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I. OVERVIEW AND SUMMARY

Fundamental to this work is the development of a continuum
formulation that can accurately account for the effects of
interlaminar shear and interlaminar normal stress variation
thru-thae-thickness of a laminate. Furthermore, emphasis is
particularly on tapered-twisted airfoil geometries which can be
analytically represented as an assemblage of thin to moderately thick
finite elements. To achieve solution efficiencies, the elements
developed in this work are of the triangular/quadrilateral plate type
as opposed to solid type elements.

On the basis of these requirements and considering viable
alternatives, three suitable continuum formulations have been
developed and are herein denoted as the (i) Higher Order Displacement,
{11) Modified-Kirchhoff and (iii) Hybrid Stress formulations,
respectively. The former two formulations have been incorporated in a
computer code and the various elements have been tested on the basis
of correlations with known analytical, numerical, and experimental
solutions. Numerous tests have been performed for linear static and
Tinear dynamic cases. It is noted that the code has some unique
features, e.g., it can assemble elements having an unequal number of
dagrees of freedom at its nodes, it treats arbitrary ply orientations
and it performs integration on a layer-by-layer basis through the
laminate., Herein a layer refers to either a lamina or to a sub-set of
laminae having equal ply orientations. The latter feature is
essential in developing a fully nonlinsar capability.

Significant efforts have also been devoted to developing a
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suitable large displacement formulation. Due to the reduirement that
interlaminar stresses be accurately represented, a total Lagrangian
formulation is utilized and is based upon the complete Green's strain
tensor. A geometric and large-displacement stiffness formulation has
been implemented in the computer code based upon a form of the
nonlinear strain-nodal displacement ra2lationships suitable for each of
the elements under development.

An extensive 1literature survey has been performed to identify
analytically tractable methods of treating damage accumulation in
composites. Since emphasis in this work is on the development of
incremental response solutions, the computational approach must have
the capability to (i) predict and differentiate between relevant
failure modes, (ii) modify constitutive equations appropriately and
(i11) perform equilibrium iterations to assure stress redistribution
basad upon the extent of damage. Use of "piecewise smooth" failure
criteria in conjunction with "damage state" variables provide a good
basis for incrementally tracking damage. This approach has been
incorporated in the computer code. Note that integration for an
@lement is performed on a layer-by-layer basis which allows for damage
effects to be characterized at the layer level.

Experimental data of the type required to substantiate damage
pradictions has been assembled to the extent possible. Analysis/test
correlations have been performed for selected laminates. It is noted
that useful experimental data is quite Timited.

Technical progress in this program has b22n substantially on
schedule. It is bhelieved that the originally proposed three year

program can be completed «#ithin the given time frame.
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¢ II. SUMMARY BY TASK
This section presents technical highlights of the research o
. -t
efforts to date for each of the three tasks. DNetails of the b,
analytical formulation are presented in the Appendices. g
0 , . . . , y
[I.1. TASK I: Nonlinear Displacement Formulation for Composite Media ’_131,
I1.1.1 Continuum Formulation "
r : P
Two variational principles, the principle of Minimum Potential
Energy and the Principle of Modified Complementary Energy, are used to
o develop two distinctly different finite element models, tihe assumed
displacement model and tha hybrid stress model respectively, These
madels incorporate the effects of transverse shear and normal
L

deformations whose contributions are recognized as essential for
accurate laminate analysis [1-10].

Within each formulation, element stiffness and force matrices are
determined for each element, these matrices are then assemdled to Lo
raprasent the final system of equations and a solution procedure for
tine unknown nodal displacements is provided. Coordinate
transformations to describ2 ply orientations of a composite media are .
taken into account. The in-plane stresses are calculated from

constitutive relations of orthotropic continuum whereas transverse

snzar and normal stresses are calculated from equilibrium -

considerations. At present, emphasis is placed on the displacament
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based models and these have been tested for linear static and dynamic

analysis. The test problems and the results are presented in Section

II.1.4. The finite element models are herein briefly discussed.
i. Assumed Displacement iModel
A. Higher Order Displacement Formulation

Th2 thru-the-thicxnass effects can be incorporated into an
analysis by choosing a displacement field that eliminates two major
shortcomings of the classical plate theory; namely normals remain
normil and in-plana displacements are linear thru the thickness.
These shortcomings are eliminated by prescribing independently the
reference sarface displacaments and rotations of the normal and
including higher order terms for in-plane displacements. This is

accomnlished by the following variation

Whassz) = ug(Gy) + 2y (x,y) + 2 S (X,y)
Vnyaz) = volaay) + oz (x,y) + 27ty (x.y)

WU Ys2) = g (X, y)

Th2 neutral surface displacements are represented by U v and W
N 9
the rotation 4bout y-axis is denoted by s and the rotation about the

L)

x-axis is .. The coefticients of 2z, i.e., », and ¢, ar2
contributinas from transverse deformations [5,6].
The elenents developed are designated as the quadrilateral higher

order displacement (QHD) models. QHDA0 is an eight-noded element with

seven degres of fr2edom (three midsurface displac2aments, two
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rotations and two higher order terms tor in-plane displacements) per

corner node and three degrees of freedom (transverse midsurface
displacament and two rotavions) per mid-side node. Element QHD28 is
a simplifiad version of QHD40 where the mid-side nodes are eliminated.
It should 52 noted that when the two higher order terms for in-plane
displacements at each corner node are omitted, QHD28 reduces to the
widely used four-noded bilinear plate element (QHD20).

Th2 transverse shear and normal stresses of QHD4O display a cubic
variation thru-the-thickness. The displacement field, nodal d=grees

of frzedom and the resulting stress fields are stated in Appendix IA.

