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ABS TRACT

The QAZlD method is redeveloped in detail and implemented

p. '..' . .

in a first order, one-dimensional FORTRAN program, EULER-I.

The program is tested on the shock tube problem and results

are presented for various computational meshes and initial

conditions. Based on good results of the EULER-i. code,

recommendations are made for future extensions and testing

to validate the suitability of the QAZ1D method for wave

rotor applications.
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TABLE OF SYMBOLS

Below are two tables of symbols. The first table lists -.. '

all the symbols which occur in the text and, where applicable,

their FORTRAN counterparts used in the EULER-I code. The

second table lists the remaining symbols used in the EULER-"

code which were not listed in the first table. Bcth tables

are in alphabetical order.

SYMBOLS USED IN THE TEXT

Text EULER-I Definition

A A Speed of sound

P PRESS Static pressure

Q QQ Modified Riemann variable (Q = g +AS)

q Q Absolute velocity magnitude

Q Reversible heat transferred
R

R RR Modified Riemann variable ( = q -AS)

RG Gas constant

S S A modified form of entropy

1s,n,m  Unit vectors in the s, n, and m directions

T TEMP Static Temperature

t T Time

u U Velocity magnitude relative to a steady V
shock wave

V VS Shock wave velocity . -s

W W Mach number relative to a steady shock
wave
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T

w Vector of the principle variables, Q,R,S

ZZ(K) Vector of the right hand sides of the

governing equations

LMD(K) The characteristic trajectories in the

space-time plane (q A, q-A, q)

Small spatial change

Small change with respect to time

Flow angles with respect to reference
coordinate planes

DENS Density

G Ratio of specific heats

ADDITIONAL SYMBOLS USED IN EULER-I

Symbol Definition

*A Suffix which denotes the left side of a

discontinuity (* may be any variable)

ABAR(K) The average value of A between the limits of
integration of Z(K)

*B Suffix which denotes the right side of a
discontinuity (* may be any variable)

AR The ratio of the sound speeds across a shock,
(high/low)

COUNT A counter for the number of time steps

DARRAY The array of density values to he plotted by
the graphics routines

DEL**H The change in the variable ** in going from node
I to node I+l [ **(I+T) - **(T)

DELX(K) The distance from the point where the Kth .'-

characteristic crosses the known time level to
the Ith node, measured positive to the right

DET,**L The change in the variable ** in going from node
I-! to node I **(T) - **(I-1) %%.

8



DLCD The exact value of the density to the left of a
right propagating contact discontinuity in the
Riemann problem

OLSH The exact value of the density to the left of a
right propagating shock in the Riemann problem

DLTA** A prefix which indicates the spatial change in -
** over one time step

DQ The change in the velocity magnitude across a
shock, (high-low)

DR The ratio of the density across a shock, (low/high)

EE A value which indicates the precision to which the
characteristics are to be calculated

E(K) The computed error in the calJculation of the
characteristics

GRAPHS Parameter which controls the type of output pro-
duced by EULER-1, 0 = Tabular, 1 = Plot of Q, S,
pressure and density, 2 = Comparison of density
with exact solution

GI 1/(G-l)

G2 2/(G-].)

H The non-dimensional value of one spatial interval
I/ (N-l)

I Subscript which denotes the spatial node

**INT(K) The interpolated value of ** at the point on the
known time level where the Kth characteristic
crosses

INTEG(K) The result of integrating Z(K)

12(L) The node to the right of discontinuity L

J The time level

JSTOP The number of time levels desired to be computed

K A subscript which indicates the characteristic
being dealt with. 1 Q+A 2 = Q-A 3 = Q

9
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L A subscript which denotes the type of discontinuity.
1 = schock 2 = contact discontinuity 3 = head
of rarefraction wave 4 = tail or rarefraction .
wave

M Parameter which controls the types of discontinui-
ties which EULER-i tracks. 1 = shocks only.
2 = shocks and contact discontinuities

N The number of nodes in the computational grid

NEW** A temporary storage location for variables **

updated in time

PARRAY The array of densities plotted by the graphics ..routines

PR The ratio of pressures across a shock, (high/low)

PRI The initial pressure ratio across the diaphragm
(high/low)

*PRIM(K) Suffix which indicates the spatial derivative of
* at the present time level, where * is either A
or Q

QARRAY The array of velocities to be plotted by the
graphics routines

QLI The initial value of the velocity to the left of
the diaphragm

QRI The initial value of the velocity to the right of
the diaphragm

QQJO The measured change in the Riemann variable QQ
across a shock (high-low)

QQJE The change in the Riemann variable QQ across a
shock calculated analytically (high-low)

SIGMA(L,J) Discontinuity locations. J = I indicates the
known time level and J = 2 indicates the unknown
time level

**STEP The change in the primary variables with respect
to time during one time step (** = QQ, RR, S)

10



SARRAY The array of entropy values to be plotted by the

graphics routines

SKIP The number of time steps between outputs

TRI The initial temperature ratio across the diaphragm
(high/low)

VCDE The exact velocity of the contact discontinuity

VHEAD The exact velocity of the head of the rarefraction
wave

VTAIL The exact velocity of the tail of the rarefraction
wave

VS The shock wave velocity computed by EULER-I

VSE The exact velocity of the shock wave

X The non-dimensional spatial position

XARRAY The array of node locations used by the graphics
routines

XINIT The initial location of the discontinuities. Used

.to calculate the exact solution

X2(L) The position of the node to the right of a

discontinuity
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I. INTRODUCTION

A program is underway at the Naval Postgraduate School's

(NPS) Turbopropulsion Laboratory to evaluate the wave rotor

concept. The wave rotor, operating as a component in a gas

turbine engine, uses unsteady wave propagation in tube-like

passages to compress incoming air before it goes to the com-

bustion chamber. The combustion chamber output is routed back

to the rotor to create the unsteady waves. Thus the rather

simple rotor, with "partial admission" inlet and outlet ports,

acts both as a compressor and as a turbine. The alternation

of hot and cool gases through the same hardware aids cooling

and allows higher operating (cycle) temperatures to be used.

The interaction of the hot and. cool gases within the passages

of the wave rotor through the wave patterns that are created

pose a difficult problem. The work underway aims to develop

and validate preliminary design and performance analysis tools.

One of the tools neededis a computer program which can

be used to construct wave interactions in a design process

and then accurately predict the performance of the design.

Until efficient and accurate methods of solving the full .5.

Navier-Stokes equations for unsteady turbulent flows are

developed, the design program will be based initially on the

solution of the unsteady Euler equations and a method devised

to represent losses. Once the program is developed, it must

13



be verified against experiment. This is the overall goal of

the present program in which a wave rotor apparatus has been

assembled and methods of measuring the unsteady pressures and

temperatures are being developed concurrently with the compu-

tational effort.

Three different approaches to the solution of the unsteady

Euler equations were examined in the overall program. First,

Eidelman developed a two-dimensional code based on the

Godunov method of solution [Ref. 11 and applied the code

to examine unsteady wave propagation in ducts [Ref. 2] and

the process of port opening to wave rotor passages [Ref. 3]. A

summary of Eidelman's work is given in Reference 4. While

the method is conservative and does not require the introduc-

tion of artificial viscosity, the extension from one to two

dimensions is not rig 6 rous when shock waves are present, and

computational times with the present code are quite long.

The extension to include viscous effects would require a separate

treatment of the boundary layer.

Second, Mathur developed a one-dimensional code based on

the Random Choice Method (RCM) of solution [Ref. 51. Somewhat

similar to the Godunov method, in that the solution is based

on solving the Riemann problem within each grid cell at each

time step, the RCM approach results in very sharp discontinui-

ties which can be tracked easily. This is particularly useful

in constructing wave rotor cycles, in which the position of

the gas-gas interface is equally as important as the position

14

,.. .. .. . . . ... .-.... . . •. ..... ....... . ..... .. ,..'-. ,-. , . .-, ., ,,,.,,



L

of the compression and expansion waves. The code is there-

fore valuable in the preliminary design process, to examine

suitable port arrangements, and the gas properties at the ..- ,

ports, for a given task. Unfortunately, an extension to two-

dimensional and/or viscous flow can not be made rigorously.

The third approach was followed in the present work. The

QAZlD method for compressible inviscid flow computations

developed by Verhoff and O'Neil [Ref. 6] was implemented to

L
generate a one-dimensional unsteady Euler code with the goal

of evaluating the suitability of the approach for wave rotor

applications. Some advantages of the QAZID method were recog-

nized as being the following:

1. The method is based on the use of characteristics.
Such methods can model wave propagation accurately.

2. The use of a natural streamline coordinate system
eases the difficult task of computing with two and
three dimensional grids.

3. The equations are written in a form which allows a
straightforward extension to viscous flows.

4. Codes for computing internal, steady, two-dimensional
flows in the presence of shocks, and simple internal
viscous flows, have been generated quickly without
significant development problems [Ref. 6].

In the work reported herein, a one-dimensional FORTRAN

code based on the QAZID method was developed using the NPS

IBM370-3033 computer and subsequently exercised on the shock

tube test problem. In reporting the work, first, in Section

II and Appendix A, a complete account is given of the deri-

vation and non-dimensionalization of the governing equations. % .

15
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In Section III, a FORTRAN code, EULER-I, is described. Tts

operation on the NPS computer, and the listing of the code,

are given in Appendix B and Appendix C, respectively.

Results of applying the code to the shock tube test problem

are given in Section IV. Difficulties encountered in the

implementation of the method and additional comments are given

in Section V, and conclusions are given in Section VT.

IL
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II. THE QAZID METHOD

A. OVERVIEW

The QAZID method uses Riemann-like variables with a modi-

fied entropy term in their definitions, to express the Euler

equations in a natural streamline coordinate system. The

resulting partial differential equations (PDE), when cast

along the characteristic trajectories in the space-time

domain, reduce to a system of ordinary differential equations

(ODE) which may be solved explicitly. The advantage in using

the modified Riemann variables is that they are less affected

by & 'scontinuities in the flow than are the standard Riemann

variables. Since the equations are not valid across discon-

tinuities which cause irreversible losses, such discontinui.-

ties must be located and treated with special logic in the

numerical formulation.

In the following presentation, the reader's familiarity

with the method of characteristics is assumed.

B. DEVELOPMENT OF THE EQUATIONS

This section presents the governing equations and outlines

their development. A rigorous derivation of the equations

is presented in Appendix A.

1. The Coordinate System

The natural streamline coordinate system (s,n,m), is

shown in Fig. A-1 relatile to a fixed rectangular cartesian

17
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system (x,yz). The Cs,n,m) system is a right-hand orthoional

system which undergoes curvilinear translation as it moves

with a fluid particle along a streamline. The coordinate

system is described in detail in Appendix A. :- w

2. Variables

The modified Riemann variables, or "extended Riemann

variables" [Ref. 6:p. i], are defined as

Q = q + AS

R =q -AS

where q is the velocity magnitude, A is the speed of sound

and S is the modified entropy defined in terms of pressure

and density as

RG
S = ([2y - n(P/pY)] (2)

The modified entropy relation is the result of defining the

entropy change, dS, to be given by

dS 1 dQR=S (3) - - *
-y T

where dQ R is the heat required to be added in a reversible

process between the same end states, T is the temperature and

is the ratio of specific heats.

18
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3. Conservation of Mass

By applying the continuity equation to a differential

stream tube of variable cross sectional area, in natural.

coordinates, and ignoring all third order anH higher deriva-

tives, one obtains

+ q o + 2-q + -q [; 9 cos = 0 (4)

where q is the velocity, p is the density, s is the stream-

wise spatial dimension, and e and are the flow angles as

defined in Fig. A-1 of Appendix A.

4. Conservation of Momentum

Applying the vector form of the momentum conservation

law in natural coordinates, the equation of motion for inviscid

flow becomes

is [ L- + p q s +s P_

M 2 30 P
i qt + q  -] 5 .-

^im [2 o Dco + LPt  +  2 s
+cos - +--I = 0 cos +

5. The Conservation of Energy

In the absence of friction and heat conduction, and

outside of discontinuities (through which irreversible

charges consistent with mass, momentum and energy conservation

-are permitted), energy conservation is equivalent to the

,: % '
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statement that the entropy of a fluid particle does not change.

In the natural coordinate system, therefore

_S SS"" "
dS t + q S 0 (6)

Equation (6) will not be valid across shock waves or contact

surfaces between gases having different states.

