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gy Preface

The purpose of this thesis was to develop a simulation model of a

token-passing bus local area network. The intended application of the

simulated networks is that of the specialized aircraft avionics data bus

network. The simulation model was successfully developed and validated.

Initial testing was completed for one protocol and a comparison test of

two protocols was accomplished,

This simulation model is one of many models and tools that will be

needed to design and develop a new avionics data bus required for the

next generation of aircraft and their complex avionics.

I would like to thank my advisor, Major Walter D. Seward, and my

thesis committee member, Captain David A. King, for their assistance

(!i during this thesis effort. I would also like to thank my sponsor,

Harold J. Alber for his technical advice and for allowing me to utilize

the Systems Engineering Avionics Facility computer. Finally, I would

like to thank my wife Charlotte, for her patience and support during

this graduate program.
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Abstract

There are many factors of bus token-passing protocols that
influence the overall performance of the protocol. Extensive analysis
is needed to design a protocol with performance that can meet the
requirements for a next-generation aviation electronics (avionics) data
bus. The purpose of this thesis was to develop and test a token-passing
bu%nsimulation model that could be used to conduct this analysis.

This thesis developed and validated a model for simulating bus
token-passing protocols for avionics applications. Two algorithms were
designed that reflected the timing and operation of a distributed
control token-passing protocol and a centralized control token-passing
protocol., The algorithms were incorporated into an overall simulation
model program which included simulation control, data collection, and
data analysis functions. The simulation model program was written in

the Pascal computer programming language. . .- Dot P ’L'""'_)

The simulation model program allows various avionics bus ./4“”‘1 17t
configurations to be defined and tested. A series of tests were s

conducted using the simulation model program to validate its operation

and modeling capabilities. The validation tests were successful,

Initial performance tests were conducted for a centralized control

2

5

token-passing protocol using a bus configuration representative of a

RN R
.""‘ 1‘- .'_ T

fighter-type aircraft bus network. The performance of the two types of

protocols was also compared. ]
]
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SIMULATION MODEL OF A HIGH-SPEED TOKEN-PASSING

BUS FOR AVIONICS APPLICATIONS

I. Introduction

There 1s presently a great deal of interest concerning the rapidly
evolving field of local area computer communication networks, commonly
called local area networks (Myers, 1982:28; Stallings, 1984a:3). The
main reason for this interest in local area networks (LANs) stems from
the ability of the local area network to interconnect computer-based
equipment so that expensive resources can be shared and data can be
exchanged among the equipment (Stallings, 1984a:3). Local area networks
are used in aviation electronics (avionics) applications primarily to
reduce integration complexity and risk (Alber and Thomas, 1985:130).

This introductory chapter begins with a background of avionics local
area networks and reasons why a new avionics local area network is
needed. Next, a brief description of the problem is given followed by a
statement o~ .~ he objective of this thesis. A summary of the current
knowledge concerning bus local area networks is then presented followed
by the approach taken in this thesis. The chapter concludes with an

overview of the rest of the chapters and appendices of this thesis.

Background

In the late 1960s, it became apparent that avionics integration by
use of dedicated hard-wired interfaces was too costly and complex, and

led to inflexible avionics systems (Gifford, 1974:85). Therefore, the

................................
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concept of a standard interface which would allow different avionic
equipment to exchange information via a shared serial communications
link was developed (Boeing, 1980:2-2). Such a standard interface was
defined and adopted by the Air Force as MIL-STD-1553. This standard
defines the hardware and protocol for a serial digital data bus that is
shared by the avionics connected to it. A time division multiplexing
scheme is used to allow the avionic equipment to share the bus in a
controlled manner. This Air Force standard was later adopted by the
Department of Defense for use by all the military services.

As the next generation of military aircraft is starting to be
designed, a new standard interface implemented by an avionics local area
network is required. This new avionics network is needed to meet the
increased information flow requirements of the more advanced and complex
digital avionics that will be used in these aircraft (Ludvigson and
Milton, 1985:122). Also, a broader range of avionic equipment could
take advantage of reductions in weight, integration complexity and cost
that avionics local area networks offer if their information flow

requirements could be met by such a network.

Problem

The US Air Force's Aeronautical Systems Division engineering
community has agreed on the framework for a new avionics local area
network. The use of a token-passing protocol with a bus topology is the
preferred method (Ludvigson and Milton, 1985:123). However, there are
many factors of the token-passing protocol which could influence the

performance of the avionics network, specifically the data throughput

N .t ot . BRI P . PSR P W T T - R I T IR . st
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rate and message delays. These factors include bit rate, number of data W

o
e
.'

“

words per message, maximum message size, number of overhead bits, size

of the token, maximum token-passing time, centralized versus distributed 325:
token scheduling and control, physical length of the bus, and the :C%?
maximum number of terminals connected to the bus. Extensive analysis is {?ﬁ
needed to determine what effect these different factors have on the data E%;

throughput rate and message delays. L

Objective

The objective of this thesis is to design and test a software tj:}

simulation model that will allow analysis of the effect the factors ::*;

Dt VN L S T W
P e S
o »

listed above have on the bus's throughput rates and message delays. A

This model will aid in the development of a finalized configuration for

the new avionics local area network. The software model will allow

simulation of the bus network on a digital computer, R

Current Knowledge

Due to the popularity and interest in local area networks, there
has been a great amount of work reported in the literature concerning
local area networks. Studies of the token-passing bus protocol found :}f:
pertinent for this thesis include the following. E?

Stallings discusses the factors that determine performance for

local area networks including token-passing bus protocols and

develops simple performance equations (Stallings, 1984b).

Ulug compares the performance of a token-passing bus protocol l,_
with different token-holding limit strategies using analytical o
and simulation methods (Ulug, 1984).

Cherukuri et al evaluate the performance of a token-passing :}:}

protocol for ring, baseband bus, and broadband bus topologies Y
using analytical methods (Cherukuri et al, 1982).

. »* e ®e"s e
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~ e Stuck presents a performance comparison of the popular media %4?
Y "{: access methods including the token-passing bus protocol using P;i;
y analytical methods (Stuck, 1983a). i“
- -f,,.'l"
= Rahimi and Jelatis validate the IEEE 802.4 token-passing j{ﬂ
o protocol and evaluate its performance by using simulation F:H
- methods (Rahimi and Jelatis, 1983). o
-“: .f :“ 4

Based upon the results of these analytical and simulation studies,
some ideas concerning the performance of token-passing buses are
generally accepted. These ideas include the following:

Low throughput when the bus is lightly loaded because much of
the bandwidth is wasted passing the token through idle
stations (Rahimi and Jelatis, 1983:801; Cherukuri et al,
1982:59).

High and stable throughput when the bus is heavily loaded
because the overhead is small compared to the amount of data
being transferred (Cherukuri et al, 1982:59).

Decrease in throughput when either the header bits in the
message and/or the token are increased in size because both
o are considered overhead. When they are increased, more time
\! is being spent carrying the overhead bits and not data
(Stallings, 1984b:30). -
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Performance is sensitive to the message and token propagation {ii

delays and hence the length of the bus (Stuck, 1983a:75-76). ?ii

While there has been a great deal of work involving analytical and l;:

,e' simulation studies of local area networks, most works are not completely g -
% applicable to the very specialized avionics application. Avionics local .E
. !
R area networks are different from other typical local area networks for E,T
an office or distributed computing environment in two main areas. The  §

first difference is that an avionics network has known minimum and ;&

maximum station populations (Alber, 1985). The other difference is that i;,

more is known about the message size and arrival characteristics for the ¢

avionics network compared to the other environments. A

h
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e There are also disadvantages involved with the analytical method

*als,
ii v itself. The major drawback is the simplifying assumptions that must be
tf made in order for the analysis to be workable. These assumptions limit
-
:E the analysis' value for detailed performance evaluations (Rahimi and
' Jelatis, 1983:801).
: The problem with simulation studies is the applicability of the )
; model. The simulation might work correctly, but if the model is not an F};%
‘ accurate representation of the system under study, the usefulness of the ii;i
) simulation is doubtful. For example, Stuck noted that simulation ;::3
E studies for bus local area networks did not model the separation of the SLEE
S O
- stations on the bus (Stuck, 1983b:112). He found that the simulations £
B assumed worst case propagation delays for signals traveling between 5&;1
: stations. Since then, a bus local area network simulation has ;ﬁﬁ

incorporated actual separation delays; but the study was conducted for

’
%

E the carrier sense, multiple access with collision detection media access Eé;;
E: method as implemented by Ethernet (Jackman and Medeiros, 1984:595). E&Eﬁ
% Approach i:}:
- The approach taken in this thesis in developing a simulation model %é;?
of an avionics bus local area network was to develop an algorithm that E:i

reflected the timing and protocol operation of a token-passing bus ;fﬁ

network. An overall design was done for the simulation model which ;;i

incorporated the algorithm and necessary simulation control, data ;2:;

. collecting, and data analysis functions to produce a complete simulation E:?
. software package. The package was written in the Pascal programming ;i?
. language. The simulation model allows various avionics bus EEE
i configurations to be set up and tested so the effect of the different ;E:
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adjustable are listed below in general categories:

) bus environment

{ bit rate &Hf:
number of stations ]
length of bus
signal propagation speed

iy
stations e
separation

! token-passing order
message arrival types and rates
message length distribution types and means

messages
number of overhead bits
number of bits in token
number of bits in a data word
minimum and maximum number of data words

protocol
centralized or distributed control
token holding time
- station delay time

Besides setting up the bus environment to be tested, the simulation
control function allows control of the length of the simulation runm.

The data collecting function of the simulation model program
collects data so that the following performance parameters can be
determined by the data analysis function:

data throughput rates
message delays
access delays -

message slize statistics
bus efficiency

Overview of Remaining Chapters

A R Tt T .t
. « 0 . 1
L RN SR L)
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simulation model. Chapter IV describes how the simulation model was e,
validated and presents results from simulation runs. Chapter V is the '

'
summary of this thesis and presents some recommendations. Appendix A is =

. A
the simulation model users guide and Appendix B contains the simulation :'-:f-
e
model software. Appendix C contains the data files used for simulation .
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II. Local Area Networks

This chapter presents a discussion of local area networks including
topologies and bus media access methods. After each topic, an analysis
1s conducted that describes the strong and weak points of each topology
and access method presented. Four popular token-passing protocols are
then discussed and analyzed. Based upon these analyses, a topology,

media access method, and protocol are selected for use in this thesis.

Definition

A local area network can be defined as "a communications network
that provides interconnection of a variety of data communicating devices
within a small area” (Stallings, 1984a:4).

Avionics systems consist of various equipment that depend on each
other for basic information concerning the aircraft and its environment
(Boeing, 1980:2-2). The avionics need to exchange this information with
one another in order for each to perform their function. An example of
this information exchange would be a central air data computer providing
pressure altitude and air speed data to an inertial navigation unit
(Boeing, 1982:6~5). Also, the avionics system is limited to the
physical size of the aircraft. Thus, an avionics bus system which
allows information transfer agrees with the above definition and is one

example of many systems that can be described as a local area network.

Topology

There are three main topologies that can be used to describe a

local area network: the star, ring and tree topologies (Stallings,
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1984a:6). These topologies are shown in Figure 1 where the square boxes
represent nodes or stations. The star topology has a central node
connected to all the other nodes in the network. The ring has each node
connected to exactly two other nodes using point to point connections
which form a physical ring. The tree topology has a trunk with multiple
branches. The nodes can be located anywhere along the trunk and
branches. The special case of a tree with only a trunk is called a bus

topology (Stallings, 1984a:6).

Topology Analysis

The star topology leads to the central node becoming the bottleneck
of the network since all messages are routed to or through it. The ring
topology requires each node to actively repeat each message to the next
node on the ring. Also, if one node fails, the ring is broken unless
active bypass circuits are available. A break in the media can cause a
single point failure of the bus topology. This failure mode can be
avolded if multiple buses are used.

Chosen Topology. The bus was selected as the preferred topology

for the new avionics local area network for the following reasons: (1)
previous bus experience with MIL-STD-1553, (2) nodes can be connected to
the bus with passive connections, (3) adding or deleting nodes is easily
accomplished, and (4) multiple buses can be used for reliability. One
reason for not choosing the star topology was the congestion problem at
the central node. Another reason was the central node is a single point
of failure which would cause the entire network to fail., The ring
topology was not chosen because there is a chance that a single failure

could break the ring. Active bypass circuitry can be used to pass the
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E Bus Media Eﬁ:’
- wJ
e, The media used for the actual physical bus can be a radio channel, % )
! a coaxial cable, a fiber optic cable, or a twisted-shielded pair of g;t
EK wires. This thesis will not address the choice of media in keeping with ﬁ%f
o the current trend to design media independent protocols. R
| L.
" Media Access Methods Eﬂﬁ

Since all the nodes in the bus topology share a common ;ﬁi
b

communications link (the bus), the network requires a scheme for ¥
S
controlling the nodes' access of the bus. This is necessary because T
_-'.\
only one message can be succe.sfully transmitted and received on the bus ::i:
AR

at a time (Kurose et al, 1984:44). This control is called the media,

medium, channel or multiple access method and is one of the most

important aspects of the bus topology. Also, due to the shared bus, all
nodes can hear all messages transmitted. This characteristic is called
broadcast (Stallings, 1984a:6). The media access methods can be grouped Y
into three major categories: fixed, random or contention, and demand
assignment methods (Liu et al, 1982:417).

Fixed Assignment Method. 1In the fixed assignment access method,

all nodes on the bus are given a certain amount of time or frequency to

transmit messages even if they have none to send. Examples of fixed

assignment methods are time division multiplexing and frequency division ﬁgﬂ
.:\.:_
multiplexing. o
e
11 fzt
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Random Assignment Method. Random access methods try to improve on

the inefficiency of the fixed methods by only allowing nodes with
messages to randomly try and transmit them. However, there is no
coordination between nodes; so two or more nodes can transmit at the
same time, causing their messages to collide and become useless. When a
collision occurs, the whole process is repeated until all the messages
are successfully transmitted (Kurose et al, 1984:46). There are various
versions of the random access methods which try and minimize this loss
of capacity due to collisions. Two familiar examples of random access
methods are the varlous Aloha type methods, and the carrier sense,
multiple access with collision detection (CSMA/CD) method as implemented
by Ethernet (Tanenbaum, 1981:253,292),

Demand Assignment Method. The demand access methods either

explicitly or implicitly exchange control information so at any time
only one node is in control of the bus and allowed to transmit a
message. This method avoids the problems associated with collisions
(Kurose et al, 1984:45). Also, although each node is given the chance
to transmit, they do not have to (IEEE 802.4, 1982:1-10). This way, the
media bandwidth is not wasted by assigning it to idle nodes (Liu et al,
1982:419). Examples of demand access methods are the various token-

passing and reservation schemes.

Media Access Method Analysis

The token-passing method is preferred for the new avionics bus
local area network rather than other methods due to its attractive
features for the aircraft avionics real-time environment application

(Ludvigson and Milton, 1985:123). The fixed assignment access methods
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are not efficient for changing traffic loads. The message collision .ji{

characteristic of the random access method is inefficient; and depending
on the message transmission retry policy, can lead to non-deterministic
bus access delays. This is especially true under heavy traffic loads.
The attractive features of the token-passing access method include
deterministic access delays; no minimum packet length requirement; good
performance under heavy traffic loads; fairness to all nodes; no
specialized listening while talking or collision detection circuitry;
allowing implementation of multiple classes of service (priority); and
easy addition or deletion of nodes (Stallings, 1984a:28; Miller and

Thompson, 1982:84; IEEE 802.4, 1982:1-2),

Token—Passing Media Access Method

The token-passing methodAoperates by having the nodes pass a
special bit pattern message (the token) among themselves. The node
having the token has control of the bus and can transmit any messages it
might have until it has no more messages or the maximum token—-holding
time has expired (Miller and Thompson, 1982:80). The token is then
passed to the next node. Every node is guaranteed a maximum time that
it must wait between token possessions, which is called the maximum
access delay time. This access delay time varies with the amount of

load (nodes with messages) on the bus, A feature of this method is that

ad gt

it places minimal restrictions on how a node uses its bus time. This ! )

allows a node to use some other access method during its bus control

i)

time such as poll/response or requesting an acknowledgement, as long as

s

s
L

it does not confuse the other nodes (IEEE 802.4, 1982:1-10).
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Figure 2. Simple Token-Passing Protocol Simulation
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The normal steady-state operation of the token-passing protocol can

be thought of as alternating data transfer and token transfer phases

(Stallings, 1984b:26). Figure 2 is a simplified flow chart

- RS
. representation of how this steady-state operation is simulated in this ]
< T
ii thesis. The Figure starts with a station having just received the ?TX%
S = £
SRt token.
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Preamble Start Control SA DA Data

CRC {End

Figure 3. Typical Message Format

Messages. In addition to carrying actual data from one station to
another, a message in the token-passing media access method also carries
information that is necessary for the correct operation of the token-
passing method (Ludvigson and Milton, 1985:127). This information, such
as synchronization, address, and error control information, is not
actual data that is being transferred from one station to another and
therefore is considered overhead.

Message Format. The format of a typical message is shown in Figure

3. The preamble or synchronization bits allow a receiving station to
synchronize itself with the bus signal (Ludvigson and Milton, 1985:127).
The start delimiter bits labeled Start in Figure 3 and the end delimiter
bits labeled End in Figure 3 are used to define the beginning and end of
each message (Alber and Thomas, 1985:132). The control bits are used to
define the message type. There are basically two types of messages, the
control message and the data message. The control messages are
necessary for the operation of the token-passing media access method.
Data messages carry data among the stations. Examples of control type
messages would be the token message, where a station is passing the
token; messages that allow new stations to join and exit the network;

and messages that initialize the network (IEEE 802.4, 1982:4-3). Other
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information can also be included with the control bits; priority bits to
indicate the priority of the message, and time tag bits to indicate when
the data in the message was generated. SA indicates the source address
bits and DA indicates the destination address bits in Figure 3. These
bits are used to indicate the source and destination of the particular
message. The data bits labeled Data in Figure 3 denote the data being
transferred among stations or data associated with a control message.
The data bits can be an optional field for the control type messages.
For example, the control message that passes the token would not have
any data bits in it. The cyclic redundancy code bits labeled CRC in
Figure 3 are used for error control. This allows stations to detect

errors in the messages they receive.

Token-Passing Protocols

There are currently three token-passing protocols that have been
proposed for the new avionics bus network. This section will compare
and analyze their features. A fourth protocol defined by the Institute
of Electrical and Electronics Engineers (IEEE) in their effort to
standardize local area networks will also be included in the analysis.
The other three protocols have been proposed by the Society of
Automotive Engineers (SAE) as part of their aerospace standards
activities, by the Collins Government Avionics Division of Rockwell
Corporation as part of a contract for the US Air Force's Avionics
Laboratory Pave Pillar Program, and finally by the US Air Force's
Systems Engineering Avionics Facility (SEAFAC). A summary of the
important features of each protocol is presented in Table I. A dash (=)

in a column for an item indicates that this item 1is undefined or not
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applicable for that particular protocol.

The response time item in Table I refers to the maximum amount of
time a station is allowed to take in responding to a token message
addressed to it. That is, a station must begin transmitting a data or
token message within the response time maximum limit. If no response is
heard by the station that passed the token (sending station) or the
central controller, depending on the type of control used in the
network, an error condition is assumed to exist. The sending station or
central controller then takes steps to overcome this error condition.
Station servicing refers to the two different disciplines available to a
station for servicing the messages it has waiting to be transmitted.

The first discipline is called exhaustive servicing where all messages
pending at a station are transmitted. The other discipline is called
limited servicing which only allows a station to transmit pending
messages until a time limit or number of messages limit 1s reached
(Cherukuri et al, 1982:60). The next four paragraphs briefly discuss
the information presented in Table I for each protocol.

