
PR

g
. :d F’.

“' 4
BT

il
N
)
.

it
?.1
’

81

.
—
wa'e,
"' - 1] (N
R

|

T T S
- «

.....

MAIN ROUTINE

program syntacticanalyzer(input,output);

#include "global.h"

{ This is the main routine for the Syntactic Analyzer. The name of the
file to be analyzed is read from the command line, along with any options
which have been selected. Procedure parse is then called to perform
the syntactic analysis. }

begin
argv(1,filename);
reset(input,filename);
argv(2,option);
printrecovset:= false;
printhistory:= false;
printbox:= false;
printstack:= false;
printlisting:= false;
printposit:= false;
ir=1;
while i <= totaloptions do
begin
if option[i] = ’r’ then
printrecovset:= true
else if option[i] = ’h’ then
printhistory:= true
else if option[i] = 'b’ then
printbox:= true
else if option[i] = ’s’ then
printstack:= true
else if option[i] = I’ then
printlisting:= true
else if option[i] = ’p’ then
printposit:= true
else;
ii=i+4+1
end;
parse
end.

.....................
............ .. P L Te e e T Te T Lt L e s

EU
ECUR AP R JAC WAL NP SR S R St il AT SR L S S S

GLOBAL DECLARATIONS

TLTLTiTF F N oam oy . .,

totaloptions
fileidlength

i

i

printrecovset
printhistory
printlisting

Se 40 s o4 o0 e

procedure parse; external;

13;

acked array[ll..ﬁleidlength] of char;
prstack,prhalt,prresume,preof,preop);

string;
string;
mteger;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;

'

L, L, ey
PR
o

» s
A

83

e

_.‘..““-

\._'\.-l

et

\ - . . - ~ ~ ‘.‘."“.‘

N = .. N " PP I % " e
L e T L e T L e T e L

Pt A it S A et S i At e At S Sl S e et o

. COMMON DEFINITIONS

{******************** CONSTANTS A’ND TYPE DEFINITIONS ****************}

{**}

const
reswordtotal = 37; e

‘r{:
VY

inpsymtotal = 24; ‘
indextotal = 24; {i
statetotal = 34; ’.::-7'-.:1
maxline = 80; e
maxidlen = 8; S '.

: lexmsglength = 50; :._:__::

- maxname = 25; SR

1 namelength = 31; f-'_‘.~_j-_.'.:',

N totallexemes = 70;
intnil = 0

: exittrue = -1;

T exitfalse = -2;

. exiterror = -3;

re .
exitrecovery = -4;

. maxboxes = 350;

o lineprintwidth = 132;

lineoffset = 10;
maxhistoryitems = 6;
displayedge = 90;
Jjustifyl = 103;
- justify2 = 114;
: justify3 = 93;
spacel = 3;
space2 = 6;

type e

at ‘. : s i
Dlaaib

N
il g

PSR

ety A

{************************ LEXICAL DEFINITIONS ***********************}

syntaxunit

charset
word
lexname
reswords
lexvalue
lexconvert

lexemelist
chindex

idlengths
tableindex
bufftype
lextable
lexmessage
lexparams

v o . «
. PRI
R FEERRY
+ . BRI
‘ RN
. T
o ila
LT :
. e,

= { lexemes } K

S
(doo,iff,inn,off,orr,too,andd,divv,endd,forr,modd,nill, ST
nott,sett,varr,casee,elsee,filee,gotoo,thenn,typee,withh, RO

arrayy,beginn,constt,labell,untill,whilee,writee,downtoo,
packedd,recordd,repeatt,forwardd,programm,writelnn,
ffunction,pprocedure,identifier,realconst,intconst,
stringconst,addop,mulop,relop,equals,colon,becomes,comma,
semicolon,period,range,pointer,lftparen,rtparen,

Iftbracket rtbracket,stop,endoffile,endmarker,illegal,) 4
badcomment,badexpon,baddecpt,badsign,badstring,
zerostring,badexpart,baddecimal,nodigits);

= set of char;
= packed array[l..maxidlen] of char;
= packed array(l..maxname] of char;
= packed array|0..reswordtotal| of word;
= (..totallexemes;
= packed record
id: lexname;
su: syntaxunit;
end;
= packed array[l..namelength] of lexconvert;
= packed record
ch : char;
val: integer;
end;
= packed array[0..maxidlen] of integer;
= packed array[0..indextotal] of chindex;
= packed array|l..maxline| of chan;
= packed array|0..statetotal,0..inpsymtotal] of integer;
= packed array|[l..lexmsglength] of char;
= packed record
id : reswords;
idlen : idlengths;
tab : lextable;
chrs : tableindex;
listl : lexemelist;
list2 : lexemelist;

85

- * o -

A W T S R R s gy~ e v —t

&
3
3 eol : boolean;
) list : boolean;

j limit : boolean;
badtext : boolean;
continue: boolean;

- comments: boolean;
b chpos : integer;
A

chstart : integer;
lastpos : integer;
textend : integer;
letter : charset;
number : charset;
‘ expon : charset;
. sign : charset;
linebuf : bufftype;
auxbuf : bufftype;
count : integer;
linenum : integer;
- oldline : boolean;
lasttok : lexvalue;
- lastch : char;

ch :char;
- end;
_; {********************** SYNTACTIC DEFINITIONS ***********************}
. boxptr = -4..maxboxes;
= boxtype = (header,lexeme,nonterminal);
- boxname = packed array(l..maxname| of char;
b box = record
_ typ : boxtype;
_ name : boxname;
lexcode : integer;
nextptr : boxptr; A
trueptr : boxptr; e
falseptr: boxptr; PN
end; E
: Y
: syntaxchart = packed array|l..maxboxes| of box; e
- headptr = "headlist; wost
2, headlist = packed record };j
i name : boxname; E.._,:.
- N
- 86 e
x e
-‘.- e

1%

. b
-, o

- e
P P a P - [- .y gy mpee “-‘
“ k2

boxnum: boxptr;
next : headptr;

end;
legalptr = "legallist;
legallist = packed record
boxnum: boxptr;
next : legalptr;
end;
historyptr = "historyelement;

historyelement= record
name: boxname;
typ : boxtype;
next: historyptr;

end;
stacktype = (activation,recovery);
stackptr = “stackelement;
recovptr = “recovelement;
stackelement = record
kind : stacktype;
name : boxname;

diagramhead : boxptr;

next : stackptr;

returnaddr : boxptr;

lasttrue : boxptr;

histptr : historyptr;
recovset : recovptr;
currentrec : stackptr;

end;
namelist = packed array[0..totallexemes| of boxname
restartptr = “restartlist;
syntaxdata = packed record

name : namelist;
rstart: restartptr;
head : headptr;
legal : legalptr;
total : integer;
last : boxptr;
eop : boxptr;

)

P

> 8 e Te Yy
PRI

o
P

ERd

I CIAA SR I i A A A e e JAR S A MM 8 w200 2 e S B i i i S s A e i T T W T T e WY e g e
K K R A HCRRcH a S = = An e e il

{*********************** RECOVERY DEFINITIONS ***********************}

recovelement = record

t
L4 - ". 1
name : boxname; e
M '. ‘~~ -.-
code : integer; R
diagrampos: boxptr; A
parentrec : stackptr;]

next : recovptr;
end;
restartlist = packed record
token : lexvalue;
boxnum: boxptr;
next : restartptr;
end;
recoverposits = packed array[0..maxboxes| of boolean;
usedsymbols = packed array|0..totallexemes| of boolean;
treeptr = "recovnode;
recovnode = packed record
code : integer; "
true : treeptr; 2
false: treeptr; X
end; t;
recovset = "recovsymbols; E

recovsymbols = packed record
symb: integer;
next: recovset;

end;
recovdata = packed record
points : recoverposits;
symbols: recovset;
used : usedsymbols;
end;

{************************** ERROR DEFINITIONS ***********************}

garbledptr = "garbledtext;

garbledtext = packed record
junkstart: integer;
junkstop : integer;
symb : lexvalue;
next : garbledptr;

88

s(..-' 1’\ ..d" -, A""-“xn'-.\.‘.'.. LY x..(\-‘ ;<\-‘ (*.." a Vo _‘ PR \‘- ._'.’\‘-.‘\d . \- .. .\.‘.' _‘-‘ et -;_.-‘-$-..‘4-\. \-’\f.‘q\‘— .‘{_.(‘..—*‘-..._-\'.q,’f.; ' Ce
i, el 4 g : v,

end;
lexerrdata = packed record

errpos : integer;

typ :integer;
message: lexmessage;

_ end;
lexerrorptr = °lexerrlist;
lexerrlist = packed record
listing: lexerrdata;
next : lexerrorptr;
end;
errdata = packed record
errstart : integer;
diagname : boxname;
starthist: historyptr;
endhist : historyptr;
expected : legalptr;
end;
errorptr = “errlist;
errlist = packed record
listing: errdata;
next : errorptr;
end;
errormark = "sourceposit;
sourceposit = packed record
pos : integer;
typ : char;
next: errormark;
end;
errordata = packed record

errptr : errorptr;

lexerrptr : lexerrorptr;

garbledlist: garbledptr;
end;

LA R i et A B Bt Sl A S Ak Anl Ak, S Al S b Bkt Aal Ak Medk Sel Ank ek Al Rall Sall g Sl el Al e Ach Al Aal Ses e b vl Red i As R th et o Anl albdat saln b an s o e bnat el el Bel 4o B IR RS 2]
FaadiC R L RN B 2 A A e 2Rt I I . - TR L L LY L R AACAEEA S !

W R

v v - -
Lt e ta
-

M LI AN

LD
."l LN

{********************** EXTERNAL DECLARATIONS *********************}

procedure

function

function

procedure

procedure

function

procedure

procedure

function

function

procedure

procedure

procedure

procedure

initialize

gettoken

getchr

lexicalerror

push

pop

update

insertlegal

findlegal

getheadptr

recover

errormessage

recorderror

updatesource

(var diagrams: syntaxchart; var lexx: lexparams;
var syntax: syntaxdata; var error: errordata;
var recov: recovdata); external;

(var lexx: lexparams; var error: errordata,
var diagrams: syntaxchart):lexvalue; external;

(var lexx: lexparams; var error: errordata;
var diagrams: syntaxchart): char; external;

(var lexx: lexparams; num: lexvalue;
var error: errordata); external;

(typ: stacktype; var stack: stackptr;
name: boxname; pos,head: boxptr); external;

(var stack: stackptr): boxptr; external;

(var stack: stackptr; loc: boxptr;
item: boxname; typ: boxtype); external;

(pos: boxptr; var p: legalptr); external;

(pos: boxptr; p: legalptr;
var diagrams: syntaxchart): boolean; external;

(head: headptr; name: boxname): boxptr; external;
(var stack: stackptr; var diagrams:syntaxchart;
var resumeptr: boxptr; var token: lexvalue;

var lexx: lexparams; var syntax: syntaxdata;

var error: errordata; var recov: recovdata); external;

(var lexx: lexparams; var error: errordata;
var diagrams: syntaxchart); external;

(var error: errordata; var lex: lexparams;
var stack: stackptr; var syntax: syntaxdata); external;

(var error: errordata; badstuff: boolean;

90

< \-'l‘-' \‘: ‘.“ R

LR

-

)

OO AR LN
&

.f a, "- . o~ -
> H A .
', |

g
)
5

.

Yooy oy vy
‘ ."
e

oldpos: integer; token: lexvalue;
var lex: lexparams); external;

procedure printmark (errmarker: errormark); external;
function findtextend (var lexx: lexparams): integer; external;

procedure outputhistory (p: historyptr; q: errorptr; r: errormark;
lastmark: integer); external;

procedure outputlegal (p: legalptr; q: errorptr; r: errormark;
lastmark: integer; var diagrams: syntaxchart); external;

procedure printset (p: recovptr); external;
procedure printhist (p: historyptr); external;
procedure printsyntax (var diagrams: syntaxchart;

var syntax: syntaxdata); external;
procedure print (switch: switches; p: stackptr;

var lexx: lexparams; var syntax: syntaxdata;

var token: lexvalue); external;

function length (name: boxname): integer; external;

{**}

AR AT REAR S

v v v .

fi #include "global.h"
- #include "common.h"

LEXICAL ANALYSIS

P
Ca {***}

TEXT PROCESSING ROUTINES

{***}

procedure endline(var lexx: lexparams; var error: errordata;
var diagrams: syntaxchart);

{ This module is called by getchr upon the first character read after
processing has concluded on the current line. If the "printlisting"
command line switch has been set, then the buffered line of text is
written and any accumulated text in the auxillary buffer is moved into
the line buffer. The auxillary buffer holds the text which is read from
the input file after eoln is true, providing temporary storage until all
processing activities on the previous line (such as error messages) have
been completed, i.e. it may not be until several characters into the
succeeding line that an error is recognized on the current line. The delay
in handling end of line is accomplished via the lexical boolean variable

. "ist". The variable "oldline" used here is for the purpose of overriding

the incremental line numbering in the event endline has been called due to
reaching the 80 column boundary (maxline). The variable "limit" indicates
that maxline has been reached, but eol is not true. The final action in

this module is to call the error handler if any errors have been recorded. }

. const
- numberfield = §;
g var
] i: integer;
- begin
' with lexx do
begin
if not oldline then
begin
linenum:= linenum + 1;
_ if printlisting then .
- write(linenum: numberfield,” ’)
~j else
- end)
3 else

write(’ ’: lineoffset);

02

2

'l
2
T

‘ textend:= findtextend(lexx);
- for i:= 1 to lastpos-1 do
begin
if printlisting then
write(linebufli])
else;
linebufli]:= " ’;
b end;
if limit then
begin
if printlisting then
writeln(linebuf{maxline|)
else;
oldline:= true
end
else begin
if printlisting then
writeln (linebufflastpos])
else;
oldline:= false
end;
linebuf(maxline]:= "’
for i:= 1 to maxline do
begin
linebuffi}:= auxbufli];
auxbufli]:="";
end;
list:= false;
" end;
- with error do
2 if (garbledlist <> nil) or (errptr <> nil)
N or (lexerrptr <> nil) then
errormessage(lexx,error,diagrams)

.'_.{.,‘,9 e
A

'y 4
.

else R
end; A
ORIy

IRy

v a

i. «

7 ,;;.‘

“n'_\‘_-.‘

TN
>
s
PN
B ,"J

{**}

function getchr;

{ This routine reads one character from the input file and returns it
to the calling lexical analyzer subroutine. If the character position
is at column 80 (maxline) or if eol is true, then the boolean "list" is
set to signal that next time around the "endline" processing routine
must be called. (Note: eol is set by the lexical analyzer when
eoln{input) is true, but it is the next read operation, which will be the
actual end of line position, when eol is recognized in getchr). A blank
is the processing representation for both the eoln and eof characters.
The character position counter (chpos) is reset to zero at end of line,
and the lexicai boolean variables which keep track of discarded text
are set to enahle the continuation of underlining, if currently enabled. }

AN
LA

i

-—-——-

const o
tabadjust = 7;
tabch = 9,
begin
with lexx do
begin
" if list then
- endline(lexx,error,diagrams);
. lastch:= ch;
if (chpos = maxline) or (eol) then
begin
if not ((chpos = maxline) and (not eol)) then
begin
read(ch);
limit:= false
end
else
limit:= true;
lastpos:= chpos;
chpos:= 0;
if comments or limit then
begin
chstart:= 1;
if badtext then
continue:= true;
end;
:;.s list:= true;
end

i L
else; ol

94 Rt

. ‘w"r."‘.‘-."‘, LAS A e & 8 A Aol ANL Atk e ivh ol ait LR ol oAbl SeRit e g

L
if not eof(input) then Lo
if not eoln(input) then SRS
begin o
read(ch); , L

chpos:= chpos + 1; S
if ord(ch) = tabch then
chpos:= chpos + tabadjust; -
if not list then ‘ :
if ord(ch) <> tabch then
linebuf[chpos|:= ch .
else
else o
if ord(ch) <> tabch then s
auxbuflchpos|:= ch
else;
end
else :
ch:="" PR
else l
ch:="7; R
getchr:= ch .
end;
end;
K sk ok sk 3 oK ok 3k ok 3k ok ok ok sk % sk sk sk ok ok ok ok ok ok 3k %k 3k sk ok ok ok ok ok ok ok ok ok sk dk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok Ok K Kk k ko kK K K K

