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R I. INTRODUCTION

“Flame chemistry models for even simple chemical oxidations include
hundreds of chemical reactiong}\;Commonly, rate coefficient data is available
for few of the proposed reactions. 1In some cases, reaction network schemes do
not provide even qualitative descriptions of the obserEa‘chemise;yv—émhe
methoxy radical, CH30, appears as a constituent in chemical models that
describe the oxidation of fuels, esyecially combustion systems Numerous
experimentall'm and theoreticalll=19 research projects have fgcused upon this

7o~
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l. K. Iwasaki and K. Tariyama, “"Electron Spin Resonance of Methoxy Radicals
Trapped in the Methanal Irradiated at 4.2K," J., Am. Chem. Soc., Vol. 100,
p. 1964, 1978.

2. D.K. Russell and H.F. Radford, "Analysis of the LMR Spectra of Methoxy,
CHZO," J. Chem. Phys., Vol. 72, p. 7250, 1980.

3. H.R. Wendt and H.E. Hunzicker, "Electronic Absorption Spectrum of CH40,"
J. Chem. Phys., Vol, 71, p. 5202, 1979.

4. K. Ohbayashi, H. Akimata, and I. Tanaka, "Emission Spectra of CH30, CyHg0
and i-C43H;0 Radicals,” J. Phys, Chem., Vol, 81, p. 798, 1977.

5. M. Sutoh, N. Washida, H. Akimoto, M. Nakamura, and M. Okuda, "The
Emission of CH30 from Reactions of Metastable Rare Gas Atoms with
Methanol,” J. Chem. Phys., Vol. 73, p. 591, 1980.

6. G. Imoue, H. Akimato, and M. Okuda, "Spectroscopy of the CH30 A2A1—X2E
System by Laser-Excited Fluorescence Method,” J. Chem. Ph's., Vol. 72,
p. 2769, 1980.

7. N. Sanders, J.E. Butler, L.R. Pasternak, and J.R. McDonald, "CH30
Production from 266 mm Photolysis of Methyl Nitrite and Reaction with

NO,” Chem. Phys., Vol. 49, p. 17, 1980.

8. D.E. Powers, J.B. Hopkins, and R.E. Smalley, "Laser Production of Set-
Cooled Radicals. Methoxy and Methoxy-Argon,” J. Phys. Chem., Vol. 85,
p. 2711, 1981.

9. B.K, Janousek, A.H. Zimmerman, K.J. Reed, and J.I. Brauman, "Electron
Photodetachment from Aliphatic Molecular Anions. Gas Phase Electron
Affinities of Methoxyl, Test-Butoxyl, and Neopentoxyl Radicals,” J. Am.
Chem, Soc., Vol. 100, p. 6142, 1978.

10, P.C. Engelking, B.G. Ellison, and W.C. Lineberger, "lLaser Photodetachment
Electron Spectrometry of Methoxide, Deuteromethoxide and Thiomethoxide:
Electron Affinities and Vibrational Structure of CH3O, Chy0,a nd CH3S,"
J. Chem. Phys., Vol. 69, p. 1829, 1978.

1l. D.R. Yarkony, H.F. Schaefer, 111, and S. Rothenberg, "Geometries of the
Methoxy Radical (X2E and A2A1 States) and the Methoxide Tron,” J. Am.

Chem. Soc., Vol. 90, p. 656, 1974.
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ﬁ* 12. W.A. Lathan, C.A. Curtiss, W.J. Hehre, J.B. Lisle, and J.A. Pople,
“ "Molecular Orbital Theory of the Electronic Structure of Organic
'Cf Compounds,” Progr. Phys. Org. Chem., Vol. 11, p. 175, 1974.

13. H. Umeyama and S. Nakagawa, "Spectroscopic Observation of the Methoxy
Radical,” Chem, Pharm, Bull., Vol. 25, p. 1671, 1977.