IEEE Token-Passing Protocol. (IEEE 804.2, 1982) The draft IEEE

Token-Passing Bus Access Method, Standard 802.4, is one of the family of
standards for local area networks. The 802.4 protocol includes options
for a 1 megabit per second (Mb/s) baseband network, a 5 or 10 Mb/s
baseband network, and a 1 Mb/s or 5 Mb/s or 10 Mb/s broadband network.
For the analysis, the 10 Mb/s baseband network was used. Referring to
Table I, a maximum bus length is not directly specified in the standard

because different types of cable are allowed by the standard. Instead,

a minimum signal strength in dB is defined. The minimum message size
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item in Table I contains two values because the IEEE draft Standard

~ allows a 16 bit or a 48 bit address field. However, the maximum size of
ﬂ the message is limited to 65,568 bits in both cases. Only the 16 bit
; address field is used in the calculation of the maximum address and

maximum group address item entries.

SAE Token-Passing Protocol. (SAE, 1985) In the draft of the

- proposed standard, seven bits are allowed for destination and source

g

addresses, but a total of eight bits are allowed in the address fields.
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The last bit is to be used for multi~cast or group addresses, but the
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draft standard does not define how it is to be implemented.
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Avionics Laboratory Token-Passing Protocol. (Ludvigson and Milton,

1985) The contract to develop this protocol is presently in progress so

many details of the protocol have not yet been defined. This is the

‘. reason why so many items are marked with a dash in Table I, The t o

:¥ Avionics Laboratory and Rockwell Collins are allowing a token control sz
) fofn
. ™

option in the protocol. The option allows a second token control ﬁ;::

RS

method, that of a centralized type.
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SEAFAC Token~Passing Protocol. (Alber and Thomas, 1985) This

LR A

protocol uses a centralized method to control the operation of the bus.
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One station, designated the scheduler station, is responsible for bus

initiation, error detection and recovery, and setting the token passing

; order. This protocol has a characteristic that allows the token to be e
B passed along with the data in one message. If a station does not have 1;1
N data to send, a regular token message is transmitted. Including the N

. token in the data message decreases the bus overhead, as a separate . A
; ~ token message does not have to be transmitted. This protocol also E;:
RO o
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Figure 4. Simple Centralized Token-Passing Protocol Simulation -};

allows more than one data message to be sent by having the transmitting
station pass the token back to itself until it has no more data or the

token holding time is exceeded. The token is passed to the next station .

with the last data message transmitted. Figure 4 is a simplified flow

chart representation of how this centralized protocol's steady-state T
operation is simulated in this thesis. The Figure starts with a station isi
having just received the token. E“i
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Summary

i Local area networks can be described by their topology and the
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method used to control how the stations gain access to the network.
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Each topology and access method has its strong and weak points which

A

must be analyzed according to the network's application.

Since a bus topology with a token-passing access method is the

oo o

preferred method for a new avionics local area network, this thesis will

develop a simulation model for such a network. The simulation model

s
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will be designed with enough flexibility to model all the previously el

described protocols.
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III. Simulation Model

r
.

This chapter begins with a brief discussion of discrete event
simulation concepts. The simulation program and the token—passing

algorithm are described and defined using flow charts. The various

¥

adjustable bus parameters are described next. Finally, the simulation .

" r‘.r&r‘
" ',' ".l' .

ot

program design is presented using structure charts.

s
[

WA

WM,

Discrete Event Simulation

e
»” '."' .

Simulation can be defined as experimentation with a model of a
system (Shannon, 1983:20). What makes simulation so popular and
powerful is its ability to allow a nondisruptive examination of an
existing system to learn more about it or to test improvements.
Simulation also can be used to explore the performance of a system that
does not yet exist (Mittra, 1984:142) or which can not be readily
analyzed.

There are many ways simulation models can be classified. Three
examples of these classifications are according to how the model
represents the system, the model's purpose, and how the model represents
change within the system (Schmidt, 1984:65). When a simulation model
represents change within the system as occurring only at isolated points
in time, the model 1is classified as a discrete type. When the model
represents change as continually occurring over time, the model is
classified as a continuous type (Schmidt, 1984:65-66). For discrete
models, the points in time are determined by the occurrence of an event.
An event is when something happens to change the state of the system

(Shannon, 1975:109). The time clock in discrete simulations is advanced

22
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in varying size steps of time to when the next event occurs. These
steps are discrete amounts of time, hence the name discrete simulation.

In simulating an avionics bus network in this thesis, the discrete
event type of simulation is used because the operation of the bus can be
characterized by various events. Examples of these events are the
arrival of a message at a station, the times a station begins and ends
transmission of a message, and the times a station begins and ends
transmission of a token message.

Entities. Entities in a system are the physical or symbolic
components of the system (Schruben, 1983:101). Entities are important
in a simulation model because their interactions cause events to be
created (Shannon, 1975:109). For the avionics bus network, the entities
of the system would be the bus media, the stations, and the messages.
Entities are described by their attributes (Schruben, 1983:102). For
example, the attributes of a message might be its size, its point of
origin (source station), and its destination station (Fortier and Leary,
1981:221).

Simulation Language. (Schmidt, 1984:72-73) The simulation model

must eventually be converted to a form understandable by the computer.
This conversion is carried out by expressing the simulation model in a
general purpose computer programming language or a speclal purpose
(simulation) language. There are’ two main advantages in using a general
purpose language. These languages provide the person conducting the
simulation a maximum amount of flexibility in the design of the model.
Secondly, at least one of these languages 1s probably known by that

person. An advantage of using a simulation programming language is its
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;2 L built-in routines to accomplish common simulation functions. Two tig:
. v <
' - examples of these routines would be event manipulation subroutines and l.t'
E; time keeping mechanisms. ﬁi}
ft Selected Language. The Pascal general purpose programming language 3;;

r.
[N
55
s "y

was selected for use in this thesis for a number of reasons. The most

r

important reason was that the flexibility of a general purpose language E':
was needed to model the level of detail desired for the avionics bus L-
simulation model. Even with the recent growth and popularity of E"
simulation languages, Mittra reports that a recent survey estimated that r._
75% of all discrete event simulations were performed using FORTRAN or :;
Pascal languages while most of the remaining 25% were performed using E'
the GPSS and SIMSCRIPT simulation languages (Mittra, 1984:144).
Simulation Model Program _’_.
The simulation model program is divided into three main sections E\

that are described below and shown in flow chart form in Figure 5. The \::
three sections are setup, simulation, and summary. :,
Setup. The Setup section performs all the data input and o
initialization actions that are necessary before the actual simulation ’.-:‘:.-
can take place. These actions accomplished by the Setup section of the .'..::
simulation program are shown in flow chart form in Figure 6. The Setup R
section begins by reading in the bus configuration data. Next, the \:‘
arrival time and length of the first message for each station is i‘:‘
calculated and the message is queued at its station. Then, the '.-_'.:'
variables that will store the data for all the statistics concerning the :
simulation are initilalized. Finally, the token-passing propagation I':
delays are calculated for every station pair and this information is :.-‘
R®
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Figure 5. Simulation Model Program Flow Chart

stored. This is done so that during the simulation portion of the
program, the token-passing propagation delays can simply be looked up
and do not have to be calculated every time they are needed.

Simulation. This section of the simulation program performs the
actual simulation of the bus. The section consists of two main
routines, one for simulating distributed token-passing protocols similar
to the one defined by the IEEE 802.4 specification, and the other for
simulating the Systems Engineering Avionics Facility centralized token-
passing protocol. This section of the simulation model program is
described in detail later in this chapter under the heading Token-

Passing Algorithms,
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- <::start setup )

read data

calculate first message
arrival and length
for every station

initialize
statistics
variables

calculate
token-passing
propagation delays

(:iend setup :)

i Figure 6. Setup Section Flow Chart

. e

Summary. The actions accomplished by the Summary section of the

simulation model program are shown in flow chart form in Figure 7. This

s, "- "u

section performs the calculations necessary to determine the values for

the various performance parameters for the bus configuration that was i: -
simulated. These parameters include: throughput, message statistics, f’ifﬁ
access delays, message delays, number of token-passing cycles, and ]
efficiency. This section then prints these parameter values in a

summary format.
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efficiency, and
token cycle
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( end summary :)

Figure 7. Summary Section Flow Chart

Token-Pagsing Algorithms

The token-passing algorithms are the main part of the simulation
section of the overall program. The distributed token-passing algorithm
is shown in Figure 8 and the centralized token-passing algorithm is
shown in Figure 9. In the figures, the abbreviation “"incr. sim.”
represents increase simulation. This refers to increasing the time clock

of the simulation to the time of the next event. The abbreviation "msg”

represents message and the abbreviation "tx" represents transmission.
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by msg tx time
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ﬁ;ﬁf Figure 8. Distributed Token-Passing Algorithm
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Figure 9. Centralized Token-Passing Algorithm (continued)
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For both algorithms, the first decision that is made is whether the
station has any messages waiting to be sent. The presence of messages
waiting to be sent must be checked because a station may have a very low
or even a zero rate for message arrivals. A variety of arrival rates
are allowed so different traffic loading situations may be simulated. A
message arrival rate of zero would correspond to a station with no
messages to send. The expression "continuous arrivals” refers to the
condition where a station always has messages waiting to be transmitted.
Again, the reason for this condition is so different traffic loading
situations can be simulated.

Token-Holding Time Limit. The token-holding time limit can be

checked by a station either before a message is transmitted or after a
message has been transmitted. In a token-passing protocol with a
maximum message size, both types of token-hold time limit checks would
result in calculable actual station token-holding times and therefore
deterministic access delays. However, a before transmission check keeps
the actual maximum station token-holding time lower than an after
transmission check. The only way to achieve this same lower maximum
token-holding time with the after transmission check would be to
artificially restrict the token-holding time limit. This restriction
does not allow the station to fully utilize its token—holding time limit
except when it has the maximum number of maximum size messages ready to
transmit. It is for this reason that both algorithms use a before
transmission check of the token-holding time limit.

In the case of the centralized token-passing protocol, this before

transmission check requires a station to not only check the next message
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token-holding time limit though. If the limit will be exceeded, we

assume the token was passed in the last message transmitted.
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conditions of steady-state, error free operation. These assumptions are

«
made so that the simulation program can focus on modeling the protocols E_—
to determine their performance and the effect the various bus parameters f;_
have upon that performance. ilﬁ

Bus Parameters

The various bus parameters that are adjustable in the simulation

program are listed below. Also included are the choices available when gj’

— Sy
- a parameter has a limited number of values it may take on, for example }ﬁ‘
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the type of message arrival condition a station can have.

- bus environment
bit rate
number of stations
length of the bus
station delay time
signal propagation speed

- protocol
centralized or distributed control
token holding time limit
token passing order
ascending
descending
fixed

~ stations

distance from left end of the bus

type of message arrival condition
deterministic distribution
Poisson distribution
continuous case

message arrival rate

type of message length distribution
deterministic
exponential

message length size or mean

- messages
number of overhead bits
number of bits in token
number of bits in a data word
minimum number of data words in a message
maximum number of data words in a message

Message Arrival Types and Rates. All the stations on the bus may

have the same type of message arrival condition. All the stations may
have the same arrival rate of this condition or they may all have
different rates of this condition. However, if the stations all have
different types of message arrival conditions, all their rates are
assumed to be different and are read in on a individual basis even

though they might be the same.
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Message Length Distribution Types and Means. All the stations on

A
.

the bus may have the same type of message length distribution. All the
stations may have the same mean for this distribution type or they may
all have different means. However, if the stations all have different
types of distributions, all their means are assumed to be different and

are read in on a individual basis even though they might be the same.

Simulation Model Program Design

The structure chart method was used as an aid in the design of the
simulation model program. The structure charts are shown in Figure 10,
A goal of modularity was strived for in the design of the software so
changes or added functions could easily be incorporated. The following
paragraphs describe each main module of the program.

Module 0.0. This is the executive module for the program. It is
decomposed into three modules that implement the functions of the three
sections described earlier.

Module 1.0. This module implements the functions of the setup
section, It accomplishes this by calling five other modules. The bus
data configuration input is divided into two modules. The first module,
bus_data_ input, reads in all general bus configuration data. The second
module, station_data input, reads in the specific data about each
station., An example of the modularity of the program is shown in the
Node 1.0 structure chart of Figure 10, The calculate arrival and length
(calc_arr_and_len) module performs the basic calculations to generate a
new message and assign it an arrival time and length. This module can

be called by any other module for any station when a new message is
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Module 2.0. This module implements the functions of the simulation
section. It is decomposed into two modules, one for distributed, and
one for centralized token-passing protocols. During a particular
execution of the simulation model program, only one of these two
protocols can be simulated. Each protocol module can call on six other
modules to update data statistics variables, generate a new message
arrival, or remove a message that has been transmitted, as it performs
the simulation. This is shown in the Node 2.X structure chart of Figure
10. Not all of the six modules might be called for a particular
station. For example, 1f the station had continuous type message
arrivals, message delays would not apply to the station. Therefore, the
message delay statistics would not be calculated or updated and thus the
update message delay statistics module (update_delay stats) would not be
called.

Module 3.0. This module implements the functions of the summary
section of the program. Module 3.0, statistics, performs the
calculations and printing of access delays and message statistics for
each station as well as a summary. It calls upon the two other modules
to calculate and print message delays (Module 3.2), and token cycles,

througnput, and efficiency (Module 3.1).

Implementation

The simulation model program was designed to be run on the
sponsor's Digital Equipment Corporation VAX 11/782 computer running the
VAX/VMS Version 4.2 operating system, The simulation model was coded in
the Pascal language. Only standardized Pascal language constructs were

used so that the program could be transported to other computer systems
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with a minimum of changes and or problems. However, a Digital supplied
uniformly distributed random number generator run time library function
was used to generate random numbers for the message arrival and length

distribution calculations.

The program was designed to be executed in a batch mode. This was
done to avoid lengthy delays for the user when long simulations were
being run. A users manual for the simulation model program is contained
in Appendix A. Also included is an example of the program’s output.

The simulation model program software is contained in Appendix B.

Execution. A user submits the simulation model program for
execution in the batch mode by invoking a command file. This command
file contains the program execution instruction and also includes the
data needed by the program to set up the bus configuration to be tested.
The command file is created by the user, separately from the program,
using a text editor. Thus, the user has the option of selecting an
existing bus configuration by using an existing command file, or

defining a new configuration by creating and using a new command file.

Representation

The three main parts of a bus local area network that are
represented by the simulation model program are the bus, messages and
stations,

Bus. The bus is simply represented as an entity that transmits
bits at a certain rate with no errors. The propagation delay of signals
as they move along the bus is modeled. The speed of light is multiplied

by an adjustable propagation factor to determine a signal propagation
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LORN rate and associated time delay.

Megsages. Messages are represented as entities that move through
the bus local area network. The message attributes include its source
station's address, size, and arrival time. The messages are implemented
as Pascal records with the message attributes as fields within that
record. The form of the message record is shown below.

message_type = record
source_add : integer ;
length : real ;
arr_time : real ;
end ;

Stations. The bus stations are represented as entities that are
part of the local area network. The station attributes include:

station address
passing address
message arrival type
message arrival rate
\J! distance from start of bus
message length distribution type
message length distribution mean
token passing propagation time to next station
time of last bus access
message queue

The stations are implemented as Pascal records with the station
attributes as flelds within that record. The form of the station record
is shown below. The station's message queue is represented using a
single linked 1list.

station_type = record
address : integer ;
pass_address : integer ;
mess_arr type : arrival ;

mess_arr_rate : real ;
distance : real

5
mess_len type : length distribd ;
- mess_len _mean : real ;
ot pass_prop_time : real ;

49




last_access : real ;

- ;i front_mess_queue : message ptr ;
: rear_mess_queue ! message_ptr ;
. end ;
'
o Performance Parameters
y
The following paragraphs describe how the various performance
; parameters are calculated by the simulation model program.
- Access Delay. Access delay is calculated when a station has just

received the token. It is the difference between the current time and

the time when it last received the token.

Message Delay. Message delays are calculated if a station's

- message arrival distribution is poisson or comstant with a non-zero :
arrival rate. The delay for a particular message is calculated just f ?
after it has been transmitted. The delay includes the time the message f?“j

h \d‘. has been waiting to be transmitted (queueing time), and the time its

-
"

takes to be transmitted (Bux, 1981:158). é;i

Normalized Delay. The normalized delay is the mean message delay §E§

for all messages divided by the mean message length transmission time ?E:

) (Bux, 1981:169). i
LI

: Token—-Passing Cycle. A token passing cycle is the amount of time ;&;j
? it takes for the token to be passed through all the stations on the bus. [;j
Throughput. Throughput is the number of data bits transmitted ;;i,

during one token-passing cycle (Rahimi and Jelatis, 1983:800). It is %E&

; calculated at the end of every token-passing cycle. These throughputs L;E

are then averaged and a mean throughput is printed as part of the

summary statistics,
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Efficiency. Efficiency is the number of data bits transmitted, fuz,
T )
divided by the total number of bits (data and overhead) transmitted bl
during one token-passing cycle (Ludvigson and Milton, 1985:127). ::i
o y
(38
Efficiency is calculated at the end of every token passing cycle and a ;t

mean efficiency 1s printed at the end of the program as part of the

summary statistics. e
w7
Summary ?F;
Simulation allows experiments to be conducted on real and non- Eg¥
existing systems to help answer performance and operation questions. A ?fﬁ
=
discrete event simulation is being used in this thesis to explore the =l
-
performance of an avionics token-passing bus. An overall simulation AT
model program incorporating token-passing simulation algorithms, E;f
simulation control, and performance calculations was designed and ?f;
implemented in the Pascal language. o
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IV. Test Results

This chapter presents the results of testing accomplished to
validate the simulation model program. The results of tests using a
fighter-type aircraft bus configuration with the centralized token-
passing protocol are also presented to illustrate how the different bus
design factors affect this protocol's performance. Finally, a
comparison test of the distributed and centralized protocols using the

fighter-type bus configuration is presented.

Validation

Validation of the simulation model program was accomplished through
a number of different tests. These tests were designed to selectively
test a certain aspect of the program.

First Validation Test. The first validation test was designed to

test the continuous type of message arrival condition using the
distributed token-passing algorithm. This was carried out using a
simple bus configuration which is shown in Figure 11, This first
validation test is based on a distributed token-passing protocol
validation and evaluation done by Rahimi and Jelatis for the IEEE 802.4
Protocol (Rahimi and Jelatis, 1983:800-801). There are six stations
spaced evenly on a 500 meter long bus. All six stations have messages
to send and they always have messages available. The message size is
fixed at two different lengths, 864 data bits or 16224 data bits. There
are 160 bits of overhead in a message and the token is also 160 bits in
length. The token is passed in ascending station address order,

starting with station one. A bit rate of 10 Mb/s and a station delay
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time of 0.8 microseconds are used.

The condition of a station always having messages available to send
is modeled by a continuous message arrival condition. The token-holding
time was adjusted so the stations could only send 1, 2, 4, 8, or 16 of
the shorter messages and 1 or 2 of the longer messages.

In order to validate their simulation model, Rahimi and Jelatis
constructed simple test cases for which they could develop relatively
simple formulas for the token-passing cycle time or token walk time, and
throughput (Rahimi and Jelatis, 1983:800). The formulas were then used
to produce analytic values for throughput which were compared to the
values produced by their simulation model. They first defined the

token-passing overhead time per station:

P=0+S+0D (1)
where :”55
¥ B [
0 = time to transmit the token message = 16 microseconds ﬁ?‘j
S = station delay time = 0.8 microseconds :Sﬂf
D = mean token-passing propagation delay time = 0.6667 microseconds :jji
h
B
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The formula for the token walk time is then s
i .
. o
o where e
l N = number of stations on the network = 6 k.
. f,'-'.

M = number of stations with data to transmit

~
[]

maximum number of messages a station can transmit

R

i F

total message length including data and overhead in bits

i R = bit rate = 10 megabits/second 5:3;
o The formula for throughput is ij:f
. w R

where E;'“

T

L = number of data bits in a message
The results of this validation test using the simulation model

program along with Rahimi and Jelatis' analytic and simulation results o

are shown in Table II. Each row of Table II represents one run of the RIS

simulation model program. Comparing the results, it is seen that this

thesis simulation model program's results are in closer agreement with ?731

Rahimi and Jelatis' analytic results than their own simulation results.

