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A COMPUTATIONAL MODEL FOR CONTACT STRESS PROBLEMS
J. N. Reddy¥ and P. R. Heyliger”
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061
SUMMARY
A mixed finite element model based on the incremental nonlinear

theory of solid bodies is developed and its numerical accuracy is
evaluated by applying the model to a number of contact problems. The

theoretical basis of the finite element model is formulated using the

updated Lagrangian formulation. Both displacement and mixed models are

Rag

described, but emphasis is placed on the development and application of
the mixed model, which contains the displacements and stresses as the

nodal degrees of freedom.

INTRODUCTION

In the linear description of the motion of solid bodies it is
assumed that the displacements are infinitely small and that the
material is linearly elastic. In addition, it is also assumed that the
nature of the boundary conditions remains unchanged during the entire
deformation process. These assumptions imply that the displacement
vector u is a linear function of the applied load vector F,i.e., if
the applied load vector is a scalar multiple af then the corresponding
displacements are au .

The nonlinearity in solid mechanics arises from two distinct

sources. One is due to the kinematics of deformation of the body and

¥Clifton C. Garvin Professor of Engineering Science and Mechanics.

*Graduate Research Assistant.
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the other from the constitutive behavior (i.e., stress-strain
relations). The analyses in which the first type of nonlinearity is

considered are called geometrically nonlinear analyses, and those in

which the second type are considered are called materially nonlinear
analyses. The geometrically nonlinear analysis can be subclassified
according to the type of nonlinearities considered. Two such cases
are: (i) large displacements, large rotations, but small strains, and
(ii) large displacements, large rotations and large strains. In the
first case it is assumed that rotations of line elements are large, but
their extensions and changes of angles between two line elements are
small. In the second case the extension of a 1ine element and angle
changes between two line elements are large, and displacements and
rotations of a line element are also large.

The objective of the present study is two-fold: First, to describe
the equations that govern the nonlinear behavior of solids, and second,
to develop finite element models for the analysis of the nonlinear

behavior of solid bodies in contact.

INCREMENTAL EQUATIONS OF MOTION

Consider the motion of a body in a fixed Cartesian coordinate
system. Suppose that the body can experience large displacements, large
strains and nonlinear mechanical (i.e. constitutive) behavior. We wish
to determine the configuration of the body for different times and
loads. The formulation to be described assumes that the configurations
of the body, Cls Cp « - « 4 Cp due to loads Pl, P2, e e e Pn'
respectively are known and seeks the configuration at time Chel® Thus,

in the present formulation we follow the body as it deforms from the

initial configuration to the final configuration. This type of




description is called the Lagrangian (or material) description, which

differs from the Eulerian description used in fluid mechanics

problems. In the Eulerian description of motion, instead of following

the body (or a fixed collection of particles constituting the body), the

motion of particles passing through a fixed control volume is determined

for various times. The Lagrangian description is a natural one for a
solid body because one is more interested in the deformation of the body
than in the changes that are taking place in the control volume that was
occupied initially by the body. On the other hand, the Eulerian
description is a natural one for fluid flow problems, because there one
is interested in the velocity, pressure and stress fields in a fixed
control volume without focusing attention on fluid particles that enter
and leave the control volume.

In the Lagrangian description of motion all variables are referred
to a reference configuration, which can be the initial configuration or
any other convenient configuration. The description in which all
variables are referred to the current configuration is called the

updated Lagrangian description [1-4] and the one in which all variables

are referred to the initial configuration is called the total Lagrangian

description [5-8].

The equations of the Lagrangian incremental description of motion
can be derived from the principles of virtual werk (i.e., virtual
displacements, virtual forces or mixed virtual displacements and forces)
[9-13]. Since our ultimate objective is to develop the finite element
models of the equations governing a body, we will not actually derive

the differential equations of motion but utilize the virtual work

statements to develop the finite element models.




Displacement Formulation

The displacement finite element model is based on the principle of

virtual displacements (see Reddy (l4]). The principle requires that the
sum of the external virtual work done on a body and the internal virtual
work stored in the body should be equal to zero:
fv 21” 8(,e55) AV - s(%F) = 0 (1)
2
sCF) = [ % sugav+ [ %t su, ds
where V2 Sz
t.. = the Cartesian components of the Cauchy stress tensor in
configuration c, at time (t + at)
occupying the volume V2
Zeij = the Cartesian components of the infinitesimal strain
tensor associated with the displacements u; in going from

configuration c; at time t to c, at time (t + at) :

2845 =2 (Eii + ) (2)

= Cartesian components of a point in configuration Cp.

f. = Cartesian components of the body force vector measured
in C

t, = Cartesian components of the surface stress vector

measured in Co

Here § denotes the variational symbol (i.e., sui denotes the virtual
displacement in ”i) and dV and dS denote the volume and surface elements

in the configuration over which the integrals are defined.
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Equation (1) is not so useful in its present form because the
integrals are defined over the volume V, and surface S, of the
configuration Cos which is yet unknown. In the linear analysis, it is
assumed that the configuration of the body remains unchanged and
therefore Eq. (1) applies to the initial (undeformed) configuration.

The fact that the configuration of the body changes continuously in a
nonlinear analysis requires us to use appropriate measures of stress and
strain and their interrelationship (i.e., constitutive equations) so

that Eq. (1) can be used to calculate the configuration c In order

Py
to compute the current configuration C) (often, the displacements,
strains and stresses in c2) from the knowledge of applied forces and
displacements and known previous configurations C1» we must make some
assumptions. A description of the procedure based on the updated
Lagrangian approach is given below.