{**}

LEXICAL ANALYZER UTILITIES

{**}

procedure checkcaps(len: integer; var name: word);

{ This routine converts all characters to lower case, permitting recognition
of reserved words which are capitalized or partially capitalized. Lower
case symbols are used exclusively throughout the program. }

const T
lowcase = 97; ffj.-fj
ascii = 32; e
N var o
‘ i: integer; ‘?\f_’.
begin -
for i:= 1 to len do e
if ord(name(i]) < lowcase then -
a name|i]:= chr(ord(name[i])+ascii) -
) else R
. end; {i.“
95 Ej::::
o

AD-A164 859 TOP-DOWN PARSING SYNTAX ERROR RECOVERY(U) NAVAL 272
POSTGRADUATE SCHOOL MONTEREY CR P E HALLOMELL DEC 85

UNCLASSIFIED F/G 972

l- +,
.........(....JJ.
A
‘e %a fa’,

S8 Sl o)

ol g o
ddaa
m_m—u.,._._,._._._.__m

<
|

STANDARNS 10h4-4

14

RIRTA1s A

MICROCOPY RESOLUTION TEST CHART
N

flz2 1

=

D S-.,..-..;N-M-L-HM.. .aa \x-b —bd

T W W WYY v —w w—— v -
A EAES DA G A e A i S A S A eSSt A i e SN BB e o Rt Se P SN ah A £ 0 R At Bt i et e i Sl gt 0 R s B A Ank At

P

: {**}
% function searchword(len: integer; ident: word; var lexx: lexparams): lexvalue;
R { This routine searches an array of reserved words, which are stored in
= increasing order of length, beginning with the first word in the list
“ whose length is equal to the call parameter (thus onl; length "len" words
. are checked. If a word is found which matches "ident", then the array index
N is returned as the lexeme; otherwise, the identifier lexeme is returned. } ,
. L
3 var L
. found: boolean; '._'.‘;'»'Z‘_‘
- i: integer; S
' begin ____L
with lexx do : {
begin et
checkcaps(len,ident);
i:= idlen(len-1J; L
) found:= false; . R
L while (not found) and (i < idlen(len]) do
- if ident = id[i] then
X found:= true
-\f else
= i+1;
i if found then .
. searchword:= i e
. else o
. searchword:=ord(identifier) t::—f::ij
. end; :".;
end; o

{**}

function convert(c: char; var lexx: lexparams): integer;

{ This function is utilized by performscan to map input characters to
integers in order to provide the vertical index into the lexical table.
Columns include one for letters, one for numbers, one for illegal
characters, and others as required to index each Pascal character. }

const
lettcolumn = 22;
numbcolumn = 21;
illegalch = 23;
indextotal = 24;
var
i integer;
begin
with lexx do
begin
i:= 0;
while (chrs[i].ch <> ¢) and (i <= indextotal) do
=14 1;
if 1 <= indextotal then
convert:=chrs[i].val
else if ¢ in letter then
convert:=lettcolumn
else if ¢ in number then
convert:=numbcolumn
else
convert:=illegalch
end;
end;

{**}

procedure checkcomment(c: char; var next: integer; var lexx: lexparams);

{ This procedure provides the capability to handle nested levels of comments
by incrementing and decrementing a counter if the next state marks the
beginning or end of a comment construct. This feature comes in handy for
commenting out sections of code that contain embedded comments. Both the
primary and alternate comment symbols are checked here. }

const
comment = 15;
begin
with lexx do
begin
ifc <> '’ then

o7

.
Yy ey o

i
LIRS

if (¢ = ’{’) or ((¢ = "*’) and (lastch =(’)) then
count:= count + 1
else if (¢ in [’)",’}’]) and (next = 0) then
begin
count:= count - 1;
if count <> O then
begin
next:= comment;
comments:= true

end
else
end
else
else;
end
end;

{**}

function adjustsymbol(var lexx: lexparams; symbol: lexvalue;

var error: errordata): lexvalue;

{ This function is the means by which lexical errors are suppressed. If an
error occurs in the lexical stage, it is recorded and entered into the
lexical error linked list. This routine then receives the erroneous
lexeme and returns a syntactically valid lexeme to permit parsing to
continue. Also performed in this module is the conversion of the
symbol "endmarker" into a representation for a "." . This is necessary
because a period which ends a program (i.e. "end.") needs to be treated
differently than a period which is part of a field id. Thus if the
last lexeme was an "end", the assumption is that this symbol is a program
end symbol, and the adjustment is made to return a lexeme for
"endmarker" (the special period). }

begin
with lexx do
if symbol = ord(period) then
if lasttok = ord(endd) then
adjustsymbol:=ord(endmarker)
else
adjustsymbol:=ord(period)
else begin
lexicalerror(lexx,symbol,error);
if (symbol = ord(badexpon)) or (symbol = ord(baddecpt)) or
(symbol = ord(badsign)) or (symbol = ord(badexpart)) or
(symbol = ord(baddecimal)) or (symbol = ord(nodigits)) then

08

TETVITTWTTY 1 A o S o B S0 i dvace Akl 2B Cohc i S AR SRS tes et it et BA e A e et cah e d el ARt cadh sl el el e

—

AR o
’.

a oy -.'-'l
77007

A AAE
Wl B
L® . -I ‘l .'.'A'4 '- “l r_® 5. 8

PRl |
W .

adjustsymbol:= ord(realconst)
else if (symbol = ord(badstring)) or
(symbol = ord(zerostring)) then
adjustsymbol:= ord(stringconst)

else
adjustsymbol:= symbol;
end;
end;
{**}

-t

oo

r
"‘-'4. N

e

'l

/l N .
e

Jr.

¢ r
¢ AL,

e
.
.
»

:"'-
..' .]
'l

A i 4
» [N NN
R
o et St e
A
A By Ay

Yo'y
ne

[
' l‘ .

<

y N

‘e 8 8

{*#**}

LEXICAL ANALYZER SUBROUTINES

{**}

function processword(var lexx: lexparams; var error: errordata;

var diagrams: syntaxchart): lexvalue;

{ "Processword" is one of the two primary routines which comprise the
scanner process. This function is called by the main lexical routine
(gettoken) whenever the current input character is a letter, which will
result in generating either a reserved word or identifier. Processword
consurmes input until a character other than a letter or number is
encountered (recognizing only the first 8) and stores the word in a
buffer called "ident". The routine searchword is then called to search
the stored list of reserved words, based upon the passed length of ident
to permit more efficient searching. }

v

var
i: integer;
ident : word;
begin
with lexx do
begin
for i:= 1 to maxname do
ident[ij:= "
i:= 0:
repeat
eol:= eoln(input);
if i< maxidlen then
begin
1= 1+1;
ident[i]:= ch
end;
ch:= getchr(lexx, error,diagrams);
until not ((ch in letter) or (ch in number)) or {eol) or (eof(input));
processword:= searchword(i,ident,lexx)
end;
end;
{**}

100

.—r".-v'_--")“.-"_-" S T N T T e T T -.'.. . ~.'.' '..;’- ."‘;'.'.‘.~;' et

- - - . - S et .Y e - .- - .‘.I . - . . . - .
AR SIS PR AN I DN Y IR W P AT VT T IR Wk S N

function performscan(var lexx: lexparams; var error: errordata;

var diagrams: syntaxchart): lexvalue;

{ This function is the second of the lexical analysis routines, generating
lexical tokens for all language symbols except word symbols, including
real, integer, and string constants. The heart of this routine is a two-
dimensional table, indexed by input character and state number, which
simulates the performance of an FSA on the standard Pascal character set.
In addition to generating tokens, the table also provides the means for
consuming source text which is contained within comment brackets. A repeat-
until construct is utilized to effect the state to state movement thru the
table. Transitions continue until a -1 sentinel (stopstate) is reached, at
which point the rightmost column (tokencol) contains the lexeme for the
symbol which has been recognized. Errors such as string quotes, missing
comment close, and real constant errors are also represented by integer
codes, but they are adjusted in the lexical stage and returned to the parser
as valid lexemes.

A note about end-of-line: the variable "eol" is set to the value of eoln
upon each entry into the table. This value, rather than eoln, is used for
end of line determination, since once the last character has been read, eoln
is false. }

const tokencol = 24;
ordrangech = 31;
lookaheadstate = 31;
realerrstate = 32;
commentl = 15;
comment2 = 16;
stopstate = -1;
var
oldstate: integer;
newstate: integer;
begin
oldstate:= 0;
newstate:= 0;
with lexx do
begin
repeat
eol:= eoln(input);
oldstate:= newstate;
newstate:= tab|oldstate,convert(ch,lexx)};
if (newstate <> stopstate) or (oldstate >= realerrstate) then
if newstate = lookaheadstate then
begin

101

S Al il & fall AR SR - A

.-

[y

W e

TS N e

Rl A

e .
s .
S e

A

Kl

‘ ,,<
*y fe (o e
et

¥ e
Ol

B ‘l‘“'-"‘l

- - - . . . - . C " w7 - . . - -
. e RPN B LTI
ORI A PP AL RGP Sl S S WL Ny L R Tk TP TP P SR PR . A A S S SR

oldstate:= newstate;
newstate:= stopstate;
if ch = ’)’ then
ch:="
else
ch:= chr(ordrangech)
end
else begin

if (newstate = commentl) or (newstate = comment2) or Rk
(newstate = 0) then D
begin D
if newstate <> 0 then PR
comments:= true PR
else pom
comments:= false; L 5
chstart:= chstart+1; L
checkcomment(ch,newstate,lexx) :j. o
end RO,
else if (lastch in expon) and (ch in sign) then o 8
if oldstate >= realerrstate then o
newstate:= oldstate AR
else R
else; gL
if newstate <> stopstate then “
ch:= getchr(lexx,error,diagrams)
else;
if comments then
eol:= false b
else e
end B
else e
until (newstate = stopstate) or eol or eof(input); R
if (eol) and (newstate <> stopstate) then et
performscan:= tab[newstate,tokencol] S
else ‘_f‘ . .‘.:
performscan:= tab|oldstate,tokencoll; S
end; S
end; ~'
S
NN
T
.:‘?,3:

A E'. »
-
6e,

'.l.l
y
A0

YA

102

VA

ot
o

LD s St e Jee i At Al S i St et Bt Bt fint it g i Sinte i (i

LEXICAL ANALYZER DRIVER

{***t******##}

function gettoken;

{ This is the controlling routine for the lexical stage. The appropriate
subroutine (processword for a letter, performscan for all others) is called
for character-by-character scanning of the source text. The returned token
is then forwarded to the parser for use in the syntactic analysis. In the
event that no token is returned (blank line, etc), a recursive call to
gettoken is executed. Upon reaching end of file, an end-of-file token is
sent to the parser. }

var
symbol: lexvalue;
begin
with lexx do
begin
if not eof(input) then
begin
chstart:= chpos;
if ch in letter then
symbol:= processword (lexx,error,diagrams)
else
symbol:= performscan (lexx,error,diagrams);
if symbol = ord(stop) then
symbol:= gettoken(lexx,error,diagrams);
if (symbol > ord(endoffile)) or (symbol = ord(period)) then
symbol:= adjustsymbol(lexx,symbol,error)
| else;
lasttok:= symbol;
end
else begin
symbol:= ord(endoffile);
if lasttok = ord(endoffile) then
endline(lexx.error,diagrams);
lasttok:= symbol
end;
end;
;, gettoken:= symbol;
end;

{#**#*t**}

103

.
1
.

—y————r b 2andh A Wl B S e Bt e S At ey QaBnanie e ut e i aad el and Jad g B8 e dedc e i aomd

#include "global.h"
#include "common.h"

i SYNTACTIC ANALYZER

{***}

STACK MANIPULATION ROUTINES

{***}

l procedure push;
{ This routine is called by both the parsing and recovery modules to S {
push a diagram activation record onto the stack. Two types of records R
may be pushed: activation or recovery. If the record is to be pushed R
for normal execution (type activation), then all fields except the]
I "recovset" and "currentrec" are applicable. If the record is a recovery o ’
: type, then the "recovset" pointer is used to point to the set of ’)
recovery symbols, and the "currentrec" field points to that level of)
stack to which the symbol belongs. The constant "intnil" represents a

null initialization for integer pointers in order to distinguish them

A from the dynamic pointer, "nil". }
var
p: stackptr;
- begin
| new(p);
p ~.kind:= typ;

p ~.name:= name;

p " .returnaddr:= pos;
A p ~.diagramhead:= head;
I p " .next:= stack;

p ~.lasttrue:= intnil;
p ~.histptr:= nil;
p ~.recovset:= nil; -
p ~.currentrec:= stack;]
[S,
) stack:= p ‘ |
end; {push} - -‘_i.:ji_
{**} 1
function pop; DR
, { This routine returns an integer pointer which represents the return ’1 e i
address for the level of stack activation which has just been Comes
completed, i.e. this pointer determines the position in the transition e
diagrams from which the parse will resume. If the stack is empty, ¢
this is conveyed to the parser by returning "intnil". } {::’
-
3 4
TR
104 SO
bt
f.\-'\n‘.
AASOMA
’ [

.
ar

T T ———— Ty

var
p: stackptr;
begin
p:= stack;
stack:= stack " .next;
if stack <> nil then
pop:= p " .returnaddr

else
pop:= intnil;
dispose(p)
end:

{**}

procedure update;

{ This routine is responsible for updating the "history list". The
history pointer (variable "histptr") points to a linked list
which contains one node for each box which has been successfully
traversed while the corresponding activation record has been on
the stack. This information is later used by the error handler
to build any error message which may be required in connection with
the current stack activation. The term "junk" is inserted into the
list if the history of the activation contains a segment where source
text was discarded by the recovery process. }

var
p-q: historyptr;
begin
if stack <> nil then
with stack "~ do
begin
if loc <> intnil then
lasttrue:= loc;
if loc <> 1 then

begin
new(p};
p " .name:= item;
P’ .typ:= typ;

p " .next:= nil;
if histptr = nil then
histptr:= p
else begin
q:= histptr;
while q “.next <> nil do
q:= q .next;

105

ol T A et et et Jaut et i a e S St ANS du s s A0t SEI ISR Aui e st i I St Jus JgURa St e et e i S ettt dab Bk a6 6 SR G G T R AP e

if (¢~ .name = ’junk’) and
(p " .name = "junk’) then
Q= p
else
q’ .next:= p o
end S
end
else;
if printhistory then
printhist(histptr) N
else = :")
end
else .

end; { update }

{**}

106

el e el el M e ml e e e A
.. I'.-A-"'w.--h‘l‘.’ ‘-.!~l'>-.
SRR ORI AR R S .
VRS T YV T YT AR YR N

vvvvv

vvvvv Ty

{**tx**x****x}

PARSER

{**x*****}

procedure parse; :

