AN ANALYSIS OF THE PERFORMANCE OF THE FANS OF A WIND TUNNEL AT THE NAVAL POSTGRADUATE SCHOOL (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

M L PEREIRA DEC 85

UNCLASSIFIED

F/G 20/4

NL
MICROCOPY RESOLUTION TEST CHART

BUREAU OF STANDARDS 1963 A
THESIS

AN ANALYSIS OF THE PERFORMANCE OF THE FANS OF A WIND TUNNEL AT THE NAVAL POSTGRADUATE SCHOOL

Pereira, Marcos Luis

December 1985

Thesis Advisor: J. V. Healey

Approved for public release; distribution is unlimited.
AN ANALYSIS OF THE PERFORMANCE OF THE FANS OF A WIND TUNNEL AT THE NAVAL POSTGRADUATE SCHOOL

13a TYPE OF REPORT
Master's Thesis

13b TIME COVERED
FROM 1983 TO 1985

14 DATE OF REPORT (Year, Month, Day)
1985 December

15 PAGE COUNT
94

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Wind tunnel blades

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
The large subsonic "academic" wind tunnel at NPS, powered by two counter-rotating fans, never achieved the design specifications. The reason for the poor performance of the tunnel was unknown but believed to be due to either poorly designed fan blades or to separation in the diffuser. Being easier to analyze, the fan blades were chosen for initial study.

The approach used is a new blade element method for calculating the performance of high and intermediate solidity fans. Although this new method predicts some deviations from the original isolated blade analysis, it was
Block 3. (continued)

found that the design was adequate and, therefore, the tunnel problem is most probably due to separation in the diffuser.
An Analysis of the Performance of the Fans of a Wind Tunnel at the Naval Postgraduate School

by

Pereira, Marcos Luis
Lt. Col. Brazilian Air Force
B.S., Mechanical Engineering, Instituto Tecnologico da Aeronautica, Sao Paulo, Brasil

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1985

Author: Pereira, Marcos Luis
Approved by: J. V. Healey, Thesis Advisor

Max F. Flather, Chairman,
Department of Aeronautics

John M. Dyer,
Dean of Science and Engineering
ABSTRACT

The large subsonic "academic" wind tunnel at NPS, powered by two counter-rotating fans, never achieved the design specifications. The reason for the poor performance of the tunnel was unknown but believed to be due to either poorly designed fan blades or to separation in the diffuser. Being easier to analyse, the fan blades were chosen for initial study.

The approach used is a new blade element method for calculating the performance of high and intermediate solidity fans. Although this new method predicts some deviations from the original isolated blade analysis, it was found that the design was adequate and, therefore, the tunnel problem is most probably due to separation in the diffuser.
TABLE OF CONTENTS

I. INTRODUCTION .. 11

II. EVALUATION OF LOSSES .. 13
 A. INTRODUCTION .. 13
 B. CYLINDRICAL SECTIONS 16
 1. Test Section .. 16
 2. Fan Duct Losses 17
 3. Constant Area Ducts 17
 C. DIFFUSERS .. 17
 1. First Diffuser ... 18
 2. Second Diffuser 20
 D. CONTRACTION CONE ... 21
 E. SPINNER .. 21
 F. CORNERS .. 22
 G. SUMMARY OF LOSSES 24

III. BLADE PERFORMANCE .. 28
 A. INTRODUCTION .. 28
 B. THE LARSON REPORT .. 28
 C. THE BORST METHOD .. 30
 D. TORQUE AND POWER EVALUATION 31
 E. INTERACTION BETWEEN STAGES 35
 F. CONCLUSION .. 38

IV. TUNNEL PERFORMANCE .. 56
 A. INTRODUCTION .. 56
 B. TUNNEL LOSSES .. 56
 C. OPERATIONAL ENVELOPE 56
 D. FINAL CONCLUSION ... 59
APPENDIX A: SPECIFIED FUNCTIONAL FORMS 64
APPENDIX B: SAMPLE CALCULATIONS 66
APPENDIX C: DESCRIPTION OF COMPUTER PROGRAMS 69
APPENDIX D: COMPUTER PROGRAM 'LOSS' 71
APPENDIX E: COMPUTER PROGRAM 'BORST' 75
LIST OF REFERENCES 87
INITIAL DISTRIBUTION LIST 88
LIST OF TABLES

I PARAMETERS FOR DIFFUSER 1 19
II PARAMETERS FOR EACH PART OF DIFFUSER 1 20
III PARAMETERS FOR EACH PART OF DIFFUSER 2 20
IV PARAMETERS OF CORNERS 23
V CORNER LOSSES BY PANKHURST AND HOLDER 25
VI LOSS FOR EACH SECTION OF TUNNEL AT VO=200 KNOTS 26
VII TUNNEL LOSS BY THREE METHODS 27
VIII VELOCITIES AT EACH STATION, FIRST STAGE, VO=200 KNOTS 43
IX REYNOLDS AND MACH NUMBERS AT EACH BLADE STATION, FIRST STAGE, VO=200 KNOTS 44
X ANGLES AT EACH STATION, FIRST STAGE, VO=200 KNOTS 45
XI CORRECTED LIFT AND DRAG COEFFICIENT, LIFT AND TORQUE, FIRST STAGE, VO= 200 KNOTS 46
XII VELOCITIES AT EACH STATION, SECOND STAGE, VO=200 KNOTS 47
XIII REYNOLDS AND MACH NUMBER AT EACH STATION, SECOND STAGE, VO= 200 KNOTS 48
XIV ANGLES AT EACH STATION, SECOND FAN STAGE, VO=200 KNOTS 49
XV CORRECTED LIFT AND DRAG COEFFICIENT, BETAI-BETA4, AT EACH STATION, SECOND STAGE, VO=200 KNOTS 50
XVI ANGLES, LIFT AND DRAG COEF. AT EACH STATION WITHOUT CORRECTION OF ANGLE OF ATTACK, FIRST STAGE, VO= 200 KNOTS 51
XVII LIFT, RESULTANT FORCE AND TORQUE WITHOUT CORRECTION OF ANGLE OF ATTACK, FIRST STAGE, VO= 200 KNOTS 52
XVIII VELOCITIES AT EACH STATION WITHOUT CORRECTION OF ANGLE OF ATTACK, SECOND STAGE, VO=200 KNOTS 53
XIX ANGLES, LIFT AND DRAG COEF. AT EACH STATION WITHOUT CORRECTION OF ANGLE OF ATTACK, SECOND STAGE, VO=200 KNOTS 54
XX LIFT, RESULTANT FORCE AND TORQUE, SECOND STAGE WITHOUT CORRECTION OF ANGLE OF ATTACK, VO=200 KNOTS 55
XXI OPERATIONAL ENVELOPE FOR EQUATION 4.1 60
XXII OPERATIONAL ENVELOPE FOR EQUATION 4.2 62
LIST OF FIGURES

2.1 Partition of Tunnel Circuit for Evaluation of Losses 14
2.2 Spinner Dimensions .. 22
3.1 Angle of Attack Relations .. 32
3.2 Lift Developed at Each Blade Station 34
3.3 Sketch for Torque Evaluation at Each Station 36
3.4 Axial Flow Velocity Triangles .. 37
3.5 Tangential Force on the Blade at Each Station Vo=200 Knots, Pitch Angle= 2.4 degrees 41
3.6 Corrected and Uncorrected Angle of Attack Vo=200 Knots, Pitch Angle= 2.4 degrees 42
4.1 Energy Required to Overcome Tunnel Losses 57
4.2 Operational Envelope for Equation 4.1 61
4.3 Operational Envelope for Equation 4.2 63
ACKNOWLEDGEMENT

To my wife, Graciete, and my children, Tereza, Tais, Carlsbad and Tulio for their love and support throughout this work.
I. INTRODUCTION

The "academic" wind tunnel at NPS is inadequate for most tasks, due to the excessive level of turbulence at high speed. This tunnel was designed for a potential speed of 200 Knots in the test section, but this value has not been reached yet. This project was undertaken with the purpose of evaluating, by a different method from that used for designing, the performance of the tunnel in order to establish possible causes of the problem.

The two counter-rotating fans could be the cause of the trouble since they were designed using a blade element theory, that does not take account of the three dimensional effects that are present at medium and high solidities. These effects cause changes in the apparent velocity vector, therefore the blades were analysed by a "New Blade Element Method for Calculating the Performance of High and Intermediate Solidity Axial Flow Fans" due to Borst [Ref. 1: p.1]. This method determines an induced angle of attack which changes the apparent velocity past the airfoil and it has been found to be a reliable measure of the three dimensional effects. The data required for this method comes from the two dimensional airfoil data, that is available in the current literature. This method was used in reference 1 (p.10) assuming zero drag, and the predictions showed excellent agreement with measurements. The small difference between the results can be attributed to the assumption of zero drag. The performance of the first and second stage blades of the academic wind tunnel is evaluated assuming non-zero drag, so it is expected that the results will be realistic.

A possible cause of the inability to reach the specified speed could be excessive losses around the tunnel circuit, principally at the first diffuser and the corners. The first
diffuser has a high angle of divergence which can provide a
flow separation, further losses and turbulence. The
evaluation of losses around the tunnel is made by means of
the method given by RAE & POPE [Ref. 2: p.87], which breaks
the tunnel down into sections and calculates the losses for
each one. The four corner losses are evaluated by three
methods:

1) considering one third of the losses due to skin
friction and two third losses due to rotation; an
empirical relation given by RAE & POPE [Ref. 2: p.90],
was used to account for the different types of corner
vane,

2) considering empirical values found by testing and

3) considering variation of resistance coefficient with
gap/chord ratio of thin corner vanes given by PANKHURST
& HOLDER [Ref. 3: p.93].

The first diffuser, since it has variable divergence,
was broken into four parts and the losses evaluated part by
part through the method given by RAE & POPE [Ref. 2: p.89],
this shows that the losses are strongly dependent on the
diffuser angle.

After all losses were evaluated, a relation between the
air inflow velocity to the blades and the power output from
the blades is found and the non-stall operation envelope is
determined. The temperature and pressure assumed by LARSON
in the original blade design [Ref. 4: p.5], are \(T = 100^\circ F \)
\(p = 2,246 \text{ (lbf/ft}^2 \text{) } \) and, therefore the values of kinematic
viscosity \((\nu) \) of 0.000166 \((\text{ft}^2 / \text{sec}) \) and sound velocity of
1160 \(\text{ft} / \text{sec} \), as presented in Appendix C, will be used for
evaluation of the Reynolds and Mach numbers.
II. EVALUATION OF LOSSES

A. INTRODUCTION

As mentioned in chapter one, we will use the procedure outlined by RAE & POPE [Ref. 2: p.87], that consists of breaking the tunnel down into cylindrical sections, expanding sections, contracting sections and corners, in order to evaluate the tunnel losses.

The sections are numbered in such way that those sections with the same characteristics, that is, those that use the same loss equation, are kept together. This facilitates the evaluation by computer. Then, the cylindrical sections are numbered from 1 to 4, the expanding sections from 5 to 11, the contracting section and spinner take the number 12 and 13 respectively, and finally the corners from 14 to 17.

The Figure 2.1 shows the sections and their designated numbers, as they are discriminated below:

<table>
<thead>
<tr>
<th>SECTION</th>
<th>DISCRIMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>test section</td>
</tr>
<tr>
<td>2</td>
<td>fan duct</td>
</tr>
<tr>
<td>3</td>
<td>constant area duct</td>
</tr>
<tr>
<td>4</td>
<td>constant area duct</td>
</tr>
<tr>
<td>5</td>
<td>first diffuser (sec 1)</td>
</tr>
<tr>
<td>6</td>
<td>" diffuser (sec 2)</td>
</tr>
<tr>
<td>7</td>
<td>" diffuser (sec 3)</td>
</tr>
<tr>
<td>8</td>
<td>" diffuser (sec 4)</td>
</tr>
<tr>
<td>9</td>
<td>second diffuser (sec 1)</td>
</tr>
<tr>
<td>10</td>
<td>" diffuser (sec 2)</td>
</tr>
<tr>
<td>11</td>
<td>" diffuser (sec 3)</td>
</tr>
<tr>
<td>12</td>
<td>contraction cone</td>
</tr>
<tr>
<td>13</td>
<td>spinner</td>
</tr>
<tr>
<td>14</td>
<td>first corner with full size vanes</td>
</tr>
</tbody>
</table>
Figure 2.1 Partition of Tunnel Circuit for Evaluation of Losses.
second corner with full size vanes
third corner with full size vanes
fourth corner with half size vanes

The dimensions of the sections, which are used for evaluating the losses, are taken from a WEST COAST RESEARCH CO. drawing [Refs. 7,8].

In each section the loss \(K \) will be a drop in static pressure divided by the dynamic pressure at that section, as given by RAE & POPE [Ref. 2: p.87] and rewritten below

\[
K_0 = K(q/q_0), \\
K = (p_i - p_f) / q \text{ loss at each section}, \\
K_0 = \text{coefficient of loss related to test section}, \\
p_i = \text{inlet section pressure}, \\
p_f = \text{outlet section pressure}, \\
q = \text{dynamic pressure at section}, \\
q_0 = \text{dynamic pressure at test section}.
\]

In terms of diameter we get

\[
K_0 = K(D_0/D), \text{ where} \\
D_0 = \text{test section diameter}, \\
D = \text{local tunnel diameter},
\]

and finally, for energy ratio of the tunnel,

\[
E_{RT} = \text{jet energy/summation of circuit losses}.
\]

The losses are evaluated by means of a computer program written in FORTRAN IV language, which is presented in Appendix A, and named LOSS.

When the evaluation of skin friction is needed, it is made by subroutine FRIC in the LOSS program, using the equation from RAE & POPE [Ref. 2: p.88], shown immediately below,

\[
1/\lambda = 2 \log_{10} \text{Rey} \lambda - 0.8, \quad (\text{eqn 2.1})
\]
where $\lambda = \text{skin friction coefficient}$ and $\text{Rey} = \text{Reynolds number}$.

The Reynolds number at each section is related to Reynolds number at the test section, as follows:

$$\text{Rey} = \frac{VD}{\nu}.$$

From the continuity equation $AV = Ao Vo$, and hence

$$\text{Rey} = \frac{(Do/\nu)Vo(Do/D)}{}, \text{from which is found}$$

$$\text{Rey} = 2.63E \ 04 \ Vo(Do/D). \quad \text{(eqn 2.2)}$$

B. CYLINDRICAL SECTIONS

1. Test Section

The losses for this octagonal section are evaluated through the eqn 2.3, (eqn 2.44, Ref. 2, p.88) for the equivalent cylindrical section,

$$Ko= \lambda \left(\frac{L}{De}\right)(Do/De)^4, \quad \text{(eqn 2.3)}$$

where De is the diameter of the circle whose circumference equals the perimeter of the octagon.

Then, the dimensions for the test section are:

Length = 8.00 feet,
Diameter = 4.36 feet.

This diameter is the test section diameter (Do) used in all the equations related to the test section.

The losses for the test section at each velocity are calculated by the computer program LOSS using the equations below, which were obtained from eqn 2.3, from the equation of the Reynolds number, and from the dimensions above.

section 1: $Ko= 1.834\lambda$, $\text{Rey} = 2.63E \ 04 \ Vo$.

16
2. Fan Duct Losses

This section begins after the first corner with an octagonal cross section, changes to a cylindrical section where the two stages operate and ends in another octagonal section. From an original wind tunnel drawing (Ref. 8) we have the dimensions for this section and, using the same procedure as above (test section), we get the following dimensions:

\[D_e = 7.50 \text{ ft} \quad L = 9.50 \text{ ft} \]

The same equations used for test section are used here and the equations for the computer program are:

section 2: \(K_0 = 0.1448 \lambda \), \(\text{Rey} = 1.54 \times 10^4 \nu \).

3. Constant Area Ducts

The losses are evaluated in the same manner as for the test section. The dimensions for these two ducts are:

section 3: \(D_e = 13.37 \text{ ft}, \quad L = 6.00 \text{ ft} \).
section 4: \(D_e = 12.73 \text{ ft}, \quad L = 6.34 \text{ ft} \).

The equations for the computer program are:

section 3: \(K_0 = 0.0051 \lambda \), \(\text{Rey} = 0.86 \times 10^4 \nu \).
section 4: \(K_0 = 0.0067 \lambda \), \(\text{Rey} = 0.90 \times 10^4 \nu \).

C. DIFFUSERS

The diffusers are broken down into parts, the first (between test section and first corner) into four, and the second (between the second and third corners) into three, the purpose of which is to make the evaluation of losses more accurately. The diffuser divergence angle, which strongly affects the evaluation, is taken for each part as the difference between the equivalent small and large diameters, divided by the length.