14, J.T. Hougen, “Double Group Considerations, Jahn-Teller Induced Rovibronic
Effects, and Nuclear Spin-Electron Spin Hyperfine Hamiltonian for a
Molecule of Symmetry C,, in an Electronic “E State,” J. Mol. Spectrosc.,

3
Vol. 81, p. 73, 1980.

N 15 G.F. Adams, G.D. Bent, G.D. Purvis, and R.J. Bartlett, "Calculation of
Dissociation Energies Using Many-Body Perturbation Theory,” Chem. Phys.
4N Letters, Vol. 81, p. 461, 1981.
b5 —_—
'{iﬁ 16. C.F. Jaeckels, "Electronic Structure Calculations for Methoxy: The X2E
f} and A2Al States,” J. Chem. Phys., Vol. 76, p. 505, 1982.
' A [ ]

PY 17. G.F. Adams, R.J. Bartlett, and G.D. Purvis, “On the Unimolecular
T Reactions of CH30 and CHZOH," Chem. Phys. Letters, Vol. 87, p. 311, 1982.
LR
l‘ - ‘..

N 18. G.D. Bent, G.F. Adams, R.H. Bartram, G.D. Purvis, ana R.J. Bartlett,
ol “"Many-Body Perturbation Theory Electronic Structure Calculations for the
N Methoxy Radical. I. Determination of Jahn-Teller Energy Surfaces, Spin-

Orbital Splitting and Zeeman Effect,” J. Chem. Phys., Vol. 76, p. 4144,

ey 1982.
o+
iu* 19. S. Saebo, L. Radom, and H.F. Schaefer, III, "On the Weakly Exothermic
A Rearrangement of Methoxy Radical (CH40H)," J. Chem. Phys., Vol. 78,

385
A p. 845, 1983.
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radical. Most of these researches attempted to elucidate the molecular
structure and spectroscopy of this radical; tasks which remain incomplete,

*x
<

. however. To date, no empirically derived structure has been obtained, nor has
‘;:: the complete vibrational spectrum been determined. While such
L characterization studies continue, the chemical reactions that include the
A::; radical populate nearly all combustion models. Here too, the lack of

f experimental and theoretical information leads to great uncertainty in
estimating rate coefficients for these reactions. Our previous research on

9

|
:; this radical was motivated, in part, by uncertainty in rate coefficient data
;\? for the hydrogen dissociation reaction,
_;{;. CH30 » CHy0 + H (1)
Since methoxy is but one hvdrogen atom more complex than formaldehyde, we also
L considered the |,2-hydrogen shift reaction that isomerizes methoxy to form
{-: hydroxymethyl
e
e CHy0 = CH,OH (2)
S

® As was the case with the tormaldehyde results,zo the electronic energy barrier
S for methoxy isomerization wa. only slightly higher than the dissociation

o barrier. This result supported Radford's interpretation of experimental data

suggesting that the isomerization reaction (Eq. 2) may compete with the

o dissociation reaction (Eq. 1).21 Subsequently, Batt, Burrows, and Robinson22
L estimated an activation energy for the isomerization reaction, and concluded
' that the dissociation reaction dominates at high temperature. They noted,
however, that the rearrangement reaction may compete with the dissociation at

N high temperature.

s

-\ &

i{j This report describes electronic structure calculations pertinent to
Y these two reactions of methoxy. The quantum chemical results are used to
:) obtain rate coefficient estimates for these two reactions for both low and
;)‘ high temperatures, in the low pressure limit region.

-1‘ﬁ .

[

20. J.D. Goddard and H.F. Schaefer, I1II, "The Photodissociation of
Formaldehyde: Potential Energy Surface Features,” J. Chem. Phys.,
vol. 70, p. 5117, 1979.