{ This is the parsing mechanism for the Syntactic Analyzer. Traversal
through the transition diagrams is contolled iteratively by a repeat-until
loop, and is terminated when the parsing stack has been emptied. On each
pass through the loop, one of three box types may be encountered: header,
nonterminal, or lexeme. If it is a header, the location pointer is set
to the first box in the diagram; if it is an nonterminal, then an
activation record is pushed onto the stack, and the location pointer
is set to the header box of the new diagram to be traversed; if it is
a lexeme, then the location pointer is set to either the box’s true or
false exit pointer, depending upon whether the currently held lexeme
matches that associated to the box. If a true exit is taken, an update
routine is called to record the true exit in the history list. If the
exit is false and the box is a lexeme, then the set of all possible
legal symbols (held in the variable "syntax.legal") is updated in the
"legal" list which contains the symbols which "could have been". Calls
to various print utilities (if desired for debugging) are also performed
from this module in response to command line switch settings. }

var
lexx : lexparams;
diagrams : syntaxchart;
P : boxptr;
location : boxptr;
returnptr: boxptr;
token : lexvalue;
stack : stackptr;
errors : errordata;
syntax : syntaxdata;
recov : recovdata:

begin

initialize(diagrams lexx,syntax,errors,recov);

{ Initialize the parsing stack, push the "Program" transition
diagram activation record onto the stack, and call lexx for
the first lexeme. The initial call to update is required to
provide the recovery routine with a non-zero last true exit
in the case where recovery mode may be entered immediately,
i.e. missing "program"”. }

107

~7 stack:= nil;

p:=1;
push(activation,stack,diagrams[p].name,p,p);
update(stack,p,diagrams{p].name,diagrams|p).typ);
token:= gettoken(lexx,errors,diagrams);

{ Begin syntactic analysis by following the location pointer
through the transition diagrams, which are accessed via the
variable "diagrams". }

repeat
with diagrams|p| do
begin
if typ = header then
location:= nextptr
else if typ = nonterminal then
begin
push(activation,stack,name,p,nextptr);
location:= nextptr
end
else if token = lexcode then
begin
location:= trueptr;
update(stack,p,name,typ);
token:= gettoken(lexx,errors,diagrams):
syntax.legal:= nil:
end
else begin
location:= falseptr;
if not(findleg.l(p,syntax.legal,diagrams)) then
insertlegal(p,syntax.legal)
else
end;

repeat
if (location = exittrue) or (location = exitfalse) then
repeat
returnptr:=pop(stack);
if returnptr <> exitrecovery then
if returnptr <> intnil then
if location = exittrue then
begin
location:=diagrams(returnptr|.trueptr;
update(stack,returnptr,diagrams|returnptr|.name,

108

IO I S S VAN S SR SO ST ITY ST

v DR TS g - S tu e oy

MEAMEAEASCA SIS AN AV SO A VL ECSCI A VA A" A A A AT A= AT ARl Al A Al Al Sed Rt At Gd a AR A Al el sl snd) ad &g

diagrams|returnptr|.typ);

end
else

location:=diagrams(returnptr].falseptr . b o
else i
location:= intnil C:}j::}:
else .}C:.:;'::
location:= exitrecovery AN
until ((location <> exittrue) and (location <> exitfalse)) or b

(location = exitrecovery)
else;

{ Check to see if either an error has been detected or if
parsing which was previously initiated by a restart symbol .
has been completed, in which case control is shifted back to ; ‘_-ﬁ_;'._
the recovery mode by encountering an "exitrecovery". } l’.ff: -

if (location = exiterror) or {location = exitrecovery) then
begin
if printposit then
print(prhalt,stack,lexx,syntax,token);
if printstack then
print(prstack,stack,lexx,syntax,token);
recover(stack,diagrams,location,token lexx,syntax,errors,recov);
if location <> intnil then
if printstack then
print(prstack,stack,lexx,syntax,token)
else
else
end
else
until (location <> exittrue) and (location <> exitfalse);

{ Go to the next diagram box as determined by the location
pointer. Parsing terminates if the stack is empty. }

p:= location;
end; ORI
until (stack = nil) {
end;
{**}

109

.-."-' - RS

.
IXPOT RN

M-S A Y Ao Ban a4 ges S Svee Sun it g Shdn St i Mk S Anctiing ROt Fahant Sinh vl ank et Nt At s A GAEL AL ue ol St Al AS e st ol |

#include "global.h"
#include "common.h"

ERROR RECOVERY ROUTINES oo

R
{**} . f{:;
ERROR RECOVERY UTILITIES e
{**} ‘f\;
TeaN

o . P

function makenode(boxnum: boxptr): treeptr;

{ This function creates a node of the recovery set tree, which is
formed by the "buildset" and "genrecovset" routines. This tree is
constructed dynamically and represents a traversal of the syntax
transition diagrams in collecting the set of recovery symbols. Each
node in the tree has two sons, one each for the true and false box
exit paths. }

var
p: treeptr;
begin
new(p):
p ~.code:= boxnum;
p " .true:= nil;
p " .false:= nil;
makenode:= p
end;

{**}

procedure addsymbol(rp: stackptr; var diagrams: syntaxchart;

loc: boxptr); s
{ This procedure adds a recovery symbol to the resynchronization "

set, which is represented by a linked list and is pointed to by the
recovery set pointer of the current recovery activation. Symbol o
information includes the name, parent diagram, position within that fl;.' 2
diagram, and lexeme code. } £

var p,q: recovptr;
begin
new(p);
p " .name:= diagrams|loc|.name;

p ~.code:= diagrams{loc].lexcode; i e
p ~.diagrampos:= loc; R
p " .parentrec:= rp ~.currentrec; ::::::::
p~.next:= nil; oo
if rp " .recovset = nil then Sala
110 RS

hOSR

.
. o g

. e o
%

rp ~.recovset:= p
else begin R
q:= rp ~.recovset; .‘4‘_
while q * .next <> nil do :
q:= q .next;
qQ .next:=p

end

end;
{**} _. ...
function searchlist(var rp: stackptr; token: lexvalue): boxptr; T
¢ { This function searches the recovery symbol set, once for each lexeme RS
} consumed during the recovery process. If the currently held lexeme e
matches one of the recovery symbols, the recovery stack pointer is o
, set to the level of stack pointed to by the symbol’s "parent record" AR
j pointer, and the transition diagram position for this symbol (which is A
! where parsing will resume) is returned to the calling routine. If R
:f. no symbol is found, the "intnil" pointer is returned. } ‘.f-_'.‘.-. 3
. aia
\ var s
- found: boolean; RESN
' p: recovptr; KR
begin oy
p:= rp " .recovset; L
found:= false; o
while (p <> nil) and (not found) do :::'::.-}:
if p".code = token then B

found:= true
else
p:= p ~.next;
if p = nil then
searchlist:= intnil

else begin .{:::,;_'.:
-]
Tp:= p .parentrec; t -
searchlist:= p ".diagrampos; AGA

end; X

end;

111

e . e e e e e e e e R S R ST T S L T A A AT R S SR)
R i e R A I P A N N VAR TR S I A MRS -'-‘-'-'-"-'-‘-".‘-'-'"'..,."‘-'.-'*‘-

LS % et e " el . . " L PO R R S Y W S e S - L T D) L)
G, L PP SR e iy i T, ST S, WP Yy S PRI N IR S T, S e T MRS PN

audh SeS el g Al Sl Ak doc]

{***#*****#}

function computepos(var diagrams: syntaxchart; newpos: boxptr; e
token: lexvalue): boxptr;

{ This routine is used to compute the proper resumption point in the
transition diagrams if a restart symbol was found. If the symbol is :é_‘::;:::
not the first box in the diagram, then the false exit path through the ’ 3
diagram is followed until the symbol is found. } f;:::::_:
NN

var

pos: integer; e
begin

if diagrams[newpos+1|.lexcode = token then
computepos:= newpos + 1

else begin
§ pos:= newpos+1;
:_;' repeat
- pos:= diagrams|pos|.falseptr b
until (diagrams|pos|.lexcode = token);
b computepos:= pos s
- end g
- end;

{**}

function getheadptr; R

{ This routine returns the starting position of a diagram header box. This
function is called by the recovery module to determine a parsing resumption
point following a restart recovery which requires modifying the stack by
pushing a new activation record. Since a separate nonterminal for "Boolean
expression" is not used (i.e. there is no diagram), a check is made here to
return the expression header address in that situation. }

var
found: boolean;
p: headptr;
begin
p:= head;
found:= false;
while not found do
if p”“.name = name then
found:= true
- else if (p “.name = ’expression’) and
& (name = ’'Boolean_expression’) then
found:= true
else

-. 3
FLYIN
R

- ¥

o % 4
47,
s

22,47,
L)

P4

"

.ﬁ
I MEIN]
."v:.‘i

112

.
~-~—F ¥
MO

o "

)
PR
Pl I

5
%

oy

I O I PR U TSR I) AR IR T SR R - e
LR N -.’-'-')-' - - SIS TS - o~ LY S

R .y oy

Macahee Aadat e Ranh AL i el ARl Mt s St e S b £ AR N o A i A0t G e A a A aPIE g
R

Mo A 4 A il e B SR A A B amry

p:= p .next; -
getheadptr:= p " .boxnum

end;
{**#***}

g function searchrestart(head: restartptr; code: lexvalue): boxptr;
. { This routine is called by the recovery module to see if the currently held

lexeme is a member of the restart symbol set. }

var
found: boolean;
p: restartptr;
begin
p:= head;
found:= false;
while (not found) and (p <> nil) do
if p“.token = code then
found:= true
else
p:= p .next;
if found then
searchrestart:= p ~.boxnum
else
searchrestart:= intnil

end;
{**}

LIS 20 av AP i

function checkrecov(head: recovset; code: integer): boolean;
{ This routine is called by the recovery module to see if the currently held

lexeme is a member of the resynchronization symbol set. }

var
found: boolean;
P: recovset;

begin
p:= head; RS
found:= false; ::\. .
while (not found) and (p <> nil) do B
. ‘-.*'rb._‘

if p”~.symb = code then
found:= true
else
p:= P .next;
checkrecov:= found;
end;

L N

, 'y
LSS

113

- . - . DR - - - a” .-t
P .t L - LT T e Tt . - - « " -
et e e CavaCa LsAq PO PR R P wP SO, P

'EI'E. '!.!' ~!' Tt T lvreLogwepwrry T e p R W T R W TR
- - . * . . h o .

v . A

s

{**}
{**}

ERROR RECOVERY SUBROUTINES

{**}

procedure buildset(p: treeptr; newbox: boxptr; branch: char; var diagrams:
syntaxchart; var stack,rp: stackptr; var recov: recovdata);

{ This routine is called by "genpreorder” to construct a "tree" data
structure which is used to generate the error recovery set. The tree
is built by making a node for each box in the transition diagram which
is positioned along either a true or false exit path from the point where
the last true exit was taken. If the box corresponds to a resynchronization
symbol, then the "addsymbol" routine is called to update the recovery set.
The boolean recovery point and used symbol arrays are then updated
accordingly. The tree construction is terminated when all boxes within
the diagram in the forward direction from the error position have been
examined. }

var
newsymbol: treeptr;
begin
if (newbox > 0) and
((newbox <> diagrams|stack " .lasttrue].falseptr) or (branch = ’t’)) then
. not recov.points(newbox| then
begin
if branch = ’t’ then
begin
p ~.true:= makenode(newbox);
newsymbol:= p " .true
end
else begin
p " .false:= makenode(newbox);
newsymbol:= p " false
end;
if diagrams[newsymbol ".code].typ = lexeme then
if checkrecov(recov.symbols,diagrams[newsymbol " .code].lexcode) then
if not (recov.used[diagrams[newsymbol " .code].lexcode]) then
begin
addsymbol(rp,diagrams,newbox);
recov.used|[diagrams[newsymbol " .code|.lexcode]:= true
end
else
else
else;

114

bolad At Aar fes At ath 08 od8 a0 grh el g Soh Solt Ak el Sabhighe Shadiadi B

T TN TR TR R Tw - w T W m v —w-p -~

4 recov.points[newsymbol " .code]:= true
~ end

X else

else

- end;

{**}

procedure genpreorder(p: treeptr; var stack: stackptr; var rp: stackptr;

var diagrams:syntaxchart; var recov: recovdata);

{ This routine controls the recovery symbol generation process by
creating and traversing a tree data structure in preorder. This ST
recursive procedure follows the standard "root-left-right" preorder Lo
scheme where left, in this case, represents a true exit path and right s -
represents a false exit path. } = e

: begin

. if p <> nil then

g with diagrams|p "~ .code| do

- begin

i buildset(p,trueptr,’t’ diagrams,stack,rp,recov);
B genpreorder(p "~ .true,stack,rp,diagrams,recov);
. buildset(p,falseptr,’f’,diagrams,stack,rp,recov);
N genpreorder(p " .false,stack,rp,diagrams,recov);
. end

end;

. {**}

B

115

~ Tw b P L T LR LT S T
--. .5"> _'-4 _‘n o, '-. » *.; o _ -

R i e s g o

. 1
RENFARAE RS

P P P PP P vy vy M A A0 e ARAD RTACA SN I o et areg g
. A . Badad . A A SC ACRS A A Y AN A

procedure genrecovset(var stack: stackptr; var diagrams: syntaxchart;

var recov: recovdata);

{ This is the driver for the recovery symbol generation process. The
purpose of this procedure is to "walk" down the parsing stack (whose
top at time of call is the most recent recovery activation record) and
generate any potential recovery symbols for each activation level. This
walk down the stack concludes when either the last activation level has
been reached or a recovery record from a previous recovery is encountered.
The final step of this routine joins this newly derived set with any
existing set which may already be present, i.e. the recovery set pointer
is adjusted, if necessary to "hook" onto the beginning of the existing
set, thus forming a "union" of recovery symbols. An important variable
used here (and in some of the other recovery subroutines above) is "rp",
or the recovery pointer, which provides the current point of reference
(i.e. what is the current level of stack) so as to act as a "movable"
pointer while the variable "stack" remains fixed at the top. }

var
top: stackptr;
i: integer;
p: treeptr;
q: recovptr;
rp: stackptr; -
begin

{ initialize the boolean recovery point and used symbol arrays to indicate
that no diagram position has yet to be investigated as a possible recovery
point, and check the first stack level }

for i:= 0 to maxboxes do
recov.points[i]:= false;

for i:= O to totallexemes do
recov.used[i]:= false;

rp:= stack;

stack:= stack " .next;

p:= makenode(stack .lasttrue);

genpreorder(p,stack,rp,diagrams,recov);

{ now that the first level has been checked, start walking down }

stack:= stack " .next;
if stack <> nil then e

repeat ;::‘.‘_:".j-

top:= stack; 2

T R N N T N e N N o T W e ~ -y ~—— v

if stack " .kind <> recovery then
begin
rp ~.currentrec:= stack;
if stack “ .lasttrue <> intnil then
begin
p:= makenode(stack " .lasttrue);
genpreorder(p,stack,rp,diagrams,recov);
end
else;
end
else begin

{ join the sets, if required }

Q:= rp .recovset;
if @ <> nil then

begin
while q " .next <> nil do
q:= q .next;
q " .next:= stack ~.recovset;
end
else
end;
i stack:= stack " .next
until (stack = nil) or (top " .kind = recovery)
else;
stack:= rp;

if printrecovset then
printset(rp " .recovset);
end;

{**}

117

e et w Lt

ey s at g

DAnS Ash S St S8 T0s Bad Al Bg Bed et it At S S0 & St R ey T—— —— R ——— EOh SRl e St S T S i S i il St e e et

function performrecovery(var stack: stackptr; var diagrams: syntaxchart;
var token: lexvalue; var error: errordata;
var syntax: syntaxdata; var lex: lexparams): boxptr;

{ This routine returns the position in the transition diagrams where normal
parsing will resume. The following recovery decisions and actions are
either initiated or performed here: 1) determine whether or not the current
lexeme is a member of the "restart" set and if so, initiate action to
get the appropriate activation record onto the stack, and compute the
resumption point for parsing on this symbol, 2) initiate a search of the
recovery set for a match with the current lexeme and if found, return its
diagram postion, 3) interface with a display routine ("updatesource") which
keeps track of the "bad text" as each token is discarded during the recovery
for later underlining of the affected source. One variable used here whose
use may not be easily understood is "oldpos", which is necessary to hold
the starting position of each lexeme prior determining whether or not it will
be thrown away and, therefore, underlined. Control within this module is
accomplished via a repeat-until loop, meaning, consume lexemes in the input
until one is found which meets the recovery criteria discussed above. }

AN

var
returnptr: boxptr;
rp: stackptr;

‘ newpos: boxptr; ;
oldpos: integer;
begin
rp:= stack;
oldpos:= 0; T
lex.badtext:= true; (T
repeat

updatesource(error,lex.badtext ,oldpos,token,lex);
returnptr:= searchlist(rp,token);

stack:= rp;
if returnptr = intnil then
begin
newpos:= searchrestart(syntax.rstart,token); S
if newpos <> intnil then RO
begin ‘»‘.'-'::::;:

push(activation stack,diagrams[newpos|.name, exitrecovery,newpos);
returnptr:= computepos(diagrams,newpos,token);
end
else
end
else;
if returnptr <> intnil then

. "4 {.'f' (‘.q; .'
c el .
.
.