6. Transformation to a Useful Form

Equations (4) and (5) are first expressed in terms

of the primary v7ariables q, A, S, and the flow angles. Using

the definition of sound speed in a perfect gas

2A = yP/ 7)

Eq. (4) becomes

--A - + q A [- + cos 0 8)

~-t- qy- 2 s A----Ln 3m(8

With Eq. (3), the equation of state for a perfect gas, and

the first law of thermodynamics, Eq. (5) gives

2A. A s A 0 "" "

23e -@ A a Zn P f9)+ q - Ant 3syq .9n

J ",S qcos e 3m

20
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Equations (6), (8) and (9) constitute the system of P.D.E.'s

which describe the unsteady isentropic flow of a perfect gas

in natural coordinates. Since third order terms were

neglected in the conservation of mass, the system is only

accurate to second order.

The system of P.D.E.'s is now transformed into a system

of O.D.E.'s along the characteristic trajectories. In general,

if w is a function of (s,t), then

dw 3wdw - s ds + dt --- "

or

dw - w wds w(0dt - (d-t) + - (10) .
dt as dt

where (ds/dt) describes the "characteristic" direction in the

(s,t) plane along which Eq. (10) gives the rate of change of

the parameter w. After the appropriate algebra and the intro-

duction of Eq. (1), the final system of 2quations becomes .-.

+ (q+A)- = - - A (S -i[(q - A

2 qA s + cos e
[ =+ 1 + 2 =]""221

3t + (q -A) -- + -('A (S - )[ (q + _- A 1 q

S s

+ - q A S -4- c cos ] (ii

212



-.- .s

-t 0

~ 2

tsq cos ~mn

The characteristic directions in the space-time plane are

clearly q+A, q-A, and q.-

C. SOLUTION METHOD

Equation (11) may be expressed as

- + A =(12)

or along the directions as

dw -
= Z (13)

where the vectors are defined as

Q q+A

R q-A
w = S [] =q Z=right hand

side of6 qr
Eq. (1

p q

22



A trajectory in the space-time domain is illustrated in Fig. 1,

t+3tB

t ds
dt 6

S [6w W WB~W
I

A
t -

As

~s A

Figure 1. Solution Procedure in the Space-Time Domain

which shows an infinitesimal interval of space between two

"nodes" of the computational mesh.

For the change in w from A to B along the trajectory

with slope ,

Z zdt =w B-A

B A. S

[w + +

23



where 3w denotes the change due to time at a fixed location

and 1w denotes the change due to displacement at a fixed

time, for the characteristic trajectory. The essence of the

solution procedure is to calculate the change in the varia-

bles at each spatial node during the differential time

interval, so that the step to the next time level can be

made. In other words, w must be calculated at each node

usJng
Sq

ow = -w+ f Z dt (14)
t

Since all the information at time level t is known, the

position of A can be determined by an iterative procedure

based on ' and Aw can be calculated by interpolation. The

line integral can be evaluated by transforming the integral

to a purely spatial integral using \ = ds/dt. Thus

f dt = f ds = f ds
t A s +AS

and the integral can be evaluated by any one of several

numerical methods. Thus, the variables at each node can be

,ipdated in time using Fq. (14) and the process repeated.

24', '

24'%



D. DISCONTINUITIES IN THE FLOW

There are several types of discontinuities that must be

considered. They are gradient discontinuities, contact

discontinuities and shock waves.

Gradient discontinuities are characteristic of the head
4

and tail of rarefraction waves, the collision of two shocks and

the interaction of a shock and a contact discontinuity.

Across such a gradient, the derivatives of velocity, pressure

and sound speed are discontinuous.

A contact discontinuity is caused by the interaction of

two shocks of opposite family and when a shock overtakes a .-4

shock of the same family. Entropy and sound speed are discon-

tinuous at a contact discontinuity.

Across shock waves, velocity, pressure, density and

entropy are discontinuous [Ref. 7] .

Since Eq. (11) is not valid across discontinuities, addi-

tional logic is required in the numerical procedure to model

flows which contain discontinuities. The method presented in

Reference 6 for making a correction in the case cf shock waves .

will give good accuracy in problems where the solution is

converging to a steady state condition but will not give

accurate results during the transient portion of such problems

or for problems with only unsteady solutions. In the case of

applications to the wave rotor, it would certainly be necessary

to know the locations of the contact surfaces between the

25
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hot and cool gases as well as the locations of the shock and

expansion waves.

The methods used in the present work to correct for dis-

continuities are those of Moretti [Ref. 7]. The present

discussion will be limited to the treatment of shock waves.

The method makes use of the analytical relationship between

the change in the Riemann variables across a shock and the

incoming Mach number relative to the shock wave (W) which is

illustrated in Figs. 2 and 3. The relation is used to

determine the shock speed and to transform the problem to

a steady case which can be handled using normal shock rela-

tions. For the situation depicted in Fig. 2 of a shock

propagating to the right with velocity V into air with
5

velocity qB' and with the high pressure side to the left,

where A denotes the left side of the shock and B the right,

UB --(g-Vs)
W = (15)

B B

If the pressure and density are non-dimensionalized by the

values on the low pressure side of the shock, the change in

the extended Riemann variable Q is given by

QA-QB 2(W2-) + 2 A A

B B

AA 1 W2  -I (,-)W2+2
- q ( I_)l n{ [ -2  )W ] (16)
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Figure 2. Shock Wave with High Pressure to the Left
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Figure 3. Shock Wave with High Pressure to the Right
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where

AA [ { C- - 1 + (l l [- w2  1/2

1 ( W 2B

This exact relationship can be approximated by the polynomial

QA-QB

~A B 2
B -2.7574 + 3.1573W - 0.2863W2  (17)

B

as illustrated in Fig. 4 over a shock strength range of 1.0

to 4.0. It should be noted that if the high pressure side

were to the right, as in Fig. 3, Eq. (15) would become

UA _ A

= - A
A A

and the left side of Eq. (16) would become

R - RA B
A

The procedure then, is to measure the change in Q across an

interval where a shock is known to exist. This value, call

it AQm' is used in Eq. (17) to get an approximation for the

corresponding value of W and then the exact value of AQ, call

it AQE' is calculated using Eq. (16). If the exact value of

-AQ is not equal to the value measured across the shock, a

new value, Q, is calculated according to

28-VA.
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-Qi = AQi + (AQ -AQ

and entered into Eq. (17) to obtain another value of W. When

the exact walue of AQ calculated from Eq. (16) equals the

measured value of AQ, W is known to be correct and the normal

shock relations can be used to calculate the values at node A.

Also, V can be calculated from Eq. (15) and used to track
.

the shock during the next time interval.

. 6
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III. DESCRIPTION OF FORTRAN PROGRAM "EULER-i"

A. MACHINE AND LANGUAGE

The EULER-i program is written in VS FORTRAN and runs on

an IBM 3033, System 370 computer, however the code is simple

and small enough to enter and run on a mini or micro computer

in a Basic language if one is willing to accept significantly

longer run times. Table 1 at the end of this section is a

summary of the editable parameters and their effect on the

program.

B. CONVENTIONS AND BASIC STRUCTURE

EULER-I is a first-order one-dimensional code using an

evenly spaced numerical grid. All values are double precision

except those used in the graphics routines which are rounded

to single precision.

Each subroutine has its own variables space. In other

words, variables are not shared in common throughout the

program but must be passed to the subroutine being called

by the calling routine. Tn all cases, however, the variables

have the same name in both the called and the calling routine

so there should be no confusion. This was done so that ..

arrays could be dimensioned at execution time.

The program, depicted in Fig. 5, is structured around a

main routine which serves as a user input area, sets up the

problem and calls five subroutines to solve the problem and
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output the solution. The five subroutines are "TIME," "TRAK,"

"SWEEP," "JUMP" and then one of several output routines depend-

ing on user desires. Output options include two types of

graphical displays, "PLOT" and "EXACT," and one tabular

listino routine, "LIST." When "PLOT" is selected, "BORDER"

is automatically called to set up the plotting area. There are

two other subroutines, "RSHOCK" and "LSHOCK," which are called

by "SWEEP" as needed.

I

C. SUBROUTINE DESCRTPTIONS %

In general, each subroutine begins with a heading followed

by variable definitions where appropriate, variable declara-

tions and array dimensioning. Most variables are defined in

the "MAIN" routine and only those variables which were not

are defined in the subroutines where they are used. L..
1. The "MAIN" Routine

This routine forms the main structure of the program

and includes a heading, an extensive list of variable defini-

tions, a user input area, the necessary statements to make

the initial value assignments to variables, and the call

statements for the various subroutines.-L

The input area is those lines of the program (145-175)

where the user edits the program to establish the initial

conditions, mesh size, termination criteria and output options.

The initial conditions which may he modified are the,.'-

pressure, temperature and density ratios across the diaphragm,

the initial velocity of the fluid on each side of the
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" ,.-.- '. '-,-,- . , ,' ,'v .''., ,-,... ,, . . . , ,,: .. , .., ,. , .. . .. -, . ., .,, ,, - . , .. , ', . , . :'X ;_,



diaphragm, and the value of gamma (which must be the same for

both sides).

All velocities are non-dimensionalized by the initial

sound speed on the low pressure side of the diaphragm and

pressures and densities are non-dimensionalized by their

initial values on the low pressure side of the diaphragm.

The mesh size may be set at any odd number and the

arrays in the user input area must be dimensioned as such.
Iq
The criteria for program termination is the number of

time steps computed, which the user selects.

The output options are determined by the value of the

variable GRAPHS. A value of zero results in a call to "LIST"

which writes to file 9 on theuser's permanent disk, a tabular

listing of the variable arrays and discontinuity locations.

A value of 1 results in a call to "BORDER" and "PLOT" which

create a plot of the pressure, density, velocity and entropy

distributions as in Fig. 7. A value of 2 results in a call.

to "EXACT" which creates a plot of the density distribution

compared to the exact solution as in Fig. 8. The exact values

to be plotted must be entered in the user input area, they are

not calculated by the program. A more detailed description -

of the various outputs is found under the appropriate subrou-

tine description. The frequency with which output is created

is controlled by the variable SKIP which is the number of time

steps between calls to nutput routines. P
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2. The "TIME" Routine

The maximum allowable time step is governed by the

CFL condition. Simply stated, this means that the time step

must be small enough so that the characteristic trajectories

remain within one spatial interval during the time interval.

The minimum time step is calculated by computing

Delt = H/ABS[Q+A]

at every node, where H is the spatial interval, and selecting

the minimum value of Delt.

3. The "TRAK" Routine

Shock locations at the unknown time level are deter-

mined by computing the shock speed at the known time level,

as outlined in Section 2, and multiplying by the time inter-

val computed by "TIME." The time step is reduced, if neces-

sary, to limit shock travel to one spatial interval. The node

immediately to the right of the shock (upstream) is flagged

for later use by "'SWEEP" and "JUMP."

In calculating the shock speed, the assumption is made

that the conditions immediately adjacent to the shock are the

same as the conditions at the nodes to the left and right of

the shock.

4. The "SWEEP" Routine

The "SWEEP" routine makes the necessary calculations

to solve Eq. (14). This involves interpolation at the known
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time level for the values of Aw, calculation of z, and

integration of z for each node.

To calculate Aw, the assumption is made that the

characteristic trajectories are straight lines. An initial - -

guess of the characteristic slope (A) is made and by forcing

the characteristic to pass through the node at point B in

Fig. 1, As = x ×delt. The values of q and A at point A are

found by interpolation and the slope of the characteristic

is then calculated using the values of q and A at point A.

This slope is compared with the initial guess and if the two

are not in agreement, the procedure is iterated until they

converge. Once As is accurately determined, the values of Aw .

can be calculated by interpolation. Linear interpolation is

used in the present version of EULER-1. This procedure is

carried out for each characteristic at each node.

t+6t /

shock

1 2 3"p.

i-l , -+1

Figure 6. "PSHOCK" Case

A deviation from the above procedure is necessary in

the case where a shock exists in the spatial interval to the

left or right of the current node. When a shnck exists to

36



the right, and the flow is subsonic, as in Fig. 6, care must

be taken not to interpolate for point 3 based on the slope

between points !+l and T, which would not be accurate due

to the discontinuity. In such a case "RSHOCK" is called and

the interpolation is based on the slope between point T and

I-1. Similarly, when the shock is to the left of the current

node, "LSHOCK" is called and the interpolation is based on

the slope between Il and I.

The calculation of z includes the calculation of

spatial derivatives of q and A for characteristics 1 and 3

of Fig. 6. In general, the derivatives associated with

characteristic 3 are forward differenced and those associated

with characteristic 1 are backward differenced in keeping

with the principle of domain of dependence. If the flow is

supersonic or if a shock exists to the right of the current

node, all derivatives are backward differenced. If a shock

exists to the left of the current node, all derivatives are

forward differenced. Once the derivatives are known, z is

calculated from Eq. (ii) using the average value of A between

points I and I or 3 and I as appropriate. Since the deriva-

tives are linear, this results in an average value of z

over the same interval.

