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A COMPUTATIONAL MODEL FOR CONTACT STRESS PROBLEMS

J. N. Reddyt and P. R. Heyliger*
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

SUMMARY

A mixed finite element model based on the incremental nonlinear

theory of solid bodies is developed and its numerical accuracy is

evaluated by applying the model to a number of contact problems. The

theoretical basis of the finite element model is formulated using the

updated Lagrangian formulation. Both displacement and mixed models are

described, but emphasis is placed on the development and application of

the mixed model, which contains the displacements and stresses as the

nodal degrees of freedom.

INTRODUCTION
4

In the linear description of the motion of solid bodies it is

assumed that the displacements are infinitely small and that the

material is linearly elastic. In addition, it is also assumed that the

nature of the boundary conditions remains unchanged during the entire

A> deformation process. These assumptions imply that the displacement

* vector u is a linear function of the applied load vector F , i.e., if

the applied load vector is a scalar multiple aF then the corresponding

displacements are au

[* The nonlinearity in solid mechanics arises from two distinct

sources. One is due to the kinematics of deformation of the body and

ItClifton C. Garvin Professor of Engineering Science and Mechanics.
Gr".L *Graduate Research Assistant.
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the other from the constitutive behavior (i.e., stress-strain

relations). The analyses in which the first type of nonlinearity is

considered are called geometrically nonlinear analyses, and those in

which the second type are considered are called materially nonlinear

analyses. The geometrically nonlinear analysis can be subclassified

according to the type of nonlinearities considered. Two such cases

are: (i) large displacements, large rotations, but small strains, and

(ii) large displacements, large rotations and large strains. In the

first case it is assumed that rotations of line elements are large, but

their extensions and changes of angles between two line elements are

small. In the second case the extension of a line element and angle

changes between two line elements are large, and displacements and

rotations of a line element are also large.

The objective of the present study is two-fold: First, to describe

the equations that govern the nonlinear behavior of solids, and second,

to develop finite element models for the analysis of the nonlinear

behavior of solid bodies in contact.

INCREMENTAL EQUATIONS OF MOTION

Consider the motion of a body in a fixed Cartesian coordinate

*system. Suppose that the body can experience large displacements, large

strains and nonlinear mechanical (i.e. constitutive) behavior. We wish

to determine the configuration of the body for different times and

loads. The formulation to be described assumes that the configurations

of the body, cl, c2 . . . Cn due to loads P1. P2 9 . . . , n

respectively are known and seeks the configuration at time cn#J. Thus,

in the present formulation we follow the body as it deforms from the

initial configuration to the final configuration. This type of

2



*description is called the Lagrangian (or material) description, which

*differs from the Eulerian description used in fluid mechanics

problems. In the Eulerian description of motion, instead of following

the body (or a fixed collection of particles constituting the body), the

motion of particles passing through a fixed control volume is determined

for various times. The Lagrangian description is a natural one for a

solid body because one is more interested in the deformation of the body

than in the changes that are taking place in the control volume that was

occupied initially by the body. On the other hand, the Eulerian

description is a natural one for fluid flow problems, because there one

is interested in the velocity, pressure and stress fields in a fixed

control volume without focusing attention on fluid particles that enter

and leave the control volume.

In the Lagrangian description of motion all variables are referred

to a reference configuration, which can be the initial configuration or

any other convenient configuration. The description in which all

variables are referred to the current configuration is called the

updated Lagrangian description [1-41 and the one in which all variables

are referred to the initial configuration is called the total Lagrangian

description [5-81.

The equations of the Lagrangian incremental description of motion
. -

can be derived from the principles of virtual work (i.e., virtual

displacements, virtual forces or mixed virtual displacements and forces)

[9-131. Since our ultimate objective is to develop the finite element

models of the equations governing a body, we will not actually derive

the differential equations of motion but utilize the virtual work

* statements to develop the finite element models.

3

0 i .