B. Modified-Kirchhoff Formulation

Thz Kirchnoff-Love assumption for normals to the reference
surfaca is ra2laxad by incorporating shear rotations as additional
deagraes of frzedom in the formulation [10}. Taus thz2 assumed
displacement field allows the transverse shear deformations but
neglects the transverse normal d2formations. The rotations 7 _.and Yy are

incorporated in th2 displaczment variation 15 follows

W(x,y) = vig(x,v)

u(x,y,z) = ug(x,y) - 2(% + oy

vix,y.2) = velx,y) - 3(T§ Yoy

The transverse displacement wix,y) is chosan such that it will
guaraiten plausible strass fields which will characterize the

transverse effects accurately,

. R P UL T P ST L RN Y .
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This approach is implemented in the formulation of an eight-node
quadrilateral element with 32 degrees of freedom- QD32, a six-node
triangular element with 27 d.o.f.- TDZ27 and a seven-node triangular
alement with 27 d.o.f.- TD2IM. The stress fields obtainzd for these
elements rapresents a quadratic thru the thickness variation for the
transverse shear stresses and a cubic variation for the transverse
normal stress. The respective displacement fields, nodal dagreces of

freedom and stress fields are given in Appendix IB.

ii. Hybrid Stress HModel

In this formulation a stress distribution within the interior of
tita element is expressed in terms of finite parameters such that
equilibrium is satisfied, also an assumed displacement distribution is
used on tha boundary of the element expressed in terms of generalized
nodal displacaments such that the interelement compatibility is
ratained [4].

T12 elenent Jdavelopad, QHS32, is a four-node quadrilateral with
32 degrees of freedom.  In addition to an assumed displacement field
it a1s a 2%-parameter stress field which provides cubic variation for
transyvarsa sizar stresses and a quartic variation for transverse
aoriml strass through the thickness of the laminate. Th2 stiress field

1ong Wity tiv: isamed Jdisplacement variation 15 stated in Appendix II

IT.1.2. lLarge displacoment formuldation

Inclusina of jeometricilly nonlinear affects in the tormulation
must H2 based upon both tha geometry to be analyzed and upon the type
of strass prodiction capabilities :Jesira=d. The classical approach to

thin plate analysis has h2en to use th2 Kirchhoff-Love assumptions in
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conjunction with the nonlinear von Karman relations [11,12]. As
previously indicated, the Kirchhoff-Love assumptions are relaxed in
this work to allow for a more accurate definition of
interlaminar-shear and interlaminar-normal stress variations. Thease
strasses can vary substantially through-tha-thickness for the
geometries of interast, i.e., thin to moderately thick plate type
structures. Furthermore, the requirzment that these stresses be
accurately determined means that the nonlinear portion of the
strain-displacament relationship must contain all significant
coordinate displacaments. The complete Green's strain tensor is
utilized in tnis work, therefore, to account for all significant
contriputions to th2 interlaminar stress field., With respect to
fixed Cartesian coordinates, x, y, and z, the strain tensor has the

form

whor2 u, v and w rapreseat displacements ind the x,y,z coordinate

¥
diractions, respectively. Note that the other strain components are &
obtainad by a suitable permutation. In small-displacement analysis, L q
the quadritic terms are neglected to give simply the linear strain ST T

ippraxiin tion,

Based on th2 Green's strain tensor, the striin to nodal point

fisnlyoment ~2lationship can be specified tor elements under

]
O




T:valopmant. It takes thz form

K J
! o= (Bl
wner: {1 s the vector of strain components, {2} the vector of
® nodal point displacaments and [B] a function of derivatives of the
element shape functions. The quadratic terms in th2 strain tensor
result in [B] being a function of displacement state and, therefore,
¢ an incremental eaquilibrium formulation is required. The incremental
striin-nodal displacament r2lationship takes tha form
, (r = (im0 + (8]} <o

wherea {:*} and {'1} represent incremental strains and nodal
displacements, respectively, [8 ] and [BIJ are the small and large
displacament contributions to the incremental strains. Based on th:
insremental cguiliorium equations, tha displacement formulation givas

tihe force-disnlacenwat s:xlatinaships

L. s an au s an on anan o ooy
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Jhcre (0] is an elasticity matrix obtainad simply from tha

. . . . . . , . » @
constitutive 2qurtions and integration is over the volume V of the - : 1
y . N \ . . . B

elonent,  [K ] iy fenoted the small-displacement stiffness matrix and .h--::i
- .','

. . : N , . . . R . . -
[\11 is cienoted the Yarge-disolacraeat stiffness matrix,  Sinca ~”ﬁ
. o . P .o
c~osponse i3 1130 4 function of stress state, the geometrical stiffness S
CHntiC i i roquired and is obiained from N
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where {c} is the vector of stress components. Note that the hybrid
stress formulation similarly gives force-displacement forms involving
the strass and displacement state.

Inertial effects are analytically treated as a mass matrix [M]
which is a function of density and the element shape functions (see
Appendix III). These matrix forms are required in formulating
static/dynamic response solutions and the incremental equilibrium hava

the general form

(4] teu} + ([KOJ Ikt [KG]> téu} = {6F}

where the mss and stiffness matrices represent an assembly of the
elemental matrices previously discussed, {5U} and {55} represent the
incremental displacaments and accelerations far the mathematical model
and {‘F} represants tine vector of incrementally applied forces.

In daveloping a geometrically nonlin2ar formulation, the effort
is largely in defining the incremental strain-nodal displacement
r2lationship. Having developed this relationsiip for a particular
element, stiffness mtrices are readily developed as the preceding
equations indicate. These ralationships are presented in Appendix IV.