The coordinates of a general point in ¢, and €1 and ¢, are denoted

by (X?, Xg, Xg), (Xl’ X2, X3), and (xl, Xos x3), respectively. The

displacements of a general point in cy are denoted by (lul, 1u2, 1u3).
In Cp they are given by

2 _1 s

Uy = Tuy tug, s 1,2,3 (3)

where u; are the components of the displacement vector from ¢y to ¢cy.
During the motion of the body, its volume, surface area, density,
stresses and strains change continuously. The stress measure that we
shall use is the second Piola-Kirchhoff stress tensor. The components
of the second Piola-Kirchhoff stress tensor in €1 will be denoted by
Sij' To see the meaning of the second Piola-Kirchhoff stress tensor,

consider the force dE on surface dS in Co. The Cauchy stress
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tensor 1 is defined by

(n - 1) dS=df (4a)

where 6 is the unit normal to dS in c,. Note that the Cauchy stress is
the force per deformed area (i.e. measured in cy) and referred to cs.
The second Piola-Kirchhoff stress tensor at time t + at referred to c,

is defined by

~

(n, - 25) ds, = dF, (4b)

-~ ~

where 5 denotes the unit normal to the surface element dSo in cy- The

force dfo is related to dfF by

dF = 97 - dF (4c)
where
1 KT
J o= (33)

From the definition it is clear that the second Piola-Kirchhoff stress

is measured in Cp but referred to ;. [t can be shown that (see

Malvern [15]) that the components ZSij and Zrij are related according
to
o aX, aX,
' S T T (52)
J 0 m n
X, X,
2 0 i 2 iR
t,,=——— 75 - (5b)
h‘_" ij e, axm I'mn 3 n
;;;
- where Py denotes the density in ¢y and o is the density in c,. The
}:gﬂ second Piola-Kirchhoff stress tensor is symmetric whenever the Cauchy
el : X 2 _ 2 2
f . stress tensor is symmetric. Note that Zsij = rij z Zrij'
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Similarly, the Green-Lagrange strain tensor Eij and the

infinitesimal strain tensor eij are related by

axX_ ax
2 T D e (6)

E.. =
171§ ok, an 2 mn

It is also important to note that the 2nd Piola-Kirchhoff stress

tensor is energetically conjugate to the Green-lagrange strain tensor

and the Cauchy stress is energetically conjugate to the infinitesimel

strain tensor. In other words, we have

1743

2 2 _ 2 .
IV S.. G(IEij)dV = IV T4 0(2eij)dv (7)
1 2

Substituting the equality (7) into Eq. (1), we obtain
- 2 2 2
0= IV lsij 6(1Eij) dv - §(°F) (8)
1

Next we use the incremental decompositions of the stresses and strains:

1513 - Tij * IS1J
2 =
1845 = 183 * 1M (9)
where
lsij = incremental components of 2nd Piola-Kirchhoff stress tensor
18j = (incremental) components of the infinitesimal strain tensor
au, au,
1 i
=2 Gx )
3 i
au_ au
RTIE Bt (10)
1 J

Recall that u; is the i-th displacement component of a generic point in

c; (in going from c; to Cp). Substituting Eg. (9) into Eg. (8), we

have

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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Linearize the equations by assuming that

- 2 -
1315 7 1%3rs Brs? 8 1F45 7 81845 (12)
We obtain the approximate equation of equilibrium,
1
IV 1ijrs 1%rs 6(1e13) v + I '] 6(I”ij)dv
1 l
- -1 b ses oav + (%) 13
13 801845 (13)

1
This Tinearization can be interpreted as a representation of the
nonlinear curve between two consecutive load steps by a linear line

segment.

Mixed Formulation

A mixed (or stationary) virtual work statement that treats the
displacements and stresses as independent (dependent) variables can be
derived from Eq. (13) as follows. First, we note that Eq. (13) is the

first variation of the functional

—

-1 1
TE e, 2 1Cges 1% 18 Y Lv {1855 * gyl -
1 1

Clearly, 1 denotes the (approximate) total potential energy of the body

2% (14)

in configuration c, but referred to configuration ¢y, and Eq. (13) is a
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statement of the principle of the minimum total potential energy. In

Egs. (13) and (14) it is understood that 18 and 1M1 are defined in

13
terms of uj [see Eq. (10)].

In the mixed formulation, we begin with the expression for the
approximate total potential energy = and introduce the stresses as
variables using the Lagrange multiplier method. We treat the strain-

displacement relations
(——% + ——?) (15)

as constraints and let the increment in the 2nd Piola-Kirchhoff stress
tensor IS1J act as the Lagrange multiplier. Including this in the
variational form results in the modified functional T which is given
by
au, au,
- I i,

T T | X ;
1 J

where » is given by Eq. (14). Here we note that the sign of the
Lagrange multiplier term is generally arbitrary, and is selected as

negative to obtain the correct form of the equations that follow.

The variational principle (often called the Hellinger-Reissner

variational principle) is given by setting gm = 0. This gives

_ 1 1 1
§mp = fv UCrii® %5 % 77458 175 % %05 Cigke 1845 1% " 1
1

+ 615

Si5 1%

20y
iYi,5 " 151j5“i,j]dv -§(°F) =0 (17)
We next write the expressions for the strain energy density Uo and the

*
complementary strain energy density UO due to the incremental

displacements as
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displacements as

_1
Uy = 7 Cijke 1845 1%
and (18)
v=1p S.. S
o =72 Dijke 1745 1°ke

where Dijkz are the components of the compliance tensor. We may then

write
*
- Ug = Ug - 1345 185 (19) |
and, taking the variation of this expression gives i
* 1 5
- 8o = 85 Cien 1895 1% 1945 1845 (20)

If we write the complementary strain energy density in terms of the

2nd Piola-Kirchhoff stress components as we did in Eq. (18) we may write '

o = O 5 .S..=-D s S
-8, = - 8 1345 % - ke 1243

ke 1 (21)

Equating the expressions in Egs. (20) and (21) and substituting into Eq.