The integration of z is transformed -rom a time to a "

spatial integration as described in Section II and the

trapezoidal rule is used to carry out the integration. In
EULER-i, this has been done in one step using the average

7,alue of z described above.
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Equation (14) is then solved by addition of 1w and

the results of the integration, and the resulting 6w is

stored until all nodes are calculated. After all nodes have

been calculated, the variable arrays (w) are updated for the

next time interval.

5. The "LSHOCK" Routine

As discussed above, the "LSHOCK" routine modifies

the basic EULER-I procedure at an interior node when a shock

exists to the left of the node. Interpolation of cuantities

to the left of the node are computed based on the derivatives

of the quantities to the right of the node. Although this

assumes that the derivatives do not change between adjacent

spatial intervals, it is necessary to avoid taking derivatives

across discontinuities in the flow.

6. The "RSHOCK" Routine

Similar to "LSHOCK," "RSHOCK" bases interpolations

of quantities to the right of the node on the derivatives of

the quantities to the left of the node when a shock exists

to the right of the node.

7. The "JUMP" Routine

The "JUMP" routine is used to calculate the conditions

downstream of a stationary shock as described in Section II.

If a shock is known to have crossed a spatial node during a'L

time interval, which is known once "TRAK" has been called for

that time interval, the enti.re "SWEEP" sequence is skipped for

the node which was crossed by the shock and the conditions at

• " .
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that node are determined using the normal shock relations. Note

that the node in question is the node downstream of the sta-

tionary shock. As in "TRACK," it is assumed that the condi-

tions at the nodes upstream and downstream of the shock are

the same as the conditions immediately adjacent to the shock.

8. The Output Routines

There are four subroutines which produce various types

of output as the user desires. "BORDER" and "PLOT" produce

a graphical presentation of the pressure, density, velocity

and entropy distributions at selected time levels as seen

for example, in Fig. 7. "EXACT" produces a plot of the den- -:'

sity distribution at one selected time interval and compares

it with the exact solution as shown in Fig. 8. At selected -1
time levels, "LIST" produces a tabular listing of the Riemann

variables, modified entropy, pressure, density and velocity

distributions, elapsed time, shock speed and discontinuity

locations. The listing is written to the user's permanent

storage disk.

When the value of GRAPHS is set equal to one in the

"MAIN" routine, "BORDER" is called once to set up the plot

axis, labels, and headings. "PLOT" is called every SKIP

time steps to draw the four distribution curves.

When the value of GRAPHS is set equal to two, "EXACT"-r

is called every SKIP time steps to plot the density distri-

bution compared with the exact solution computed at six

points of interest. The points are the two end points, which
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are simply the initial conditions, the head and tail of the

rarefraction wave, the point just left of the contact surface

and the point just left of the shock. The spatial locations

of these points are computed by "EXACT" based on the elapsed

time and the known values of the wave velocities entered in

the "MAIN" routine. The exact values of the densities at these

points must also be entered in the "MAIN" routine.

When the value of GRAPHS is set equal to zero, the
L

tabular listing as described above is sent to the user's

disk. No graphical output is created.

D. CAPABILITIES AND LIMITATIONS

The present version of EULER-] is set up to solve a shock

tube problem with a single centered diaphragm. Boundary

conditions for the ends of the tube have not been incorporated

so the problem must be stopped before the waves reach the end ..

of the tube.

The left side of the diaphragm is the high pressure side.

The program will not run with the right side as the high

pressure side without changes to some of the shock correction

logic.

The user may select any odd number of grid points limited

only by the amount of memory available.

The program tracks shock waves and makes shock jump calcu-

lations at the appropriate locations but the program can also :. :

run without the shock tracking feature and jump calculations

if so desired with some smearing of the shock discontinuity

and complete loss of entropy change across the shock.
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TABLE 1

LIST OF EDITABLE PARAMETERS

Parameter Function

N Number of grid points

M Controls which discontinuities are
tracked
1 = Shocks only L
2 = Shocks and contact surfaces

GRAPHS Controls the form of the output
0 = Tabular listing
1 = Pressure, density, velocity,

entropy plot
2 = Exact solution comparison for

density

SKIP Number of time steps between output
calls

JSTOP Number of time steps calculated "

TRI Tnitial temperature ratio

PRI Initial pressure ratio

DRI Initial density ratio

QLI Initial velocity left of the diaphragm

QRI Initial velocity right of the diaphragm

G Ratio of specific heats
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IV. TEST RESULTS.

EULER-I was tested on the Riemann shock tube problem.

The initial conditions and the courseness of the computa-

tional mesh were varied. Additionally, one run was made

without the shock tracking and correction features.

Figures 7 and 8 show the results for initial pressure

and density ratios of 5, uniform temperature and with the air

initially at rest, using a grid of 101 points. The exact,

analytically predicted conditions are also shown in Fig. 8.

It can be seen that all wave velocities are correctly computed

and the shock is defined within one interval. The rarefrac-

tion waves are slightly smeared and the contact surface is

greatly smeared. A slight transient instability to the right

of the diaphragm is noticeable, particularly in the plots

of pressure and velocity.

Figures 9 and 10 show results for initial pressure and

density ratios of 1.3. The shock is still well defined in

the correct interval and the contact surface is not as badly

smeared as in Fig. 8. There is a loss of accuracy however,

with respect to the tail of the rarefraction wave.

Figure 11 shows the results of the original problem with

a grid of 51 points. As might be expected with a coarser

mesh, the discontinuities are less sharply defined although

it is clear that the wave velocities are accurately computed.
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Figure 12 shows the results for the original problem with

a grid of 901 points. It can be seen that the EULER-i

solution closely approximates the exact solution.

Figures 13 and 14 show the result of running the original

problem without the shock tracking and correcting features.

Note that the shock position is incorrectly computed and it

is smeared slightly. Also note in Fig. 13, the lack of any

change in modified entropy across the shock.

Run time for the 101 point mesh is 0.00049 seconds per

node per time step. The results for Fig. 7 took 50 time

steps for a total time of 2.46 seconds. For the 901 point

mesh, the run time decreased to 0.00023 seconds per node per

time step due to the less frequent use of the shock tracking

and correction routines per node calculated. The results for

Fig. 12 took 470 time steps for a total time of 71.85 seconds.
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SHOOK TUBE RESULTS
FIRST ORLDER N = 101

DENSITY RATIO - 5 TEMP RATIO I i*
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Figure 7. EULER-i Results for Pressure Ratio 5 with
Shock Tracking
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SHOCK TUBE RESULTS
FIRST ORDER N - 101

DENSITY RRTIO = 1.3 TEMP RATIO I:1
PRESSURE RATIO = 1.3

0 : Id' k ."'-'

C-)3

F'__________________' "____""__

CD 0

-- Li

-,

I I I I I II

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

x "

, ..:. -.-

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X

Figure 9. EUILEP-1I esults for Pressure Ratio 1.3 with
Shock Tracking
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SHOOK TUBE RESULTS
FIRST ORDER N 101
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Figure 13. EULER-i Results for Press-ire Ratio 5

without Shock Tracking
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V. DISCUSSION

A. RESULTS

The transient instability noted in the results was not L, '-

investigated since the amplitude was small and the effect

would be of no consequence in most applications.

At low pressure ratios, the velocity of propagation of

the tail of the rarefraction wave approached sound speed

and, in these cases, the EULER-i code did not accurately

compute its location. The reason for this was not investi-

gated here; however, due to the ]ow pressure ratios at which

wave rotors can operate, this is of interest and should be

investigated in future work.

B. SPECIAL CONSIDERATIONS
1. Modified Entropy

Tn the QAZID method, and subsequently, in the EULER-I

code, the variable S, which here has been referred to as the

"modified entropy" and which is referred to in Reference 6 as

simply the "entropy," does not behave thermodynamically as

one would expect entropy to behave. As a fluid crosses a

shock wave, the modified entropy of the fluid decreases. "

This is the result of the definition of Eq. (3), repeated here, L__
that

dQ
dS = 1 dQR
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The use of the word "entropy" and symbol "S" for this varia-

ble is confusing since the sign of the change in "S" is in

direct conflict with well-established conventions in thermo-
f'- ~nd -'-
dynamics. For example, Corollary 6 to the 2  Law of

Thermodynamics (Ref. 8:p. 88] would have to be changed to

read, "The 'modified entropy' of an isolated system decreases

or in the limit remains constant." At a minimum perhaps, the

symbol . to denote the "modified (negative and scaled) entropy"

would be helpful. In practice of course, the change in the

conventionally defined entropy can be recovered from the change

in the modified entropy, simply by multiplying by (-y).

2. Moretti's Methods

Incorporating Moretti's methods of handling discon-

tinuities [Ref. 7] into the EULER-I code required special

care.

There is a fundamental difference in procedure in

that the EULER-i code is based on the high pressure side

being on the left whereas Moretti's formulations are all

based on the high pressure side being on the right. Although

essentially a matter of bookkeeping, it is an area of poten-

tial confusion.

Another difference is that the Riemann variables used

by Morreti are not the Riemann variables used in the QAZID

method. This can lead to difficulty. In fact, in the

application of Moretti's shock tracking scheme to the EULER-I

code, the pressures and densities have to be non-dimersionalized
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by their values on the low pressure side of the shock in order

to obtain Eq. (14), and for the procedure to work.

C. SUITABILITY FOR WAVE ROTOR APPLICATTONS

Further work is necessary before the suitability of the

QAZID method for wave rotor applications can be fully evalu-

ated. The following areas need to be addressed.

1. Boundary Conditions

In the EULER-I code, boundary conditions at the ends "

of the passage have not been incorporated. The code calculates

the changes of the interior nodes only, skipping the two end

nodes. In particular, solid wall boundary conditions and ...

open-end boundary conditions must be incorporated. No particu-

lar problems are expected in the boundary conditions themselves.

However, additional logic may be necessary in the handling of

discontinuities, such as the reversal of conditions to the

left and right of a discontinuity after reflection from a

boundary. The additional logic, which may be considerable,

is warranted by the simplicity of the QAZ1D method.

2. Contact Discontinuity

No special attention is given to the contact discon-

tinuity in the EULER-I. code and hence the discontinuity is

smeared. In a wave rotor application, this discontinuity

will have to be sharp. Moretti's methods again appear to be

applicable here and the additional logic needs only to be

formulated and incorporated into the EULER-l code.
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3. Quasi-One-Dimensional Modeling

EULER-I is a one-dimensional code. The solution of

flows in passages of varying area may be desirabl.e for some

wave rotor applications. Such problems can be solved in a

quasi-one-dimensional manner by the addition of the appro-

priate area variation term to the equations, and the need to

solve the fully two-dimensional equations is avoided. The

area variation must be incorporated into the EULER-i code and

the code tested on quasi-one-dimensional problems.

4. Other Potential Extensions

Another capability which can be incorporated is the

ability to handle two gases with different specific heat

ratios. Eventually, the code should be extended also to a

second order, one-dimensional version and then to a first

order, two-dimensional Version.
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VI. CONCLUSIONS

The development of the EULER equations in the natural

streamline coordinates using extended Riemann variables was

reviewed in detail. The QAZID solution method, with the

addition of shock tracking features, was implemented in a

first order, one-dimensional FORTRAN code with the intent of

evaluating the method's suitability for wave rotor applica-

tions. The code (EULER-l) was tested on the shock tube

problem with good results. The incorporation of boundary

conditions, an improvement in the contact discontinuity

definition and the addition of an area variation term for

quasi-one-dimensional modeling are considered to be neces-

sary before the QAZlD method can be accepted as being suitable

for wave rotor applications. The additional logic required

for these extensions may be considerable but the development

is warranted by the overall simplicity of the QAZID method,

and its straightforward extension to viscous, multi-dimensional

flow modeling.
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APPENDIX A

DERIVATION OF THE GOVERNING EQUATIONS FOR
THREE-DIMENSIONAL INVISCID FLOW (WITH AREA CHANGE)

LJm.

The governing equations of a 3-D, inviscid, compressible,

unsteady flow are derived here in a natural streamline

coordinate system. The equations are then recast along

characteristic trajectories in the (st) plane and expressed

in extended Riemann variables, reducing the system of par-

tial differential equations to a system of ordinary differ-

ential equations.