The forin of th2se oquations is the same for all elements.
I1.1.3. Computer Implementation

A computer code has bezn developed for the purpose of

implementing the various continuum formulations, At present, the code

P SR . PR PR




F":'-..'.'.‘.‘:‘.""_“,-,-_\~\-- aa T " At S o AR A CI i St st s B S AR e e T W TR Yy W
N - - . . - PU = - ... - . . =t et et e N - e e P

performs the following functions:
element stiffness matrix {linear, nonlinear, geometric)
generation

element mass matrix generation

assembly of equilibrium equations

decomposition and solution of equilibrium equations

h equilibrium iteration for incremental solutions
‘ -
fundamental frequency and mode shape calculation ® e

A characteristic of the elements under development is that node ;{'fﬂ*?

points can have different numbers of degrees of freedom, i.e., R
typically mid-side nodes have fewer degrees of freedom than corner ;:»:,4
nodes. The code has been fashioned to handle this condition. A1l of
the integration is performed on a layer-by-layer basis thru the

thickness of the laminate. This approach is fundamental to developing ’.61:4
the capability to allow for inelastic material behavior and, :

ultimately, to tihe inclusion of damage mechanisms in the formulation. RS

Sinca solution of the equilibrium equations is a vital component !m;;n4

in the ovarall solution strategy, it is appropriate to discuss the

numerical methodology used in solving tinese equations. The intent is
to obtain a higher ordered variation of the transverse shear and | S

normal stressas (w"z, o, » and Ozz) than can be obtained via the

yz
constitutive cquations. The solution procedure can be thought of as

described below. Asswae that the in-plane stresses (9 .» Oy Txy ) ?423.
within ecach layer of a particular 2lement have been determined at { -¥
selected locations, i.e., through solution of the constitutive : :
equations. In the code as prasently written, these locations are ljﬁ-:

spacified as the element centroid and element nodal points, The

e e e A R R O T N S SN P N B B A e ) N S IR S RN R I R
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equilibrium equations {(in the absence of body forces) have the

indicial form
GTJsJ =0

from which it follows that the thru-the-thickness shear stress

variation can be written in numerical form for the ith layer as

ACy s = -
XZj (oxxsx + ny’y)i S5

and

Aoy, 5. = (=~ . .
yzi (ny,x + ’yy,y)i A5

Hera, the left-hand-side represents the change in stress from the
Jower to the upper surface of the ithlayer and AZi is the thickness of
the ithlayer at a particular location. The derivatives with respect

to x and y in the expressions above ara readily computed; this is

bacause in-plane stresses within a layar are related to element

displacements through derivatives of element shape functions in

conjunction with a material definition.
For an n layered laminate, n equations can be written in terms of )
both tha unknown shear stresses at layer interfaces and the shear
stressaes at the laminate surfaces. Assuming the laminate has
shear-free surfaces, the equations above give n equations in n-1
unknowns, so that, the equation set is over-determined. Th2 equations

have the matrix form below

- . . A
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[ 1 7

~1 1 { X22 (IXZI

-1 1 )
1 ]
L -1 Lo lI
XZn X2z
nx (n-1)  (n-1) x 1 (nx 1)
where I, .= = (0py o ¥+ Oxy,y); 02, and Oyqj FePresents the shear stress

]th

acting at the interface of the j- and jth layer. A similar

equation set is obtained by replacing I,

. Wi a
2] with y

zj
Thase equations are solved by utilizing a least-squares
orthonormalization procedure [13]. ODue to the simplicity of the terms
in the coefficient matrix, a concisa closed-form solution is obtainad.
Having determined the transverse shear stresses, the transverse

normal stress variation is determined through the numerical form of

the third equilibrium equation for the ith Jayer

. = _{- - \ :
ZZ5 ( xzox * Yyzoy ity ~Zi

As before, tha Teft-hand-side reprasents the change in stress through
1
the it layer. Appropriate polynomial functions are utilized to

describe the ¢

A

and Oyz in-plane variation. These functions are
differentiated to obtain the right-hand-side of the equations above,
Again the equation set is overdetermined because the normal tractions
are known at the Taminate surfaces. Solving foro,, proceeds,
therefore, in identically the same manner as discussed in calculating
Cxz and oy . Parenthztically, inclusion of body forces at a later date
can be accomplished with Tittle difficulty.

It should be emphasized that, the successful application of

High2r Order Displacement type elements, i.e., for particularly thin

and Ixzi with Iyzi.
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geometries, is to utilize reduced numerical integration where as this

is not necessary for the Modified Kirchhoff formulation. This

approximation technique brings along the choice of implementing it
overall or selectively to the strain energy components. For the QHD
formulation, only the transverse shear components are integrated with
reduced order [14-16). An undesirable aspect of this approach is that
the reduced integration order may affect the physical behavior of the
element by introducing spurious zero energy modes. It is desirable to
have only rigid body modes since there does not yet seem to be a

generally accepted method of controlling the additional modes.

I1.1.4. Analytical Verification

As noted, elements formulated on thes basis of independent
transverse displacements and rotations, require reduced quadrature for
good performance. For QHD40, 3x3 Gaussian quadrature along with the
2x2 quadrature for the transverse shear components in employed. QHODZ28
and QHD20 formulations are similarly integrated with 2x2 and 1x1
Gaussian quadratures. Manipulation of quadrature rules may produce
spurious zero energy modes in addition to the required rigid body
modes, tnus detracting from overall element performance. [16,17]. A
spectral (eigenvalue) test has heen conducted with and without full
quadrature to observe the zero energy modes of the QHD elements. The
quadrature order, the number of zero eigenvaluas and the corresponding
nunber of spurious zero energy modes for tha QHD40, QHD28, and QHD20
elements are listed in Table 1. The spurious mode shapes associated

with the QHD23 element ar2 illustrated in Figure 1. Since the QHDAD
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formulation does not exhibit spurious modes, it can be utilized in
modelling compliex geometries without concern for controlling such
behavior.

