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1. INTRODUCTION
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1.1 Summary Lt

Continuous fiber composite laminates are known to undergo a Sﬂ-*i
substantial amount of complex load-induced damage which can adversely !
affect component performance [1]. Therefore, it is desirable to develop
new models capable of accounting for the effect of damage on materials
properties.

This report documents research completed during the first year of
a three year effort under AFOSR grant no. AFOSR-84-0067 and originally

detailed under Texas A&M Research Foundation proposal no. RF-84-34 and

dated October 1983. The objective of this research is to develop an

accurate damage model for predicting strength and stiffness of

continuous fiber composite media subjected to fatigue or monotonic

loading and to verify this model with experimental results obtained from

composite specimens of selected geometry and makeup to be described

herein.

1.2 Statement of Work

The following is a brief summary of work to be performed under the

present grant:

L 1) develop constitutive equations relating stresses to strains and
é damage internal state variables (ISV) which may be used in a stress

gradient field;

o 2) develop ISV growth laws as a function of load history for

matrix cracking, interlaminar fracture, etc.;
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3) develop finite element algorithms capable of evaluating ply
properties in damaged components.
4) perform experiments on components with selected stacking

sequences in order to verify the model.

2. RESEARCH COMPLETED TO DATE

2.1 Summary of Completed Research

The following research has been completed during the first year:

1) the general damage-dependent stress-strain relations have been
revised and completed;

2) an ISV growth law has been constructed for matri; cracking;

3) laminate equations have been constructed for matrix cracking;

4) the relation between the damage ISV and surface area of cracks
has been established analytically;

5) all finite element programs are complete; and

6) the model has been compared to both experimental and finite

element results for glass/epoxy laminates.

In addition, the following research is partially completed;

1) experimental characterization of ply and laminate properties in
a variety of graphite/epoxy AS4/3502 laminates;

2) non-destructive evaluation of damage in various graphite/epoxy
laminates; and

3) correlation of model to experiment for degraded stiffness due
to damage in graphite/epoxy composites.

The following sections further detail the results summarized

above.
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2.2 Development of the General Model

Thermodynamic and symmetry constraints have been utilized to

construct stress-strain relations of the form:

R ! T
, = + C € -
J =0 . L L €
Liy  Lij 1jkl ( k1 Lkl) : (1)
where CL is the stress tensor, eL is the strain tensor, °§ is the
ij kg ij
damage dependent residual stress, e, is the damage dependent thermal
kl
strain, and Ci is the damage dependent modulus tensor, given by
ijkl
' n n
C =cC + M o
1 3 ij ¢ ’ 2
Lijkl Lijk1 ijklmn “mn (2)
where C and Mh. are material constants and qE are second-order
17kl ijklmn mn

tensor-valued damage dependent internal state variables.

A kinematically based description of the internal state variable

been constructed of tha form

un R uc nS dS = 1 a,, ds
Lyy v TR T‘f 13
L n L sn 3)
82 9
where ug are the components of the crack-opening displacement, nf are

the components of the c¢rack unit normal, and 82 is the total surface
area of cracks in a given volume element, VL’ as shown in Fig. 1.

An ISV growth law has been constructed for matrix cracking, as

given by
€
€ n_. nl de .
n - min n if € < g < ¢g s and
1 =K - n n n
Q = - € dt min max (4)
1. n n_.
22 max min
1L if e < or £ > ¢
2 n n n n
L22 min max,

where the parameters are as described in Appendix 6.2.
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The results outlined in this section are described in detail in

Appendix 6.1,

2.3 Application to Matrix Cracking

The model has been applied to composite laminates with a single
damage mode consisting of matrix cracks, as shown in Fig. 2. This was
accomplished by imposing symmetry constraints, reducing to single index
notation, and constructing laminate equations. It was found that for

matrix cracks which lay in a plane normal to the fiber (x1) direction,

1 0
QL_' EQL! 0 0 0 .
1)
0 1 0 s (5)
0 0 0

in local ply coordinates, where ai‘_ is the damage tensor for a typical
ply due to matrix cracking. N

An examination of the dependence of free energy, uL, on damage led
to the conclusion that the magnitude of damage | ail depends only on the

surface area of cracks S2. Furthermore, since the free energy depends

1
explicitly on damage, it follows that the relation between |a | and S

L 2
could be determined from
SZ(E)
GL(SZ)ds o
oL | = §,(0) = g'(S.) ©
o =8 5 NOARR
L n Vv f_1 < e
Ye'c 22

where GL is the energy release rate.
The energy release rate was then calculated as a function of 82 by

utilizing a finite element simulation of a [0,90]S laminate.
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Using the procedure briefly described above, it is possible to
relate all stiffness components to cracked surface area for composite
laminates with matrix cracks. It is emphasized that the model predicts
all stiffness components for any layup using material property input
which is stacxking sequence independent.

Figs. 3 & 4 show predictions of the model for axial and other
stiffness components of [0,903]S E~glass epoxy laminates. Fig. 3
indicates that the model predicts somewhat higher 'stiffness than
experimental results. Although experimental results are not available
for other components, Fig. 4 shows excellent agreement between FEM
results and the model for Vys* Details of the results outlined in this
section are contained in Appendix 6.2.

The following section will detail attempts to obtain more useful

experimental results.

2.4 Experimental Research Activities

The purpose of the experimental research is to study and document
the progression of damage in a systematic manner that will fully support
the development of the constitutive model. The authors have determined
via an extensive literature survey, partially documented in reference 1,
that the experimental data necessary to characterize and verify the
model does not exist in the current literature. The comprehensive
experimental data base will provide two fundamental types of essential
information which are not currently available in the open literature.
First, the progression-of-damage study will establish the
phenomenological characterization of the internal state variables and

will provide the essential ingredients for formulating the associated
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damage growth laws. Second, the experimental data base will provide
direct measurements of the effective (damage-degraded) moduli. These
direct measurements will be compared to the constitutive model
predictions. This is an essential task for both the development and
"fine-tuning" of the model as well as establishing the validity and
accuracy of the model. The following sections describe the results of
the three primary tasks that have been completed to date. The first
task was the development of a materials characterization laboratory.
The second task was the formulation of a test matrix, laminate panel
preparation and specimen coupon fabrication. Finally,_ the study of
matrix crack damage has commenced.

2.4.1 Materials Characterization Laboratory

The research objectives of this grant necessitated the
establishement of a materials characterization laboratory. The effort
was supported jointly by Texas A&M University and by an equipment grant
from AFOSR. The established laboratory meets the dual requirements of
measuring the mechanical properties of materials and nondestructively
studying load-induced microstructural damage. The primary laboratory
facilities consist of a 20-kip Instron testing machine for monotonic

loading conditions and a 110-kip MTS 880 testing system (partially

funded by AFOSR Equipment Grant-84-0257) for both monotonic and cyeclic

loading conditions. Support equipment include computer controlled data

o acquisition and data reduction systems, as well as redundant real-time
P -
I analog signal recording systems. (The MTS 880 testing system also

- includes an environmental chamber for cryogenic or elevated temperature

testing in a controlled humidity environment.) The primary

nondestructive evaluation (NDE) facility is a portable x-ray radiography
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system for in-situ x-ray examinations. A second NDE facility is an
ultrasonic spectroscopy laboratory. This technology is being developed
by Dr. V.K. Kinra as part of a "sister" AFOSR Grant. Additional NDE
facilities, already in place at Texas A&M include edge-replication,
ultrasoniec C-scan, optical microscopes and a scanning electron
microscope. All of the above equipment is now in place and functional

along with fully trained personnel.

2.4.2 EXPERIMENTAL TEST PROGRAM

Laminate panels are being prepared from ?re—impregnated
graphite/epoxy tape, AS4/3502, by the Mechanics and Materials Laboratory
at Texas A&M University. The curing process was developed from the
procedure recommended by the pre-preg tape vendor. Each 12" x 12" panel
yields ten 1" x 11" tensile test coupons. The matrix of test coupons is
given in Table 1. The anticipated specimen requirements necessitated
the fabrication of 2 panels for each laminate stacking sequence. While
panel fabrication is still an ongoing activity, all Type I and II
panels have been fabricated. The cured materials are being stored in a
dessicant chamber.

The number of specimens in each test category listed in Table 1
were selected primarily to insure adequate replicate test data. The
specified load histories for the four fatigue tests are considered to be
tentative. The exact cyclic load histories will be selected at a later
date. For this reason, it is desirable to have a sufficient number of
specimens available should the research warrant a redirection. It
should be noted that there are two spare specimens in addition to the

eighteen specimens listed in the test matrix for each laminate. The
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TABLE 1 TEST MATRIX
A. LAMINA MATERIAL CHARACTERIZATION [0]8 5
901, 5
#4516 5
B. LAMINATE CHARACTERIZATION & DAMAGE GROWTH LAWS
QUASTI - STATIC FATIGUE
LAMINATE LAMINATE MONOTONIC R=10 R‘lo COMPR
TYPE CHARACTERIZATION DAMAGE GRW LAWS HIGH LOW
I. 10/90/0] 2 4 3 3 3 3
[90/0] 2 4 3 3 3
[0/90] 2 4 3 3 3 NN
-
[0/90] 2 4 3 3 3 3 R
25
3 NN
[0,/90,1¢ 2 4 3 3 3 S
Y
[0/90,] 2 4 3 3 3 3 RO
2's .
3 '»':.".
079041 2 4 3 3 W
[0/90, 1 2 4 3 3 3 3
I1. [90/45/0/-45] 2 4 3 3 3 3
[90/245/01 2 4 3 3 3 3
ITI. [0/%45] 2 4 3 3 3 3
[65/0/-45] 2 4 3 3 3 3 I
V. [30,/-30,] 2 4 3 3 3 3 L
[(£30),]¢ 2 4 3 3 3 3
12 |
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total number of specimens (20 per 1laminate) will allow for some
destructive examinations of the microstructural damage without
diminishing the overall data base.