The probable reason for this is their more detailed simulation model.
Also, they give no description of how throughput was calculated in their n:¥‘
simulation model. Based upon the close simularity between the

simulation model program's results and Rahimi and Jelatis' results, this

first validation test was successful.
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Table II

First Validation Test Results

Rl Suit Al N Sk NS R R S AR A S i Sy g hap o A il hen

T 4T T
-“' Lt
h LN

Ez Throughput (Mb/s)

e Number of Message

e messages size Rahimi/Jelatis Simulation

i sent (bits) Model

- analytic simulation Program

1 1024 7.20 7.10 7.21

: 2 1024 7.77 7.70 7.77
4 1024 8.09 7.89 8.09
8 1024 8.26 8.18 8.26
16 1024 8.35 8.26 8.35
1 16384 9.80 9.63 9.80
2 16384 9.80 9.80 9.85

Second Validation Test.

The second validation test was designed to

test a case in which the message load is not evenly distributed among
the stations. This test utilized both the deterministic distribution
and continuous case message arrival conditions. The test was carried
out using the same bus configuration as the first validation test.
However, in this test, only one of the six stations has messages to send

and it always has messages available. This second validation test is

again based on a distributed token-passing protocol validation and
evaluation done by Rahimi and Jelatis for the IEEE 802.4 Protocol
(Rahimi and Jelatis, 1983:800-801). Equations (1), (2), and (3)

presented in the first validation test paragraph also apply to this

validation test.
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Table III

Second Validation Test Results

Throughput (Mb/s)
Number of Message

messages size Rahimi/Jelatis Simulation

sent (bits) Model

analytic simulation Program

1 1024 4,17 4,05 4.17

2 1024 5.58 5.45 5.58

4 1024 6.71 6.59 6.72

8 1024 7.48 7.34 7.48

16 1024 7.93 7.85 7.93

32 1024 8.18 8.07 8.18

1 16384 9.30 9.13 9.31

2 16384 9.60 9.13 9.60

The station that always has messages available to send is modeled
by a continuous message arrival condition. The other stations with no
messages are modeled by a deterministic distribution message arrival
condition with an arrival rate of zero. The token-holding time is

ad justed so that a station may send 1, 2, 4, 8, 16, or 32 of the shorter

messages and 1 or 2 of the longer messages. The results for the test
using the simulation model program along with Rahimi and Jelatis'

analytic and simulation results are shown in Table III. Due to the

-,

close agreement between the simulation model program's results and R
NSRS

Rahimi and Jelatis' results, this second validation test was successful. }};ﬂ
O

Third Validation Test. The third validation test is similar to the ;:;q
Lamare,

first except it is conducted using the centralized token-passing RO
56 o
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Ry Table IV
o RS
A LAt
Third Validation Test Results 3
- Throughput (Mb/s) Efficlency o
- Number Message tﬁ:
N of size S
messages (bits) analy. sim. analy. sim, E'
bt sent e
- 2
- 1 1024 8.32 8.32 .8438 .8438 f;f
9 et
4 1024 8.41 8.41 .8438 .8438 S
protocol. The test was designed to check the continuous message arrival i‘
condition and uses the bus configuration shown in Figure 1l. All the ij;
other bus parameters are the same. However, only a data message length RN
of 864 bits and just two different token—holding time limits are used. j:ff
The two token-holding time limits allow the stations to send one or four ﬁj"'

messages. The results of this validation test using the simulation X

model are shown with the analytical results in Table IV. This

validation test was successful based upon the consistent results between
the analytical calculations and the simulation program's values.

Fourth Validation Test. The fourth validation test is similar to

the second except it is conducted using the centralized token-passing

protocol. The test was designed to check the deterministic distribution :

message arrival condition with an arrival rate of zero and uses the bus ‘ X
configuration shown in Figure 11, All the other bus parameters are the ;t;‘
same. However, only one data message length of 864 bits and just two ??:
different token-holding time limits are used. The two token—holding fi;;
time limits allow the stations to send one or four messages. The ;%:

results of this validation test using the simulation model are shown

57
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Table V o
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Fourth Validation Test Results iil

A

b_:‘\

Throughput (Mb/s) Efficiency N

Number Message e

of size N
messages (bits) analy. sim. analy. sim.

sent B

1 1024 4.52 4.52 L4737 L4737 =

4 1024 6.93 6.93 .7059 .7059 =l

E-;

along with the analytical results in Table V. Comparing the results ;

indicates total agreement between the analytical calculations and the :{

simulation program's results., This validation test was successful. ?T?

Fifth Validation Test. The fifth validation test was designed to ﬁf

test the Poisson distribution message arrival condition using the -:t

N

distributed token-passing algorithm. This validation test is based on E?

evaluations of token-passing methods conducted by Cherukuri, Li, and ::3

o

Louis (Cherukuri et al, 1982:68). The bus configuration used for this
test is shown in Figure 12. There are 50 stations spaced evenly along a
2000 meter bus. The message arrival rate is the same for all the

stations. The message size is fixed at a constant length of 1000 data

s K

bits. There are 96 bits of overhead in a message and the token message %*
is 96 bits long also. The token is passed in ascending station order ié
starting with station number one. A bit rate of 10 Mb/s and a station ;:
delay time of 2 microseconds are used for the test. The token-holding %j
time limit was fixed at 120 microseconds, which allowed the stations to ii
transmit one message per access, ;;
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Messages arrive at the stations according to a Poisson
distribution. All stations have an identical mean arrival rate. This

mean arrival rate was varied between 30 and 300 messages/second and a

number of runs were made using the simulation model program. The
results of these runs are compared to Cherukuri's results in Figure 13.
The figure shows the normalized delay (mean message delay relative to
the mean message transmission time) plotted against the throughput rate
relative to the bit rate. Based upon the good agreement between the
simulation program's results and Cherukuri's results, this validation
test was successful,

Sixth Validation Test. The sixth validation test was designed to

test the exponential distribution of message lengths. This validation
test is based on a distributed token-passing analysis and simulation
study conducted by Ulug (Ulug, 1984). Ulug found that when stations
were limited to transmitting only one message per token-holding turn,
there was little variation in the mean token-passing cycle time when
using fixed message lengths or exponentially distributed message lengths

with the same mean (Ulug, 1984:39).




g4

L i SR ATl Y

A

Cherukuri et al

simulation

I [ I I
i W
I 4 THU S| !‘w 4 4t 1| (4

AR et T
T I
il THHHIH
I

60

50

40

30
20

LeTaq poziTeBWLAON

Throughput

Bit Rate

Fifth Validation Test Results

Figure 13.

60




et -~ Fahs

il

.........

......

Table VI

Sixth Validation Test Results

mean token-
total passing standard
token-~ message cycle time deviation
passing length (milliseconds)
time distri-
(micro bution Simulation Simulation
seconds) type Ulug Model Ulug Model
Program Program
75.0 fixed 6.411 6.412 0.782 0.000802
125.0 fixed 10.575 10.152 0.854 0.000901
175.0 fixed 14,795 13.694 0.871 0.000798
75.0 exp. 6.252 6.308 1.219 0.001052
125.0 exp. 10.668 10.062 1.339 0.001201
175.0 exp. 14.707 13.493 1.467 0.001151

The bus configuration used for this validation test consisted of
fifty stations spaced evenly on the bus. Ulug does not indicate the
length of the bus but rather specifies a total token-passing time which
includes token transmission time, token propagation time, and the
station delay time. Three different values are used for this total
token-passing time; 75 microseconds, 125 microseconds, and 175 micro-
seconds. A message is 864 bits in length. The message overhead is 160
bits and the token is also 160 bits in length. A 5 megabit/second bit
rate is used.

The results of this test using the simulation model program and

Ulug's results are shown in Table VI. The difference between the
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simulation model program's mean token-passing cycle times and Ulug's
times exists because he did not state at what message arrival rate
(load) his tests were run. Also, a decimal point error must have been
made in his calculation of the standard deviations. However, when
comparing the values in Table VI, a general consistency for the mean
token-passing cycle times and standard deviations between Ulug's results
and the simulation model program's results can be seen. This validation
test was considered successful.

Validation Tests Summary. All the validation tests were

successful. Since no other simulation or analytical results exist for
the cases of Poisson type arrivals and exponentiallv distributed message
lengths using the centralized token-passing protocol, a comparison check
between the distributed and centralized software was done. These
checks, along with the knowledge that the same support procedures
(calc_arr_and_len for example) are called by both protocol algorithms,
added to the confidence that the centralized protocol algorithm was also
working correctly. These validation tests and checks show that the
simulation program successfully models a bus local area network using a

distributed or centralized token-passing protocol.

Alrcraft Test Case

Initial performance tests of the centralized token-passing bus
protocol while varying some of the bus design factors were conducted
using the simulation model program. The bus configuration tested was
representative of an avionics local area network for a fighter-type
aircraft. The aircraft size information is based on the dimensions of

the F-15 aircraft and the basic bus configuration was suggested by Alber
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Cockpit Tail
Bus —> 13 meters
Left Wing 1
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Figure l4. Fighter-Type Aircraft Bus Configuration

(Alber, 1985). The bus was 60 meters in length and had 30 stations
connected to it. The stations were positioned on the bus corresponding
to where avionics would normally be located. These locations included
the cockpit area, an equipment bay aft of the cockpit, both wing areas
and the tail section. The stations were divided evenly among these five
areas, six stations to an area. The bus configuration is shown in
Figure 14. The bus starts at the cockpit (distance 0.0 meters), goes to
the left wing, then to the right wing and ends at the tail (distance
60.0 meters). The bus length is greater than the physical dimensions of
the aircraft because the actual routing distances through the aircraft
for the bus cable are taken into account.

Details of the bus configuration are as follows. There are 70 bits
of overhead in a message and the token message is 22 bits in length. A
data word consists of 16 bits. There can be a minimum of zero data
words and a maximum of 256 data words in a message. A bit rate of 50

megabits/second is used and the station delay time is 0.5 microseconds.
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The stations are allowed to hold the token for a maximum of 83.32
microseconds, which is the time it would take to transmit a message with
the maximum number of data words in it (256). The token-passing cycle
starts with station number one and the token is passed in ascending
order based upon the station’s address. The Poisson distribution type
of message arrival condition is used and messages have exponentially
distributed lengths. In order to keep the message size within the
minimum and maximum limits, the initial length generated is checked by
the simulation program to make sure it is greater than or equal to the
minimum length and less than or equal to the maximum length. If the
message length is outside these limits, its value is changed to
whichever limit it exceeded.

First Test Case. The first test case for this fighter-type

aircraft bus configuration was a comparison of equal and unequal station
message arrival rates. For unequal message arrival rates, the stations
were divided into three classes: low, medium, and high. These classes
had a message arrival rate ratio of 1/5/50. This condition of unequal
message arrival rates was used to simulate the different data output or
data update rates that avionics have or require. For example, mission
or fire control computers produce and/or require high rates of data
messages per second in order to accomplish their functions with the

level of accuracy needed for modern milfitary aircraft. The stations’

addresses, location on the bus, distance from the left end of the bus, gfj?
and message arrival class are shown in Table VII. 5&3

For the equal message arrival rate simulation, all the stations had ;ﬁﬁ
the same mean message arrival rate. This mean message arrival rate was f:%
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- Table VII

;fﬁl Alrcraft Test Case Station Data

4
X Station Location Distance Message Arrival
N (meters) Class
. 1 Cockpit 2.0 Low
" 2 Cockpit 2.5 Medium
3 Cockpit 3.0 High
X 4 Cockpit 3.5 High
- 5 Cockpit 4.0 Medium
. 6 Cockpit 4.5 Low
7 Equip. Bay 5.0 Low
8 Equip. Bay 6.0 Medium
9 Equip. Bay 7.0 High
.. 10 Equip. Bay 8.0 High
N 11 Equip. Bay 9.0 Medium
- 12 Equip. Bay 10.0 Low
. 13 Left Wing 13.0 Low
N 14 Left Wing 14.0 Medium
4 15 Left Wing 15.0 High
i 16 Left Wing 16.0 High
- 17 Left Wing 17.0 Medium
. 18 Left Wing 18.0 Low
. 19 Right Wing 28.0 Low
= e 20 Right Wing 29.0 Medium
‘!L 21 Right Wing 30.0 High
o 22 Right Wing 31.0 High
- 23 Right Wing 32.0 Medium
\: 24 Right Wing 33.0 Low
a 25 Tail 55.0 Low
i 26 Tail 56.0 Medium
' 27 Tail 57.0 High
- 28 Tail 58.0 High
o 29 Tail 59.0 Medium
- 30 Tail 60.0 Low

varied from 300 messages per second to 3500 messages per second. For
the unequal message arrival rate simulation, all stations in a class had

the same mean message arrival rate. However, the mean rates were

.- different among the three classes. The mean message arrival rates were

varied from 10 to 2000 messages per second for the Low class, 50 to

., 'r v

10,000 for the Medium class, and 500 to 100,000 for the High class.




Both message arrival rate simulations used exponentially distributed
messages lengths with a mean of 64 data words. The results of these
simulations are shown in Figure 15 as normalized delay-throughput
curves.

From the results, it can be seen that the unequal arrival rate case
has smaller delays for medium load (throughput/bit rate) values. At low
load values, both the equal and unequal arrival rate conditions delays
are very similar; while at very high load values, the unequal rate
condition has higher delays. This difference in delay values indicates
the assumption of equal mean message arrival rates for stations can lead
to pessimistic delay values.

The command files used to provide the bus configuration data to the
simulation model program for this test case and the other following test
cases are contained in Appendix C.

Second Test Case. The second test case for the fighter-type

aircraft bus configuration was a comparison of different mean message
lengths. Simulations were done with mean message lengths of 32 data
words, 64 data words and 128 data words. All three simulations used the

unequal station message arrival rate condition from the first test case

with the same mean arrival rates, The results of this second test case
are shown in Figure 16 as normalized delay-throughput curves.

From the test case results, it can be seen that a larger mean
message size results in higher throughputs for the same amount of delay.
This improvement in performance can be explained by comparing two
networks with different mean message lengths. The network with a larger

mean message size will be transmitting a larger number of data bits for
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1-2-3-4-5-6-7-8-9-10-11-12-13~14~ ., . . . . 28-29-30-1
optimum token-passing sequence
1-30-2-29-3-28-4-27-5-26-6-25~7- . . . . . 14-17-15-16~1

worst-case token—passing sequence

Figure 17. Token-Passing Sequences

the same number of bus accesses. Rahimi and Jelatis also noted higher
throughput and efficiency values for longer message lengths (Rahimi and
Jelatis, 1983:801).

Third Test Case. The third test case for this fighter-type

aircraft bus configuration was a comparison of optimum and worst-case
token-passing sequences. An optimum token-passing sequence, where the
token is passed to adjacent stations, was compared to a worst-case
sequence. In the worst—-case sequence, the token is passed to the
farthest unvisited station (Cherukuri et al, 1982:59). These sequences
are shown in Figure 17, For these simulations, an exponential message
length distribution with a mean of 64 data words was used. The unequal
station message arrival rate condition was used with the same mean
arrival rates as in the previous test cases. The results of these
simulations are shown in Figure 18 as normalized delay-throughput
curves.

From the test case results, it can be seen that there is not a
significant performance difference between the two token-~passing
sequences. It is known that propagation delays due to station

separation and bus length effect the performance of bus networks (Stuck,
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1983a:75-76). However, in the case of the avionics bus configuration
simulated in this test case, the token-passing sequence does not effect
the performance of the bus because of the small distances involved and
the high bit rate. Since most avionics buses will be short in length,
the performance degradation due to propagation delays will not be a
significant factor.

Fourth Test Case. The fourth test case using the fighter-type

aircraft bus configuration was a comparison of different bit rates.

. O D .
. .

. . e
5 ISP RS Ny Tl

Simulations were performed with bit rates of 25 megabits/second, 40

megabits/second and 50 megabits/second. All three simulations used the

L1 g
.
Al

unequal station message arrival rate condition from the first test case

with the same mean arrival rates. The results of this test are shown in o
Figure 19 as normalized delay-throughput curves. i-:
The test case results indicate no large differences in the i;;:
normalized delay-throughput/bit rate ratio curves for the three Ei:?
different bit rates. However, when the non-normalized mean message ;%ﬁ
DG
delays shown in Table VIII are compared, the delays at 25 Mbits/second E:-i
1

are approximately twice as long as the delays at 50 Mbits/second and the

delays at a bit rate of 40 Mbits/second are approximately a third longer
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than at 50 Mbits/second.

Fifth Test Case. The fifth test case using the centralized comtrol j;iﬁ
protocol in a fighter-type aircraft bus configuration involved varying :;f?
the maximum message size. Operation of the centralized control protocol t;:

~
was simulated with a maximum message size of 256 data words, 1024 data ;Ei
words, and 4096 data words. A maximum message length of 256 data words ;i;i
P

was chosen for one of the test cases because this is the size limit used

—_——
‘
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Table VIII

Fourth Test Case Mean Message Delays

Mean Message Delay
mean arrival (milliseconds)
rate
(messages/second) 25 Mbits/sec 40 Mbits/sec 50 Mbits/sec

186.6 0.080 0.049 0.040
373.3 0.103 0.057 0.045
560.0 0.132 0.066 0.051
746.6 0.167 0.076 0.056
1120.0 0.249 0.104 0.074
1866.0 0.393 0.177 0.117
2240.0 0.428 0.200 0.135
3733.3 0.565 0.286 0.203

18666.0 0.967 0.540 0.408

37333.3 1.114 0.644 0.497

in the Systems Engineering Avionics Facility centralized protocol. A
maximum message length of 4096 data words was chosen for this test
because this is the size 1imit used in both the SAE and Avionics
Laboratory distributed protocols. A mean message length of 64 data
words was used for thls test case. This test used the unequal station
message arrival rate condition from the first test case with the same
mean arrival rates. The results of this test are shown in Figure 20 as
normalized delay~-throughput curves.

From the test case results, it can be seen that the normalized
delay-throughput curves are very similar for the different maximum

message lengths. Also, there are no major differences in the mean
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- Qf’5 message delays. Two conditions are likely to have contributed to this
lack of variation in performance parameters for this test case. The

. first is that the same value for the mean message length (64 data words)

was used for all three maximum message length simulations. The second

condition is that the same message arrival rates were also used for all

e . .
-~ o

e A

A’ 3,

three simulations. The simulations with the smaller maximum message

3

lengths (256 and 1024 data words) actually should have had slightly

v
i..

.. higher message arrival rates. This would be necessary because multiple

messages would be required using those protocols to transfer the same
amount of data as could be transferred with one message of 4096 data
5 words using the third protocol.

Sixth Test Case. The sixth test case examined the effect of a

different type of message arrival distribution on the centralized
protocol in the fighter-type aircraft bus configuration. A
deterministic distribution message arrival condition was compared to a
Poisson distribution condition. The unequal station message arrival
condition from the first test case with the same mean arrival rates was
i? used in this test. The deterministic distribution used the same mean
message arrival rates used for the Poisson distribution. The results of
this test are shown in Figure 21 as normalized delay-throughput curves.
Having messages arrive according to a Poisson distribution is the

normally assumed condition in queueing systems analyses, as this type of

arrival condition successfully models the random arrival of messages in

o real systems (Tanenbaum, 1981:58). In current MIL~STD-1553 avionics bus :jii

L systems, information is usually updated at a bus station at a g;i*

deterministic rate. This is done because the bus controller follows a
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defined timing cycle in requesting and providing data to the stations

due to the constraints of its hardware and software components (Boeing,

1980:5-3). However, with a token-passing protocol for a new avionics

v . -
DA
n:.l'n'o
. » .
LS
! o 7

network, this practice could still be used but would no longer be

.—'l'. ;’A"'
XA

necessary. From the test case results shown in Figure 21, it can be
seen that no significant differences exist between the deterministic and

Poisson arrival distribution delay-throughput curves.