P
a.',

'
.

-y e

-
{

- T T - -~ — —w ———
N i ik il ~ G Y " T i RIS Mt S ut e ab i S St AR ket Sat Adh Al Sl dat Sos Arh st s S A

begin
if returnptr <> syntax.last then
if printposit then
print(prresume,stack,lex,syntax,token)
else
else;
lex.badtext:= false;
updatesource{error,lex.badtext,oldpos,token,lex);
end
else begin
lex.badtext:= true;
update(rp " .next,intnil,’junk’ lexeme)
end;
oldpos:= {lex.chpos-1)+lineoffset;
token:= gettoken(lex,error,diagrams);
syntax.legal:= nil;
until (returnptr <> intnil) or (returnptr = syntax.last);
if returnptr = syntax.last then
print(preof stack,lex,syntax,token)
else; .
update(stack,returnptr,diagrams(returnptr].name,diagrams|returnptr].typ);
performrecovery:= diagrams[returnptr].trueptr;
end;
{**}

Tl“ l', l,’ lll L] s ‘.

T e r—p——

{****************************#***************************************}

: ERROR RECOVERY DRIVER

{**}

procedure recover;

{ This is the driver for the error recovery mechanism. If recovery mode
is being entered due to the occurence of a new error, then a recovery record
is pushed onto the stack, all of the error data needed for producing an error
message is computed and saved, the recovery set is generated, and the
serach begins for a resynchronization symbol. If recovery mode is being s
reentered, having just completed parsing a segment of text which began as a BRE
result of a previously found restart symbol, then the recovery resumes by
searching the recovery set extending from the old record which has just

|| 2 R B R

l reappeared at the top of the parsing stack. The call to print in this module -
is for the purpose of informing the user that an "end of program" (end.) has oy
been detected. Processing continues, however, to detect any errors in the)
; remaining text. }]
. o
" begin Ll

if stack ” .kind <> recovery then
with stack = do

begin ',::.'f‘
. if lasttrue = syntax.eop then S
I print(preop,stack lexx,syntax,token) o
else;

push(recovery stack,name,lasttrue,diagramhead); e
recorderror(error,lexx,stack,syntax); i
genrecovset(stack,diagrams,recov}; :f:_‘"- ‘
i end v
else; S
resumeptr:= performrecovery(stack,diagrams,token, error,syntax,lexx); .
end;
{**}

e s W -

- e fe Tt e e
D T T U Y et -

< - ..n .- . . .
PO IO I ST S0 A

#include "global.h"
#include "common.h"

ERROR HANDLING ROUTINES

{************************:A********************x**t***t***************}

ERROR MESSAGE PREPARATION ROUTINES

{x*********************X**}

These routines are concerned with performing linked list operations
required for preparation of the error messages. Some of these
routines are utilized in connection with the "legal symbol list",
which is used to produce the error narrative that lists those
symbols which would have been syntactically legal at the point of
error detection. Additionally, the elements of the history list,
which contains those syntactic units which have been successfully
recognized prior to the point of error, are extracted and assigned
to an error message pointer for later display.

{*****x******x**********x*************************i******x************}

function findlegal;
{ This function searches the legal list and returns a boolean which is
used to prevent insertion of duplicate box names. }

var
found: boolean;
begin
found:= false:
while (p <> nil) and (not found) do
if diagrams(p ~.boxnum|.name = diagrams|pos|.name then
found:= true

else
p:= p~.next;
findlegal:= found;
end;

{**}

procedure insertlegal;

{ This procedure adds an element to the legal list and is called by
both the parser and error handler. The parser inserts a symbol into
list upon exiting false from a lexeme box, and the error handler
determines the remainder of the symbols by examining those which were
not checked during normal execution. }

var
q,r: legalptr:

B AE PR, WO DR AP VLIS NP ST

Pl s i iets Bul St ok " - r- - I AN B Meias 1A JhA St 2bvee g T TN T

begin
new(q);
q " .boxnum:= pos;
q " .next:= nil;
if p = nil then

P:=q
else begin
r:= p;

while r ".next <> nil do
r:=r .next;
r”.next:= q
end
end;

v ——r

{**}

procedure recorderror;

{ This is the main routine for error message preparation. The following
actions are performed here: 1) the source position of the error is
recorded, 2) the name of the diagram in which the error occured is
saved (to output "bad..."), 3) the end of the history list is saved,

4) the contents of the legal list are saved, and 5) all of the various
components of the message are saved in a message record (the variable
"listing" below), which is a member of an error list for the current
line. Access to the messages for the line is provided through the

pointer variable "errptr”. }

var
P,q: errorptr;
r: historyptr;
s: legalptr;
begin
with lex,errorstack "~ .next " do
begin
new(p);
with p “.listing do
begin
if list then
errstart:= lastpos+1
else
errstart:= chpos;
diagname:= name;
starthist:= histptr;
r:= starthist;
if r <> nil then

122

begin
while r ".next <> nil do
r:=r .next;
endhist:=r
end
else;
s:= syntax.legal;
expected:= nil;
while s <> nil do
begin

insertlegal(s * .boxnum,expected); -
s:= s .next o -
end; IR
end; b

p ~.next:= nil;
if errptr = nil then
errptr:= p L
else begin
q:= errptr; :
while q " .next <> nil do

[

q:= q " .next; e ~;:

qQ .next:=p : X

end; -

end; Lo !
{**} i:bgﬁ
N

‘.-\:-.:-;

123

procedure lexicalerror;
{ This routine records lexical stage errors and enters them into a
lexical error linked list. This list is later merged with the syntactic

error list permitting output routines to traverse one list in displaying —
all the error information occuring on a given line. Based on the call :“:::‘:4
parameter indicating lexical id, the appropriate message is retrieved Z-_:-.'*}‘
and stored for output at end of line. } RS

A

var
p,q: lexerrorptr; '
text: lexmessage;

procedure getmessage(num: lexvalue; var text: lexmessage); S

begin T
if num = ord(illegal) then g

g text:= ’illegal character(s)’

. else if num = ord(badcomment) then

text:= 'unclosed comment detected’ -

. else if num = ord(badexpon) then
text:= ’digit,+,- must follow "e"’ S

else if num = ord(baddecpt) then S

text:= ’digit(s) must follow dec pt.’ v

else if num = ord(badsign) then

text:= 'digit(s) must follow sign in exponent’
else if num = ord(badstring) then

text:= 'unclosed string quote at end of line’
else if num = ord(zerostring) then

text:= 'zero string constant not allowed’
else if num = ord(badexpart) then

text:= 'illegal exponent in real constant’
else if num = ord(baddecimal) then

text:= ’illegal rt side of decimal pt.’ R
else if num = ord(nodigits) then ;____

text:= ’digit(s) must come before dec pt.’ '

end; {get message}

begin {lexicalerror}
with error,lexx do

- begin R
: new(p); N
- with p ~.listing do ANy
- begin -3

if list then

W T TV U N TR T RN e worey T T Y T T e N Y Wy W A I V¥ VI W w v, w v vy, v, ¥

errpos:= lastpos+1
else
errpos:= chpos;
typ:= num; . :
- getmessage(num,text);
message:= text;
end;
p~ .next:= nil;
if lexerrptr = nil then .
lexerrptr:= p D
else begin '
q:= lexerrptr;
) while q “.next <> nil do
q:= q .next; ..
if q " .listing.typ <> ord(badcomment) then :
q .next:=p
else e
end '.':.-::'..‘
end; b
end; {lexicalerror} L
{**}

procedure collecterrors(q: lexerrorptr; r: errorptr; var s: errormark; :
var lastmark: integer); £
{ This routine takes the input lexical and syntactic error pointers
: (locally as pointers "q" and "r" respectively) and merges the e
- error position information from the two lists. Lexical errors are
g noted with a ’!’ and syntactic with an ’s’, in the event that multiple
errors occur at the same point on the line (and if so, lexicals will
be output first). This information is later used by the error message
driver routine to control the order of the message output processing.
The variable "listing" used here, and in other error message routines,
is the record of error information for each error, which contains the
history list pointer, legal list pointer, diagram name, and the error
position. }

var I.;:'; .

p,t: errormark; - f::'_

begin i"“~~

- while (q <> nil) or (r <> nil) do AN
y begin SN
» A
: new(p); a5
N if (@ <> nil) and (r <> nil) then Sl

if q~ .listing.errpos <= r " .listing.errstart then

t‘.’-&

: 125

begin
p " .pos:= q " .listing.errpos;
p .typ:="T;
q:= q .next
end
else begin
p " .pos:= r " listing.errstart;
p -typ:=s’;
r:=r " .next
end
else if (@ <> nil) then Lo
begin e
p " .pos:= q " .listing.errpos;
p .typ:="1;
q:= q .next
end
else begin
p~.pos:= r " listing.errstart;
p .typ:=s;
r:=r’.next
end;
if s = nil then
s:=p
else begin
t:=s;
while t “ .next <> nil do
t:= t " .next;
t " .next:= p
end;
if (@ = nil) and (r = nil) then
lastmark:= p " .pos + lineoffset-1
else
end;
end;
{**}

126

R I I el i C T U IR S
N T T Y T T T Y T T e

T S Y~y

{**}

ERROR MESSAGE DISPLAY UTILITIES

{**}

procedure updatesource; A

{ This routine records the line start and stop positions for those
lexemes which are discarded during error recovery. This information
is later used by the "underline" routine in marking the affected text. -
The algorithm here is as follows: 1) if the call parameter badstuff _.__;_
is false (meaning recovery has occured), then find the last element in :
the "garbled" linked list and record the "junk" stop position; if this .
posit equals the start position, then recovery occured immediately
without consuming text and the stop posit becomes one less than the start
to indicate that no underlining should be performed; otherwise, mark the
stop posit. 2) if the call is true, but no stop was enterd for the last
item in the list, then a new list element is not neceasary since the
recovery has not yet occured (thus underlining should continue). 3) and
finally, if the call is true and the list is empty, create a new node and
enter the start position. } , j::;_ :

var :
p,q: garbledptr; .'_'f:‘__'-'ij
begin o
with error,lex do -
begin
if badstuff then
if garbledlist = nil then
begin
new (p);
p " .next:= nil;
p "~ .symb:= token;
if continue then
begin
ii=1;
. while linebuf{i] =’ do
: ii=i+1;
T p " .junkstart:= lineoffset + i;
continue:= false g
» end
" else i““',
" p " .junkstart:= chstart + lineoffset; ARG
y p~ .junkstop:= 0; ’{.::}
- garbledlist:= p N
! end P"@
b
127 ':'_:‘
J
B, £ T R L.
Tl e e et T e e e e e T S e T T S

Ll It Jhd 2B e Bagih SR Jat Bl Saaac i an —— i 2 Y S v sk & Sa Al e N S et i i ted S el Su Salh e A s Aad fat el o -"-»'J'Y“L'v""_'~'1'—.".'—:?:'—<r:l

-

else begin
p:= garbledlist;
while p ".next <> nil do
p:= p~.next;
if p~ .junkstop <> O then
begin
new(q);
q " .next:= nil;
q " .symb:= token;
q "~ .junkstart:= chstart+ lineoffset;
q "~ .junkstop:= 0;
p .next:= g
end
else
end
else begin
p:= garbledlist;
while p “.next <> nil do
p:= p .next;
if token = p ~ .symb then
p " .junkstop:= p " .junkstart-1

else
p " .junkstop:= oldpos;
end;
end
end;

{**}

procedure printmark;

{ The purpose of this routine is to display and align the vertical lines
which extend downward from the text source line from each error position
on the line. The call parameter for this module is a pointer to a
list of error positions on the source line. A counter is set to the left
edge of the display and a vertical bar is printed each time the counter
position equals one of the stored error positions in the list. }

var
lastpos: integer;
i: integer;
p: errormark; ;
begin b
lastpos:= 0; :::'
i:= 10; "y

o

p:= errmarker;

128

. - . . - . - - - - - N . . .
- . et et . - - L L R e ot et LI - - . . e . o N
VPP GINGNORE D PR P AP AP AT S U R S RN w0 B Ser e S e S I S

N
P
P
g
;
-

var

while p <> nil do

begin
if i = p~.pos + lineoffset-1 then
begin
if i <> lastpos then
begin
if (lastpos = 0) and (i = lineoffset) then
write(’] ":lineoffset+1)
else
write(’] ":i-lastpos);
lastpos:= i
end
else;
p:= p~ .next;
end
else;

if p <> nil then
if p “.pos + lineoffset-1 <> lastpos then
=141
else
else;
end;
end;

{**}

procedure underline(p: garbledptr; q: errormark; lastpos: integer);

{ This routine underlines any text on the source line which was discarded
during the error recovery process. The call parameter "garbledptr" is
a pointer to a list which contains the start and stop line positions
for all "junk" that was previously recorded by the "updatesource"
routine. In this module, it is just a matter of extracting the start
and stop positions from each node in the list and printing a "%" symbol
when the incrementing line count is contained within the "junkstart"
to "junkstop" range. If a junk symbol position coincides with a vertical
line position (which extends downward from the error posit on the line) then
the junk symbol is printed to permit clear visual recognition of the
discarded text. The underlining information is output from a line buffer
which contains either a blank space, a "%" symbol, or a "|" for each
line position, beginning with 1 (left edge) through 90 (80 column display

plus 10 (line offset) for the line numbers. }

type

linebuf = packed array(l..displayedge| of char;

BaAC AN A A e /e o e g B 20 g

R

i : integer;
line : linebuf;
begin
if p <> nil then
begin
for i:= 1 to displayedge do
lineli]:= "
=1,
i repeat
if p " .junkstart <= p " .junkstop then
if (i >= p " .junkstart) and {i < p~.junkstop) then
begin
line(i]:= "%";
I 1= 1+1
end
else if i = p~.junkstop then
begin
line[i:= %",
ii=1+1;
p:= p .next
end
else i:= i+1
. else if p " junkstop = 0 then
I if (i >= p " .junkstart) and (i <= lastpos+ lineoffset) then
begin
linefi}:= "%";
ir=1+1
: end
i else i:= i+1
else p:= p ".next
until (p = nil) or (i = displayedge+1);
ii=1;
. if @ <> nil then
= repeat
if i = (q~.pos-1+lineoffset) then
begin
if linefi] <> '%’ then
line[ij:= |’
else;
if " .next <> nil then
if ¢ .pos <> q".next " .pos then
1= i+1
else
else;