The equation used comes from RAE & POPE [Ref. 2: p.89], and it is
\[K_0 = A \left(\frac{\lambda}{8 \tan(\alpha/2)} + 0.6 \tan(\alpha/2) \right), \quad \text{(eqn 2.4)} \]

where \[A = \left(1-(D_1/D_2)^4 \right)^4 \left(D_0/D_1 \right)^4, \] and

- \(\lambda = \) skin friction coefficient for Reynolds number given by eqn 2.2, and based on the mean diameter,
- \(\alpha = \) divergence angle between walls,
- \(D_0 = \) test section diameter,
- \(D_1 = \) smaller diameter of diffuser,
- \(D_2 = \) larger diameter of diffuser.

1. **First Diffuser**

 The diffuser cross section from the test section to the first corner varies along its 20 feet of length, and its height \(H \) and width \(W \) are given as a function of the distance \(X \) (ft), along the flow axis, by the equations:

 \[H = 3.52 + 0.00440 X^{2.4} \quad \text{(ft)}, \quad \text{(eqn 2.5)} \]

 \[W = 5.02 + 0.00036 X^3 \quad \text{(ft)}, \quad \text{(eqn 2.6)} \]

 Furthermore, its cross-sectional area is:

 \[\text{Area} = 0.828 \ W \ H \quad \text{(ft}^2 \text{)}. \]

 The following table gives the local values of \(H, W, \) Area and \(D_e \) as function of \(X \) for this diffuser, where \(D_e = \) equivalent local section diameter (ft).

 The evaluation of the diffuser angle is made by the following equations:

 - For the divergence angle of the equivalent conical diffuser

 - For the divergence angle between the walls in the
TABLE I
PARAMETERS FOR DIFFUSER 1

<table>
<thead>
<tr>
<th>X</th>
<th>H</th>
<th>W</th>
<th>Area</th>
<th>De</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.52</td>
<td>5.02</td>
<td>14.63</td>
<td>4.32</td>
</tr>
<tr>
<td>5.0</td>
<td>3.73</td>
<td>5.06</td>
<td>15.64</td>
<td>4.46</td>
</tr>
<tr>
<td>10.0</td>
<td>4.62</td>
<td>5.38</td>
<td>20.60</td>
<td>5.12</td>
</tr>
<tr>
<td>15.0</td>
<td>6.44</td>
<td>6.28</td>
<td>33.27</td>
<td>6.51</td>
</tr>
<tr>
<td>18.7</td>
<td>8.50</td>
<td>7.38</td>
<td>51.94</td>
<td>8.13</td>
</tr>
</tbody>
</table>

$$\alpha = 2\arctan\left(\frac{D_2-D_1}{2L}\right)$$ \hspace{1cm} (eqn 2.7)

vertical and horizontal planes respectively:

$$\alpha_h = \arctan\left(\frac{h_2-h_1}{2L}\right)$$ \hspace{1cm} (eqn 2.8)

$$\alpha_w = 2\arctan\left(\frac{w_2-w_1}{2L}\right)$$ \hspace{1cm} (eqn 2.9)

where indexes 1 and 2 refer to small and large local sections and L is the length between them.

For the first diffuser, the equations 2.8 and 2.9 are used because the angles between the walls are different, as shown in Table II.

For a conservative analysis, the larger values are chosen in computing the loss coefficient Ko.

With the dimensions from this table and the equations 2.4 and 2.2 we got the following equations to use with the computer program LOSS.
TABLE II
PARAMETERS FOR EACH PART OF DIFFUSER 1

<table>
<thead>
<tr>
<th>Part</th>
<th>L (ft)</th>
<th>D1 (ft)</th>
<th>D2 (ft)</th>
<th>α_w (deg.)</th>
<th>α_h (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.0</td>
<td>4.36</td>
<td>4.46</td>
<td>0.52</td>
<td>2.29</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>4.46</td>
<td>5.12</td>
<td>3.60</td>
<td>10.23</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>5.12</td>
<td>6.51</td>
<td>9.77</td>
<td>20.63</td>
</tr>
<tr>
<td>4</td>
<td>3.7</td>
<td>6.51</td>
<td>8.13</td>
<td>17.50</td>
<td>30.85</td>
</tr>
</tbody>
</table>

section 5: $K_o = 0.5367 \lambda + 0.00103$, $Rey = 2.60E 04 \ Vo$.
section 6: $K_o = 0.5416 \lambda + 0.0208$, $Rey = 2.40E 04 \ Vo$.
section 7: $K_o = 0.2232 \lambda + 0.0355$, $Rey = 1.97E 04 \ Vo$.
section 8: $K_o = 0.0540 \lambda + 0.0196$, $Rey = 1.57E 04 \ Vo$.

2. Second Diffuser

For the second diffuser, the values of $D1$ and $D2$ are substituted into equation 2.7 for evaluation of the divergence angle, because the angles between the walls in the vertical and horizontal planes have no large difference.

TABLE III
PARAMETERS FOR EACH PART OF DIFFUSER 2

<table>
<thead>
<tr>
<th>Part</th>
<th>L</th>
<th>D1</th>
<th>D2</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.97</td>
<td>7.40</td>
<td>7.88</td>
<td>2.76</td>
</tr>
<tr>
<td>2</td>
<td>9.97</td>
<td>7.88</td>
<td>8.89</td>
<td>5.79</td>
</tr>
<tr>
<td>3</td>
<td>24.10</td>
<td>8.89</td>
<td>14.01</td>
<td>12.10</td>
</tr>
</tbody>
</table>

With the dimensions on Table III and equations 2.4 and 2.2, we got the following equations to use with the computer program LOSS.
section 9: \[K_0 = 0.14\lambda + 0.0004, \quad \text{Rey} = 1.50E 04 \text{ Vo.}\]
section 10: \[K_0 = 0.09\lambda + 0.0011, \quad \text{Rey} = 1.37E 04 \text{ Vo.}\]
section 11: \[K_0 = 0.05\lambda + 0.0030, \quad \text{Rey} = 1.00E 04 \text{ Vo.}\]

D. CONTRACTION CONE

This section takes the number 12; it is located between corner four and the test section. The equation used is from RAE & POPE [Ref. 2: p.91], and is

\[K_0 = 0.32\lambda \frac{L_c}{D_o},\] \hspace{1cm} (eqn 2.10)

where \(\lambda\) = skin friction coefficient for the Reynolds number given by eqn 2.2 with \(D=(D_1+D_2)/2; \ L_c = \) length of contraction cone.

The equations for the computer program are:

section 12: \[K_0 = 0.7338\lambda, \quad \text{Rey} = 1.34E 04 \text{ Vo.}\]

E. SPINNER

This section takes the number 13, and it is located in the fan duct. The dimensions are shown in fig 2.2 and the loss is evaluated using a method given by Nicolai [Ref. 10: p.11-21]. The following equations are for use with the computer program:

\[\text{Rel} = 2.45E-04 \text{ Vo},\]
\[C_{\text{df}} = 0.455/(\log_{10}\text{Rel}),\]
\[C_{\text{do}} = C_{\text{df}} + 0.000616 / C_{\text{df}},\]
\[K_0 = 0.00837 C_{\text{do}},\]
\[C_{\text{do}} = \text{drag coefficient},\]
\[C_{\text{df}} = \text{friction drag coefficient},\]

where \(\text{Rel} = \) Reynolds Number related to body diameter.

The dimensions are:

\[L = \text{Length} = 12.0 \text{ ft},\]
\[D = \text{Body diameter} = 2.0 \text{ ft},\]
\[D_b = \text{Base body diameter} = 0.554 \text{ ft}.\]
F. CORNERS

The corners are evaluated in three different ways:

(i) RAE & POPE [Ref. 2: pp.89,90].
(ii) Bradshaw and Pankhurst [Ref. 5: p.29].
(iii) Pankhurst and Holder [Ref. 3: p.90].

By RAE & POPE the loss equation is

\[K_0 = 0.1 \times (4.55/\log_{10} R_n)^{2.58} \times (\text{Do}/D)^4, \]

(eqn 2.11)

where \(R_n \) = Reynolds number based on chord vane,
\(D \) = equivalent diameter of inlet cross section.

The dimensions are in Table IV.

With the dimensions from Table IV and the eqn 2.11, the equations to be used in the computer program are found and are as follow:

section 14: \(K_0 = 0.00690 + 0.3122/(\log_{10} R_n)^{2.58} \),
\[\text{Rey} = 1.646E 03 \text{ Vo} \]

section 15: \(K_0 = 0.00905 + 0.4118/(\log_{10} R_n)^{2.58} \),
\[\text{Rey} = 1.890E 03 \text{ Vo} \]

section 16: \(K_0 = 0.0094 + 0.0428/(\log_{10} R_n)^{2.58} \),
\[\text{Rey} = 0.609E 03 \text{ Vo} \]

section 17: \(K_0 = 0.0113 + 0.0515/(\log_{10} R_n)^{2.58} \),
\[\text{Rey} = 0.334E 03 \text{ Vo} \]
TABLE IV
PARAMETERS OF CORNERS

<table>
<thead>
<tr>
<th>Section</th>
<th>Chord (ft)</th>
<th>D (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1.042</td>
<td>8.52</td>
</tr>
<tr>
<td>15</td>
<td>1.042</td>
<td>7.95</td>
</tr>
<tr>
<td>16</td>
<td>1.042</td>
<td>14.00</td>
</tr>
<tr>
<td>17</td>
<td>0.521</td>
<td>13.37</td>
</tr>
</tbody>
</table>

From Bradshaw and Pankhurst, an empirical equation based on tests at Reynolds number 2.0×10^5 and 1.9×10^6, gives the loss coefficient as

$$C_p = 1.2 \left(\frac{U_c}{\nu} \right)^{-0.25}, \quad \text{(eqn 2.12)}$$

where $U = \text{local flow velocity}$,

$c = \text{vane chord}$,

$\nu = \text{kinematic viscosity}$.

This equation, when related to the test section velocity by means of equation $K_o = C_p \left(\frac{D_o}{D} \right)^4$ yields the following equations for use with the computer program.

- section 14: $K_o = 0.0130 \, V_o^{-0.25}$
- section 15: $K_o = 0.0160 \, V_o^{-0.25}$
- section 16: $K_o = 0.0023 \, V_o^{-0.25}$
- section 17: $K_o = 0.0032 \, V_o^{-0.25}$

Pankhurst and Holder's method is a graphic one, which gives the variation of loss coefficient with the gap/chord ratio of the vanes. The tunnel we are dealing with has corner-vane sections similar to type b of figure 40 of reference 3. Taking the dimensions of the corners and vanes from the drawing, evaluating the gap/chord ratio for each corner and entering the graph on page 93 of reference 3, the value of K (C is used in Pankhurst & Holder) is found,
and used with the equations below:

\[K = 2 \frac{\nabla H}{\rho U^2}, \]

(eqn 2.13)

\[K_0 = K \left(\frac{D_0}{D} \right)^4, \]

(eqn 2.14)

where \(U \) = local velocity at entry of corner,

\(\nabla H \) = drop of pressure across the corner,

\(D \) = equivalent corner diameter at entry,

\(K \) = loss coefficient from the graph.

Sample calculations

For corner \# 1 we have

\[\text{gap / chord} = \frac{(8.36 - 2.48)}{12.5} = 0.4704, \]

\[\left(\frac{D_0}{D} \right)^4 = 0.0967, \]

\(K = 0.235, \)

\(K_0 = 0.0227. \)

The losses in all four corners, as given by Pankhurst and Holder's method are shown in Table V.

G. SUMMARY OF LOSSES

The losses evaluated by the computer program for sections 1 through 17 for a test section velocity of 200 Knots, are shown in Table VI; values for velocities from 100 to 200 Knots are shown in Table VII.

The energy ratio given by Ert is multiplied by .9 in order to take into account the losses due to leaks and joints.

The results presented in Table VII include, for purposes of comparison, the losses evaluated by the other two methods. At the design airspeed of 200 Knots, Pankhurst &
TABLE V
CORNER LOSSES BY PANKHURST AND HOLDER

<table>
<thead>
<tr>
<th>corner</th>
<th>gap/chord</th>
<th>(Do/D)(^4)</th>
<th>K</th>
<th>Ko</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4704</td>
<td>0.0967</td>
<td>0.23</td>
<td>0.023</td>
</tr>
<tr>
<td>2</td>
<td>0.4256</td>
<td>0.1334</td>
<td>0.27</td>
<td>0.036</td>
</tr>
<tr>
<td>3</td>
<td>0.4752</td>
<td>0.0094</td>
<td>0.23</td>
<td>0.002</td>
</tr>
<tr>
<td>4</td>
<td>0.4656</td>
<td>0.0113</td>
<td>0.24</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Holder's method predicts that 245 HP will be required, while Bradshaw & Pankhurst (a later work) indicates a need for 170 HP. Rae & Pope's method requires 196 HP. The power input to the tunnel is 300 x fan efficiency(0.85\(^2\)) = 217 HP.

The description of the computer program LOSS is presented in Appendix D.
<table>
<thead>
<tr>
<th>SEC</th>
<th>Reyleo^{-6}</th>
<th>λ</th>
<th>Ko</th>
<th>%Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>8.88</td>
<td>0.0082</td>
<td>0.0151</td>
<td>10.99</td>
</tr>
<tr>
<td>cyl</td>
<td>5.16</td>
<td>0.0090</td>
<td>0.0013</td>
<td>0.95</td>
</tr>
<tr>
<td>cyl</td>
<td>2.90</td>
<td>0.0100</td>
<td>0.0001</td>
<td>0.04</td>
</tr>
<tr>
<td>cyl</td>
<td>3.04</td>
<td>0.0100</td>
<td>0.0001</td>
<td>0.05</td>
</tr>
<tr>
<td>dif</td>
<td>8.77</td>
<td>0.0083</td>
<td>0.0055</td>
<td>3.99</td>
</tr>
<tr>
<td>dif</td>
<td>8.07</td>
<td>0.0084</td>
<td>0.0253</td>
<td>18.42</td>
</tr>
<tr>
<td>dif</td>
<td>6.65</td>
<td>0.0090</td>
<td>0.0375</td>
<td>27.25</td>
</tr>
<tr>
<td>cyl</td>
<td>5.29</td>
<td>0.0090</td>
<td>0.0201</td>
<td>14.59</td>
</tr>
<tr>
<td>cyl</td>
<td>5.06</td>
<td>0.0090</td>
<td>0.0017</td>
<td>1.21</td>
</tr>
<tr>
<td>dif</td>
<td>4.62</td>
<td>0.0091</td>
<td>0.0019</td>
<td>1.39</td>
</tr>
<tr>
<td>dif</td>
<td>3.37</td>
<td>0.0100</td>
<td>0.0035</td>
<td>2.58</td>
</tr>
<tr>
<td>con</td>
<td>4.53</td>
<td>0.0091</td>
<td>0.0067</td>
<td>4.86</td>
</tr>
<tr>
<td>spi</td>
<td></td>
<td></td>
<td>0.0008</td>
<td>0.60</td>
</tr>
<tr>
<td>cor</td>
<td>4.56</td>
<td></td>
<td>0.0067</td>
<td>4.88</td>
</tr>
<tr>
<td>cor</td>
<td>4.86</td>
<td></td>
<td>0.0092</td>
<td>6.70</td>
</tr>
<tr>
<td>cor</td>
<td>2.77</td>
<td></td>
<td>0.0009</td>
<td>0.69</td>
</tr>
<tr>
<td>cor</td>
<td>2.90</td>
<td></td>
<td>0.0011</td>
<td>0.82</td>
</tr>
</tbody>
</table>
| VELOCITY (KNOTS) | TOTAL LOSSES
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOSS(B+P) (HP)</td>
<td>LOSS(R+P) (HP)</td>
<td>LOSS(P+H) (HP)</td>
</tr>
<tr>
<td>100.0</td>
<td>22.2610</td>
<td>25.4376</td>
<td>31.2752</td>
</tr>
<tr>
<td>120.0</td>
<td>38.0835</td>
<td>43.5826</td>
<td>53.7830</td>
</tr>
<tr>
<td>140.0</td>
<td>60.1842</td>
<td>68.9301</td>
<td>85.2725</td>
</tr>
<tr>
<td>160.0</td>
<td>89.2441</td>
<td>102.3171</td>
<td>126.8912</td>
</tr>
<tr>
<td>180.0</td>
<td>125.2569</td>
<td>143.8930</td>
<td>179.1000</td>
</tr>
<tr>
<td>200.0</td>
<td>170.4057</td>
<td>195.9971</td>
<td>244.5512</td>
</tr>
</tbody>
</table>
III. BLADE PERFORMANCE

A. INTRODUCTION

The "academic" wind tunnel has two stage counter-rotating fans, each fed by an electric motor of 150 hp and with a fixed speed of 1200 rpm. The main steps used in the design procedure were found in the Larson report [Ref. 4,] which contains the original blade design. The equations and the assumptions made during the design indicate that three dimensional effects were not accounted for. For this reason the method given by Borst, which is based on the blade element approach and cascade theory for determining these three dimensional effects, will be used to predict the performance of the blades. Usefully, this method requires data of two dimensional airfoils only, in order to determine the force on each section of the blade.