>

ot Mt Nyt

Seventh Test Case. The seventh test case compares the distributed

control and the centralized control protocols using the fighter-type bus

configuration. The centralized coamtrol protocol used for this test is

E ;>
b
-
£
"
(ﬂ--
f_:

the same one used for all the previous tests. It is based on the
protocol proposed by the Systems Engineering Avionics Facility. The
distributed control protocol tested is based upon the IEEE 802.4
protocol. Although the IEEE protocol has a maximum bit rate of 10
megabits/second, a bit rate of 50 megabits/second 1s used in the
distributed control protocol for this test in order to obtain a more
realistic comparison. A 50 megabits/second bit rate might be obtained
with the IEEE protocol if fiber optics were used as the media. The
results of this comparison test are shown in Figure 22 as normalized

delay~throughput curves.

The results show that the distributed control protocol's normalized

delay~throughput/bit rate ratio curve is shifted up and to the left of

SN SO Ry

the centralized protocol's curve. This means that for the same
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throughput value, the distributed protocol has a higher message delay

time than the centralized protocol. From the other aspect, for the same
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delay value, the distributed protocol has a lower throughput rate than
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5 - the centralized protocol. This poorer performance of the distributed e
o protocol results from its separate token message and larger number of AN

overhead bits in a data message as compared to the centralized protocol.

7

However, as discussed in the next chapter, the distributed protocol may
still be preferred in practice for other reasons in spite of its poorer

delay~-throughput performance.

Summar

The simulation model program developed by this thesis was validated
through a series of tests. These tests allowed the operation and
performance of the simulation model program to be compared to published
or analytical operation and performance results. Initial tests were
conducted using the centralized token-passing protocol in a fighter-type
aircraft avionics bus configuration to determine the different bus
design factors' influence on the protocol's performance. A comparison
test between the distributed control and centralized control protocols

was also conducted.
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A V. Summary and Recommendations

This chapter summarizes the testing conducted in Chapter IV and
includes a discussion of how the testing results relate to an avionics
network environment. A summary of this thesis is then presented along

with recommendations for future studies.

Summary of Test Results

The validation and initial performance/parameter variation tests

from Chapter IV are summarized and discussed in the following

paragraphs.
i; Validation Tests. Validation of the simulation model was conducted

Ji in stages with each stage adding a protocol characteristic to the model.

As each characteristic was added, the complexity of the model increased.
The bus and protocol parameters for many of the tests, especially for
the distributed control protocol, were designed to duplicate testing
conducted by other investigators and reported in the literature. Thus,
the simulation model program's results could be and were compared to
published results. In the case of the centralized control protocol

where no previous work existed, the test results were compared to

analytical results for the simple test cases. The only check that could
be accomplished for the more complicated test cases, was a software
cross—check of the centralized control protocol algorithm with the

distributed control protocol algorithm. The successful outcome of all

the validation tests indicates the ability of the simulation program to fbgﬂ

model a token-passing protocol bus network. f}?;
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- Parameter Variation/Performance Tests. The parameter

D

variation/performance tests were conducted to determine the effect of
the different bus and protocol parameters on the performance of the
centralized control protocol. A comparison test between the centralized
and distributed protocols was also conducted.

Message Arrival Conditions. The various avionic equipment on

a network all have different information transfer requirements based
upon their function. These information transfer requirements can be
translated into messages sizes and transmission rates which are usually

different for each station. This results in a condition of numerous

unequal station message arrival rates. This message arrival condition
could be modeled by the simulation model program since it allows all

stations to have different message arrival rates.

Bit Rate Variation. When the bit rate was varied in the

Fourth Test Case, no large differences were noted in the normalized
delay-throughput curves for the three rates. However, when the non~
normalized mean message delays were compared, there were differences. "k
The non-normalized mean message delays at 25 megabits/second were more
than twice as long as the delays at 50 megabits/second. This comparison
raises the question of whether throughput or message delay is the most
important performance parameter in an avionics network. In most cases,
message delay 1is considered the most important parameter because of the
real-time nature of an avionics network. A station, as part of the
aircraft's avionics system, requires information to perform its
function. Since the aircraft and the environment around it are changing

at a rapid rate, information can become "0ld" and thus worthless very
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quickly because the information represents an condition of the aircraft
or its environment that no longer exists. Thus, limits on mean and
worst case message delays are required to make sure the information is
received by a station before the information becomes o0ld and useless.

For some avionics, small message delays are not as critical due to
the function the avionics are performing or the type of information
being processed. In this case, message delays are not as important and
network tradeoffs can be made. For example, a lower bit rate could be
used reducing the complexity and the cost of the bus and station
hardware components.

Although the 25 megabits/second bit rate is exactly half of the 50
megabit/second bit rate, the delays for the 25 megabit/second bit rate
were more than twice the 50 megabit/second delays. The reason for this
difference 1is a slightly different total number of messages
transmitted/total number of station accesses ratio and a slightly
different actual mean message length for each bit rate simulation.

Protocol Comparison. In the Seventh Test Case, the

centralized control protocol had a better normalized delay-throughput
curve than the distributed control protocol. However, from an overall
avionics network system viewpoint, additional factors besides delay-
throughput performance must be considered. While the distributed
protocol does have more overhead bits in a message, these bits allow
more bus operation options. These options include more addresses which
allow additional stations on the bus, and more subaddresses for groups
of stations. Also with the distributed control protocol, control of

the network is shared equally by all stations. This avoids problems of

82 152:'.

-------------------
...........
-----




single points of failure that the centralized control protocol has with
its one scheduler station, or one scheduler station and one backup
scheduler station. Finally, since the IEEE 802.4 protocol is a widely-
accepted standardized protocol, a network using it could benefit in a
number of possible ways. These benefits might include having multiple
sources of proven low-cost station hardware components available for use
and a large base of user experience to draw upon.

The IEEE 802.4 protocol is not, however, completely problem free.
The biggest difficulty associated with the protocol is its complexity.
This complexity is derived from all the bus control functions that must
be implemented by all the stations that make up a network. These
functions include initiating a token-passing sequence, recovering from
fault conditions caused by lost or multiple tokens, and allowing

stations to enter or exit the token-passing sequence (Myers, 1982:36).

Thesis Summary

This thesis developed and validated a model for simulating bus
token-passing protocols for avionics applications. The purpose of the
simulation model was to explore the effect of the different bus and
protocol parameters on the performance of the bus. Two separate
protocols were modeled, that of a protocol with distributed control and
a protocol with centralized control. The model was developed as part of
an overall simulation program which included simulation control, data
collection, and data analysis functions. The simulation model program
was written In the Pascal computer programming language. A series of
tests were conducted using the simulation model program to validate its

operation and modeling capabilities. The validation tests were
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successful. Initial performance tests under varying bus and protocol
design parameter conditions were conducted for the centralized token-
passing protocol using the simulation model program. Finally, the
performance of the centralized control and distributed control protocols
were compared.

The simulation model program developed by this thesis provides an

analysis capability for the centralized control protocol where none
existed before. Due to the large number of bus and protocol parameters
that can be varied, the simulation model program provides a capability
for detailed analysis of the performance of a protocol in a variety of
network configurations and environments. Also, since the simulation
model program is modular in design and construction, additional protocol
characteristics can be added if a more detailed modeling capability is
needed or as more characteristics become known as the definitions for

the next-generation avionics network protocol are refined.

Recommendations

Four recommendations concerning the simulation model program are
presented and discussed in the following paragraphs.

First Recommendation. The testing donme in Chapter IV using the

centralized token-passing protocol algorithm was not meant to be a
comprehensive test of the performance of this protocol. It was meant to
demonstrate the capabilities of the simulation model program and explore
basic performance questions concerning the centralized token-passing
protocol. Thus, the first recommendation would be to continue the
performance testing of the centralized token-passing protocol. An

example of additional tests that could be accomplished would be testing
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the protocol with a standard network message scenario being developed

U

[

under the Avionics Laboratory contract (Klass, 1985:169). The scenario !%;
is meant to realistically define the number of stations and their ggg
message loads for an advanced fighter avionics network. g?%
Second Recommendation. The second recommendation is to use the i?ﬁ
simulation model program to explore the performance of other token- ;;?
passing protocols. This would include the protocols being considered E;i
for use in the next-generation avionics local area network and the IEEE %?‘
802.4 protocol in an avionics configuration. The IEEE protocol is ;zfa
included in this recommendation because of the large-scale interest, ?E;
previous studies, and current work involving this standardized protocol. i
Third Recommendation. The third recommendation involves an EZ;
improvement to the simulation model program. This recommendation would 2
\' involve changing the bus and station data input method to a more LJ
interactive type of user interface. This would involve changing the Eii:
building of the command file, which executes the program, from an off- L
line to an interactive "question and answer" type interface. This would F;;
relieve the user from many of the details concerning the formatting of ;i&
the bus configuration and station data. EE&
Fourth Recommendation. The fourth recommendation concerns an i;f
addition to the protocol algorithms. It is recommended that the ;;;
capability for message and/or station priorities be added to the ;n?
protocol algorithms. The capability for message and station priorities L

is important because it allows time-critical messages to be transmitted e
with low delays without undue performance degradation for other messages

or stations. The priority option 1is especially important in real-time
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5 environments such as avionics networks. For example, a message priority %
- :
ii capability could be obtained in the simulation model program by adding E
fL additional message queues (linked lists) in the record representation of ﬁ
'f a station. Each additional message queue would represent lower priority ?
.

messages. Also, an additional field would have to be added to the 0

record representation of a message to indicate the message's priority. ;

Summar .

The validation and initial performance tests conducted using the E

simulation model program were summarized and discussed in relatiom to -

the avionics network environment. The thesis was summarized and _i

£

recommendations made for the improvement of the simulation program and E

additional study efforts. The validated simulatioc. model program
developed by this thesis can be a tool for further token-passing

protocol performance testing and evaluation.

[ iraked
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Appendix A. User's Guide

This appendix is the simulation model program user's guide. How

- the program is executed is discussed first. This is followed by an

explanation of the format for the input data and definitions of the

input data variables.

}' Program Execution

‘ The simulation model program is executed in a batch mode. It is ?.-

S r,.
S S
OO

submitted for execution by using the “submit” command. The format of

 J the subnit command is: i ;
il submit/log=[] file name ;$:
%: There are various other options of the submit command and the user Eég%
3 should consult the various Digital Equipment Corporation reference é&ﬁ

»

Tt .
AP
et
A
|l-'l'v .

At 2l

manuals, such as the VAX/VMS Command Language User's Guide and the
Programming in VAX-11 Pascal Manual for more detailed information. The
"log=[]" qualifier names the program's output file the same name as

"file name"” but with a ".log” extension and places it in the current

default directory. The file named by "file name" is a command file that
contains the program execution statement and the input data needed by :-&h
the simulation model program. The file named by "file name” should have ;Tﬁ
a ".com” extension. This command file is created using a text editor

such as Digital Equipment Corporationm's EDT.

=

Command File :%:?
The command file has three parts consisting of the program fif;
execution statement, the bus data input lines, and the station data r =
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input lines. These three parts will be described in the following

paragraphs.

Program Execution Statement. The first line in the command file is

. P

. o

y always the program execution statement. This statement is shown below. ;:f:

. 0w

- $ run  disk$user:[spieth.bus]bussim E?
This statement instructs the VAX/VMS operating system to run the file g?:d

P

"bussim™ in the directory “spieth.bus” on the "user”™ disk. The file

.

!- "bussim” contains the main Pascal module of the simulation model
program. The initial dollar sign must be included in the statement. SR

Bus Data Input Lines. The data for the bus configuration that is

to be simulated is passed to the simulation model program by including ;;i;
the data in the command file. The data follows the program execution :%:J
statement in the command file. The format of the bus data input lines E;ﬁ
are shown below. The description includes the name of the variable, the Ei:

actual name used in the program, what type the variable is, and an
explanation of the meaning of the variable., The line numbers listed are
for reference only and are not part of the command file. The lower case

letters after the line number refer to the order of the variables on the

A St AR
[LNL U TSN

line. On line 3, for example, the variable description labeled 3a would

be first on the line followed by 3b and 3c, etc. Blank spaces between

the variables on the same line are ignored by the program.

Lt T 4
o * .o
o . . P
. oo,
. VPR

e
PR
o
+

For real type variables, a digit must be listed both before and

SR

after the decimal point (0.5 instead of .5). When the explanation for a i*:f
variable states that it is not currently implemented in the program, or ??i
it is not used based upon a certain condition, a value still has to be Eié'
included in the data for this variable in order to avoid execution errors. ;h:
-

)
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:

e

Line Number Variable Name Type f§$
2a, random number generator seed seed integer -,

This is the seed for the Digital Equipment Corporation random o

number generator which is used in generating arrival times for Poisson t ‘

arrivals and message lengths for exponential distributions. §$
W)

3a. number of stations num_stations integer N
E.-

This is the total number of stations on the bus. N

3b. first station first_station integer ii?
This is the address of the station that the simulation program ;:

should begin the token-passing cycles with. It 1is currently not ; e

implemented in the program. The program begins the token-passing cycle IS
s

with the station whose data is listed first in the station data part of :
the input data. .

3c. bit rate bit_rate real oa

The rate at which the bits are transmitted in bits/second.

4a, propagation factor prop_factor real .
A value less than one that is multiplied times the speed of light e s

to give a bus signal propagation speed. Typically this factor is R
0.6667. RN
AN

4b. length of the bus bus_length real :“::
LG

The length of the bus in meters. o

4c. station delay time stat_delay real :t?:
The amount of time (in seconds) it takes a station to start :%T
transmitting either a data or token message once it has received the ,;:

token.
5a. type of bus control bus_control enumerated

The type of control, either distributed (distrib) or centralized }ig
(central), used in the token—-passing protocol. Enumerated type uj:d
variables can not be read in or printed out. Therefore, for input, a O " |
is meant to be distributed type control and a 1 to be centralized type Ffﬁ
control. e
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Line Number Variable Name Type

5b. direction of token passing token_pass enumerated

Defines in what order or direction the token is passed based upon
the stations' addresses. There are three types; ascending (ascen),
descending (descen), and fixed (fixed). For input; O equals ascen, 1
equals descen, and 2 equals fixed. This variable is not implemented in
the program at this time.

5c. type of token-holding limit token_hold type enumerated

Defines if the token~holding limit is a time value (time) or a
limit in terms of number of messages (num) that can be transmitted.

53d. token holding limit token_hold limit real

The length of time a station may transmit messages (in seconds) or
the number of messages a station can transmit during one token-holding
turn.

6a. same/different arrival type station arr enumerated

Defines if all the stations have the same type of arrival
condition. There are two choices, same (same) or different (diff).
For input; O equals same, and 1 equals different.

6b. arrival type station_arr_type enumerated

If the stations all have the same type of arrival condition, this
variable defines which type it is. There are three choices, arrivals
according to: a deterministic distribution (constant_arr), a Poisson
distribution (Poisson), or a continuous case (contin). For input; O
equals deterministic, 1 equals Poisson, and 2 equals continuous. This
variable is not used when the stations have different types of arrival
conditions; that is, when the station_arr variable equals diff.

6c. same/different arrival rate station_rate enumerated

Defines 1f all the stations have the same arrival rate. There are
two choices: same (same) or different (diff). For input, O equals same,
and 1 equals different. This variable is not used when the stations
have different types of arrival conditions; that is, when the
station_arr variable equals diff.

6d. arrival rate station_arr_rate real

This variable represents the arrival rate of messages to a station
(messages/second). This variable 1s only used if the stations all have
the same type of arrival condition with the same rate; that is, both the
station_arr and station rate variables must be equal to same.
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7a. same/different length distribution station len enumerated

Defines if all the stations have the same type of message length
distribution. There are two choices, same (same) or different (diff).
For input; O equals same and 1 equals different.

7b. length distribution type station_len type enumerated

If the stations all have the same type of message length
distribution, this variable defines which type it is. There are two
choices, deterministic (constant_len) or exponential (exp). For input;
0 equals deterministic and 1 equals exponential. This variable is not
used when the stations have different types of message length
distributions; that is, when the station_len variable equals different
(diff).

7c. same/different length mean station_mean enumerated

Defines if all the stations have the same mean message length.
There are two choices: same (same) or different (diff). For input, O
equals same and 1 equals different. This variable is not used when the
stations have different types of message length distributions; that is,
when the station_len variable equals different (diff).
7d. length mean station_len mean real

The mean message length in data words. This variable is only used
if the stations all have the same type of message length distribution
with the same mean message length; that is, both the station len and
station mean variables must be equal to same. Note: when the message
length distribution is of the deterministic type, the mean represents
the size of the message.
8a. number of bits in token token_bits real

The number of bits in the token message.

8b. number of overhead bits in a message overhead bits real

The number of header and trailer bits (overhead) in a message.
Includes everything but the data bits.

8c. number of bits in one data word bits_per_ data word real
The number of bits in ome data word.

9a. minimum number of data words min _data words real
Defines the minimum number of data words allowed to be sent in a

message. Usually would be zero or one.
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9b. maximum number of data words max data words real

Defines the maximum number of data words allowed to be sent in a

n message.
o 10. simulation stop time sim_stop_time real
< The value of the simulation clock when the simulation should be

stopped. The simulation clock starts at value 0.0.

L)
A

11. calculate token passing propagation delay times flag
calc_pass_prop_time boolean

ST

¢
[}

“v...l
Y

Determines if the token-passing propagation time delays should be
calculated or read in.

Station Data Input Lines. Depending on a station's type of arrival

>
L
E.s
PIRTEN
- a

condition and type of message length distribution, from one to three

lines of data may need to be read in to completely describe a station.

Lines XX, YY, and ZZ define the data that is on these lines. At the

:g minimum, there would be one line of data for each station. At the

. ‘h!v maximum, three lines of data could be used for each station. The first
station listed is the station the simulation model program will begin
the token-passing cycle with. The rest of the stations are then listed

in the order they are passed the token.

:? Line Number Variable Name Type
XXa. station address (pointer) “.attrib.address integer

The station's address.
XXb. passing address (pointer)-.attrib.pass_address integer

The address of the ctation that the current station passes the .
token to, P
XXc. distance (pointer) “.attrib.distance real -]

The distance from the left starting point of the bus to the current

_".'!

station in meters. Only used if the calculate token-passing propagation ;i}

n .= delay times flag is true (1). A value needs to be listed in either f"{
: case, «.::-_.:

- T
el
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Line Number Variable Name Type

XXd. token-passing propagation delay time
(pointer) “.attrib.pass_prop_time real

The time (in seconds) it takes the token to propagate from the
current station to the next station. Only used if the calculate token-
passing propagation delay times flag is false (0). Values only need to
be listed when the flag is false.

YYa. station arrival rate (pointer)” .attrib.mess_arr_rate real

The particular station's message arrival rate. This line of data
is needed only if the stations all have the same type of message arrival
condition but different arrival rates. That is, the station_arr
variable would be equal to same (same) and the station_rate variable
would be equal to different (diff).

OR
YYa. station arrival type (pointer) “.attrib.mess_arr type enumerated
YYb. station arrival rate (pointer) “.attrib.mess_arr_rate real

The particular station's type of message arrival condition and
the arrival rate. This line of data is needed only if the stations all
have different types of message arrival conditions. That 1is, the
station_arr variable would be equal to different (diff).

Z2a. station message length mean
(pointer)”.attrib.mess_len mean real

The particular station's mean message length., This line of data is
needed only if the stations all have the same type of message length
distribution but different means. That is, the station len variable is
equal to same (same) and the station_mean variable is equal to different
(diff).