A. DEFINITION OF VARIABLES

A Cross-sectional area of a differential stream --

tube

A Speed of sound

C Specific heat at constant pressure

Cv  Specific heat at constant volume

da Normal vector for differential area of control
surface

e Specific internal energy

i Unit vectors in the s, n, and m directions
s,n,m

P Static pressure

Q Modified Riemann variable

Reversible heat transferred

q Velocity magnitude .

r Position vector
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R Modified Riemann variable -'be

R Gas constant
G

S Modified entropy

T Static temperature

t Time

u Velocity relative to a standing shock wave

v Specific volume

vol Differential element of volume

V Velocity vector

W Incoming Mach number relative to a standing
shock wave

p Density

y Ratio of specific heats

, Flow angles with respect to reference coordinate
planes

Vector operator

B. THE COORDINATE SYSTEM

The natural streamline coordinate system (s,n,m) is

shown with respect to a fixed rectangular cartesian system

(x,y,z) in Fig. Al. The system is a curvilinearly translating,

right hand orthogonal system which translates with a fluid

particle along a streamline such that the 's' coordinate is

measured in the direction of the flow. The 'n' coordinate

direction always lies in the plane defined by the 's' coor-

dinate direction and the fixed 'y' axis. The 'i' direction is

normal to the (s,n) coordinate surface. The flow angles,

£' and p, are defined as shown in Fig. Al.
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171 .7 . 77 W4 W

)y STREAMLINE

/ 'II

V- x

M4

z

Figure Al. The Natural Coordinate System

C. VECTOR OPERATORS IN THE NATURAL COORDINATE SYSTEM

If dr is the position vector of a fluid particle

dr*V( do (Al)

In natural coordinates, Eq. (Al) becomes

ri ds + j dn + i dmj.[( )i + ()i + ()i-s n m s n m

By inspection,
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j( + 1( + 1(
7()s s an n ~rn m(2

2. V-7(

Since

V q i

* '.

using Eq. (A2)

V*V( )=q as (A3)

3.VV

From Eq. (A2) with V qi

7.V = - (A4)

4. (V-v)V

From Eq. (AM) with V =qi1

D(qi q-

(V.V)V =f- +~~-q q (AS)

The change in the unit vector i with respect to s is
S

derived below and is illustrated in Figs. A2 through A6. (A

three-dimensional model is very helpful. in visualizing the

vector geometry.)*

Figure A2 illustrates the natural coordinate system.

translating along a streamline from point A to point B i~n
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L

the inertial cartesian coordinate system. Figure A3 is the
superposition of the i unit vector from points A and B of

Fig. A2. The intent here is to express the change in the

unit vector is in terms of components along the original.

(s,n,m) directions shown at point A in Fig. A3. Vector OA

in Fig. A3 is the, original is direct-ion and vector OB is
s

is + ds. Points C and E are the projection of points B

and A in the (x,z) plane respectively. Point D is the projec-

tion of point C onto the line 6QE.

Figure A4 is the plane formed by the OB vector and the

Y axis. The length of OB is unity by definition. The length

of -BC is sin(O+dO) .

sin(A+d6) = sin 0 cos dO + cos 6 sin de

which, since dO is a small angle, is

sin(e+de) = sin 0 + cos e dO (A6)

The length of OC is cos(o+dO).

cos(O+d8) = cos 0 cos dO - sin 0 sin dO

which, since de is a small angle, is

cos(O+dO) = cos 6 - sin 0 dO (A')

-'° ,,
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Figure A5 is the (x,z) plane in which the angle q is

defined. The im direction is shown at point C. The length

of CD is OC sind¢ which, with Eq. (A7) is

[cos 0 - sin a de]sin dpI4
which, since d is a small angle, is

cos e d - sin e de d

Dropping the second order term

CD cos e dp (A8)

The length of OD is OC cosd which, since d is a small angle,

is OC. -. "

Figure A6 is the plane formed by the OA vector and

the y axis. GD is the projection of BC and since both are

vertical lines, BC and GD have the same length, which has

been determined in Eq. (A6). The is and in directions are

shown at point A. The lengths to be determined are AF and GF,

since these are the components of AB in the s and n directions.

For small angles, OD was shown to be equal to OC and GD = BC,

so that the angle GOD is equal to angle BOC = O+dO. Angle GOF

is therefore dO, the length of 5G is unity and the length

of GF is sin d9, which for small angles is do, and it is in

the i direction. The length of AF is OA-OF. OA is unity
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by definition and OF is cos d8, therefore AF, the component of

AB in the is direction is equal to 1 -cos de, which, since

de is a small angle, is zero.

The component of AB in the i direction is GF or
n n .-....%

dO in (A9)

The remaining component of AB in the i direction is
m

CD or

cos 0 d i (A10)m ,

Therefore, the vector AB can be written as

s ds dO i + cos e do ias m m

De

-
1 ds i + cos 0 ds i
s n s m

and, dividing by ds, finally

S (All)_s _ s i + cos 6 Al),'--
S n + M

Note that Fig. A3 can be considered also to describe

a change in the unit vector is at a fixed location, with

respect to time. In this case, the vector AB is equal to - .-

V,i
s dt and with Eq. (A9) and Eq. (A0)

5-
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7*7 7 v 1

o isi (A12)
t -t in + Cos- "

With Eq. (All) , Eq. (A5) becomes

S q C'+2 6 2 co ~i4
(V-7)V = q + q + i m A13)

D. CONSERVATION OF MASS

In the quasi-one-dimensional differential stream tube,
shown in Figure A7, where i is always in the direction of

,, q, and the cross sectional area A are known at the center

of the element and p and q are assumed constant on any given

cross section.

3p ds 3p ds
ds -p.q.A +-.

S 2 3
Aq dsq dsq-s -- q+ --

3A ds A ds--A 9s 2 A+ 2
LI

H - ds

Figure A7. Differential Stream Tube of Variable Cross
Section

The statement of continuity is

[The change ip th- mass 1The net influx of
|within the control volum |mass across the
[with respect to time Lcontrol surface J
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Since the volume is constant, the left side becomes

A ds

For the stream tube, mass enters and leaves only from the

ends so that the right hand side can be written as

LD qs 2 -q q-s [A 2-2-] r) + 1--] [sq + [A H
9s5 2 Ds 2 ;s 2 DS 2 9s 2' .s 2

which on expansion becomes

- q - ds - qA -P ds - pA d s - I -s ds 3

On dropping the higher order terms and combining with p

the left hand side,

+ 1 oA/2- = 0 (A]4)
+- p -- + q LL + 0 (As4

Equation (A14) is the form of the continuity equation

which is required to model a flow as being one-dimensional

1 A
with area change. In general, however, - - must be expressed

in terms of q, e and <.

With reference to Fig. A8, the change in the cross- r
sectional area of the stream tube can be written as

Adm dn"ds = [dm + - dsl [dn + n ds] - A (A15)
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9dm ds

dn Ad 1
dmm

Figure A8. Cross Section of a Diverging Differential
Stream Tube

After expansion, dividing by A and dropping the higher order

terms, Eq. (A15) becomes

1 DA I 1 Tn 1 Ddm
A~s ~ s(A16)

From Fig. A9,

1 Ddn -s I ds snD n

cos(- dn)

which, for small angles, becomes

1 adn '...0

From Fig. A10,

din s dm
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n - -

%dn

Ad

ds
.- ~ is

FiLgure A9. (s,n) Plane of Diverging Differential Stream Tube

S%

ds s

0A -W

m B

Figure AlO. (s,m) Plane of Diverging Differential Stream
Tube

ds-

Figue Al. s~m Plae ad is Pojecionont th
(x~z)Plan
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With reference to Fig. All, AB = CD, and

CD OD sin [-md (A19)

OD = (A20)
COS[ -m dm]

OC ds cos e (A21)

Combining Eqs. (A18) through (A21) and knowing that - dm

is a small angle,

Idms = cos (A22)
dm as

Equation (A16), with Eqs. (A17) and (A22), becomes

- Cs (A23)

1 A - an aSm.

With Eq. (A23), the general form of the continuity equation

in natural coordinates is

P + q -P + p a + pq + cos 0 0 (A24)I~~i t as as n amo - .--

E. CONSERVATION OF MOMENTUM

The statement of conservation for an arbitrary control

volume which is fixed in the reference frame can be written

. i
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The change in the The net influx7  The net force
iomentum of the fluid = of momentum + on the con- ,

in the control volume across the con- to surface
with respect to time Lrol surface

[The net ]

+ body+ force

on the fluidj

Assuming the fluid is inviscid, the only forces acting on the

control surface are pressure forces. In the absence of any

body forces (gravity, electromagnetic, etc.), the statement

becomes

- ff pV dvol = - ff VpVda - ff P da = 0 (A,25)

With Gauss' Theorem, Eq. (A25) becomes

fff %-E[iQ]dvol + fff7VFV]dvol + fff VP dvol = 0

or

ffif{ [Q7] + V ° [VpV] + VPldvol 0 (A26)

Since Eq. (A26) is true for any volume, the integrand must

be zero, thus [

.t[pV] V- . [LV V + VP = 0 (A27)
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Expanding the first term of Eq. (A27) and using the vector

identity

V- [VpV] =V[7*pv] 4- P(VV)V

Eq. (17) becomes

+ {- + P V-PVI + p(V-V)V + VP 0 (A28)-

The second term of Eq. (A28) is zero by the conservation of

mass so that Eq. (A28) reduces to

P + P(VV)V + VP =0 (A29)

Using Eqs. (A2), (A5), (All) and (A12), collecting terms and

equating each vector component to zero, Eq. (A29) becomes

i[p + pq 2R+ -L (A30)

6 2 Die P Al
i [pq 7t pq - + j nI 0 (3.

pm pq cos 0 + pq Cosa 0a + =L 0 (A32)

Using the perfect gas relation

A2 
- _
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and the identity

9P _ ZnP4

-* Eqs. (A30) through (A32) become

2
2-a-+ q 1 3q A _9ZflP(A)

2
-s Aq n (A34) .-

2
kL~qI~. - A D XnP(A5
t as ~yq cos e am(A5

which are in the desired form.

F. CONSERVATION OF ENERGY

The conservation of energy for an arbitrary control volume

is

The rate of increase of "The rate at which energy
energy within the con-- _ is entering the control -
trol volume with respect volunme across the
to time boundary .

FThe net rate of-
wo~rk done, on the~ A6

+ fluid at the(A6
~boundaryJ

Neglecting gravitational potential, the energy per unit mass

is
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2
e +q

where e is the internal energy per unit mass and q is the

velocity magnitude. For an inviscid fluid in the absence of

body forces, the only work done on the fluid is pressure work.

Thus Eq. (A36) is written mathematically as

2 dvl2

Sfff [e +-],- do -ff [e+-2 lv-dX ff PV.da' (A37)

Using Gauss' Theorem, Eq. (A37) is written as

2 2
f f e +a-- Pdvol 1 f f7f- (e + -)V] vol

f fff '7 [ PVI dvnl

or

q2  2 *

-{[e I p-]I + V{e + - P V} VPVjI
2 2

Expanding,

+ P 2 2 + 2
-[e+- + p(- +(PV) V -e+ -] + Ie+-2V -(pV)I

or

7441
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22 2

[e +-2- [-+ V -(pV)j + p -e 2 L Pv 7

The first term of Eq. (A38) is zero according to the conserva-
tion of mass. Expanding the remaining terms of Eq. (A38),

t a2  + a 2 -

or

2 17 kv[PVI (A39)

Equation (A39) can be written as

De* P

+ v.P !L(7V (A40)
Dt Dt 2 p p

With V =qi sin the natural coordinate system, Eq. (A29)

becomes

or

- - -. P (A41)
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Taking the dot product of V with Eq. (A41),

v -D. 1l- (A42)

and substituting Eq. (A42) into Eq. (A40) ...

De D 2 -- P(.- (A43)
Dt D 2 Dt p

But

DV D (qi5) Di
DtDt DtD

Dt' + q~ s

and using Eq. (All) and Eq. (A12),

DV + qa + 2-

Dt~ ~ ~ Dt sat Csea im]

+ 1 -i+ Cos Iq s In a s M

Therefore

,-V = A. + [q + q2  OA + q cosef-+ q ,- .m}

qi5) 1S at -s in at as

_q D [

Therefore Eq. (A43) reduces to
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De -- P -(A4-(V -V)(A4

From the conservation of mass

DP.

f-V (PV) =0

or

T + V-7p + P(V7V) 0

which, in the natural coordinate system-gives,

+ q -- p(V-V)

or

P (V -V) (A45)

Substituting Eq. (10) into Eq. (9), ?.*

De p~ -0 (A46)
Dt 2 Dt .. )

The definition of the modified entropy is

.dQR

dS 1 R~~
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and the first law of thermodynamics for an elemental mass

requires that

dQ = de + Pd( )
R p

so that

dS [de + Pd(1)]dS= yT

yT[de + dp]

and Eq. (A46) implies that

DS,-,,D 0 (A47)

which states that modified entropy is conserved along streamlines.