1 -

. 130

I i G Al ALE et Sl Ml A sedoend Bt Ak el el Jand Sl ek dhde g e

q:= q " .next
end
else
= i+1;
until (q = nil) or (i = displayedge+1)
else;
ii= 1;
while (i <= displayedge) and
((line[i] =’ ") or (line[i] = 1°)) do
1= 1+1;
if i <> displayedge+1 then
begin
for i:= 1 to displayedge-1 do
| write(line[i});
writeln(line[displayedge|);
end
else
. end
) else
end:
{**}

procedure formatline(p: errormark);

I { Formatline is primarily responsible for the horizontal component
of the error message lines. These begin at the base of each vertical
error line and extend to the right through column position 90.
Since multiple errors may occur on one line, this routine resolves

' conflicts between the vertical bar ("|") and the horizontal bar (" _")

I' in those situations where the lines cross, with priority being given

to the vertical bar. Additionally, this routine also prints the line

message header "****Error". }

var
last,i: integer;
r begin
‘ printmark(p);
writeln;
write("****Error ’);
- last:= lineoffset;
- write(’]”:p " .pos + lineoffset-1 - last);
last:= p " .pos + lineoffset-1;
p:= p " .next;
if last = p " .pos + lineoffset-1 then
p:= p .next;

131

T T T T Y T e

for i:= last+1 to displayedge do
. if p <> nil then
\ if i= p ".pos + lineoffset-1 then
begin
write(’]’);
p:= p .next
' end
I else
write(")
else
write(’)
end;
I {**}

function findtextend;

{ This routine is used to determine the position where actual program
text terminates on a line to prevent underlining of trailing edge
comments. }

var
found: boolean;
nested: boolean;
last.i: integer;
I begin
with lexx do
begin
i:= lastpos;
last:= lastpos;
l nested:= false;
found:= false;
if lastpos > 1 then
repeat
if linebufli] =’ ’ then
J repeat
ir=i-1
until (linebuffi] <> *’) or (i = 0)
else if (linebufli] = '}’) or ((linebufli] = ’)’)
and (linebufli-1] = "*’)) then

) begin
last:= i;
repeat
. ii=i-1
until (linebuf{i] = ’{’) or ((linebufli] = "*’)

) and (linebuffi-1] = ’(’)) or (i = 0) or

182 ;:

MIMEUIMCE G el - St P S et aPe i b SN and ae SRR LR ML SR SR GAS areh SN0 AR SMbPe S el Ak o Aar A A A NA A ath th G A RS Auh A8 Adc AR Sof Bl Ap Rach g

((linebufi] = '}’) or ((linebuffi] =)’)
and (linebufli-1] = **’}));
if i > O then
if (linebuffi] = ’}’) or ((linebufli] =)’)
and (linebufli-1] = "*’)) then
nested:= true
else if linebufli] = "*’ then

1= 1-2
else
ir=1i-1
else
end

else
found:= true
until (found or (i = 0) or nested)

else
end;
if nested then

findtextend:= last
else

findtextend:= i

end;
{**}

{**}

ERROR MESSAGE DRIVER

{**}

procedure errormessage;

{ This routine coordinates the collection of the error information and
traversal of each linked list to output the error messages. This module
is called by the end-of-line procedure ("endline") immediately after
printing the line (if the error pointer is not nil). The code here
consists primarily those procedure calls required to output the lists and
the underline buffer(if required). Prior to returning to the endline
routine, all error pointers are reset for the next line.}

var
errmarker: errormark;
lastmark: integer;
p: errorptr;
q: lexerrorptr;
begin
with error do
begin

133

Ty TTTVRTVY T M A e &ee ma S Sae e a0 RSt i St S ol Bt el e e Jd S Sted ————r -——r——y

p:= errptr;

q:= lexerrptr;

errmarker:= nil;

collecterrors(q,p,errmarker,lastmark);

if garbledlist <> nil then
underline(garbledlist,errmarker,lexx.textend);

while errmarker <> nil do

begin
with p ~.listing,q " .listing do
begin
formatline(errmarker);
if errmarker " .typ = 'I’ then
begin
writeln(message);
q:= q .next
end
else begin S
writeln("Bad ’,""’,diagname: length(diagname),’’); Sl
outputhistory(starthist,p errmarker,lastmark); ’_' |
outputlegal(expected,p,errmarker,lastmark,diagrams); ‘.jf, - " -_
p:= p .next; BN
end; _ -
end; R
errmarker:= errmarker "~ .next; -
end; f:
garbledlist:= nil; .
lexerrptr:= nil; .
errptr:= nil; o

end; ..
end; -
{**}

134

TREREN

#include "global.h"
#include "common.h"

OUTPUT ROUTINES SO0

{*******************************t*t*xxtxttt*************************}

ERROR MESSAGE OUTPUT ROUTINES

{*****************************#*tnxttttmxt*t#*#*********************}

These routines output the contents of the history and legal lists. Much
of the code in the following two modules is very similar, however, Pascal’s
strong typing precludes combining operations involving the different
types "historyptr" and "legalptr".

{********************************x************************************}

procedure outputhistory;

{ The history list output consists of writing "Recognized: " followed
by the name of each syntactic unit which is stored in the history list.
If the name represents a nonterminal box, then the output will be
of the form ’< name >’, as opposed to just 'name’ for lexemes. If the
list contains more than 6 elements, then only the first 3 and last 3
will be shown, with three each on either side of the "..." notation.

As is also the case with the legal list, a line counter is maintained to

: keep track of spacing contraints so that the message remains contained
h within the 132 column boundary. The constant "justifyl" represents the
- field width necessary to position the header, "justify3" for the items in
[the list, and "spacel” and "space2" are used in calculations for the

right edge boundary. Finally, since the message may be followed by others
which pertain to the same line of source text, these routines must access

the "errormark" list to maintain any required preceding vertical marks which
are produced by the "printmark" display uitlity. }

var
currentpos: integer;
count: integer;
total: integer;

function getlength(p,q: historyptr): integer;

var i: integer;

- begin

). ii= 0;

! repeat
ii=1+1;

135

p:= p .next
until (p = q);
getlength:= i+1
end; {getlength}

2 begin
o if r " .next <> nil then
J begin
. printmark(r " .next);
write('Recognized: ’:justifyl-lastmark)
end
else s
write('Recognized: ’:justifyl); Ll
currentpos:= justifyl+1; .
if p <> nil then PR
begin
with q " .listing do
if starthist <> endhist then RN
begin :
total:= getlength(p,endhist);
§ count:= 1;
repeat , :
if (total > maxhistoryitems) and o
(count = maxhistoryitems-2) then
begin
p " .name:="...%;
p " .typ:= lexeme
end
else;
if length(p “ .name)+spacel <= lineprintwidth-currentpos then
begin
if p~.typ = lexeme then
begin
write(p " .name:length(p " .name),’ ’);
currentpos:= currentpos+length(p ~.name)+1
end
else begin
write(’<’,p " .name:length(p ~.name),’> ’);
currentpos:= currentpos+length(p " .name)+3
end

W o
e

,
RN
: .

- end
- else begin
- writeln:
if r " .next <> nil then

b 136

begin
printmark(r " .next);
write(’ ":justify3-lastmark);
if p~.typ = lexeme then
begin
write(p ~.name:length(p “.name),’ ’);
currentpos:= justify3+length(p " .name)+1

end
else begin
write(’<’,p ~.name:length(p ~.name),’> ’);
currentpos:= justify3+length(p " .name)+3
end
end
else begin

write(’ ’:justify3);
if p~.typ = lexeme then
begin
write(p " .name:length(p “.name),’ ’);
currentpos:= justify3+length(p ~.name)+1
end
else begin
write(’<’,p *.name:length(p ~.name),’> ’);
currentpos:= justify3+length(p ~.name)+3
end
end;
end;
if (total > maxhistoryitems) and
(count = maxhistoryitems-2) then
while (total-count) >= maxhistoryitems div 2 do

begin
count:= count+1;
p:= p .next
end
else begin
count:= count+1;
p:= p.next
end
until (p = endhist)
end
else;

if length(p " .name)+spacel <= lineprintwidth-currentpos then
if p~.typ = lexeme then
writeln(p * .name: length(p * .name))
else

137

writeln(’<’,p " .name:length(p " .name),’>’)
else begin
writeln;
if r " .next <> nil then
begin
printmark(r " .next);
write(’ ":justify3-lastmark);
if p”~.typ = lexeme then
writeln(p ~.name: length(p "~ .name))
else
writeln(’<’,p " .name:length(p " .name),’>’)
end
else begin
write(’ ";justify3);
if p~.typ = lexeme then
writeln(p " .name: length(p ~.name))

else
writeln(’<’,p “.name:length(p " .name),’>’)
end
end
end
else

writeln(’nothing yet in ’,q " .listing.diagname:
length(q ~ .listing.diagname}};
end;
{**}

138

A
SN

ot .
.

.
i)

°t
|

% o T

X

o
" 1
PP

4,000 00

’

»
*

e

2 b,

-

A a3 ""_r Sl Bar e it e it PN A et e i® St e et At At b & &Rt bt Bt St i R AR R S A b I ACE S St A gt S T S S e

procedure outputlegal;

{ This module is much like outputhistory with only a few differences.
Since the legal list is only concerned with lexemes, the "< >" notation
-is not required, but rather all names are simply shown as "name". The
constant "justify2" is computed to properly justify the phrase "Legal

Ve Y
. RARE ARG

- would have been: ", which is output as a header to the list. If the e
list requires more than one line, justification reverts to "justify3" in C::{::-
order to line up with the history list output. All items are output I

irregardless of the length of the legal list, since this information may be
especially important to the novice programmer. }

o e Ly
T 7"-"]:_,'.,‘

var
currentpos: integer;
begin
if r " .next <> nil then
begin
printmark(r " .next);
write(’Legal would have been: ’:justify2-lastmark)
end A
else
write('Legal would have been: ’:justify2);
currentpos:= justify2+1;
if p " .next <> nil then
with q " .listing do
begin
repeat
if length(diagrams[p " .boxnum|.name)+spacel <=
lineprintwidth-currentpos then
begin
write(’"’,diagrams(p " .boxnum].name:
length(diagrams(p “.boxnum|.name),”",’);
currentpos:= currentpos+length(diagrams(p ".boxnum).name)+3
end
else begin e
writeln;
if r ".next <> nil then
begin
printmark(r " .next);
write(’ ":justify3-lastmark);
write(’"’,diagrams[p “.boxnum|.name:
length(diagrams{p * .boxnum]|.name},",’);

P——
A .

L N VRN
R N

. et '
el

t S
'

v v e
S B
PR AN

Lty
A

..-..
AN

N A
Cxtal

[

'y

[4

.

“ e
St
va !

..
D
e

e

.

M]

.o
D
PR
v
P
L
[

",

end
else begin
write(’ *:justify3);

139

e e . -. - T P el Trae TN L
e T e T T e e, S k. SR '.. "-v '.t-:.." < -{»

ATt T e te "
DO S

T ———_,—-; radera Seanl son e RIA L Sl salh el el Suibad tnd A d Al A § el Anic At SRS dC A A g A Bt A ach oy gl
A A A B Al i Al Al A A A

write(""’ ,diagrams[p ~.boxnum]|.name:
length(diagrams(p *.boxnum]|.name),™,’);
end;
currentpos:= justify3+length(diagrams(p “.boxnum|.name)+3;
end;
p:= p .next N
until (p ".next = nilj; A
if length(diagrams[p ~ .boxnum|.name)+space2 <=
lineprintwidth-currentpos then
writeln(’ or "’,diagrams[p ~.boxnum|.name:
length(diagrams[p " .boxnum].name),”’) -
else begin ol
writeln;
if r".next <> nil then
begin
printmark(r *.next); g
write(’ ":justify3-lastmark); R
writeln(’ or "’,diagrams(p ".boxnum].name: .
length(diagrams(p *.boxnum|.name),”"’);
end
else begin
write(’ ":justify3);
writeln(’ or "’,diagrams|p ~.boxnum|.name:
length(diagrams|p " .boxnum|.name),’);
end
end
end
else
writeln(’",diagrams|p " .boxnum].name:
length(diagrams[p " .boxnum]|.name),”"’)

end;
{tt:t***}

v

P‘"
D

A5
5 WS
.
3

"
L
SN

. - -
P i)
.""

r -
/)

Ok

.
-
2

Ay b 4,‘..
el

v
v
V..

140

[
L S - B - .
AL IR ‘.L.'A)A..\l‘ h\-

o e e e e s e
............ D N AN A S
......

T T T T TS T T T e N W, N TV Y e TN W W

L [e

»{**}

PRINT UTILITIES

{**}

{ These routines output various messages and debugging information as
selected by the command line switches. With the exception of the
EOF/EOP messages, these features are not operationally part of the
program, however, they provide convenient aids when experimenting or
performing maintenance related activities. }

{**}

function length;
{ Returns the proper field width for the output }

var
i integer;
begin
ii=1;
while namefi] <> ’’ do
b= i+1;
length:= i-1;
end;
{**}

procedure printhist;

{ This procedure prints the contents of the history list if the
command line switch "printhistory" is activated. This routine is
called from procedure "update" after adding a new element. }

begin
writeln("History list:’);
writeln;
while p <> nil do
begin
write(’ ’,p ".name: length(p ~.name));
p:= p ~.next
end;
writeln;
end;
{**}

procedure print;

{ This routine outputs the contents of the stack, and messages for
end of file, parsing halts, and parsing resumes. Selection is
determined based upon one of the following switch call parameters:
prstack, preof, preop, prhalt, prresume. }

141

TR W WS e e, g s r v e e -

Cade - of T R T L T T Ty T Ty Ty W Ty T TN T Y T TR

K
."
cead

var
pos,line: integer;
begin
with lexx do S
begin
if list then

begin _ ;‘_J
Y

pos:= lastpos ;
line:= linenum+1
end
else begin
pos:= chpos-1;
line:= linenum+1
end
end;
if switch = prstack then
begin
writeln; -
writeln(’Stack configuration :’);
while p <> nil do
begin
write(p " .name); el
if ord(p “ .kind) = O then o
write(’activation’) :
- else
[write(’recovery’);
if p~.kind <> recovery then el
writeln(’ ’lasttrue: ’,p " .lasttrue:3) r e
else
writeln(’ ’);
p:= p .next
end; o
writeln; &
end
else if switch = prhalt then
begin
writeln; Ry
writeln(’token=",token); E
writeln(’Entered recovery mode at line ’/line:3,’ pos ’, -
pos:2,’ on token "’, syntax.name|token]:
length(syntax.name|token]),’);
writeln; .
end

« -

R S Dot 4 Ty

A e S i M cRnciaa Thi 20 Gl ia 't uth Sul dna. Ani

MR A sl Sadh asnd Shed e b aud ol S o o g

else if switch = prresume then
begin
writeln;
writeln('Resumed parsing at line ’,line:3,” pos ’,pos:2,
’ on token "’, syntax.name(token]:

n g

length(syntax.name(token|),”"’);
’_ writeln;
end
else if switch = preof then
begin
writeln;
: writeln(’ **** Unexpected EOF -- Compilation terminated’);
end
else if switch = preop then
begin
writeln;
writeln(’ **** Detected end of program -- Expected EOF’);

end
else

end; {print}
{**}
procedure printset;

{ This routine is called by the recovery module if the "printrecovset"
switch is set on the command line. Output includes the name and
diagram position for each symbol in the recovery set. }

begin
writeln(’Recovery set:’);
while p <> nil do
begin
with p~ do .
writeln(’symbol=",name,” diagposit=',diagrampos:4,
' parentrec=’, parentrec ~.name);

p:= p .next
end;
writeln;
) end; {printset}

AR O ARSI AL AT A AN A B S At At foh A i+ e g iy - 2 T A N T T T T Ty
o

»

n'::

c;' {****************#***}

.:_; .