(17) yields the two approximate equilibrium equations

_ .2 1
J.)dv + [ lsijéui,jdv = §(°F) - [ Tija(leij)dv

1
1 1 1

v
(22) |
N ui,jS(lsij)dv - IV Dijkz lskné(lsij)dv =0 i
1 1
These two equations are analogous to Eq. (13) for the displacement
formulation.

In the next section we discuss the finite element models of Egs.

(13) and (22).
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FINITE ELEMENT MODELS

Displacement Model

Here we construct the finite element model of Eq. (13) for the two-
dimensional case. We assume that the d{sp1acement components are

interpolated by expressions of the form (see Reddy [16])
T
U, (xq.%,) =j;1 uj ¥ (x5 Xp) (23)

where ug denote the value of uj at the j-th node, and wj denote the

interpolation functions. Substituting £q. (23) into Eq. (13) we obtain

(K] + (K°1) (ay = (F&) - (F9) (24)
where
k'1 =t 7 (8417 [c] [BY] dA , t = thickness
Ay
C11 €12 16
(€] =1 Cpp Cop Cog | »
C16 C26 Co6
L ‘1’1,1 0 d)z’l 0 - . . wn’l 0
[B-] ={0 ] 0 n ... 0 v
(3 x 2n) 1,2 2,2 . n,2
v1,2 V1,1 Y2,2 Y2,1 v ¢ ¥m2 Vn,1
[K°] =t [ (89 {<] [8°] dA
A
1
4’1,1 0 ‘Uz’l 0 llln’l 0
[Bol - wl’z O 1U2’2 O « o o wn’z 0
(4 x 2n) 0 1,1 0 b1 - 0 ¥n,1
0 wl,2 0 ‘Dz,z o« o 0 \Dn’z

.....
___________

\1 - - ,. ......... o 1
......... .r d-
TA.JFA‘PMJ\}'Mi\J ) .n I Y TR .)A\ \ [N




Tll T12 O 0
T2 T22 0 0
(] =

0 0
0 0

11 12
12 T22

; Y =t [ T ihrdA, 7=t [ [BYT (x1aa
4 A A
f 1 1
T f
2] 0 vy o ... n 0 11 1l
( [wlz ) = 0 ’ {t} = T22 ’ {f} =
3 2 x 2n 0 ¥ 0 Vo o o o v
8 1 2 n 12 f2
: (25)
'S
; It is understood that lrij is computed using the Almansi strain
T tensor,
3 1
} %15 = 1% 5km 1%Kkm (26)
1 tkm =2 G Y X C X, )
4! m k k “"m
)
¥
~ where the displacements are now the total displacement components
r measured in the current configuration. Also, since Eq. (13) is a
o
z linearized version of £q. (1l), the error introduced into the
[}
|
‘ calculation of the displacements u; between configurations can drift the
8
N solution away from the true solution (especially if the load steps are
;: large). Therefore, a correction should be made to the displacements at
P each load step. This can be done as follows: The solution (a} of Eq. (24)
_; allows us [with the aid of Eq. (23)] to compute the total displacements
5 at time (t + at) ,
q 2 1
- Ui = Uy * Yy
X 12
4
&
4
e i T A T N e Ayt a s ittt et TRt e AT e o E R I AL . » \ .
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X which can be used to compute the strains and stresses (with appropriate
constitutive equation) at time t + at. By the principle of virtual
displacements, the true displacements, strains and stresses at any time,
say at time t + at, are such that the internal virtual work is equal to
the external virtual work done. Since u; (hence the strains and
stresses computed from them) are approximations, there will be an

:;3$ imbalance between the internal and external virtual works performed on

| the body. This imbalance can be minimized by updating the internal
virtual work through an iteration (for a fixed system of loads and

[ time); the iteration is continued until the imbalance is reduced to a

- preassigned value (i.e., a convergence limit). For example, the
displacement increment at the (r + l)st iteration is calculated from the

i equations

L

(U I (S P TS N o S (27)

wherein [t] and {t} are calculated using the displacements,

2 _ 42
- ( ui)r - ( ui)r-l + (ui)r (20)
o
o Equations (27) and (28) correspond to the Newton-Raphson
.1-.__:
}Eﬁ% iteration. If the left hand side is not updated during the iteration,

the iterative scheme is known as the modified Newton-Raphson

nxﬁz iteration.

o Mixed Model

We next construct the finite element model of Egs. (22) for the

;:j' two-dimensional case. We begin by assumming independent approximations
;;5* of the displacements and stresses of the form

.
Y T IR - IR A RN R e Tt T N B AL S U R P
N A A T e S S NN TN e A
PR, QRO WAL, -




nm~M3
—

- J
ui(xl,xz) = uiwj(xl,xz)

j
(29)
Nk
1315 () = ISy (xx))

Substituting these expressions into the two equilibrium equations in Eq.

(22) gives
k3T () (F4} (FNY
= - (30)
27T w2y | | (s (0} {0}
where
(kM1 = ef (891 7(<1(8%]dA
A
1
(%] = ¢t [¥°17[D](¥°]dA
A
1
(k}2) = tf 84710 )dA (31)
A
1
(FY) = tf [¥)17{f}dA
A
1
(FNY) = ¢ (8417 {x}en
A
1
2] 0 0 vy o 0 ... n 0 O
(v°] =10 ¥y 0 0 w, 0 ...0 y O
(3x3n) 0 O wl 0 o0 by o o . 0 O vy
0;; Dy Dis
(D] = D), Dyp Dye (32)
Dis D26 Dge

14

TR E TRy
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A11 of the other necessary matrices have been defined previously during
the development of the displacement finite element model.