.., 'v " .. .'-'
"

.. w..',/ .,-" .''.-* '. ',.' _' ', .I' ', ,' "*,'' "." - "..I,'' .. . .. ".* .'. * *..•. ., z . -,,. . .".' . .",



Displacement Formulation

The displacement finite element model is based on the principle of

virtual displacements (see Reddy [141). The principle requires that the

sum of the external virtual work done on a body and the internal virtual

work stored in the body should be equal to zero:

V2 i (2e ij) dV - s(2F) = 0 (1)

2 13

2

6(2F) = f 2fi 6u. dV + f 2t. u dS

.4. where2

2T = the Cartesian components of the Cauchy stress tensor in
ij

configuration c2 at time (t + At)

occupying the volume V2

2 e = the Cartesian components of the infinitesimal strain

tensor associated with the displacements ui in going from

configuration cI at time t to c2 at time (t + At)

1 Du. + u.

x. = Cartesian components of a point in configuration c2 .

2f. Cartesian components of the body force vector measured

* in c2

t= Cartesian components of the surface stress vector

measured in c2

Hm
Here s denotes the variational symbol (i.e., &ui denotes the virtual

displacement in ui) and dV and dS denote the volume and surface elements

in the configuration over which the integrals are defined.

4
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Equation (1) is not so useful in its present form because the

integrals are defined over the volume V2 and surface S2 of the

configuration c2, which is yet unknown. In the linear analysis, it is

assumed that the configuration of the body remains unchanged and

therefore Eq. (1) applies to the initial (undeformed) configuration.

The fact that the configuration of the body changes continuously in a

nonlinear analysis requires us to use appropriate measures of stress and

strain and their interrelationship (i.e., constitutive equations) so

that Eq. (1) can be used to calculate the configuration c2. In order

to compute the current configuration c2 (often, the displacements,

a strains and stresses in c2) from the knowledge of applied forces and

displacements and known previous configurations cl, we must make some

assumptions. A description of the procedure based on the updated

". Lagrangian approach is given below.

The coordinates of a general point in and and are denoted
by (Xo, Xo, Xo) (X1 , X X3) and (xl, x x3), respectively. The

(',1 2 31.3 9 9 3

displacements of a general point in cI are denoted by ( U 1 , 1u29 1u3).

In c2 they are given by

= u.+ u. , i = 1,2,3 (3)
2 1

where ui are the components of the displacement vector from cI to c2.

During the motion of the body, its volume, surface area, density,

,. stresses and strains change continuously. The stress measure that we

shall use is the second Piola-Kirchhoff stress tensor. The components

of the second Piola-Kirchhoff stress tensor in cI will be denoted by

Sij. To see the meaning of the second Piola-Kirchhoff stress tensor,

consider the force dF on surface dS in c2. The Cauchy stress

5
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tensor T is defined by

(n )dS =dF (4a)

-" where n is the unit normal to dS in c2. Note that the Cauchy stress is

the force per deformed area (i.e. measured in c2) and referred to c2.

The second Piola-Kirchhoff stress tensor at time t + At referred to c1

is defined by

(n *S) dSo = dF0  (4b)

where n denotes the unit normal to the surface element dSo in ci. The

force dFo is related to dF by

dF.= dF (4c)

where
- aX T

-ax

From the definition it is clear that the second Piola-Kirchhoff stress

is measured in c2 but referred to c1. It can be shown that (see

Malvern (151) that the components 2S and 2 T are related accordingij ad ijarreaeacodn

to

2 Oa ax.i
2S Xi 2 T (5a)
1 ii P aXm mn axn

2ax 1 2 'X (5b)T = i .aX Smn aXn

where p0 denotes the density in c, and p is the density in c2. The

second Piola-Kirchhoff stress tensor is symmetric whenever the Cauchy

stress tensor is symmetric. Note that 2S 2 T 2
2j 2 ij-

6
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Similarly, the Green-Lagrange strain tensor Eij and the

infinitesimal strain tensor eij are related by

2 axm ax

Eij aXi aX. 2 mn

It is also important to note that the 2nd Piola-Kirchhoff stress

tensor is energetically conjugate to the Green-Lagrange strain tensor

'4: and the Cauchy stress is energetically conjugate to the infinitesimLi

strain tensor. In other words, we have

2 S 6( 2 E )dV T 2 )dV (7)
.. " Su u I 12 1 i ij (2e

Substituting the equality (7) into Eq. (1), we obtain

7 0=~l S~jt3(~~) V - F() (8)