T procedure printsyntax;

e s
.
[y

LI P]
atetetale
g e e,

- n ;‘(AQ';)JJ. oL, f

{ This routine outputs the contents of the stored transition diagrams
in response to the command line switch "printbox". }

var
i: integer;
begin
for i:= 1 to syntax.total do
with diagrams|i] do
begin
if ord(typ)
begin
writeln;
writeln;
writeln;
writeln
end;
write(’box=",i:2,” type=",ord(typ):1,’ name="name,’ code="
Jlexcode:2,” true=",trueptr:2,’ false=" falseptr:2);
writeln(’ next=",nextptr:2);
end

= 0 then

end;
{**}

144

O O AR

.' [N
l} .‘_A PN

'._\.'-" i

\-'\ - .'

¥ . . e \'\ S L, -
‘r\: X SRt ",, YR o -.a\r-.x ~J.‘-AL Ry -‘&.‘-;hf SOOI

T T T T e TV Mgt aras aands g P T R W P W VW e W W Iw oWy

#include "global.h"
#include "common.h"

INITIALIZATIONS

{****************************t**********ii**t*************************}

INITIALIZATION UTILITIES

{************************t***t*t**t#t**t**#***t#**********************}

procedure addheadptr(var head: headptr; name: boxname; boxnum: boxptr);

{ This routine is called each time a header box is encountered in the input
file in order to keep track of whei. each diagram starts in memory. This
information is later applied to the "nextptr" field (recursive pointer) of
the nonterminal boxes, and is also used during the recovery to find out
where to recommence parsing if a new activation record needs to be added
to the existing stack. }

var
p,q: headptr;
begin
new(p);
p .name:= name;
p " .boxnum:= boxnum;
p ~.next:= nil;
if head = nil then

head:= p
else begin
q:= head;

while q " .next <> nil do
q:= q " .next;
qQ " .next:=p
end
end;
{**}

procedure addrestart(var head: restartptr; code: lexvalue;
pos: boxptr);
{ This routine is called when a "fiducial" symbol is encountered in the input
file. The resultant list is checked during the recovery process to see if
a fiducial (restart) symbol is present in the input stream. }

var
P.q: restartptr;
begin
new(p);

145

N S e Nt et .t avatan .
L T S Al e "- .l ‘.-
YRS -

e e e T N A e e

W W WY W WSy

- .
Sataty

P
“«

A At it AR A i S T T——— y -y 2 MG AW aie an e e B B ee e s o e Y A MAL e an e T T Wy

p ~.token:= code; e
p ~.boxnum:= pos;
p ~.next:= nil; e
if head = nil then .
head:= p -

else begin

q:= head;

while q " .next <> nil do .

q:= q " .next;
q .next:= p

end
end;
I {**************u**} el
procedure addrecov(var head: recovset; code: integer); R
{ This routine is called upon encountering a recovery symbol in the input R

file. A check is included here to prevent duplicate entries since many
boxes have the same symbol name. }

var
P,q: recovset;
begin
. new(p);
i p " .symb:= code;
» p " .next:= nil;
if head = nil then
head:= p
else begin
' q:= head;
while (q " .next <> nil) and (q".symb <> code) do
q:= q .next;
if " .symb <> code then
q~.next:= p

) else
end

. end;

s {**}

n

|

B

]

i b -

. N

8 RN

: NN
- L] -

' 146 Ty

. SRS

- P

. RN
Lo e

procedure getname(list: lexemelist; name: boxname; var lexname: syntaxunit);

{ This routine is called by initdiagrams to obtain the syntactic name
(enumerated type) for an input character string. The returned name is
then used to compute the code for a lexeme box. }

var
found: boolean;
i: integer;
begin
= 1;
found:= false;
while not found do
if name = list[i].id then
begin
found:= true;
lexname:= list[i}.su
end

end;
{**}

procedure removespace(var ch: char);
{ Used by the diagram input routine to remove blanks between the
box data in the input file. }

begin
repeat
read(ch)
until (ch <> ’’) or eoln(input)
end;
{***t**}

147

BRI, S LI S TS RS TR A IE TR G

A B
ACRLE PSRN

a

& & ¥ 5,
e

Rt

.....

--{**-**}

LEXICAL

INITIALIZATION ROUTINES

{***}

procedure initlex(var lexx:

lexparams);

{ This routine initializes data for the lexical analyzer, including the
scanner table entries, reserved word list, lexeme name list, and all

legal Pascal characters. }

const
tabch = 9;
var
i,j: integer;
begin
with lexx do
begin

{initialize reserved

1d[0]:= 'do’;
id[2]:= ’in’;
id[4]:= "or’;
id[6]:= ’and’;
id([8]:= ’end’;
id[10]:= ’mod’;
id{12]:= ’not’;
id[14]:= ’var’;
id[16]:= ‘else’;
id[18]:= 'goto’;
id[20]:= ’type’;
id[22]:= ’array’;
id[24]:= ’const’;
id|26]:= ’until’;
id[28]:= 'write’;
id[30]:= ’packed’;
id[32]:= ’'repeat’;
id[34]:= ’program’;
id[36]:= ’function’;

idlen[0]:= 0;
idlen[1]:= 0;
idlen[2]:= 6;
idlen(3]:= 15;
idlen(4]:= 22;

................. DRI LA

- . CRAR LTI TP UL I PR «® ~
-t mt et e aton -'\f -_‘ .-\‘-‘ .-'\" oa PRI \\ - N 'J\J\.‘\J

words}

id[1]:= "if’;
id([3]:= ’of’;
id[5]:= ’to’;
id[7):= div’;
id[9]:= ’for’;
id{11]:= "nil’;
id[13]:= ’set’;
id[15]:= ’case’;
id[17):= ‘file’;
id[19]:= ’then’;
id[21]:= "with’;
id[23]:= 'begin’;
id[25}:= ’label’;
id[27]:= 'while’;
id[29]:= ’downto’;
id[31]:= ’record’;
id[33]:= 'forward”;
id{35]:= ’writeln’;
id[37]:= ’procedur’;

A LA LTI IS PN A AT AR AL T
TR RIS SR, YRV YR A\’L‘k{‘) ARV WA

WA TN T N
ROACVA
BRI S

LA C A S AT A AR R AP A A e Al At A Gl A b il S Bl Al Aol Al Aelh Siad anh Sl el il Aed Aol Sl £

]

g _'.'-;._..1'

A ISR A g A S hen e A o il 2 A B An A SN S A A e on de aafh A A e B and S St e ARl S - S atol RSl b ' e BB G S aa s M AR S g0 a e & A/ S e e

idlen[5]:= 29;
idlen[6):= 33;
idlen[7]:= 36;
idlen|[8]:= 38;

{ initialize lexeme char name/enumerated type name conversion }

list1[1].id:= "; list1[1].su:= semicolon; o
list1[2).id:= ", *; list1[2]).su:= comma;
list1[3].id:= " 7 list1[3].su:= colon; SRS
list1{4].id:= "(; list1{4].su:= lftparen; RO
list1[5].id:= ") ”; list1[5).su:= rtparen; o
list1(6].id:= "= *; list1[6].su:= equals; o
list1{7].id:= [; list1{7].su:= Iftbracket; R
list1(8).id:= "] *; list1(8].su:= rtbracket; o 1
< list1[9].id:=". 7, list1{9].su:= period; RS
list1{10).id:="" 7, list1{10].su:= pointer; |
list1[11].id:="..%; list1{11].su:= range; ‘
g list1[12].id:= ":="; list1{12].su:= becomes;
[- list1{13].id:= ’or’; list113].su:= orr;
: list1{14].id:= 'of; list1]14].su:= off;
list1[15].id:= ’do’; list1[15].su:= doo;
list1[16].id:= ’in’; list1{16].su:= inn;
list1{17].id:= "if’; list1{17].su:= iff;
list1{18].id:= 'to’; list1{18].su:= too;
list1{19].id:= ’and’; list1[19).su:= andd;
list1[20).id:= ’end’; list1[20].su:= endd;
list1[21].id:= set’; list1[21].su:= sett;
list1]{22].id:= 'var’; list1[22].su:= varr;
list1[23].id:= 'for’; list1{23].su:= forr;
list1{24).id:= 'mod’; list1{24].su:= modd;
list1]25}.id:= 'div’; list1{25].5u:= divv;
list1[26].id:= ’nil’; list1[26].su:= nill;
L list1[27].id:= ’not’; list1[27].su:= nott;
;- list1{28].id:= ’eof’; list1{28].su:= endoffile;
; list2[1].id:= ’else’; list2[1].su:= elsee;
- list2[2].id:= ’then’; list2[2].su:= thenn;
list2{3].id:= ’with’; list2(3].su:= withh;
- list2[4).id:= ’case’; list2[4].su:= casee;
& list2[5}.id:= ’type’; list2[5].su:= typee;
F list2[6].id:= “file’; list2[6].su:= filee;
T
- 149 R
.-)

Haai gt At A ' ial Aol S0 el el o dad s B odes aies -y DAL R e b '7.\"-‘-7';-‘1

list2[7).id:= ’goto’; list2[7].su:= gotoo;
list2(8].id:= ’array’; list2[8].su:= arrayy;
list2[9].id:= ’const’; list2[9].su:= constt;
list2{10].id:= ’begin’; list2[10).su:= beginn;
list2[11].id:= "while’; list2[11].su:= whilee;
list2[12].id:= "until’; list2[12].su:= untill;
list2[13).id:= ’write’; list2[13].su:= writee;
list2(14].id:= "label’; list2[14].su:= labell;
list2[15).id:= ’packed’; list2[15].su:= packedd;
list2[16].id:= ’repeat’; list2[16].su:= repeatt;
list2[17].id:= ’record’; list2[17].su:= recordd;
list2[18].id:= *downto’; list2[18].su:= downtoo;
list2(19].id:= ’program’; list2[19].su:= programm;
list2[20].id:= ’forward’; list2[20].su:= forwardd;
list2[21].id:= ’function’; list2[21].su:= ffunction;
list2[22].id:= ’procedure’; list2[22].su:= pprocedure;
list2(23].id:= ’writeln’; list2[23].su:= writelnn;
list2[24].id:= ’identifier’; list2[24)].su:= identifier;
list2(25].id:= 'unsigned_real’; list2[25).su:= realconst;
list2(26].id:= ’endmarker’; list2[26].su:= endmarker;
list2(27).id:= 'unsigned integer’; list2[27].su:= intconst;
list2(28).id:= 'character _string’; list2[28].su:= stringconst;
list229].id:= "adding operator’; list2[29].su:= addop;

list2[30].id:= 'multiplying _operator’; list2[30].su:= mulop;
list2[31].id:= ’relational operator’; list2[31].su:= relop;

{initialize scanner table entries}

for i:= 0 to statetotal do
for j:= 0 to inpsymtotal do
begin
tab[ij]:= -1;
if i >= 32 then
begin
tab[i,9]:= i;
tab[i,19]:= i;
tab[i,21]:= i
end;
tab[15,j]:= 15; tab[16,j]:= 15;
tab(20,j]:= 21; tab[21):= 21;
tab{11,13]:= 19; tab[14,9]:= 18;
end;

150

A S At it e A it it i it et St Arh e &S gt St R R A

tab{0,0]:= 1;
tab[0,4]:= 4;
tab(0,8]:= 10;
tabl0,12]:= 14;
tab{0,16]:= 15;
tab[0,21):= 23;
tab(3,4]:= 5;
tab[4,5]:= 5;
12b(7,5]:= 8;
tab[11,9]:= 12;
tab(14,2]:= 15;
tab[15,2]:= 16;
tab[16,2]:= 16;
tab[16,13]:= 0;
tab[20,18]:= 30;
tab[21,18]:= 22;
tab(22,18]:= 21;
tab(23,9]:= 25;
tab[24,0]:= 27;
tab[25,0]:= 33;
tab[25,19]:= 33;
tab[26,9]):= 33;
tab(27,9]:= 32;
tab[28,21]:= 28;
tab[29,23]:= 29;
tab[30,18]:= 21

................................
............

tab[0,24]:= ord(stop);
tab(2,24):= ord(mulop);
tab[4,24]:= ord(relop);
tab[6,24):= ord(equals);
tab|[8,24]:= ord(becomes);
tab[10,24):= ord(semicolon);
tab[12,24]:= ord(range);
tab[14,24):= ord(lftparen);
tab[16,24]:= ord(badcomment);
tab{18,24):= ord(lftbracket);
tab([20,24]:= ord(badstring);
tab[22,24):= ord(stringconst);

tab[0,1]:= 2;
tab[0,5):= 6;
tab[0,9]:= 11;
tab[0,13]:= 17;
tab[0,17]:= 29;
tab|0,23]:= 29;
tab[3,5):= 5;

tab[11,21):= 34;

tab[15,17}:= 0;

tab(16,17):= 0;

tab(23,19]:= 24;
tab[24,9]:= 32;

tab[25,9]:= 31;

tab[25,21]:= 26;
tab[26,19]:= 24;
tab(27,19]:= 32;

............................. .

........

.....

tab[0,2]:= 2;

tab[0,6]:= 7;
tab(0,10}:= 12;
tab[0,14]:= 18;
tab(0,18]:= 20;

tab(23,21):= 23;
tab[24,19):= 32;
tab[25,13]:= 31;

tab[26,21}:= 26;
tab{27,21}:= 28;

{ initialize lexeme representations for table }

151

»

Tmt.

Te S R R SR L PN S S
" wl . ERGA N L e W AR . o
.m’h’. R A L YA VAL S PAR ST

tab[0,3]:= 3;

tab[0,7]:= 9;
tab[0,11}:= 13;
tab[0,15]:= 19;
tab[0,20]:= 0;

tab[24,21):= 28;

tab[1,24):= ord(addop);
tab[3,24):= ord(relop);
tab[5,24]:= ord(relop);
tab[7,24]:= ord(colon);
tab[9,24):= ord(comma);
tab[11,24]:= ord(period);
tab(13,24):= ord(pointer);
tab[15,24]:= ord(badcomment);
tab[17,24]:= ord(rtparen);
tab[19,24):= ord(rtbracket);
tab(21,24]:= ord(badstring);
tab[23,24):= ord(intconst);

s e -
.....

L 2t A AR R S "Rl i Rt S S B s it Sniih SR e et i g e

vt
v
[

1
[N
v 5 ¢ ¥
A e

¥ 1_‘1':.. _.v_ . "....