As with the displacement model, Eq. (30) is solved repeatedly until
the force imbalance is reduced to a fixed tolerance. This amounts to
measuring the percentage of the displacement and stress increments
relative to the total solution vector. When the increase in the
displacements and stresses has been reduced to below a very small
percentage of the total solution, the state of equilibrium has been
obtained for the given load step, and the load may be increased or the
analysis may be terminated.

The solution of Eq. (30) allows us to compute the total
displacements and Cauchy stresses at time (t + at). To compute the
displacements we simply use the equation

2“1 = lui + U
In the mixed formulation, there is no need to compute the Cauchy
stresses using the Almansi strains as was required using the
displacement formulation. Since the increments of the 2nd Piola-
Kirchhoff stress tensor are computed as nodal variables, we simply use
our incremental decomposition of the stress given in Eg. (9) as

2... _ 1
1513 = 143 + 15

ij
When the increment in the lsij terms is reduced to be within the
. 2 _ 2
‘required tolerance, we have 2Sij = Ty

e R

PLANAR ELASTIC CONTACT PROBLEMS

In this section we discuss several techniques for the analysis of
two-dimensional elastic contact problems. Such problems have a host of
computational difficulties since the region of contact is typically not

known in advance, nor are the regions of relative stick and slip between

15
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the two contacting bodies due to the presence of friction. Most current
algorithms that solve contact problems are relatively complex, and use a
number of jterative schemes to account for the changing boundary
conditions aﬁd regions of contact.

The nonlinear mixed finite element formulation forms the
cornerstone of the methods described below. The displacement finite
element method has been used almost exclusively in previous numerical
analyses of contact problems. Mixed elements provide the immediate
advantage of computation of stresses as nodal variables, which is ideal
for contact problems since the stresses may be obtained precisely on the
contact boundary.

Two different and independent methods are described for the
analysis of the specific problem of a pin-loaded plate. The methods are
described below and several examples are presented for the first of the

two techniques.

Rigid Pin Contact Algorithm

In general, contact problems involve two or more elastic bodies
pressing against one another under external load. In the case of a pin-
loaded plate, these two bodies are the plate and the pin. I[f the
assumption of a rigid pin is used, the analysis is simplified
considerably. This assumption eliminates the need to analyze the pin,
which not only provides a known point of reference for the ensuing
contact (i.e. the surface of the pin), but also drastically reduces the
resulting global finite element system of equations since there is no
need to discretize the domain of the pin.

The assumption of a rigid pin is reasonable if the modulus of

elasticity of the pin is much higher than that of the plate. Analytical

s

R
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studies have also shown fhat, in the contact analysis of composite
plates, pin elasticity is not an important variable and has a relatively
small effect on the resulting stress distributions [17].

One simple and effective method for analyzing thin, orthotropic,
pin-loaded plates was developed originally by Wilkenson [18] and was
later refined by Rahman [19] to capitalize on the computational
advantages that arise from the rigid pin assumption. The method uses
three separate iteration steps to account for the incremental load
level, the contact process, and the effects of friction. Both the
original and refined schemes used displacement finite elements. In the

load step iteration, the solution for a given load increment was treated

as a linear analysis, i.e. the equations of linear elasticity were

used. The stresses in the plate were computed, for a given load level,
using the original, undeformed configuration of the plate along with the
final displacement vector.

The use of displacement elements in the analysis of con.'ct

problems frequently results in very large displacement gradients at the
region of contact. Since the required stresses are computed at the
element interiors and are then extrapolated to the contact boundary,
some type of stress smoothing is often necessary using, for example, a
local least squares routine [20] or iterative improvement on the
averaged nodal stresses [21]. Using mixed elements, this is not

necessary since the stresses are computed as nodal variables and no

postcomputation is necessary to modify the resulting nodal stresses. It
is for this reason that mixed elements would appear to be advantageous

over displacement elements for contact problems.
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;E The refined algorithm developed by Rahman [19] uses a mixed polar-
* Cartesian coordinate system to fix the proper displacements of the nodes
}i: of the plate that have come in contact with the pin. An iterative

ggz scheme is used to ensure that, for a given load step, all nodes that

1§ have come in contact remain in contact. In other words, after every

;f. iteration the positions of all contact nodes are corrected in the radial
'EE . direction so that they remain on the surface of the pin. If the

"; resulting shearing stress for a given contact node is larger than the
;;E induced radial stress multiplied by the nodal coefficient of friction,
;;g the node is considered to be sliding, and it may subsequently move in
?ﬁJ the tangential direction of the pin. Otherwise, the node is considered
- to be sticking to the pin due to friction, and is fixed to an

:%i interpolated position on the pin for the remainder of the analysis.

o This iterative procedure is repeated until the sum of the load steps has
’Ei reached the required load level. The details of the this method are

i~ more completely described in reference [19].

C) Elastic Pin Contact Algorithm

‘EEZ The assumption of a rigid pin, which is reasonable for cases when
Eé the two bodies in contact have a very large difference in modulus of

:’ elasticity, is not usually valid for contact between two generic

?ﬁi bodies. The algorithm described in the previous section, though useful
j&i for certain problems, was mainly developed to demonstrate the use and

2’ , accuracy of the mixed finite element method for the analysis of contact

problems. For general problems involving arbitrary bodies, it is

necessary to revise the analysis to include the effects of pin

>

‘) elasticity, which may be significant if the two bodies are of similar
R

e constitution.
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To handle the complications arising from contact and the presence
of friction between two elastic bodies, we add a Lagrange multiplier
contribution to our original expression in Eq. (16), which will
represent the total potential of the contact forces acting at the nodes
on the contact boundary. In addition, the kinematics of the elements at
the contact interface must be monitored such that the nodal
displacements are compatible. We therefore invoke stationarity of the

modified functional

where k represents the number of the contactor nodes on the boundary and
W represents the total potential for a given contact force acting at a
given contact node.