Next we use the incremental decompositions of the stresses and strains:

2 1 T + S
1 ij i 1 ij

2
I = eij i (9)

where

iSij incremental components of 2nd Piola-Kirchhoff stress tensor

* leij (incremental) components of the infinitesimal strain tensor
"'- i ui + U.)

au au
1'.2,'a.(10)i;.,. l ij 2 Xi  axj

or

Recall that ui is the i-th displacement component of a generic point in

c, (in going from cI to c2 ). Substituting Eq. (9) into Eq. (8), we

*- have

7 pi ;r' , ,.,
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0 : f (i(le + dV 6( F)
"""ij 1 ij iij

or

V I iSij (leij + 1nij) dV + iTij6(1nij)dV

S- V (leij )d v + (2F) (11)
,-

Linearize the equations by assuming that

I Sij = ICijrs ers' 1 E ij = 1 e ij (12)

We obtain the approximate equation of equilibrium,

, I ijrs lers 6(leij ) dV + f Iti ( )dV

i i  s( j)dV + s(2 F) (13)

This linearization can be interpreted as a representation of the

nonlinear curve between two consecutive load steps by a linear line

segment.

Mixed Formulation

[• A mixed (or stationary) virtual work statement that treats the

displacements and stresses as independent (dependent) variables can be

derived from Eq. (13) as follows. First, we note that Eq. (13) is the

first variation of the functional

.- : , le e dv + T+ 1 ri )dv - (14)
2 ijrs ls eij V ilej F

Clearly, i denotes the (approximate) total potential energy of the body

in configuration c2 but referred to configuration cl, and Eq. (13) is a

8
I

"S - '- -.- -'''' ' ..., -. ' .-. , ."'* .-," , ' ' .-. '' -.-. "-L ..'x .. -"-" .., .'- .--" -.. . . ,'-". . .-"."-



statement of the principle of the minimum total potential energy. In

Eqs. (13) and (14) it is understood that 1e ij and 1nij are defined in

terms of ui [see Eq. (10)1.

In the mixed formulation, we begin with the expression for the

approximate total potential energy 7 and introduce the stresses as

variables using the Lagrange multiplier method. We treat the strain-

displacement relations
i ui au.

lei = (a- - + - .)  (15)
1ij 2 3x. ax. (15

as constraints and let the increment in the 2nd Piola-Kirchhoff stress

tensor iSij act as the Lagrange multiplier. Including this in the

variational form results in the modified functional , which is given

S. by

7T : - ijlei 1 au- + a )IdV (16)

where i is given by Eq. (14). Here we note that the sign of the

Lagrange multiplier term is generally arbitrary, and is selected as

negative to obtain the correct form of the equations that follow.

The variational principle (often called the Hellinger-Reissner

variational principle) is given by setting 6n = 0. This gives

R= I [Tij leij +  r + In ( Ci i lekj - S le jR V ij 2 jk ij eki 1Si ej

-+ S ijui,j + S i uijldV - 6(2F) = 0 (17)

We next write the expressions for the strain energy density Uo and the

complementary strain energy density U0 due to the incremental

displacements as

' "'' ,' -"" ' -' ' " -" ' " " " " ,' ' " . . ' .' ' W" " " ', " ° " "'" ' '' '" '' "''' '" '"" -'.9"



displacements as

0 2 ijkz 1 ij lkz

where Dij are the components of the compliance tensor. We may then

write

U0 = U° - ISij 1eij (19)

and, taking the variation of this expression gives

U = ( C leij le - e) (20)

If we write the complementary strain energy density in terms of the

2nd Piola-Kirchhoff stress components as we did in Eq. (18) we may write

D au 0 1 ii S (21)

Equating the expressions in Eqs. (20) and (21) and substituting into Eq.