X

;} 21. H.F. Radford, "The Fast Reaction of CH,OH with 0,," Chem. Phys. letters,
) vol. 71, p. 195, 1980.
)
’}f; 22. L. Batt, J.P. Burrows, and G.N. Robinson, "(n the Isomerization of the
9.» Methoxy Radical: Relevance to Atmospheric Chemistry and Combustion,”
:S;' Chem. Phys. letters, Vol. 78, p. 467, 198].
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II. THEORETICAL CHEMISTRY OVERVIEW

The description of chemical reaction pathways using quantum chemical
methods has been simplified by the introduction of analytic formylas for the
gradient of the energy and the second-derivatives of the energy. This
research employed the use of analytical energy gradients, computed with
reference to unrestricted Hartree-Fock (UHF) wavefunctions, to locate those
points on the energy hypersurface where the gradients vanish. Such poiats
correspond to equilibrium structures, when there are no negative second-
derivatives, and transition state structures, when there is one and only one
negative second derivative. Structural parameters and second-derivatives for
the methoxy radical, and the two transition stztes were obtained using the
GRADSCF system of electronic structure codes.? These EQF calculations
obtained wavefunctions expanded in a 6-31G** basis set. Subsequent
structural optimizations obtained using a Dunning-Huzinaga double-zeta basis
set augmented by polarization functions on all atoms did not yield
significantly different results.

Self-consistent field methods, like UHF, yield unreiiable predictions of
chemical energy differences. These methods exclude the effects of correlated
electron motions. There are a number of quantum chemical methods available to
estimate the correlation-energy contribution. In this study, we have used the
linked-cluster based method known as many-body perturbation theory (MBPT).

The reference function for the MBPT calculations was taken to be a UHF
wavefunction in the double-zeta plus polarization basis set. The MBPT
calculations are fourth-order calculations that include all single~, double-,
and quadruple-excitation diagrams that contribute at fourth-order.

23. M.J. Page, P.W. Saxe, B.H. Lengsfield, III, and G.F. Adams, "On the
Development of MCSCF and MCSCF-CI Methods for the Calculation of Hessian
Matrices,” to be published.

24. A. Komornicki, National Resource for Computations in Chemistry (NRCC),
Software Catalog, Program Number QHO4 {(GRADSCF), Vol. I, 1980.

25. P.C. Hariharan and J.A. Pople, "Accuracy of AH; Equilibrium Geometries by
Single Determinant MO Theory,” Mol. Phys., Vol. 27, p. 209, 1974.

26. T.H. Dunning, Jr., "Gaussian Basis Functions for Use in Molecular
Calculations., I. Contraction of (9SSp) Atomic Basis Sets for First—Row
Atoms,” J. Chem. Phys., Vol. 53, p. 2823, 1970.

- 27. Te.H. Dunning and P.J. Hay, "Gaussian Basis Sets for Molecular
Calculations in Modern Theoretical Chemistry, Methods of Electronic
Structure Theory,” Vol, 3, H.F. Schaeffer, editor, 1977.
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To estimate the unimolecular rate coefficients we use a simplified theory
of unimolecular reactions developed by Troe.?2 Troe's review paper cites
the lack of detailed knowledge of the potential energy hypersurfaces and the
intermolecular energy transfer processes as deficiencies that hamper the
development of predictive rate coefficient models. The electronic structure
calculations reported here, and in references 15 and 17, provide useful
information about the potential energy hypersurfaces for the methoxy
radical. Details of the energy transfer processes stand beyond the scope of
this work. Troe's model avoids the energy transfer processes by invoking the
strong collision hypothesis, and seeking ways to correct this overestimate.