[t is also noteworthy to observe the effect of reduced
integration on the representation of the generalized forces. In
order to illustrate the effect, the forces associated with the

transverse displacement of a corner node are sketched in Fig., 2 for

QHD28 with and without reduced integration respectively.

In the examples that follow, performance of the QHD formulation
is demonstrated by comparing results to those obtained by classical
plate theory (CPT), by elasticity and by other finite element ?»,_.f

formulations for lin2ar static and linear dynamic analyses. Some ;}35573

results are also presented for the QD formulation. The orthotropic ff{lf;
ma terial properties used throughout are tabulated in Table 2. !. <

Geometries studied include cylindrical bending of a plate as well as

bending of simply supported square and rectangular plates. Various
ply layups are considared and loading is that of a sinusoidally and !,n.‘

uniformly distributed pressure. Cylindrical bending is modelled as a

strip of twenty elements. For the simply supported plates, symmetry .j;i ?’
considerations allow that only a quadrant of the plate need be ® _ o
modelled. Fineness of the mesh is varied to demonstrate solution
convergence. Additionally, distorted meshes are considered to

demonstrate modelling considerations. For the examples involving
symme tric layups, the quadratic terms of QHDAU are restrained; so

that, 32 degree of fr2odom elenents are utilized to obtain these

solutions. This is allowable in these particular cases because the

quadratic terms do not significantly affect the results, This is not
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true in the first example considered.
Static Response Calculatione
Cylindrical Bending- Bidirectional (0 /90) Sine Load, Material Il
Fibers run parallel to the plane of curvature in the lower layer
and are rotated 90° in the upper layer of the plate. Layers are of
equal thickness which is true in the subsequent example problems as
well. The elasticity solution obtained by Pagano [9] gives a nearly
quadratic z variation in J, where ; is the normalized in-plane
displacement of the laminate. In this instance, inclusion of the 22
terms in the finite element modelling should affect the results. This
is demonstrated in Figures 3 to 5. Results demonstrate differences
obta,.cd with and without guadratic terms. The difference is greatest
for the lower aspect ratios, e.g., for S = 4 a difference of 122 is
obtained. In Figure 4, the calculated normalized in-plane stress
variation is presented for an aspect ratio of 4. Note that maximum
variation is presented for an aspect ratio of 4. Note that maximum
stresses differ by some 36% when computed with and without the z

terms, respectively. The effect of including quadratic terms in the

finite element solution is, therefore, much more pronounced when
stresses as opposed to displacements are considered. Figure 5
demonstrates this effect on stress computation as a function of aspect
ra.io. Note that calculated quantities are normalized in this example =

and in those that follow as in the cited references.

Cylindrical Bending-Symmetric (0 /90 /0)Sine Load, Material Il R

For this geometry, fibers are parallel to the plane of curvature
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in the outer layers and rotated 90° in the middle layer. Calculated

¢ stresses are compared to the elasticity solution of Pagano [9].
\ . .
) Figures 6 and 7 present the normalized transverse shear stress
variation at the simply supported boundary. Figures 8 and 9 present
@

the normalized in-plane stress variation at the center of the bent

surface.

Bl

Simply Supported Square Plate- (0 /90 /0) Sine Load, Material II
Fibers in the outer layers of the laminate run parallel to the x
axis while those in the middle layer run parallel to the y axis, where
the origin of coordinates is located at a corner of the plate and in
the mid-plane {see Figure 10). This coordinate system is consistent
with examples that follow as well, Consider the plate as having
planar dimensions a x a and total thickness h., Solutions have been
generated for aspect ratios S = 4 to 100, where S = a/h. Transverse
shear stress variation Og, at {x,y) coordinates (0,a/2) and in-plane
shear stress variation Cy, at coordinates (0,0) are presented in
Figures 10 and 11 for an aspect ratio of 4. Note that the comparison
is between the present finite element results and those obtained via
elasticity (18] and CPT. Calculated short-transverse normal strass

variation ¢,, 1s presented in Figures 12 and 13. These stresses are

normalized as ;zz= U,,/100 at the center of the plate and as ©,, = 107,,
at the edge of the plate. Results are compared to those obtained by
elasticity over a range of aspect ratios in Table 3. Similar results
are given in Table 3.1 for the QD formulation. Convergence
characteristics are demonstrated by presenting results obtained using

2x2, 3x3, and 6x6 meshes. Tha finer mesh gives better agreement, but
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the coarser mesh gives very reasonable correlation also.

The effects of distorting the mesh have also been considered to a
l1imited extent, Results have been obtained for the relatively coarse
meshes shown in Figure 14. Calculated stresses and displacements are
presented as a function of aspect ratio and compared to the elasticity
solutins in Table 4. As expected, the values are not as accurately
determined as are those obtained via the regular meshes. Distortion
of the mesh has a much more dramatic effect upon the calculated
transverse shear stresses than upon the calculated in-plane stresses
and displacements. Since the transverse stresses are based on
equilibrium considerations, it seems the mesh must be refined enough
to reasonably approximate equilibrium. This is especially apparent in
comparing results obtained for mesh A to those obtained for mesh C.

In each of these cases, elements having a taper ratio of 2 to 1 are
utilized. Mesh C gives significantly improved transverse stresses,
however, because the mesh is fine enough to better represent the

loading distripution.

Simply Supported Rectangular Plate(0 /90 /0) Sine Load, Materia) II
Orthotropic layers have the same orientation as in the previous

example. The plate has dimensions a x b, where b is three times a.