OR

ZZa, station message length distribution
(pointer)“.attrib.mess_len type enumerated

ZZb. station message length mean
(pointer)“.attrib.mess_len mean real

The particular station's type of message length distribution and
its mean. This line of data is needed only if the stations all have
different types of message length distributions. That is, the
station_len variable is equal to different (diff).
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- Sample Output. :::,
: V.
. ! Second Test Case Mean Message Length = 32 Data Words .'
$ run disk$user:[spieth.bus]bussim !'_
& select bus configuration module O
- 868 LT
= 30 1 50.0e6 RN
- 0.666666666 60.0 0.5e-6 ::-:.1
v 1 2 0 83.32e-6
0 1 1 400.0
0 1 0 32.0 s
22.0 70.0 16.0
0.0 256.0 e
0.6 o
station data input module - -
1 -
1 2 2.0 o
- 40.0 '.:‘.-::: '
X 2 3 2.5 e
3 200.0 R
[« 3 4 3.0 R
2000.0 b
4 5 3.5 L
2000.0 s
5 6 4,0 ::._::.
. 200.0 v'::\'
- 6 7 4.5 g
\9 40.0 L
7 8 5.0 S
40.0
8 9 6.0 R
200.0 F-
9 10 7.0 ~
2000.0
10 11 8.0
2000.0
11 12 9.0
200.0
12 13 10.0 -
40.0 e
13 14 13.0 ST
40,0 T
14 15 14.0 R
200 . 0 :i:\::q
15 16 15.0 b1
2000.0 ont
16 17 16.0 Tt
2000.0 e
17 18 17.0
200.0 ".-:'_Z;iw
- 18 19 18.0
R 40.0 [‘*j
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CERL ..
b
,

L
s

)
.

b - 19 20 28.0
L 40.0
PENENE 20 21 29.0
200.0
21 22 30.0
2000.0
22 23 31.0
2000.0
23 24 32.0
200.0
24 25 33.0
40.0
25 26 55.0
40.0
26 27 56.0
200.0
27 28 57.0
2000.0
28 29 58.0
2000.0
29 30 59.0
200.0
30 1 60.0
40.0
calc first arr and len module
init stats module
1 2.50000E~-09
2 2.50000E-09
3 2.50000E-09
4 2.50000E-09
5 2.50000E-09
6 2.50000E-09
7 5.00000E~-09
8 5.00000E-09
9 5.00000E-09
10 5.00000E-09
11 5.00000E-09
12 1.50000E-08
13 5.00000E-09
14 5.00000E-09
15 5.00000E-09
16 5.00000E~09
17 5.00000E-09
18 5.00000E~-08
19 5.00000E-09
20 5.00000E-09
21 5.00000E~09
22 5.00000E-09
23 5.00000E-09
24 1.10000E-07
25 5.00000E~09
26 5.00000E-09
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s ‘u{} 27 5.00000E-09
SN 28 5.00000E-09
29 5.00000E-09
30 2.90000E-07
gsimulation control module entered
centralized algorithm procedure called

S
4
- . 4
-
;.
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Station
Address

WO W =

Number
of
access

16009.0
16009.0
16009.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0
16008.0

Average
access
delay
(seconds)

3.74811E-05
3.74811E-05
3.74811E-05
3.74817E-05
3.74818E-05
3.74818E-05
3.74818E-05
3.74818E-05
3.74818E-05
3.74817E~05
3.74817E-05
3.74817E-05
3.74817E-05
3.74817E-05
3.74817E-05
3.74812E-05
3.74812E-05
3.74812E-05
3.74812E~05
3.74812E-05
3.74812E-05
3.74812E-05
3.74812E-05
3.74812E-05
3.74812E-05
3.74812E-05
3.74812E-05
3.74812E-05
3.74812E~05
3.74812E-05

Minimum
access
delay
(seconds)

2.72989E-05
2.72989E-05
2.72989E-05
2.72989E-05
2.72989E-05
2.72989E-05
2.72989E-05
2.72989E-05
2.72989E-05
2.72989E-05
.72989E-05
.72989E-05
.72989E-05
.72989E-05
.72989E-05
.72989E-05
.72989E-05
.72989E-05
.72989E-05
.72989E-05
.72989E-05
.72989E-05
.72989E-05
.72989E-05
.72989E~05
.72989E-05
.72989E-05
.72989E-05
.7298SE-05
.72989E-05

RN RNPNNPODOPRPDRNRDNRNNDNDRRODNNDNNDNDN
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Maximum
access
delay
(seconds)

1.93834E-04
1.93834E-04
1.93834E-04
1.93834E-04
1.98632E-04
1.98632E-04
1.98632E-04
1.98632E-04
1.98632E-04
1.79127E-04
1.77890E-04
1.77890E-04
1.77890E-04
1.77890E-04
1.77890E-04
1.82033E-04
1.87766E-04
1.87766E-04
1.87766E-04
1.87766E-04
1.91659E-04
1.82986E-04
1.78799E-04
1.78799E-04
1.78799E-04
1.78799E-04
1.78799E-04
1.93834E-04
1.93834E-04
1.93834E-04




Station
Address
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[ Total

- number
of

accesses

480243.0

Number
of Average Minimum Maximum
data message message message
mess. length length length
sent ( in bits and including overhead )
23.0 583.39 70.00 2422,00
129.0 537.10 70.00 3366.00
1145.0 607.89 70.00 3622.00
1161.0 580.83 70.00 3766.00
117.0 559.16 70.00 2646.00
21.0 596.48 86.00 1350.00
31.0 520.06 70.00 1782.00
117.0 590.48 70.00 1894.00
1098.0 580.35 70.00 4134.00
1120.0 568.33 70.00 3302.00
119.0 657.03 70.00 2262.00
20.0 624.40 86.00 1990.00
28.0 631.71 86.00 1718.00
128.0 624.25 70.00 2294.00
1155.0 565.63 70.00 3382.00
1164.0 569.78 70.00 3238.00
129.0 617.97 70.00 3382.00
18.0 614.00 150.00 1798.00
25.0 498.80 86.00 1926.00
116.0 666.14 86.00 2694.00
1128.0 559.97 70.00 4166.00
1098.0 577.32 70.00 3174.00
129.0 596.39 70.00 3798.00
28.0 490.00 86.00 1382.00
27.0 592.07 70.00 2374.00
131.0 548.17 86.00 2102.00
1072.0 579.55 70.00 3222.00
1051.0 551.61 70.00 3990.00
125.0 534.51 70.00 2230.00
22.0 479.45 102.00 1462.00
Total Total Total
average number average
access of message
delay messages length
(seconds) (bits)
3.74814E-05 12675.0 575.75
98
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N Average Minimum Maximum
. Station message message message
" Address delay delay delay

! (seconds) (seconds) (seconds)
& 1 3.861E~05 4 .381E~-06 1.300E-04
X 2 3.539E-05 4 ,739E-06 1.363E-04
. 3 3.250E-05 2.176E-~06 1.520E-04
. 4 3.276E-05 1.580E-06 1.665E-04
5 3.020E-05 2.384E-06 1.123E-04

6 3.161E-05 1.189E-05 7.206E-05

7 3.589E-05 7.298E-06 7.908E-05

8 3.349E-05 3.368E~06 9.684E~05

9 3.271E-05 2.369E~06 1.357E-04

10 3.256E-05 2,086E~06 1.381E~04

11 3.390E-05 3.397E~06 9.298E-05

12 3.622E-05 1.433E-05 7.147E-05

13 3.171E-05 3.383E-06 7.702E-05

14 3.167E-05 2,831E~06 8.844E-05

15 3.203E-05 2,213E-06 1.444E-04

9 16 3.261E-05 2,325E~06 1.379E-04
= 17 3.411E-05 2,369E~-06 1.098E-04
18 3.377E~-05 8.017E-06 7.111E-05

- 19 3.586E-05 5.729E-06 9.835E-05
- 20 3.669E-05 4.709E~-06 1.895E-04
. . 21 3.196E-05 2.116E~-06 1.073E-04
\'!' 22 3.253E-05 2.444E~06 1.782E~-04

o~ 23 3.439E-05 3.636E-06 1.066E-04
- 24 2.603E-05 5.305E-06 4 .649E-05
- 25 3.159E-05 5.648E~06 9.596E-05
26 2.870E-05 3.368E-06 7.364E-05

- 27 3.290E-05 2.176E-06 1.148E-04
28 3.175E-05 2.265E-06 1,274E-04

- 29 3.083E-05 3.487E-06 9.008E-05
30 3.705E-05 1.283E-05 8.708E-05

Total average message delay was: 3.25021E-05 seconds

The normalized delay is: 3.21323  (without overhead)

The normalized delay is: 2.82257 (with overhead)
:;‘.: -'-\'l' ! .
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v Total number of complete
N token-passing cycles was 16008.00

The mean token-passing cycle time is  3,74811E-05 seconds Igfi
[
The mean throughput was 7.199736 megabits/second -

With a bit rate of 50.0000 megabits/second a::ﬂ
the ratio of throughput to the bit rate is: 0.143995 Cou

The mean efficlency was 0.211945 e

SPIETH job terminated at 10-0CT-1985 17:53:11.35

Accounting information: A
Buffered 1/0 count: 53 Peak working set size: 367 Rt
Direct I/0 count: 70 Peak page file size: 469 T
Page faults: 482 Mounted volumes: 0 el
Charged CPU time: 0 00:00:58.62 Elapsed time: 0 00:01:01.78 ’si}
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Appendix B. Simulation Model Program Software R

This appendix contains the Pascal software for the simulation model
program. The modules that make up the software are grouped according to
function and placed into seven files for ease of editing and
configuration control. Six of the files are then "included” in the
seventh file, using the VAX/VMS operating system Zinclude directive, to

make the complete program. The Zinclude directives are in the

declaration section of the main Pascal module in the file bussim.pas.

The modules and what file they are contained in are listed below. Q;j
Except for the bussim.pas file which is listed first, the other files E?;’
are listed in their "included” order. The modules within a file are e
listed in their compilation order. The software follows this listing. .
File Name Module Name Module Number Kfr:
- bussim.pas 3§32

main 0.0 e
- declar.pas

constant, type, and variable declarations -

- queue.pas -

pop 2
out_front_queue 2.1,
in_rear_queue 2.1.4.1 -

- stats.pas S
min 2.1.1.1

max 2.1.1.2 e

sum_delay 3.2 o

sum_ thruput 3.1 i

statistics 3.0 S

=
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File Name

-~
IT' ¥

- update.pas

- setup.pas

- simulate.pas

Module Name

update_access_stats
update message stats
update_delay stats
update_thruput_stats

mth$random
bus_data_input
station_data input
calc_arr_and len
calc_first_arr_and len
init stats
calc_token prop delays
sel bus_setup

calc_next_arr_and len
dist_algor

cent_algor

simulate

Module Number
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DATE: 23 Sep 1985
VERSION: 1.3

(

*

*

*

*

* TITLE: bus simulation

* FILENAME: bussim.pas

* COORDINATOR: Jim Spieth

* PROJECT: Avionics Bus Simulation Model

* OPERATING SYSTEM: VAX/VMS, Version 4.2 on VAX-11/782
* LANGUAGE: Pascal

* USE: main pascal program

* CONTENTS: bussim

* FUNCTION: simulate token-passing bus

*

S~ N % X F * % ¥ % X F % F* * *
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DATE: 23 Sep 1985
VERSION: 1.3

NAME: bussim (main)
MODULE NUMBER: 5.0
DESCRIPTION: main, executive module for bussim program
PASSED VARIABLES: none
RETURNS: none
GLOBAL VARIABLES USED: none
GLOBAL VARIABLES CHANGED: sim clock num cycle
total cyc_time total thruput total eff

FILES READ: none
FILES WRITTEN: none
MODULES CALLED: sel_bus_setup

simulate

statistics
CALLING MODULES: none

AUTHOR: Jim Spieth

HISTORY: 1.3 23 Sep 85 added total cyc_time
1.2 18 Sep 85 added update.pas include file
1.1 24 Aug 85 added global thruput variables
1.0 19 Aug 85 original

dkkdeshidkhikhdkdhikhkhhihkrkhikkhihihhkkhkkhkhikikhkhihikhikhkkkikik)

program bussim(input, output) ;

% % % % % B % ¥ ¥ B X X F X ¥ % ¥ N F * F X * ¥
* % % % % % ¥ % ¥ ¥ ¥ % F F X % ¥ H X % F ¥ * *

Zinclude ‘'declar.pas'
Zinclude 'queue.pas'
Zinclude 'stats.pas'
%Zinclude ‘'update.pas'
Zinclude ‘'setup.pas'
%include ‘'simulate.pas'

begin
sim clock := 0.
num_cycle := 0
total thruput :
total eff := 0.0 ;
total cyc_time := 0.0 ;

sel bus_setup ;

simulate ;

statistics ;
end.
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ﬁif. (****************************************************************

DATE: 24 Sep 1985
VERSION: 1.6

FILENAME: declar.pas
COORDINATOR: Jim Spieth

LANGUAGE: Pascal

% % % N ¥ ¥ F W X ¥ ¥ ¥ F* ¥

TITLE: declarations for program bussim

PROJECT: Avionics Bus Simulation Model
OPERATING SYSTEM: VAX/VMS, Version 4.2 on VAX-11/782

USE: Zinclude file in program bussim
CONTENTS: constant, type and var
FUNCTION: contain all declarations for program bussim

¥ W N N N H NN N F ¥ * ¥ F

****************************************************************)

const speed light = 3.0e8 ;
type
choice = (same, diff) ;

stats_type = record

num_access :
sum_access :
min_access :
max_access :
num messages

stats_ptr = "stats ;

stats = record
data
next

stats_type
stats_ptr ;

message type = record
source_add

arr_time :

message_ptr = “message ;

sum mess_len :
min mess_len :
max mess_. “len :
sum mess delay
min_pess_ﬁelay
max mess_delay
end ; (* of record *)

address : integer
real
real
real
real

we we wa we ws

real
real
real
real

: real
: real
¢ real

end ; (* of record *)

arrival = (constant_arr, poisson, contin) ;
length distrib = (constant_len, exp) ;
control = (distrib, central) ;
token _pass type = (ascen, descen, fixed) ;
token_hold limit_type = (time, num) ;

“e we we we

“e we we

integer ;

length : real ;

real ;
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end ; (* of record *)
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.- message = record E::
ORI info : message type ; b
o TR - », o R

Y T next message : message ptr Wt

end ; (* of record *)

~oag

NS

station ptr = “station ; N
station type = record !}3
address : integer ; oy

pass_address : integer ;

mess_arr_type : arrival ;

mess_arr_rate : real ;
distance : real ; ol
mess_len type : length distrib ; {.:j.
mess_len mean : real ; :-_'.\:'_

pass_prop_time : real ; .

last_access : real ; !

front_mess_queue : message_ptr ;

rear_mess_queue : message ptr ;
end ; (* of record ¥*)
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station = record
attrib : station_type ;
next_station : station ptr
end ; (* of record *)

var
front_station, current_station : station ptr ;
front_stats, current_stats ¢ stats_ptr ;
bit_rate, prop_factor,
sig prop, sig_delay,
bus_length, stat_delay,
overhead bits, token bits, .
bits_per_data word, token hold limit, e
min_data words, max data words, S
sim clock, sim stop_time, '.‘_-‘_'.',-
total thruput, total eff, e
total cyc_time, num_cycle,
station_arr_rate, station len mean : real ; SRS
first station, num stations, seed : integer ; ;
L
station_arr, station_ rate,
station_len, station_mean : choice ; 3
station_arr_type : arrival ; K
station_len_type : length distrib ; )
bus_control : control ; O
token_pass : token_pass_type ; e
token_hold_type : token_hold_limit_type ; 4
calc_pass_prop_time : boolean ; :'7:1
"y
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(****************************************************************
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

****************************************************************)

DATE: 18 Aug 1985
VERSION: 1.0

TITLE: queue (linked list) related procedures
FILENAME: queue.pas
COORDINATOR: Jim Spieth
PROJECT: Avionics Bus Simulation Model
OPERATING SYSTEM: VAX/VMS, Version 4 on VAX-11/782
LANGUAGE: Pascal
USE: Zinclude file for bussim program
CONTENTS: pop
out_front_ queue
in_rear_ queue
FUNCTION: procedures for queue (linked list) operations

# N N ¥ N N N N N N N ¥ ¥ F* ¥ *

(****************************************************************

DATE: 18 Aug 1985
VERSION: 1.0

NAME: pop

MODULE NUMBER: 2.1.5.1

DESCRIPTION: removes first message in queue (linked list)
PASSED VARIABLES: 1list - pointer to front of list
RETURNS: list

GLOBAL VARIABLES USED: none

GLOBAL VARIABLES CHANGED: none

FILES READ: none

FILES WRITTEN: none

MODULES CALLED: none

CALLING MODULES: out_front_queue

AUTHOR: Jim Spieth
HISTORY: Adapted from Dale and Orshalick, 1983:443

B % % % ¥ X % % % % F % F * F F * ¥ *
* % ¥ ¥ B X X X A N B ¥ X X N * F F F

hRKAKIAKRIKKKKKIRKIRKKRRKARKKIAIAARKARAIERARRXRR KRR KKRKRAKARAA AR )
procedure pop(var list : message ptr ) ;

var ptr : message_ptr ;
begin
ptr := list ;
list := list”.next_message ;

dispose(ptr)
end ;

107




AL AT AN T i A S N L A A i e b PP g age it CANE A S 2 AR AR Jiatr e AR A MM e S -t i SN S o i DA AR AR LAd Ae see i oee o

kkkhkhhkhkkhhhkhhhkdkhhhhkhkkkhkhhkhhkhkkhhkhhkhhkhhkhhkhdkhkkhhkhhkkkhkkhhkhhhkrk

DATE: 18 Aug 1985
VERSION: 1.0

(

*

*

*

*

* NAME: out_front_ queue

* MODULE NUMBER: 2.1.5

* DESCRIPTION: removes message from front of queue (linked
* list) and checks for empty queue

* PASSED VARIABLES: front - pointer to front of list

* rear - pointer to rear of list
* RETURNS: front, rear
* GLOBAL VARIABLES USED: none
* GLOBAL VARIABLES CHANGED: none
* FILES READ: none
* FILES WRITTEN: none
* MODULES CALLED: pop
* CALLING MODULES: dist_algor
*

*

*

*

AUTHOR: Jim Spieth
HISTORY: Adapted from Dale and Orshalick, 1983:454

% % % N ¥ X ¥ N ¥ ¥ ¥ X N N N N F ¥ X N

Akkkhkkhkhdkhhhhhdkhhkhihhkkikkhkhkdkdhhkhhkkhkhkkhkhrhkhhhhhkkkkrik)
procedure out_front_queue(var front, rear : message ptr ) ;

begin

] \e if (front = nil)
. then writeln('queue is empty')
: else
» begin
o pop( front ) ;
= if (front = nil)
l then rear := nil
end
end ;
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***********‘k****************************************************)

procedure in_rear_queue( var front, rear : message ptr ;
var one_mess : message_type ) ;

DATE: 18 Aug 1985
VERSION: 1.0

NAME: in_rear_queue

MODULE NUMBER: 2.1.4.1

DESCRIPTION: inserts element at rear of queue
PASSED VARIABLES: front, rear, element
RETURNS: front, rear

GLOBAL VARIABLES USED: none

GLOBAL VARIABLES CHANGED: none

FILES READ: nomne

FILES WRITTEN: none

MODULES CALLED: none

CALLING MODULES: calc_next_arr_and_len

AUTHOR: Jim Spieth
HISTORY: Adapted from Dale and Orshalick, 1983:454

* % % % B % X X X ¥ ¥ ¥ X X F % X F *

var
ptr : message_ptt H

begin
new(ptr) ;
ptr-.info := one_mess ;
ptr”.next message := nil ;
if rear = nil
then
begin
rear := ptr ;
front := ptr ;
end
else
begin
rear”.next message := ptr ;
rear := ptr ;
end
end ;
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DATE: 24 Sep 1985
VERSION: 1.7

TITLE: statistics
FILENAME: stats.pas
COORDINATOR: Jim Spieth
PROJECT: Avionics Bus Simulation Model
OPERATING SYSTEM: VAX/VMS, Version 4.2 on VAX-11/782
LANGUAGE: Pascal
USE: Zinclude file for bussim program
CONTENTS: min

max

sum delay

sum_thruput

statistics
FUNCTION: perform statistics operations

T w0, 4
PP *.