The laminates listed in Table 1 were selected for specific
reasons. The Type I laminates were selected to study matrix cracks.
The primary mode of microstructural damage in cross-ply laminates is
matrix cracks in the 90° plies [2,3] In addition, the free edge
interlaminar stresses are minimal and should not affect the
microstructural damage that develops prior to fracture. Therefore, the
cross—-ply laminates are ideal for isolating the single damage mode of
matrix cracking. The specific  cross-ply stacking sequences were
selected so that both the thicknesses of the 90° ply layers and the 0°
ply constraint layers are varied.

The quasi-isotropic laminates, Type II, were selected because of
their practical significance and in order to study adjacent ply matrix
crack interaction. The microstructural damage should be free of edge
effects in both stacking sequenzes because they both have compressive
interlaminar normal stresses at the free edge [4]. Also, the + 45° and
-45° plies are adjacent in one laminate and separated in the other.
This will provide information concerning the effect of adjacent ply
constraint on matrix cracking and crack interaction. Finally, these two
laminates will be wuseful for the study of 1localized internal
delaminations which accompany the intersection of adjacent ply matrix
cracks.

The Type III laminates were chosen to isolate and study matrix
crack damage in (+) and (-) ¢ plies in the absence of matrix cracks in

90° plies. The two laminate stacking sequences are consistent with the
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Type Il laminates, excluding the 90° plies, and both have minimal
interlaminar normal stress at the straight free edges.

The Type IV laminates were selected to study the influence of free
edge effects [2,5]. The failure of the [302/—302]s laminate is
dominated by the interlaminar shear stress, L Free edge delaminations
open at the +30/-30 interface. On the other hand, delaminations do not
form at the free edges of the [(130)2]S laminate. The significance of
free edge effects is illustrated by the fact that the strength of the
[(4_»30)2]S laminate is much higher than that of the [302/—302]s laminate.
It is anticipated that free edge delaminations can only Pe addressed as
a boundary value problem since the delamination surfaces form external
boundaries. However, this damage mode is included herein because it
represents a realistic damage mode for many practical structural

geometries,

2.4.3 Experimental Results

The first phase of the research has the objective of establishing
the internal state variable and the associated damage growth law for the
isolated damage mode of matrix cracks, Type I c¢ross-ply laminates have
been selected for this purpose. This 1initial phase of experimental
research 1is being confined to the quasi-static, monotonic 1loading
condition. The general expeimental procedure is briefly outlined below:
1. Establish the basic lamina properties for input to all analyses.

2. Determine the undamaged moduli and the 1load-to-failure versus
displacement characteristics of the laminate.
3. Using the results of 2 as a guide, study and document the

progression of damage as follows:
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(a) At appropriate 1load increments, perform nondestructive
examinations.

(b) Determine the tangent moduli and secant moduli. Record all
extensometer versus load data.

(c) At a few specially selected damage states, perform destructive
examinations.

The basic lamina properties are listed in Table 2. In each case,

the mean value and standard deviation are 1listed. From the limited
comparisons available, it can be seen that the recently measured lamina
properties are in good agreement with the specified values supplied by

- +

é‘ ri the pre-preg tape vendor.
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The experimental investigation of matrix cracks in the 90° plies

of cross-ply laminates has commenced. A typical progression-of-damage f;;aﬂ

pattern 11 the [0/903]s laminate is shown in Fig. 5. Also, Fig. 6 shows :::_*
an associated x-ray radiograph of the apparent saturation damage state
in the [0/903]S laminate. The edge replicas shown in Fig. 5 were taken

of the same specimen at 1increasing applied stress levels. The

increasing number of cracks and the apparent saturation spacing at 67.1
ksi are consistent with well known results for transverse matrix
cracking. It is obvious from Fig. 5 that all of the matrix cracks are
not straight cracks through the thickness of the 90° layer. The initial
cracks that form are straight. However, as cracks begins to fill in the

spaces between the 1initial «cracks, some cracks have distinctive

parabolic profiles. This can clearly be seen in the edge replica taken
at 56.8 ksi. The curved cracks have greater surface area than straight
cracks and unit normals that are not aligned with the x1-axis direction

as is the case with straight cracks. Therefore, the presence of the
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TABLE 2 MEASURED LAMINA PROPERTIES

STANDARD VENDOR
DEVIATION SUPPLIED
PROPERTIES

21.5x10% psi X 21.5x10% psi

1.39x106 psi

6

0.694x10" psi

0.31

326.0 ksi 310.0 ksi

tensile strength of 0° unidirectional laminate.

-]
tensile failure strain of 0 unidirectional laminate.
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curved cracks may have a significant influence on the formulation of the

internal state variable for matrix cracking. The initial indication is
that the profile of the curved cracks is greatly influenced by the
thickness of the 90° layer and to some extent by the thickness of the
adjacent 0° plies. This 1is probably related to the previously
identified shear lag effect on matrix crack formation. This is

currently the focus of the experimental research effort.
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2.5 Conclusion

A general model has been developed for predicting the relation
between stresses and strains in composites with load-induced damage.
This model is capable of predicting structural component response in a
stress gradient field. Although the general form of the model is fairly
complex, it has been shown herein that for the case of matrix cracking
the model 1is only slightly more cumbersome that standard laminate
analysis. Furthermore, the model has been compared with Some success to
experimental results for [0.903]S E-glass epoxy laminates.

Current efforts deal with verification of the model for AS4/35C2
graphite-epoxy laminates, with primary emphasis on matrix cracking.
Since necessary experimental results are not available in the
literature, a comprehensive experimental program has been initiated
under the current grant. Initial results indicate that the model is
accurate for graphite-epoxy systems.

Activities in the second year of research will concentrate on
three important issues: 1) effect of matrix cracking on reduction of all
stiffness components as a function of stacking sequence in cross-ply
laminates; 2) refinement of the ISV growth law for matrix cracking; and
3) initial studies of the effects of interlaminar delamination on
stiffness loss.

The authors are quite encouraged by the current results and
believe that they provide ample Jjustification for continuing the

research effort.
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A DAMAGE MODEL FOR CONTINUOUS FIBER COMPOSITES

PART 1: Theoretical Development

by
D.H. Allen
S.E. Groves

R.A. Schapery

ABSTRACT .

A continuum mechanics approach is utilized herein to develop a
nmodel for predicting the thermomechanical constitution of continuous
fiber composites subjected to both monotonic and cyclic fatigue loading.
In this model the damage 1s characterized by a set of second order
tensor valued internal state variables representing locally averaged
measures of specific damage states such as matrix cracks, fiber-matrix
debonding, interlaminar cracking, or any other damage state. Globally
averaged history dependent constitutive equations are posed utilizing
constraints imposed from thermodynamics with internal state variables as
well as fracture mechanics,

In Part I the thermodynamics with internal state variables is
constructed and it is shown that suitable definitions of the locally
averaged field variables will 1lead to equivalent thermodynamic
constraints on a scale assumed to be large compared to the scale of the
damage. Based on this result the Helmholtz free energy is then expanded
in a Taylor series expansion in terms of strain, temperature, and damage

to obtain the stress-strain relation for composites with internal state
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variables representing damage. Finally, an internal state variable

A . )
fa A . o —————
T -
e’

{! growth law is proposed for matrix cracking.
In Part II the resulting three dimensional tensor equations are
- simplified wusing material symmetry constraints and are written in
'il! engineering notation. The resulting constitutive model is then cast
into laminate equations and an example problem is solved.
It 1is concluded that although the model requires further
development and extensive experimental verificatiion it may be a useful
tool in characterizing the thermomechanical constitutive behavior of

continuous fiber composites with damage.

4

_: , INTRODUCTION

i Il Ultimate failure of continuous fiber composite structural

components is preceded by a sequence of microstructural and
f‘ macrostructural events such as microvoid growth, matrix cracking, fiber-

I. matrix debonding, interlaminar cracking, edge delamination, and fiber

' }j fracture which are all loosely termed damage. Considerable experimental
i: research has been performed in the last decade detailing the growth of
)

f B damage under both monotonic and cyclic loading conditions [1-7]. The
1 significance of this damage lies in the fact that numecrous global
? material properties such as stiffness and residual strength may be

bA* substantially altered during the life of the component, as shown in Fig.

. 1 [8]. It has been found that the first phase of fatigue is typified by

development of a characteristic damage state (CDS) [9] which is composed
ff:_ primarily of matrix cracking in off-axis plies. During the second

phase of damage development the CDS contributes to fiber-matrix
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debonding, delamination, and fiber microbuckling. These phenomena in Q\;::
E! turn contribute to a tertiary damage phase in which edge delamination ;"‘FJ

and fiber fracture lead to ultimate failure of the specimen [6].
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X
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- Analytical modeling of the damage state appears to be only
recently studied. The earliest attempts fall under the general heading
of laminate analysis, in which various empirical schemes have been
developed to discount ply properties in the presence of damage [10-12].
Axial stiffness reduction and stress distribution in thé CDS have also
been predicted using a one-dimensional shear lag concept [5]. Several
researchers have obtained solutions for effective moduli of elastic
bodies with distributed cracks [13-17]. In the case where cracks are
either randomly distributed or oriented the effecﬁ of total crack
] surface area is found to cause a first order effect on the stiffness
. [(13-16].