(17) yields the two approximate equilibrium equations

1 i jiij)dV + f S 6ui jdV 6 6(2 F) 6 i( e )dV

1 1 1 (22)

i ui 6(iSij)dV - f 1 S i k(iSij)dV = 0
V1  V1

These two equations are analogous to Eq. (13) for the displacement

4i formulation.

In the next section we discuss the finite element models of Eqs.

(13) and (22).

10
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FINITE ELEMENT MODELS

Di splacement Model

Here we construct the finite element model of Eq. (13) for the two-

dimensional case. We assume that the displacement components are

interpolated by expressions of the form (see Reddy [161)

,( n (
u I u j (X, x2 (23)
i'xS.2 j=1 2

where u. denote the value of ui at the j-th node, and , denote the
I

interpolation functions. Substituting Eq. (23) into Eq. (13) we obtain

LL([K I + [Kaj) (A) = {FLI - {F0  (24)

where

[KL = t [BL]T [C] [BL] dA , t = thickness
A1

[c 11 C12 C16]

[C] = C12 C 22 C 26  9

LC16 c26 c66

[BL] = 11,2 0 0)2,2 • 0 n,l'3x2)L1,2  01,1 2,2 02,1 " n,2 n,U

[Kai t f 1801T [ri 18a) dA
A

b..ii *1,1 02,1 " n,1 0

0 ~~ 0 .2 ."" '1,2 0 2,2  0 n,2

(4x2n) 0 $,1 0 2,1  . . .

0 ,.1,2 2,2 n,2

4' ,

e11
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T1 T12 0 0]

IT] T 12 T 22 0 0

0 11 T12

0 0 T12 T 22 -

{FL} = t.f [YIT {f}dA, {Fa} = t .f [BLI T {T}dAA1  A1

:A, I A {f }

(2 - 2n) 10 i0 0 02 * 0 On- 2T2 f2

(25)

It is understood that 1Tij is computed using the Almansi strain

tensor,

1 -Tij - 1Cijkm i~km (26)

1Ia u a U m aU m

lEkm (ax+a au -m
m Xk aXk X

where the displacements are now the total displacement components

measured in the current configuration. Also, since Eq. (13) is a

linearized version of Eq. (11), the error introduced into the

calculation of the displacements ui between configurations can drift the

solution away from the true solution (especially if the load steps are

large). Therefore, a correction should be made to the displacements at

each load step. This can be done as follows: The solution (A} of Eq. (24)

allows us [with the aid of Eq. (23)] to compute the total displacements

at time (t + 6t)

2 2U. 1 lu + U.

12
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which can be used to compute the strains and stresses (with appropriate

constitutive equation) at time t + At. By the principle of virtual

displacements, the true displacements, strains and stresses at. any time,

say at time t + at, are such that the internal virtual work is equal to

the external virtual work done. Since ui (hence the strains and

stresses computed from them) are approximations, there will be an

imbalance between the internal and external virtual works performed on

the body. This imbalance can be minimized by updating the internal

virtual work through an iteration (for a fixed system of loads and

time); the iteration is continued until the imbalance is reduced to a

preassigned value (i.e., a convergence limit). For example, the

displacement increment at the (r + 1)st iteration is calculated from the

equations

([KLI + K0 1) r ' r + 1 = {FL } (F r (27)

wherein [T] and {} are calculated using the displacements,

(2 (2u ir-I + (ui)r (20)

Equations (27) and (28) correspond to the Newton-Raphson

iteration. If the left hand side is not updated during the iteration,

the iterative scheme is known as the modified Newton-Raphson

iteration.

Mixed Model

We next construct the finite element model of Eqs. (22) for the

two-dimensional case. We begin by assumming independent approximations

of the displacements and stresses of the form

1. 3

0 1 F



N'

n
u(xl 9 x2 ) E UI u i(x

j 1 m( 2 9 )

kn skiS (xX 2) = 1 ijk(X'X2)

Substituting these expressions into the two equilibrium equatibns in Eq.