So, the blade system with all assumptions made during the design, (see section B - Larson report), and the Borst method, (see section C), are the material necessary to evaluate the performance of the fans. Knowing the lift developed at each blade station (eqn. 3.11) one can find the torque (eqn. 3.12) at each station. A blade station is defined non-dimensionally by the ratio of the radius of that station to the blade tip radius; the root station for this tunnel is at .267 and the tip station is at unity. Then adding the torques at all stations, and multiplying by the rotational speed, one gets the power for the blade.

B. THE LARSON REPORT

This report describes the procedure that was followed to design the blades, together with the assumptions made during the calculations.

The most important assumptions were:

- 85% fan efficiency for each stage.
- Axial velocity distribution of the flow entering the first stage fan is

\[C_m = 0.12 C_{mr} (rt-r) + C_{mt} \quad (\text{eqn 3.1}) \]

where \(C_{mr} \) = axial velocity at blade root,
\(C_{mt} \) = axial velocity at blade tip,
\(rt \) = tip radius,
\(r \) = local radius.

- Maximum test section velocity equal to 200 knots.
- Design lift coefficient equal to 0.64, leading to the requirement that \(C_1 = 0.8 \).
- Airfoil type NACA 16-X12.

This design was based on forced vortex flow, in other words, the difference in static pressure across the vortex is equal to the difference in tangential velocity (dynamic) pressure. This leads us to the loading parameter (solidity x lift coefficient) and the mean velocity angle, as one can see in Appendix A, whose equations are:

\[\alpha C_1 = \frac{(2(A-B)C)}{(1+(C_d/C_1)} D \quad \text{and} \quad (\text{eqn 3.2}) \]

\[\beta_m = \frac{(\beta_1 + \beta_2)}{2} \quad \text{where} \quad (\text{eqn 3.3}) \]

\[A = \tan\beta_1 \]
\[B = \tan\beta_2 \]
\[C = \cos\beta_m \]
\[D = \tan\beta_m \]

Using these equations and the assumptions mentioned above, the dimensions of the blades were calculated, and are given on the drawing of the blades (Ref. 9). The blades were divided into 11 (eleven) stations from root to tip; for each station the chord, thickness, leading edge angle, etc...
were determined.

C. THE BORST METHOD

This method is based on the blade element approach and the vortex theory for determining the three-dimensional effects, so that two-dimensional airfoil data can be used for determining the resultant force on each blade element. By the momentum flow theory, Borst obtained the loading parameter (solidity \(\times \) lift coefficient), as a function of the angles \(\beta_1, \beta_2, \) and \(\beta_m \), that are dependent upon an induced angle of attack \((\alpha_i) \) at values of constant inflow angle.

The loading parameter is:

\[
\sigma_{Cl} = \left(\frac{2A^2 - B(2+C-D)}{E} \right), \tag{eqn 3.4}
\]

where

\[
A = \cos\beta_m,
B = \cos\gamma,
C = \tan\beta_1,
D = \tan\beta_2,
E = \cos(\beta_m - \gamma),
Cl = \text{lift coefficient},
Cd = \text{drag coefficient},
\beta_1 = \text{apparent inlet angle},
\beta_2 = \text{apparent outlet angle},
\beta_m = \text{angle of the mean velocity vector},
\gamma = \tan^{-1}(Cd/Cl),
\sigma = \text{solidity}.
\]

Now, based on the equations

\[
\alpha_i = \frac{(\beta_1 - \beta_2)}{2}, \tag{eqn 3.5}
\]

\[
\beta_m = \beta_1 - \alpha_i, \tag{eqn 3.6}
\]
and the two dimensional airfoil data and design parameters for the blade, one can iterate the equation 3.4 and get the induced angle of attack for a specified test section velocity and blade station.

The angle of attack of the blade at any given station is:

$$\alpha = \beta_1 - \theta \quad \text{(eqn 3.7)}$$

where β = stagger angle (Ref. 9, Ref. 4, p.7), which is the angle between the chord line of the blade station and the line parallel to the axis of rotation of blades. (see fig. 3.1) and

θ = pitch angle (adjustable).

The Figure 3.1 shows the relation between the variables given above.

D. TORQUE AND POWER EVALUATION

We will use the Borst method (Ref. 1), to get the induced angle for correction of the two dimensional angle of attack, and the Larson Report (Ref. 4) to obtain all the dimensions of the blades and the preliminary design conditions.

With this material, we are able to follow the procedure outlined below to get to the value of torque and power for each fan stage. This procedure will lead us to all velocities and angles of each blade, finalizing with the value of the torque on each blade section. After that, we evaluate the torque for the whole blade, and finally the torque and power for the fan stage.

PROCEDURE FOR EVALUATION OF TORQUE AND POWER

STEP 1) From eqn.3.1 for a given test section velocity and $n = 1,200$ rpm, calculate $W_1 = (Cm^2 + U^2)^{1/2}$,

where $U = 2\pi r n$.

As one can see, $W_1 = f(r, V_o)$ since $Cm = f(1, V_o)$. In Appendix A the axial flow velocity (Cm) was developed as
STEP 2) Calculate $\beta_1 = \arctan \left(\frac{U}{C_m} \right)$.

STEP 3) From the drawing of the blades (Ref.9), the values of chord are found and then the solidity for the blade section is obtained from

$$\sigma = \frac{Bc}{2\pi r}, \quad \text{(eqn 3.8)}$$

where $B =$ number of blades, $c =$ station chord and $r =$ station radius.

STEP 4) From the "Aerodynamic Characteristics of 24 NACA 16 - Series Airfoils" - TN 1546 , (Ref.12, p. 49, 50) the
lift and drag coefficient for each section are available at MACH number \(M = \frac{W_1}{a} \), where \(a \) = sound velocity at temperature of 100 degrees Fahrenheit, and for the design lift coefficient of 0.64, which was assumed by Larson (Ref. 4, p. 5, 6). The angle of attack used to enter the \(C_l \) vs \(\alpha \) curve is found from eqn. 3.7. Find \(C_l \), \(C_d \) and evaluate \(\gamma = \arctan(C_d/C_l) \).

STEP 5) Assuming an initial value of induced angle, evaluate the angles given by equations 3.5 and 3.6.

STEP 6) Evaluate the right side of equation 3.4 using the values found in steps 1, 2, and 5; evaluate the left side of equation 3.4 using the values found in steps 3 and 4. If both sides are equal, the value of induced angle assumed is correct, otherwise, iterate.

STEP 7) The corrected angle of attack, found by using the induced angle, is seen in figure 3.1 and evaluated as follows:

\[
\alpha_{cr} = \alpha - \alpha_i \quad \text{(eqn 3.9)}
\]

STEP 8) With corrected angle of attack, recalculate the step 4 above and get the corrected lift and drag coefficient, and evaluate \(\gamma \) with these values.

STEP 9) The mean velocity vector and the lift for each blade station are evaluated using the following equations:

\[
W_m = \frac{C_m}{\cos \beta_m} \quad \text{(eqn 3.10)}
\]

\[
L_i = \frac{1}{2} \rho W_m^2 C_l c \quad \text{(eqn 3.11)}
\]

where \(L_i = \) lift at blade station \(i \) per unit length,
\(C_l = \) lift coefficient at blade station,
\(W_m = \) mean velocity vector at blade station,
\(c = \) chord at blade station.
STEP 10) By definition, the lift force is perpendicular to \(W_m \). For evaluation of the torque it is necessary to get the component of the resultant force in the plane of the fan, as shown in figure 3.2. Then,

\[
\begin{align*}
R_i &= \frac{L_i}{\cos \gamma}, \\
F_i &= R_i \cos (\beta_m - \gamma),
\end{align*}
\]

where \(\gamma = \arctan \left(\frac{C_d}{C_l} \right) \). With \(C_d \) and \(C_l \) corrected and evaluated at step 8), and \(L_i, R_i, F_i \) are respectively the lift force, the resultant force of the lift and drag, and the force in the plane of the fan.

Figure 3.2 Lift Developed at Each Blade Station.

STEP 11) The force per unit length, \(F_i \), averaged between the value at one radial station and next, times the difference in radius between these stations, is the force used for torque evaluation. This force times the mean radius of these two stations is the torque. At this point it is necessary to go through step 1 to 10 again, in order to get \(F_i \) for the next station. Then the torque on a blade section between two consecutive stations is:
\[T_i = \left(F_{i+1} + F_i \right) S R / 2, \]

(eqn 3.12)

where \(S = (r_{i+1} - r_i) \) length between stations,
\(R = (r_{i+1} + r_i)/2, \)

and \(i \) refers to the \(i \)th blade station.

STEP 12) Adding the section torques along the blade, multiplying the result by the number of blades and by the rotational speed, the power required is found. This power provides the test section velocity which was specified at the beginning of the procedure.

E. INTERACTION BETWEEN STAGES

For evaluating the torque and power for the second stage, the procedure given in the previous section can be used, but with some adjustments for the different geometric characteristics of the blade; for example, the chord, stagger angle, etc. The tangential velocity used is the tangential velocity of the blade at the given station plus the tangential velocity of the outflow of the first stage at that station. It should be noted that the axial inflow velocity is assumed the same as for the first stage. In figure 3.4 this interaction can be seen.

The second stage should be able to accept the tangential velocity introduced in the flow by the first stage and add the same amount of power as added by the first stage. The flow leaving the second stage then has no rotation.
Figure 3.4 Axial Flow Velocity Triangles.
F. CONCLUSION

Using the computer program BORST and the procedure discussed in this chapter, Tables VIII through XX were obtained. For all these tables, a pitch angle of 2.4 degrees was used.

The Table VIII shows the values of the velocities from root to tip, for $V_0 = 200$ Knots, of the first fan stage. These velocities are defined as follows:

U = tangential blade velocity (ft/sec),
C_m = axial flow velocity (ft/sec),
W_l = apparent flow velocity (ft/sec).

The chord at each station is given in feet.

The Table IX shows the Reynolds and Mach numbers at each station, for the first fan stage and at $V_0 = 200$ Knots. It is clear that compressibility effects appear at the outer 20% of the blade only. The maximum Mach number was less than .45 and the values of C_l vs Alpha and C_l vs C_d were obtained by linear interpolation between the graphs for $M= .3$ and $M= .45$.

The Table X shows the angles between the axial flow velocity vector and the velocities relative to the blade, the stagger angle, the induced angle, the angle of attack, and the lift and drag coefficients. These values are for the first fan stage, at each station and at $V_0 = 200$ Knots. The values of lift coefficient, are distributed along the stations of the blade from .662 to .896, around the uniform value of .8, assumed by Larson. These variables are defined in Figures 3.1, 3.4, and the angles are given in degrees. As expected, at the root, the induced angle is the largest, because the greatest interference between the blades occurs there.

The Table XI shows the angle of attack, lift and drag coefficients, all with correction for the induced angle. Also shown are the lift, the resultant force and the torque. This Table refers to each station of the first fan stage,
with $V_0 = 200$ Knots. The values of corrected C_l (CL_{CR}) are distributed along the blade from .358 to .709, differently from that assumed by Larson, which was a uniform .8.

The variables in Table XI are defined as follow:
- AL_{PCR} = corrected angle of attack (degrees),
- CL_{CR} = corrected lift coefficient,
- CD_{CR} = corrected drag coefficient,
- $DELL$ = lift force per unit length (lbf/ft),
- $DELF$ = tangential force per unit length (lbf/ft),
- $DTOR$ = torque at middle of two stations (lbf-ft).

The Tables XII, XIII and XIV, apply to the second fan stage. The variables have the same definitions as for the first stage. The Table XII shows the inflow velocity relative to the blade (W_3) larger than W_1. This is due to the tangential flow velocity, which has a finite value after the first fan stage. At the root the difference between W_3 and W_1 is larger than at the tip, this means that the tangential flow velocity at the root is larger than at the tip. The Table XIII shows the Mach number less than .45, and the interpolation described above was again used. The Table XIV shows the C_l varying around .8, that is, from .875 to .710 as for the first fan stage.

The Table XV refers to the second stage, with the same variables as Table XI plus the variable $BETA_1 - BETA_4$. This Table shows the difference between $BETA_1$ and $BETA_4$, which is around zero. This means that the flow after the second fan stage has no tangential velocity.

The Tables XVI and XVII, are for the uncorrected values of the angle of attack, for first stage at $V_0 = 200$ Knots. The Table XVI shows the values of C_l around .8. The Table XVII shows values of torque ($DTOR$) larger than those with the corrected angle of attack (Table XI).

The Tables XVIII, XIX and XX are for the second fan stage without correction of the angle of attack. A comparison of the velocities W_3 from Table XVIII, and W_3
from Table XII shows that the difference, due to the correction of the angle of attack has affected the outflow of first fan stage. The Table XIX shows the variation of BETA3 as a result of the variation of W3, just mentioned above. The variation of C1 was not so large as to affect the value of Cd. A comparison of Tables XV and XX shows that the interference between the blades reduces the torque by about 1/3 at the root and very little at the tip. This is further discussed below.

In order to visualize the effects of the correction on the angle of attack, two graphs, each with four curves, were plotted; these are:

1. Figure 3.5; the tangential force on the blade is shown for each station, at a specified test section velocity of 200 Knots and at a pitch angle of 2.4 degrees. The curves are referred to the first and second stages of the blades, with and without correction of the angle of attack. This figure shows again the effects of the interference. The tangential forces have the largest difference at the root, and are practically equal at the tip. The data were taken from Tables XI, XV, XVII and XX.

2. Figure 3.6; the angle of attack is shown for each station of the blade, at a specified test section velocity of 200 Knots and at a pitch angle of 2.4 degrees. The corrected angle of attack at the root became negative and, at the tip, that angle is practically equal to the uncorrected one. This again shows the strong effects of interference at the blade root. The curves are referred as above, and the data were taken from Tables X, XI, XIV and XV.
Figure 3.5 Tangential Force on the Blade at Each Station
Vo=200 Knots, Pitch Angle= 2.4 degrees.
Figure 3.6 Corrected and Uncorrected Angle of Attack
Vo=200 Knots, Pitch Angle= 2.4 degrees.
TABLE VIII
VELOCITIES AT EACH STATION, FIRST STAGE, VO=200 KNOTS

<table>
<thead>
<tr>
<th>STATION</th>
<th>CHORD</th>
<th>U</th>
<th>CM</th>
<th>W1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.267</td>
<td>1.112</td>
<td>125.821</td>
<td>152.606</td>
<td>197.787</td>
</tr>
<tr>
<td>0.300</td>
<td>1.049</td>
<td>141.372</td>
<td>150.340</td>
<td>206.369</td>
</tr>
<tr>
<td>0.350</td>
<td>0.958</td>
<td>164.934</td>
<td>146.907</td>
<td>220.873</td>
</tr>
<tr>
<td>0.400</td>
<td>0.875</td>
<td>188.496</td>
<td>143.475</td>
<td>236.887</td>
</tr>
<tr>
<td>0.450</td>
<td>0.802</td>
<td>212.058</td>
<td>140.042</td>
<td>254.126</td>
</tr>
<tr>
<td>0.500</td>
<td>0.738</td>
<td>235.620</td>
<td>136.609</td>
<td>272.357</td>
</tr>
<tr>
<td>0.600</td>
<td>0.631</td>
<td>282.744</td>
<td>129.743</td>
<td>311.090</td>
</tr>
<tr>
<td>0.700</td>
<td>0.546</td>
<td>329.868</td>
<td>122.877</td>
<td>352.010</td>
</tr>
<tr>
<td>0.800</td>
<td>0.481</td>
<td>376.992</td>
<td>116.011</td>
<td>394.438</td>
</tr>
<tr>
<td>0.900</td>
<td>0.422</td>
<td>424.116</td>
<td>109.145</td>
<td>437.935</td>
</tr>
<tr>
<td>1.000</td>
<td>0.344</td>
<td>471.240</td>
<td>102.279</td>
<td>482.212</td>
</tr>
<tr>
<td>STATION</td>
<td>REY</td>
<td>MACH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.267</td>
<td>1324694.000</td>
<td>0.171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>1303483.000</td>
<td>0.178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.350</td>
<td>1274545.000</td>
<td>0.190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.400</td>
<td>1249081.000</td>
<td>0.204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.450</td>
<td>1227461.000</td>
<td>0.219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>1210513.000</td>
<td>0.235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>1181581.000</td>
<td>0.268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>1158453.000</td>
<td>0.303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.800</td>
<td>1143157.000</td>
<td>0.340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>1112776.000</td>
<td>0.378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>998700.900</td>
<td>0.416</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE X