- Fracture based concepts have recently been utilized to model
damage development [18-21]. Although the first of these studies [18]
contains a general theory which may be applied to fibrous composites, it
has so far only been utilized for quasi-isotropic random particulate

composites such as solid rocket propellant, [9] and as such has not been

applied to continuous fiber composites. The theory in the latter two
[20,21] has not been utilized to predict reduction of off-axis stiffness
components. Kachanov's modulus reduction technique [22] has also been

utilized for fibrous composites [23] and although promising results were

obtained, the model was constructed in uniaxial form only.

A complex interactive experiment and analysis model (called a
*= mechanistic model) has been proposed [8]. The approach used therein is

fundamentally quite different from that developed in this paper.
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Furthermore, the mechanistic model requires numerous experimental
results for each geometric layup in order to determine which damage mode
predominates.

Finally, extended forms of Miner's rule [24] have been proposed
[18,25]. However, they are based on simplified microphysical models at
this time.

The concept of damage as an internal state variable {26] has been
previously utilized in continuum mechanics/thermodynamics based theories
for crystalline and/or brittle materials [27-34], as well as for
nonlinear viscoelastic materials [18]. A study has been made of the
effect of vector-valued damage parameters on various co;pliance terms
[35], and this methodology is currently undergoing further development
[36, 371.

The research reviewed above indicates that although important
progress has been made in characterizing damage in fibrous composités,
substantial and continued research is warranted before several issues
can be resolved.

In this paper an attempt will be made to assemble many of the
concepts embodied in the research efforts mentioned briefly above and to
utilize these concepts to develop a model for damage in continuous fiber
composites which is rigorously based in continuum
mechanics/thermodynamics and is generic with regard to material type,

load spectrum, and specimen geometry.
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CHARACTERIZATION OF DAMAGE AS A

SET OF INTERNAL STATE VARIABLES

Consgsider an initially unloaded and undamaged continuous fiber
composite structural component as shown in Fig. 2a, where undamaged is
defined here to mean that the body may be considered to be continuous
(without voids) on a scale several orders of magnitude smaller than the
smallest external dimension of the component. Although voids may exist
in the initial state, their total surface area is assumed to be small
compared to the external surface area of the component. Under this
assumption the body is assumed to be simply connected and we call the
initial bounding surface the external boundary. AlthoUgh the component
is undamaged, there may exist local heterogeneity due to such causes as
processing inhomogeneities and second phase materials including fibers
and matrix tougheners. In addition, the body may be subjected to some
residual stress state due to prior loading, cool down, etc.

Now suppose that the component is subjected to some traction or
deformation history, as shown in Fig. 2b. The specimen will undergo a
thermodynamic process which will in general be in some measure
irreversible. This irreversibility is introduced by the occurrence of
such phenomena as material inelasticity (even in the absence of damage)
fracture (both micro- and macroscale), friction (due to rubbing of
fractured surfaces), and chemical change. While all of these phenomena
can and do commonly occur in continuous fiber composites, in the present
research it will be assumed that fracture is the only irreversible

phenomenon of significance. Thus, all fracture events will be termed

damage. Due to these fracture events, the body will necessarily become
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o Fig. 2. Fibrous Composite Structural Component in
» a) Undamaged State, and

25 b) With Applied Tractions.
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multiply connected, and all newly created surfaces not intersecting the

external boundary will be termed internal boundaries. Because of the

& P

above assumptions the model will be 1limited to polymeric matrix Eﬁﬁﬂ
composites at temperatures well below the glass transition temperature ‘{ﬁﬁg
Tg, where viscoelasticity in matrix materials is small. Metal matrix t;
composites will be excluded due to complex post-yield behavior of the g?
matrix. i:~“:
While fracture classically 1involves changes in. the boundary .

EBORT N #

conditions governing a complex field problem, it is hypothesized that
one may neglect boundary condition changes caused by creation and
alteration of both internal and external surfaces created during
fracture as long as the resulting damage in ﬁhe specimen is
statistically homogenecus on a scale which is small compared to the
scale of the body of interest. This implies that the total newly
created surface area (which includes internal surfaces) may be of the
same order of magnitude as the original external surface area. Under
the condition of small scale statistical homogeneity all continuum based
conservation laws are assumed to be valid on a global scale in the sense
that all changes in the continuum problem resulting from internal damage
are reflected only through alterations in constitutive behavior. ?'Tf
Typical microstructural events which qualify as damage are therefore

matrix cracking in lamina, fiber/matrix debonding, and 1localized

interlaminar delamination. Large scale changes in the external surface —a
such as edge delaminations, however, are treated as boundary effects Jf,f
.‘\'."_'.

which must be reflected in conservation laws via changes in the external :}f}i
boundary conditions rather than in constitutive equations [39]. _—
8 S
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Although the damage process actually involves the conversion of
strain energy to surface energy, the fact that the damage is reflected
in the local constitutive equations requires that it be treated as a set
of energy dissipative local state variables which are not discernible on
the external boundary. Therefore, since the damage can be determined
only through a precise knowledge of the entire history of observable
inputs, it is characterized as a set of internal state variables. This

concept will be further developed in the next section.

THERMODYNAMICS OF MEDIA .

WITH DAMAGE

We now proceed to construct a concise model of the continuum with
damage. To do this, consider once again the structural component,
denoted B in Fig. 3a. The body B is assumed to be of the scale of some
appropriate boundary value problem of interest. Now consider some local
element labelled L and with external surfaces S1 arbitrarily chosen

normal to a set of Cartesian coordinate axes (x1, X x3), as shown in

2'
Fig. 3b. The element L is extracted from B and the newly created
surfaces are subjected to appropriate boundary conditions so that the

element response 1is identical to that when it is in B. Internal

surfaces caused by fracture are labelled 82 such that the intersection

of 3, and S, is a null set and § = S, + S

1 > 1 > Furthermore, the volume of

the element is defined to be V which includes the volume of voids Vv'

L’
The scale of L is chosen so that its dimensions are small compared to
the dimensions of B, but at the same time, the dimensions of L are large

enough to guarantee statistical homogeneity of the material
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inhomogeneities and defects in L even though the total surface area of

—

defects may be of the same order of magnitude as S1 [38]. Suppose

further that in the absence of defects or at constant damage state

the material behavior 1is 1linear thermoelastic, thus specifically

excluding the effects of crack face rubbing.

The following notation is adopted. Quantities without capitalized
subscripts denote pointwise quantities. Those with subscripts L denote
quantities which are averaged over the local element L. - Finally, the
subscript E denotes linear thermoelastic properties.

Review of Thermodynamic Constraints on Linear Thermoelastic Media

Under the above conditions the pointwise Helmholtz free energy per
unit mass h of the undamageu linear elastic medium may be expressed as a
second order expansion in terms of strain eij and temperature change AT
as follows [40]:

hzu=-Ts = hE (eij,T)=

2
A 3
A+ Bijcij +1/2 Ciik1ii%k1 * DAT + EijsijAT + 1/2 FAT (1)
where u and s are the internal energy and entropy per unit mass,

respectively, and A, Bij'

which are independent of strain and temperature and AT = T—TR, where T

C....» D, E.. and F are material parameters
ijkl 1)

R

is the reference temperature at which no deformation is observed at zero

;--:‘ load. In addition, we assume here that all motions produce small
L‘.;,{. deformations so that Eij is the infinitesimal strain tensor.
i

;;f Furthermore, inertial effects are assumed to be negligible.

Ei? Pointwise conservation 1laws appropriate to the body are as
ﬁi';' follows:

53._. 1) conservation of linear momentum

Ry

N 1
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05 j=0 ; (2)
where °ij is the work conjugate stress tensor to the strain tensor Eij
and body forces are assumed to be negligible;

2) conservation of angular momentum (assuming body moments may be

neglected)

035 = 954 ; (3)
3) balance of energy

puU - 0..6.. +q = pr ; : (4)

1J71) J»Jd
where p is the mass density, qj are the components of the heat flux

vector, and r is the heat source term; in addition, dots denote time

differentiation and, j =y axj;

4) the second law of thermodynamics

| ps - 2r+ A1, 20 . (5)
Lo T T “>»J
z . Furthermore
s €,. =1 (u, , +u, .
- 1] 2 ¢ 1,] J’l) ’ : (6)
:Z: - The above set of equations may be cast with appropriate boundary
' [ conditions so that constraints imposed by the second law of
- ) thermodynamics will result in [40]
R -3h; _
R g = SE = E = D—Eijeij_FAT N (7)
D aT
g o ohg N
.., = =p = 9 + C . e
| i3 "B T Pae s TP By Cugefiee * iy A > ®
. - ij L
) )
S 5 where pBij are components of residual stresses at “he reference
.o L ]
- temperature at which T = O,
)
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Thermodynamic Constraints with Local Damage N
Now consider the 1local element shown in Fig. 3b with traction :ﬂ .
boundary conditions on the external surface S1. Ins addition, the : -f
RS
interior of L 1is assumed to be composed entirely of linear elastic ~ o

material and voids. It is our aim to construct locally averaged field

equations which are similar in form to the pointwise field equations
discussed above. In performing this averaging process the pointwise
Helmholtz free energy described in equation (1) will undergo a natural
modification to include the energy conversion due to crack formation.