(22) gives

[K l 22 121 - (30)

-[K1 T [K2 I S {0S}50

where

KIlI = t [BIT ITI[BaIdA
A 1

[K22] = tf IT']T[DI[Ta]dA
A 1

JK12) = tf IBLJ T IT dA (31)

1

{FL} = tf [TI T {f}dA

A1

-4 {FNL} = tf [BL]T{ }dA
A1

[i0 0 0 0 0 . . . n 0 0]

0.0j 0= % 0 0 02 0 . . . 0 On

(3x3n) LO0 0 O 0 02 " 0 0 On

0 1 12 0161
[IN I 012 D22 D26 (32)

LD16 D26 D661

14
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All of the other necessary matrices have been defined previously during

the development of the displacement finite element model.

* . As with the displacement model, Eq. (30) is solved repeatedly until

the force imbalance is reduced to a fixed tolerance. This amounts to

measuring the percentage of the displacement and stress increments

relative to the total solution vector. When the increase in the

displacements and stresses has been reduced to below a very small

percentage of the total solution, the state of equilibrium has been

obtained for the given load step, and the load may be increased or the

analysis may be terminated.

The solution of Eq. (30) allows us to compute the total

displacements and Cauchy stresses at time (t + At). To compute the

displacements we simply use the equation
2 u u 1u + u.i

In the mixed formulation, there is no need to compute the Cauchy

stresses using the Almansi strains as was required using the

displacement formulation. Since the increments of the 2nd Piola-

Kirchhoff stress tensor are computed as nodal variables, we simply use

our incremental decomposition of the stress given in Eq. (9) as

I . + s i
When the increment in the 1 jterms is reduced to be within the

required tolerance, we have 2S T2

PLANAR ELASTIC CONTACT PROBLEMS

In this section we discuss several techniques for the analysis of

two-dimensional elastic contact problems. Such problems have a host of

computational difficulties since the region of contact is typically not

known in advance, nor are the regions of relative stick and slip between

.115



the two contacting bodies due to the presence of friction. Most current

algorithms that solve contact problems are relatively complex, and use a

A, number of iterative schemes to account for the changing boundary

conditions and regions of contact.

The nonlinear mixed finite element formulation forms the

cornerstone of the methods described below. The displacement finite

element method has been used almost exclusively in previous numerical

analyses of contact problems. Mixed elements provide the immediate

advantage of computation of stresses as nodal variables, which is ideal

for contact problems since the stresses may be obtained precisely on the

contact boundary.

Two different and independent methods are described for the

analysis of the specific problem of a pin-loaded plate. The methods are

described below and several examples are presented for the first of the

two techniques.

Rigid Pin Contact Algorithm

In general, contact problems involve two or more elastic bodies

pressing against one another under external load. In the case Of a pin-

loaded plate, these two bodies are the plate and the pin. If the

* assumption of a rigid pin is used, the analysis is simplified

considerably. This assumption eliminates the need to analyze the pin,

which not only provides a known point of reference for the ensuing

contact (i.e. the surface of the pin), but also drastically reduces the

resulting global finite element system of equations since there is no

need to discretize the domain of the pin.

* The assumption of a rigid pin is reasonable if the modulus of

elasticity of the pin is much higher than that of the plate. Analytical

S1
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studies have also shown that, in the contact analysis of composite

plates, pin elasticity is not an important variable and has a relativelyMI small effect on the resulting stress distributions (171.

One simple and effective method for analyzing thin, orthotropic,

pin-loaded plates was developed originally by Wilkenson 118] and was

later refined by Rahman [19] to capitalize on the computational

advantages that arise from the rigid pin assumption. The method uses

three separate iteration steps to account for the incremental load

level, the contact process, and the effects of friction. Both the

original and refined schemes used displacement finite elements. In the

load step iteration, the solution for a given load increment was treated

as a linear analysis, i.e. the equations of linear elasticity were

used. The stresses in the plate were computed, for a given load level,

using the original, undeformed configuration of the plate along with the

final displacement vector.