ANGLES AT EACH STATION, FIRST STAGE, V₀ = 200 KNOTS

THE PITCH ANGLE IS = 2.40 DEGREES POWER = 98.06 hp

<table>
<thead>
<tr>
<th>STATION</th>
<th>BETA1</th>
<th>BETA2</th>
<th>BETAM</th>
<th>STAG</th>
<th>ALPHA1</th>
<th>ALPHA</th>
<th>CL</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.267</td>
<td>39.505</td>
<td>24.124</td>
<td>31.814</td>
<td>35.580</td>
<td>7.691</td>
<td>6.325</td>
<td>0.896</td>
<td>0.015</td>
</tr>
<tr>
<td>0.300</td>
<td>43.239</td>
<td>31.538</td>
<td>37.388</td>
<td>40.370</td>
<td>5.850</td>
<td>5.269</td>
<td>0.863</td>
<td>0.015</td>
</tr>
<tr>
<td>0.350</td>
<td>48.308</td>
<td>40.301</td>
<td>44.305</td>
<td>46.670</td>
<td>4.004</td>
<td>4.038</td>
<td>0.832</td>
<td>0.015</td>
</tr>
<tr>
<td>0.400</td>
<td>52.723</td>
<td>47.360</td>
<td>50.042</td>
<td>51.770</td>
<td>2.682</td>
<td>3.353</td>
<td>0.774</td>
<td>0.012</td>
</tr>
<tr>
<td>0.450</td>
<td>56.559</td>
<td>52.981</td>
<td>54.770</td>
<td>56.030</td>
<td>1.789</td>
<td>2.929</td>
<td>0.701</td>
<td>0.012</td>
</tr>
<tr>
<td>0.500</td>
<td>59.895</td>
<td>57.299</td>
<td>58.597</td>
<td>59.650</td>
<td>1.278</td>
<td>2.645</td>
<td>0.681</td>
<td>0.009</td>
</tr>
<tr>
<td>0.600</td>
<td>65.351</td>
<td>63.854</td>
<td>64.602</td>
<td>65.330</td>
<td>0.749</td>
<td>2.421</td>
<td>0.664</td>
<td>0.009</td>
</tr>
<tr>
<td>0.700</td>
<td>69.569</td>
<td>68.641</td>
<td>69.105</td>
<td>69.590</td>
<td>0.464</td>
<td>2.379</td>
<td>0.662</td>
<td>0.009</td>
</tr>
<tr>
<td>0.800</td>
<td>72.895</td>
<td>72.277</td>
<td>72.586</td>
<td>72.850</td>
<td>0.309</td>
<td>2.445</td>
<td>0.678</td>
<td>0.009</td>
</tr>
<tr>
<td>0.900</td>
<td>75.568</td>
<td>75.148</td>
<td>75.358</td>
<td>75.420</td>
<td>0.210</td>
<td>2.548</td>
<td>0.696</td>
<td>0.009</td>
</tr>
<tr>
<td>1.000</td>
<td>77.754</td>
<td>77.479</td>
<td>77.617</td>
<td>77.450</td>
<td>0.137</td>
<td>2.704</td>
<td>0.718</td>
<td>0.011</td>
</tr>
<tr>
<td>STATION</td>
<td>ALPCR</td>
<td>CLCR</td>
<td>CDCR</td>
<td>DELL</td>
<td>DELF</td>
<td>DTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.267</td>
<td>-1.366</td>
<td>0.358</td>
<td>0.011</td>
<td>14.776</td>
<td>12.796</td>
<td>1.770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>-0.582</td>
<td>0.404</td>
<td>0.010</td>
<td>17.446</td>
<td>14.117</td>
<td>3.375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.350</td>
<td>0.034</td>
<td>0.455</td>
<td>0.010</td>
<td>21.102</td>
<td>15.418</td>
<td>4.145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.400</td>
<td>0.672</td>
<td>0.485</td>
<td>0.010</td>
<td>24.362</td>
<td>16.022</td>
<td>5.059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.450</td>
<td>1.140</td>
<td>0.556</td>
<td>0.009</td>
<td>30.194</td>
<td>17.839</td>
<td>5.919</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>1.347</td>
<td>0.564</td>
<td>0.009</td>
<td>32.887</td>
<td>17.608</td>
<td>13.409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>1.672</td>
<td>0.580</td>
<td>0.009</td>
<td>38.465</td>
<td>17.066</td>
<td>15.323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>1.915</td>
<td>0.594</td>
<td>0.009</td>
<td>44.303</td>
<td>16.461</td>
<td>17.670</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.800</td>
<td>2.136</td>
<td>0.657</td>
<td>0.009</td>
<td>54.587</td>
<td>17.046</td>
<td>19.956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>2.338</td>
<td>0.681</td>
<td>0.009</td>
<td>61.626</td>
<td>16.344</td>
<td>20.675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>2.567</td>
<td>0.709</td>
<td>0.011</td>
<td>63.756</td>
<td>14.608</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATION</td>
<td>CHORD</td>
<td>U</td>
<td>CM</td>
<td>W3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.267</td>
<td>0.931</td>
<td>125.821</td>
<td>152.606</td>
<td>238.513</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>0.933</td>
<td>141.372</td>
<td>150.340</td>
<td>242.660</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.350</td>
<td>0.834</td>
<td>164.934</td>
<td>146.907</td>
<td>252.430</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.400</td>
<td>0.777</td>
<td>188.496</td>
<td>143.475</td>
<td>263.640</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.450</td>
<td>0.724</td>
<td>212.058</td>
<td>140.042</td>
<td>276.489</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>0.673</td>
<td>235.620</td>
<td>136.609</td>
<td>292.340</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>0.590</td>
<td>282.744</td>
<td>129.743</td>
<td>327.947</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>0.519</td>
<td>329.868</td>
<td>122.877</td>
<td>366.731</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.800</td>
<td>0.461</td>
<td>376.992</td>
<td>116.011</td>
<td>407.820</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>0.411</td>
<td>424.116</td>
<td>109.145</td>
<td>450.087</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>0.373</td>
<td>471.240</td>
<td>102.279</td>
<td>492.649</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATION</td>
<td>REY</td>
<td>MACH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.267</td>
<td>1337683.000</td>
<td>0.206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>1305394.000</td>
<td>0.209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.350</td>
<td>1268230.000</td>
<td>0.218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.400</td>
<td>1234027.000</td>
<td>0.227</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.450</td>
<td>1205890.000</td>
<td>0.238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>1185210.000</td>
<td>0.252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>1165001.000</td>
<td>0.283</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>1146586.060</td>
<td>0.316</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.800</td>
<td>1132560.000</td>
<td>0.352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>1114371.000</td>
<td>0.388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>1106976.000</td>
<td>0.425</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATION</td>
<td>BETA2</td>
<td>BETA4</td>
<td>BETAM2</td>
<td>STAG2</td>
<td>ALPHAI</td>
<td>ALPHA</td>
<td>Cl</td>
<td>Cd</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0.267</td>
<td>50.221</td>
<td>39.653</td>
<td>44.937</td>
<td>35.580</td>
<td>5.284</td>
<td>6.011</td>
<td>0.875</td>
<td>0.015</td>
</tr>
<tr>
<td>0.300</td>
<td>51.716</td>
<td>43.278</td>
<td>47.497</td>
<td>40.370</td>
<td>4.219</td>
<td>4.836</td>
<td>0.854</td>
<td>0.015</td>
</tr>
<tr>
<td>0.350</td>
<td>54.410</td>
<td>48.596</td>
<td>51.503</td>
<td>46.670</td>
<td>2.907</td>
<td>3.710</td>
<td>0.795</td>
<td>0.012</td>
</tr>
<tr>
<td>0.400</td>
<td>57.030</td>
<td>53.226</td>
<td>55.128</td>
<td>51.770</td>
<td>1.902</td>
<td>2.820</td>
<td>0.693</td>
<td>0.009</td>
</tr>
<tr>
<td>0.450</td>
<td>59.569</td>
<td>56.834</td>
<td>58.201</td>
<td>56.030</td>
<td>1.368</td>
<td>2.209</td>
<td>0.650</td>
<td>0.009</td>
</tr>
<tr>
<td>0.500</td>
<td>62.141</td>
<td>59.980</td>
<td>61.061</td>
<td>59.650</td>
<td>1.080</td>
<td>2.451</td>
<td>0.667</td>
<td>0.009</td>
</tr>
<tr>
<td>0.600</td>
<td>66.695</td>
<td>65.412</td>
<td>66.054</td>
<td>65.330</td>
<td>0.641</td>
<td>2.075</td>
<td>0.641</td>
<td>0.009</td>
</tr>
<tr>
<td>0.700</td>
<td>70.424</td>
<td>69.595</td>
<td>70.009</td>
<td>69.590</td>
<td>0.414</td>
<td>2.104</td>
<td>0.648</td>
<td>0.009</td>
</tr>
<tr>
<td>0.800</td>
<td>73.473</td>
<td>72.906</td>
<td>73.189</td>
<td>72.850</td>
<td>0.284</td>
<td>2.293</td>
<td>0.671</td>
<td>0.009</td>
</tr>
<tr>
<td>0.900</td>
<td>75.966</td>
<td>75.567</td>
<td>75.766</td>
<td>75.420</td>
<td>0.199</td>
<td>2.506</td>
<td>0.696</td>
<td>0.009</td>
</tr>
<tr>
<td>1.000</td>
<td>78.017</td>
<td>77.728</td>
<td>77.873</td>
<td>77.450</td>
<td>0.145</td>
<td>2.537</td>
<td>0.710</td>
<td>0.011</td>
</tr>
<tr>
<td>STATION</td>
<td>ALPCR</td>
<td>CLCR</td>
<td>CDCR</td>
<td>DELL</td>
<td>BETA1-BETA4</td>
<td>DELF</td>
<td>DTOR</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>0.267</td>
<td>0.727</td>
<td>0.487</td>
<td>0.010</td>
<td>24.236</td>
<td>-0.148</td>
<td>17.499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>0.617</td>
<td>0.483</td>
<td>0.010</td>
<td>24.550</td>
<td>-0.039</td>
<td>16.952</td>
<td>3.845</td>
<td></td>
</tr>
<tr>
<td>0.350</td>
<td>0.803</td>
<td>0.490</td>
<td>0.010</td>
<td>26.173</td>
<td>-0.288</td>
<td>16.700</td>
<td>4.357</td>
<td></td>
</tr>
<tr>
<td>0.400</td>
<td>0.918</td>
<td>0.494</td>
<td>0.010</td>
<td>27.802</td>
<td>-0.502</td>
<td>16.346</td>
<td>4.790</td>
<td></td>
</tr>
<tr>
<td>0.450</td>
<td>0.841</td>
<td>0.491</td>
<td>0.010</td>
<td>28.894</td>
<td>-0.274</td>
<td>15.713</td>
<td>5.525</td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>1.371</td>
<td>0.565</td>
<td>0.009</td>
<td>34.848</td>
<td>-0.085</td>
<td>17.375</td>
<td>13.127</td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>1.434</td>
<td>0.568</td>
<td>0.009</td>
<td>39.346</td>
<td>-0.061</td>
<td>16.571</td>
<td>14.931</td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>1.689</td>
<td>0.585</td>
<td>0.009</td>
<td>45.091</td>
<td>-0.026</td>
<td>16.099</td>
<td>17.351</td>
<td></td>
</tr>
<tr>
<td>0.800</td>
<td>2.009</td>
<td>0.652</td>
<td>0.009</td>
<td>55.592</td>
<td>-0.010</td>
<td>16.804</td>
<td>19.851</td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>2.306</td>
<td>0.682</td>
<td>0.009</td>
<td>63.548</td>
<td>0.001</td>
<td>16.411</td>
<td>21.505</td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>2.393</td>
<td>0.699</td>
<td>0.009</td>
<td>71.099</td>
<td>0.026</td>
<td>15.784</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATION</td>
<td>BETA1</td>
<td>BETA2</td>
<td>BETAM</td>
<td>STAG</td>
<td>ALPHA</td>
<td>CL</td>
<td>CD</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>0.267</td>
<td>39.505</td>
<td>26.589</td>
<td>33.524</td>
<td>35.580</td>
<td>6.325</td>
<td>0.896</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>43.239</td>
<td>32.930</td>
<td>38.450</td>
<td>40.370</td>
<td>5.269</td>
<td>0.863</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>0.350</td>
<td>48.308</td>
<td>40.892</td>
<td>44.837</td>
<td>46.670</td>
<td>4.038</td>
<td>0.832</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>0.400</td>
<td>52.723</td>
<td>47.302</td>
<td>50.166</td>
<td>51.770</td>
<td>3.353</td>
<td>0.774</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>0.450</td>
<td>56.559</td>
<td>52.533</td>
<td>54.646</td>
<td>56.030</td>
<td>2.929</td>
<td>0.701</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>59.895</td>
<td>56.858</td>
<td>58.442</td>
<td>59.650</td>
<td>2.645</td>
<td>0.681</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>65.351</td>
<td>63.545</td>
<td>64.478</td>
<td>65.330</td>
<td>2.421</td>
<td>0.664</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>69.569</td>
<td>68.441</td>
<td>69.020</td>
<td>69.590</td>
<td>2.379</td>
<td>0.662</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>0.800</td>
<td>72.895</td>
<td>72.161</td>
<td>72.536</td>
<td>72.850</td>
<td>2.445</td>
<td>0.678</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>75.568</td>
<td>75.074</td>
<td>75.325</td>
<td>75.420</td>
<td>2.548</td>
<td>0.696</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>77.754</td>
<td>77.412</td>
<td>77.585</td>
<td>77.450</td>
<td>2.704</td>
<td>0.718</td>
<td>0.011</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XVII
LIFT, RESULTANT FORCE AND TORQUE
WITHOUT CORRECTION OF ANGLE OF ATTACK, FIRST STAGE,
VO= 200 KNOTS

<table>
<thead>
<tr>
<th>STATION</th>
<th>DELL</th>
<th>DELF</th>
<th>DTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.267</td>
<td>38.400</td>
<td>32.367</td>
<td>4.133</td>
</tr>
<tr>
<td>0.300</td>
<td>38.362</td>
<td>30.458</td>
<td>6.722</td>
</tr>
<tr>
<td>0.350</td>
<td>39.314</td>
<td>28.378</td>
<td>7.101</td>
</tr>
<tr>
<td>0.400</td>
<td>39.065</td>
<td>25.482</td>
<td>7.157</td>
</tr>
<tr>
<td>0.450</td>
<td>37.845</td>
<td>22.419</td>
<td>7.257</td>
</tr>
<tr>
<td>0.500</td>
<td>39.339</td>
<td>21.039</td>
<td>15.625</td>
</tr>
<tr>
<td>0.600</td>
<td>43.683</td>
<td>19.364</td>
<td>17.160</td>
</tr>
<tr>
<td>0.700</td>
<td>49.020</td>
<td>18.182</td>
<td>18.831</td>
</tr>
<tr>
<td>0.800</td>
<td>56.050</td>
<td>17.527</td>
<td>20.424</td>
</tr>
<tr>
<td>0.900</td>
<td>62.698</td>
<td>16.647</td>
<td>20.975</td>
</tr>
<tr>
<td>1.000</td>
<td>64.297</td>
<td>14.754</td>
<td></td>
</tr>
</tbody>
</table>