In order to construct locally averaged equations first define the

locally averaged stress tensor:

op =1 o, .dv
ij Vv 1 (11)
Lo Jy

L

Integrating the balance of energy (4) over the local volume and dividing

through by the local volume results in

S - s R -
e Ner B . [P
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In order to simplify the above define the locally by averaged density L

such that
1
Pl =y f pdV . (13)
L \Y

L

Furthermore, define the local internal energy rate per unit mass ﬁL such

that

RS Lp&dv , . (14)

which can be constructed as long as PL 4 0.
Now consider the second term in equation (12). Recall that since
0,. is a symmetric tensor

1J

G, ... -1 o, . (6. .+ U, ) =o0..u, .
ij ij 2 ij i,] j.1i ij"i,j

(15)

Thus, using the divergence theorem gives

—Vl fo..é..dv = —1—[ o0, .dv == [ o, G.n.ds+ L’/c..fx.n.ds , (16)
L ij71ij VL ij 1,3 \ ijij v ij i j
v V.-V L”s L7
L v 1 2

14
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where it is assumed that the stress tensor is negligible in the void

volume V , and n. are the components of the unit outer normal vector to

J
S] * Sy

w

the surface S =

Now define

ug Co_
f J.JuandS .

(17)
S
which is the time rate of change of surface energy release per unit
local volume due to cracking in L. Further, define \
L. C -I—I“injds , (18)
i] \
L
1
so that under the assumption that all displacements are infinitesinal
2ud for the case of either spacially uniform surface tractions or
applied displacements on the local element external surface S1
b ¢ =.£ G..u. n dS (19)
1] i 1) 1
J \Y J
L S
1

Thus, equation (16) becomes

1 f . _ 5 °

— g,.e,.dvV =p oL & .

v, ij ij L'y iy "i3 (20)

\V
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i n Define also
A L. . \Y Js3
R J»] L V

- L
I - and

r, = D——V—f prdV . (22)
L L'L %
! '
Substituting equations (14), (20), (21), and (22) into,equation (12)

> ! yields the following locally averaged balance of energy:

. e )
u u - 0 =
PLc” PLY T %, fL Y9, T AT . (23)

' 'l ij 13 Js3

We now define the effective internal energy JL such that

- c

: i e A (24)
) ‘
. .
Substitution of (24) into (23) results in »}
.
: .~ . 'h‘;' .;1
) pru. =0 € 4 = ]
: 10 S S A T 5 et
. Jj g 33 (25) =
L PN
- -~ 1
. - 1
. ) .:1
c.o. = []
D .. which can be seen to be equivalent in form to energy balance law (4). L
. e
»
R
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In order to construct a similar statement for entropy production
inequality (5), first multiply through by T and then integrate over the

local volume V, and divide by this quantity to obtain

L
1 . 1 1 9
2 - L J
VL[QSTdV VL[‘.rdV + VL fT(T ),j dv > 0 . (26)
L L L
Now define
1
T, = — TdV .
LV f . (27)
vL
and
éL = T;pré'fdv ,
PLL'L (28)
VL

so that substitution of definitions (22), (27) and (28) into (26) will

result in

- 1 q.
sty ety TG L av >
L°L'L LL VL[ T),J >0 . (29)
L

Now note that the last term in (29) may be written as follows using the

product rule:

1 95
Lfredy av-L fa, v 9,8 a0 . (30)
v T v 3s] v — "
e L Ly T
I, L I.
17
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Thus, define

3

. T - _L q.T .
S e S B 1 2J 4y . (31)
J L v T
L

- Therefore, substituting definitions (21) and (31) into (30) and this

result into (29) gives, after dividing through by T :

o q

R p;r L

P - LL . 1]
P S AL o
! L TLsJ

We now assume that the local volume is small enough compared to B
that the standard procedure may be utilized to obtain the linear

- {? congervation of momentum equations [38]

fi !— similar to pointwise equations (2), and the conservation of angular
] momentum may also be obtained

= 18
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similar to equations (3). Thus, it is assumed that no body moments are

introduced via material inhomogeneity or other sources.

Locally averaged field equations (25), (32),(33) and (34) have now

(2)

been constructed which are similar to pointwise field equations

through (5). On the basis of this similarity we now define the locally

averaged Helmoltz free energy [18, 38]:

h. T u ~T. s

c
LSL - T s_+ UL = hE

L'L

e

that h
§!

for which residual

where it can be seen from definitions (14) and (28) is the

locally averaged elastic Helmholtz free energy

damage is assumed to be small , given by equation (1) to be

h., = 1 " , 2
e c €, € NAT + E..e,  AT+1 FAT™) dV
L v f (A+ By ey % IV ACE T Al ijij 3 ’
VL
Utilizing definitions (18) and (27) we may further define

Ao = L

Adv

H1
<3
[l
Q"‘\

dV , no sum on i, j, k, 1,

Cisk1 fi5 fx1

s

‘0 'I
",
Ll

L
A
A

",f.f;" .
o
AR

LY

(35)

(36) oy

(37)

(38)

(39)
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Al hass

D, = 1[ DATAV , (40)
V. T

LL VL
E € = 1 E.,. €,. Tdv s and sum on i,j, and 41)
L.,. L_. VT 1] 1]
HooH Yy
L
- 2
P, = 1 FT 4V . (42)
VLTL2 vy
Note that when the actual strain state eij is spatially invariable and
S.. =0, the above equations result in B =B.., C = C.. and E
= Eij' Substituting definitions (37) through (42) into local elastic

free energy equation (36) results in

1
h., =A +B +Lc +D.T '
E CALYB, e *3C e e tELoen Tk 2
L ij ij ijkl i3 k1 DL Ly Ly L+ RTYOL(63)

The similarity between the pointwise and local field equations

leads to the conclusion that

'_ahL
= — 44
L. ST (44)
c
o p . p; (B, +C e, tE, T AL azUL » (49)
= T PL ML, L,. , L .
L13 L aeLij ij ijkg “k2 ij Lij
and
‘2
0 (46)
a = -k, 8 T gy 1>
i ij 3 ]
where
ky B 1 .
L - .
iy 1% Vj ~[.kijgjdv s no sum on i,j, 47
VL

20
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virte

and

; L,j ' (48)

Note the similarity between equations (7) through (10) and (44) through
(48), respectively.

Equations (45) will serve as the basis for ﬁhermﬁmeehanical
stress-strain relations in damaged fibrous composites. All damage will
be reflected through the local energy due to cracking ufi This term
will be modelled with internal state variables characterizing the

various damage modes.

Description of the Internal State

In order to describe the internal state, we first consider the
kinematics of a typical point 0 with neighboring points A and B, as
shown in Fig. 4. Before deformation lines OA and OB are orthogonal, as
shown in (a). After deformation we imagine that lines joining 0',A',
and B' are as shown in (b), and just at the instant that deformation is
completed, a crack forms normal to the plane of AOB through point 0', as
shown in (c¢). Furthermore, point 0' becomes two material points 0' and
0" on opposite crack faces and points A' and B' deform further to points
A" and B", It is assumed that all displacements, including crack

opening, are infinitesimal, s0 that an observer at an appropriate

21
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Fig. 4. Kinematics of the Damage Process

a) Point "0" Prior to Deformation,

b) Point "0" after Deformation and Prior to Fracture Process,

¢) Point "0" after Fracture.
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- observation distance from point O "sees" only the deformation A"™ 0O' B",
D The strain associated with this deformation is appropriately called an
. observable state variable. However, the strain of interest Iis
ij associated with A"O"B". Therefore, it is essential to construct an
f; internal state variable which will relate these two strain descriptions.

We therefore construct the vectors G§° connecting O' and O" and Ac

describing the normal to the crack face at 0', as shown in Fig. 5. It
should be noted that Uc can be used to construct a pseudo-strain
representing the difference in rotation and extension of lines A"0'B"
and A"O"B", .
Now recall that the energy ‘r'eleased during cracking is given by

equation (17). Since the body is elastic, we assume that this process

is reversible and that tractions TiQ can be applied at point 0O' which

'.. will close the crack:
°C 1 c .C
' uL = p_V . Ti Ui ds . (49)
: L'L g
B 2

Using Cauchy's formula the above can be placed in a form similar to

(17): ' (

«

x 1 ¢ *Cc _C

- ‘Coo .. n » 50
;- el R &2
- Y

where the superscripts denote quantities associated with the actual
crack geometry. Although these quantities do not necessarily coincide

with the terms in the integrand of (17), their surface integration will

23
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result in precisely the same energy release rate Gf due to the

reversibility of the process.

C C

Guided by the fact that U  and A~ describe the kinematics of the
cracking process at point O, we now define the following second order

tensor valued internal state variable:

Note that when the crack normal is time independent the above may be

time differentiated to give

U = g,. .. ds
L 0. V 1] 0LlJ

Note that the components of &° and i can be recovered from (51)

by using single row and column multiplication of aij:

2 c c .
u. = u; Booulop (no sum on i),
i R
2 ¢ ¢ .
n~ = u nJ Ui “J (no sum on j).
i

Therefore, the normal and shear modes of crack displacement can be

recovered from aij'

[

Now suppose that &L

is subdivided into integrals over a finite

number of internal surface areas Sg of fundamentally different nature:

«C _ N _ J o QC (; 1 dS ’
UI = 2 :_—"1 lj ij
Lo g”
V2
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such that

ST\ = g ’ (56)

and the integer N represents the number of damage modes, to be described

below.