Solutions have been obtainad for aspect ratins (S = a/h) ranging from

4 to 100. Transverse shear stress varidtion ., at coordinates (a/2,0)

is given in Figure 15 for an aspect ratio S = 4. Comparison is made

to both elasticity and CPT solutions. A full range of results are

presented in Table 5 and compared to those obtained via elasticity
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[18] and to those obtained by Reddy [19] in a recent finite element

formulation. Correlation with elasticity is quite good, particularly

for aspect ratios of 10 and above, and appear to be mores accurate than ﬁi
those obtained with the alternate finite element solution. - .
P A,
L [

Simply Supported Square Plate (0 /90 /90 /0) Sine Load, Material II
The laminate geometry consists of outer layers with fibers
parallel to the x axis and inner layers with fibers parallel to the y

axis. The plate has planar dimension a x a and total thickness h.
Stress and displacement results are presented in Table 6 for aspect
ratios ranging from 4 to 100. Similar results are given in Table 6.1
based on the QU formulation. Results are compared to both elasticity
and to other finite element results. Again, the computed values are
in excellent agreement with elasticity [20] for moderately thick to
thin geometries and are more accurate than, the compared to numerical
results.

Solutions also have been obtained for th2 present geometry on the
basis of raduced vs. full integration. This comparison is
demonstrated in Figures 1o and 17 by giving percent error in
calculated values vs. aspect ratio. It is apparent that raduced
integration is particularly needed to minimize errors in calculated
transverse stresses and, furthermore, solution validity over a wide

raage of laminate geometries is demonstrated.

< o

To assass the effects of finite element formulations, aspect
ratio, support conditions and the lamina stacking sequences on the

fundamental natural frequencies of composite plates, the problems

A _J
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Tisted in Taple 7 are considered [21]

The non-dimensionalized fundamental fraquency for the cross-ply
laminate of Problem 1 versus aspect ratios is given in Table 8. As
can be seen, all three elements predict frequencies that are in
excellent agreement with the closed form solutions obtained by Reddy
[22].

The effects of nigher order terms in the displacement based
finite 2lement formulations are investigated for Problem 2. Here, the
performances of QHDAO and QHD28 (with higher order terms locked) are
compared to elements STPODL and STPD3 of [23] with linzar and cubic
variations through the thickness raspectively. The results are
sumiarized in Table 9. The normalized fundamental frequencies of
Problem 3 are displayed in Figure 138. Note that th=
non-dimensinnalized fundamental fraquency increases as the angle of
orientation is increased for both symmeoric and antisymmetric
angle-ply squar2 plates. This observation is in excellent agreement
with Reddy's [22]) antisymmetric laminate. 1In Figure 19, a decrease in
tha fundamental fr2quency is observed as the angle of orientation is
increased for tne angle-ply, cantilever, rectangular and square plates
of Problem 4. Th2 difference between Figures 18 and 19 are attributed
primarily to the different support conditions.

Furtiher investigations, Problem 5, of angle-ply laminates ara
summrized in Table 10. The stacking sequences of reference [24] are
used to ¥TTustrate thair effects on tha fundamental fraquency
calculations., Th2 npumbers «ithin parenthesis are calculated Dy

Crawley [24, 25].
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Shown in Figure 20 is the variation of the non—diménsiona]ized
fundamentai Traquency for cyiindrical bending probiem, as caicuiated
via the QD formulation and the classical plate theory. For comparison
purposes, the frequencies are normalized with respect to the classical
plate thaory results.

Trarcient Aecponece Caleulations

Element performance has been evaluated with respect to predicting
linear-transient response. Both displacements and stresses have been
determined for a variety of laminated plate geometries subjected to
instantaneously applied pressure loading. These results have been
compared to those obtainzd via both CPT and a shear deformable theory
(SDT) [25]. Typical results are presented in Figures 21 and 22 for a
(0/90) square plate [27]. In this example, the plate is quita thick

in that it has an aspact ratio of 5.

[1.2. TASK II: Incorporate Damage Mechanisms into Dynamic Response
Formulation
Th2 literature survey [28-063] performed has been quite nelpful in
terms of deliazating the viable approachas to including damage
machanisms in the analysis. Relevant failure modes of interast
include tihszse listed below
(i) fiber fracture
{ii) rivar-matrix debonding
(ii1) matrix <racking (parallel and transverse to fibers)
{iv) delamination
Sevaril smooth fiilure criteria, e.q., [64-67] have been developed in

recent years to ropresent the failure of compositas. Thase criteria,
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10 varying deyrees, can predict "faiiure” but do not identify a
particular mode of failure. In performing incremental "damage"
analysis, it is essential to both predict failure and to characterize
it, e.q., do fibers rupture, does delamination occur, etc. The
computational approach must, therefore, differentiate between viable
failure modes and appropriately alter the constitutive equations on
an incremental basis. This can be accomplished by impementing a
piecewise smooth failure criteria, e.qg., [28] in the finite element
formulation. The general failure criteria is then comprised of m

separate inequalities of the form
Fs 05 <1 5 j=1,2,...m

at tha layer level withia each element. Tnese criteria can
diffarentiate between (i) tensile and compressive fiber failure, {(ii)
tensila ind compressive matrix failure and (iii) delamination at
layer interfaces.

As progressive damage occurs tiroughout incremental loading
(whethar) it b2 static or dynamic), it is essential that violation of
failure criteria inequalities be reflected in modiFication of the
material properties. This can be achievad by including damage state
variables [47] in tha constitutive equations to reflect "stiffness

raduction.” Tnese equations can b2 represented as
I AN P

shere [D] reprasents the material matrix and [ ] contains the damage

state variables. The latter provida the basis for changing the Dij
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terms Dased upon the extent to which the failure criteria are
violated.

In conjunction with the above it is essential to perform
equilibrium iterations within each analysis increment. This is
required to assure that stress redistribution is properly accounted
for as damage progresses.