Troe2? expresses the limiting low-pressure pseudo-first-order rate
coefficient, kg, as

sc
kO = BC kO ’ (3)
where 8. represents the temperature dependent collision efficiency and kS

represents the strong-collision form of the limiting rate coefficient. Qhe
strong-collision rate coefficient is expressed as

sc p(Eo)kT
kO = ZLJ-——GJ——— FEFrotFanh exp (_Eo/kT) ’ (4)
where is the Lennard-Jones collision frequency, p(EO) is the harmonic

density of states, Q, is the vibrational partition function, and the F terms
are correction factors for the energy dependence of the density of states,
rotational effects and anharmonicity, respectively. The exponential contains
the critical energy, E,, the energy difference between the reactant and the
transition state measured between the vibrational zero-points. In this work,

we usgd expressions given by Troe in Reference 27 to evaluate the factors
of k

0
A more precise approach to the treatment of competing reactions requires
that we treat the two reactions simultaneously. Formally, for a two-channel

competin§ reaction process, the total and single-channel rate coefficients are
given by

28. J. Troe, "Theory of Thermal Unimolecular Reactions at Low Pressures,
IT. Strong Collision Rate Constants Applications,” J. Phys. Chem,,
Vol. 66, p. 4758, 1977.

29. J. Troe, "Predictive Possibilities in Unimolecular Rate Theory,” J. Phys.
Chem., Vol. 83, p. 114, 1979.

30. Th. Just and J. Troe, “"Theory of Two-Channel Thermal Unimolecular
Reactions., I. General Formulation,™ .J. Phys. Chem., Vol. 87, p. 3068,
1980.




k, = [ " h(E) £(E) [k (E) + k,(E)] dE (5)
0 E 1 2
01

Ry K10 = ko = kg (6)
»,
s kog = j h(E) f(E) k,(E) dE (7)
--“'4" 02
“.:\"A;P
"a?f where klO represents the rate coefficient for the channel with the lower
Ralle critical energy and ks that for the channel with the higher critical energy,
. h(E) is the population of reactive states above the lower threshold energy,

and f(E) is the equilibrium population at energy E. Specific expressions for
the total rate-coefficient are

p(E, DkT

01 a 2
ko = M Z———— exp (B, /¥D Fp (G xp) (8)
e

x:;: where Ey; is the critical energy for the lower critical energy channel,
o and a represents the average energy removed in down transitions. The
N corresponding expression for the upper-channel rate coefficient is
‘ - a+F_k
SRS 02 = %o €XP oF kT

tf;?: [(:ftfiii{) [z (___l:_gfz____)

o aF kT’ E k (E)+k (E)

Q‘) E 02

Vs

Fa
4

¢
A L

o (E-E, ) (a+FKT)

s exp C——grer 4 9

,k"_ 2 E

A The integral appearing in the last equation can be approximated in various

St ways. If the specific branching ratio

S k,(E) :
RO V,(E) = K (BDR.(D) ° (10)

® 1 2

;:]f varies only slightly with energy, then the ratio will be nearly equal to

".“' variation of the rate coefficients with temperature over a large temperature
o range, the evaluation of the specific branching ratio will be treated in a
Y consistent manner. A more thorough discussion of the theory of two-channel
igf:j unimolecular reactions is given by Just and Troe.30 The treatment used in
:;:}

b

[

o

-
.

( ) If V,(E) varies markedly with E, then the specific rate constants
: k (E and k (E must be used in evaluating the integral, or an exponential
o model must be used to approximate V,(E). Since we're interested in the
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this study assumes a vibrational two-channel model for the low-pressure limit
of the unimolecular reaction. Both unimolecular reactions of the methoxy
radical are characterized by rigid transition state complexes.

[TI. ELECTRONIC STRUCTURE THEORY RESULTS

In our previous report on the unimolecular reactions of the methoxy
radical, we reported structural parameters for CH,0 and a series of
transition states relevant to the chemis vy of the radical. As noted by
Saebo, et al, the structure reported in Reference 17 for the methoxy radical
corresponds to the 2y component of the 2g state, rather than the 27 ground
state. The correct structural parameters and electronic energy are reported
for the X“A' state of methoxy in this report. The transition state structures
cited in Reference 17 correspond to points on the 2p hypersurface. Thus, the
electronic contribution to the critical energies equals the electronic energy
differences between the two transition state structures and the equilibrium
structure. Table ] contains a summary of the structural information for the
radical and the transition states, and Table 2 contains the results of the
electronic energy calculations obtained with the double zeta plus polarization
basis set at several levels of theory. The most accurate energy differences
should be those predicted by fourth-order MBPT; thus, the electronic energy

barriers equal 35.2 kcal/mole and 35.6 kcal/mole for dissociation and
isomerization, respectively,
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;‘ TABLE 1. OPTIMIZED GEOMETRICAL PARAMETERS FOR STATIONARY POINTS
_ ON THE METHOXY SURFACE?®®