Taking the first variation of the modified functional =, results in

N
a system of equations similar to Eq. (30) with the increment in the
contact forces added as new nodal variables for the contactor nodes.
These constraint equations may be added to the original stiffness

matrices by means of contact matrices, which contain the needed

relationships between the contact forces and the contact node
displacements. This idea was originated and developed using a
displacement formulation by Bathe and Chaudhary [22].

The analysis proceeds in a manner similar to the steps performed
for nonlinear solid mechanics problems in that load increments are
applied to the body or bodies and the equilibrium equations are solved
iteratively until the solution increment is within a preassigned
tolerance. If, however, there is penetration of a contactor node from

one of the bodies into the domain of a contact element from the other
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body during a given iteration, the contact matrices are imposed for the
next iteration and the new set of equations is solved until the overlap
distance created during the penetration is eliminated. This results in
an increase of the contact forces for the nodes involved in the contact
as well as a change in the nodal displacements and stresses for these
nodes. Inherent in the contact matrices are allowances for stick and
slip, and their implementation is a function of the contact stresses and
coefficients of friction between the two bodies. The coding of this
method is underway and no example problems have been completed to

include in this report.

HYBRID EXPERIMENTAL/NUMERICAL TECHNIQUE

The primary difficulty in the analysis of contact problems is the
lack of knowledge regarding the region of contact and the state of stick
or slip between the two bodies. If the regions of contact and the state

of stick or slip are known for a given load level, the analysis is

greatly simplified. A hybrid experimental/numerical technique has been
proposed as part of this research project that combines the experimental
technique of moire interferometry with the numerical finite element
method to form a hybrid technique. The new method uses the advantages
of each of the methods to create an accurate and powerful tool of
analysis.

Moire interfereometry provides the reguired sensitivity that is

needed to accurately measure the small in-plane displacements of the

\{f two-dimensional pin-loaded plate contact problem. In particular, this

method provides valuable information on tha state of the displacements

CaCRguteN
s o L] 'y

‘e
NI,

\ o/

at the interface boundary between the pin and the plate. This

eliminates the need for any theoretical assumption on exactly what is
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occurring at the contact boundary that is so common in most numerical
simulations. As mentioned previgusly, it is the complex state of
contact, stick, and s1ip that makes this problem so difficult to model
in a strictly numerical method, and the use of an experimental technique
greatly simplifies the computational effort.

The exact displacements of a physical specimen may be measured for
a sequence of increasing load steps. These displacement increments,
along with the loads applied to the plate, are input as a sequence of
nonhomogeneous boundary conditions for the simulated problem analyzed by
the nonlinear mixed finite element method. The resulting normal and
shearing stresses around the hole of the plate may then be computed to
determine the quantitative behavior of the coefficients of friction as a
function of the angular position around the hole and the load level.
The only approximations introduced are due to the physical and
mathematical limitations of moire interfereometry and the finite element
method. The numerically solved problem is simply a special boundary
value problem with specified displacements, and no other assumptions are
involved.

Since, in theory, the one half of‘the plate acts as the mirror
image of the other half of the plate, only one half of the plate domain

is modeled for the finite element analysis. This also drastically

reduces the computational time involved. Preliminary experimental data
have shown that the displacements around the hole of the plate are not
quite symmetric, even for an isotropic material. This is most probably

due to the limitations of creating a perfectly symmetric specimen and

2
g
¥
- “n

A.
s

applying a perfectly symmetric load. The displacements are therefore

averaged in both of the coordinate directions of the plate to yield one

-
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value for a given point of the contact boundary for the modeled half of
the plate.

The finite element portion of the analysis currently awaits the
reduction of the experimental data for a series of increasing load

steps. No examples of the hybrid procedure are included in this report.

NUMERICAL EXAMPLES

In this section we consider a specific example to demonstrate the
characteristics and differences of the displacement and mixed finite
element models in nonlinear analysis.

Before considering the example problem, we note an important point
on the order of approximation using the mixed elements. Using the
results of an eigenvalue analysis of the mixed finite element matricas,
Mirza and Olsen [23] proposed and verified a completeness criterion that
restricts the choice of the order of approximation for the displacements
and stresses. The completeness criterion was given as:

The strains from the stress approximations

should possess at least all the strain modes

that are present in the strains derived from the

displacement approximatons.
When this criterion is violated, the global stiffness matrix in the
mixed model will be singular even after the imposition of the boundary
conditions. Isoparametric rectangular elements are used for all of the
examples considered herein and, to meet the requirements of the
completeness criterion, only linear-linear or gquadratic-quadratic
combinations are used to approximate the distributions of displacements
and stresses in the mixed model. A1l of the computations were carried

out on an IBM 3081 in double precision arithmatic.
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Bending of a Cantilever Beam

The cantilever beam shown in Figure 1 was analyzed using 5 8-node
quadratic-quadratic elements using the assumptions of plane stress. The
material properties and geometry used are given in the figure. The
analysis was completed using 16 equal load steps and a tolerance of E =
0.001. The displacements along the line x = 0.0 were specified to be
zero.