Now define the locally averaged internal state variable an for

ij
the n th damage mode as follows: '
un = ! uc n® ds = ! a,, ds :
Lyj " i 3 v H 7
L Jn L Jn
g S
2 2

Furthermore, if we define the average crack closure stress oin
ij
for the n th damage mode such that

N n cn . 7l .
. & -1 c.. a d5 , no sum on i, j, n, (58)
L. X l_} 1] lj
1] Y n

it follows that, from (55), (57) and (58)




where we have assumed that repeated indices n imply summation over the
range N. It is clear from the above discussion that the value of N must
be sufficiently large to recover the essential physics of the damage
process. In a mathematical sense, this implies that, whereas the

mapping from aij to an is unique, the inverse should also be true in

L..
1]
an approximate sense. Note also that both ug and ng in equations (57)

! ! will be affected by crack interaction in the local volume.
- Now consider equation (59) in further detail. The kinetic

s cn
quantities ¢

L may be interpreted as generalized forces which are

i
I Il energy conjugates to the kinematic strain-like internal state variables

- n
:.' - (!L e
_:. =% 1J
S We infer from this that there exists a constitutive relation, between
.211 these variables of the form
: cn cn u

o =0 (e T , o )

L L P ? ’ . (60
- ij i Wkl L Ly )
»
- . Therefore, substituting (60) into (59) and integrating in time

will give

IR AR

c 1. _c u
o (t)) =f i (t)de = u’ (r»:Lkl () T (tp), aLkl (t,)) (61)
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It is now proposed that u, be expanded in a Taylor series which is

second order in each of the arguments in equation (61) as follows:

S c n Y n n \ n n ng g z
' u = v G, + H o AT+ T ysx1 € o + J.. a o AT
A i i 4 L 1] ijkl . . L
' k "( ’ Ly F1j Lig T 5Ly Ly
. + LnC K & n n n n
- .. T Q a
) ijklmn L., L +_ M € € o + N _, E a AT
- ] ij k1 Fun 5 ijklmn Lij Ly1 Y ijkl Lij Lkl L
noon 2
+P. . a / ng n g
. 1) Ly L+l Qh L L L
I - 7 ijklmnpq *ij k1 “mn P9
ng n n . ng n
+R. £ o u AT + S 2 o o 2
ijklmn Lij k1 Lpo © Lo Tijkl Lyy Lig AT¢
1 ng
. ne . N 2 T e Boab AT
o T € a AT + = Yiskl @ :
g L a 1Jklmn "L, .,
| ijklmn ij b Lon L 2 ij Lkl “mn
' ng n
: +V £ £ a g 2
Do ijklmnpq Lij Lkl Lon aqu ATL) i (62)
. where all terms are at least linear in aS due to the fact that uﬁ

iil i3

depends explicitly on damage, and ATL = TL_TR' Thus, substituting (U3)

A
1

T and (62) into equations (45) and neglecting higher order terms yields:

n n

| - g9,.. =B +E AT, + C e, +1 o

- i3 .. L,. i 5 L
: i3 Ly by L ijkl Ly idkl g

+ M e T A
ijklrn 'T‘kl Lmn ijkl Ly L . (63)
J
Equations (63) may be written in the following convenient form

' .

. R !
| P U L 8? , 64
1 Lij i3 Lkl A ha (64)
)
" ~—
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-

is the residual stress in the absence of strain and temperature change,

which may be induced by damage;

. ' _ n

- c =cC + M o ’

. .. L (66)

: Lijkl Lijkl ijklmn “mn

p !

o is called the effective modulus tensor, which is degraded due to damage;

fj and
L T - ¢ n 0oAT 67
; SR (EL” Sw o T ; (67)

B Lkl l:]kl ij J

" ‘ is called the thermal strain, which also may be affected by damage.
‘:.1_ Note that the only second order terms are due to damage induced
D stiffness reduction and thermal strains.

Equations (64) through (67) are the completed description of the

stress-strain relationship. Note that these equations reduce to the

» standard linear thermoelastic equations in the absence of damage (aE
i]
e

S =0). Furtherrore, it 1is notable that these equations reduce to

Kachanov's model [22] in uniaxial form,
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Damage Growth Laws

The model is completed with the construction of the damage growth
laws, which may be described in the following differential equation

form:

or equivalently, whenfpxare analytic in time,

1]
t ”
ol - Yo, (LT (8), up  (£))dt , (69)
JL,..(tl) f lJ( Lkl L Ly ) .
1]
where the dot denotes time differentiation. Although the above

equations are called "growth" laws they have the more general capability
to model such phenomena as healing.

The precise nature of equations (69) is determinable only through
a concise experimental program coupled with an understanding of the
micromechanics of the medium. Indeed, these growth laws constitute the
single most complex link in the model development.

In this section an example of a first generation growth law will
be constructed for predicting damage up to the CDS in continuous fiber
composites. Experimental evidence suggests that matrix cracks

predominate prior to development of the CDS [4-6]. Guided by this
1

L..
ij

observation, a single damage tensor is considered herein: a
representing matrix cracking.

In order to completely define equations (69), it is necessary to
construct indicators of both the magnitude and direction of the damage

tensor. 1In this first generation model it is assumed that the direction
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of the damage tensor is known a priori and does not vary as the damage

LS AR I

state changes. Specifically, in a typical laminate, it is assumed that,

=

g in accordance with equation (57), the locally averaged resultants of u¢

and ﬁc are normal to the fiber direction in each ply, as shown in Fig.

1

‘: ‘ .
.lu,—qwuw,-; e
. f
. P

6. Thus, for example, in a 0° ply o + 0, and all other components
22
are zero, whereas in a 90° ply, ai #0 and all other components are
11

zero in global  coordinates.

R g R
. <,

Under the above assumptions, the magnitude of the damage tensor is
' the sole repository for history dependence in each ply. Experimental
o evidence indicates that for matrix cracking in randomly oriented
4 ? particulate composites [H41] and ‘matrix cracks in fibrous composites
¢ .
m o [20,21] the growth of damage surface area is related to the energy
’I release rate G by
f_ ‘ da Gn 70)
. —_ ’
o dN
L
&
in
' where N represents the number of cycles in a fatigue test, and n is some
:f;&. material parameter. Guided by these results, a similar law is
- ; - .
-l constructed here. To accomplish this, first multiply both sides of (70) by
:
: dN/dt to obtain for the 90° ply, for example,
- ar) D T S
\d Loo . 7 h . n
dt 22 dt
dt
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Assuming that the energy release rate is essentially mode I and
therefore depends on the maximum normal strain, the damage growth law

for transverse cracking is thus hypothesized to be of the form

‘I
% o

€ P
€ n ., nl de
n - min n if £ < g < g , and
'l = K n . n n
o] e - dt min max

n n
22 max min

A

-
.

2
e
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»

e
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e
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L
13
i,
.

dL n n . n n (72) Ff'fﬁg
22 AR

where € is the local normal strain component which is normal to the

fibers. Furthermore, € is the value of €, at which transverse
min
cracking initiates, and € is the corresponding value at which
X

transverse cracking saturates. K and n are experimentally determined
material parameters which may depend on the initial damage state or on
history dependent damage such as matrix microvoidsf The use of €
presupposes that the fracture mode is predominantly mode I in nature,
which may not be the case in some complex layups. In these cases, mode

IT and mode III terms may be required. Note that all components of a

ij

are zero except a which is nonzero in the local coordinate system

L ’
22
wherein the fibers are aligned parallel to the x

1

The time derivative of € reflects the time independent nature of

axis. O

o

the damage mode, and actually represents a departure from the form of
equations (69) in that explicit strain rate dependence is now reflected
in the growth law. However, damage growth law (73) need not satisfy the
principal of equipresence [42] since it is not an equation of state

[43].
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Futhermore, a study of thermodynamic constraints with linear strain rate independence

!i in equations (69) will indicate that equations (44) through (46) remain valid [44,45].

Fig. 7 shows a typical growth history for a specimen subjected to monotonically

:i: increasing deformation u(L).
-
o Equation (72) completes the description of the damage model. Integration of
- these equations in time will lead to current values of the damage tensor which is
>‘§;. input to constitutive equations (64) through (67). It should be pointed out, however,

that these equations may be extremely nonlinear and as such must in many cases be

integrated numerically with stiff integration schemes [48].
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Stres-strain relations have been developed herein which account Wﬁiﬁ

98" g

A('-“’-'

for various forms of damage in continuous fiber composites. Gﬂ;'£

Furthermore, a damage growth law has been proposed for matrix cracking
in fibrous composites. The model developed herein is thus a complete
description necessary to characterize the thermomechanical constitution
of a fibrous composite (excluding failure). However, the actual use of

this model is complicated by the requirement for numerous experimentally

Ty Te T e Ty

determined quanitites, as well as the necessity to degermine locally
based observable state variables by analytic methods. The construction

of these parameters constitutes an entire separate research effort which

is considered in Part II.
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using symmetry constraints. After introducing engineering notation and expressing the K
constitutive equations in the standard laminate coordinate system, a specified constitutivi
model is developed for the case of matrix cracks only. The potential of the model to
‘predict degraded or effective stiffness moduli is demonstrated by solving the problem of :n
transverse matrix cracks in the 90° layer of [0/90] and [0/90 N

-

]s laminates. ¥

To solve the example problems, the undamaged modulii are aetermined from experimental
data. The damage tensor is determined analytically from a finite element analysis assuminm
a variety of matrix crack spacings in the 90 1layers. The internal state variable for o
transverse matrix cracking is related to the strain energy release rate due to cracking by
- utilizing linear elastic fracture mechanics. The values of effective (damage degraded) .
L stiffness predicted by the constitutive model are in close agreement with both experimenta: _
X and finite element results. The close agreement obtained in these example problems, whilil
limited to transverse matrix cracks only, demonstrates the potential of the constitutive
T model to predict degraded stiffness.