LK

OXich
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DATE: 18 Aug 1985
VERSION: 1.0

NAME: min (function)

MODULE NUMBER: 2.1.1.1

DESCRIPTION: picks minimum of two real numbers

PASSED VARIABLES: reall and real2

RETURNS: mimimum of the two

GLOBAL VARIABLES USED: none

GLOBAL VARIABLES CHANGED: none

FILES READ: none

FILES WRITTEN: none

MODULES CALLED: none

CALLING MODULES: update_access_stats
update message_stats
update delay stats

AUTHOR: Jim Spieth

HISTORY:

% % % % F % ¥ % % ¥ N F N X * N N ¥ X *
* % % % % % X N F N X ¥ H F * X F * F* *

****************************************************************) e 1
function min (reall, real2 : real ) : real ;

begin RO
1f reall > real2 Q}t
then min := real2 e

else min := reall o,

end ; 3 .‘4
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(****************************************************************

DATE: 18 Aug 1985
VERSION: 1.0

NAME: max (function)

MODULE NUMBER: 2.1.1.2

DESCRIPTION: picks maximum of two reals

PASSED VARIABLES: reall, real2

RETURNS: maximum of the two

GLOBAL VARIABLES USED: none

GLOBAL VARIABLES CHANGED: none

FILES READ: none

FILES WRITTEN: none

MODULES CALLED: none

CALLING MODULES: update_access_stats
update message_ stats
update_delay stats

AUTHOR: Jim Spieth

HISTORY:

}a?vrvmn
e reetele

L JARY

.‘.'.'f'/A'.I" ’

.
.

% % % % % % % N N Ok OF X N X % % F * ¥ %
B X ¥ F % % % O H B ¥ X ¥ ¥ N % * ¥ * ¥

e e e L))
function max (reall, real2 : real ) : real ;

begin
if reall > real2
then max := reall
else max := real2
end ;
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(****************************************************************

DATE: 18 Sep 1985
VERSION: 1.1

NAME: sum_delay

MODULE NUMBER: 3.2

DESCRIPTION: calculates and prints message delay values

PASSED VARIABLES: none

RETURNS: nothing

GLOBAL VARIABLES USED: num_stations, front_stats
front_station, bit_rate

GLOBAL VARIABLES CHANGED: current_stats current_station

FILES READ: none

FILES WRITTEN: none

MODULES CALLED: none

CALLING MODULES: statistics

AUTHOR: Jim Spieth

HISTORY:
1.1 18 Sep 85 added 2nd form of normalized delay
1.0 30 Aug 85 original

% % N X R F N % % ¥ X N N ¥ F X X * F * X ®
* % % % % N F B X K F ¥ % OF F X H X ¥ * * *

R s e e e e P e e T T e P LT S T )
procedure sum_delay(total num mess, total ave mess_len : real) ;

. var
\O h, one, yes : integer ;

total sum delay, ave delay,
total ave, full delay ratio, delay ratio : real ;

begin
one := 0 ;
total sum_delay := 0.0 ;
current_stats := front_stats ;
current_station := front_station ;
case station arr of
same : case station arr type of
constant_arr : case station rate of
diff : yes :=1 ;
same : if station_arr_rate = 0.0
then yes := 0
else yes := 1
end ; (* of case *)
poisson : yes := 1 ;
contin : yes := 0 ;
end ; (* of case *)
diff : yes := 1 ;
end ; (* of case *)
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" if yes = 1 then
= begin
for h := 1 to num stations do

begin
if current_station”.attrib.mess arr_type <> contin
then
if ((current_station”.attrib.mess_arr_type <> constant_arr) or
(current_station”.attrib.mess_arr_rate <> 0.0 ))

then

begin

if one = 0 then
begin
page ;
writeln(' Average Minimum Maximum') ;
writeln('Station message message message') ;
writeln('Address delay delay delay' ) ;
writeln(' (seconds) (seconds) (seconds)');
writeln ;
end ;

total sum_delay := total sum delay +

current_stats ".data.sum mess delay ;

if current_stats”.data.num messages = 0.0
then ave_delay := 0.0
else ave_delay := current_stats”.data.sum mess_delay /

current_stats”.data.num messages ;

writeln(current_ stats”.data.address:4, ' ',
ave_delay:10, ' ',
current_stats”.data.min_mess_delay:10, ' ',

current_stats”.data.max mess_delay:10 ) ;
one := one + 1 3
current_station := current_station”.next_ station ;
current_stats := current_stats”.next ;
end ;
end ; (* for *)

if one > 0 then

begin

total_ave := total sum delay / total num mess ;

delay ratio := total_ave / ((total ave mess len - overhead bits) /

bit_rate)

full delay ratio := total ave / (total_ ave mess len / bit_rate)

writeln ;

writeln(’'Total average message delay was: ', total_ ave,

writeln ;

writeln('The normalized delay is: ', delay ratio:15:5,
' (without overhead)') ;

writeln ;

writeln('The normalized delay is: ', full delay ratio:15:5,
' (with overhead)') ;

writeln ;

end ;

! second

end ; (* if yes *)
end ;

................................
.............................
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(****************************************************************

DATE: 23 Sep 1985
VERSION: 1.1

*

*

*

*

* NAME: sum_thruput

* MODULE NUMBER: 3.1

* DESCRIPTION: calculates and prints throughput values
* PASSED VARIABLES: none

* RETURNS: ncthing

* GLOBAL VARIABLES USED: num cycle, total thruput
* total_eff, total cyc time
* GLOBAL VARIABLES CHANGED: none

* FILES READ: none

* FILES WRITTEN: none

* MODULES CALLED: none

* CALLING MODULES: statistics

*

*

%

*

*

AUTHOR: Jim Spieth
HISTORY: 1.1 23 Sep 85 added total cyc_time & ave cyc_time
1.0 23 Aug 85 original

* % N B X F B % ¥ ¥ F N F X X F ¥ ¥ F * ¥

kkkkkhkhkkhkdkhkhkhkhkhkhkhkrhhhhhhhhhhhkkkkkikkkhkhkhkhkhkhkhkhkhkhhhhhhhhhhikkhk)
procedure sum_thruput ;

var
ave_thruput, ave_eff, ave cyc_time,
mod_bit rate, thruput ratio : real ;

begin
mod_bit_rate := bit_rate / 1.0eb ;
ave_thruput := (total_thruput / num_cycle) / 1.0eb ;
ave_eff := total eff / num cycle ;
ave_cyc_time := total_cyc_time / num cycle ;
thruput_ratio := ave_thruput / mod bit_rate ;

page ;

writeln('Total number of complete ') ;

writeln(' token-passing cycles was', num _cycle:14:2) ;
writeln ;

writeln('The mean token-passing cycle time is '

! seconds') ;

, ave_cyc_time,

writeln ;
writeln('The mean throughput was', ave_thruput:12:6,
' megabits/second') ;

writeln ;
writeln('With a bit rate of', mod_bit_rate:10:4,' megabits/second');
write (' the ratio of throughput to the bit rate') ;
writeln(' is:', thruput_ratio:12:6) ;
writeln ;
writeln('The mean efficiency was', ave eff:12:6) ;
writeln ;
end ;
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(****************************************************************

DATE: 27 Sep 1985
VERSION: 1.3

NAME: statistics
MODULE NUMBER: 3.0

statist
PASSED VARIABLES: no
RETURNS: nothing
GLOBAL VARIABLES USE

FILES READ: none
FILES WRITTEN: none

CALLING MODULES: bus

AUTHOR: Jim Spieth

HISTORY:
1.3 27 Sep 85
1.2 30 Aug 85
1.1 23 Aug 85
1.0 19 Aug 85

W % O % X % N ¥ % N N ¥ ¥ F X N F X ¥ XF X % X *

DESCRIPTION: calculates and prints station and summary

ics
ne

D: front_stats

GLOBAL VARIABLES CHANGED: current_stats

MODULES CALLED: sum thruput sum_delay

sim (main)

improved headings
added sum_delay call
added sum_thruput call
original

W % X % % X % % X % % X % B % N % N ¥ * ¥ ¥ % %

****************************************************************)

procedure statistics ;

var
i : integer ;

total num access, total_ access,

ave_access,

total num mess, total mess_len,

ave mess len,

total ave access, total ave mess_len ¢ real ;

begin

total num access :
total_access := 0.
ave_access := 0.0 ;
total num mess := 0.0
total mess_len := 0.0
03

0

o

ave _mess len := 0,

totZl_;ve_gccess = 0.0
total_ave mess len :=
page ;
writeln(' Numb
writeln('Station of
writeln('Address acce
writeln('
writeln ;

H
0.0 ;
er Average Minimum
access
ss delay
(seconds) (seconds)

current_stats := front_stats ;

access

Maximum');
access');
delay');
(seconds)');
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current_stats := front_stats ;
for 1 := 1 to num_stations do

total ave access := total access / (total num access - num statioms) ;
total_ave mess_len := total mess len / total num mess ;

writeln(total num access:10:1,

.. DR
R PP R M e S Ve Te e,
A At e e et fad e Y

for 1 := 1 to num _statioms do

begin
total num access := total num access +
current_stats” .data.num access ;
total access := total access + current_stats”.data.sum access ;
ave_access := current_stats".data.sum access /
(current_stats”.data.num access - 1.0 ) ;
writeln(current_stats”.data.address:4,
current_stats”.data.num access:13:1,’

' ',current_stats”.data.min_access,

', current stats”.data.max_access ) ;

', ave_access,

"'::n "
[y 3

current_stats := current_stats”.next ; fs:J

end ; ~od
page ; =
writeln(' Number ') ; g .
writeln(' of Average Minimum Maximum '); O
writeln('Station data message message message '); N
writeln('Address mess. length length length '); NN
writeln(’ sent ( in bits and including overhead ) '); o
vriteln ; R

begin
total num mess := total num mess + current_stats”.data.num messages ;
total mess_len := total mess_len + current_stats”.data.sum mess_len ;

if current_stats”.data.num messages = 0.0
then ave_mess_len := 0.0
else ave_mess_len := current_stats”.data.sum mess len /
current_stats”.data.num messages ;
writeln(current_stats”.data.address:4,
current_stats”.data.num messages:13:1, ave mess len:14:2,
current_stats”.data.min mess_len:14:2,
current_stats”.data.max mess_len:14:2 ) ;
current_stats := current_stats”.next ;
end ;

writeln ; O
writeln ; !
writeln ; S
writeln(' Total Total Total Total ') ; o
writeln(' number average number average ') ; v
writeln(' of access of message ') ; e
writeln(' accesses delay messages length ') ; o
writeln(' (seconds) (bits) ") ; [?%
writeln ; RO

' ', total_ave_access,

total_num mess:12:1, total_ave mess_len:14:2 ) ;

sum_delay(total num mess, total ave mess_len) ; AR
sum thruput ; -
end ; (***% gtatisticg ****) N
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) * DATE: 23 Sep 1985 * I8
*  VERSION: 1.1 *
% * * 5::'
* TITLE: update statistics * e
3 * FILENAME: update.pas * N
= *  COORDINATOR: Jim Spieth * N
* PROJECT: Avionics Bus Simulation Model *
* OPERATING SYSTEM: VAX/VMS, Version 4.2 on VAX-11/782 * o
- *  LANGUAGE: Pascal * T
*  USE: Zinclude file for bussim program * iy
N * CONTENTS: update_access_stats * o
* update_message_stats * e
* update_delay stats * 22
* update_thruput_stats * ':,
) * FUNCTION: perform data collection and updates * .
. * * e
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A * *

. T *  DATE: 31 Aug 1985 *

* VERSION: 1.0 *

¢ * *
- * NAME: update_access_stats *
o * MODULE NUMBER: 2.1.1 *
* DESCRIPTION: updates access delay times for each station *

L * PASSED VARIABLES: time of station's last access *

* RETURNS: time of this access = sim_clock *

N * GLOBAL VARIABLES USED: sim clock current_stats * KLY
- * GLOBAL VARIABLES CHANGED: none * e
N * FILES READ: none * Y
* FILES WRITTEN: none * R
- * MODULES CALLED: min max * e

* CALLING MODULES: dist_algor cent algor * E:_“.
* * AL

- *  AUTHOR: Jim Spieth * A
) *  HISTORY: * e
. * * Ry
- S e T e E e s e e s L L e e 2 L)) L

procedure update_access_stats( var last_access : real ; B

pass_cyc : integer ) ; ol

var T
current_delay : real ; SR
b begin o

- current_stats“.data.num access := current_stats".data.num_access AN
) + 1.0 ; e
= if pass_cyc > 1 o
then

begin
5 current_delay := sim clock - last_access ;
", current_stats”.data.sum access := current_stats”.data.sum access e

N + current_delay ; o
: current_stats “.data.min_access := min( ':-.:',
g current_stats".data.min_access, o

. current_delay ) ; ,

. current_stats “.data.max_access := max(
= current_stats”.data.max_access, o
- current_delay ) ;
end ; . S
- last_access := sim clock ; e

end ; v

‘.:;
- e
»
b, . e el
Tt RSt
e

~
= L7l
e e e e e BERSRS
b e e T T S e L e e e s e T

...... AN el Cala Ol v . (g, o0 W4 shg




Y S o A T S T A T TR e——_- e e T K g - -, - ——— - g “adbe oy

(FARRFAIRKARRKRIRIKAIIRI KKK K I A ARR A KRR ARk Ak dedede Ao dedo e dedede e ek
* *
* DATE: 21 Aug 1985 *
*  VERSION: 1.0 *
* *
* NAME: update message stats *
* MODULE NUMBER: 2.1.2 *
* DESCRIPTION: updates station's message statistics *
* PASSED VARIABLES: message length *
* RETURNS: nothing *
* GLOBAL VARIABLES USED: current_stats *
* GLOBAL VARIABLES CHANGED: none *
* FILES READ: none *
* FILES WRITTEN: none *
* MODULES CALLED: min max *
* CALLING MODULES: dist_algor cent_algor *
* *
* AUTHOR: Jim Spieth *
*  HISTORY: *
* * _
Rkddkkdkhdkh R Rk SRRk kK Ik dk ek kI d Ak e Kk e ) Lol
procedure update message_stats ( mess_len : real ) ;
begin
current_stats".data.num messages := current stats“”.data.num messages

+1.0;
current_stats .data.sum mess_len := current_stats”.data.sum mess_len
+ mess_len ;
current_stats .data.min _mess_len :* min(
current_stats .data.min_mess_len,
mess_len ) ;
current_stats .data.max_mess len := max( :
current_stats .data.max mess len, =
mess_len ) ; e
end ; T
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(****************************************************************

DATE: 30 Aug 1985
VERSION: 1.0

NAME: update_delay stats

MODULE NUMBER: 2.1.3

DESCRIPTION: updates station's message delay statistics
PASSED VARIABLES: message arrival time

RETURNS: nothing

GLOBAL VARIABLES USED: current_stats sim clock
GLOBAL VARIABLES CHANGED: none

FILES READ: none

FILES WRITTEN: none

MODULES CALLED: min max

CALLING MODULES: dist_algor cent_algor

-y
l' .

.
A
DA
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AUTHOR: Jim Spieth
HISTORY:

W % % N % % N N N * N F % ¥ X F * F *
* % ¥ % * % N X X X N F ¥ ¥ X X* X F *

L e e T T e T e T e T T T e L IO
procedure update_delay stats ( arr_time : real ) ;

: var
- delay : real ;

\’ begin

delay := sim clock - arr_time ;
o current_stats”.data.sum mess_delay :=
2 current_stats” .data.sum mess_delay + delay ;
- current_stats’  .data.min mess_delay :=
min(current_stats” .data.min mess_delay, delay ) ;
current_stats” .data.max_mess_delay :=
max(current_stats” .data.max_mess_delay, delay ) ;
end ;
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(****************************************************************

o
.

. ;‘,-."; * *
- * DATE: 23 Sep 1985 *
i *  VERSION: 1.1 * L
B N * l-"::-
- * NAME: update_thruput_stats * mo
T *  MODULE NUMBER: 2.1.6 * R
N * DESCRIPTION: calculates and updates data for throughput * t,‘f
* calculations *
l * PASSED VARIABLES: token-passing cycle time - cyc_time *
* sum of data bits - sum data *
. * sum of overhead bits -~ sum over *
= *  RETURNS: sum_data and sum over set to zero *
o * GLOBAL VARIABLES USED: none *
'.‘ * GLOBAL VARIABLES CHANGED: total thruput total eff *
- * total cyc_time num cycle *
- * FILES READ: none *
* FILES WRITTEN: none *
- * MODULES CALLED: none *
* CALLING MODULES: dist_algor cent_algor *
. . x
§
Q * AUTHOR: Jim Spieth *
. * HISTORY: *
* 1.1 23 Sep 85 added total cyc_time *
* 1.0 23 Aug 85 original *
i * *
. \’ T T T T T T T T,
. procedure update_thruput_stats(cyc_time : real ; var sum data,
l sum over : real ) ;
N var
- eff,
. thruput : real ;
begin

num_cycle := num cycle + 1.0 ;
thruput := sum data / cyc_time ;
. eff := sum data / (sum_data + sum_over) ;
E total thruput := total thruput + thruput ;
- total_eff := total eff + eff ;
total cyc_time := total cyc time + cyc_time ;

sum data := 0.0 ;

. sum_over := 0.0 ;
end ;
O

- e
- \‘...-,.‘
..' \1.\
W ‘.:.\
- (SN
i ‘\f‘_‘i
— o
:,:; 121

o - . . .
s e P A
. AT TR AN
e B A )
2 e AR
a o n e e .




AR, TeT s

. . et )
PPN c'v- PP SRS A AT I, W A I A ..'_‘.-LJ\.L\.&}J\L.AJJ.‘ ‘..n_a\_.