Figure 2 contains the plot of nondimensionalized tip displacement
vs. applied load for the linear analysis and nonlinear analysis as
computed by the mixed and displacement finite element models. The mixed
model gives displacements that are larger than those of the displacement
model, with a maximum difference of 2.8 percent measured at the final
load level. Although the results of the displacement model are in
excellent agreement with the analytical solution reported by Holden
[24], it should be mentioned that Holden's solution uses the Euler-
Bernoul1i beam theory (i.e., does not even account for the transverse
shear strain). However, for a beam of the dimensions used in this
example, the shear deformation effect is undoubtedly quite small, and it
remains that the mixed element model yields slightly larger
displacements than does the displacement model for this example.

It is also of interest to compare the Cauchy stresses determined
from the two formulations. In the displacement model, it is necessary
to compute the Almansi strain tensor, and then use the constitutive

relations of the material, as described in Eq. (26). In the mixed

model, we may simply interpolate the values of the nodal stresses using
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*ij the original form of the stress approximation, i.e.

( : &

‘r..X,X)=ZT--lU(x9X)
{} ijvr1r T2 k=1 d k‘"1°'72

" .
i?: To compare the Cauchy stresses using the two formulations, we

|" computed the axial stress Tyx at the location of the 2x2 Gauss points
iij along the upper half of the beam. The displacement components from the
Ij two models are not exactly the same (the actual positions of the Gauss
e points vary somewhat), but this difference is very small. The

.;; comparison of the axial stress components is shown in Figure 3 for the
..4‘.

’Eﬁ two different models at the final load level. The agreement is

;5; excellent, with the mixed results giving a maximum stress that is 4.8
iL: percent higher than the maximum stress computed using the displacement
L

o model. A1l other computed values are in much closer agreement for the
-

o two models.

ék Although the displacements in the y-direction are in very good

i; agreement for the two formulations, the difference in the displacement
Cj; gradients can be quite large and can result in significant errors when
A computing the Cauchy stresses from the Almansi strains using the
<!

i: displacements from the mixed formulation. For example, considering the
'.1"'

}? lower left Gauss point of the rightmost element, we have the following
[ ¢

> values at a given load step:

2

o

“d

{5§ Displacement Formulation Mixed Formulation
oy u 0.003 0.007

,. Uy 0.082 0.082

o v, -0.082 -0.082

o v 0.003 0.007

:.'q, WY

-3 T -1.95 51.20

.. XX

i' The stress computed from the displacement model is in very good

xe

'£ agreement with the stress computed from *he mixed model using nodal

]

<
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stress interpolation, but the stress computed from the Almansi §trains
using the displacements from the mixed model is very much in error. It
appears from the results of this example that the nodal displacements of
the mixed model should not be used at any point of the analysis to
compute the Cauchy stress components, and the nodal stress values should

be used instead.

Rigid Pin Examples

The contact algorithm proposed by Wilkenson and Rahman was
implemented using the three basic iterations of load, contact, and
friction using a geometrically nonlinear formulation along with mixed
finite elements. Here the results of several example problems involving
contact between an elastic body and a rigid pin are presented not only
to demonstrate the accuracy of the algorithm but also to highlight the
effectiveness of having stress as a nodal variable. The results of the
example problems are compared with available analytical and numerical
solutions.

In the first example we consider an infinitely long cylinder of
radius r = 1 resting on a rigid plane and under a uniform line load.
This problem was modeled using the assumptions of plane strain. One

quarter of the circular domain was used to model the problem, and was

? approximated by 84 linear-linear elements. The load was assumed to act
‘il at the center of the cylinder and was applied in 12 increments, with the
£ initial increments smaller than the later increments. The problem was
Z?; modeled by assuming that the cylinder was in contact with a rigid pin of
.fj very large radius (R = 1000) to model the rigid plane. A tolerance of E
o
éﬁ = 0.001 was used for the equilivrium iterations. The modulus of
k: elasticity used was 21,000 ksi and the Poisson's ratio used was 0.3.
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The results of the analysis are shown in Figures 4 and 5. The

numerical results are compared with the Hertz analytical solution.
“3 Figure 4 shows the contact pressure distribution plotted against the
3 : distance from the original point of contact. Figure 5 shows the load
?if plotted against the total contact area, the data points of which can
.?i* only be determined when each successive node comes in contact with the
;ﬁé pin. The results from the contact algorithm appear to be quite good.
O The second example considers a thin, orthotropic, pin loaded plate
‘:é with a hole of radius r under a uniform, in-plane load as shown in
;§§ Figure 6. Due to symmetry, one half of the plate was modeled using 124
iR linear-linear elements with 156 nodes for a total of 780 degrees of
: 5 freedom. The material properties given in the figure are averaged
E j properties from a number of species of wood. The pin was assumed to be
ﬂ;? rigid and of radius R. The plate was loaded to a final load of 400
E:f pounds per inch of plate thickness, and was applied in 18 increments. A
:Ei coefficient of friction of 0.7 was assumed at all points of contact
3'; between the plate and the pin for all load levels, and is a typical
2%?3 value for wood on steel. No equilibrium iterations were performed for
ggg this problem.
jﬁi Figure 7 shows the radial stress distribution as a function of the
::; angular position around the pin for the nodes that have come in contact
CE? at the final load step. These results are compared with the results
fi; obtained by Wilkenson [18] using a finer mesh (385 nodes) and quadratic
;1{: displacement elements. The comparison is very good. |
;‘3 ' Acknowledgment

The support of this work by the Mechanics Division of the Office of

S e e

Naval Research is gratefully acknowledged. The authors are thankful to
W Dr. Alan Kusner for the encouragement and support of this work.
-?{,4 i
N |
et

B 28

|
8 |
‘ .. - L )
BRI LR CATEIR A L T e e T R A R A N .'."."\ {;’:";"“‘:\




Contact pressure (psi)

Applied load (kips)

650

600
550
S00+
450
100+
350+
300+
250+
200 Hertz solution
150+ . N
-===--=-=--- Numerical solution
100+
S0~
n- T T T L] T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06
Distance from the center (in.)
Figure 4 Contact pressure for loaded cylinder
50
Hertz solution
40
1 eeeeeeeaa.s Numerical solution
30+
204
4
] 4
1 e
o- LS T L) T
0.000 0.025 0.0S0 . 2 0.07% 0.100
_Contact area (in.c)

Figure § Contact area for loaded cylinder

29

‘n;ﬁh.ﬁ&i.& )[A)‘fz..hs.{j.'(_ﬂ. > ,.; 9 'A'Chﬁ ;‘;‘;; .li r_k'):&

"
. )

‘.A_A;A. S

n,»

TASY

O
u
"Qﬁﬁ.