. e N .

2%a 2

e

el
A Ber

Y aliibare S -
do

v, 4

LD L C TN




"o
AT

.
» T

A DAMAGE MODEL FOR CONTINUOUS FIBER COMPOSITES
PART II: Model Applications Rty
by
S.E. Groves
D.H. Allen
b C.E. Harris
Aerospace Engineering Department
and

R.A. Schapery

“ 4
—,

Civil and Aerospace Engineering Departments

Texas A&M University
College Station, TX 77843

MM-5023-84-18 October 1984
Revised February 1985

(AR MOAEERREA(




—
>

o

v v,
(AR

9.
el -
.

g

Yy vove
B e ,

A a0

'
- .

L T O T S -~
% 1 e Yy 0 W1 e, NI

LR R S L AN B AR LA R B LAk Sl :

A DAMAGE MODEL FOR CONTINUOUS FIBER COMPOSITES
PART II: MODEL APPLICATIONS

by

S.E. Groves

D.H. Allen

C.E. Harris
and

R.A. Schapery

ABSTRACT

A continuum mechanics approach is utilized herein to develop a
model for predicting the thermomechanical constitution of continuous
fiber composites subjected to both monotonic and cyclic fatigue loading.
In this model the damage is characterized by a set of second order
tensor valued internal state variables representing locally averaged
measures of specific damage states such as matrix cracks, fiber-matrix
debonding, interlaminar cracking, or any other damage state. Locally
averaged history dependent constitutive equations are posed utilizing
constraints imposed by thermodynamics with internal state variables.

In Part I the thermodynamics with internal state variables was
constructed. It was shown that suitable definitions of the 1locally
averaged field variables led to equivalent thermodynamic constraints on
a scale assumed to be large compared to the scale of the damage. Based
on this result the Helmholtz free energy was expanded in a Taylor series
in terms of strain, temperature, and damage to obtain the stress-strain
relations for composites with internal state variables representing
damage. Finally, an internal state variable growth law was proposed for

matrix cracking.




In this paper, the three dimensional tensor equations from Part I
[1] are simplified using symmetry constraints. After introducing
engineering notation and expressing the constitutive equations in the
standard laminate coordinate system, a specialized constitutive model is
developed for the case of matrix cracks only. The potential of the
model to predict degraded or effective stiffness moduli 1is demonstrated
by solving the problem of transverse matrix cracks in the 90° layer of
[0/90]S and [0/903]S laminates.

To solve the example problems, the undamaged moduli are
determined from experimental data. The damage tensor 1is determined
analytically from a finite element analysis assuming a vaéiety of matrix
crack spacings in the 90° layers. The internal state variable for
transverse matrix cracking is related to the strain energy release rate
due to cracking by utilizing linear elastic fracture mechanics. The
values of effective (damage degraded) stiffnesses predicted by the

constitutive model are in close agreement with both experimental and

finite element results. The close agreement obtained in these example
problems, while limited to transverse matrix cracks only, demonstrates

the potential of the constitutive model to predict degraded stiffnesses.

INTRODUCTION

In Part I [1] it was hypothesized that damage can be modeled in

continuous fiber composites by a set of internal state variables which

represent 1locally averaged measures of matrix cracking, interlaminar
delarination, and other damage mechanisms on a scale which is assumed to

be small compared to the scale of the boundary value problem of
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interest. Continuum mechanics with internal state variables [1] was
then wutilized to construct stress-strain relations 1in which all
components of the degraded modulus tensor can be determined for a given
damage state.

The purpose of this paper (Part II) is to demonstrate how the
model may be utilized to predict the stiffness of laminates which are
subjected to known damage states. This procedure is illustrated via
specific examples in which there is a single damage mode consisting of
transverse matrix cracking. It is shown that single lamina properties
in the presence of damage can be utilized as given properties to obtain
favorable comparisons to both experimental and finite élement results
for specific laminates.

The model application is accomplished by first imposing symmetry
constraints, performing the laminate integration, and finally reducing

to generalized plane stress.

SIMPLIFICATION OF THE MODEL

We now consider the stress-strain relation described in equations
(64) through (67) of Part I (see Appendix A). For the examples to be
considered herein, it is assumed that all residual stress components are

zZero (oR =0), and that there are no thermal transients (AT
ij

L =0).

Reduction to Single-Index Notation

By incorporating the symmetry of the stress and strain tensors,

the quadratic dependence of the Helmholtz free energy on strain, and the
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Voigt single index notation, [2] the constitutive equations reduce to

(see appendix A)

o = Ci € (D

ij ij 3

where

g =c o+ M ol (2)

.. L., ijmn “mn
ij i]

In equations (1) and (2) the subscript L represents quantities which are
locally averaged at the lamina level. The subscripts i and j range from
one to six, the subscripts m and n ranges from 1 to 3, and the
superscript n ranges from 1 to N, the number of damage moées.

At this point no further reductions can be made to the number of
unknown constants in equation (2) without specifying the specific

damage modes and material symmetry.

Application to Matrix Cracking

As discussed in the introduction, the potential of ‘the
constitutive model will be demonstrated by considering the case of
matrix cracking in continuous fiber composites. An example of this
damage state is shown in Fig. 1. In order to construct the proposed
constitutive model for this system we first examine the response of a
single ply subjected to transverse matrix cracking as shown in Fig. 2.
Assuming that the crack geometry is symmetric about normals to each of
the ply coordinates, the internal state variable associated with matrix

cracking in local ply coordinates is represented by
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This implies that the damage in a single ply is defined by the direction

of vectors RC and U and the magnitude |ai|(see Fig. 2). It will be
shown in a later section that the magnitude of ui is related to the
ij

surface area of matrix cracks per unit volume in a ply.

Note that a second order tensor representation of the internal
state variable is insufficient if the crack orientation within the ply
is time dependent. In this case a higher order tensor is required.
However, since the crack is matrix dominated and constrained by fibers,
rotation is assumed to be negligible and the second order tensorial
representation is considered adequate in this example.

For the single damage mode of matrix cracking described in Fig. 1,

equation (2) reduces to

1 1
A -
o =% T M %mn , (4)
1) 1]
where aﬁ represents matrix cracking and the above properties are
mn

constructed in ply coordinates. Since the only non-zero component of

1 . 1 )
a is a ; equation (4) reduces to
Lmn L22

. 11
€L, = Cu.. Mg %o , (5)
ij ij

represent the non-zero components of Mijkl associated with

1
where Mij22

matrix cracking. At this point Mi.

jo2 has been reduced to 21 unknown

coefficients in equation (5).
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Material symmetries may now be utilized to further simplify the
constitutive equations. The material in question is assumed to be
initially transversely isotropic in the undamaged state on the 1local

scale, where the plane of isotropy is the x2 - x3

2. In the undamaged state the effective modulus tensor CL is
ijkl
equivalent to the elastic transversely isotropic ply properties given by

plane shown in figure

DI T AR
o C C C 0 0 0 eL
Ly L1 Lo Lo 1
o C C C 0 0 0 e
Lyl b2 Tz Tas 2
o C C o 0 0 0 € 1
Lyfol B2 ez Do 3
o 0 0 0 0 0 0 g (6)
Ll& 4
o 0 0 0 0 0 0 >
Ly L¢
ag 0 0 0 0 0 0 €
.—L6_J — = '—L6-

It can be shown using irreducible integrity bases [4,5,8] that
with the inclusion of the damage tensor for transverse cracking the
effective modulus tensor becomes orthotropic. Therefore, the damage

tensor M& 22 is an orthotropic tensor containing 9 unknown constants.
ij
Thus, the complete constitutive equation (5) (assuming the damage growth

1
law ap is known) requires the determination of independent material
22
constants for the undamaged modulus tensor CL , and 9 independent
ij
constants for the damage tensor, M1 .
ij22
For relatively thin laminates it is useful to apply the conditions
of generalized plane stress where the out-of-plane shear stresses oy and
o5 are neglected. Applying these conditions to equation (1) and using

matrix notation results in
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[~ "1 1 1
(0] C C C 0 M M M 0 ()
LJ L, Ly, Iy, 1122 Mi222 M1322 L,
1 1 1
o C C C 0 M MM 0 €
Ll [T "Ly "Ly ! 1222 “2222 M2322 L,
>" ~0, 1 1 1
o c c c 0 22 M M M 0 €
L, Ly Lys Lo 1322 M2322 M3322 L,
1
o 0 0 0 c 0 0 0 M €
L) L Leg A 66222 L

where for generalized plane stress conditions there are 12 unknown

material constants in equation (7).