(****************************************************************

DATE: 24 Sep 1985
VERSION: 3.1

TITLE: Setup
FILENAME: setup.pas
COORDINATOR: Jim Spieth
PROJECT: Avionics Bus Simulation Model
OPERATING SYSTEM: VAX/VMS, Version 4.2 on VAX-11/782
LANGUAGE: Pascal
USE: Zinclude file for program bussim
CONTENTS: mth$random
bus_data_input
station data_input
calc_arr_and_len
calc_first_arr_and_len
init_stats
calc_token_prop_delays
sel_bus_setup
FUNCTION: setup modules for bus configuration

N %k % N R % Ok N N X N X B X N K F * X ¥
B ¥ ¥ H N X ¥ ¥ N N ¥ F ¥R R

****************************************************************)

Y3

( hhkhkhkhkhkhkhkhhkhhhkhhkhhkkhkhkhkhkhhkhkhkhkhhkkkhkkhkhhhkhkhhkhkikhhkhhhdkhkhhhhkkk

DATE: 7 Sep 1985
VERSION: 1.0

NAME: mth$random (DEC run-time library function)
MODULE NUMBER: 1.3.1.1

DESCRIPTION: uniform random number generator
PASSED VARIABLES: seed

RETURNS: random number

GLOBAL VARIABLES USED: none

GLOBAL VARIABLES CHANGED: none

FILES READ: none

FILES WRITTEN: none

MODULES CALLED: none

CALLING MODULES: calc_arr_and_len

AUTHOR: Digital Equipment Corp.
HISTORY:

* ¥ B % A ¥ % X N ¥ X % ¥ N X % ¥ *
X H ¥ % % X ¥ B X X ¥ ¥ X ¥ N * NN ®

****************************************************************)

[external,asynchronous] function mth$random (var seed : integer ) e
: real ; extern ; ig&

*y
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I *  DATE: 24 Sep 1985 *
’ *  VERSION: 2.1 *
- * *
- * NAME: bus_data input *
- * MODULE NUMBER: 1.1 *
g * DESCRIPTION: reads in bus attributes (data) *
| *  PASSED VARIABLES: none *
N * RETURNS: nothing *
* GLOBAL VARIABLES USED: none *
* GLOBAL VARIABLES CHANGED: seed num stations first_station*
* bit_rate prop_factor bus length stat_delay *
* bus_control token pass token hold type token hold limit*
l * station_arr station _arr_type station rate station_arr_rate*
* station_len station len_type station mean station_len mean*
' * token_bits overhead bits bits per_data_ word *
- * min data words max data words sim stop_time *
N * FILES READ: input *
* FILES WRITTEN: none *
3 *  MODULES CALLED: none *
= * CALLING MODULES: sel bus_setup *
* *
; * AUTHOR: Jim Spieth *
- *  HISTORY: *
* 2.1 24 sep 85 added token hold type *
. \Q bd 2,0 26 Aug 85 added enumerated reads and cases *
- * 1.0 20 Aug 85 original *
. * *

****************************************************************)
procedure bus_data_ input ;

. var k, 1, m : integer ;

begin
readln(seed) ;
readln(num_stations, first statiom, bit_rate ) ;
readln(prop_factor, bus_length, stat_delay ) ;

readln(k, 1, m, token_hold limit ) ;

g case k of
- 0 : bus_control := distrib ; :.-':‘_:}
1 : bus_control := central ; R
- end ; (* case *) ROy
= case 1 of
! 0 : token_pass := ascen ; '.,_1
i 1 : token_pass := descen ; BN
- 2 : token_pass := fixed ; '_.-.\‘.-j
end ; (* of case *) NS
N case m of Ly
‘ 0 : token hold_type := time ; F-
R 1 : token hold type := num ; e

end ; (* of case *) ::.:'_-‘.:
. :\‘-:.:1
S
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readln(k, 1, m, station_arr_rate ) ;
e case k of
- 0 : station_arr := same ;

1 : station_arr := diff ; c.
end ; (* of case %) oY
case 1 of t' "

0 : station_arr_type := constant_arr ; :S' ‘

1 : station_arr_type := poisson ; \

2 : station_arr type := contin ; BAR
end ; (* of case *) E .
case m of o

0 : station_rate := same ; o

1 : station_rate := diff ;
end ; (* of case *)
readln(k, 1, m, station_len mean ) ; o
case k of L

0 : station_len := same ;

1 : station len := diff ; e
end ; (* of case *) S
case 1 of T

0 : station_len type := constant_len ; -

1 : station_len type := exp ; Rere
end ; (* of case *) o
case m of o

0 : station mean := same ;

. 1 : station mean := diff ; N
". end ; (* of case *) ;
- readln(token_bits, overhead bits, bits per_ data word ) ; e
readln(min_data words, max data words ) ; KN
readln(sim stop_time ) ; e
end ; (**** bus_data_input ****)
3
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b . . (****************************************************************

DATE: 13 Sep 1985
VERSION: 1.2

NAME: station_data_ input

MODULE NUMBER: 1.2

DESCRIPTION: reads in station attributes (data)
PASSED VARIABLES: none

RETURNS: nothing

GLOBAL VARIABLES USED: fromt_ station current_station

station_arr station_ len
station_arr_type station_len type
station rate station_mean
station arr_rate station_len mean
calc_pass_prop_time bits_per_data word

GLOBAL VARIABLES CHANGED: front_station current station
calc_pass_prop_time

FILES READ: input

FILES WRITTEN: none

MODULES CALLED: none

CALLING MODULES: sel bus_setup

AUTHOR: Jim Spileth

HISTORY: 1.2 13 Sep 85 added calc_pass_prop_time
1.1 27 Aug 85 added station case statements
1.0 18 Aug 85 original

o % % % Ok % % W N H % N ¥ % ¥ ¥ N F N N ¥ ¥ F * * ¥ *

o

ok % % o ok % k% N % % N N N F ¥ X ¥ ¥ F* N F X F * ¥

kkdkkRkhkrkhkrhkkkhkkhhhkkhkdhkkkkrkhhhrkhhhkhkkkkhkrkhkhidkkhk )
procedure station_data input ;

var temp_station : station type ;
ptr : station ptr ;
h, 1, j, k : integer ;
begin
writeln('station data input module') ;
readln( h ) ;
if h=20
then calc_pass_prop time := false
else calc_pass prop_time := true ;
for { := 1 to num_stations do
begin
if calc_pass_prop time
then
readln(temp_station.address,
temp station.pass_address,
temp_station.distance )

[ o P AT K
R o S
o ' AR .
P P
v UML) o e

else
readln(temp_station.address,
temp _station.pass_address,
o temp_station.distance,
L temp_station.pass_prop_time ) ;

!' ¥ . A
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case station_arr of FAA
same : begin e
temp station.mess_arr type := station_arr_type ; b
case station_rate of
same : temp_station.mess_arr_rate := station_arr_rate; RAS
diff : readln(temp_station.mess_arr_rate) ; o
end ; (* of case *) o
end ; \}%
diff : begin 28N

readln( j, temp station.mess_arr_rate ) ;
case j of

. g
."1.‘:
at

0 : temp statlion.mess_arr_type := constant_arr ; izf
1 temp_ station.mess_arr type := poisson ; .
2 : temp station.mess_arr_type := contin ;
end ; (* of case %)
end ;
end ; (* of case *)
case station_len of
same : begin
temp_station.mess_len_type := station_len type ;
case station mean of
same : temp station.mess len mean := station_len mean;
diff : readln(temp_station.mess_len mean) ;
end ; (* of case *)
end ;
diff : begin
readln(k, temp_station.mess_len mean ) ;
case k of
0 : temp_station.mess len type := constant_len ;
1 : temp_station.mess len type := exp ;
end ; (* of case *)
end ;
end ; (* of case *)
temp_station.mess len mean := temp_station.mess_len mean *
bits per data word ;
temp station.last_access := 0.0 ;
temp_station.front_mess_queue := nil ;
temp station.rear_mess_queue := nil ;
new(ptr) ;

ifi1=1
then front_station := ptr R
else current_station”.next_station := ptr ; S
ptr .attrib := temp_station ; e
if 1 = num_stations N
then ptr”.next_station := front_station ;‘
else ptr”.next_station := nil ; e
current_station := ptr ; H;{
end ; :nf
(**** gtation data_input ***%) t?{
o
r-
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(****************************************************************

1

r-
e
Rt
R
l'l

DATE: 7 Sep 1985
VERSION: 2.0

NAME: calc_arr_and len
MODULE NUMBER: 1.3.1
DESCRIPTION: calculates arrival time and length of a new
message for a station
PASSED VARIABLES: station arrival type and rate,
station length distribution type and mean*

RETURNS: message arrival time and length
GLOBAL VARIABLES USED: sim clock seed

bits_per data word min data_words max_data_words
GLOBAL VARIABLES CHANGED: none
FILES READ: nomne
FILES WRITTEN: none
MODULES CALLED: none
CALLING MODULES: calc_first arr_and_len

* % % ¥ * F* * N *

AUTHOR: Jim Spieth
HISTORY:
2,0 updated dummy calculations to real ones
1.0 20 Aug 85 dummy constant, Poisson & exp calcs

* F % F F N N F F ¥ ¥ ¥ N F Ok % % % ¥ ¥ * ¥ F ¥

% F % X F F X * % ¥ % F* X *

****************************************************************)

\! procedure calc_arr_and len(arr_type : arrival ;
) arr_rate : real ;
len_type : length distrib ;
len mean : real ;
var arrival_ time : real ;
var message len : real ) ;

var length : integer ;

begin
case arr_type of
constant_arr : begin
if arr_rate = 0,0
then arrival time := 0.0
else arrival time := sim clock + (1.0 / arr_rate);
end ;
poisson : arrival time := sim clock =~
((1.0 / arr_rate) * ln(mth$random(seed)))
contin : arrival time := 0.0 ;
end ; (* of case *)
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R constant_len : message len := len mean ;

case len_type of

exp @ begin

message_len := abs(len mean * 1n(mth$random(seed))) ;
message len := message__ “len / bits_per data_word ;
length := round(message len) ;
message_len := length ;
if message_len > max_data_ words

then message_len := max data_words

else if message len < min data words

then message len := min ¢ data words ;

message_len := message_len * bits_per_data_word ; Sew

end ; B

end (* of case *) Lo
end ; (**%* calc_arr_and len ¥¥k¥) :
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(****************************************************************

e * *

N * DATE: 27 Aug 1985 *

* VERSION: 1.1 *

* *

* NAME: calc_first_arr_and_len *

* MODULE NUMBER: 1.3 *

* DESCRIPTION: calculates arrival time and length of first *

* messages for all stations *

* PASSED VARIABLES: none *
* RETURNS: none * -
* GLOBAL VARIABLES USED: current station front_station * et
* GLOBAL VARIABLES CHANGED: current station * by
* FILES READ: none * o
* FILES WRITTEN: none * :.4“1‘
) *  MODULES CALLED: calc_arr_and len * k.
- * CALLING MODULES: sel_bus_setup * s
- * * o
N *  AUTHOR: Jim Spieth * o
- *  HISTORY: * po
i: * 1.1 27 Aug 85 added test for constant arr rate of 0.0* « Ly
3 * 1.0 20 Aug 85 original * ﬁ;g
- * * ‘\:. .~

"
A
2%a’s

- dededkdededededed dedeokddeddek kR gk ko dkkdekddkkkdkkdokkdddikkhkkhhkkkkhkkkkik)
procedure calc_first arr and len ;

-~ -

var
i : integer ;
arrival time, message len : real ;
= temp mess : message type ;
ptr : message ptr ;

i begin

writeln('cale first arr and len module') ;
L current_station := front_station ;
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o for 1 := 1 to num stations do
o begin
- if ((current_station“.attrib.mess_arr_type <> constant_arr) or
(current_station”.attrib.mess_arr_rate <> 0.0 ))
then
begin
calc_arr_and_len(
current_station”.attrib.mess_arr_type,
current_station”.attrib.mess_arr_rate,
current_station”.attrib.mess_len_type,
current_station”.attrib.mess_len mean,
arrival time, message_len) ;
temp mess.source add := current_station”.attrib.address ;
temp_mess.length := message len ;
temp mess.arr_time := arrival time ;
new(ptr) ;
ptr~.info := temp mess ;
ptr .next message := nil ;
current_station”.attrib.front_mess_queue := ptr ;
current_station”.attrib.rear_mess queue := ptr ;

end ;
current_station := current_station”.next_station
end
end ; (****% calc first arr_and_len ***x)
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(****************************************************************

DATE: 22 Aug 1985
VERSION: 1.0

NAME: init_stats
MODULE NUMBER: 1.4
DESCRIPTION: initializes the station statistics linked list*
PASSED VARIABLES: none

RETURNS: nothing

GLOBAL VARIABLES USED: front_ station

GLOBAL VARIABLES CHANGED: fromt_stats current_stats
FILES READ: none

FILES WRITTEN: none

MODULES CALLED: none

CALLING MODULES: sel bus_setup

¥ % % X % *

AUTHOR: Jim Spieth
HISTORY:

W % kX N B N N K N N N ¥ N N ¥ N ¥ F

® * X X % F X N ¥ N % %

dkkhhkkhkkhhhkhkhhkhhhhhhhihhkhhhhhhihhkikhhhikhhhikkhhhikhhkkhkkkhk)
procedure init_stats ;

var
temp_stats : stats_type ;
ptr : stats_ptr ;
J : integer ;
begin

writeln('init stats module') ;
current station := front_station ;
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for j := 1 to num stations do

end

F IRV R R N N N S A L I SR e~ 5o A v i

begin

temp stats.address := current_ station”.attrib.address ;

temp_stats.num access := 0.0 ;

temp stats.sum access := 0.0 ;

temp_stats.min access := 1.0e4 ;

temp_stats.max access := 1.0e-9 ;

temp_ stats.num messages := 0

temp_stats.sum mess_len := O,
=1
=1

[
O) we we
we

temp stats.min mess len
temp stats.max mess len :=
temp_stats.sum mess_delay :
temp_stats.min mess delay :=
temp stats.max mess delay :
new(ptr)
if j=1
then
begin
front_stats := ptr ;
current_stats := ptr ;
end
else
current_stats”.next :
ptr“.data := temp stats ;
if j = num stations
then ptr”.next := front_stats
else ptr .next = nil ;
current_station := current_station”.next_station ;
if § > 1 then current_stats := ptr ;
end ;

= ptr ;

(**%* init stats k&)
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LA * *
* DATE: 13 Sep 1985 *
* VERSION: 1.1 *
* *
* NAME: calc_token prop delays *
*  MODULE NUMBER: 1.5 *
* DESCRIPTION: calculates token-passing propagation times *
* PASSED VARIABLES: none *
* RETURNS: nothing *
* GLOBAL VARIABLES USED: front_station num_stations *
* prop_factor speed_light *
* calc_pass_prop_time *
* GLOBAL VARIABLES CHANGED: current station sig_prop *
* sig_delay *
* FILES READ: none *
* FILES WRITTEN: none *
* MODULES CALLED: none *
* CALLING MODULES: sel bus setup *
* *
* AUTHOR: Jim Spieth *
* HISTORY: 1.1 13 Sep 85 added calc_pass_prop time test *
* 1.0 31 Aug 85 original *
* *
Sk de ke deded e e e ke ke ok ke ek ket etk ek ke ek ek ke ko )

procedure calc_token prop delays ;

var distance : real ;
P, q : integer ;
begin
sig_prop := prop_ﬁactor * speed_light ;
sig delay := 1.0 / sig prop ;
current_station := front_station ;
if calc_pass_prop time
then
for p := 1 to num stations do
begin
distance := abs(current_station".attrib.distance -
current_station”.next_station”.attrib.distance ) ;
current_station” .attrib. pass_prop_ time := distance * gig delay ;
writeln(current station”.,attrib.address, '
current_station”.attrib.pass_prop_time ) H
curren:_ﬁtation := current_station”.next_station ;

end
else
for q := 1 to num stations do
begin
writeln(current_station”.attrib.address, '’ '

current_station”.attrib. pass_prop_time )
current_ptation := current_station”.next_station ;
- end ;
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(****************************************************************

~ h

¥ DATE: 31 Aug 1985 o
a VERSION: 1.0 g

- NAME: sel_bus_setup t:v
A MODULE NUMBER: 1.0 N
. DESCRIPTION: executive for modules to setup bus config. LY
i PASSED VARIABLES: none Sa%
¥ RETURNS: nothing

GLOBAL VARIABLES USED: none

GLOBAL VARIABLES CHANGED: none

FILES READ: none

FILES WRITTEN: none

MODULES CALLED: bus_data_input
station data input
calc_first_arr_and_len
init_stats
clac_token_ prop delays

CALLING MODULES: bussim (main)

Ia

«
.

*u
"
-

AUTHOR: Jim Spieth
HISTORY:

W % N X % N N ¥ % N N ¥ X F F ¥ ¥ F * F * *
* % % % %k N % N N X K N H F F ¥ ¥ F * ¥ X X ¥

dkhkhhRAkRhhkhkhkhhhkhhhkhhhhkddkhhhkkkikhkkhhkkhhihidhkhhkkhkhikk)
procedure sel bus_setup ;

begin
writeln('select bus configuration setup module') ;
bus_data_imput ;
station_data input ;
calc_first arr_and len ;
init_stats ;
calc_token_prop_delays ;
end ;
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(****************************************************************

DATE: 24 Sep 1985
VERSION: 1.4

TITLE: simulate
FILENAME: simulate.pas
COORDINATOR: Jim Spieth
PROJECT: Avionics Bus Simulation Model
OPERATING SYSTEM: VAX/VMS, Version 4.2 on VAX-11/782
LANGUAGE: Pascal
USE: Zinclude file for program bussim
CONTENTS: simulate

calc_next arr_and_len

dist_algor

cent_algor
FUNCTION: performs the simulation of the bus

% % % F F ¥ F N N N % ¥ ¥ F ¥ F* *
~ % R % N X X X X ¥ F X X ¥ N N F
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DATE: 21 Aug 1985
VERSION: 1.0

NAME: calc_next_arr_and_len

MODULE NUMBER: 2.1.4

DESCRIPTION: calculates arrival time and length of next
message for current station

PASSED VARIABLES: none

RETURNS: none

GLOBAL VARIABLES USED: current_station

GLOBAL VARIABLES CHANGED: none

FILES READ: none

FILES WRITTEN: none

MODULES CALLED: calc_arr_and len

CALLING MODULES: dist_algor

AUTHOR: Jim Spieth
HISTORY:

* % % % N N N ¥ X N N F ¥ ¥ ¥ ¥ X ¥ ¥ ¥

Kkdkkkkkhkkkkhhkakhkhkhhhhhkhihkhkhhhrhhhhkhihhkhhhkhihkhhkhhkddhkhiokkkk
procedure calc _next_arr_and len ;

S~ X ¥ N F ¥ N F X X X N ¥ F ¥ X ¥ ¥ X * *

var
arrival time,
message len : real ;
temp_mess : message_type ;

begin
calc_arr_and_len(
current_station”.attrib.mess_arr_type,
current station .attrib.mess_arr_ rate,
current_! “station”.attrib. mess_| “len _type,
current_station”.attrib. mess_}en_pean,
arrival time, message len) ;
temp_mess.source_add := current station”.attrib.address ;
temp mess.length := message_len ;
temp_mess.arr_ time := arrival time ;
in rear queue(current_station”.attrib.front_mess_queue,
current_station”.attrib.rear mess_queue, temp mess)
end ;

136

. . . . - ~'. - .. AR S ) !
L N R T T T N N A A SRR
PR P S D WP A A A S UL S IS I -(“'ng._‘:_'.A;. A




~"e Ve

TENEN s 4 5 s~

it‘;

BN . 4 RO

eli

SR ALY S

PR
-
- e

SRS SN

-,
-’

...... T
................... ¥,

( hkdkkkhkhkdhkkihkhkhhkhkhkhhkhhhhkhkhkhhhhkhhhhhrhkkhhhkhhhkhkhhtkhdhhkihkhhhikk

DATE: 24 Sep 1985
VERSION: 1.3

NAME: dist_algor
MODULE NUMBER: 2.1
DESCRIPTION: simulates distributed token-passing algorithm
PASSED VARIABLES: none
RETURNS: none
GLOBAL VARIABLES USED: sim clock pass_cycle bit_rate
current_station current_stats
token_bits stat _delay num stations*
token hold limit token hold_type
GLOBAL VARIABLES CHANGED: current station current_stats
FILES READ: none
FILES WRITTEN: none
MODULES CALLED: calc_next_ arr_and_len
out_front queue
update_access_stats
update message stats
update_delay stats
update_thruput_stats
CALLING MODULES: simulate

* % N ¥ ¥ N ¥ * * ¥ *

AUTHOR: Jim Spieth
HISTORY:
1.3

24 Sep 85
31 Aug 85
29 Aug 85
21 Aug 85

added token_ hold_type

added update delay stats call
added update access_stats call
original

el
O N

.

* % % ¥ N % N N N N H N N X N N N N N N H N * N N N F * N % *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

kkkkkkkkhkihhhhhkhhhhkhhhihkhhhkkkkihhhikkhrkhkhkkhrhkkkkkhkikhkk)
procedure dist_algor ;

var send, station count,

pass_cycle

.

integer ;

data_len, mess_tx, mess_len, cycle time, sum data_bits,
sum _over_bits, hold limit ! real

.