G. MODIFIED ENTROPY EVALUATION

With the modified entropy defined as

dQ
dS - R

YT

or

B dQR

S - -A T (A48) . -

From the first law of thermodynamics
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dQR de + P dv (A49)

where e is the internal energy and v is the specific volume.

Substituting Eq. (A49) into Eq. (A48), -

A B Pd
-S 1 e=- 4 + f (A50)

T A T

For a perfect gas

P v R GT and de =C dT

for which Eq. (A50) becomes

-~=1 B C~ dT BR dv

'A 'B YT V

which after integration yields

I T J V j
S + [CZn B + R Zn B(A51)
A B y v T AV A

Substituting ..

R G C v(-l )

into Eq. (A51)
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S S +1 (C(Zn T Z VB) + C,y n VB,A B T v vA

SA=S + R n( BVBRA VA) + YlA]A B ~Y Y1 ~AARB vB Y1

and since RG R
GA B

SA S + R 9n Y Z Zn-]
AB y(y-1) P A P

or

SA - B 1 pB PA
_ + [Zn - n ]

R G RG YY1 B A

or

S S PP
B A 1A PB

= + [Zn -Zn- (A52)

If the reference condition is chosen to be

SA _ 2 - 1 Z

Eq. (A52) becomes

SB _ 2 _ 1 PnB(A3
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H. FURTHER TRANSFORMATIONS

Equations (A24), (A33) through (A35) and (A47) are in the

required form. However, some of the variables need to be

transformed, namely, derivatives of 9.n P need to be expressed

in terms of A and S and derivatives of p must be expressed in

terms of q and A.

Using the first law of thermodynamics expressed as

dQ = dh - dP

P

Eq. (A48) may be written as

--y T VS = Vh - VP

or for the 1 component

S 1 p P ;Zn P
- S -s T s pT 3s (-54

Asusuming C to be constant and usin- the equation of state
p

for a perfect gas Eq. (A54) becomes

S C p [ -n P
3- T ss [  ] - R s

G

and since C.= yR,/(-l)

(RG ORG P RG Zn P
- f - -[--) -s R

S (yD-lR G s
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Since R is a constant it may be moved in or out of the

derivatives giving

_f_ _2_ P I I n P ....7- p~ s ] s --nP

and since Y is also constant, similarly

-~ ~ - p a-s ] .] -[L ] a s 9-

..S -£nRG Y-1. Py as a

2
Using A = yP/p

2"- ~ ~ aGA 3 kn P "''
- LI] = - _

A 2  -"-_
iG = 1 A2 s 2 ,s

2Ay A a 9,n P

(y-1) A2 as as _ _

(y-. -,

and, on rearranging

a 9n, P 2y 1 3A + ScA55.s~ ~ 1- 1 s + v R (A55),-...
F-l As is 5

Substituting Eq. (A55) into Eq. (A33) yields 4--

2A ;A 2 S _+ q 2- +  + A -[ ] = 0 (A56)
-A_

and the derivative of Zn P has been removed.
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Since

A 2  - yP

logarithmic differentiation yields

0
dA dP d dP(A7

2- = + (A57
A P yP

For a pure substance

P = P(p,S)

and. an isentropic process

P = P(O)

Differentiating

()S - P ' A2

theref ore

dp Y dp (A58)

Substitutinyj Eq. (AS8) into Eq. (A57) gives

2dA = dp _dp = ~ dp
A P p P

or
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2 p dAd p -(A59)"-'"(y-l) A

Along a streamline

dp = + q Lp (A60)

and since the fluid is the same from streamline to streamline

Eqs. (A59) and Eq. (A60) can be combined giving

a_ 2p dA 2p DA A.0 A + q q (A61)

t. asy 1. A..1)A + -

Substituting Eq. (A61) into Eq. (A24) yields

+ q -A + Ai! + q A-i [-,- + cos 0 (A62)
s 2 as 2 can am

and the derivatives of p have been removed.

The governing equations are now summarized:

+ q + Y-1- A2-q + qA -2-0+ cos e 0 (A63)
D';q 2-- 3 q @ - m

+ + 2A -iA + A2 0 (A64)

2+ _ _ _ A . R.n P (A65)t as Yq LI n

.l + q = A2 ZnP (A66)
t s "q coso ; m
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a-t + -s 0 (A67)

Note that Eqs. (A65) through (A67) are in the form

3x Ax
-7t+ x =Z4at as

If X =X(s,t), then

dX = il+dt-k ds

and

dX = - +x ds ax (A68)
dt at dt as

where (ds/dt) is the "characteristic" direction in the (s,t)

plane along which Eq. (A68) holds. Along this direction, the

equations may be transformed from partial to ordinary differ-

ential equations. What is desirable is to find transformed

variables in terms of which Eqs. (A63) and (A64) will be in.

the same characteristic form. For this reason the modified

Riemann variables

Q q + As/P G (A69)

R q -AS/R G (A70)
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are defined, where S/RG is defined in Eq. (A53). The modified

Riemann variables can be introduced by manipulation of the

equations as follows. First, multiplying Eq. (A63) by S,

gives

at as 2 as2 an
(A71)

and multiplying Eq. (A67) by A gives

A + _ 0 (A72)

On adding Eqs. (A71) and (A72) to Eq. (A64), and introducing

A 2- - A2-/  = 0 (A73)

and

ASA A A S __ - 0 (A74)

after appropriate rearrangement

9q + A IS +a S +A '( s 4a - '.A-
S --+ qs+ q A' + qS- + A s"-

+ A2 aS +A A -i A S Lq + A qs 2 @s + As

q As[ - + cos 0 = 0
l s 2anm
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Rearranging and introducing Eq. (A69) gives

3Q- +s (q -Q1 - A [S - ] [ (q - 2 A)] ---

as~a- 2' Y- a .

Y-i
- -- qA S [+cos (A75)
2 an am 4

By subtracting Eqs. (A71) and (A72) from Eq. (A64), again using

Eq. (A73) and Eq. (A74), and introducing Eq. (A70), one also

obtains

qAR aR y-1 2 a 2
at- + (q-A) -2 A [S - 7-] [-(q +Y A)]

Y-11

+ -- A S[ [7 + cos ll (A76)2 an

Together with Eqs. (A65) through (A67), Eqs. (A75) and (A76)

form the system of equations which describe the isentropic flow

of an inviscid perfect gas under unsteady, compressible condi- ..-.

tions, and which may be solved as a system of ordinary differ-

ential equations along characteristic trajectories in the

space-time domain.

I. SHOCK JUMP EQUATION

The analytical expression for the change in the extended

Riemann variable, Q, across a stationary shock is derived_i2'

below.

Consider a shock moving with a velocity Vs into a fluid

with velocity q. as depicted in Fig. A12, with the conditions
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r V s
--- - -L*q A q - %- = VBs

A B A 0 0 B %%

Figure A12 Figure A13

to the left of the shock being denoted by A subscripts and

conditions to the right by B subscripts. If a velocity of -Vs

is imposed on the entire system, the situation becomes one of

a stationary shock, as depicted in Fig. A13. In both cases,

the high pressure side is to the left (A side). Since all

velocities are defined positive to the right, a positive value

for the relative mach number is defined as

(q ," V-s-)

B
W = B A (A77)

AB AB

The extended Riemann variable, Q, is defined as

Q - q + AS (A78)

where

-2
2 (1 9n[ 2 ] (A79)

S -1 y(y-1) Y
P

If all velocities are non-dimensionalized by AB and pressures

and densities are non-dimensionalized by their values at B,

"[" ~88.,. --
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QA - QB qA + A SA] qB + B SB]"¢'"-.
A B A [ B  -[ AB

A -B A - A SB

A A
B  

+" T SA S-
B B B

A- B AA 2 1 Y

= + n A BBB B BP

2 1 PB PB) Y .
[21 B .....

q q%- A

A - B +A A 2 -2 AA 1 [Zn A(B) 1

AB B Y1 A'Y Cy -1) PB pA

(A80)

The ratios of pressure, density and sound speed across a

normal shock are well known functions of y and the Mach number

which in this case is W. They are

PA_ 2 y 2 y-i ....
y+l W y+l (A81)

A (y+l) W2  " (A82)
(_Y_-)WB (-) +2

A 1/2
A_ 1 Wq2(yl [i +21w2 [7  2_W 2] (A83)A B  (Y+I)w -

"..- . .

An expression for (qA -q )/AB is obtained using mass

conservation. '"

89
o., %

-, .% . . . . - ; .o .. % . . . . % % % % ' , % , .. *,.4



PAUA PBUB

UA _ PB h -- )w +2

* a.

Subtracting one from both sides,

W u 2  2 l .
UA uB _ ( ~1) + 2 - (y+1)Wu B  2 i

UB (Y+1) w

2)
UA -uB -2(l-W

2  
(A84)(Y+ i) W 

' '

Substituting Eq. (A77) for uB in Eq. (A84) gives

UA - B 22( - W2

-W 2 (-w
B (y+l)W

UA UB 2
A B 2(y)W (A85)

: -% _ -." AB  (-y+l) W

Since u A q -Vs and uB qB-V"

* *. -. "

UA uB q A -Vs qB + Vs q A qB

Thus Eq. (A85) can be written as
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q q 2
- 2(w -1)(A86)--

Substituting Eqs. (A86) and (A81) through (A83) into Eq. (A80)

gives -

2 2 2 1/2
~A B _2(W -1 1 2y1) 1 -y-1-- 2 1 2-y2]

A (y+l) w + 2-y-) 1y+1)w(T-y

11 f y+ [2(y-1) ( iL~w)(4w-)' 2

1 2-v2 --
xyy1 [Zn(---. L) ((Y-1)W +2) }(A87)

y+1 y+1 (y-4-)w 2
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APPENDIX B

USING EULER-i ON THE NPS VM/CMS SYSTEM

A. MEMORY REQUIREMENTS .

Storage should be defined as one mega-byte to ensure ade-

quate memory for DISSPLA requirements. Also ensure that room

exists on the user's disk for the listing file if that

output option is selected.

B. TERMINAL REQUIREMENTS

The type of terminal required to run EULER-I depends on
A

the output option selected. When using the tabular listing

output, any terminal tied into the VM/CMS system may be

used. Graphical output may also be created using any terminal

and the graph stored on the user's disk in a metafile for later

viewing at a graphics terminal or for printing. To have the

graph stored on the disk, use the "COMPRS" command on -line

223 of the program and comment out the "TEK618" command on

line 224. When graphical output is selected and it is desired

to view the graph at the terminal at execution time, an IBM

3277-Tek618 dual screen terminal must be used. To use this

option, use the "TEK618" command on line 224 and comment out

the "COMPRS" command on line 223. When using this option, a

low quality hard copy of the TEK618 display may be obtained

using the TEF4631 hard copy unit attached.
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C. PROCEDURE AND COMMANDS

After loging on to VM/CMS, use the command "DEFINE

STORAGE IM" to increase the virtual memory as recommended

above. This will remove you from the CMS environment. Re-

enter CMS with the command "I CMS."

Edit the user input area of EULER-I FORTRAN as desired

for the particular problem being run. When graphical output

is selected, comment out either the "COMPRS" or the "TEK618"

command as desired.

Compute the program using the command "FORTVS EULER-I."-

After compilation, an EULER-I TEXT and an EULER-i LISTING

file will reside on the user's disk. At execution, if a

tabular output has been selected, it will be sent to the

user's disk as "FILE FT09FOOl." To giVe this file a particu-

lar name, say "EULER-I LISTING," use the file definition

command

"F I 9 DISK EULER-i LISTING A ( PERM"

at compile time. An alternate and convenient means of com-

piling the program is to set up an exec file on the user's

disk by the name "EULER-I EXEC" which contains the commands

F I 9 DISK EULER-I LISTING A ( PERM

FORTVS EULER-1

Then to compile the program and define the output file, use

the command "EULER-I."

After compilation, to execute the program, use the

command "DTSSPLA EULER-].." The message
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. . . . . . - % " .

-..

.. YOUR FORTRAN PROGRAM IS NOW BEING LOADED...

...EXECUTION WILL SOON FOLLOW...

should appear, followed shortly by

..EXECUTION BEGINS...