R |

o CHy0 (X2A")

‘\‘_

o8

)

() r(C-H}) 1.086
»qﬁ r(C-Hq) 1.089
o r(c—0§ 1.382
o OCH,; 111.7
() OCH4y 106.1
‘ H, CH, 110.5
[

o

{{} Transition Structure: Dissociation
N r(C-H;) 1.087
" r(C-Hy) 1.834
p- r( C—O; 1.225
._‘-. 0CH1 12114
N OCHj 99.8
- H, CHy 116.7

Transition Structure: Isomerization

L}
h"kA
o r(C-H,) 1.078
I“!ti r(C-Hy) 1.264
2 r(C-0 1.367
N OCH, 117 .4
OCH, 53.5

P H, CH, 118.3
1
"'1:.‘.'

IhK
s
B

Wl

) a - Units: Bond Lengths, Angstroms.
[+ b - Units: Bond Angles, Degrees.
b0
K-
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" z: TABLE 2. ELECTRONIC ENERGIES (UNITS: HARTREES)
S Transition Transition

"N, Radical State State
\z¢: Equilibrium Dissociation Isomerization
ZEAL

8/ UHF ~114.4484 -114.3845 -114.3668
“;} SDQ-MBPT(4) -114.7621 -114.7060 -114.7054

Y To determine the critical energy for reaction requires knowledge of the
G . zero~point vibrational energy for the reactant and transition state. By

Ny computing the second-derivatives of the molecular energy with respect to
nuclear distortion, we can determine the harmonic vibrational frequencies for
these structures. The harmonic frequencies for the methoxy radical and the
two transition states are presented in Table 3. Note that each of the

[0

:.‘: transition states has one, and only one, imaginary frequency. With these
\'\' results, we estimate the critical energy for dissociation to be 29.5

s N kcal/mole, while that for isomerization is 31.7 kcal/mole.

TABLE 3. VIBRATIONAL FREQUENCIES FOR POINTS ON THE METHOXY HYPERSURFACE
(UNITS: WAVENUMBERS)

5
AN
o Equilibrium Dissociation TS* Isomerization TS*
. 3274 3768 3366
ﬂ}jj 3255 3138 3249
oL 3188 1708 2473
e 1668 1518 1621
:_;* 1604 1345 1266
2 1585 1211 1241
A 1283 668 1074
T 1226 504 945
o i130 9551 25691
st
o
[
’. *Transition State.
o
i
:&}; To anticipate our treatment of the rate coefficients, we note that the
Y vibrational frequencies for the methoxy radical share the defect of all
?f frequencies determined using SCF analytical gradients, Such frequencies are
'r' ' estimates of harmonic vibrations, while empirically observed vibrational
e frequencies include anharmonic character. The experience of quantum chemists
§;': in computing frequencies suggests that the results reported in Table 3 will
;{t. . exceed observed frequencies by approximately 10%. Therefore, we reduce the
Rl predicted frequencies before use in the rate coefficient estimation.
"
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IV. RATE COEFFICIENT ESTIMATES

The rate coefficients for dissociation and isomerizatioun of the methoxy
radical for temperatures in the range, 300K < T < 1200K, are evaluated in two
ways. We present first the results of separate calculations of the two
processes, ignoring the complications introduced by formal consideration of
the competitive nature of the reactions., We then consider the reactions as
two competitive reactions, determining branching ratios usinyg Troe's
vibrational two-channel model. Comparison of the two treatments allows us to
assess the utility of the simple model as a quick and dirty tool for assessing
branching ratios.