T ———— T — Y€ Y Y S ) DY e YT ST T T Y Y T IR T RO T TR T T Y T ey T T T Y Y R T TR W TR T O TR T R VR F I T Y S TN TR TR Y Y U T T S v L N

9| dwexa 3je|d papeo|-uird J04

60

N:_.\ﬁ ocp X ¢v1°0
,N..__\f mo_, X ZL'o
Nc_.\ﬁ o0t L3 A

e — e

Ut GZ:0 = ssawyoLysl

ur 0°L

ut 6/°0

ur o'y

uL €270 = utd Jo sniped

uL 6z°'0 = 9jeld jo sniped

saL343doud |eL493ew pue ysaw Judwd|d 33Uty 9 aunbir4

-+

.

30

t
N

G0
“?ln ‘::‘!'

PG
F
)

-
¢

L)

»!

TR R
oy

i)

-

“al\ e
*'

R R el ]

LY
N

oneny
PRI M EPT

e

-

- e
=
(]

oL
J‘*

RSy

&

- g e e
= AN
Wy

a

4 ' ¥ ’
,.:‘..-!l

A

¢ ]

.y
iy 6,

-

g



Radial stress (psi)

8000

Mixed formulation

5000:' \
] N Displacement formulation
: N
0000': ‘%
. N\
N\
\\
N\
\
] N
2000-] \§_\
] 3
N
\i

Angular distance, theta (Deg.)

Figure 7 Radial stress around hole of wood plate

Y W WY T W W T T W PO U W G T Y W W T T TG O T TY Y Ty v -




Nl 5
PREC Y

%1

ry

Ao

iy

S
'l. ot :‘:";"v:'." )

OO

.._
- s ¥ -P-
.

-
-
-

(AT =

,-
coced@ A

Ahé 'n‘i‘.,.' L)

REFERENCES

1. D. W. Murray and E. L. Wilson, "Finite element large deflection
analysis of plates," J. Engng. Mech. Div., ASCE, Vol. 94, pp. 143-
165, 1965.

2. S. Yaghmai and E. P. Popov, "Incremental analysis of large
deflections of shells of revolution," Int. J. Solids Struct., Vol.
7, pp. 1375-1393, 1971.

3. J. A. Stricklin, W. A. Von Riesemann, J. R. Tillerson and W. E.
Haisler, "Static geometric and material nonlinear analysis," Adv.
in Comp. Meth. in Struct. Mech. and Design, J. T. Oden, R. W.
Clough and Y. Yamamoto (eds.), Univ. of Alabama in Huntsville, pp.
301-324, 1972.

4, Y. Yamada, "Incremental formulations for problems with geometric
and material nonlinearities," Adv. in Comp. Meth. in Struct. Mech.

and Design, J. T. Oden, R. W. Clough and Y. Yamamoto (eds.), Univ.
of Alabama in Huntsville, pp. 325-355, 1972.

5. H. D. Hibbit, P. V. Marcel and J. R. Rice, "Finite element
formulation for problems of large strain and large displacements,"”
Int. J. Solids and Struct., Vol. 6, pp. 1069-1086, 1970.

6. J. F. McNamara, "Incremental stiffness method for finite element
analysis of the nonlinear dynamic problem," Ph.D. Thesis, Dept. of
Engng., Brown University, 1972.

7. E. Haug and G. H. Powell, "Finite element analysis of nonlinear
membrane structures," SESM Report No. 72-7, Dept. of Civil Engng.,
Univ. of California, Berkeley, 1972.

8. W. C. Chao and J. N. Reddy, "Analysis of laminated composite shells
using a degenerated 3-D element," Int. J. Numer. Meth. Engng., Vol.
20, pp. 1991-2007, 1984.

9. T. H. H. Pian and Pin Tong, "Variational formulation of finite-
displacement analysis," High Speed Computing of Elastic Structures,
B. Fraeiji de Veubeke (ed.), University of Liege, Belgium, pp. 43-
63, 1971.

10. K. J. Bathe, E. Ramm and E. L. Wilson, "Finite element formulations
for large deformation dynamic analysis," Int. J. Numer. Meth.
Engng., Vol. 9, pp. 353-386, 1975.

11. G. Horrigmoe and P. G. Bergan, "Incremental variational principles
and finite element models for nonlinear problems," Computer Meth.
Appl. Mech. Engng., Vol. 7, pp. 201-217, 1976.

12. W. E. Haisler, J. A. Stricklin, and F. J. Stebbins, "Development
and evaluation of solution procedures for geometrically nonlinear
structural analysis," AIAA J., Vol. 10, No. 3, pp. 264-272, 1972.

32

t
SRS S

L o a i uE o ko m o R aad 8 Safl il gt abS o d bk b A Sl A b B AL A AT &4 S it B dt e g B A A A B0 A A A B AL SO AL S Rt A AL RN AR A AR




e

@

. I
R

[
£'d

B

-
-

SR AR

3!, RY .),..\ e

41-
—-‘\

TR

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

d' v'_n T

D. P. Mondkar and G. H. Powell, "Finite element analysis of non-
lTinear static and dynamic response," Int. J. Numer. Meth. Engng.,
Vol. 11, pp. 499-520, 1977.