The relevant failure nodes of interest and appropriate criteria

used in the incremental analysis are tisted in Table II.

Do Ipolienloon JaloewltTone

The damage histories of graphite/epoxy (T300/5208) composite
laminates under in-plana loid increments are presented for selected
models [68]. Thes ability to differentiate between relevant

failure/damage modes is illustrated in Figures 23 and 24.

[1.3.3 TASK IIl: Correlation of Formulated Response Model with
Experimental Data
Some quantitative data relating to the impact damage of composite
specimens has bDoeen assembled [69-76]. It will be utilized aloag witn
any additional data obtainad to perform analysis/test correlations.
Since th2 nonlincar formulation including damage effects is not

complete, no use of the test data has been made to this point.
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Table 1. Spurious Zero Energy Modes of the QHD Family
4
Number of Zero Number of Spurious
Quadrature Order Eigenvalues Modes
3x3 with 2x2
QHD40 for transverse 6 0
shear terms
2x2 with 1x1
QHD28 for transverse 9 3
® shear terms
2x2 with 1x1
QHD20 for transverse 8 2
° shear terms
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TABLE 2
)
Material Properties used in the sample problems
MATERIAL E G 6. JE 1b-sec?
3 I E,/E, 1278, 23/E, Y _']T;]'z._
|
|
I 40 0.60 0.5 | o025 | .7124x107 |
11 25 0.50 0.2 ( 0.25 } 7124x107 |
I11 11.6 0.41 0.14 | 0.25 i .1425x10"° j
IV 25 -- -- ‘ 0.25 .7124x107"
®
Y
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g TABLE 3.1
;x Ey 5;.;y ;xz ayz
> Approach a a Lh @, 3, 0 0, 0, = 0, 5, 0) G, 0, 0)
J 27 2 72 2727 76 2 2 2
——~; FEM (3x3 Mesh) 399 562 .0513 .372 304
FEM (6x6 Mesh) .392 .543 0463 .357 .280
Elasticity .755 .556 .0505 .282 217
FEM (3x3 Mesh) 514 .246 .0299 406 .175
10 |FEM (6x6 Mesh) .502 .270 .0284 .387 .142
Elasticity .590 .288 .0289 .357 123
FEM (3x3 Mesh) 547 .157 .0245 418 .14l
20 | FEM (6x6 Mesh .533 .186 .0234 .398 .107
1[_ Elasticity .552 .210 .0234 .385 | .0938
FEM (3x3 Mesh) .558 .128 .0227 423 130
50 [ FEM (6x6 Mesh) 543 .159 .0219 402 .0961
PS Elasticity 541 .185 .0216 .393 .0842
FEM (3x3 Mesh) 559 .123 .0225 423 .128
100 | FEM (6x6 Mesh) 544 .155 .0216 403 .0944
Elasticity .539 .181 .0213 .395 .0828
CIT .539 .180 .0213 .395 .0823
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TABLE 8

41

Nondimensionalized Fundamental Frequencies of Simply Supported,

Square, Cross-ply Plate of Problem 1.

— 2
(= 0 V&)
2
Aspect Finite Element Solution Closed Form
Ratio ; Solution
QHD28 QHD40 QD32 Poference [4]
2 5.860 5.525 5.824 5.500
4 9.730 9.757 9.706 9.359
10 15.440 15.340 15.276 15.145
20 17.850 17.719 17.628 17.665
25 18.246 18.103 18.006 18.093
100 18.964 18.805 18.704 18.733
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TABLE 10

Nondimensionalized Fundamental Frequency
of Cantilever, Angle Ply Plates of Problem 5

(T = 1w %2—\[—?->

Lamina Stacking Sequence SOV
L
Aspect Ratio [+45, 345] [0,, +30] fo, =45, 90] -
S S S R
a/t o
2 1.17 1.72 1.64
(I
5 1.43 2.79 2.47 L
10 1.53 3.02 2.73 o
L. .8
20 1.60 3.31 2.82 L
24 1.62 3.32 2.83 e
.4
144 1.68 3.35 2.86
(1.64) (3.35) (2.85)
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FIGURE 12: NORMALIZED SHORT-TRANSVERSE NORMAL STRESS FOR
SIMPLY SUPPORTED 0-90-0 SQUARE PLATE x=a/2, y=0)
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FIGURE 13: NORMALIZED SHORT-TRANSVERSE NORMAL STRESS FOR
SIMPLY SUPPORTED 0-90-0 SQUARE PLATE (x=a/2, y=a/2)
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FIGURE 18: NON-DIMENSTONALIZED FUNDAMENTAL FREQUENCY VS.

OF PLY ORIENTATION FOR ANGLE-PLY, SIMPLY SUPPORTED,

SQUARE PLATE OF PROBLEM 3
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FIGURE 19:

NON-DIMENSIONALIZED FUNDAMENTAL FREQUENCY VS. ANGLE
OF PLY ORIENTATION FOR ANGLE-PLY, CANTILEVER PLATES

OF PROBLEM 4
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DISPLACEMENTS(CM*10D-3)
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Classical plate theory
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FIGURE 21:

TiME (MICROSECONDS)

ONE-MODE DISPLACEMENT VS. TIME RESPONSE OF A COARSE-MESH
(0/90) LAYUP SQUARE PLATE UNDER SUDDENLY-APPLIED SINUSOIDAL
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FIGURE 22: ONE-MODE DISPLACEMENT VS. TIME RESPONSE OF A FINE-MESH
(0/90) LAYUP SQUARE PLATE UNDER SUDDENLY-APPLIED SINUSOIDAL
LOADING
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FIGURE 23: Failure Curves for [8/0/-8]  Tri-directional Laminates

Due to In-Plane Loading
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Y. RELATED ACTIVITIES

¢ Following is a list of abstracts and papers that have been
submi tted for presentation/publication as a result of the present
research efforts.