52
TABLE XVIII
VELOCITIES AT EACH STATION
WITHOUT CORRECTION OF ANGLE OF ATTACK, SECOND STAGE,
VO=200 KNOTS

<table>
<thead>
<tr>
<th>STATION</th>
<th>CHORD</th>
<th>U</th>
<th>CM</th>
<th>W3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.267</td>
<td>0.931</td>
<td>125.821</td>
<td>152.606</td>
<td>232.389</td>
</tr>
<tr>
<td>0.300</td>
<td>0.893</td>
<td>141.372</td>
<td>150.340</td>
<td>238.673</td>
</tr>
<tr>
<td>0.350</td>
<td>0.834</td>
<td>164.934</td>
<td>146.907</td>
<td>250.296</td>
</tr>
<tr>
<td>0.400</td>
<td>0.777</td>
<td>188.496</td>
<td>143.475</td>
<td>263.904</td>
</tr>
<tr>
<td>0.450</td>
<td>0.724</td>
<td>212.058</td>
<td>140.042</td>
<td>279.073</td>
</tr>
<tr>
<td>0.500</td>
<td>0.673</td>
<td>235.620</td>
<td>136.609</td>
<td>295.493</td>
</tr>
<tr>
<td>0.600</td>
<td>0.590</td>
<td>282.744</td>
<td>129.743</td>
<td>331.213</td>
</tr>
<tr>
<td>0.700</td>
<td>0.519</td>
<td>329.868</td>
<td>122.877</td>
<td>369.740</td>
</tr>
<tr>
<td>0.800</td>
<td>0.461</td>
<td>376.992</td>
<td>116.011</td>
<td>410.238</td>
</tr>
<tr>
<td>0.900</td>
<td>0.411</td>
<td>424.116</td>
<td>109.145</td>
<td>452.155</td>
</tr>
<tr>
<td>1.000</td>
<td>0.373</td>
<td>471.240</td>
<td>102.279</td>
<td>495.121</td>
</tr>
</tbody>
</table>
TABLE XIX

ANGLES, LIFT AND DRAG COEF. AT EACH STATION

WITHOUT CORRECTION OF ANGLE OF ATTACK, SECOND STAGE, VO=200 KNOTS

<table>
<thead>
<tr>
<th>K= 1</th>
<th>THE PITCH ANGLE IS</th>
<th>2.40</th>
<th>POWER=</th>
<th>106.846</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION</td>
<td>BETA3</td>
<td>BETA4</td>
<td>BETAM2</td>
<td>STAG2</td>
</tr>
<tr>
<td>0.267</td>
<td>48.952</td>
<td>26.589</td>
<td>33.524</td>
<td>35.580</td>
</tr>
<tr>
<td>0.300</td>
<td>50.957</td>
<td>32.930</td>
<td>38.450</td>
<td>40.370</td>
</tr>
<tr>
<td>0.350</td>
<td>54.060</td>
<td>40.892</td>
<td>44.837</td>
<td>46.670</td>
</tr>
<tr>
<td>0.400</td>
<td>57.067</td>
<td>47.302</td>
<td>50.166</td>
<td>51.770</td>
</tr>
<tr>
<td>0.450</td>
<td>59.880</td>
<td>52.533</td>
<td>54.646</td>
<td>56.030</td>
</tr>
<tr>
<td>0.500</td>
<td>62.464</td>
<td>56.858</td>
<td>58.442</td>
<td>59.650</td>
</tr>
<tr>
<td>0.600</td>
<td>66.938</td>
<td>63.545</td>
<td>64.478</td>
<td>65.330</td>
</tr>
<tr>
<td>0.700</td>
<td>70.589</td>
<td>68.441</td>
<td>69.020</td>
<td>69.590</td>
</tr>
<tr>
<td>0.800</td>
<td>73.573</td>
<td>72.161</td>
<td>72.536</td>
<td>72.850</td>
</tr>
<tr>
<td>0.900</td>
<td>76.031</td>
<td>75.074</td>
<td>75.325</td>
<td>75.420</td>
</tr>
<tr>
<td>1.000</td>
<td>78.078</td>
<td>77.412</td>
<td>77.585</td>
<td>77.450</td>
</tr>
<tr>
<td>STATION</td>
<td>DELL</td>
<td>DELF</td>
<td>DTOR</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>0.267</td>
<td>30.579</td>
<td>25.789</td>
<td>3.345</td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>31.541</td>
<td>25.055</td>
<td>5.484</td>
<td></td>
</tr>
<tr>
<td>0.350</td>
<td>31.865</td>
<td>22.939</td>
<td>5.699</td>
<td></td>
</tr>
<tr>
<td>0.400</td>
<td>31.182</td>
<td>20.289</td>
<td>5.917</td>
<td></td>
</tr>
<tr>
<td>0.450</td>
<td>32.748</td>
<td>19.313</td>
<td>6.472</td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>36.370</td>
<td>19.446</td>
<td>14.450</td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>40.413</td>
<td>17.920</td>
<td>16.046</td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>46.350</td>
<td>17.190</td>
<td>17.923</td>
<td></td>
</tr>
<tr>
<td>0.800</td>
<td>53.734</td>
<td>16.797</td>
<td>19.912</td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>61.554</td>
<td>16.520</td>
<td>21.663</td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>69.362</td>
<td>15.911</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV. TUNNEL PERFORMANCE

A. INTRODUCTION

The tunnel performance depends on losses through the tunnel circuit and on the fan efficiency.

The performance will be evaluated to ascertain how the loss around the tunnel circuit is related to the velocity at the test section, and if the fans can provide adequate energy to generate this test section velocity. The energy provided by the blade system depends upon the pitch angle which must be limited in order to avoid stall. The pitch angle is found for the first and the second stages and checked if the flow leaving the second stage has zero rotational velocity as required.

The tunnel performance will be shown through the operational envelope of the blade system.

B. TUNNEL LOSSES

As we have seen in CHAPTER TWO the losses of each section depend on the flow velocity, which implies that they depend upon of test section velocity.

Relating the losses for each tunnel section to the test section velocity we can get the total losses as a function of this velocity, and then relate the latter to flow energy required.

Using the program LOSS with test section velocity varying from 100 to 200 Knots, by increments of 20 Knots, we get the figure 4.1 which shows the energy required (\(\eta_{bhp}\)) versus test section velocity (\(V_o\)).

C. OPERATIONAL ENVELOPE

Following the method given in Chapter 3, we find the power required from the fans as a function of test section velocity, with a number of pitch angles of the first and second stage blades.
Figure 4.1 Energy Required to Overcome Tunnel Losses.

Since we know the losses around the tunnel in relation to test section velocity, we can adjust the pitch angle of blades until we get the energy coming into the flow to match the losses at same test section velocity. The program BORST was used for this.

57
In order to test the sensitivity of the blade flow to the approaching velocity profile, we compare the performance of the blades in uniform and skewed approach flow.

Using the axial flow velocity profile, originally used by Larson and given by equation 4.1 with the program BORST, we got the data shown in Table XXI. This Table presents the pitch angle for a specified energy and test section velocity, the maximum and minimum pitch angle at that test section velocity and its related energy. These values were plotted and are shown in Figure 4.2. This Figure has three limit curves, root stall, tip stall and fan efficiency. The root stall curve limit is the locus of points at which, at a specified test section velocity and pitch angle, the blade stalls at the root. The tip stall curve limit is the locus of points at which, at a specified test section velocity and pitch angle, the blade stalls at the tip. The fan efficiency curve limit is the locus of points at which, at a specified test section velocity and pitch angle, the blade stalls at the root. The tip stall curve limit is for stall at the tip. The fan efficiency curve limit is the locus where the operation of the fans is limited by the input power and the (assumed) fan efficiency, that is, $300 \text{ hp} \times 0.85^2 = 217 \text{ hp}$. This means that the power provided by the fan system can not exceed 217 hp approximately. The pitch angles for both stages are equal at the design speed of $V_0=200$ Knots.

Using the uniform flow velocity given by equation 4.2, we found the data shown in Table XXII. This Table shows that the fans can operate without stall, only at a section test velocity from 160 to 180 Knots. These values were plotted in Figure 4.3. This Figure has only the curves of root and tip stall. The fans stall before reaching the maximum power allowed by the fan efficiency. The blades of the second fan stage are practically stalled at the root.

The axial velocity distribution specified for Table XXI and Table XXII are developed in Appendix A and shown below:
\[C_m = 0.2034 \left(1 - X \right) + 0.303 V_o, \quad \text{and} \]

\[C_m = 0.363 V_o. \]

(eqns 4.1, 4.2)

D. FINAL CONCLUSION

The large subsonic wind tunnel at NPS, powered by two counter-rotating fans, never achieved the design specifications. The reason for the poor performance of the tunnel was unknown but believed to be due to either poorly designed fan blades or to separation in the diffuser. Being easier to analyse, the fan blades were chosen for initial study. However, to do this analysis, it was necessary to compute the losses in the whole tunnel circuit.

The results can be summarized as follows:

1) Most of the losses, about 60% of the total, was in the first diffuser. The exit end of this diffuser has a high value of divergence angle in the vertical plane, which can be the cause of a possible flow separation.

2) When the inflow velocity profile to the fans is assumed uniform, the no-stall operational envelope is substantially reduced, so there is a much greater likelihood of blade stall.

3) The variation of the pitch angle affects the performance of the fans. The pitch angles for both stages should be practically the same in order to have no flow rotation after the outlet of the second stage, provided the inflow velocity profile is the same as that assumed in the design.

4) In conclusion, although this new blade element method used to analyse the fan flow predicts some deviation from the original isolated blade analysis, it was found that the original design was adequate and, therefore, the tunnel problem is most probably due to separation in the diffuser.
TABLE XXI
OPERATIONAL ENVELOPE FOR EQUATION 4.1

<table>
<thead>
<tr>
<th>V</th>
<th>HP</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>12.7</td>
<td>a</td>
<td>-12.3</td>
<td>-11.12</td>
<td>30.5</td>
<td>35.0</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>21.8</td>
<td>a</td>
<td>-11.13</td>
<td>-6.37</td>
<td>30.0</td>
<td>49.0</td>
<td>-</td>
</tr>
<tr>
<td>140</td>
<td>34.5</td>
<td>-8.32</td>
<td>-9.91</td>
<td>-2.09</td>
<td>26.0</td>
<td>78.0</td>
<td>-8.0</td>
</tr>
<tr>
<td>160</td>
<td>51.2</td>
<td>-4.75</td>
<td>-8.70</td>
<td>1.73</td>
<td>23.0</td>
<td>96.0</td>
<td>-4.50</td>
</tr>
<tr>
<td>180</td>
<td>71.9</td>
<td>-0.83</td>
<td>-7.50</td>
<td>5.10</td>
<td>15.0</td>
<td>128.0</td>
<td>-0.67</td>
</tr>
<tr>
<td>200</td>
<td>98.0</td>
<td>2.40</td>
<td>-6.30</td>
<td>8.08</td>
<td>27.0</td>
<td>150.0</td>
<td>2.40</td>
</tr>
</tbody>
</table>

Legend
- **V₀** - test section velocity
- **HP** - power
- **A** - pitch angle of first stage
- **B** - lower limit of pitch angle
- **C** - upper limit of pitch angle
- **D** - lower power limit
- **E** - upper power limit
- **F** - pitch angle of second stage
- **a** - the pitch angle at which the blade does not stall; provides more power than needed.
Figure 4.2 Operational Envelope for Equation 4.1.
TABLE XXII
OPERATIONAL ENVELOPE FOR EQUATION 4.2

<table>
<thead>
<tr>
<th></th>
<th>HP</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>12.7</td>
<td>b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>21.8</td>
<td>b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>140</td>
<td>34.5</td>
<td>a</td>
<td>-8.21</td>
<td>-8.14</td>
<td>36.2</td>
<td>36.3</td>
<td>-7.74</td>
</tr>
<tr>
<td>160</td>
<td>51.2</td>
<td>-4.85</td>
<td>-6.80</td>
<td>-4.50</td>
<td>35.1</td>
<td>52.4</td>
<td>-4.4</td>
</tr>
<tr>
<td>180</td>
<td>71.9</td>
<td>-1.50</td>
<td>-5.38</td>
<td>-1.19</td>
<td>33.0</td>
<td>74.0</td>
<td>-1.25</td>
</tr>
<tr>
<td>200</td>
<td>98.0</td>
<td>c</td>
<td>-3.97</td>
<td>1.82</td>
<td>31.9</td>
<td>95.6</td>
<td>-</td>
</tr>
</tbody>
</table>

Legend
- b - the blade is stalled for any pitch angle
- c - the pitch angle at which the blade does not stall; provides less power than needed

The other variables have the same meaning as in table XXI
Figure 4.3 Operational Envelope for Equation 4.2.
APPENDIX A
SPECIFIED FUNCTIONAL FORMS

CORNER

The evaluation of the corner loss using the turning vane loss function presented in appendix B of reference 6, (p.35) with the flow turning angle equal to 90 degrees, leads to the equation given by RAE & POPE [Ref. 2: p.90].

The equation for the turning vane loss coefficient is

\[K_{TV} = -1.605670E-01 + 1.446753E-02 \phi - 2.570748E-04 \phi^2 + 2.066207 E-06 \phi^3 - 6.335764E-09 \phi^4, \]

with \(\phi = 90 \) degrees is found \(K_{TV} = .15 \).

The equation for turning vane loss function is

\[K = K_{TV} \left(2/3 + \frac{1}{3} \left(\log_{10} R_{nr} / \log_{10} R_{n} \right)^{2.58} \right), \]

where

\[R_{nr} = 500,000 \] (reference Reynolds number, according to ref. 2 p.89), and \(\log_{10} 500,000 = 5.7 \).

Substituting these values in the equation of the turning vane loss function, the equation given by Rae & Pope appears as follows:

\[K = 0.15 \left(2/3 + 29.7 / \log_{10} R_{n} \right)^{2.58}, \]
\[K = (0.1 + 4.45 / \left(\log_{10} R_{n} \right)^{2.58}), \]
\[K_0 = K \left(\frac{D_o}{D} \right)^4. \]

LOADING PARAMETER (Larson)

The loading parameter used by Larson in his report comes from blade element theory, where the effects of drag are considered. This is also shown in Osborne [Ref. 11: p.147], by equation

\[\frac{V_u}{W_m} = \frac{1}{2} Cl \left(1 + \frac{C_d}{C_l} \cotan (\beta - \alpha) \right), \]

where \(\beta \) = mean blade velocity angle .

The Larson report (pp. 5,6) gives

\[\cotan (\beta - \alpha) = \tan (\beta_m), \]
and rearranging the term \(Vu/Wm \) as
\[
Vu/Wm = (U/Cm - (U-Vu)/Cm) Cm/Wm ,
\]
and using the axial velocity triangles, the following relations are assured:
\[
U/Cm = \tan \beta_1, \quad (U-Vu)/Cm = \tan \beta_2 ,
\]
\[
Cm/Wm = \cos \beta_m .
\]
Substituting these relations into the equation given by Osborne, the final equation is
\[
\sigma C_l = (2(\tan \beta_1 - \tan \beta_2)\cos \beta_m)/(1+ Cd/C_l \tan \beta_m) \quad \text{and is the equation used by Larson.}
\]

AXIAL FLOW VELOCITIES.

Larson assumed in his report the axial flow velocity as:
\[
C_m = .12 \frac{r_t}{r} (1- \frac{r}{r_t}) + C_{mt} \quad (1)
\]
where \(r_t \) = tip radius, \(r \) = station radius, \(C_{mt} \) = axial velocity at tip blade, and \(C_m \) = axial velocity at the root of the blade. Integrating the product of the cross section area of the fan duct at the blades times \(C_m \), from root to tip, and setting it equal to the product of the area times the velocity of the test section, we find:
\[
14.9 \frac{V_o}{C_m} = 5.465 C_m + 41.037 C_{mt}.
\]
In the equation of \(C_m \), when \(r \) is the radius of the blade root, \(C_m = C_{mr} \), and
\[
C_{mr} = C_{mt} / 0.67 . \quad (2)
\]
Equating (1) and (2), the axial velocity profile for our tunnel is found as:
\[
C_m = (0.2034 (1- \frac{r}{r_t}) + .303) \frac{V_o}{C_m}
\]

UNIFORM AXIAL FLOW VELOCITY.

This axial profile velocity is used only for purposes of comparison. From the continuity equation \(C_m = Ao \frac{V_o}{A} \) and, taking the known values, we find \(C_m = .363 \frac{V_o}{C_m} \).
APPENDIX B
SAMPLE CALCULATIONS

Evaluation of the blade station torque.

For first stage

Following the 'torque and power' procedure given in chapter three, at a specified station the data are as follows:

General data:
- curves of C_l vs α and C_l vs C_d for airfoil NACA 16-X12 at $M=.3$ and $M=.45$.
- $a=1,160$ ft/sec
- $\rho = .0023$ slug/ft3
- $\nu = .000166$ ft2/sec
- $r_t = 3.75$ ft
- $C_{ldes} = .64$
- $V_o = 200$ Knots $= 337.55$ ft/sec
- $B = 4$ blades
- $\theta = 2.4$ deg.

At specified station:
- $X = .3$
- $c = 1.049$ ft
- $\beta = 40.37$ deg.

STEP 1) $C_m = (.2034(1-.3)+.303)x337.55 = 150.34$ ft/sec
- $U = 2\times3.1416x.3x3.75x1200/60 = 141.37$ ft/sec
- $W_1 = (150.34^2+141.37^2)^{1/2} = 206.37$ ft/sec

STEP 2) $\beta_1 = \arctan(141.37/150.34) = 43.24$ deg.