In addition, we consider also the effect upon these results of errors in
the quantum chemical calculations. It is commonlv accepted that electronic
structure methods overestimate barriers to unimolecular reactions. Thus, it
is necessary to determine whether the reasonable correction of the quantum
chemical barrier heights leads to significantly different relative reaction
rates, or branching ratios,

There oceurs in the literature several values for the heat of formation of
the methoxy radical. 0 31 These values, when combined with the heats of
formation of formaldehyde and hydrogen provide the heat of reaction for the
dissociation., Using the various experimental values, the heat of reaction may
be 22.2 kcal/mole or 26.7 kcal/mole. 1In a paper on the a priori determination
of dissociation energies, we estimated the heat of formation of CH,0 to be
1.0 £ 3.0 kcal/mole. 5> This value has the virtue that the error bars
encompass the experimental values; this leads to a dissociation energy
estimate equal to 25.1 kcal/mole. Correcting this value for classical
translational energy contributions, we obtain the 0K dissociation energy,

24.2 kcal/mole. This sets a lower limit on the critical energy for this
reaction channel. The value predicted by the electronic structure
calculations for the critical energy corresponds to a recombination barrier of
5.3 kcal/mole, a value several kcal higher than the barrier estimated for the
isoelectronic ethyl radical barrier. Thus, there is some evidence that the
critical energy for dissociation has been overestimated by several kcal/mole.

Estimating the error for the isomerization reaction barrier is less
straightforward. Although we expect that the value exceeds the "true"
critical energy, it is difficult to make a reasonable estimate of the error.
On the one hand, we believe that the theoretical methods used provide a more
reliable prediction of the isomerization barrier than for the dissociation
barrier. Conversely, we have not included the contribution of triple
excitations on the fourth-order energy contribution; an effect that should
reduce the isomerization barrier more than it reduces the dissociation

31. L. Batt and R.D. McCullough, "Pyrolysis of Dimethyl Peroxide,” Int. J.
Chem. Kinetics, Vol. 8, p. 492, 1970.
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barrier. In any case, however, we expect both barriers to be reduced by
better theoretical calculations. Therefore, to provide a useful test of the
effect of quantum chemical errors on the branching ratios, we assume that the
“correct” critical energies are: dissociation 27.0 kcal/mole; isomerizaticn,
30.0 kcal/mole. These values will be used to estimate branching ratios for

T = 1200K.

In the following sections, we present the results obtained for the rate
coefficients by treating the reactions as independent and coupled,.

A. Independent Rate Coefficient Treatmeut

The data used to evaluvate the factors in the expression for K were
determined entirely from the results of the quantum chemical ralculations
which are summarized in Tables 1-3. To estimate a value for the collisions
efficiency, we assumed that the average eunergy t¥ansfer in a down collision
was 4.6 kj/mole (1.099 kcal/mole), and used Troe's relationship connecting
B. and a. We summarize in Tables 4 and 5 the factors obtained for the
dissociation and isomerization reactions, respectively. The values of ¥,,
given in the right-hand column, lead to the conclusion that the dissociation
dominates at room temperature, but that the isomerization reaction competes
with dissociation at high temperatures. To some extent the result parallels
the change in relative values of the exponential factor, but one should note
that the harmonic density of states factor always favors the isomerization
teaction. In fact, the density of states factor will always favor the channel
with the higher critical energy, since we've evaluated the density of states
at E,. To recapitulate, this model predicts that the isomerization and
dissociation reactions compete at high temperature, a result that concurs with
Batt's conjecture,

What is the effect on the high~temperature rate cocfficients nf reducing
the critical energies for the two reactions? The detailed results for the two
reac. s are collected in Table 6. The ratios of the k”‘s changes tittle
from that obtained using the original quantum chemical critical encrgies.
Apparently the resnlts of assuming a greater separation between (' two
critical energics cancel the results of reducing these values. Thus, if we
assume that the branching ratin for the competitive reactions can be rstimated
by computing the rate coefficients independently, we conclude that the
isomerization and dissociation reactions compete at high temperature.