The use of displacement elements in the analysis of con,.t

problems frequently results in very large displacement gradients at the

region of contact. Since the required stresses are computed at the

element interiors and are then extrapolated to the contact boundary,

V. some type of stress smoothing is often necessary using, for example, a

local least squares routine 1201 or iterative improvement on the

averaged nodal stresses [21]. Using mixed elements, this is not

*a necessary since the stresses are computed as nodal variables and no

or postcomputation is necessary to modify the resulting nodal stresses. It

is for this reason that mixed elements would appear to be advantageous

over displacement elements for contact problems.

17
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The refined algorithm developed by Rahman [191 uses a mixed polar-

Cartesian coordinate system to fix the proper displacements of the nodes

of the plate that have come in contact with the pin. An iterative

scheme is used to ensure that, for a given load step, all nodes that

have come in contact remain in contact. In other words, after every

iteration the pstosof all cnatnodes are corrected in the radial

direction so that they remain on the surface of the pin. If the

resulting shearing stress for a given contact node is larger than the

induced radial stress multiplied by the nodal coefficient of friction,

the node is considered to be sliding, and it may subsequently move in

the tangential direction of the pin. Otherwise, the node is considered

to be sticking to the pin due to friction, and is fixed to an

II interpolated position on the pin for the remainder of the analysis.

This iterative procedure is repeated until the sum of the load steps has

reached the required load level. The details of the this method are

more completely described in reference [191.

Elastic Pin Contact Algorithm

The assumption of a rigid pin, which is reasonable for cases when

the two bodies in contact have a very large difference in modulus of

elasticity, is not usually valid for contact between two generic

bodies. The algorithm described in the previous section, though useful

for certain problems, was mainly developed to demonstrate the use and

V accuracy of the mixed finite element method for the analysis of contact

problems. For general problems involving arbitrary bodies, it is

necessary to revise the analysis to include the effects of pin

elasticity, which may be significant if the two bodies are of similar
Y.-

constitution.

18



To handle the complications arising from contact and the presence

of friction between two elastic bodies, we add a Lagrange multiplier

contribution to our original expression in Eq. (16), which will

represent the total potential of the contact forces acting at the nodes

on the contact boundary. In addition, the kinematics of the elements at

the contact interface must be monitored such that the nodal

displacements are compatible. We therefore invoke stationarity of the

modified functional

k
IN = TL W= 1

where k represents the number of the contactor nodes on the boundary and

W represents the total potential for a given contact force acting at a

given contact node.

Taking the first variation of the modified functional nN results in

a system of equations similar to Eq. (30) with the increment in the

contact forces added as new nodal variables for the contactor nodes.

These constraint equations may be added to the original stiffness

matrices by means of contact matrices, which contain the needed

* relationships between the contact forces and the contact node

displacements. This idea was originated and developed using a

displacement formulation by Bathe and Chaudhary [22].

The analysis proceeds in a manner similar to the steps performed

for nonlinear solid mechanics problems in that load increments are

applied to the body or bodies and the equilibrium equations are solved

iteratively until the solution increment is within a preassigned

tolerance. If, however, there is penetration of a contactor node from

one of the bodies into the domain of a contact element from the other

19



body during a given iteration, the contact matrices are imposed for the

next iteration and the new set of equations is solved until the overlap

distance created during the penetration is eliminated. This results in

an increase of the contact forces for the nodes involved in the contact

as well as a change in the nodal displacements and stresses for these

nodes. Inherent in the contact matrices are allowances for stick and

slip, and their implementation is a function of the contact stresses and

coefficients of friction between the two bodies. The coding of this

* method is underway and no example problems have been completed to

include in this report.

0 HYBRID EXPERIMENTAL/NUMERICAL TECHNIQUE

VThe primary difficulty in the analysis of contact problems is the

lack of knowledge regarding the region of contact and the state of stick

or slip between the tw~o bodies. If the regions of contact and the state

of stick or slip are known for a given load level, the analysis is

greatly simplified. A hybrid experimental/numerical technique has been

proposed as part of this research project that combines the experimental

technique of moire interferometry with the numerical finite element

method to form a hybrid technique. The new method uses the advantages

* of each of the methods to create an accurate and powerful tool of

analysis.