Laminate Equations

To utilize single lamina equations to characterize the response of
multilayered laminates, it is necessary to globally average the 1local
ply constitutive equations. This is accomplished herein by imposing the
Kirchhoff hypothesis for thin plates. This procedure is very similar to
the method used in Jones [3]. However, generalized plane strain
conditions are imposed rather than plane strain because this is
consistent with the stress state in equation (7) (A detailed description
of the global averaging is given in appendix B). The resulting

equations are as follows:

(N} = [A] (%) (8)

or

% = a7l oy , (9)

(10)

)
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and {: } contains the laminate midplane strains where k specifies the
o}

ply and tk is the ply thickness.

DEPENDENCE OF THE FREE ENERGY ON CRACK SURFACE AREA

It was previously shown in Part 1 [1] that the free energy, ui was %f?:
first order in the internal state variables, aEij . Therefore, in ;ﬁ;
Zeneral ) St
"

ur = f*i‘j (eLkl, T) - ocgij . (11)
where f;; is a tensor associated with each specific mode of damage, n. 3';}
Therefore, for the "fixed grip" condition (ELij = constants) and ;i:;
constant temperature conditions, the free energy is a linear function of if%;
the internal state variables, ;{;:

The free energy, uf

L depends on the energy released during

cracking as well as the total surface area of cracks in the local

volume. For an elastic material undergoing stable self-similar crack

growth, the available energy is related to the energy required for crack

extension by [6,7]

u- = 1 ¢ 8 s (12) )
P

L'L ol

where GL is the local volume averaged strain energy release rate during

crack extension, and S, is the total surface area of matrix cracks. -
Also, it has been previously shown [1] that the local energy is related L

to the total energy by
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. C
. c _u(n)
i!l lt(t) = H. . (13)
L VL
i The total energy released during the fracture process is obtained by

i
'g" substituting equation (13) into equation (12) and integrating in time.
L]

E:r This results in

' t .

o U]‘i(t) 5/ G, 8, dt’ s (14)
,_; (¢}

- where t is the time of interest, t' is a dummy variable of integration,

and 82 is a time dependent geometric quantity. It should be noted that

!; GL may be time dependent if, for example, cracks prepagate through

heterogeneous zones such as resin rich regions during the damage

process.

Since the body is assumed to be elastic at a constant damage

- state, the strain energy release rate, GL’ may be assumed to be rate

S o independent. Therefore, equation (14) becomes
. -'.‘
: $,(t)
c - . - 15
] U (e) = f G (8,)ds = g(5,) , (15)

SZ(O)

where it is “apparent that the total energy is a function of surface area

only.
It therefore follows from equations (11), (13) and (15) that for

the case of transverse matrix cracking
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The precise nature of the function g' is determined either analytically
(using a finite element solution) or experimentally.
From equations (17) and (15), it is seen that the internal state

variable depends on the strain energy release rate, G For the "fixed

L

grip" condition, the strain energy release rate is given by [7]

du
G, = -1 , (18)
L E-( )

2
g

where B is the crack depth, and UT is the elastic strain energy. For a
uniaxial stress state, the elastic strain energy is defined as
i} f11 (19
Uy [fou d&:ll] v , )
0
1

\Y C
where o and ¢ are the uniaxial stress and strain states,

1

respectively, and V is the volume of interest. For a linear elastic
material, the term in the brackets of eqguation (19) can be integrated

and equation (19) becomes

2
Uy -f[% E; eu] dav 20)

where E:11 is the laminate stiffness (A11/t) in the x-axis direction.

For the uniaxial fixed grip condition, 611 does not vary over the

volume. Therefore, equation (20) becomes

2
VE;, €] . (21)

Up = 11

T
Finally, substituting equation (21) into equation (18) and recalling
that €1 is constant for the "fixed grip" condition, the following
expression for strain energy release rate is obtained:

6, = - 1 vet ’Eny (22)
’ 2B 11 Tha
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This result implies that only the laminate modulus,Ell changes with the
formation of new crack surfaces.

The above result may be considered intuitively obvious because Fi1
is defined as the load in the X -direction divided by the associated
displacement in the deirection. Since the displacement 1is held
constant, the load will decrease as crack extension occurs and the
structure becomes more compliant. This can be shown to be analogous to

(71

G, = P° 3C R (23)

where C is the specimen compliance (1/E11). .
As an example, consider a [0/90]S laminate with matrix cracking in

the 90° plies only. The average stiffness is given by

E =(E0+E ) /2 , (24)

11 90

where E. and E_ ., are the moduli in the global x, direction (0° fiber

0 90 1

orientation) of the 0° and 90° plies, respectively. Assuming that no

cracks form in the outer 0° plies, equation (22) becomes

6. = - 1 ve? °Egg . (25)

4B da

This result implies that only changes in the modulus of the constrained
90° plies, where matrix cracks are assumed to occur, effect the value of

the strain energy release rate for increasing crack formation.

Determination of Damage Modulus Tensor

The material constraints used in M}322 can be determined using

equation (5)

Mij22 = Fij 7 Ly

22 13
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L.+ Cﬁ , and ut are known. In reality it is CL

ij ij 22 ij
that one seeks to predict; however, it is possible to analytically or
]

for prescribed values of ad .

ij 22
- in CL are the orthotropic material properties determined 5-,-:
& ij
;j experimentally from tests conducted on undamaged composite lamina.

provided that C

experimentally determine C

L The terms

N

v

A PR
In order to determine the terms in C it is necessary to T

L]

- L., ' AR
II 1 ' q
b determine the effective orthotropic properties of a single ply for a

1 . . .

given value of a . The effective orthotropic properties due to
22

matrix cracking are determined by modeling the cracks as internal

bouridaries and solving the resultant boundary value problem using a

o '

. .! finite element continuum model. Alternatively, CL may be determined
ij

experimentally where methods exist to determine appropriate stiffness

components.
K B RESULTS
This section presents the results obtained from the finite element

continuum model which was used to predict the damage modulus tensor and

the globally averaged laminate equations relating stress and strain.

These results demonstrate the ability of the model to predict all

components of the effective stiffness due to matrix cracking for a
| [0,903]s laminate. The experimental data used in this analysis, shown
in Table 1, were obtained from reference 9.

The first series of tests were conducted to determine the strain

energy release rate and the damage modulus tensor M; for [0,90]s and

je2

[90,90]s laminates using the finite element continuum model with various
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Table 1. Undamaged ply properties for E-glass epoxy [9]

- E, = 6.05 x 10% psI

T E. = 1.89 x 10 PSI
2. 2
E. = 1.8 x 10" PSI

]
<

= = 0. PSI
12 013 0.63 x 10

N 6

1_ Viz T Vi3 23 °©
! 0.7269 x 10° PSI

(2]
]

cured ply thickness = 0.008 inches
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}} crack densities in the center 90° ply. The finite element mesh used for
p the analysis is shown in Fig. 3. The effect of different constraining
- layers on the strain energy release rates calculated from the finite
.- element results are shown in Fig. 4. Also shown in ~ Fig. 4 is the

e TR T

theoretical result for repeated cracks in an isotropic infinite
domain [10]. This result is intended only to verify the cubic nature of
the strain energy release rate calculated from the finite element model.
For the current state of model development, only the [_0,90]s relation
for the energy release rate was used. It should be noted that, in
calculating the energy release rate, the derivative of the change in
stiffness with respect to crack length was approximatea with a first
order finite difference relation.

The next step was to determine an approximate relation between the
strain energy release rate and the total crack length. A least squares
cubic fit of the curve for the [0,90]s laminate, shown in Fig. 4 was

obtained and is given as follows:
G(a) = 3.88690 - 0.280162 a -44.11385 a° + 69.22121 aS, (27)
where the nonlinear terms are believed to be caused by boundary effects

and crack interaction. Substituting equation (27) into equation (15)

results in an expression for the internal state variable as follows:

3

a = 3.8869a - 0.140081 a2 - 14.70U62 a3 + 17.305303 a+ . (28)

L

The values for the damage modulus tensor can now be

1
Miy20

determined from the finite element results for the [0,90]S laminate. 1In

16
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order to evaluate the constants in M;j22' a particular crack density is
s selected and the finite element results for this case are utilized in Q
N equation (25). These results are then used as follows: 1) compare EEE
§§ damage model predictions for the axial stiffness loss in the [O.9O]S é?
- laminate to the finite element results, and 2) compare the damage model g.
A predictions for the axial stiffness loss in a [0,903]S laminate to both L
o finite element predictions and experimental results.
- The results for case one are shown in Fig. 5. It can be seen

that the damage model underpredicts the stiffness loss. This result is

expected since laminate analysis does not account foT interlaminar
t. shearing which would effectively reduce the axial stiffness.

Furthermore, the strain energy release rate predicted by the finite

element continuum model 1is conservative due to the inherent "over
li stiffness" problems asscciated with the finite element model, especially
| since constant strain triangular elements were incorporated. This same

argument will hold true when the finite -element model results are
] compared to experimental data.