L
Papers Accepted:
Journal of Sound and Vibration

¢ "A Study of the Effects of Kinetic and Material Characteristics on the -
Fundamental Frequency Calculations of Composite Plates" 0.0. Ochoa, f
J.J. Engblom, R.T. Tucker ?; :

Papers Submitted:
International Journal for Numerical Methods in Engineering
"Thru -thae-Thickness Stress Predictions for Advanced Composite

Material Configurations" J.J. Engblom and 0.0. Ochoa

Conference Presentations:
SECTAM XII, callawe Gardens, Georgia, May 9-11, 1983

"A Higher Order Displacement Formulation for Natural Vibration of

Plates”

25th Structures, Structural Dynamics and Materials Conference, Palm

Springs, California, May 14-16, 1934

“Through-the-Thickness Stress Predictions for Advanced Composite

Material Configurations”

Symposium on Advances and Trends in Structures and Dynamics,
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Washington, DC, October 22-25, 1984
“Inclusion of Damage Mechanisms in Finite Element Formulation of

Composite Material Configurations"

Abstracts Submitted:
26th Structures, Structural Dynamics and Materials Conference,
Orlando, Florida, April 15-17, 1985

"Alternative Finite Element Approximations and Damage Prediction for

Thin to Moderately Thick Fiber-Reinforced Composite Structures”

R
~ o«

O .

AR




P
L AR I I T
v'..' o o ...

APPENDIX IA - HIGHER ORDER DISPLACEMENT MODELS

X

° Qa0 Do

NODAL DEGREES OF FREEDOM: oA

4
e Corner Nodes - {ug v Wo ¥y Wy dx ¢y}T ' s

Mid-side Nodes - {wy yy ¥} T

TN YT T
L \ir

Rl R
T R

Yy

. (
DISPLACEMENT FIELD: P-;;g:

= 2
U= ug + o2y, + 2%y

V=g tozyy t zz¢y

W = wg
where;
Ugs Vos bxs By ¢ {1 x y xy}' {a) R
0> Vo» ®xs Py : y Xy X sl
Wos Uxs by : {1 xy x% xy y2 x% xy3}T {3} E:} f
SN
3 <
STRESS FIELD: o
i. From constitutive relations - oy = Cijejj (orthotropic mat.) ;f{. 
o = F(22, x2, y?) L
- 2 2 2
O_yy‘f(zax,}’)
oxy = f(z%, x*, y?)
. - . I3 - —- .
ii. From equilibrium considerations - o4j,j = 0 -
oxz = f(2%, x, y)
oyz = f(z%, x, y) Sl
)
052 = F(2%) T
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QHD28

NODAL DEGREES OF FREEDOM:

{ug Vo Wo Ux Yy ¢4 ¢y

DISPLACEMENT FIELD:

2
u+ ug +zyy t 2 ¢x

V=gt ozgy t 22¢y

where;

00 Vor Wos Uxs Uys Oys Bys 1 {1 Xy xy} o

STRESS FIELD:

i. From constitutive relations - o = Cyje§j (orthotropic mat.)

oxx = T(22, %, y)
oyy = (2%, x, y)
oxy = f(2%, x, y)

ii. From constitutive considerations - ¢jj,j = 0

oxz = f(z°)
Oyz = f(z3)
Oz7 = constant
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APPENDIX IB - MODIFIED KIRCHHOFF FORMULATION

| QD32

NODAL DEGREES OF FREEDOM:

® dw dw T
Corner Nodes {wg vg W £ 5} Yy Yy}
Mid-Side Nodes {w 2T
n i .
©
DISPLACEMENT FIELD:
w=f(x, y)
¢
. a
u=ug - z(Tw+Yx>
Iy
- W
- v=uv, - z(—— +y )
d
i. 0 y y
. where;
Uy, V -{lxyx}T{oa}
0* Y0°* x* y - Y
i. w={1xyx?xyy x* %y xy" y®x* 3y xy? y* xy xy“}T{B}
STRESS FIELD:
! i. From constitutive relations - o; = Cijcij (orthotropic mat.)
og = flz, x*, y?)
— 2 2
oyy-f(z,x , ¥9)
! Oxy = f(z, x*, y*)
. iji. From equilibrium considerations - 9ij,j = 0
, oxz = f{z%, x*, y*)
‘ oyz = (2%, x*, y?)
ozz = f(2°, x, y)
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NODAL DEGREES OF FREEDOM

2 T wWoow ey v .T
{ug vo w %3 5$-YX Yyl Corner Nodes {ug vo w éﬂ-gﬂ-'x Yyl

{w g-‘r']i}T Mid-side Nodes {w}?
Center Node

DISPLACEMENT FIELD

-
+

w = f(x, y)

YW E o wramey— — -

v ]
-
~—

where;

-~

B

1ox oy L

®
(&

3

Wl x oy x5 oxy vy XD Xy xyt oy Xt Xy Xyt oxy? viise

STRESS FIELD

i. From constitutive relations - ¢, = C orthotropic iat.)

i iji5 (
Uy 7 flz, X, y7)
. Uxy F flz, x', y)

ii.  From ecilibrium considerations - ij,ij = 0

! &Jxx = f(Z“. X _‘/)

ayz = £z, x5 )

I
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DISPLACEMENT FIELD:

where;

STRESS FIELD:

APPENDIX II ~ HYBRID-STRESS FORMULATION

u:

<
1]