If tabular output was selected, proper termination will

result in a ready message. If graphical output was selected

using the TEK618 option, the plot will appear on the TEK618

terminal, the program will pause, and a

...press ENTER to continue"

message will be displayed on the 3277 terminal. At this

point the hard copy must be made, if desired, using the

TEK4631 hard copy unit. After pressing the ENTER key on the

3277 terminal, the plot will be erased and the program will

terminate. Proper termination will be indicated by the message

"END OF DISSPLAY 9.2 #### VECTORS IN 1 PLOT.. ." -

and a ready message.

-..

- ~94"['

. . .,



7 01-08164 125 REVIEW IPLEMENTTION 
N TEST OF THE 

AZiD 
2

CONPUTATIONAL METHOD WITH A VIER TO NAVE ROTOR
APPLICATIONS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

UNCLASSIFIED T F SALACKA DEC 85 NPS67-95-912 F/O 28/4 I



L3.

IL.

1111 .0 Jill 2

MIROCO -RSLUTINTS HR
fll-Nl RP.- F l~ rAn-~i-



7- -7. i--- - w 7 .1 I' TWNR v, -W -n

APPENDIX C

EULER-i FORTRAN CODE .

q%

000000000000000000000000000000000000c
-4 0- N r O ~ ~%+4 +rC + y L

+
00 0 0 00 0 0 0 00 0 0 00 0 0 0 00 0 00+0 0 0 +. >

* 4. + I WOLUJ W L
+ + 4. w :3 z4 1-O>

<<* o * +. +. MI .wc.< I 0 -I
*z zo L 0 > * +. 0 4. <C~ -I u,I- >I-

CIO a * + 4. + W JL ... jA I c
* - * +4 0 .+ :)o-:3L~z a- r~ I L

*JL 'D L%~ -Z w +N 4 + 4.>a I .4 .jW I J-
* C -0 + .~ 4 04Zt 7-a.0n~ 7I

* I Icc I * -. 0 + I OC.~uJZ OZL m ... j
*) V* 4. -Zi n4 u . 0 U.j(~>2 I w

I ZZo I( wA *- +.a- 0 .ALUW064 fmZLL. I J4
* e W .4 t -Wo L * +. +. h->- tluJ < -

*n l o.J j cc -40 cd- * + 0 +. a- wa-" r-1~ I x
* L l Jo 0.. co I-J- Q< * +. -4+ Z " Oacod a IM- CC C'<

*.q eOI >-. 'A * +4. L 4+ L u I-..Z44 Al.2.. .
*J) .- %CA W - O * +. +U4 Z. I cruj~ 0 U. I

* 'D ZCO 4W -I az * +. 0 rz w.- xcn a. 6 t.
P" 1-0 +J +-C- -C *VU L 4. 4. 9 %I~ I- L'

* Lu MI',I 0l Lu +.~ 4 * . Z Z w ,-- I~- W r< u m

*o IA'-4 CN C0 I-O X +) * + 04 0 t I- 0>--..JL) (A l-J. AC~

* wJ w- U.I m (A w -A * 4. 4.+ I OmAW -col .).I-' 11 k00
* ~ A- 000 * i CA-.- 0 2 + >. 4. 0 Z -..JCoCA 0.

* n C Wo. -2 X +4- Z + 4. 4. (A O WI- -A "- - W
* 40 0 Z.- -- * .C 4. + f zCA OwW->Oi.o- <Z U L

* LU 1c RT - I Mo LIV + 4.Q <C- 2 .2 L O(I ..) r J-.

I. X D LU w1 Ou.-O O * 4 I- 4 - wwaz (o > '

* ~ L CA -c Ci U.+ +ZAI *+.LU I J0 ~ ~ c1 4.1jI

* ~ ~~~~ IA:~. -1oL * 4. 4 0 CIC -. 1- IW.J-

*U O. Q I-- 4Owu(J QQ * 4)Jt 4. >t.O20 uII Ito tCAI- ~00u
% - - ~ U* 4 . ILCL

~.........I.



- 7 VT -77- Trrr -Mr- r

-6

ooO0oO0OOO0CO0O00000O0O0OOO0OO00CO00O'

ooo00oooou~~n~~oo o~oooo- oooo00,0o0ooo00 10 .1*

_-_I. OO0000000000000000000000000000000000000000000000-J-.J-J _

Wwwwwww wWWWwW1wwWwWW-wWWW~wWWWWWW MLU1W-w
UJJULLULUUWULLULWLJLL~LU~LLUJUJUJJLJ LuLLWUU LJLiUULJIU~U

-JJ

CU-i I, -L4

I (-) - L .4 CU Mo C.u

I- I-J =WL)-J- W- -M of 4oJJ

2z 0 Z Au~ <J4 ' - .-L 00 I-VAw lWi.- Z.-4(4t.j
- WL (A- wo Z-4*= w- OM.4UJ On ZWWUC -0 4 -yc <<~ J

z 0 -I- Z. (Y- if Ia..aU . U. .- O<zz
0 < < (A 00 I-X(J- UL)0 (/AC(AW 0 Co.<-a 4 O M Q. Coo-4
LU -C3~ Z -- wL <U0q I- -Wco (A C)-C40 ZZ -,M e
(A 0 ( ZO. LL. L U. in"s I- I-Wwwowg -a f-zz c~b*Ql

<ZZ - CUC -- 4 ouW~m OA-j O0c0.-. oz4 nZ j a

In I-om C AM mr OUI-.j -d-JLJ '4C-IU-'-l. LL~l ot '-
:T"- WO4 00I--- l-Un L5o>- LU.O-- l-z< <Qcnw&AwwU Cu. Z%

U- QfA(A Z -LL U.L LA. <4~O. LL>03j Z >Aw -4jw-. - u.C 4.41
C f-Z =;p W7UJ ce-zoI--a- CWZ 0-i LU =111 cc c

Lu 11 ..o. LU J Z>'-"U.Cz x CM-.C4~-I-~ ~~
CL*' )x( 0 0cc'- W>-WCI -(AC >W LZ~.I0A0U-UWssJjI

I-- LU M Z L)4.. -(ZQIJA0.JOOZZ 43-
- U.L.L. ..J 0CcLW (A QZ'.J/ re-1 LI c- U- iW Zu ZuL A.

MX CC M VIC 0 OZO-.JWWi-'w 0- .zeWa.XOL.>Wwl-- wO-">
Q ) e 4 W. wIOo.4 £ Q.U. .- QU cg CXU. )0( -.1,-W-

- --U -S U. L w i,- (A cra(A< noceI-CF2au. U. LUW L ..
=34LU4 4c LU(I-)&-WJZ= 4 . -
x ULw< <>U <<) usx4..0IIIW. W A A ) . . "

w(lmC 1~W~4~. 1.Z ~ U w ~1- C *uu--

1-4 I .4 '

4c Z -Cx 4.
- I 0W.JL) (A <4 X- -. W"O-o

96



000o 6 -44 tb- n 6%-. 6-N mti-4-. in .7-4 Nr.d . .no-m 0 5.-. wt.4 -.4r w4. .o -4Nm

W W W WWUW W LLW WUW W W LLWWW W UW W U UW W WWWLLJ W W LWLW dW W W WW

0

L)

le~ 0 +0 1 L

OV) n QMOO - = + + X W

4 )z4 x x-t 4+.4 + rL
w 00c + + z I 1- z vU

V1 W;~ W "OW V(Ac LL 4L( + ox - I Z D>
07- L00L mm)I +~Z* + Z- (. g

I- ~ L 1J -q W 1 0 L 4. ,- Z I I ~WO 3&OLC z V 0
<(AI. ZZL m WL~ W + +0e<aL

'...<ZL O*L <-

tj ZQ 00Q 0 - ""W o nN- M + ) 0..j 'M -4C(

-43- .j M-I--L .fl -W Oxo~ >. Z= + + x MW z ID ~:
4-)-'04--I-~0 I-~L.4-- I- 1- + + .I W= 0 4 -

MlJJL)4L0...1 Q...j0..J M U.. +. +4 z x ft, -j % '
'~4I4I44.) WJ LU M -. ..z.J ci W +4 +- W4 Z. . - a .

Z"-< x x~ )(AC >-J>Z LU40. Z ow + LU + 0 Wrn I .1 >- (x ni-
LX LJLL Z L- I WW -J - < 4... 1--24 We +. (A +. U L.)cw=

u.J.-.~~ = +I- +'J ( 4 A LU . *Jl
"OO Z = < -J4)(-uI- MW.LU <( *. x +4 W .ja Li -C'~I

.-j= x U- L LL3 LL WOjm )0 .L/) - 'A +. LU + .-1 0-4 -0 % ..

.Lj_-wwQC: 0 OwUO qcetfl')0..j0 I- iA LAW +. _.j 4 M ZoA W - LU < rsU
> -- we cc Z CLQ W LU WZ 4. m + 0 -~ _j g. 4U1)(A
ULWZ ~-)0-U0*U.U. LiAZrT U. -.J- + 0 +4 CC LnW in cO Z -i &>W

-Zi40 0- +4 ccO +* 4. Ce 4. 0.c fte Z1 N4 N I
<I.- I-I--Z 4- tn.. 4: + 0. + fto C)0 - ..j ZW w

4 'WL wac +b4~0) +-' 4. n C A 4U U Ce * .0
N ~ ~ ~ ~ ~ ~~~~4 fixJ Xw -. 31 . UWw jM > .0.0.. an>-

<-ZWMWW3UUWU4CcwzLc-L/)Zw >m +. +. m I-C C4 -
S> > X<4 " _j4 4 kAf + u. CL) 0.

C9 + .- ~0 -6,Cew'-4c
gil + + 1. III = z1 4. 4.4-Q~

+. + Ce 00. n I Cic 4-LU
+- -4 + < - 0 I LUWCDC>)(

0-.I44-'- 0 + + 0.Ll iL*
'4L 40W e(3 * 4 4 LU + W1-44

". 4N ne4 W 4.z + I W....J.J.
~~t We - / 4.' N L * +. +. Z ZJJJWU

/1-I> > > > m3x3( )( .0>- * .. ac4.4.4.4 %

97

L'PJ



~~%

*6~ro 0 d ()-L,1-O7 O W n LA -0,0-rm k o--C %O 4~c t*,roo -

+* +

+ +

+ +.

+ Ig+

4-.

(3 .J A) -
4L L-4 U.1

WU W'M-4 2

0 0-.-4.i - a
WU 4-4UO~n cr -. 0000

V I)tnLn-- 0. %- A 0000
Z- -> 0 M 0000

- Z0.~xw C a. 0000 0*%
: Ljt~ 0 . V) U 0000 0

0. 0-Z<< < 0 0000 0
Z -W OX( 0000 0

L- - w 0000
X QI. 000000 00

t-L I- - - 4T In an1 u ool 00~ ~.tbfix LIN LA W S0 00= 00
LU 9.'-- CI LU 0 'O-i 000 00-40

M t M~4,4 1-- 08000 omtmvnm~4 --- .0
9LCC z Z 000 1Iu 0 O.tN'-447' 4 CNNJ G .-411 11- ..4-400

<ZCCC Uj N 000000 I .-.or-or-.o +* a. 0 1 1 - <4W 1 I11 It II
+ I 4II.t('JOOOOO 0 In &A. +e 4 4NM0rO .u-Z . .
+. Ioo.0 L/NI e I MMM ii&4u 8; +I -I**- . --.- 40 ..- 07 Z 4-

4+ I ** I m 11 -r00. g-.jIIIII +.<4494 00ONN-o"-.
+ -.. J-Ji 1 -4 CL(La1 i 11 11 11 *1 9-4"-w 11 am +. 3zxzo *4~~~~%-

+ LIZW4 0Wu 1 1 11 + 11 0 DI30 11 Q
+ I _-e cc lz oI,-O.O(7c I~ ~ X> >Q + ov tn0iIt)Z 006

0

.9.

.9 QU

9R o

N,6~'
.........



4,rnol 30 - 4MtmoC 7 1N ,rlo, o00 m- n -C %C

a ()%~~~~~~~~~~~~~~ C,0aGGa 0000 4N NNNN 4* m~v lmnn_

4 .4--4--N mN NN NN NNNniNNN NNN NNNNN NN NN NN NN

O00000000000000000000000000000000000000000000000UJULUUL)LU UJAJLILJLLLLUJULLLLIUL

-4r

4j .. 4...... CL

* -- OA0 -_ _ - W 4

00 0 _40 L~Aslc jo j 6r -.