B, Vvibrational Two-Channel Model

The expression for the total unimolecular rate coefticient, tq. (8), is
very similar to the expression dertved by Troe for the low pressure rate
coefficient of a single unimolecular redction. Missing are rotational and
anharmonic corrections. The expression, however, contains a term relating to
the energy-transfer step size. Since we estimated this value to determine the
collision efficiency, B., consistency demands retaining the same value {n this
treatment.

Tn evaluate the exprcsston7 for the rate coefficient, Kyq, requires
evaluating the specific branching ratio, V,(E), given by Eq. o). The
expression for VZ(E)’ may be rewritten as

t7
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s
) ,;'-I ( W2( E)

4 Vo(E) = o—mimtm——e (11)
?*.,-.' 2 WI(E)+W2(E)

where WI(E) indicates the number of open vibrational reaction channels for the

" products of the lower critical energy pathway. Thus, one can determine VZ(E)
by counting the number of open channels at each energy for each pathway,

} Since the critical energies for the two reaction paths are so nearly equal,

the specific branching ratio should vary only slightly with energy near Enos

Lj . so we follow Troe and assume that

A -

N Vo(E) =Vy(Epy) -

o

jt#, Finally, rather than count the number of reactant channels open for each
ﬁr: pathway, we assume that the specific branching ratio can be approximated

substituting the vibrational partition functions for the two activated
complexes, This approximation has no formal justification, but since we have
AT estimates of the vibrational eigenvalues orthogonal to the reaction

::1§ coordinate, we assume that the populations of these states provides an

t}}: approximation to the number of available channels for each pathway. This
:;{\ leaves us to evaluate the trivial integral,

hd (E_-E_ ) (&+F_KT)

R o o 02 E

oo g/ exp (- <5 ), (12)
Ql.:r:‘n: 102 EkT

hr:;

b Evaluating the expressions, using the data from Table 5, we find that for
LR T = 300

fz , Kyg = <002 ky

AN

P (s

\£¥ while for T = 1200K

l g ,

F.J Since

YN

‘-'r-.\'- Kk

o 10 = ko = kpo >

k? ' it is obvious that the two-channel model does not predict the isomerization
o reaction to compete with the dissociation reaction, even at T = 1200K. This
fi:; result depends, however, upon the estimates of the energy transfer parameter,
o, e a, the dilemma faced when trying to use unimolecular models as predictive
?:i models.

SN

".-\,;‘

The electronic structure calculations summarized in this report provide

::: information about the potential energy hypersurface for the methoxy radical

X reactions that has not been available heretofore. To some extent, Troe's

.‘p desire for details of the potential energy surface has been satisfied.

&#o Nonetheless, two simplified models for rate coefficient estimates provide

sa; qualitatively different descriptions of the relative importance of the two
reaction channels. This result demonstrates the need for more p.ccise

~T descriptions of the energy transfer processes that dominate the low-pressure

;:3: unimolecular reactions,

o
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" The results of this study do not pro-ide a definitive demonstration that
o5 the isomerization reaction of the methoxy radical competes with the
dissociation reaction. One simplified dynamical model suggests that the
reactions do compete at high temperature. However, Troe's model for two-

SRS
;:2- channel thermal unimolecular reactions predicts that the isomerization
:&55 reaction does not compete with the dissociation reaction. The latter result,
N however, depends strongly upon the details of the energy-transfer processes
a1 that control the low-pressure rates, and on the rather gross approximations
- we've used in applying that model
'
‘:f- Variation of the predicted critical energies to values that intuition
‘:}: suggests are closer to reality, leads to virtually no change in the branching
- ratio predicted by the uncoupled dynamical model. The rate coefficient
b e estimates, however, do change significantly, indicating that predictive rate
coefficient models yet await more accurate quantum chemical calculations.
N
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