STEP 3) $\sigma = (4\times1.049)/(2\times3.1416\times.3\times3.75) = .5936$

STEP 4) $M = 206.37/1,160 = .18$
- $\alpha = 43.24 - 40.37 + 2.4 = 5.27$ deg.
Entering into curve at $M=.3$ are found $C_l=.87$ and $C_d = .015$.

$\gamma = \arctan (.015/.87) = .988$
STEP 5)

\[\alpha_i = 5.85 \text{ deg.} \]

\[\beta_2 = 43.24 - 2 \times 5.85 = 31.54 \text{ deg.} \]

\[\beta_m = 43.24 - 5.85 = 37.39 \text{ deg.} \]

STEP 6)

right side \[= (2 \cos^2 \theta) \times 0.988 \times (\tan 43.24 - \tan 31.54) / \cos (37.39 - 0.988) \]

\[= 0.51225 \]

left side \[= 0.5936 \times 0.87 = 0.5164 \]

The induced angle assumed is adequate and equal to \(\alpha_i = 5.85 \text{ deg.} \)

STEP 7)

\[\alpha_{cr} = 5.27 - 5.85 = -0.58 \text{ deg.} \]

STEP 8)

\[C_{1cr} = 0.41, \quad C_{dcr} = 0.01 \]

\[\gamma_{cr} = \text{arc tan} \left(\frac{0.01}{0.41} \right) = 1.397 \text{ deg.} \]

STEP 9)

\[W_m = \frac{150.34}{\cos 37.39} = 189.22 \text{ ft/sec} \]

\[L_i = \frac{0.0023 \times 189.22 \times 0.41 \times 1.049}{200} = 17.71 \text{ lbf/ft} \]

STEP 10)

\[R_i = \frac{17.71}{\cos 1.397} = 17.71 \text{ lbf/ft} \]

\[F_i = 17.71 \cos (37.39 - 1.397) = 14.33 \text{ lbf/ft} \]

NEXT STATION

At specified station

\[X = 0.35 \]

\[c = 0.958 \text{ ft} \]

\[\beta = 46.67 \text{ deg.} \]

STEP 1)

\[C_m = \frac{0.2034(1 - 0.35) + 0.303}{337.55} = 146.90 \text{ ft/sec} \]

\[U = \frac{2 \times 3.1416 \times 0.35 \times 3.75}{1200 \times 60} = 164.93 \text{ ft/sec} \]

\[W_l = (146.90^2 + 164.93^2)^{1/2} = 220.86 \text{ ft/sec} \]

STEP 2)

\[\beta_1 = \text{arc tan} \left(\frac{164.93}{146.90} \right) = 48.31 \text{ deg.} \]

STEP 3)

\[\sigma = (4 \times 0.958) / (2 \times 3.1416 \times 0.35 \times 3.75) = 0.4647 \]

STEP 4)

\[M = 220.86 \times 1.160 = 0.19 \]

\[\alpha = 48.31 - 46.67 + 2.4 = 4.04 \text{ deg.} \]

Entering into curve at \(M = 0.3 \) are found \(C_l = 0.83 \) and \(C_d = 0.015 \).

\[\gamma = \text{arc tan} \left(\frac{0.015}{0.83} \right) = 1.033 \text{ deg.} \]
STEP 5) assume $\alpha_1 = 4.00 \text{ deg.}$

$\beta_2 = 48.31 - 2 \times 4.00 = 40.31 \text{ deg.}$

$\beta_3 = 48.31 - 4.00 = 44.31 \text{ deg.}$

STEP 6) right side $= ((2 \cos^2 44.31 \times \cos 1.033 (\tan 48.31 - \tan 40.31)) / \cos (44.31 - 1.033) =

= .3864$

left side $= .4647 \times .83 = .3866$

The induced angle assumed is adequate and equal to $\alpha_1 = 4.00 \text{ deg.}$

STEP 7) $\alpha_{cr} = 4.04 - 4.00 = .04 \text{ deg.}$

STEP 8) $C_{1cr} = .455$ $C_{dcr} = .01$

$\gamma_{cr} = \arctan (.01/.455) = 1.259 \text{ deg.}$

STEP 9) $W_m = 146.9 / \cos 44.3 = 205.25 \text{ ft/sec}$

$L_i = 1/2 \times .0023 \times 205.25^2 \times .455 \times .958 = 21.11 \text{ lbf/ft}$

STEP 10) $R_i = 21.11 / \cos 1.259 = 21.11 \text{ lbf/ft}$

$F_i = 21.11 \cos (44.31 - 1.259) =

= 15.43 \text{ lbf/ft}$

For both station at $X = .3$ and $X = .35$

STEP 11) $T = (14.33 + 15.43) / 2 \times 3.75 \times .05 \times .325 \times 3.75 =

= 3.40 \text{ lbf-ft}$

After that, adding all station torques and multiplying by the rotational speed, the power is found.

For the second stage, the same procedure can be followed with some adjustments as mentioned before in chapter 3, section E.
APPENDIX C
DESCRIPTION OF COMPUTER PROGRAMS

The following pages contain the FORTRAN PROGRAMS developed to evaluate the blade performance and the tunnel losses.

The LOSS FORTRAN is a program to evaluate the losses around the circuit of the large Academic Wind Tunnel of NPS. This program uses one subroutine called SKIN to calculate the skin friction when the Reynolds number is given; it does this by means of equation 2.1. The main program uses the equations for Ko and Rey for each section of the tunnel, given in chapter two. The meaning of variables used in the program are given at beginning of the main program and subroutine. The listing of the program is presented in Appendix D.

The BORST FORTRAN is a program used to evaluate the performance of the blades of both stages. This program uses the procedure presented in chapter three section D, to evaluate the torque and power of the first stage, and section E to evaluate the torque and power of the second; it uses six subroutines as follows: FIRST is a subroutine to evaluate the parameters of the blade of each station at a specified test section velocity, for the first stage. SECOND is a subroutine like FIRST but it evaluates for the second stage. CLNEW is a subroutine to compute the lift coefficient for each section of the blade using Newton's Forward and Backward Interpolation Formula, with the data given by curves of C_l vs α in reference 12. CDNEW is a subroutine to compute the drag coefficient for each section using the same formula as in CLNEW, with data given by the curve of C_d vs C_l in the same reference as in CLNEW. INDUC is a subroutine used to compute the induced angle of attack.
through iterations using the equation 3.4. LIFT is a subroutine to compute the torque and power for second stage of blades calling all the subroutines except FIRST; this subroutine is called by the main program after it evaluates the torque and power of the first stage.

This program is listed in Appendix E and a description of parameters appears at the beginning of either the main program or the subroutine.
APPENDIX D
COMPUTER PROGRAM 'LOSS'

PROCEDURE TO COMPUTE THE SKIN FRICTION

USAGE
CALL SKIN (R,FRIC)

DESCRIPTION OF PARAMETERS
R - REYNOLDS NUMBER (INPUT)
FRIC - SKIN FRICTION COEFFICIENT (OUTPUT)

SUBROUTINE SKIN(R,FRIC)
REAL R,FRIC,A,B,DELTA,TEMP1,TEMP
FRIC=.006
DELTA=.001
110 A=SQRT(FRIC)
B=2.*ALOG10(R*A)-1./A
TEMP=ABS(B-.8)
IF(TEMP.LT..001) GO TO 120
IF(TEMP.GT.TEMP) GO TO 100
FRIC=FRIC-DELTA
DELTA=DELTA/10
IF(DELTA.LT..00000001) GO TO 120
GO TO 130
100 TEMP1=TEMP
130 FRIC=FRIC+DELTA
GO TO 110
120 RETURN

MAIN PROGRAM

DESCRIPTION OF PARAMETERS
BRAD(K)= OVERALL ENERGY LOSSES, CORNER EVALUATED BY PANK & BRAD
CDF = FRICTION DRAG COEFFICIENT
CDD = DRAG COEFFICIENT
FRIC = SKIN FRICTION COEFFICIENT
HOL(K)= OVERALL ENERGY LOSSES, CORNER EVALUATED BY PANK & HOLD
LOSS = LOSS VECTOR (K)
PER = PERCENTAGE OF OVERALL LOSSES FOR EACH SECTION
POPE(K) = OVERALL ENERGY LOSSES, CORNER EVALUATED BY RAE & POPE
REY = REYNOLDS NUMBER VECTOR
SUM1 = SUM OF LOSS VECTOR (CORNER BY RAE & POPE)
SUM2 = SUM OF LOSS VECTOR (CORNER BY PANK & BRAD)
SUM3 = SUM OF LOSS VECTOR (CORNER BY PANK & HOLD)
V1 = TEST SECTION VELOCITY (FT/SEC)
V2(K) = TEST SECTION VELOCITY (KNOTS)
REAL LOSS(30), REY(30), FRIC(30), V, CDP, CDO, PER(30), SUM1, SUM2, SUM3, POPE(30), BRAD(30); HOL(30),

V2(30) V1
INTEGER I, K
V=168.778
K=1
V2(K)=100.

CYLINDER # 1
REY(1)=26300. *V
CALL SKIN(REY(1), FRIC(1))
LOSS(1) = 1.834 *FRIC(1)

CYLINDER # 2
REY(2)=15300. *V
CALL SKIN(REY(2), FRIC(2))
LOSS(2) = .1448 *FRIC(2)

CYLINDER # 3
REY(3)=8600. *V
CALL SKIN(REY(3), FRIC(3))
LOSS(3) = .0051 *FRIC(3)

CYLINDER # 4
REY(4)=9010. *V
CALL SKIN(REY(4), FRIC(4))
LOSS(4) = .0067 *FRIC(4)

DIVERGENCE # 1 PART # 1
REY(5)=28000. *V
CALL SKIN(REY(5), FRIC(5))
LOSS(5) = .5367 *FRIC(5) + .00103

DIVERGENCE # 1 PART # 2
REY(6)=23900. *V
CALL SKIN(REY(6), FRIC(6))
LOSS(6) = .5416 *FRIC(6) + .0208

DIVERGENCE # 1 PART # 3
REY(7)=19700. *V
CALL SKIN(REY(7), FRIC(7))
LOSS(7) = .2232 * FRIC(7) + .0355

DIVERSION # 1 PART # 4
REY(8) = 15670 * V
CALL SKIN(REY(8), FRIC(8))
LOSS(8) = .034 * FRIC(8) + .0196

DIVERSION # 2
REY(9) = 15000 * V
CALL SKIN(REY(9), FRIC(9))
LOSS(9) = .1400 * FRIC(9) + .0004

DIVERSION # 3
REY(10) = 13700 * V
CALL SKIN(REY(10), FRIC(10))
LOSS(10) = .09 * FRIC(10) + .0011

DIVERSION # 4
REY(11) = 10000 * V
CALL SKIN(REY(11), FRIC(11))
LOSS(11) = .055 * FRIC(11) + .003

CORNER # 1 POPE & BRADSHAW
REY(14) = 1646 * V
LOSS(14) = .0669 + .3122 / (ALOG10(REY(14))**2.58
LOSS(18) = .013 * V **(-.25)

CORNER # 2 POPE & BRADSHAW
REY(15) = 1890 * V
LOSS(15) = .0905 + .4118 / (ALOG10(REY(15))**2.58
LOSS(19) = .016 * V **(-.25)

CORNER # 3 POPE & BRADSHAW
REY(16) = 609.5 * V
LOSS(16) = .00094 + .0428 / (ALOG10(REY(16))**2.58
LOSS(20) = .0023 * V **(-.25)

CORNER # 4 POPE & BRADSHAW
REY(17) = 334.2 * V
LOSS(17) = .00113 + .0515 / (ALOG10(REY(17))**2.58
LOSS(21) = .0032

CONTRACTION CONE
REY(12) = 13420 * V
CALL SKIN(REY(12), FRIC(12))
LOSS(12) = .7338 * FRIC(12)

SPINNER
CDF = .455 / (ALOG10(24500 * V))**2.58 * 31.027
RELATED TO CORNER EVALUATION BY POPE & RAE

```fortran
C
SUM1=0
DO 60 I=1,17
   SUM1=SUM1+LOSS(I)
60 CONTINUE
POPE(K)=.000031232*V**3*SUM1/.9
DO 501 I=1,17
   PER(I)=LOSS(I)/SUM1*100.
501 CONTINUE
WRITE(6,65) VELATIETY 'TOTAL LOSSES ',10X,'HP')
WRITE(6,61) V2(K),SUM1,POPE(K)
61 FORMAT('/',F15.8,F15.8,F15.8,' CORNER BY POPE')
WRITE(6,55) SECTION ','REYNOLDS NUMBER','SKIN FRICTION','
55 FORMAT('SECTION LOSSES PERCENTAGE')
WRITE(6,50) I,REY(I),FRIC(I),LOSS(I),PER(I),I=1,17
50 FORMAT(/,13,4F15.4)
```

RELATED TO CORNER EVALUATION BY PANKHURST & BRADSHAW

```fortran
C
SUM2=0
DO 301 I=1,13
   SUM2=SUM2+LOSS(I)
301 CONTINUE
DO 302 I=18,21
   SUM2=SUM2+LOSS(I)
302 CONTINUE
BRAD(K)=.000031232*V**3*SUM2/.9
DO 303 I=1,13
   PER(I)=LOSS(I)/SUM2*100.
303 CONTINUE
DO 304 I=18,21
   PER(I)=LOSS(I)/SUM2*100.
304 CONTINUE
WRITE(6,67) VELATIETY 'TOTAL LOSSES ',10X,'HP')
WRITE(6,63) V2(K),SUM2,BRAD(K)
63 FORMAT('/',F15.8,F15.8,F15.8,' CORNER BY BRADSHAW')
WRITE(6,57) I,REY(I),FRIC(I),LOSS(I),PER(I),I=1,13)
57 FORMAT(/,13,4F15.4)
WRITE(6,58) I,LOSS(I),PER(I),I=18,21
```

58 FORMAT(/,I3,30X,2F15.4)
 * RELATED TO CORNER EVALUATION BY PANKHURST & HOLDER
 *
 * SUM3=0
 * DO 401 I=1,13
 * SUM3=SUM3+LOSS(I)
 * 401 CONTINUE
 * DO 402 I=22,25
 * SUM3=SUM3+LOSS(I)
 * 402 CONTINUE
 * DO 603 I=1,13
 * PER(I)=LOSS(I)/SUM3*100.
 * 603 CONTINUE
 * DO 604 I=22,25
 * PER(I)=LOSS(I)/SUM3*100.
 * 604 CONTINUE
 * HOL(K)=.000031232*V**3*SUM3/.9
 *
 * WRITE(6,467) * VELOCITY ' * TOTAL LOSSES ',10X,'HP'
 * * WRITE(6,463)V2(K),SUM3,HOL(K)
 * 467 FORMAT(/,F15.8,F15.8,F15.8,' CORNER BY HOLDER ')
 * * WRITE(6,653)(I,REY(I),FRIC(I),LOSS(I),PER(I),I=1,13)
 * 653 FORMAT(/,13,4F15.4)
 * * WRITE(6,658)(I,LOSS(I),PER(I),I=22,25)
 * 658 FORMAT(/,13,30X,2F15.4)
 * V1=V2(K)
 * K=K+1
 * V2(K)=V1+20.
 * V=V+20,.36076,.3600
 * IF(V2(K)-220.201.202.202
 * WRITE(6,466)(V2(K),RAD(K),POPE(K),HOL(K),K=1,6)
 * 466 FORMAT(/,F8.1,3F15.8)
 * RETURN
 * $ENTRY
APPENDIX E
COMPUTER PROGRAM 'BORST'

$JOB
ID,XREF,EXT
SUBROUTINE TO COMPUTE THE INITIAL VELOCITIES, INITIAL ANGLES,
REYNOLDS NUMBER AND MACH NUMBER FOR FIRST STAGE

DESCRIPTION OF PARAMETERS

THE PARAMETERS ARE ALL REFERRED TO BLADE SECTION, WHEN
NO SPECIFIED.