Moire interfereometry provides the required sensitivity that is

needed to accurately measure the small in-plane displacements of the

two-dimensional pin-loaded plate contact problem. In particular, this

method provides valuable information on thd state of the displacements

at the interface boundary between the pin and the plate. This

eliminates the need for any theoretical assumption on exactly what is
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occurring at the contact boundary that is so common in most numerical

simulations. As mentioned previously, it is the complex state of

) contact, stick, and slip that makes this problem so difficult to model

in a strictly numerical method, and the use of an experimental technique

greatly simplifies the computational effort.

The exact displacements of a physical specimen may be measured for

a sequence of increasing load steps. These displacement increments,

along with the loads applied to the plate, are input as a sequence of

nonhomogeneous boundary conditions for the simulated problem analyzed by

.. ~.the nonlinear mixed finite element method. The resulting normal and

shearing stresses around the hole of the plate may then be computed to

determine the quantitative behavior of the coefficients of friction as a

function of the angular position around the hole and the load level.

The only approximations introduced are due to the physical and

mathematical limitations of moire interfereometry and the finite element

method. The numerically solved problem is simply a special boundary

value problem with specified displacements, and no other assumptions are

involved.

Since, in theory, the one half of the plate acts as the mirror

image of the other half of the plate, only one half of the plate domain

is modeled for the finite element analysis. This also drastically

reduces the computational time involved. Preliminary experimental data

have shown that the displacements around the hole of the plate are not

S... quite symmetric, even for an isotropic material. This is most probably

due to the limitations of creating a perfectly symmetric specimen and

applying a perfectly symmetric load. The displacements are therefore

averaged in both of the coordinate directions of the plate to yield one
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value for a given point of the contact boundary for the modeled half of

the plate.

The finite element portion of the analysis currently awaits the

reduction of the experimental data for a series of increasing load

steps. No examples of the hybrid procedure are included in this report.

NUMERICAL EXAMPLES

In this section we consider a specific example to demonstrate the

characteristics and differences of the displacement and mixed finite

element models in nonlinear analysis.

Before considering the example problem, we note an important point

on the order of approximation using the mixed elements. Using the

results of an eigenvalue analysis of the mixed finite element matric's,

NMirza and Olsen [23J proposed and verified a completeness criterion that

restricts the choice of the order of approximation for the displacements

and stresses. The completeness criterion was given as:

The strains from the stress approximations

should possess at least all the strain modes

that are present in the strains derived from the

displacement approximatons.

When this criterion is violated, the global stiffness matrix in the

mixed model will be singular even after the imposition of the boundary

conditions. Isoparametric rectangular elements are used for all of the

examples considered herein and, to meet the requirements of the

completeness criterion, only linear-linear or quadratic-quadratic

combinations are used to approximate the distributions of displacements

and stresses in the mixed model. All of the computations were carried

out on an IBM 3081 in double precision arithmatic.
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Bending of a Cantilever Beam

* The cantilever beam shown in Figure 1 was analyzed using 5 8-node

* quadratic-quadratic elements using the assumptions of plane stress. The

material properties and geometry used are given in the figure. The

analysis was completed using 16 equal load steps and a tolerance of E=

2 0.001. The displacements along the line x =0.0 were specified to be

zero.

Figure 2 contains the plot of nondimensionalized tip displacement

vs. applied load for the linear analysis and nonlinear analysis as

computed by the mixed and displacement finite element models. The mixed

* model gives displacements that are larger than those of the displacement

model, with a maximum difference of 2.8 percent measured at the final

load level. Although the results of the displacement model are in

excellent agreement with the analytical solution reported by Holden

[24], it should be mentioned that Holden's solution uses the Euler-

Bernoulli beam theory (i.e., does not even account for the transverse

shear strain). However, for a beam of the dimensions used in this

example, the shear deformation effect is undoubtedly quite small, and it

remains that the mixed element model yields slightly larger

* displacements than does the displacement model for this example.