LIAARANI
A :'.-' S
AT AR

s

v'.v
oy s

¢

.
Pele
[}

TwywLvvewy

Pl Sl A &t BN ANCA R A S St Bt e S e

tab[24,24]:= ord(badexpon); tab[25,24]:= ord(baddecpt);
tab[26,24]:= ord(realconst); tab{27,24]:= ord(badsign);
tab[28,24]:= ord(realconst); tab[29,24]:= ord(illegal);
tab[30,24]:= ord(zerostring); tab[31,24]:= ord(intconst);
tab(32,24]:= ord(badexpart); tab(33,24]:= ord(baddecimal);
tab[34,24]:= ord(nodigits);

{initialize table index characters}

chrs[0].ch:= ’’; chrs[0].val:= 20; chrs|[l].ch:=";’; chrs[l].val:= 8;
chrs[2].ch:= "); chrs[2].val:= 7; chrs[3].ch:=""; chrs{3].val:= 6;
chrs[4].ch:= '=’; chrs[4].val:= 5; chrs[5].ch:='(>; chrs[5].val:= 12;
chrs[6].ch:=’)’; chrs[6].val:= 13; chrs[7].ch:= ”"; chrs|7].val:= 18;
chrs[8].ch:= ’>’; chrs[8].val:= 4; chrs[9].ch:='<’; chrs[9].val:= 3;
chrs[10].ch:= ’*’; chrs[10].val:= 2; chrs[11].ch:="/"; chrs[11].val:= 1;
chrs[12].ch:= ’+’; chrs[12].val:= 0; chrs|[13].ch:="-"; chrs[13].val:= 0;
chrs[14].ch:= ’’; chrs[14].val:= 14; chrs[15].ch:="]’; chrs[15].val:= 15;
chrs[16].ch:= ’{’; chrs[16].val:= 16; chrs[17].ch:="}; chrs[17].val:= 17;
chrs[18].ch:= ".’; chrs[18].val:= 9; chrs[19].ch:="""; chrs[19].val:= 11;
chrs[20].ch:= ’e’; chrs[20].val:= 19; chrs|21].ch:="'E’; chrs[21].val:= 19;
chrs[22].ch:= @’; chrs[22].val:= 11;

chrs[23].ch:= chr(31); chrs[23].val:= 10;

chrs[24].ch:= chr(tabch); chrs[24].val:= 20;

end; {with lexx do}

end;
{**}

152

v e e,
PN
et st
S
v %t b]

v
v

7 -, 7,
i) e s

SR
ey
P

-';4
XA

A

. 8
e

L T T BRI T B TR AN A A A B AR A I A e ~ 'W Pt MM G A oYl PR SO S (e ih Ariad theh S i e S it o e - pudie St et Bir i e tog J

{**}

SYNTAX INITIALIZATION ROUTINES

{***********************#**}

procedure initdiagrams(var syntax: syntaxdata; var recov: recovdata; V.
var diagrams: syntaxchart; var lexx: lexparams); z jﬁ:"
{ This is the routine that loads the entire set of syntax diagrams into O
mermory from a preconstructed input file. The algorithm is designed to S
read one diagram box per one line in the input file, and it expects to see L3N
box data in the following order on the line: 1) relative boxnumber (i.e. oo
the header is #1, the first syntactic unit in the diagram is #2, etc.) , .
2) the box type (header, nonterminal,lexeme,recover,fiducial) where
"fiducial" and "recover" are also lexmes, but possess important recovery T
characteristics, 3) the name of the box (as it appears in the drawings), i
4) true exit pointer, and 5) false exit pointer. Although each diagram is b
a separate entity as far as preparing the input file, the routine saves each
headptr as it is read, interconnecting the complete set of boxes. Thus,
frequent changes may be made, if desired, without necessitating any coding .
changes. The head pointer of each diagram is then used to compute a "next" el
pointer for all of the nonterminals (the next pointer for a nonterminal l_-_ -
tells the parser where to go in order to "expand"). L
Warning: Any line in the file which begins with a number will be regarded .
as a box number, thus beginning a line of data. Any line not beginning with Cel
a number is discarded. } '

const
numbconvert = 48;
listllen = 4;
var
ch: char;
chident: char;
length,i: integer;
boxnumber: integer;
lastptr: boxptr;
numbers: charset;
names: lexemelist;
tokenname: syntaxunit;

P LR ERRTARANS.
LI L it

¢ o« e . -
. e

begin -
syntax.head:= nil; S
syntax.rstart:= nil; | 3

recov.symbols:= nil;
for i:= 0 to totallexemes do

syntax.namelij:= ' ’;
boxnumber:= 1;

1538

numbers:= ['0"..’9"];
repeat
if not eof(input) then
if not eoln(input) then
begin
removespace(ch);
- if not (ch in numbers) then
3 readln(inpyt)
& else with diagrams[boxnumber| do
! begin
¢ i:= ord(ch)-numbconvert;
4 read(ch);
' if ch in numbers then
i:= 10*i + ord(ch)-numbconvert;
removespace(ch);
case ch of
'h’,’H’: begin
typ:= header;
lastptr:= boxnumber;

end;
[L: 'n’,’N’: typ:= nonterminal;
. ’l,,,L’,
_ ’F,,F’,
'R’ typ:= lexeme;
i end;
1 chident:= ch;
repeat
f read(ch)
i until (ch =");
removespace(ch);
& for length:= 1 to maxname do
3 name|length]:="’;
::L length:= 1;
& repeat

name[length|:= ch;
length:= length + 1;
read(ch)
until (ch ="");
if typ = header then
addheadptr(syntax.head,name,boxnumber)
else;
if typ = lexeme then
begin
with lexx do

et

o
,

e
¢

A N
‘n'l . .
o
v 9T
)

y v .

. L}

e,

. 2 o s
]

.
s’ alsts
Y Jl"_ ‘.l.l’l

» o .
S
LR

~
ll

. % '
'
A N

£ or o
ala
. %,
P

.

Ay

Ne

[
i

o .
.1 157

. "0

n

f
oty
)
e

.I‘-J-
"l{',l'
N e e

, '."l {'

P,

qm

_,,_1
XA
XA

PARA

“if length <= listllen
then names:= listl
else names:= list2;
getname(names,name,tokenname);
lexcode:= ord(tokenname});
end
else
lexcode:= -1;
if (chident = ’f’) or (chident = °F’) then
begin
addrestart(syntax.rstart,lexcode,lastptr);
addrecov(recov.symbols,lexcode)
end;
if (chident = ’r’) or (chident = 'R’) then
addrecov(recov.symbols,lexcode);
if name = ’endmarker’ then
begin
diagrams[boxnumber].name:= . ’;
syntax.eop:= boxnumber
end
else if name = ’eof’ then
syntax.last:= boxnumber
else;
syntax.name|lexcode|:= diagrams[boxnumber].name;
case typ of
header: nextptr:= boxnumber + 1;
lexeme: nextptr:= 0;
nonterminal: nextptr:= 0;
end;
read(trueptr);
read(falseptr);
if (trueptr > 0) and (lastptr > 1) then
trueptr:= trueptr + lastptr -1;
if (falseptr > 0) and (lastptr > 1) then
falseptr:= falseptr + lastptr -1;
boxnumber:= lastptr + i;

]
.n
v
2
[

end;
end
else =
read(ch) o,
1 RS
eise 'L\ ."']
until eof(input); a-‘.;&i‘,
syntax.total:= boxnumber-1; > ‘*’»
for i:= 1 to syntax.total do
t". :;::.:
155 NN
N
RHLY

r"‘vv':',\"rfjvfm,v's LRRALAC AL L LN S0 B AR g SN AL e e s e bt e aiaa e c e O S ~ AN A RASe Ra T A% 55 A8
s)

with diagrams(i] do

if typ = nonterminal then
nextptr:= getheadptr(syntax.head,name)
else;
if printbox then
printsyntax(diagrams syntax);
end;
{**}

procedure initvars(var syntax: syntaxdata; var error: errordata;
var lexx: lexparams; var diagrams: syntaxchart);

{ This routine initializes various lexical and syntactic variables
which require a value before commencing syntactic analysis. }

var
i: integer;
begin
with error do
begin
" errptr:= nil;
= lexerrptr:= nil;
: garbledlist:= nil;

- end;
with syntax do

begin
legal:= nil;
name(ord(illegal)):= ’illegal_character’;
. name[ord(badcomment)):= 'unclosed comment’
end;
with lexx do
begin
) letter:= ['A°..2’)-["["..");
o number:= ['0’.."9"];
sign:= [3+1,v_,];
expon:= ['E’,’¢’];
limit:= false;

o

.

Pl
s
2.

ij comments:= false;
o continue:= false;
vl badtext:= false;
:': count:= 0;
5 chpos:= 0;
. linenum:= 0;
e ch:="'";
_ oldline:= false;
- 156

A SPIr SATERPC SL IR P T I S I S TP SR S MEAR AP RS Y RIS YL N AR R R L NS S P LY P
~"-. ., .. LRI q".\ i_ \(-' AN -.) ".‘ DR S 4) U RN -'Ai.‘h-.' » .l ° .-.')-“ ‘\-\ LY n.‘. “ -

e L El Tl el A et e A A S KA S R e A AR S AL At Ak Wb AC AL ML A L At A el el S RS S G

for i:= 1 to maxline do
begin
linebufli]:= "’
auxbufli]:="";
end;
list:= false;
eol:= eoln(input);
ch:= getchr(lexx,error,diagrams);
end;
end;
{**}

{*****************************#**************************************} L i;

INITIALIZATION DRIVER o

{**} .

procedure initialize;
{ This routine directs all lexical and syntactic intitializations. }

ey

begin
initlex(lexx);
reset(input,’syntax.ipt’);
initdiagrams(syntax,recov,diagrams,lexx);
reset(input,filename);
initvars(syntax,error,lexx,diagrams);
end;
{***#******#*********}

v‘-‘v'-‘-"v A
XA

o &

157

3 l'!
.f-"‘,'." -'-"

T T N N T N N Y N T T T T T T T e e Wi L — i vy, e Wi e v v

TRANSITION DIAGRAM INPUT FILE

This is the input file for the parser which contains the specification for each
transition diagram (shown in Appendix B). The information- in this file is read
by an input routine, storing the information for later use by the parser during

syntactic analysis. The following information is contained in the input file:

Box # -- position within the transition diagram, with the header as #1.

Type -- three types of boxes: header, lexeme, nonterminal. If a lexeme is to
be designated a either a resynchronization or restart symbol for error
recovery, then "recover" is used to specify a resynchronization symbol and
"fiducial" is used for the restart symbols.

Name -- name of the box

Trueptr -- true exit path for the box, i.e. which box is next along the true
exit path.

Falseptr -- same as for true, but using the false exit path.

Trueptrs or Falseptrs which are associated to either a return true, return
false, or error ezit are represented in the input file by "-1" for return true, "-2"

for return false, and "-3" for an error exit. Comments concerning the input file

routine are contained in the initialization section of the listings.

s)T)/ A .-

T LT

PROGRAM

Box# Type Name Trueptr Falseptr
1 header Program 2 2
2 fiducial program 3 -3
3 lexeme identifier 4 -3
4 recover (5 8
5 lexeme identifier 6 -3
6 recover) 8 7
7 recover . S -3
8 recover ; 9 -3
9 nonterminal block 10 -3
10 recover endmarker 11 -3
11 recover eof -1 -3

BLOCK.

Box# Type Name Trueptr Falseptr
1 header block 2 2
2 nonterminal label declaration 3 8
3 nonterminal const_declaration 4 4
4 nonterminal type_declaration 5 5
5 nonterminal var_declaration 6 6
6 nonterminal proc/func_declaration 7 7
7 nonterminal compound_statement -1 -3
8 nonterminal const_declaration 4 9
9 nonterminal type_declaration 10
10 nonterminal var_declaration 6 11
11 nonterminal proc/func_declaration 7 12
12 nonterminal compound_statement -1 -2

- - Aol R v C Badh A
— A A e At A S AR a4 0 a e a st A Akl A i A ;

LABEL DECLARATION

Ll et e e e R S S S - -

Box# Type Name Trueptr Falseptr
1 header label declaration 2 2
2 fiducial label 3 -2
3 lexeme unsigned_integer 4 -3
4 recover ; -1 5
S recover . 3 -3
CONST DECLARATION
Box# Type Name Trueptr Falseptr
1 header const_declaration 2 2
2 fiducial const 3 -2
3 lexeme identifier 4 -3
4 recover = 5 -3
‘ 5 nonterminal constant 6 -3
. 6 recover ; 7 -3
7 lexeme identifier 4 -1
i TYPE DECLARATION
Box# Type Name Trueptr Falseptr
; 1 header type_declaration 2 2
) 2 fiducial type 3 -2
3 lexeme identifier 4 -3
: 4 recover = 5 -3
" 5 nonterminal type_denoter 6 -3
. 6 recover ; 7 -3
7 lexeme identifier 4 -1
’
: 160
) =
- D N N I LRI i A AP AR k)) M ~ . ~ y c..’-
e T T T T A e N WAL

P

e ST A A e e e
AP CI AL A D P I T S

VAR DECLARATION

Box# Type Name Trueptr Falseptr
1 header var_declaration 2. 2
2 recover var 3 -2
3 lexeme identifier 4 -3
4 recover 6 5
) recover , 3 -3
6 nonterminal type denoter 7 -3
7 recover ; 8 -3
8 lexeme identifier 4 -1

PROCEDURE AND FUNCTION DECLARATION PART

Box# Type Name Trueptr Falseptr
1 header proc/func_declaration 2 2
2 fiducial procedure 3 8
3 lexeme identifier 4 -3
4 nonterminal formal parameter list 5 5
5 recover ; 6 -3
6 recover forward 14 7
7 nonterminal block 14 -3
8 fiducial function 9 -2
9 lexeme identifier 10 -3
10 nonterminal formal parameter _list 11 12
11 recover 13 -3
12 recover 13 5
13 lexeme identifier 5 -3
14 recover H 15 -3
15 fiducial procedure 16
16 fiducial function

.....................

...........

................

P
.........

CURTN

Lt i ARl e bt ad

»
COMPOUND STATEMENT R

' Box# Type Name Trueptr Falseptr

Z:E_' 1 header compound_statement 2 2

:‘-l: 2 fiducial begin 3 -2

Y

i 3 nonterminal statement 4 4

- 4 recover end -1 5

- 5 recover ; 3 -3

ORDINAL TYPE

Box# Type Name Trueptr Falseptr

e

3 1 header ordinal_type 2 2

N - 2 lexeme identifier 10

: 3 nonterminal constant 4 6

':. 4 recover 5 -3

5 nonterminal constant -1 -3

- 6 recover (7 -2

& 7 lexeme identifier 8 -3

_. 8 recover) -1 9

9 recover , 7 -3

- 10 recover .- 5 -1
N
S
T
B
e

N
- 162

govey

TYPE DENOTER

Eliadh Sial -Badic ade et it Sod 2

Ty —

Box$ Type Name Trueptr Falseptr
1 header type denoter 2 2
2 nonterminal ordinal type -1 3
3 recover) 4 5
4 lexeme identifier -1 -3
5 recover packed 6 22
6 recover array 13
7 recover (8 -3
8 nonterminal ordinal type 9 -3
9 recover] 10 12
10 recover of 11 -3

O I I I T T o T S O S O S I R =
Gr W N = O © 00~ L e W

nonterminal
recover
recover
nonterminal
recover
recover

recover

nonterminal

recover
recover
nonterminal
recover
recover
recover

recover

type_denoter
)

record

field list
end

set

of

ordinal type
file

of
type_denoter
array

record

set

file

14
15

17
18

20
21

14
17
20

el

B AR A LA R Mt M AL AEME S ALAESEAE SEMEREAE N S A EAA TG 2
.
FIELD LIST : p
Box# Type Name Trueptr Falseptr
1 header field list 2
2 lexeme identifier 3 9
3 recover 5 4
4 recover - 11 -3 e
5 nonterminal type_denoter 6 -3
6 recover ; 10 -1 , ﬁf-;:
e
7 nonterminal variant part 8 8 q
8 recover ; -1 -1 .
9 nonterminal variant part 8 -1
10 lexeme identifier 3 7
11 lexeme identifier 3 -3 5
VARIANT PART E
R
Box# Type Name Trueptr Falseptr .
1 header variant_part 2 2
2 recover case 3 -2
3 lexeme identifier 4 -3
4 recover 5 6
5 lexeme identifier 6 -3
6 recover of 7 -3
7 nonterminal constant 8 -3 —
8 recover 10 9 4
9 recover , 7 -3 .t::?
10 recover (11 -3 :
11 nonterminal field list 12 -3
12 recover) 13 -3
13 recover ; 7 -1
164
""" e e e e e T e T R A T U S T e e T S e e

..........