If I 4 MCa ,Q o

-- -- -o(( N4n VCL m 4 tn ... ,..6

-1 --- j, 111 ajQ.OJ -s a

(3(-.-- Z .-- *-.-- ZCU i t. 11j jI.

z _j 11l- If i 1111I--
U.". t- urlu0a

* .~. z o~o *~0Z(99



It4 IVIItI UNU nL l Mn i UIA U1, z Od( 1U0 O '1 0101 01 f-f-r- . % 0.-P-P.- oc c cwc m~L O- 4

N

CCi

O

0. Z

C 3> Z Z: + +41

.3 *- ft a* + 4. %
N 3 Z - -_j -LU +* + 4. 4

z 3c 0< .c 0 *>. +A *4 4.

Lu.~i4 N WJ LU.I- WW * * + +
0 - *X 0 9. *go N 4. + +

*~O 3' - C4 A AQ +* 4- 1. *
*z N ft 'r ***0 + +. 4

- LU .- z a.Z C1 CL.; +* Lu + .
N L <. <Z. 4< +0 +.. ** ~4

0 x. acx It .* .4. +~ +.
a1 0" 0-4 04L 4* * 1 +

.~LU 0 + z *% A 4. 0 4
.0t + +C 0 0 44 .~ .
0 0 Z. Z+ +0** ~ 4 .
-CA - 4N -<t/ 4e +* + .~ 4 .

V) fn *e fA-0 .. U +w *( 4 A +.-
0 . ft - -ce -=- *44*4 + +

cc ce 0.3- M . n..- **W M>" 4. +
IX: cc -. 30L +..** 4 'A 4. U.

_j .0 a d 0 +1- I*4 .1- +W
WU0 3 3 VIZOCOA ***7 0 x4+ 4.0

QL)~C +3 *. *. 1- +* 4. ~
C)~ ~~ ~~~~ .l + 4 LQ.- - -. r ~ * * - . C .

1- C ZZ) I: ZC Z ZZ. A 4. wU 4.4 LiU

ce CA -, AX4 -.JA ..j. +* + ~ 4. 4. -
- 0 a 0j 0..C a. zo +* w- +. Y. 4W<

Z *j- qi- +J1 +~i M. +*4 (4%404 A.
CAl 2d Z Z 9 C l $(4 0*4g: CO + * .~ 4 I ZWI7

.'%.ud Li w0. Zm< Z4iZw4< :3u zw* + .- + I om-

LL. 0 p.,. 1 u-'- C I. Wi .4 L)U. Ug 0i * * LL it 3 CA
0 -4-.s4e-~4 4 -e -4-0 *** 3 4. .I

Z-U. 4 4 4 I . 4Z. Zu. +2 i)0 Z** Q 4.c 4.I-- + Lz
0 - ... 4i i 4i I- aci 0 %0 nm 40*** co + +. I ZWIX