’

begin
writeln('dist
send := 1 ;
station_count
pass_cycle :=
cycle time :=
sum_data_bits := 0.0 ;
sum_over_bits := 0.0 ;
current_station := front_station
current_stats := front_stats ;
hold limit := token_hold limit

algor module') ;
(** gend=l=yes, send=0=no **)

=13
13
sim clock ;

’
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. while (sim clock < sim stop time) do
RN begin
- update_access_stats(current_station".attrib.last_access, pass_cycle) ;
if (current_ptation‘.attrib.fron;_pess_gueue <> nil)
then
begin
while (send = 1) do
begin
if current station“.attrib.mess_arr_type <> contin then
if current_station”.attrib.front_mess queue”.info.arr_time
> sim clock then send := 0 ;
if send = 1 then
begin
data_len :=
current_station”.attrib.front_mess queue”.info.length ;
mess_len := data_len + overhead bits ;
mess_tx := mess_len / bit_rate ;
case token hold type of
time : if mess_tx > hold limit
then send := 0 ;
num : if hold limit = 0.0
then send := 0 ;
end ; (* of case *)
if send = 1 then

begin
.. update message stats(mess_len) ;
\, sim_clock := sim_clock + mess_tx ;

if current_station”.attrib.mess_arr_type <> contin then
update_delay_stats(
current_station”.attrib.front_mess_queue .info.arr_time) ;
calc_next_arr_and len ;
out_front_queue(current_station”.attrib.front_mess_queue,
current_station”.attrib.rear mess_queue) ;
sum_data_bits := sum data bits + data_len ;
sum over_bits := sum over_ bits + overhead bits ;
case token hold_type of
time : hold limit := hold_ limit - mess_tx ;
num : hold limit := hold limit - 1.0 ;
end ; (* of case *)
end ;
end ;
end ; (* send while *)
end ; (* nil if *)
sim _clock := sim _clock + (token bits / bit rate) ;
sum_over_bits := sum over_bits + token bits ;
sim clock := sim clock + current station”.attrib.pass_prop_time ;
sim clock := sim clock + stat delay ;
current_station := current_station”.next_station ;
current_stats := current_stats”.next ;
station_count := station count + 1 ;
send := 1 ;
S hold limit := token_hold limit ;
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if station count > num stations then

AR begin
N pass_cycle := pass_cycle + 1 ;
station count := 1 ;
cycle time := sim clock - cycle_time ;
X update thruput stats(cycle time, sum data bits, sum over_ bits) ;
- cycle time := sim clock ;
) end ;
end (**** yhile **%%)
end ; (****x dist algor ***%)
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(*********************************** hkkkkkkhkkhhkhkhhkhkhkkkkhkihhkikkik

DATE: 24 Sep 1985
VERSION: 2.1

NAME: cent_algor
MODULE NUMBER: 2.2
DESCRIPTION: simulates centralized token-passing algorithm
PASSED VARIABLES: none
RETURNS: none
GLOBAL VARIABLES USED: sim clock pass cycle bit_rate
current_station current_stats
token_bits stat _delay num stations*
token_hold limit token_hold_type *
GLOBAL VARIABLES CHANGED: current_station current stats *
FILES READ: none *
FILES WRITTEN: none *
MODULES CALLED: calc_next arr_and len *
out_front_queue *
update_access_stats *
update_message_stats *
update_delay_stats *
update_thruput_stats *
*
*
*
*
*
*
*
*
)

¥ % b ¥ N N ¥ N H ¥ *

CALLING MODULES: simulate

AUTHOR: Jim Spieth
HISTORY:
2.1 24 Sep 85 added token hold_type
2.0 17 Sep 85 simplified (deleted next message lines)
1.0 31 Aug 85 original

M %k W % % N %k N % Bk % ¥ * ¥ ¥ X F % % % % N ¥ ¥ F 2B F % % *

kkhhkkkkkhkhkhkkhhhkkkhkhhhkhkhkhkhkhkhkhhhkhhhkhkhkhhkkhkhkhhhhkhhkhhkhkhkhkkhk

procedure cent_algor ;
var send, send token, pass,
station _count, pass_cycle : integer ;

data_len, mess_tx, mess_len,
cycle time, sum data bits,
sum over bits, hold limit : real ;
begin
writeln('centralized algorithm procedure called') ;

"L el s . mY

send := 1 ; (** send=l=yes, send=0=no *%*)

send_token := 0 ;

pass := 0 ;

station count :=1 ;

pass_cycle :=1 ;

cycle_time := sim_clock ;

sum_data bits := 0.0 ;
sum_over_bits := 0.0 ;
current_station := front_station ;
current_stats := front_stats ;
hold limit := token hold limit ;
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ceo while (sim clock < sim stop time) do
- ﬂ:}* begin

update_access_stats(current_ station”.attrib.last_access, pass_cycle ) ;
‘ if current_station”.attrib.front_mess_queue = nil
. then send token := 1
y else
- while (send = 1) do
. begin

if current_station”.attrib.mess_arr_type <> contin

. then if current_station”.attrib.front_mess_queue”.info.arr_time
- > sim clock

then

begin

send := 0 ;

if pass > 0
. then send_token := 0
- else send token :=1
. end ;
"f if send = 1
- then

begin

- data len :=

- current_station”.attrib.front_mess_queue”.info.length ;
mess_len := data_len + overhead_bits ;

mess_tx := mess_len / bit_rate ;

case token hold type of

b‘ time : if mess_tx > hold limit
then AN
; begin s
- send := 0 ; e
. if pass > 0 S
- then send_token := 0 fkﬁ
else send_token := 1 B
» end ; -
N num : if hold limit = 0.0 e
~ then s
- begin e
- send := 0 ; §{:1
if pass > 0 P
3 then send_token := 0 e
- else send_token := 1 :};ﬂ
- end ; o N
: end ; (* of case *) Zifﬂ
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if send = 1 then
begin (* send message *)
update message_stats(mess_len) ;
sim_clock := sim clock + mess_: tx H
if current station .attrib.mess_arr_type <> contin then
update_delay_stats(
current_station”.attrib.front_mess queue”.info.arr_time) ;
calc next_arr_and len ;
out_front_queue(current_station".attrib.front_mess_queue,

current_station”.attrib.rear_mess queue) ; Eﬁa

sum_data bits := sum data bits + data_len ; AR

sum over bits := sum over_bits + overhead bits ; =~
pass := pass + 1 ; o
case token hold_type of e
time : hold_limit := hold limit - mess_tx ; £ .

num : hold limit := hold limit - 1.0 ; D

end ; (* of case *) O

d H r ?

end ; -

. RO
PR
2 te e .
M »

P
»
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PO R )

end ; (* send while *) )

if send_token = 1 &
then -
begin N

'
»o®

sim clock := sim clock + (token bits / bit_rate)
gum_over_bits := sum over bits + token_bits ;
S end ;
‘_9 sim_clock := sim clock + current_station”.attrib.pass_prop_ time ;
sim clock := sim_clock + stat_delay ;
current_station := current_station”.next_station ;
current_stats := current_stats”.next ;
station_count := station_count + 1 ;
send :=1 ;
send_token := 0 ;
pass := 0
hold limit := token hold limit ;
if station_count > num stations
then
begin
pass_cycle := pass_cycle + 1 ;
station count :=1 ;
cycle time := sim clock - cycle_time ;
update thruput_stats(cycle time, sum data bits, sum over_bits)
cycle time := sim clock ;
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end ; o :
end : (**** while ****) qu
end ; (***% cent_algor ***%) S
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DATE: 24 Aug 1985
VERSION: 1.0

v

-

NAME: simulate

MODULE NUMBER: 2.0

DESCRIPTION: executive for bus simulation

PASSED VARIABLES: none

RETURNS: none

GLOBAL VARIABLES USED: bus_control

GLOBAL VARIABLES CHANGED: none

FILES READ: none

FILES WRITTEN: none

MODULES CALLED: dist_algor
cent_algor

CALLING MODULES: bussim (main)

rTYYy
]

r

vy
»

AUTHOR: Jim Spieth
HISTORY:

A ]
o % k% % % N % % % ¥ X N ¥ F % ¥ ¥ ¥ ¥
* % ¥ A % % B ¥ ¥ N F N X N ¥ F ¥ X * X

Kkdkh kg dkkkkkihkhdkhdkdkihkkhkkkhdhihhkdhhkhkhkkkrrikkhrichkrkkhrihhk)
procedure simulate ;

begin
writeln('simulation control module entered')
case bus control of
distridb : dist_algor ;
central : cent_algor
end (* of case *)

end ;
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Appendix C. Test Case Command Files

This appendix contains the command files used to execute the seven
test case simulations in Chapter IV. The first line of each file is a
comment indicating which test case and condition the file was used for.
For most of the test cases, ten simulations were made with different
message arrival rates to generate data which was presented as delay-
throughput curves. However, only one command file representing one

message arrival rate set is included in this appendix for each condition

of each test case.
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! First Test Case Equal Message Arrival Rates
$ run disk$user:{spieth.bus]bussim
707
30 1 50.0e6
0.666666666 60.0 0.5e-6
2 0 83.32e-6
1 0 1500.0
1 0 64.0
70.0 16.0
256.0

OCONMNOOH
. ¢ N
RNOo.
o
[
. L)

WONOANSWN -

0.0000U\OUIOU‘O

w
oSN LOWLNON
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o
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e o . . e o & o
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X
w
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24 25 33.
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13
'f ,;;: ! First Test Case Unequal Message Arrival Rates
SR Ot $ run disk$user:[spieth.bus]bussim
. 480
. 30 50.0e6
« 0.666666666 0.0 0.5e-6

N o

2 0 83.32e-6
o 1 400.0
%) 0 64.0

1

0

0

22.0 70.0 16.0
0.0 256.0

0.6




g Sy ]

o
(=
™

22

21

500.0
22

N

31.0

23

’ .I\ - v' ¢

500.0
23

32.0

24

50.0
24

33.0

25

10.0
25

55.0

26

R o ]

10.0
26

56.0

27

50.0
27

57.0

28

500.0
28

58.0

29

500.0
29

59.0

30

50.0
30

60.0

1

10.0
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o o ! Second Test Case Mean Message Length = 128 Data Words -:.;
< T $ run disk$user:[spieth.bus]bussim N
. 480 S,
30 1 50.0e6 !r_-\
N 0.666666666 60.0  0.5e-6 ey
. 1 2 0 83.32e-6 o
3 0 1 1 400.0 Y
D, ] 1 0 128.0 e
22.0 70.0 16.0 h
0.0 256.0 K,
0.6
1 ey
1 2 2.0 -
10.0 o
2 3 2.5 E’*ﬁ
50.0 ﬁr
3 4 3.0 L
500.0
4 5 3.5
500.0
5 6 4.0
50.0
6 7 4.5
10.0
7 8 5.0
10.0
\e 8 9 6.0
. 50.0
N 9 10 7.0
X 500.0
. 10 11 8.0
s 500.0
11 12 9.0
50.0
12 13 10.0
10.0
13 14 13.0
10.0
3 14 15 14.0
' 50.0 -
15 16 15.0
500.0 »
16 17 16.0 o
. 500.0 R0
_J 17 18 17.0 £
= 50.0 )
s 18 19 18.0 O
N 10.0 o]
19 20 28.0
- 10.0 =]
- 20 21 29.0 -
50.0 iy
> Ry
< 148 ]
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21
500.0
22
500.0
23
50.0
24
10.0
25
10.0

50.0
27
500.0
28
500.0
29
50.0
30
10.0

30.0
31.0
32.0
33.0
55.0
56.0
57.0
58.0
59.0

60.0
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Lt ! Second Test Case Mean Message Length = 32 Data Words

e $ run diskSuser:[spieth.bus]bussim
480
30 1 50.0e6
. 0.666666666 60.0  0.5e-6
; 1 2 0 83.32e-6
- 0 1 1 400.0
0 1 0 32.0
22.0 70.0 16.0
S 0.0 256.0
! 0.6
1
1 2 2.0
. 10.0
I 2 3 2.5
50.0
3 4 3.0
500.0
4 5 3.5
g 500.0
; 5 6 4.0
; 50.0
6 7 4.5
: 10.0
g 7 8 5.0
S g 10.0
] Q¢ 8 9 6.0
2 50.0
9 10 7.0
500.0
10 11 8.0
: 500.0
) 11 12 9.0
g 50.0
12 13 10.0
10.0
13 14 13.0
N 10.0
B 14 15 14.0
' 50.0
15 16 15.0
500.0
16 17 16.0
: 500.0
. 17 18 17.0
. 50.0
‘ 18 19 18.0
- 10.0
- 19 20 28.0
" 10.0
S 20 21 29.0
. 50.0
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s 21

LA 500.0
22
500.0
23
50.0
24
10.0
25
10.0
26
50.0
27
500.0
28
500.0
29
50.0
30
10.0

30.0
31.0
32.0
33.0
55.0
56.0
57.0
58.0
59.0

60.0
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! Third Test Case Worst Case Token—Passing Sequence
$ run diskSuser:[spieth.bus]bussim

480
30

0.666666666

10.0

50.0
29
50.0

500.0
28
500.0

500.0
27
500.0

50.0
26
50.0

10.0
25
10.0

10.0
24
10.0

50.0
23
50.0

500.0
22
500.0
10
500.0
21
500.0

30

29

28

27

26

25

24

23

22

10

21

11

PR

o

70.0
256.0

2.0
60.0
2.5
59.0
3.0
58.0
3.5
57.0
4.0
56.0
4.5
55.0
5.0
33.0
6.0
32.0
7.0
31.0
8.0

30.0

0.0

50.0e6

0.5e-6

0 83.32e-6
1 400.0

0 64.0

16.0
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11
20
12
19
13
18
14
17
15

16

50.
50.
10.
10.
10.
10.
50.

50.

20
12
19
13
18
14
17
15

16

500.0

1

500.0

9.0
29.0
10.0
28.0
13.0
18.0
14.0
17.0
15.0

16.0

r
]
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! Fourth Test Case
$ run disk$user:[spieth.bus]bussim

480
30
0.666666666

17 18
18 19
19 20

20 21

1

60.0

2
1
1

70.0
256.0

2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0
10.
13.
14,
15.
16.
17.
18.
28.

29.

25.0e6
0.5e-6

0
1
0

16.0

Bit Rate = 25 megabits/second

166.64e-6
400.0
64.0
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! Fourth Test Case Bit Rate = 40 megabits/second
Wi $ run diskSuser:[spieth.bus]bussim

480

30 1 40.0e6

0.666666666 60.0 0.5e-6

1 2 0 104.15e-6

0 1 1 400.0

0 1 0 64.0
22.0 70.0 16.0
0
0

.0 256.0 "
6 LA

1 R

1 2 2.0 S
10.0 i
2 3 2.5 -

3 6 7 4.5
’ 10.0
' 7 8 5.0
. 10.0
LY 8 9 6.0
N 50.0
- 9 10 7.0
3 500.0
- 10 11 8.0
o 500.0

11 12 9.0
12 13 10.0
13 14 13.0 E§\§
;g.o 15 14.0 &%%:
15 16 15.0 R
16 17 16.0 -

17 18 17.0 | !"1

18 19 18.0 RO

" 10.0 e
- 19 20 28.0 R
- 10.0 3

. 20 21 29.0 i:;j

156 NN




AaCR At e Re e et St S M et S St g A S SR T N iy W e A par 8L g N phg Sk = A W L DU IR T AT e T 1 L g Lo Rh

o 21 22 30.0 N

00 500.0 SN

22 23 31.0 L)

500.0 ,

23 24 32.0 S

50.0 %

24 25 33.0 belea)

10.0 oo

25 26 55.0 Sand

10.0

26 27 56.0

. 50.0

27 28 57.0
: 500.0

i 28 29 58.0
. 500.0

g 29 30 59.0

5 50.0

g 30 1 60.0

10.0




ﬁ{f{ $ run disk$user:[spieth.bus]bussim
N %
T 480
30 1 50.0e6
0.666666666 60.0 0.5e-6
1 2 0 329.,08e-6
0 1 1 400.0
0 1 0 64.0
22.0 70.0 16.0
0.0 1024.0
0.7
1
1 2 2.0
10.0
2 3 2.5
50.0
3 4 3.0
500.0
4 5 3.5
500.0
5 6 4,0
50.0
6 7 4,5
10.0
7 8 5.0
. 10.0
iy 8 9 6.0
LU 50.0
9 10 7.0
500.0
10 11 8.0
500.0
11 12 9.0
50.0
12 13 10.0
10.0
13 14 13.0
10.0
14 15 14,
50.0
15 16 15.
500.0
16 17 16.
500.0
17 18 17.0
50.0
18 19 18.0
10.0
19 20 28.0
10.0
] 20 21 29.0
.:T} 50.0
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! Fifth Test Case Maximum Message Length = 1024 data words




MO

i

21
500.0
22
500.0
23
50.0
24
10.0
25
10.0
26
50.0
27
500.0
28
500.0

50.0
30
10.0

30.0
31.0
32.0
33.0
55.0
56.0
57.0
58.0
59.0

60.0
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TN ! Fifth Test Case Maximum Message Length = 4096 data words . X
s $ run disk$user:[spieth.bus]bussim |:'\,:
480 ® 5('
: 30 1 50.0e6
" 0.666666666 60.0 0.5e-6 Y
: 1 2 0 1.312120e-3 Q0
5 0 1 1 400.0 2
- 0 1 0 64.0 §o-t
: 22.0 70.0 16.0 :
0.0 4096.0
0.8 o
1 :,:.: i
1 2 2.0 oo
10.0 RS
2 3 2.5 4
50.0 E‘é‘_"
3 4 3.0 i
500.0 (s
4 5 3.5 .
500.0 e
5 6 4.0
. 50.0
% 6 7 4.5 e
- 10.0 e
Y 7 8 5.0 o
- . ';'.L 10 .0 :{::‘:
‘_‘ 8 9 6.0 2
50.0 v
9 10 7.0 -
500.0 R
10 11 8.0 o
500.0
11 12 9.0
50.0
” 12 13 10.0
? 10.0
- 13 14 13.0
: 10.0
14 15 14.0
3 50.0
15 16 15.0
500.0
16 17 16.0
500.0 .
17 18 17.0
50.0 RN
18 19 18.0 _‘:‘
10.0 ',.'\-'.._\
19 20 28.0 b
10.0 D
- 20 21 29.0
AR 50.0
- e
160 i -;
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21 22 30.0
500.0
22 23 31.0
500.0
23 24 32.0
50.0
24 25 33.0
10.0
25 26 55.0
10.0
26 27 56.0
50.0
. 27 28 57.0
- 500.0
28 29 58.0

ROTY il XA
‘_’ : > s

Y,

l.’,
M

v

) AT

500.0 ppe
- 29 30 59.0 s
- 50.0 :_‘.:1:
30 1 60.0 O
s 10.0 e
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o ! Sixth Test Case Deterministic Message Arrivals
. $ run disk$user:[spieth.bus]bussim

P
o

¥
v -

480
30 1 50.0e6
0.666666666 60.0  0.5e-6
1 2 0 83.32e-6
0 0 1 400.0
0 1 0 64.0
22.0 70.0 16.0
5 0.0 256.0
i 0.6
R 1
- 1 2 2.0
3 10.0
il 2 3 2.5
. 50.0
- 3 4 3.0
. 500.0
. 4 5 3.5
= 500.0
5 6 4.0
50.0
6 7 4,5
10.0
7 8 5.0
s 10.0
'[!f 8 9 6.0
" 50.0
N 9 10 7.0
. 500.0
N 10 11 8.0
- 500.0
11 12 9.0
50.0
12 13 10.0
10.0
13 14 13.0
10.0
14 15 14.0
50.0
15 16 15.0
500.0
N 16 17 16.0
Y 500.0
17 18 17.0
¥ 50.0
o 18 19 18.0
L 10.0
T 19 20 28.0
10.0

. 20 21 29.0
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30.0
31.0
32.0
33.0
55.0
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! Seventh Test Case Distributed Control Protocol
$ run disk$user:[spieth.bus]bussim

480

30 1 50.0e6

0.666666666 60.0 0.5e-6

0 1 0 1.31136e-3
0 1 1 400.0

0 1 0 128.0
112.0 112.0 8.0

0.0 8182.0

1.8

1 2 2.0
2 3 2.5
3 4 3.0
4 5 3.5
5 6 4.0

6 7 4.5

7 8 5.0

9 10 7.0
10 11 8.0
11 12 9.0
12 13 10.0
13 14 13.0
14 15 14.0

15 16 15.0
500.0
16 17 16.0
500.0
17 18 17.0
50.0
18 19 18.0
10.0
19 20 28.0
10.0
20 21 29.0
50.0
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