J. N. Reddy, Energy and Variational Methods in Applied Mechanics,
John Wiley, New York, 1984.

L. E. Malvern, Introduction to the Mechanics of a Continuous
Medium, Prentice-Hall, Englewood Cliffs, N.J., 1974.

J. N. Reddy, An Introduction to the Finite Element Method, McGraw-
Hi11, New York, 1984.

E. C. Klang and M. W. Hyer, "The stress distribution in pin-loaded
orthotropic plates", Report No. CCMS-85-05, Virginia Polytechnic
Institute and State University, Blacksburg, VA 24061, June 1985.

T. L. Wilkenson, R. E. Rowlands and R. 0. Cook, "An incremental
finite-element determination of stresses around loaded holes in
wood plates", Computers and Structures, Vol. 14, pp. 123-128, 1981.

M. U. Rahman, R. E. Rowland, R. D. Cook and T. L. Wilkenson, "An
iterative procedure for finite-element stress analysis of

frictional contact problems", Computers and Structures, Vol. 18,
pp. 947-945, 1984.

E. Hinton, F. L. Scott and R. E. Ricketts, "Local least squares
smoothing for parabolic isoparametric elements", Int. J. Numer.
Meth. Engng., Vol. 9, pp. 235-238, 1979.

G. Loubignal, G. Cantin and G. Touzot, "Continuous stress fields in
finite element analysis", AIAA J., Vol. 15, pp. 1645-1646, 1977.

K. J. Bathe and A. Chaudhary, "A solution method for planar and
axisymmetric contact problems", Int. J. Numer. Meth. Engng., Vol.
21, pp. 65-88, 1985.

F. A. Mirza and M. D. Qlson, "The mixed finite element method in
plane elasticity", Int. J. Numer. Meth. Engng., Vol. 15, pp. 273-
289, 1980.

J. T. Holden, "On the finite deflections of thin beams", Int. J.
Solids Struct., Vol. 8, pp. 1051-1055, 1972.

33

MR




TR T, T rr e Ll aaidd ol aiad ARIL Sad i siads ok Sk Salt ®al Y S N T W W W N R T VN T e e Y e T T T VTN Wy w T Jrv—v"'v‘

o\
~‘
e UNCLASSIFIED |
A W SECURITY CLASSIFICATION OF THIS PAGE (When ch‘znt-r-d).
g1~
ok REPORT DOCUMENTATION PAGE BEFORE CONPL TN ’M
}:-,.'\_ T. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
'ndey VPI-E-86.2
- 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
{-Q\ A COMPUTATIONAL MODEL FOR CONTACT STRESS PROBLEMS Interim
o]
:’3_: 6. PERFORMING OG. REPORT NUMBER
pran ONR-MECH-R-2
.. '{: 7. AUTHOR(s) - 8. CONTRACT OR GRANT NUMBER(s)
ttj J. N. Reddy and P. R. Heyliger N00014~84-K-0552
N
‘;}:‘ 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::giR&AaosﬂLKEnErTT'NzRMOBJEEacsT' TASK
!Qf Virginia Polytechnic Institute and State University
oo : Blacksburg, Virginia 24061 NR-064-727/5-4-84 (430)
.‘ . 1. CONTROLLING OFFICE NAME AND ADDRESS lz.JREPORT DA_I1'958
@S Office of Naval Research anuary 1986
. Mechanics Division (Code 430) 13. NUMBER OF PAGES
ey 800 N. Quincy St., Arlington, VA 22217 35
\ft-: 14. MONITORING AGENCY NAME & ADORESS(if different from Controlling Oflice) 1S. SECURITY CLASS. (of this report)
Y UNCLASSIFIED
' 15a, DECL ASSIFICATION/ DOWNGRADING
A SCHEDULE
; 16. DISTRIBUTION STATEMENT (of this Report)
\ .‘.-.
O This document has been approved for public release and sale; distribution
. unlimited.,
e
1 -':::' 17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if dilferent {rom Report)
N,
Lo
D
:‘: 18. SUPPLEMENTARY NOTES
AN
:-:»."~
v
d -,‘.
- 19. KEY WORDS (Continue on reverse gside il necessary and identily by block number)
!\t. Computational model, contact friction, contact stress, finite element model,
o incremental formu]ation, mixed formulation, nonlinear analysis, planar contact,
ﬂﬁ\' updated Lagrangian formulation.
. |-'
Rr it
. » \ 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
"' - » A mixed finite element model based on the incremental, updated Lagrangian,
W nonlinear description of continua is developed using a mixed virtual work
}g, statement, and its application to planar elastic contact problems is discussed.
' The computational model is evaluated by comparing the numerical results with
y those obtained by a displacement finite element model. The mixed model,
g which contains displacements and stresses as nodal degrees of freedom, yields
‘S accurate stresses while the displacements are no better than those of the dis-
'& placemepnts finite element madel .
‘V;:: DD ,"5%'5; 1473  eoiTion oF 1 Nov 68 15 oBSOCETE UNCLASSIFIED
't\ 3 34 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
o
.,
.- '.I
oy
e e L N e e A S b T S
» . e . ~ R RO WY *



«
/

M

),.
* v‘.n"

APl E S A X
MAUSNON Fraas

L o
P
»

v,
_.‘
)

-

-

-

s

= A T AT L - Pt A R A AT N - AR {."‘-’ CERERLY
y ) ! TS - N R YL VA ¥
W57, W, WALS ) " o R A ! AEATY .

f D i A