Z L i Li - Li <i L L Li LiLLi~ qz 1 iC3< *** -.) + +I i ji i Liji

100

~~~~~A %4. ~ ~ 9 * d ~



0000 CD)00o000ooo~o0000o000oc.oo

Nn0OO'O NN OOO OQ OO .- 4.'-4 MenNJ~r (nnrn mmmmm(m(nrf mme m

-15 ,5Mnmrnr)nr1l~ n- n-mn

WWWWWWWWWLLJLJUJWWWWWWWWWLLULLLLWWLLJWWWWWLJLWWLA.UJWWLLWWWWWWWJLWWWWWWULL

I-e

- z ,I

V) * II

uii

40 - I

a -0 I

cc (A WU V/) Of-
>> z* 0

t/)U CC U) m II

M e-U. z 7 i

z0 Oc Z Wu vI ~ I

-- a z cc 00 - ii
Z-..a Z 0* OV * L )- I

-6 WO . C30 oz - - L)I

(30 (A wW (

U' .JL') W ) U0 ~
.z xx (A -*/--uL..i

X: 0. M Z-W*~a X Za 4

0** WLwww W-4II 1 IIAa3e-WWW WtN~x4uWWWW~uclWWILWWX 0
W-44 - -- i, LJ ~ -- - Z -0 x

-. ~~~ ~~ 3 37 'Z . 0 - 0 Z ~ 3 ~ ~ w
-W Nx to -3( 4* 4Oca a 4 Ia

0~1 10 10.0 0

101



r *V

mmntI tI tl~tI N 00- o

-J-Ji~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ .4-- ii--- ii-jj-- j j- J. i-ii-- jj- j- J

WWWWWWWWJWWWWWWWWULJWWWWWWWWWUJWU~MW

cc0
cc

*I *U IU LU *

*j *r IjL- 0.0 *
*~~ <V % J*1

Z Z J4 '

* W w (A Z LLJ Z .

*- - T -z *L -U * A ' - 'A
(A LL ~ 7, L- ui im I- * I'I CLA =
*A 0; *I 0 * 0* 801 4- j

* . * - CY. *n L2 *L Z 0.

* U > C. * ' l4 Z * x 01W.%% A.0 %.=
* 1 0 - *0-11 3 I-. * 1- * 01 . Z <

I * -0ZJ --1 - 0 0 ". -Q Q X
* 414 0 Z-o z 2*0 * en m==-

* Lu * - N> -- j 070; -4 .- i~2-0

* ~ ~ .o- - w +.- 0 -* 0
* .)*z u - 0 ol-9.-J *- x cc I J (3m..

41 .. j* I 2o40 u Lnu) 41 'A * I LrW W.C CLJ.J3

41 4 * I 2 *.-4.-K~CU. ~ 2 * * hI- -ON

41 L) 41 I ~ flOI~e'-wO - 41 0 I I-i*'A-O102Au.



_j _ _jj j _ _jj .1 j _ _j j _ _jj j _ _jJjj j _ -. 1_j j _ _j.j j _ _jj j _ j _j-.1_j j _ -. -. _J.j j _
Mn 7731n n-3- n -7D nmlj)-5- M~n73n) nn -n-I m M n.

0o0W0oooWWooJ U1 oo Lj WoL WU) L)W o LcLu 00OO WW I..100 WW oO U O WLl LJ WW WoL c, LJ WO-

d4

41 LUJ
0 InI

LU C 0) cc
z- 7? tAL/) +*

.4 -4- P- + 4
.. J 4 W j < 4-_j + +.

L6 u. w 1.0 - 4.-70 +. +x
_j co rv- ++
0 ~(3 +- + ~.>

0 _j -i. -_0 a 4.

0 -l ml>. M c V.,t Lu

= <... D 4 x __4 Im0
V)LL W-_)-"z .- (0 a.

c~z cl -Z - Z
>1- I.- <-. <
>I- >Z _0 0 2 4Z

I- 4 0 ( .0 WU -O4
' A . . ce

A ULLCAijiUL4 =ZZc -
o " X0 0-.0 0-0. L 00)-
0e -T ajcc 0 <. I--X a M

w Z LU. Z-aj4 ft *C = :D x0
4u. 0.4 0 'r ~ -* --0

COW J w...J. -a ~ LL 04 - - J.

00. ~ ~ ~ ~ ~ ~ c 1-4I ) -L --
Z-VCA-u.Jlo---*W: -Vt "d< M ) X *.4 +- -a4o

J~z - A LUJ 0 -
o.Z(JZ- -J> c -- 1- V) *o <- N. N

n )-WW,=Z__ 0.<C3o . 0 . 00U - - -i- - - L

W Lfl1-0l-Z. 4 ... *- j I~rj 11 0

+ -J9 1j Z++4CZ +4. ~ ~ r7
I Cc c c.oorc'j -- W)C-l- +. 11 11o-0--3 3

0*** +. 11III it U. 11 1101)- +. -- QcwzO -- C 13 11 1

1-44< +. 0 +. 11-4 4 It it f

.3 >X * * xl Ci 4. 0 4 O/C4(.

103



C.) 0 n 000 CnO 0 oc 0o 000000o 00000000o 000000000 0 0 0e,3 0 0

Ono0000o00 0000000000000000 00000 -)00 0000000 noOO300

0 LU

-n2
0

~r1 .~ LU I

LA M -Y

r- * -J - ~jm I-

:90 LUJ < <

* L *V) + I-

.. Q. *L Z U
CY 0 0j * * Il-Q 0 2

* 4 0 zU *w * I-4 . 7"
NL I- + +U* * II- ' 1

- 0 I- *C O + 4~) -U

on t: - LU * * I Aj.'- ( t
0 Q 0 * w 1- im 0m W L ) im-i JLU (

A. * - (nI A *~- A 4 - . - I 4~

Of -f- 0 - z -* Z 0 .4 . ~ A a

C)m 1n 0-

1.~41 U.13 0 -. '1*
1.- -4*~ -a + I .~(- -jc -
CC. I ftou X . .I- z *f 7 * <U ZZ Z Z Z Z-:Z L <2:

A* LI . LA.LLJ.. - .
-4* N*~ -3)L *C C. *L < CJUu.JLIAJLLLJCZcCe IXZLu L

I-. -I - IU n. M * LU w -~- .

-..*%' LUja +2f -1 -.) Q * LI) * -- z ~ mc

M eO I 3ac(3 Xf - 1 W0 I - < 4 4 44- -A O

'i0+c 01 f UJI a 1* 0.*

11 3t 4Xa' U--3C/)VL).- Z-W :)N *L *u I L aWL uL jUjL . - -- -.

wv(X A0 - * * ZIiwc.i*
LA*(NIICII %.aW.-.aZ N * I 0~Z-...Z...:*

'0104



IY

moomm -410 oMooo=ooQ0CIO, Co o(co >C0Q)Cc-cc

IL LL j j ..IJ -LJ .j -U -J -U LU ju -J JU ... -Ji .UJ .j - U ..J jU -L J L- Ua L L J ..J . J jU LL UL U J J LU W j LJ -Ji .j W ru . J

m- >~

p ~ ~ j LU .J'h ~

0- Z z:: *U* 0 - -

..sJ Z7:-Z OTwU - :y -

uj. Q --c-CC

.j- -4 - .ZOM - 3 .: -
0 w -,47-z - 0 z
L~I--* za Z~---o c Ln

Aw.-- U -c. 0 .. r --
*i ~LL _ .- Qi- ~ E3u.-- ~-i -4

LLZM ru. L/ . 2 .
-D u.J - 9. 0- Z- TLc.:- ...-..

<u.U 7~ ce r '(t-4 -v-- V '..g .- co

p > tU '- 0 a.--YL I ~ - ) * + - A < ~ -* . 0

-j % i - -.. jcs I.0 J" -m .V)"7 - t- - - - -~c - - - OLILIJO -D

Z- fy I -Z Z 0 I IIi . jw II II -Y - '0

.-.C)L LUL)C u-Z(I.J -- o- I LZ)AZc
;;LJ'7U: -C- - .-. 'f . -4 0 CD 3O

In = -LU-ay ** * **-- J 0 -MO
CC j i .ty -(JUJCCCO -( <01WL W~tJ4 IJ C U/) -

-L~m/,J - 2NI-O-<Z3 >=Ouclo oc o - -- - 41'u"L~

= CY 0P- / " -~. - -y- Z*a.-.W-- -

-4~ ~ ~ -4(j

105

pA



-_ --- - -

J A .W LLLj jiLuUW U LU-jLLU J U W WWLWJ L~ -l -uLjUiu L.uL l L l - - uLL _

-In

- -- ,y -e

-i -n

A -- .jj - -- - 7

< -2 : 2 ' -.1 M O-V 3 N. N.

It1 I f it < < 11 11 t - 2 's'Y _-
vll- 9 X.d on -- - - .11 11Z

-. . - r~ FrlZZt-Z2 7 Z ZI--- 11it - F- ~- - --
< -'Dj -~ -2 r - 2 ) - - -7 -p- - .1 r. 1--7- I-

- k--J D0 C nm -. lf Q' J LD Y u ... F-I -._ Nc ' (n Q 7I

- --u z L*L ~ -Z z I I.j'r U. :)- IE2,.:



I z.
I '..

X4 x

_j~~~ a40V

Q~~I 0- i 40

wU wo IA + I -

0a a -* I JL

- C - -40 ry N- Cv< a I_ *

Q-w N 11Z If 111 f1 1
_j ZZ U- "W W ;I_ 2_ 95I

Z -J ~ 0~.I P-"00 .

u aZc (39 Q -000 1- I1 11r -1 Z
17 - 4 X XT"%% az .* r %7S 111 1*- 0 - - -

zi W LL. I & -- le I- -il LOX" "(2 92 LL5 - -.I

0 e- I aw I a a ~ -mm NNM-M m4-.- 1-11 1 O I -

ad -i 4c I. <<I --wa -0< 0 I -- ; WW I4. a I I4 V4 a 0 ac 4~ N L
_j - - i 0- I I Z I. - O I -- IJ -Z 14 0

J -Con I- - I -4-4 -'-' I I i- i w

Liiii W ~w 4 .a 44 I~~ - Li 4 * I 107 I

v .J I ' ~ ~ - U -



U'N'1-M % 0. Nm r U'O PIM 0%0-6 mt ' ,o- w 4 0 d~mrLn z- m 7 0-4(" m Lmo-l (7 0

cc U.1 1u

-JJ

LUi

M- -3u
ox ***0 I

.j *j CAI,-.
LU-. ZT .:*

n CI M 01- * * .I

v) LU LW I- >Z--a
WI wJ~ *nn * ozL.

7z IJ __V LU * *

W+ I - 0 *3 _ * 0 -OIwJ

OXLU £Ai *ccr _Z * -M' -C 1
0 C.W-iL (0 - * -- + -O4i) 7

- - W1 ifP~ *) m- *3-C ZtA .4

Iao I~ on7 * amz
0~ m:mI* 1 0* * -*

04 1 --..I I .zzWz I. * *a . MW t,300

0.1 I ~ LU I 1111 if *ow 000 XXO

o* *ocu o -4N-4W.-

* IQ~t4 LI.JQ QUOI.. QUQ QU 0))JLI

108

"Wr -,



00tulol00o0aOr~ INI Co0 0,o o o 0o o 0 oo000 nt0no, oa4(~-tocC o -U., M 0,

-LJ

0 L-J

4.11

- -AJ

*U .j * * n~-
C31 _j * *. ..J.I.-. ,

C.,-J f * LLI ~
O- W * * .

w~~ -.i M cr
I. U.1 * i * 4 -

_j cI 1, *: LLJIJ
M- .. J-M *Y 0zW-

- -0 ~ ~ 6 W- * P4z.~

-- 4 M- 0z- * * LJ -01-- 0-- I,
--Z-4 * *j M- _jj-9-_

W Za~ Z O wm L'- * 7e CC .- '. a c
6.4 0- Zl *Z* Q~ * .01 - J. 4
<_. '4N .4 C0 -- J= +) - -- - -r -J -

W 4N + I W ==_J 0-r x Z N u w.. 00tn-
0 ~ ~ ~ ~ . Vs- - -* c .c3* -

- X -.( - - ... X- * fil *e '.4 11 Z1-Z'

za- UJAUJZWZ fLu -:.4m -44 u~11 11if1!Io *i WW0 '300-% jx, +4 ooo;
- -.-- W WUJ)C. Z'4j * ~ ~ ~ jJx If) *L 00 -

4~~ea -- Z---4 11O a~1 *0 * .- .m- -*I I

- --.TZZ6 *~.W I X ww* * .wa.w.acc2wwW ~0
OUUUIiij ZOeACL CA -nWUJg gg ~ .44g

-wfl~~~~~~00:7~~C 0~ in * * LAO-. ~-I*Z 00-
*4~4 iiII II- re-. -- * * re -W'e N-Z~ Ni _r 1g 10 ~

zzO O-- w I ltf~ ~* * * -W-1e109.



z

+ + -

+ +

V) I0 +
.L

i- wU "-ox
C3 =3-Ie4

C! 0 U)NN Ucfv

.U CI **** 3 + 4. )a

I.. c*c~

*C z 014 z z *
V ** cc 0 -cc. 10

-y N* *ecm (A+
N 4* * w ... a. 4. M.4 v

- *TF *r U 40.'4< &. 4 3 -

w 00- 0 * j LA ZC0 w N.X

.LI ' * LL * LUl n n 0- I V)

I- ~ V cc* *Z4 Z .

0U -J va *v Z *D jc - . .~ 4
*J Xx 04 ON * -om OOZ X-4

LU J LU * LX * 0. *Zt~mr3 >..4 It1 4 C-AII

S00 .1J !n * " 0 bw -J ow ..J N)(
I~ *4G * - -J "<* LU N/.D- _j LU Q 14
* ~ ~ ~ ~ mrLA- *X ~P~*S 'Z *

-.tl** *.4EoC.4 'N X1-N

I(%-- 7 * * ~ uJdX7 -U. ---
of1 11( CA *p -q * Lf- V CO *NN 0-4 - W..JC., *N.

* - 0. *c 0* * Ni -1 l>u *4I It Ol + - %.O
U. WW D I Z *jj 0>X-o *-.*474 +. g -- 4LA4 1111

* 0L"7 * *-C co 4'4qx+ *CC... + --- MC 11
7,X- * *j LU ZLUIJ 0 +-4. LU.1443

- I44 IX LU * *) M 0- cc W.AN +I 0 +~ 4C.XQ.

- ~ * 0 * Z~ ~ 'W C~I'4NN.N
w ~.. * LA * U A)C.+ I O -410 .40A(.4-

- ~ ~ Q Q O Q I-* -* Zo .- U Z.O

IIlIA ~ 0 1 L~~4. O '4 )~l-' A110X~-

%--I C .** f I I.I ~- 4



F:: -f-c o oc oc C c030 oc)0 0 0

* *.1

0 %

00 000M000 00000000 0 00 0000 0000 00000ILL

WWWWWWWWWWWWWUJWWWW4 WW W W W~ ww W ww W -ccLiWW 5!y

Ln -j tA O4
*U'%LnLn SO .

N 0 0 0 0

-1 11V a< u

CO 0 1M C tnA -- 11 w az-
L4- -OM -

I I W Z O~xzOmz~~w O4S0

-- * 4 e-III

*2"W 00 <0 NN0 0C 0040 < 4

<4%v)(C7* *)~cFg YC L W .04nOQ QQ~

QQ~~ Q*OQQ



%1 .

4A

z..

o- I-

*n WO zz ft-- I
Q*. * wt-. a0%
V) * -c -t* 3

'3 >- * -IP. -
0- ft* * .< Ln toe

.- 0. P * * 4

-Z N. n. *1 c7-

-e- 0. *UL V). *N L%. 0

4A..J Q.~* 0 * ~ ~ O-

LA) '0 *- <UUL - -X-4 +U0d -lr_ -1 -43
-U eyle * L 0 * 4NXN@

C.0. 0 L * -~ 0 w -- J - A<2-
A)Zo *-*ALl / w- ZZ* Z - 4 -C\4

di ~ l *3 a.~ QF(c*.A-U Z 0--> or-- -- 1 u1- -o - u .i

_D> *j *j % --- * 3
-i--J c c L -. -*i-i- .i *z 0-cL'.U *-C >.-i z IAC z aa-*wwm. xce w

-<-ui * 4 * 4Wu'uj 's:.-@- 1-4 --- *- 0
ZU -I i *'CL-~.lA4~A.

i-.~* * *~ -- ** .*7ZW 0c- --- * .--
0.- * * -~~,eN~f0).~ - -(A ce%.0no

QQ *- .j)- * a *

% 004 * 4 * * -- ~ -00I- W (4
Zo- ~ *~ * ZZ .... J ZZO Z--AI112W

:S" *"I*~Z 4%J */tl I.41~ I .X



FV -V TV-

'0 %00o0o0ooo00 %' 0P-o DOCCCOCCOo Coo00oCqC%0,0000 000 --

OWWWWWWWWCO WOOOCOOC WWWWWW CcoWOWWWWWWWOM 00WWWWWWWWWWWa WW70%WWW % 00W00% ,

LULLJLJILLUJLJJUJJULLJLJJLIUUIJJJULJULWLJLWULJJLJUJLJJJL-IU JULLL

- 0
Ln - . 0 .

wa-4 0 * *

CLO aPa > 0 O 4- -

C- * '.

0 CC CC -f * 0 atZ

.C -1<, l-. " * ZW N
0 *. X* t i 0> - Ci

ox *4 Z x * a-

. :1 il > * *04->

=- * , 0 4-

4*44 49<.4 -01*t

Ci a- ft a-
Nl * V)4 ,00 OZ ZZO..Xn Cyle -1 1

zoI 0 ui * - ( *ZL-JL- 0- 31-. -
<<aaaaaU .-. * * /.I,- UI *xx -o>O- N-t Qti

>.o ~ ~ >- *L 4* C-4 0( C:4

Z. ~44 '.0 I- 4* ZWXfl If9-1-1-! - -- L a
<<U1-a 4*-l 0 cc (.0 0+. 1 - -- % -w u1 41C
'~ . 0 J- 4 I4 ~- 9-1-l-1- j CL.-- ,- o -

ZLL.LU M S. *wm 0,7 W * 4* * -. *W WJ* - w <- -
4'40O C 4 I 4*m "zxw.. Oxx o-xo.. Z-t-- x

ZAWww WO * U *%i 9UNN9 J~ 9 O N
14O* * 4 4 04a~.0.J- U~

~ 1- * W 4* ~wcn 11-3



JP
4

NNN N
I'_ j j_ j j-

Z4- U') 4 44 44.4 4

WWWAJWWWWWU4WWW

I.L C)M -- I-

1.1



- ~ ~ ".- -.-- "

LIST OF REFERENCES ......

,,.
1. Eidelman, S., Colella, P. and Shreeve, R.P., "Application

of the Godunov Method and Higher Order Extensions of the
Godunov Method to Cascade Flow Modeling," AIAA Journal,
Vol. 22, No. 11, pp. 1609-1615, November, 1984.

2. Eidelman, S. and Shreeve, R.P., "Numerical Modeling of
the Non-steady Thrust Produced by Intermittent Pressure
Rise in a Diverging Channel," ASME Winter Annual Meeting,
New Orleans, ASME Bk. No. G00273, December, 1984.

3. Eidelman, S., "The Problem of Gradual Opening in Wave
Rotor Passages, AIAA Journal of Propulsion and Power,
Vol. 1, No. 1, Jan-Feb., 1985.

4. Naval Postgraduate School Contractor Report NPS67-84-
007CR, Development and Evolution of a Numerical Solution
of the Euler Equations Using the Godunov Method, by S.
Eidelman, November, 1984.

5. Naval Postgraduate School Contractor Report NP567-85-
006CR, Wave Rotor Research: A Computer Code for Preliminary
Design of Wave Diagrams, by A. Mathur, June, 1985.

6. McDonnell Aircraft Company Report 83-031, A Natural ..-
Formulation for Numerical Solution of the Euler Equations,
by A. Verhoff and P.J. O'Neil, 1983.

7. NASA Contractor Report 3712, An Improved Lambda-Scheme for
One-Dimensional Flows, by G. Moretti and M.T. DiPiano,
1983.

8. Keenan, J.H., Thermodynamics, John Wiley & Sons, Inc.,
1941, p. 88.

115

.

*. .[.



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Tnformation Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School.
Monterey, California 93943-5002

3. A. Verhoff, Code D341 3
McDonnell Douglas Corporation
Box 516
St. Louis, Missouri 63166-0516

4. F. S. Salacka 3
7 Woodside Road
East Apalachin, New York 13732-9428 k

5. Office of Research Administration, Code 012 1
Naval Postgraduate School
Monterey, California 93943-5004

6. Chairman, Code 67 1
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93943-5004

7. Director, Turbopropulsion Laboratory, Code 67Sf 11 r
Department of Aeronauticsr-7
Naval Postgraduate School
Monterey, California 93943-5004

8. Dr. Gerhard Heiche 1
Naval Air Systems Command, Code 03D -

Washington, D.C. 20361-0001

9. Mr. George Derderian 1
Naval Air Systems Command, Code 310E
Washington, D.C. 20360-0001

10. Dr. M. Keith Ellingsworth 2
Office of Naval Research, Code 1132P
800 North Quincy Street
Arlington, Virginia 22217-0001

116



* - 7 7 - -

11. Professor Ch. Hirsch 1
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels
Belgium

12. Mr. P. Tramm 1
Allison Gas Turbine Division

of General Motors --

P.O. Box 420
Indianapolis, Indiana 46206-0420

13. Calvin Ball, Samll Gas Turbine Engines 1 I
NASA Lewis Research Center, MS77-6
21000 Brookpark Road
Cleveland, Ohio 44134-1525

14. David Gordon Wilson 1
M.I.T. Mechanical Engineering, Room 3-455
Cambridge, Massichusetts 02139

15. Helmut E. Weber 1
Professor, Department of
Mechanical Engineering

San Diego State University
San Diego, California 92182-0191

16. Robert Taussig 1
Director, Energy Technology
Spectra Technology, Inc.
2755 Northup Way
Bellevue, Washington 98004-1495

1.7. Dr. Shmuel Eidelman, Research Physicist 1
Science Application International Co.
1710 Goodridge Dr. Mail Stop G-8-1
McLean, Virginia 22306

a.

117

.°



FILMED

.mop&

D I.

DTIC