The normalized axial stiffness results for case 2 ([0,903]s
laminate) are shown in Fig. 6. As discussed previously, the results
predicted from the damage model as well as finite elements underestimate
the stiffness loss in the laminate. Nevertheless the good comparison of
the damage model to the experimental results can only be encouraging
since the only experimental data used were the undamaged stiffness
properties. The inclusion of experimental data for the damaged
stiffness properties and a more refined energy release rate prediction
can only help decrease the current differences between model predictions

and experimental results. A phenomenological explanation for the
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underpredicted stiffness 10ss can be seen., If one examines a schematic

diagram of a typical saturation crack pattern for the [0,903]S laminate
[9,11] as shown in Fig. 7a, It is observed that a network of branched
or curved cracks exist in addition to a more uniform spacing of
transverse cracks. This suggests that the surface area of transverse
matrix cracks may actually be greater than that assumed by the damage
model as shown in Fis. 7b. Since tlr.. internal state variable depends
directly on the surface area of cracks, one concludes that by allowing

for the Increased surface area due to branching or curvature then the

model results would be in better agreement with the experimental data.
This suggests that it may be preferrable to obtain' all material
parameters from experimental tests rather than finite element results.
In Fi-. 8§ the remaining components of the effective modulus
vensor are predicted using the laminate equations. It can be seen from
the figure that the moduli 1in the y and 2z directions do not vary
significantly for transverse matrix cracking. However, it can be seen
that the Poisson's ratios vxy and vxz’ as well as the shear modulus
ny, vary significantly. Also shown In Fig., 8 are results obtained
from the finite element continuum model for Viezt The good agreement

demonstratad here supports the ability of the model to predict all

components of the effective modulus tensor.

CONCLUSION

In part 1 constitutive relations were developed to account for
varicus forms of damage in continuous fiber composites by utilizing the
concept of internal state variables. These constitutive equations have

been simplified to a usable form by imposing symmetry constr.ints. The
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Typical Saturation Crack Patterns Observed

in [0’903]5 I'-Class Laminate [9,10].
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potential of the resulting constitutive model was demonstrated by

.
o
.

M

St

flE considering the case of matrix cracking only. Results were obtained for !“?_

'
LY
“r

'

[0,90]s and [0,903]s laminates with matrix cracking in the 90° plies. S

LA e

A

- Although some of the material constants used to characterize the local o

>

i-q ply constitutive equations were determined analytically, model results
.f‘ compare favorable to experimental and finite element analyses for
i.;‘ specified values of crack densities. It is anticipated that when the
material constants used in the model are determined experimentally, the
results should be notably better due to the inability of the finite .
o element results to account for unusual crack geometry. Finally, the
model was shown to be capable of predicting all components of the
damage induced effective modulus tensor. However, the accuracy of this
capability remains to be verified through experimental correlation.
A?.' The objective of this research has been threefold: 1) to develop
a model for predicting the constitutive behavior of a laminate given the
mode and extent of damage, 2) to develop growth laws for each mode and
i m the extent of damage, and 3) to incorporate both 1) and 2) into a usable
form. Although the model has been demonstrated for given states of
- matrix cracking, parts 2) and 3) require further research and are indeed
} the most difficult link in the model development since they will require
extensive correlation with experiment as well as finite element

analysis.
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Appendix A: Application of Symmetry Constraints

The damage-dependent constitutive model (equations (64) through

(67) of Part I [1]) is defined as follows:

(1a)
R ' T
o =g + C (e - €.4)
L,. . .
A Lt e
where o = local stress tensor i
ij "
€, . = local strain tensor b
k1l b..-
r: - =
P
= n n .
= ('
o, FPfL By Linag o) (2a) T
ij ij kl LA
t.‘l’. -'_‘
= Residual stress in the absence of strain and temperature
change
)
- n n
c = o, (C + M, al ) (3a)
Lijkl L Lijkl ijklmn Lmn
= effective modulus tensor
CL = undamaged modulus tensor
ijkl
T '-1 n n
€ = C o. (E - N,. . a ., AT.) (4a)
kl Lijkl L Lij ijkl "kl "L
= thermal strain tensor
a; Z internal state variable for damage modes
k1
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ATL = change in temperature
n n n
: N
and BLij’ Lok’ Mijkimn, ELij § Ny are

tensorial material constants as required by the Taylor Series expansion.

For demonstration purposes, the residual stress terms are
neglected and isothermal behavior is imposed on equations (1a) through

(4a), yielding

1]
o = C € s (5a)
Lis Hija M

where the effective modulus tensor is given by

T n
= . 6a
CL..=ep L M O ) (62)
ij ijkl mn
n
Note that Mijklmn is a sixtn order tensor with 729 coefficients for each

value of n. It is assumed here that the constitutive equations given by
(5a) are statistically homogeneous. Therefore, the conditions of stress

and strain symmetry can be applied to equations (5a) and (6a) to obtain

t L} \ ]
C =C , C =C . (7a)
Liski  Byikl o Migkl Ligik

Using equations (6a) and (7a) it can be shown that

M - n n = n 8a
M ikimn - Mikimn® Mijkien T Mijlkmn (8a)

Using the Helmholtz free energy and the quadratic dependence of the

effective modulus tensor on strain, it can be shown that

' -c . (9a)

C =
Liskt M1
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IE Substitution of equation (6a) into (9a) will result in L
; = M T 2

Mijklmn - Mklijmn (102) L St

The above symmetry constraints reduce the number of coefficients to 189
terms in equation (10a) for each value of n. It is most convenient at
this point to reindex the constitutive tensors using the Voigt notation

r‘ [2] where

"EED T T T TR YT VIR T T T W T
. 2 .
. .‘ ‘
%,
%
*

0p = Oy Oy = %3 T %32 .

0, = 05 0g = 0q3 = Ogy (11a)
03 = 933 O = 91 = 94

and

€1 = €44 €y = 2 523 = 2 532

€, = €5 €g = 2 €13= 2 €31 (12a)

€3 7 €33 €6 = 2 €1 = 2 £y

Using the contracted notation, equations (5a) and (6a) can be written as

- g, =2¢C £, , (13a)

- where i and j range from 1 to 6 and

o3 ! n n

b CL . CL.. + Mijmn %mn ) (14a)
' ij ij
¢
IF‘ Note that m and n range from 1 to 3 and n ranges from 1 to N, where N is

the number of damage modes.
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Appendix B

The values of generalized plane strain are given by

‘ o) \
? C)( E:x KX
|<“_ fo)
, 1b
ey ey <y (1b)
: € > - EO > + 2 K >
I h— YA A Z
o)
8 \Exy Exy ny

where the superscript "o" denotes the midsurface strains and the «
! ' matrix denotes the midsurface curvatures. Under the condition of
generalized plane strain there is no warping allowed out—of-plane, which

implies, that K, = 0. Thus the generalized plane strain equation

I. becomes

1 1 ¢

[o]

. €y €y Ky
i € €0 K
i ¥ y <y> y>
+ =1y v
¢ €, €, 0 . (2b)
..: € Eo K
Xy | XY L X,

It is now assumed that no moments or curvatures are imposed and

Y

that all laminates studied are symmetric. Therefore, in order to

ro

determine the resultant forces, it is necessary only to integrate the

given stress state as specified in equation (7) over the 1laminate

thickness to obtain

oy v
1
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Ny t/2 %

Ny = Joy >

Nz ? o, dz ) (3b)
Yy —t/2 | 'xy

where t is the total thickness of the laminate.
Substituting equations (13a) and (2b) into (3b) for the case where

there are no rotations results in

t/2 .
) f (€' %) 4 . (4b)
-t/2
where {N} denotes the force resultants, Kg} is the transformed

effective stiffness matrix, and {e°} represent the mid-surface strains.
Note that since transverse cracks go completely through the thickness of
the cracked plies the stiffness is assumed to be spacially constant
through the thickness. Therefore, equation (U4b) can be written as

n —_
M=l @ - g ) (5b)

where k specifies the ply and Zk - Z is the thickness of each ply.

k-1

One can define

(z, -2 (6b)

k k-l) ’
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. where Ai represents the globally averaged stiffness matrix. Thus the

J

globally averaged constitutive equations become

— {N} = [A] {e°}. (7b)
Experimental testing is often conducted on wuniaxial testing
- machines in which the applied force resultants are input and the strains
: are experimentally determined output. Therefore, at times, it is more
convenient to express the strains in terms of the applied force
!. resultants as follows, l

(E°} = (AT (N} . (8b)

33

R e L T e e Lt M et tw e e e el el el et . LS
- L. BT L N TS PR S - .t . e . - -
“a = ERIC L ) - R N

- R -~ . el Sl : T e e e A e e

. LT e e e e, NEIFRAR e e e ety el e e . e e R .
Car . S I I L, 3 G N T R R S A VAT A A R R : AR T e e e T T e e PO N
tatatataiat atalatta - P TS I S W  R OR YA " NI NSRS WP S SP NP L ESAE VR, P PR AR PRC RN




KL VLYYV IO W A e

- - v ' N . ey
AT T . WL AAT A LI S I X %6 D SRAPMMELEERESEEIEEEL S e

R IR Tl ]

4

S S

.

k .

X - S N e OB R IR e gt . e ar o e v . - v s - . - A m—

' % 3 . . j -
. . . Lo - . - . " - ,' . . . - . A"‘ .‘ ." RN 5 - . Y. . .\‘

“ . I C At et At R
- - . RN S e e T AT e N }l“ R 3 o DAL T T N,
N At e e et el sl bl il Sl Sl L . PP AP 0¥ S UiE U W™ | PN P PUS BT B T W AT B B B B W B 1 -