INPUT
X = POSITION OF BLADE SECTION GIVEN BY LOCAL RADIUS
DIVIDED BY TIP RADIUS
V = TEST SECTION VELOCITY (KNOTS)
C = CHORD
ASOUND = SOUND VELOCITY AT 100 DEGREE FAHRENHEIT
VISC = KINEMATIC VISCOSITY AT 100 DEGREE FAHRENHEIT AND
PRESSURE AT 2,246 LBF/FT2

OUTPUT
CM = AXIAL FLOW VELOCITY
CU2 = ABSOLUTE TANGENTIAL VELOCITY LEAVING
U = TANGENTIAL VELOCITY OF BLADE SECTION
BETA = APPARENT AIR FLOW ENTERING ANGLE
W1 = APPARENT AIR FLOW VELOCITY
REY = REYNOLDS NUMBER
M = MACH NUMBER

SUBROUTINE FIRST(X,V,C,ASOUND,VISC,CM,CU2,U,BETA,W1,REY,M)
REAL X,C,ASOUND,VISC,CM,CU2,U,BETA,W1,REY,M,V,W1
V1=V*6076.3600
CM=(.2034*(1.0-X)+.303)*V1
CM=.363*V1
CU2=13.2/X
U=471.25*U
BETA=ATAN(U)
W1=SQR(T(U)
REY=W1*U/C/VISC
M=W1/ASOUND
RETURN
END
SUBROUTINE TO COMPUTE THE INITIAL VELOCITIES, INITIAL ANGLE, REYNOLDS NUMBER AND MACH NUMBER FOR SECOND STAGE

DESCRIPTION OF PARAMETERS
ALL PARAMETERS ARE REFERRED TO SECOND STAGE AND THEY HAVE THE SAME MEANING OF THAT FOR THE FIRST STAGE EXCEPT BT= APPARENT AIR FLOW ANGLE LEAVING THE FIRST STAGE

SUBROUTINE SECOND(X, V, C, BT, ASOUND, VISC, CM, CU2, U, BETA, W1, REY, M)
REAL X, C, ASOUND, VISC, CM, CU2, U, BETA, W1, REY, M, BT, V, V1
V1=V*6076./3600;
CM = (.2034 *(1.0-X)+.303)*V1
CM=.363*V1
CU2 =13.2/X
U =471.24*X
BETA = ATAN((2. * U-CM*TAN(BT))/CM)
W1 =SORT((2. * U-CM*TAN(BT)) **2.*CM)**2)
REY =W1/VISC
M =W1/ASOUND
RETURN
END

SUBROUTINE TO COMPUTE LIFT AND TORQUE FOR SECOND STAGE

THIS SUBROUTINE USES THE OTHER THREE SUBROUTINES ,CLNEW, CDNEW AND INDUC.

DESCRIPTION OF PARAMETERS
ALL PARAMETERS ARE REFERRED TO SECOND STAGE AND AT STATION WHEN NO SPECIFIED

STDG = STDG2 = APPARENT INLET FLOW ANGLE (DEG.)
STAG = STAG2 = STAGGER ANGLE (DEG.)
PITCH= PITCH ANGLE (DEG.)
M = SM = MACH NUMBER
BETA = SETA = APPARENT INLET FLOW ANGLE (RAD.)
X = LOCAL STATION OF BLADE
C = SC = CHORD (FT)
CM = AXIAL FLOW VELOCITY (FT/SEC)
U = U = BLADE STATION TANGENTIAL VELOCITY (FT/SEC)
RO = SPECIFIC DENSITY (SLUG/FT3)
DELF = FORCE PER UNIT LENGTH IN THE DIRECTION OF TANGENTIAL VELOCITY OF BLADE (LB/FT)
BETAM = MEAN AIR INFLOW ANGLE (DEG.)
BET2 = LEAVING ANGLE (DEG.)
ALPHAI = INDIRECT ANGLE OF ATTACK (DEG.)
ALPHA = ANGLE OF ATTACK (DEG.)
CL = LIFT COEFFICIENT
CD = DRAG COEFFICIENT
ALPCR = CORRECTED ALPHA (DEG.)
CLCR = CORRECTED CL
CDCR = CORRECTED CD
DELL = LIFT PER UNIT LENGTH (LB/FT)

SUBROUTINE LIFT(STDG,STAG,PITCH,M,BETA,X,C,CM,U,CU2,RO,DELF,
1 BETAM,BET2,ALPHAI,ALPHA,CL,CD,ALPCR,CLCR,CDCR,DELL)
COMMON CL364(20),CL644(20),CD364(20),CD464(20),ALCL(20),
1 CLDR(20)
REAL X ,U ,CU2 ,CM ,BETA ,W1 ,REY
1 REAL VISC,ASOUND,M ,C ,ALPHAI ,BET2 ,CD ,CL
1 P1CD(15),STAG ,ALPHA ,PITCH ,TEMP(15),ALPCR ,RPM,TOR,
1 CDCR ,DBLD(15),DELL ,DELP ,DTOR(15),POW(15),CLCR
1 CD45(20),CD47(20),CL35(20),CL37(20),CL45(20),CL47(20),AB(15)
1 DIMENSION FOR THE SECOND STAGE

REAL SC(15),SCU2(15),SETA(15),W3(15),SREY(15),SM(15),STAG2(15),
1 STDG(15),SSTOR(15),STOR,SETAM(15),SET2(15),
1 INTEGER 1,K,J,L
1 ALPHAI ,STAG =STAG *PITCH
1 CALL CLNEW(ALPHA ,M ,CL)
1 CALL CDNEM(CL ,M ,CD)
1 GAMA = ATAN(CL / CL)
1 CALL INDUC CL ,BETA ,CL ,X ,GAMA ,C ,BETAI ,
1 ALPHAI = BETA2 *180 /3.1416
1 ALPHAI =ALPHAI *180 /3.1416
1 ALPCR =ALPHA -ALPHAI
1 CALL CLNEW(ALPCR ,M ,M ,CLCR)
1 CALL CDNEM(CLCR ,M ,CDCR)

CHANGING THE ATTACK ANGLE
1 WM =SQRT(CL **2+ (U -5*CU2)**2)
1 DELL =RO*WM **2*8 *C * .5
1 TEMP5=ATAN (0 /CL)
1 BETAM =ATAN((U -5*CU2) /CM)
1 DELF =DELL /COS(TEMP5)*COS(BETAM -TEMP5)
1 WM =SQRT(CL **2+ (U -5*CU2)**2)
SUBROUTINE TO COMPUTE THE LIFT COEFFICIENT FOR EACH STATION USING NEWTON'S FORWARD AND BACKWARD INTERPOLATION FORMULA, GIVEN DATA FORM CURVE CL VS ALPHA FOR MACH NUMBER EQUAL .3 AND .45 OF THE AIRFOIL NACA 16-X12.

DESCRIPTION OF PARAMETERS

ALPHA = ANGLE OF ATTACK (DEG.)
CMAC = MACH NUMBER LESS OR EQUAL .45
CLM = LIFT COEFFICIENT INTERPOLATED

SUBROUTINE CLNEW(ALPHA, CMAC, CLM)
COMMON CL364(20), CLR4(20), CD364(20), CD464(20), ALCL(20), CLDR(20)
REAL ALINT, ALPHA, T, CLR3, CLR4, DEL1(20), DEL2(20), DEL3(20), DEL4(20)

1 TEMP = CLR(5)
INTEGER I, J, K, L
IF(ALPHA <= -6.0) GO TO 72
73 IF(ALPHA <= 12.0) GO TO 84
71 WRITE(6,161)
161 FORMAT(' ALPHA IS LESS THAN -6.0 DEGREE')
72 ALPHA = -6.0
GO TO 84
83 WRITE(6,162)
162 FORMAT(' ALPHA IS LARGER THAN 12.0 DEGREE')
84 ALINT = IFIX(ALPHA)
T = ALPHA - ALINT
DO 40 I = 1, 19
IF(ALCL(I) - ALINT) 35, 36, 36
35 CONTINUE
40 CONTINUE
36 IF (I = 12) 41, 41, 42
41 J = I
BLOCK TO INTERPOLATE POINT IN CL VS ALPHA CURVE USING
NEWTON'S FORWARD INTERPOLATION FORMULA

C
K=1
DO 53 I=1,18
DEL1(I)=CL364(I+1)-CL364(I)
53 CONTINUE
TEMP1=CL364(J)

100 DO 60 I=1,17
DEL2(I)=DEL1(I+1)-DEL1(I)
60 CONTINUE
DO 70 I=1,16
DEL3(I)=DEL2(I+1)-DEL2(I)
70 CONTINUE
DO 80 I=1,15
DEL4(I)=DEL3(I+1)-DEL3(I)
80 CONTINUE
CLR(K)=(1.+T*DEL1(J)+T*(T-1.)*DEL2(J)/2.+T*(T-1.)*(T-2.)*
DEL3(J)/6.+T*(T-1.)*(T-2.)*(T-3.)*DEL4(J)/24.)*TEMP1

143 IF(K-2) 43,44,44
43 DO 90 I=1,18
DEL1(I)=CL464(I+1)-CL464(I)
90 CONTINUE
TEMP1=CL464(J)
K=K+1
GO TO 100
44 CLR3=CLR(1)
CLR4=CLR(2)
GO TO 51

42 IF(I-19) 144, 145, 144
145 J=1
GO TO 146
144 J=J+1
T=T-1

BLOCK TO INTERPOLATE POINT IN CL VS ALPHA CURVE USING
NEWTON'S BACKWARD INTERPOLATION FORMULA

146 K=1
DO 55 I=1,18
L=20-I
DEL1(L)=CL364(L)-CL364(L-1)
55 CONTINUE
TEMP1=CL364(J)
105 DO 65 I=1,17
L=20-I
DEL2(L)=DEL1(L)-DEL1(L-1)
65 CONTINUE
DO 75 I=1,16
L=20-I
DEL3(L)=DEL2(L)-DEL2(L-1)

CONTINUE
DO 85 I=1,15
L=20-I
DEL4(L)=DEL3(L)-DEL3(L-1)
85 CONTINUE

CLR(K)=1.*T*DEL1(J)+T*(T-1.)*DEL2(J)/2.+T*(T-1.)*(T-2.)*
1 DEL3(J)/6.+T*(T-1.)*(T-2.)*(T-3)*DEL4(J)/24.)*TEMP1

IF(K-2) 48,49,49
48 DO 95 I=1,18
L=20-I
DEL1(L)=CL464(L)-CL464(L-1)
95 CONTINUE
TEMP1=CL464(J)
K=K+1
GO TO 105

49 CLR3=CLR(1)
CLR4=CLR(2)
51 IF(CMAC-.3)31,31,33
31 CLR=CLR3
GO TO 52
33 CLR=(CLR4-CLR3)/.15*(CMAC-.3)+CLR3
52 RETURN
END

SUBROUTINE TO COMPUTE THE DRAG COEFFICIENT FOR EACH STATION USING NEWTON'S FORWARD AND BACKWARD INTERPOLATION FORMULA, DATA GIVEN FROM CURVE CD VS CL FOR MACH NUMBER EQUAL .3 AND .45 OF AIRFOIL NACA 16-X12

DESCRIPTION OF PARAMETERS

CLM = LIFT COEFFICIENT INTERPOLATED BY SUBROUTINE CLNEW
CMAC = SAME MACH NUMBER USED FOR SUBROUTINE CLNEW
CDM = DRAG COEFFICIENT INTERPOLATED

SUBROUTINE CDNEW(CLM,CMAC,CDM)
COMMON CL364(20),CL464(20),CD364(20),CD464(20),ALCL(20),CLDR(20)
REAL ALINT,ALPHA,T,CLR3,CLR4,DEL1(20),DEL2(20),DEL3(20),DEL4(20)
1 TEMP1,CLR(5),CDR(5)
INTEGER I,J,K,L
IF(CLM+.1)71,72,73
73 IF(CLIM - 1.2)84, 84, 83
71 WRITE(6,161)
161 FORMAT(1, CL IS LESS THAN -.1, ')
72 CLM = -1
GO TO 84
83 WRITE(6,162)
162 FORMAT('1, CL IS LARGER THAN 1.2, ')
CLM = 1.2
84 AL=IFIX(CLIM/10.)
9 = (CLIM/10. - AL)/10.
DO 40 I = 1, 14
IF(CD1(1) - AL)/10.) 35, 36, 36
35 CONTINUE
40 CONTINUE
36 IF(I = 1-1) 41, 41, 42
41 J = 1
C BLOCK TO INTERPOLATE POINT IN CD VS CL CURVE USING
C NEWTON'S FORWARD INTERPOLATION FORMULA
D = 53 I = 1, 113
DEL1(I) = CD364(I + 1) - CD364(I)
53 CONTINUE
TEMP1 = CD364(J)
100 DO 60 I = 1, 12
DEL2(I) = DEL1(I + 1) - DEL1(I)
60 CONTINUE
DO 70 I = 1, 11
DEL3(I) = DEL2(I + 1) - DEL2(I)
70 CONTINUE
DO 80 I = 1, 10
DEL4(I) = DEL3(I + 1) - DEL3(I)
80 CONTINUE
CDR(K) = (1. + T*DEL1(I) + T*(T-1.) + DEL2(J)/2. + T*(T-1.)*(T-2.)*D*DEL3(J)/24.)*TEMP1
1 DO 90 I = 1, 11
DEL1(I) = CD464(I + 1) - CD464(I)
90 CONTINUE
TEMP1 = CD464(J)
K = K + 1
GO TO 100
43 I = 1, 113
CDR3 = CDR(1)
CDR4 = CDR(2)
GO TO 51
42 J = J + 1
T = T - 1
C BLOCK TO INTERPOLATE POINT IN CD VS CL CURVE USING
C NEWTON'S BACKWARD INTERPOLATION FORMULA
SUBROUTINE TO COMPUTE THE INDUCED ANGLE OF ATTACK AT EACH STATION

DESCRIPTION OF PARAMETERS
C
BETA = AIR INFLOW ANGLE (RAD.)
CL = LIFT COEFFICIENT
X = STATION POSITION, RADIUS OF STATION DIVIDED BY TIP RADIUS
GAMA = ARC TANGENT OF DRAG COEFFICIENT DIVIDED BY LIFT
C = CHORD OF STATION (FT)
BETA2 = LEAVING AIR FLOW ANGLE (RAD.)
ALPHAI = INDUCED ANGLE OF ATTACK (RAD.)
BETAM = MEAN VELOCITY ANGLE (RAD.)

SUBROUTINE INDUC (BETA, CL, X, GAMA, C, BETA2, ALPHAI, BETAM)
REAL X, BETA, CL, GAMA, C, ALPHAI, TEMP1, TEMP2, BETA2, BETAM, POP, SIGCL,
1 DELTA
INTEGER IN
ALPHAI = -.4
IN=0
DELTA= .1
80 BETA2 = BETA - 2.*ALPHAI
IF (BETA2 .GE. 1.57) GO TO 410
BETAM = BETA - ALPHAI
POP = 2. * (COS(BETAM))**2 * COS(GAMA) * (TAN(BETA) - TAN(BETA2))/
1 COS(BETAM - GAMA)
SIGCL = C * CL*2. /3.1416 /3.75/X
IF (POP .GT. SIGCL) GO TO 409
GO TO 410
409 ALPHAI = ALPHAI - DELTA
DELTA= DELTA/10
410 ALPHAI = ALPHAI + DELTA
IN=IN+1
IF (IN=0) 31, 500, 500
S 31 GO TO 80
C 500 WRITE(6,15)ALPHAI, POP, SIGCL, BETA , BETA2, BETAM, GAMA
C 15 FORMAT(7F9.4)
C 500 RETURN
END

MAIN MAIN MAIN PROGRAM

THIS PROGRAM EVALUATES THE POWER PRODUCED BY THE FIRST AND
SECOND STAGE OF FAN SYSTEM OF THE LARGE ACADEMIC WIND TUNNEL,
AT SPECIFIED PITCH ANGLE OF THE BLADES.
IT IS ITERATIVE. IT ASK YOU IF YOU WANT THE POWER OF FIRST STAGE ONLY OR FOR BOTH. AFTER YOU HAVE ENTER THE TEST SECTION VELOCITY AND FINALLY THE INITIAL PITCH ANGLE. THE INCREMENT OF THIS ANGLE AND HOW MANY ITERATIONS DO YOU WANT.