It is also of interest to compare the Cauchy stresses determined

*from the two formulations. In the displacement model, it is necessary

* to compute the Almansi strain tensor, and then use the constitutive

relations of the material, as described in Eq. (26). In the mixed

model, we may simply interpolate the values of the nodal stresses using
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the original form of the stress approximation, i.e.

n k
ij 1 2) = i tj'( = ik xx 2)

To compare the Cauchy stresses using the two formulations, we

computed the axial stress T xx at the location of the Wx Gauss points

along the upper half of the beam. The displacement components from the

two models are not exactly the same (the actual positions of the Gauss

points vary somewhat), but this difference is very small. The

-~comparison of the axial stress components is shown in Figure 3 for the

two different models at the final load level. The agreement is

excellent, with the mixed results giving a maximum stress that is 4.8

percent higher than the maximum stress computed using the displacement

model. All other computed values are in much closer agreement for the

two models.

Although the displacements in the y-direction are in very good

agreement for the two formulations, the difference in the displacement

gradients can be quite large and can result in significant errors when

computing the Cauchy stresses from the Almansi strains using the

displacements from the mixed formulation. For example, considering the

lower left Gauss point of the rightmost element, we have the following

values at a given load step:

Displacement Formulation Mixed Formulation
u ,x0.003 0.007

u 0.082 0.082

v ,x-0.082 -0.082

v ,~0.003 0.007

T V -1.95 51.20

The stress computed from the displacement model is in very good

agreement with the stress computed from "he mixed model using nodal

26

4 ~ '- **~.** 4 .* ... A*,:



stress interpolation, but the stress computed from the Almansi strains

using the displacements from the mixed model is very much in error. It

appears from the results of this example that the nodal displacements of

the mixed model should not be used at any point of the analysis to

compute the Cauchy stress components, and the nodal stress values should

be used instead.

Rigid Pin Examples

The contact algorithm proposed by Wilkenson and Rahman was

implemented using the three basic iterations of load, contact, and

friction using a geometrically nonlinear formulation along with mixed

* finite elements. Here the results of several example problems involving
VV.

contact between an elastic body and a rigid pin are presented not only

to demonstrate the accuracy of the algorithm but also to highlight the

effectiveness of having stress as a nodal variable. The results of the

example problems are compared with available analytical and numerical

solutions.

In the first example we consider an infinitely long cylinder of

radius r = 1 resting on a rigid plane and under a uniform line load.

This problem was modeled using the assumptions of plane strain. One

quarter of the circular domain was used to model the problem, and was

approximated by 84 linear-linear elements. The load was assumed to act

at the center of the cylinder and was applied in 12 increments, with the

initial increments smaller than the later increments. The problem was

modeled by assuming that the cylinder was in contact with a rigid pin of

very large radius (R = 1000) to model the rigid plane. A tolerance of E

=0.001 was used for the equiliurium iterations. The modulus of

elasticity used was 21,000 ksi and the Poisson's ratio used was 0.3.
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The results of the analysis are shown in Figures 4 and 5. The

numerical results are compared with the Hertz analytical solution.

Figure 4 shows the contact pressure distribution plotted against the

distance from the original point of contact. Figure 5 shows the load

plotted against the total contact area, the data points of which can

only be determined when each successive node comes in contact with the

pin. The results from the contact algorithm appear to be quite good.

The second example considers a thin, orthotropic, pin loaded plate

with a hole of radius r under a uniform, in-plane load as shown in

Figure 6. Due to symmetry, one half of the plate was modeled using 124

linear-linear elements with 156 nodes for a total of 780 degrees of

freedom. The material properties given in the figure are averaged

properties from a number of species of wood. The pin was assumed to be

rigid and of radius R. The plate was loaded to a final load of 400

pounds per inch of plate thickness, and was applied in 18 increments. A

coefficient of friction of 0.7 was assumed at all points of contact

between the plate and the pin for all load levels, and is a typical

value for wood on steel. No equilibrium iterations were performed for

this problem.

Figure 7 shows the radial stress distribution as a function of the

angular position around the pin for the nodes that have come in contact

at the final load step. These results are compared with the results

obtained by Wilkenson [181 using a finer mesh (385 nodes) and quadratic

displacement elements. The comparison is very good.
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