=
I

QHS32

2

Vo * zyy + %0y

Wo + 2o,

Ups Voo Uy s wy, Gz (bxa ¢_y :{lxy xy}T{&}

o =

(81 +82 X + Bay + Byxy) + 2(8s +8g X + 87y + 3gxy)

+ 27 (89 + 81px + By - %:ngy)

Q
I

+

Xy

XZ

vz

+ (=89 - Big)xyl + z {83+ Boy X + Bosy + (-

+

+

(312 T Bigx t 8y - Bl*xy) + 2(515 + B x +

2(x
z¢ (‘,:19 - 21X

[0 *+ (-815

i

. 3
“dny t g 3uxy)

h2
"3

h2
Bap v g Bu)x + (=82 - 3
(

| 3.3
(S5 * BaX + By + ([2Bo* Taligxy]

217y + 313 xy)

h?
(-h - Z)[-g(ﬁm + Bap) + By + (‘89' BIO)X]

1,.»
E(h“‘ 22) [gg + 85 * Bgy - %(59 +819)X]

1

(-h - 2) [-

2
2‘321+

h?

3 B

, 3 3,
H(=h*- 23) [5yg - Fabuy * Bx * a(Rot Byy)x]

) + (-89 - Big)y - #yx]

1 3 ~
(W= 2%) e, - %(39 t By * 81yt Bisx]

|
3 (-h3- z3)

[Em+ E?

h

. 3,
("1"3 + [)'19)3/ -t 'ﬁj_l::

- (

-2h3- 3h7z + B

X]

3ht+ ahiz + Z*

Z2h.
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APPENDIX II1 - MASS MATRIX FORMULATION

The mass matrix for elements under development is easily arrived at
by considering kinetic energy in the form

f D02 4 32 4 )

v

N —

where u, v and w represent displacements, p is the mass density and the
dot superscript denotes velocity. Defining velocities in terms of element
shape functions gives

T= % [A]Tf pINGIINGT + INGIINT + (N I[N,] dV (a)
v

which is the classical form
- LT
T =5 (a1 [M]{a)
The element mass matrix [M] is, therefore, specified as

M] = -I. PN HINGE + INGIINGY + (NN dV

v
Note that the shape functions [N;] involve distance from the mid-plane i:f;f}ﬁ
of the element to a layer denoted by Z and, therefore, the mass matrix v 9

definition provided not only represents mid-plane inertial effects but
also rotatory inertia as well.

Lo

- ?
-
-




APPENDIX IV - LARGE DISPLACEMENT FORMULATION

® .
Based on Green's Strain Tensor, the following procedure is utilized
to obtain the large displacement and the geometric stiffness matrices.
Let N be shape functions relating displacements at any point in the
° element {8} to nodal displacements {A} such that
{8} = [NJ{~3 .
| .'1::;4
c Also let {Ni,j}T denote those shape functions associated with the ith » é
displacement field (i - u,v,w) and ",j" denotes the differentiation with .
respect to the jth coordinate, i.e., —— where Xy = X, X, =y and x; = z.
fx R
’ Then, the strain ¢,, given by J SR
4 s =T e -y
R'(‘ € =_u+_]: <_)i+(:’.\_/_>2+ l: . ‘
XX 2 ‘x Iy g
can be written as R
r 9
. T L1 T T. | WA T ; y I s ]
xx = ey 7 R TR S B P S B SR L TN O AR PP RS :
. . , 9
Similarly; the shcar strain ey can be represented by RS
_! . T . [ wTW" T rA‘T\ at \T‘.| 3 roag T ~
Exy “liu'u’y; + ‘LIJV,X,' IJ + 1..0 l'lnu,xJk 'x\u,y}"' \HV,X1 {Nvg‘y)
+ ll"‘l,x}]—JNw,‘y}} “L;x}

The strain field in indicial notation is expressed by

., T .. ST, T, Ll
teggh = 2{[13 MERNERE ]} M ["‘k»if “‘k’j}_‘l‘i'JJ

P e T T o PR
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------------------ '.l-‘.‘.‘. . : B . LN . P .. . . T foe !
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Then the incremental representation becomes

PY {oeyy) = %[{{Ni,jﬂ + {Nj,i}T}-{c‘-A} + {6/\}T[{Nk,1}T{Nk,j}]{A}

+ {A}T [{Nkai}T{NkaJ}] {S[\}]

But the second term can be expressed as

{A}T[{Nk,j}T{Nk,i}} {5a} ‘" :
Thus combining terms ;¥
(se4j) = %[[{Ni,jﬂ v g T Jrend + I [0 1 TN 50+, 3 Tt )] m}] -
Let —, )
Sl AT T B 7 ’;
[80] = ?‘EN],J} + {NJ"I} ] {A}T[MXX]
(83T TMyy ] e
T Yy R
(A} Myl | I
1T AT T a1 - Y o
[BL] = 5{a} [{Nk,1} {Nk»j! F{Nk’j} {Nk’~|}] = {A}T[MZZJ
1) M, ] S
” T ':-
{U} [M_yZ] -._-.".'
B - |
Then L
(ea43) = [Boltead + [BLIL7a)
»
where [B,] is the Tinear component and [BL] is the large displacement component 1:?
Having the definitions for [ByJ and [B ], the small and large displacement jix
matrices [Ky1 and [K ] are represented as ?;;
®
) T L
(Kol = j [Bo] [DI[B,]dv e
v i
2.

[k = f ’{[BL]T[D][BO] + [8,17(01[R ] + [8,17(D1CB, ] }.dv o




b The geometric stiffness matrix is also derived from (B ] and it has the

following form

[Ka) =."(0xx[Mxx] * oy Myl + 0,,[M;,] + oxylMeyl + 0yz[M,,]

b v
+ oy, M,;1) dv
D Where the o's are the stress components and again integration is on a
layer by layer basis.
®
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