THE INPUT FOR THIS PROGRAM ARE:

- KINEMATIC VISCOSITY
- ASOUND = SOUND VELOCITY (FT/SEC)
- RO = SPECIFIC DENSITY(SLUG/FT3)
- RPM = ROTATIONAL SPEED
- X(I) = LOCAL STATION, LOCAL RADIUS DIVIDED BY TIP RADIUS
- C(I) = CHORD FOR FIRST STAGE
- STAG(I) = STAGGER ANGLE FOR FIRST STAGE
- CLDR(I) = LIFT COEFFICIENT USED TO GET DATA FROM CURVE CD VS CL

At NACA TN N - 1546

- CD35(I) = DRAG COEFFICIENT AT M=.3 AND DESIGN CL = .5
- CD37(I) = DRAG COEFFICIENT AT M=.3 AND DESIGN CL = .7
- CD45(I) = DRAG COEFFICIENT AT M=.45 AND DESIGN CL = .5
- CD47(I) = DRAG COEFFICIENT AT M=.45 AND DESIGN CL = .7
- ALCL(I) = ANGLE OF ATTACK USED TO GET DATA FROM CURVE CD AT NACA TN 1546

- CL35(I) = LIFT COEFFICIENT AT M= .3 AND DESIGN CL = .5
- CL37(I) = LIFT COEFFICIENT AT M=.3 AND DESIGN CL = .7
- CL45(I) = LIFT COEFFICIENT AT M=.45 AND DESIGN CL = .5
- CL47(I) = LIFT COEFFICIENT AT M=.45 AND DESIGN CL = .7

- SC(I) = CHORD AT STATION FOR SECOND STAGE

STAG2(I) = STAGGER ANGLE FOR SECOND STAGE

OUTPUT

- CD264(I) = DRAG COEFFICIENT AT M=.3 AND DESIGN CL = .64
- CD444(I) = DRAG COEFFICIENT AT M=.45 AND DESIGN CL = .64
- CL364(I) = LIFT COEFFICIENT AT M=.3 AND DESIGN CL = .64
- CL464(I) = LIFT COEFFICIENT AT M=.45 AND DESIGN CL = .64
- DTOR(I) = TORQUE AT STATION OF FIRST STAGE OF BLADES
- TOR(I) = TORQUE AT THE WHOLE BLADE OF THE FIRST STAGE
- SPTOR(I) = TORQUE AT STATION OF SECOND STAGE OF BLADES
- STOR(I) = TORQUE FOR THE WHOLE BLADE OF THE SECOND STAGE

- or(I) = lift at station per unit length
- dell(I) = tangential force at station per unit length

COMMON CL364(20), CL464(20), CD364(20), CD464(20), ALCL(20),

1 CLDR(20)
1 REAL X (15), U (15), CM (15), BET(15), WI (15), REY(15)
1 REAL VISC, ASOUND, M(15), C(15), ALPHA(15), BETA(15), CD(15), CL(15),
1 BETAM(15), RP, P2C, P2E, P3C, P3E,
1 P3C(15), STAG(15), ALPHA(15), PITCH(15), TEMP(15), ALPCR(15), RPM, TOR,
1 CDCLR(15), DBLD (15), DELL(15), DELT(15), DTOR(15), POW(15), CLCR(15),
1 STDG(15), BET2(15), WM(15), TSTMP(6), TEMPE, TEMPF, CD35(20), CD37(20),
1 CD45(20), CD47(20), CL33(20), CL43(20), CL45(20), CL47(20), AB(15),

DIMENSION FOR THE SECOND STAGE
C
REAL SC(15), SCU2(15), SETA(15), W3(15), SREY(15), SM(15), STAG2(15),
 STDG2(15), SDTOR(15), STOR, SETAM(15), SET2(15), S, PA, PA1, DPA, V
INTEGER I, K, L, NPA
READ (5, 30) VISC, ASOUND, RO, RPM
30 FORMAT (5F15.8)
READ (5, 20) (X (I), C (I), STAG(I), I=1,11)
20 FORMAT (3F10.5)
READ(5, 10) CLDR(I), CD35(I), CD37(I), CD45(I), CD47(I), I=1,14)
10 FORMAT (5F10.5)
WRITE (6, 7)(CLDR(I), CD35(I), CD37(I), CD45(I), CD47(I), I=1,14)
7 FORMAT (5F10.5)
WRITE(5, 11)(ALCI(I), CL35(I), CL37(I), CL45(I), CL47(I), I=1,19)
11 FORMAT (5F10.5)
READ(5, 500)(SC(I), STAG2(I), I=1,11)
600 FORMAT (2F10.5)
PRINT, 'EVALUATION FOR FIRST STAGE ENTER 1'
PRINT, 'EVALUATION FOR BOTH STAGE ENTER 2'
READ, S
PRINT, 'ENTER THE VELOCITY VALUE IN KNOTS'
READ, V
PRINT, 'ENTER INITIAL THE INCREMENT AND THE NUMBER OF INTERVAL'
PRINT, OF PITCH ANGLE. SAMPLE 2.5, 5, 6'
READ, PA1, DPA, NPA
PA=PA1-DPA
DO 587 I=1, NPA
PA=PA+DPA
PITCH(I)=PA
587 CONTINUE
WRITE (6, 6)(ALCI(I), CL35(I), CL37(I), CL45(I), CL47(I), I=1,19)
6 FORMAT (5F10.5)
WRITE (6, 21) VISC, ASOUND, RO, RPM
21 FORMAT (/7, 2X, 'VISC=', F12.6, 2X, 'ASOUND=', F12.6, 2X, 'RO=', F12.6,
 1 2X, 'RDS=', F12.6)
C
DO 15 I=1,19
CL364(I)=.7*CL37(I)+3*CL35(I)
CL464(I)=.7*CL47(I)+3*CL45(I)
15 CONTINUE
DO 22 I=1,14
CD364(I)=.7*CD37(I)+3*CD35(I)
CD464(I)=.7*CD47(I)+3*CD45(I)
22 CONTINUE
WRITE (6, 3)(CLDR(I), CD37(I), CD364(I), CD35(I), CD47(I), CD464(I),
 1 CD45(I), I=1,14)
3 FORMAT (/7, 2X, F8.4)
WRITE (6, 6)(ALCI(I), CL37(I), CL364(I), CL35(I), CL47(I), CL464(I),
 1 CL45(I), I=1,19)
2 FORMAT (/7, 7(2X,F8.4))
DO 50 I=1,11
CALL FIRST(X(I),V,C(I),ASOUND,VISC,CM(I),CU2(I),U(I),BETA(I),
1 W(I),REY(I),M(I))
50 CONTINUE

WRITE(6,60)
60 FORMAT('STATION',1X,'CHORD',1X,'U',9X,'CU2',9X,'CM',8X,
1 'W',9X,'REY'
WRITE(6,170)(X(I),C(I),U(I),CU2(I),CM(I),STDG(I),W(I),I=1,11)
170 FORMAT(11H)
WRITE(6,271)
271 FORMAT('STATION',9X,'REY',9X,'MACH',9X,'STAG')
WRITE(6,160)(X(I),REY(I),M(I),STAG(I); I=1,11)
160 FORMAT(4F13.3)

DO 70 K=1,NPA
70 TOR=0
WRITE(6,16)
16 FORMAT(1X,'ALPHA',4X,'POP',5X,'SIGCL',4X,'BETA',4X,
1 beta2',4X,'BETA2',4X,'gama')

DO 71 I=1,11
ALPHA(I)=STDG(I)-STAG(I)+PITCH(K)
CALL CDNEW(ALPHA(I),M(I),CL(I))
CALL CDNEW(CL(I),M(I),CD(I))
GAMA=ATAN(CL(I)/CL(I))
CALL INDUC(ALPHA(I),BETA(I),CL(I),X(I),GAMA,C(I),BETA2(I),
1 ALPH2(I)=BETA2(I)*180./3.1416
ALPH2(I)=ALPH2(I)*180./3.1416
ALPCHR(I)=ALPHA(I)-ALPH2(I)
CALL CDNEW(ALPCHR(I),M(I),CDCR(I))
CALL CDNEW(CDCR(I),M(I),CDCR(I))

CHANGING THE ATTACK ANGLE

WM(I)=SQRT(CM(I)**2+(U(I)-.5*CU2(I)**2)
DELL(I)=RO*WM(I)**2/.8 *C(I)**.5
TEMPS=ATAN(W(I)/CL(I))
BETAM(I)=ATAN((U(I)-.5*CU2(I))/CM(I))
DELF(I)=DELL(I)/COS(TEMPS)**2*COS(BETAM(I)-TEMPS)
WM(I)=SQRT(CM(I)**2+(U(I)-.5*CU2(I)**2)
DELL(I)=RO*WM(I)**2/CL(I)**.5
TEMPS=ATAN(W(I)/CL(I))
BETAM(I)=ATAN((U(I)-.5*CU2(I))/CM(I))
DELF(I)=DELL(I)/COS(TEMPS)**2*COS(BETAM(I)-TEMPS)
WM(I)=CM(I)/COS(BETAM(I))
DELL(I)=RO*WM(I)**2*CLCR(I)*C(I)*0.5
TEMP5=ATAN(CDCR(I)/CLCR(I))
DELF(I)=DELL(I)/COS(TEMP5)*COS(BETAM(I)-TEMP5)

CC

71 CONTINUE
TOR=0
DO 73 I=1,10
TEMP5=(X(I+1)-X(I))*3.75
TEMP7=(DELF(I)+DELF(I+1))/2.
TEMP7=(X(I)*X(I+1))/2.*3.75
TOR=TOR+DTOR(I)
73 CONTINUE

C

POW(K)=TOR*RPW/550.*4.
180 WRITE (6,91), K,PITCH(K),POW(K)
91 FORMAT(K=1,I4,THE PITCH ANGLE IS = ',F8.2,
1 POWER=',F15.6)
WRITE (6,90)
90 FORMAT(3X,'STATION',3X,'BETA1',3X,'BETA2',3X,'BETAM',5X,
1 STAG,5X,'ALPHAI',5X,ALPHA,5X,'CL',5X,'CD')
DO 183 I=1,11
183 BETAM(I)=BETAM(I)*180/3.1416
WRITE (6,100)(X(I),STAG(I),BET2(I),BETAM(I),STAG(I),ALPHAI(I)
1 ALPHA(I),CL(I),CD(I),I=1,11)
100 FORMAT(9(I),9(I))
WRITE(6,102)
102 FORMAT(//,5X,'ALPCR',5X,'CLCR',7X,'CDCR',7X,
1 DELL(I),DTOR(I))
WRITE(6,101)(X(I),ALPCR(I),CLCR(I),CDCR(I),DELL(I),
1 DTOR(I),I=1,11)
101 FORMAT(6F12.5)

BLOCK TO EVALUATE THE SECOND STAGE PERFORMANCE

CC

IF(S-1) 611,70,611
611 DO 603 I=1,11
CALL SECOND(X(I),V,SC(I),BET2(I),ASOUND,VISC,CM(I),SCU2(I),U(I),
1 SETA(I),W3(I),STG1(I),SM(I))
1 STG2(I)=SETA(I)**180./3.1416
603 CONTINUE
CC
WRITE (6,660)
FORMAT('\\\\\\\%S E C O N D S T A G E P A R A M E T E R S \\\\\\\\% ',
1 '/\\\\\\\%5X,'STATION',7X,'CHORD',6X,'U',9X,'SCU2',9X,'CM',8X,
2 'BETA3',8X,'W3')
WRITE (6,670)(X(I),SC(I),U(I),SCU2(I),CM(I),STDG2(I),W3(I),
1 I=1,11)
WRITE (6,671)('\\\\\\\%STATION',9X,'REY',8X,'MACH',9X,'STAG2')
WRITE (6,680)(X(I),REY(I),SM(I),STAG2(I),I=1,11)
WRITE (4,13.3)
C
DO 604 L=1,NPA
DO 605 I=1,11
CALL LIFT (STDG2(I),STAG2(I),PITCH(L),SM(I),SETA(I),X(I),SC(I),
1 CM(I),U(I),SCU2(I),RO,DELF(I),SETAM(I),SET2(I),ALPHA(I),
2 ALCRA(I),CL(I),CD(I),ALPCR(I),CLCR(I),CDCR(I),DELL(I))
C
CONTINUE
C
STOR=0
DO 673 I=1,10
TEMP3=(X(I+1)-X(I))*3.75
TEMP4=(DELF(I)*DELF(I+1))/2.
TEMP5=(X(I+1)-X(I)+1)/2.*3.75
SDTOR(I)=TEMP3*TEMP5*TEMP5
STOR=STOR+SDTOR(I)
CONTINUE
C
POW(L)=STOR*RPM/550.*A.
WRITE (6,691) L,PITCH(L),POW(L)
WRITE (6,692)
C
FORMAT('\\\\\\\%X',I4, 'THE PITCH ANGLE IS = ',F8.2,
1 'POWER = ',F15.6)
WRITE (6,690)
C
FORMAT('\\\\\\\%3X,'STATION',3X,'BETA3',3X,'BETA4',3X,'BETAM2',3X,
1 'STAG2',4X,'ALPHA',4X,'ALPHA',4X,'CL',4X,'CD')
DO 683 I=1,11
SETAM(I)=SETAM(I)*180/3.1416
WRITE (6,800)(X(I),STDG2(I),SET2(I),SETAM(I),STAG(I),ALPHA(I),
1 ALPCR(I),CL(I),CD(I),I=1,11)
C
FORMAT(9E8.3)
WRITE (6,801)
C
FORMAT('\\\\\\\%5X,'STATION',5X,'ALPCR',7X,'CLCR',9X,'CDCR',9X,
1 DELL,4X,'BETA1-BETA4',7X,'DTOR')
WRITE (6,802)
C
FORMAT(7F12.5)
C
CONTINUE
<table>
<thead>
<tr>
<th>ENTRY</th>
<th>000166</th>
<th>1160.0</th>
<th>.0023</th>
<th>125.6637</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.267</td>
<td>1.1118</td>
<td>35.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>1.0485</td>
<td>40.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>0.9579</td>
<td>46.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.8753</td>
<td>51.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>0.8018</td>
<td>56.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.7378</td>
<td>59.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.6305</td>
<td>65.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>0.5463</td>
<td>69.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.4811</td>
<td>72.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.4218</td>
<td>77.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>0.3438</td>
<td>87.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.1</td>
<td>0.021</td>
<td>0.06</td>
<td>0.18</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.012</td>
<td>0.022</td>
<td>0.12</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.011</td>
<td>0.045</td>
<td>0.01</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.0097</td>
<td>0.013</td>
<td>0.009</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.0088</td>
<td>0.012</td>
<td>0.0075</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.008</td>
<td>0.015</td>
<td>0.0063</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.0088</td>
<td>0.0093</td>
<td>0.007</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.0094</td>
<td>0.0094</td>
<td>0.01</td>
<td>0.0085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.017</td>
<td>0.0096</td>
<td>0.015</td>
<td>0.0083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.022</td>
<td>0.012</td>
<td>0.022</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>0.044</td>
<td>0.002</td>
<td>0.03</td>
<td>0.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>0.07</td>
<td>0.029</td>
<td>0.04</td>
<td>0.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>0.07</td>
<td>0.037</td>
<td>0.05</td>
<td>0.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>0.135</td>
<td>0.035</td>
<td>0.103</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>0.01</td>
<td>0.12</td>
<td>0.02</td>
<td>0.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>0.29</td>
<td>0.205</td>
<td>0.205</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>0.28</td>
<td>0.290</td>
<td>0.290</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>0.365</td>
<td>0.49</td>
<td>0.39</td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>0.46</td>
<td>0.59</td>
<td>0.47</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>0.547</td>
<td>0.69</td>
<td>0.56</td>
<td>0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>0.74</td>
<td>0.79</td>
<td>0.94</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>0.78</td>
<td>0.885</td>
<td>0.94</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF REFERENCES

8. Drawing - Proposal Academic Wind Tunnel Facility, No 2, 12/7/55, West Coast Research Co. Los Angeles 64, California.

INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Distribution</th>
</tr>
</thead>
</table>
| 1. | 2 | Defense Technical Information Center
Cameroon Station
Alexandria, Virginia 22304-6145 |
| 2. | 2 | Library, Code 0142
Naval Postgraduate School
Monterey, California 93943 |
| 3. | 1 | Department Chairman, Code 67
Department of Aeronautical Engineering
Naval Postgraduate School
Monterey, California 93943 |
| 4. | 1 | J. V. Healey, Code 67X1
Department of Aeronautical Engineering
Naval Postgraduate School
Monterey, California 93943 |
| 5. | 1 | Centro Tecnico Aeroespacial
Rua Paraibuna S/N
12225 Sao Jose dos Campos-SP
Sao Paulo, BRAZIL |
| 6. | 2 | Centro Tecnico Aeroespacial
Instituto de Atividades Espaciais
Rua Paraibuna S/N
12225 Sao Jose dos Campos, SP
Sao Paulo, BRAZIL |
| 7. | 2 | Centro Tecnico Aeroespacial
Divisao de Sistemas Belicos
Rua Paraibuna S/N
12225 Sao Jose dos Campos, SP
Sao Paulo, BRAZIL |
| 8. | 3 | Lt. Col. Marcos Luis Pereira
Centro Tecnico Aeroespacial
Instituto de Atividades Espaciais
Rua Paraibuna S/N
12225 Sao Jose dos Campos, SP
Sao Paulo, BRAZIL |