LA i Sk Bt e = e S S S e A g g g BBl Al s A ML g Rt e w v N T T AT Y YT YUY VW™
AN . s . " o "

FORMAL PARAMETER LIST

Box# Type Name Trueptr Falseptr
1 header formal parameter_list -2 2
E- 2 recover (3 -2
: 3 recover var 4 10
i 4 lexeme identifier 5 -3
f 5 recover 7 6
'; 6 recover) 4 -3
4 7 lexeme identifier 9 8
! 8 nonterminal conformant_array schema 9 -3
k 9 recover) -1 19
10 lexeme identifier 5 11
11 recover procedure 12 14
12 lexeme identifier 13 -3
13 nonterminal formal parameter list 9 9
14 recover function 15 -3
15 lexeme identifier 16 -3
16 nonterminal formal parameter_list 17 71
17 recover : 18 -3
18 lexeme identifier 9 -3
19 recover ; 3 -3
ACTUAL PARAMETER LIST
Box# Type Name Trueptr Falseptr
1 header actual parameter_list 2 2
2 recover (3 -2
3 nonterminal expression 4 -3
4 recover) -1 5
5 recover R 3 -3

165

WRITE PARAMETER LIST

MEAT ol S " st SN AR ol i i A ud

Box# Type Name Trueptr Falseptr

1 header write_parameter_list 2 2

2 recover (3 -2

3 nonterminal expression 4 -3

4 recover 5 8

5 nonterminal expression 6 -3

6 recover 7 8

7 nonterminal expression 8 -3

8 recover) -1 9

9 recover , 3 -3

VARIABLE ACCESS
Box# Type Name Trueptr _ Falseptr)

1 header variable_access 2

2 recover [3 6

3 nonterminal expression 4 -3 .

4 recover] 9 5 ot
A

5 recover , 3 -3 o
’:\q'.‘:'

6 recover 7 8 :4',_:
- -"::J

7 lexeme identifier 9 -3 e

. —

8 recover 9 -2 SO

9 recover [3 10

10 recover 7 11

11 recover " 9 -1

PRI
e
[

166

e T T R R e T T T

T P N SR P S A S P PN g LY

STATEMENT
Box# Type Name Trueptr Falseptr

1 header statement 2 ‘ 2
2 lexeme unsigned_integer 3 4
3 recover 23 -3
4 lexeme identifier 5

5 nonfermina.l actual_parameter list -1

6 nonterminal variable access 7 22
7 recover = 8 -3
8 nonterminal expression -1 -3
9 fiducial goto 10 11
10 lexeme unsigned_integer -1 -3
11 fiducial write 12 13
12 nonterminal write_parameter_list -1 -3
13 fiducial writeln 14 15
14 nonterminal write_parameter_list -1 -1
15 nonterminal compound_statement -1 16
16 nonterminal if statement -1 17
17 nonterminal case statement -1 18
18 nonterminal repeat statement -1 19
19 nonterminal while_statement -1 20
20 nonterminal for_statement -1 21
21 nonterminal with_statement -1 -2
22 recover = 8 -1
23 lexeme identifier 5 24
24 fiducial goto 10 25
25 fiducial write 12 26
26 fiducial writeln 14 27
27 nonterminal compound_statement -1 28

167

CRMcRONC v 5B S

28 nonterminal if statement -1 29
29 nonterminal case_statement -1 30
" 30 nonterminal repeat statement -1 31
31 nonterminal while statement -1 32
X 32 nonterminal for_statement -1 33
33 nonterminal with_statement -1 -1
' EXPRESSION T
Box# Type Name Trueptr Falseptr e
1 header expression 2 2 <
2 nonterminal simple_expression 3 -2
3 recover = 4 5 g
4 nonterminal simple_expression -1 -3 jij:E:‘-::
5 recover relational_operator 4 6 A
6 recover in -1 b
_: SIMPLE EXPRESSION .
L
. Box# Type Name Trueptr Falseptr
y 1 header simple_expression 2 2
- 2 lexeme adding_operator 3 5
: 3 nonterminal term 4 -3 e - ‘
4 lexeme adding_operator 3 6 E &
; 5 nonterminal term 4 -2 -4
y 6 recover or 3 -1 . &._Y.
. P
h] \‘.*.\
- v_‘.\..‘-:\
- (RS AN
. WY \:
'é‘.-s‘.
DA <
SR
“'.h.'.lq
168 el
:‘;". % !
R ') ‘.-_*.’v
."..‘:..':_.-;.“;.."- .:."‘,.‘_4‘. \".'-:"-“.‘t:':’."‘-'.") .-.n._.-._\.-" _.- T.. ‘: N .:‘..-’_.: ".. ..-. .‘\!:',h.:..‘ - .‘ -.‘.-).'n; _-.‘._“ ...-\‘ -. MRS Tl B R 1) ’ " : .

Allaad S AA St St it ATl Ad AS A i At Al A S

»
"
s

&t

’: \\ ‘-"c‘.\‘.\.)

Al AL GO A AS At Sall il Ad fadAed Tl Sl S0 Sl LARL Bl Al Eh ekt Sal %t SR ACA S

TERM
Box# Type Name Trueptr Falseptr

1 header term 2 2
2 nonterminal factor 3 -2
3 lexeme multiplying_operator 7 4
4 recover div 7

5 recover mod 7 6
6 recover and 7 -1
7 nonterminal factor 3 -3

FACTOR
Box# Type Name Trueptr Falseptr
1 header factor 2 2
2 lexeme unsigned_integer -1 3
3 lexeme unsigned real -1 4
4 lexeme character_string -1 5
5 recover nil -1 6
6 lexeme identifier 7 9
7 nonterminal actual_parameter_list -1 8
8 nonterminal variable_access -1 -1
9 recover (10 15
10 nonterminal expression 11 14
11 recover 12 13
12 nonterminal expression 13 -3
13 recover] -1 14
14 recover s 10 -3
15 recover (16 18
16 nonterminal expression 17 -3
169
.-\.-\-_a-':-\-.. w‘\:.. -'. (” q’ [.-* '. r) \._ -._ \., '-~. - .‘."‘-'r\ ‘ ..--\‘.'.:..\ -‘\.‘. .'-h-.‘:\\ }- . "_'

s T Pt Had oA aing SNSRI Y AR A G b A S0 B4 &b M & fecA A AT BAE I0A0 Ve R S B o ae a e cRE ent e B i s e el cal RS

A

PR
(R T TR]

17 recover) -1 -3
+ 18 recover not 19 -2

19 nonterminal factor -1 -3

1

_,...“ St

. CONSTANT

o Box# Type Name Trueptr Falseptr

header constant 2

2
lexeme adding_operator 3 6
lexeme identifier -1 4

5

lexeme unsigned_integer -1

lexeme unsigned real -1 -3

e
LI %

lexeme identifier -1 7

lexeme unsigned_integer -1

lexeme unsigned _real -1 9

"’- ‘.0 ;o
W 0 =3 O v b W N -
r

lexeme character_string -1 -2 :

et
I’l
AN,
o AL

BENEN i
'l'."'n

NGNS
i {OE R A

p
:-. R T S NI T SR UL T T AP e m P - R ; o R R S ST S S — " g
GO PR PRy -\.,-_ (s i 3350 T T Td e T S A W At Y N T ST DN RA TN \\\Qﬁ

CONFORMANT ARRAY SCHEMA

I N A

Type Name Falseptr
1 header conformant_array schema 2 2
2 recover packed 3 13
3 recover array 4 -3
4 recover | 5 -3
5 lexeme identifier 6 -3
6 recover 7 -3
7 lexeme identifier 8 -3
8 recover 9 -3
9 lexeme identifier 10 -3
10 recover] 11 -3
11 recover of 12 -3
12 lexeme identifier -1 -3
13 recover array 14 -2
14 recover | 15 -3
15 lexeme identifier 16 -3
16 recover 17 -3
17 lexeme identifier 18 -3
18 recover 19 -3
19 lexeme identifier 21 -3
20 recover H 15 -3
21 recover] 22 20
22 recover of -3
23 lexeme identifier 24
24 nonterminal conformant_array schema -3
171
........... DR R Sy IR N R e

Rl

r

» Y 8, mi T k! .M‘
I TR " R A P KRR

e
IF STATEMENT R
e
Box# Type Name Trueptr Falseptr E WEAER
: 1 header if statement 2 2 ’)
2 fiducial if 3 -2 : .
. 3 nonterminal Boolean_expression 4 -3 e
4 recover then 5 -3
5 nonterminal statement 6 6
- 6 recover else 7 -1
7 nonterminal statement -1 -1
CASE STATEMENT
Box# Type Name Trueptr Falseptr
. 1 header case_statement 2 2
: 2 recover case 3 -2
N 3 nonterminal expression 4 -3 .
4 recover of 5 -3
5 nonterminal constant 6 -3
6 recover 8 7
7 recover , 5 -3
\ 8 nonterminal statement 9 9
= 9 recover : 11 10
- 10 recover end -1 -3
11 nonterminal constant 6 10
Y
3
)
" 172
N
e s R L L N P A et A s N S T N

s oy e s ¢ TV S V. Ty LTI LT T

Box$ Type Name Trueptr Falseptr
1 header repeat statement 2 2
2 fiducial repeat 3 -2
3 nonterminal statement 4
4 recover until 5 6
5 nonterminal Boolean expression -1 -3
6 recover ; 3 -3

WHILE STATEMENT

Box# Type Name Trueptr Falseptr
1 header while_statement 2 2
2 fiducial while 3 -2
3 nonterminal Boolean_expression 4 -3
4 recover do 5 -3
5 nonterminal statement -1 -1

173
e e N T e e T T e (T et L S L e R L N T e T, T T e S R

REP

EAT STATEMENT

AW RS
.

BENEEY
P

« ‘: o
[

v
L
Vo
-
.
.
-
o
-
e
e
.,

b4
’

B
U VR Y

3

“ 5

Te"8" 8
LIPS

T R

FOR STATEMENT

Box# Type Name Trueptr Falseptr
1 header for_statement 2 2
2 fiducial for 3 -2
3 lexeme identifier 4 -3
4 recover = 5 -3
5 nonterminal expression 6 -3
6 recover to 7 10
7 nonterminal expression 8 -3
8 recover do 9 -3
9 nonterminal statement -1 -1
10 recover downto 7 -3
WITH STATEMENT
Box# Type Name Trueptr Falseptr
1 header with_statement 2 2
2 fiducial with 3 -2
3 lexeme identifier 4 -3
4 nonterminal variable access 5 5
5 recover do 6 7
6 nonterminal statement -1 -1
7 recover 3 -3

174

P S Ty g A e L W S e e L

LIST OF REFERENCES

1. Aho, A.V.,, and Peterson, T.G., "A Minimum Distance Correction Parser
For Context-Free Languages", SIAM Journal of Computing, v. 1, pp. 305-
312, 1972. e

IMRCNIEY D/OCRSPLIAPER . SRl g T

2. Lyon, G.L., "Syntax-Directed Least-Errors Analysis for Context-Free N
Languages: A Practical Approach", Communication of the ACM, v. 17, n. 1, »‘ "

pp. 3-13, 1974. o
]

3. Levy, J.P.,, "Automatic Correction of Syntax Errors in Programming " "‘i
Languages", Acta Informatica, v. 4, pp. 271-292, 1975. T

S

4. Graham S.L. and Rhodes, S.P., "Practical Syntactic Error Recovery", 5

Communications of the ACM, v. 18, n. 11, pp. 639-649, 1975.

5. Pennello, T.J. and DeRemer, F., "A Forward Move Algorithm for LR Error
Recovery", Proceedings 5th ACM Symposium on Principles of Programming
Languages, pp. 241-254, 1978.

6. Tai, K.C., "Syntactic Error-Correction in Programming Languages", IEEE
Transactions on Software Engineering, v. 4, pp. 414-425, 1978.

7. Ripley, G.D. and Druseikis, F.C., "A Statistical Analysis of Syntax Errors",
Computer Languages, v. 3, pp. 227-240, 1978.

8. Fischer, C.N., Milton, D.R., and Quiring, S.B., "Efficient LL(1) Error
Correction and Recovery Using Only Insertions", Acta Informatica, v. 13, n.
- 2, pp. 141-154, 1980.

9. Anderson, S.0. and Backhouse, R.C., "An Alternative Implementation of an
Insertion-Only Recovery Technique", Acta Informatica, v. 18, pp. 289-298,
1982.

10. Backhouse, R.C., Syntax of Programming Languages: Theory and Practice,
London: Prentice-Hall International, 1979.

175

I S R T S Sy I I IS S P P P e) AL LIS I I LY) b S T A 4
REAA I S el R e T S e e e e e e e s re i .‘h LA A *.‘. B A AR it oo

bl 0ol et S T & S it A A A St = e 2 e At hedtde i I dafSuibe AnRad b L A AR S Sal i el V8 Al A RS T A B (R S A S L g B asd e s of
S A . . S . SRS At - O RS R NTA A - A . i

ARl ase ana |

11. Anderson, S.0., Backhouse, R.C., Bugge, E.H., and Stirling, C.P., "An - ,:
Assessment of Locally Least-Cost Error Recovery", Computer Journal, v. 26, i v::: .‘_::_. :

n. 1, pp. 15-24, 1983. R

: | K

12. Pai, A.B. and Kieburtz, R.B., "Global Context Recovery: A New Strategy .

for Syntactic Error Recovery by Table-Driven Parsers", ACM Transactions
on Programming Languages and Systems, v. 2, n. 1, 1980.

13. Barnard, D.T. and Holt, R.C., "Hierarchic Syntax Error Repair For LR

Grammars", International Journal of Computer and Information Sciences,
v. 11, n. 4, pp. 231-257, 1982.

14. Richter, H., "Noncorrecting Syntax Error Recovery", ACM Transactions on
Programming Languages and Systems, v. 7, n. 3, pp. 478-489, 1985.

15. Turba, T.N., "An Exception-Based Mechanism for Syntactic Error
Recovery", SIGPLAN Notices, v. 19, n, 11, 1984.

16. International Organization for Standardization, Specification for Computer
Programming Language Pascal, ISO 7185-1982, 1982.

17. Grogono, P., Programming in Pascal, Addison-Wesley, 1984. l. -

BIBLIOGRAPHY

Aho, A.V. and Ullman, J.D., Principles of Compiler Design, Addison-Wesley,
1979.

Cooper, D., Standard Pascal User Reference Manual, W.W. Norton, Inc., 1983.

Horning, J.J., "What the Compiler Should Tell the User", Compiler
Construction: An Advanced Course, 2d ed., pp. 525-548, Springer-Verlag, 1976.

Jensen, K. and Wirth, N., Pascal User Manual and Report, Springer-Verlag,
1985.

Ledgard, H., The American Pascal Standard, Springer-Verlag, 1984.

LM s it Jhox honc dge et Hbdh B Sk shun s i gy T ——T— el S e e et fagie mheto davs Sheu e donte Sag S bt e it LAar Juns earigie e gt s T T T Y T

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

o

Library (Code 0142)
Naval Postgraduate School
' Monterey, California 93943

3. Chairman (Code 52)
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. Computer Technology Programs (Code 37)
Naval Postgraduate School
Monterey, California 93943

. 5. Robert W. Floyd
Department of Computer Science
Margaret Jacks Hall 342
Stanford, California 94305

6. Daniel Davis (Code 52Dv)
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

7. Lcdr. Paul E. Hallowell
122 Destry Court
San Jose, California 95136

178

.....

........

R i e S g e ik
. T AR waedy

BRI NEARE R SEE -

0 e

